Remove duplicated #include's from GDB
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include <string.h>
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "objfiles.h"
44 #include "exceptions.h"
45
46 extern unsigned int overload_debug;
47 /* Local functions. */
48
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
51
52 static struct value *search_struct_field (const char *, struct value *,
53 int, struct type *, int);
54
55 static struct value *search_struct_method (const char *, struct value **,
56 struct value **,
57 int, int *, struct type *);
58
59 static int find_oload_champ_namespace (struct value **, int,
60 const char *, const char *,
61 struct symbol ***,
62 struct badness_vector **,
63 const int no_adl);
64
65 static
66 int find_oload_champ_namespace_loop (struct value **, int,
67 const char *, const char *,
68 int, struct symbol ***,
69 struct badness_vector **, int *,
70 const int no_adl);
71
72 static int find_oload_champ (struct value **, int, int, int,
73 struct fn_field *, struct symbol **,
74 struct badness_vector **);
75
76 static int oload_method_static (int, struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum
81 oload_classification classify_oload_match (struct badness_vector *,
82 int, int);
83
84 static struct value *value_struct_elt_for_reference (struct type *,
85 int, struct type *,
86 char *,
87 struct type *,
88 int, enum noside);
89
90 static struct value *value_namespace_elt (const struct type *,
91 char *, int , enum noside);
92
93 static struct value *value_maybe_namespace_elt (const struct type *,
94 char *, int,
95 enum noside);
96
97 static CORE_ADDR allocate_space_in_inferior (int);
98
99 static struct value *cast_into_complex (struct type *, struct value *);
100
101 static struct fn_field *find_method_list (struct value **, const char *,
102 int, struct type *, int *,
103 struct type **, int *);
104
105 void _initialize_valops (void);
106
107 #if 0
108 /* Flag for whether we want to abandon failed expression evals by
109 default. */
110
111 static int auto_abandon = 0;
112 #endif
113
114 int overload_resolution = 0;
115 static void
116 show_overload_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
118 const char *value)
119 {
120 fprintf_filtered (file, _("Overload resolution in evaluating "
121 "C++ functions is %s.\n"),
122 value);
123 }
124
125 /* Find the address of function name NAME in the inferior. If OBJF_P
126 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
127 is defined. */
128
129 struct value *
130 find_function_in_inferior (const char *name, struct objfile **objf_p)
131 {
132 struct symbol *sym;
133
134 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
135 if (sym != NULL)
136 {
137 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
138 {
139 error (_("\"%s\" exists in this program but is not a function."),
140 name);
141 }
142
143 if (objf_p)
144 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
145
146 return value_of_variable (sym, NULL);
147 }
148 else
149 {
150 struct bound_minimal_symbol msymbol =
151 lookup_bound_minimal_symbol (name);
152
153 if (msymbol.minsym != NULL)
154 {
155 struct objfile *objfile = msymbol.objfile;
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression "
174 "requires the target program to be active"));
175 else
176 error (_("evaluation of this expression requires the "
177 "program to have a function \"%s\"."),
178 name);
179 }
180 }
181 }
182
183 /* Allocate NBYTES of space in the inferior using the inferior's
184 malloc and return a value that is a pointer to the allocated
185 space. */
186
187 struct value *
188 value_allocate_space_in_inferior (int len)
189 {
190 struct objfile *objf;
191 struct value *val = find_function_in_inferior ("malloc", &objf);
192 struct gdbarch *gdbarch = get_objfile_arch (objf);
193 struct value *blocklen;
194
195 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
196 val = call_function_by_hand (val, 1, &blocklen);
197 if (value_logical_not (val))
198 {
199 if (!target_has_execution)
200 error (_("No memory available to program now: "
201 "you need to start the target first"));
202 else
203 error (_("No memory available to program: call to malloc failed"));
204 }
205 return val;
206 }
207
208 static CORE_ADDR
209 allocate_space_in_inferior (int len)
210 {
211 return value_as_long (value_allocate_space_in_inferior (len));
212 }
213
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
218
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
221 {
222 struct type *t1;
223 struct type *t2;
224 struct value *v;
225
226 gdb_assert (type != NULL && v2 != NULL);
227
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
230
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
238
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
242 return NULL;
243
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
248 {
249 v = search_struct_field (type_name_no_tag (t1),
250 v2, 0, t2, 1);
251 if (v)
252 return v;
253 }
254
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
259 {
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
263
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
265 if (real_type)
266 {
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), 0, t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. If SUBCLASS_CHECK is non-zero, this will force a
302 check to see whether TYPE is a superclass of ARG2's type. If
303 SUBCLASS_CHECK is zero, then the subclass check is done only when
304 ARG2 is itself non-zero. Returns the new pointer or reference. */
305
306 struct value *
307 value_cast_pointers (struct type *type, struct value *arg2,
308 int subclass_check)
309 {
310 struct type *type1 = check_typedef (type);
311 struct type *type2 = check_typedef (value_type (arg2));
312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
314
315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
317 && (subclass_check || !value_logical_not (arg2)))
318 {
319 struct value *v2;
320
321 if (TYPE_CODE (type2) == TYPE_CODE_REF)
322 v2 = coerce_ref (arg2);
323 else
324 v2 = value_ind (arg2);
325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
327 v2 = value_cast_structs (t1, v2);
328 /* At this point we have what we can have, un-dereference if needed. */
329 if (v2)
330 {
331 struct value *v = value_addr (v2);
332
333 deprecated_set_value_type (v, type);
334 return v;
335 }
336 }
337
338 /* No superclass found, just change the pointer type. */
339 arg2 = value_copy (arg2);
340 deprecated_set_value_type (arg2, type);
341 set_value_enclosing_type (arg2, type);
342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
343 return arg2;
344 }
345
346 /* Cast value ARG2 to type TYPE and return as a value.
347 More general than a C cast: accepts any two types of the same length,
348 and if ARG2 is an lvalue it can be cast into anything at all. */
349 /* In C++, casts may change pointer or object representations. */
350
351 struct value *
352 value_cast (struct type *type, struct value *arg2)
353 {
354 enum type_code code1;
355 enum type_code code2;
356 int scalar;
357 struct type *type2;
358
359 int convert_to_boolean = 0;
360
361 if (value_type (arg2) == type)
362 return arg2;
363
364 code1 = TYPE_CODE (check_typedef (type));
365
366 /* Check if we are casting struct reference to struct reference. */
367 if (code1 == TYPE_CODE_REF)
368 {
369 /* We dereference type; then we recurse and finally
370 we generate value of the given reference. Nothing wrong with
371 that. */
372 struct type *t1 = check_typedef (type);
373 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
374 struct value *val = value_cast (dereftype, arg2);
375
376 return value_ref (val);
377 }
378
379 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
380
381 if (code2 == TYPE_CODE_REF)
382 /* We deref the value and then do the cast. */
383 return value_cast (type, coerce_ref (arg2));
384
385 CHECK_TYPEDEF (type);
386 code1 = TYPE_CODE (type);
387 arg2 = coerce_ref (arg2);
388 type2 = check_typedef (value_type (arg2));
389
390 /* You can't cast to a reference type. See value_cast_pointers
391 instead. */
392 gdb_assert (code1 != TYPE_CODE_REF);
393
394 /* A cast to an undetermined-length array_type, such as
395 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
396 where N is sizeof(OBJECT)/sizeof(TYPE). */
397 if (code1 == TYPE_CODE_ARRAY)
398 {
399 struct type *element_type = TYPE_TARGET_TYPE (type);
400 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
401
402 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
403 {
404 struct type *range_type = TYPE_INDEX_TYPE (type);
405 int val_length = TYPE_LENGTH (type2);
406 LONGEST low_bound, high_bound, new_length;
407
408 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
409 low_bound = 0, high_bound = 0;
410 new_length = val_length / element_length;
411 if (val_length % element_length != 0)
412 warning (_("array element type size does not "
413 "divide object size in cast"));
414 /* FIXME-type-allocation: need a way to free this type when
415 we are done with it. */
416 range_type = create_range_type ((struct type *) NULL,
417 TYPE_TARGET_TYPE (range_type),
418 low_bound,
419 new_length + low_bound - 1);
420 deprecated_set_value_type (arg2,
421 create_array_type ((struct type *) NULL,
422 element_type,
423 range_type));
424 return arg2;
425 }
426 }
427
428 if (current_language->c_style_arrays
429 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
430 && !TYPE_VECTOR (type2))
431 arg2 = value_coerce_array (arg2);
432
433 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
434 arg2 = value_coerce_function (arg2);
435
436 type2 = check_typedef (value_type (arg2));
437 code2 = TYPE_CODE (type2);
438
439 if (code1 == TYPE_CODE_COMPLEX)
440 return cast_into_complex (type, arg2);
441 if (code1 == TYPE_CODE_BOOL)
442 {
443 code1 = TYPE_CODE_INT;
444 convert_to_boolean = 1;
445 }
446 if (code1 == TYPE_CODE_CHAR)
447 code1 = TYPE_CODE_INT;
448 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
449 code2 = TYPE_CODE_INT;
450
451 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
452 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
453 || code2 == TYPE_CODE_RANGE);
454
455 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
456 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
457 && TYPE_NAME (type) != 0)
458 {
459 struct value *v = value_cast_structs (type, arg2);
460
461 if (v)
462 return v;
463 }
464
465 if (code1 == TYPE_CODE_FLT && scalar)
466 return value_from_double (type, value_as_double (arg2));
467 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
468 {
469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
470 int dec_len = TYPE_LENGTH (type);
471 gdb_byte dec[16];
472
473 if (code2 == TYPE_CODE_FLT)
474 decimal_from_floating (arg2, dec, dec_len, byte_order);
475 else if (code2 == TYPE_CODE_DECFLOAT)
476 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
477 byte_order, dec, dec_len, byte_order);
478 else
479 /* The only option left is an integral type. */
480 decimal_from_integral (arg2, dec, dec_len, byte_order);
481
482 return value_from_decfloat (type, dec);
483 }
484 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
485 || code1 == TYPE_CODE_RANGE)
486 && (scalar || code2 == TYPE_CODE_PTR
487 || code2 == TYPE_CODE_MEMBERPTR))
488 {
489 LONGEST longest;
490
491 /* When we cast pointers to integers, we mustn't use
492 gdbarch_pointer_to_address to find the address the pointer
493 represents, as value_as_long would. GDB should evaluate
494 expressions just as the compiler would --- and the compiler
495 sees a cast as a simple reinterpretation of the pointer's
496 bits. */
497 if (code2 == TYPE_CODE_PTR)
498 longest = extract_unsigned_integer
499 (value_contents (arg2), TYPE_LENGTH (type2),
500 gdbarch_byte_order (get_type_arch (type2)));
501 else
502 longest = value_as_long (arg2);
503 return value_from_longest (type, convert_to_boolean ?
504 (LONGEST) (longest ? 1 : 0) : longest);
505 }
506 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
507 || code2 == TYPE_CODE_ENUM
508 || code2 == TYPE_CODE_RANGE))
509 {
510 /* TYPE_LENGTH (type) is the length of a pointer, but we really
511 want the length of an address! -- we are really dealing with
512 addresses (i.e., gdb representations) not pointers (i.e.,
513 target representations) here.
514
515 This allows things like "print *(int *)0x01000234" to work
516 without printing a misleading message -- which would
517 otherwise occur when dealing with a target having two byte
518 pointers and four byte addresses. */
519
520 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
521 LONGEST longest = value_as_long (arg2);
522
523 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
524 {
525 if (longest >= ((LONGEST) 1 << addr_bit)
526 || longest <= -((LONGEST) 1 << addr_bit))
527 warning (_("value truncated"));
528 }
529 return value_from_longest (type, longest);
530 }
531 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
532 && value_as_long (arg2) == 0)
533 {
534 struct value *result = allocate_value (type);
535
536 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
537 return result;
538 }
539 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
540 && value_as_long (arg2) == 0)
541 {
542 /* The Itanium C++ ABI represents NULL pointers to members as
543 minus one, instead of biasing the normal case. */
544 return value_from_longest (type, -1);
545 }
546 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
547 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
548 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
549 error (_("Cannot convert between vector values of different sizes"));
550 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("can only cast scalar to vector of same size"));
553 else if (code1 == TYPE_CODE_VOID)
554 {
555 return value_zero (type, not_lval);
556 }
557 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
558 {
559 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
560 return value_cast_pointers (type, arg2, 0);
561
562 arg2 = value_copy (arg2);
563 deprecated_set_value_type (arg2, type);
564 set_value_enclosing_type (arg2, type);
565 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
566 return arg2;
567 }
568 else if (VALUE_LVAL (arg2) == lval_memory)
569 return value_at_lazy (type, value_address (arg2));
570 else
571 {
572 error (_("Invalid cast."));
573 return 0;
574 }
575 }
576
577 /* The C++ reinterpret_cast operator. */
578
579 struct value *
580 value_reinterpret_cast (struct type *type, struct value *arg)
581 {
582 struct value *result;
583 struct type *real_type = check_typedef (type);
584 struct type *arg_type, *dest_type;
585 int is_ref = 0;
586 enum type_code dest_code, arg_code;
587
588 /* Do reference, function, and array conversion. */
589 arg = coerce_array (arg);
590
591 /* Attempt to preserve the type the user asked for. */
592 dest_type = type;
593
594 /* If we are casting to a reference type, transform
595 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
596 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
597 {
598 is_ref = 1;
599 arg = value_addr (arg);
600 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
601 real_type = lookup_pointer_type (real_type);
602 }
603
604 arg_type = value_type (arg);
605
606 dest_code = TYPE_CODE (real_type);
607 arg_code = TYPE_CODE (arg_type);
608
609 /* We can convert pointer types, or any pointer type to int, or int
610 type to pointer. */
611 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
613 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
615 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
617 || (dest_code == arg_code
618 && (dest_code == TYPE_CODE_PTR
619 || dest_code == TYPE_CODE_METHODPTR
620 || dest_code == TYPE_CODE_MEMBERPTR)))
621 result = value_cast (dest_type, arg);
622 else
623 error (_("Invalid reinterpret_cast"));
624
625 if (is_ref)
626 result = value_cast (type, value_ref (value_ind (result)));
627
628 return result;
629 }
630
631 /* A helper for value_dynamic_cast. This implements the first of two
632 runtime checks: we iterate over all the base classes of the value's
633 class which are equal to the desired class; if only one of these
634 holds the value, then it is the answer. */
635
636 static int
637 dynamic_cast_check_1 (struct type *desired_type,
638 const gdb_byte *valaddr,
639 int embedded_offset,
640 CORE_ADDR address,
641 struct value *val,
642 struct type *search_type,
643 CORE_ADDR arg_addr,
644 struct type *arg_type,
645 struct value **result)
646 {
647 int i, result_count = 0;
648
649 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
650 {
651 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
652 address, val);
653
654 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
655 {
656 if (address + embedded_offset + offset >= arg_addr
657 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
658 {
659 ++result_count;
660 if (!*result)
661 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
662 address + embedded_offset + offset);
663 }
664 }
665 else
666 result_count += dynamic_cast_check_1 (desired_type,
667 valaddr,
668 embedded_offset + offset,
669 address, val,
670 TYPE_BASECLASS (search_type, i),
671 arg_addr,
672 arg_type,
673 result);
674 }
675
676 return result_count;
677 }
678
679 /* A helper for value_dynamic_cast. This implements the second of two
680 runtime checks: we look for a unique public sibling class of the
681 argument's declared class. */
682
683 static int
684 dynamic_cast_check_2 (struct type *desired_type,
685 const gdb_byte *valaddr,
686 int embedded_offset,
687 CORE_ADDR address,
688 struct value *val,
689 struct type *search_type,
690 struct value **result)
691 {
692 int i, result_count = 0;
693
694 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
695 {
696 int offset;
697
698 if (! BASETYPE_VIA_PUBLIC (search_type, i))
699 continue;
700
701 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
702 address, val);
703 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
704 {
705 ++result_count;
706 if (*result == NULL)
707 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
708 address + embedded_offset + offset);
709 }
710 else
711 result_count += dynamic_cast_check_2 (desired_type,
712 valaddr,
713 embedded_offset + offset,
714 address, val,
715 TYPE_BASECLASS (search_type, i),
716 result);
717 }
718
719 return result_count;
720 }
721
722 /* The C++ dynamic_cast operator. */
723
724 struct value *
725 value_dynamic_cast (struct type *type, struct value *arg)
726 {
727 int full, top, using_enc;
728 struct type *resolved_type = check_typedef (type);
729 struct type *arg_type = check_typedef (value_type (arg));
730 struct type *class_type, *rtti_type;
731 struct value *result, *tem, *original_arg = arg;
732 CORE_ADDR addr;
733 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
734
735 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
736 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
737 error (_("Argument to dynamic_cast must be a pointer or reference type"));
738 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
739 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
740 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
741
742 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
743 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
744 {
745 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
746 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
747 && value_as_long (arg) == 0))
748 error (_("Argument to dynamic_cast does not have pointer type"));
749 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
750 {
751 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
752 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
753 error (_("Argument to dynamic_cast does "
754 "not have pointer to class type"));
755 }
756
757 /* Handle NULL pointers. */
758 if (value_as_long (arg) == 0)
759 return value_zero (type, not_lval);
760
761 arg = value_ind (arg);
762 }
763 else
764 {
765 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
766 error (_("Argument to dynamic_cast does not have class type"));
767 }
768
769 /* If the classes are the same, just return the argument. */
770 if (class_types_same_p (class_type, arg_type))
771 return value_cast (type, arg);
772
773 /* If the target type is a unique base class of the argument's
774 declared type, just cast it. */
775 if (is_ancestor (class_type, arg_type))
776 {
777 if (is_unique_ancestor (class_type, arg))
778 return value_cast (type, original_arg);
779 error (_("Ambiguous dynamic_cast"));
780 }
781
782 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
783 if (! rtti_type)
784 error (_("Couldn't determine value's most derived type for dynamic_cast"));
785
786 /* Compute the most derived object's address. */
787 addr = value_address (arg);
788 if (full)
789 {
790 /* Done. */
791 }
792 else if (using_enc)
793 addr += top;
794 else
795 addr += top + value_embedded_offset (arg);
796
797 /* dynamic_cast<void *> means to return a pointer to the
798 most-derived object. */
799 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
800 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
801 return value_at_lazy (type, addr);
802
803 tem = value_at (type, addr);
804
805 /* The first dynamic check specified in 5.2.7. */
806 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
807 {
808 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
809 return tem;
810 result = NULL;
811 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
812 value_contents_for_printing (tem),
813 value_embedded_offset (tem),
814 value_address (tem), tem,
815 rtti_type, addr,
816 arg_type,
817 &result) == 1)
818 return value_cast (type,
819 is_ref ? value_ref (result) : value_addr (result));
820 }
821
822 /* The second dynamic check specified in 5.2.7. */
823 result = NULL;
824 if (is_public_ancestor (arg_type, rtti_type)
825 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
826 value_contents_for_printing (tem),
827 value_embedded_offset (tem),
828 value_address (tem), tem,
829 rtti_type, &result) == 1)
830 return value_cast (type,
831 is_ref ? value_ref (result) : value_addr (result));
832
833 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
834 return value_zero (type, not_lval);
835
836 error (_("dynamic_cast failed"));
837 }
838
839 /* Create a value of type TYPE that is zero, and return it. */
840
841 struct value *
842 value_zero (struct type *type, enum lval_type lv)
843 {
844 struct value *val = allocate_value (type);
845
846 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
847 return val;
848 }
849
850 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
851
852 struct value *
853 value_one (struct type *type)
854 {
855 struct type *type1 = check_typedef (type);
856 struct value *val;
857
858 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
859 {
860 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
861 gdb_byte v[16];
862
863 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
864 val = value_from_decfloat (type, v);
865 }
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
867 {
868 val = value_from_double (type, (DOUBLEST) 1);
869 }
870 else if (is_integral_type (type1))
871 {
872 val = value_from_longest (type, (LONGEST) 1);
873 }
874 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
875 {
876 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
877 int i;
878 LONGEST low_bound, high_bound;
879 struct value *tmp;
880
881 if (!get_array_bounds (type1, &low_bound, &high_bound))
882 error (_("Could not determine the vector bounds"));
883
884 val = allocate_value (type);
885 for (i = 0; i < high_bound - low_bound + 1; i++)
886 {
887 tmp = value_one (eltype);
888 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
889 value_contents_all (tmp), TYPE_LENGTH (eltype));
890 }
891 }
892 else
893 {
894 error (_("Not a numeric type."));
895 }
896
897 /* value_one result is never used for assignments to. */
898 gdb_assert (VALUE_LVAL (val) == not_lval);
899
900 return val;
901 }
902
903 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
904
905 static struct value *
906 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
907 {
908 struct value *val;
909
910 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
911 error (_("Attempt to dereference a generic pointer."));
912
913 val = value_from_contents_and_address (type, NULL, addr);
914
915 if (!lazy)
916 value_fetch_lazy (val);
917
918 return val;
919 }
920
921 /* Return a value with type TYPE located at ADDR.
922
923 Call value_at only if the data needs to be fetched immediately;
924 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
925 value_at_lazy instead. value_at_lazy simply records the address of
926 the data and sets the lazy-evaluation-required flag. The lazy flag
927 is tested in the value_contents macro, which is used if and when
928 the contents are actually required.
929
930 Note: value_at does *NOT* handle embedded offsets; perform such
931 adjustments before or after calling it. */
932
933 struct value *
934 value_at (struct type *type, CORE_ADDR addr)
935 {
936 return get_value_at (type, addr, 0);
937 }
938
939 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
940
941 struct value *
942 value_at_lazy (struct type *type, CORE_ADDR addr)
943 {
944 return get_value_at (type, addr, 1);
945 }
946
947 void
948 read_value_memory (struct value *val, int embedded_offset,
949 int stack, CORE_ADDR memaddr,
950 gdb_byte *buffer, size_t length)
951 {
952 if (length)
953 {
954 VEC(mem_range_s) *available_memory;
955
956 if (!traceframe_available_memory (&available_memory, memaddr, length))
957 {
958 if (stack)
959 read_stack (memaddr, buffer, length);
960 else
961 read_memory (memaddr, buffer, length);
962 }
963 else
964 {
965 struct target_section_table *table;
966 struct cleanup *old_chain;
967 CORE_ADDR unavail;
968 mem_range_s *r;
969 int i;
970
971 /* Fallback to reading from read-only sections. */
972 table = target_get_section_table (&exec_ops);
973 available_memory =
974 section_table_available_memory (available_memory,
975 memaddr, length,
976 table->sections,
977 table->sections_end);
978
979 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
980 &available_memory);
981
982 normalize_mem_ranges (available_memory);
983
984 /* Mark which bytes are unavailable, and read those which
985 are available. */
986
987 unavail = memaddr;
988
989 for (i = 0;
990 VEC_iterate (mem_range_s, available_memory, i, r);
991 i++)
992 {
993 if (mem_ranges_overlap (r->start, r->length,
994 memaddr, length))
995 {
996 CORE_ADDR lo1, hi1, lo2, hi2;
997 CORE_ADDR start, end;
998
999 /* Get the intersection window. */
1000 lo1 = memaddr;
1001 hi1 = memaddr + length;
1002 lo2 = r->start;
1003 hi2 = r->start + r->length;
1004 start = max (lo1, lo2);
1005 end = min (hi1, hi2);
1006
1007 gdb_assert (end - memaddr <= length);
1008
1009 if (start > unavail)
1010 mark_value_bytes_unavailable (val,
1011 (embedded_offset
1012 + unavail - memaddr),
1013 start - unavail);
1014 unavail = end;
1015
1016 read_memory (start, buffer + start - memaddr, end - start);
1017 }
1018 }
1019
1020 if (unavail != memaddr + length)
1021 mark_value_bytes_unavailable (val,
1022 embedded_offset + unavail - memaddr,
1023 (memaddr + length) - unavail);
1024
1025 do_cleanups (old_chain);
1026 }
1027 }
1028 }
1029
1030 /* Store the contents of FROMVAL into the location of TOVAL.
1031 Return a new value with the location of TOVAL and contents of FROMVAL. */
1032
1033 struct value *
1034 value_assign (struct value *toval, struct value *fromval)
1035 {
1036 struct type *type;
1037 struct value *val;
1038 struct frame_id old_frame;
1039
1040 if (!deprecated_value_modifiable (toval))
1041 error (_("Left operand of assignment is not a modifiable lvalue."));
1042
1043 toval = coerce_ref (toval);
1044
1045 type = value_type (toval);
1046 if (VALUE_LVAL (toval) != lval_internalvar)
1047 fromval = value_cast (type, fromval);
1048 else
1049 {
1050 /* Coerce arrays and functions to pointers, except for arrays
1051 which only live in GDB's storage. */
1052 if (!value_must_coerce_to_target (fromval))
1053 fromval = coerce_array (fromval);
1054 }
1055
1056 CHECK_TYPEDEF (type);
1057
1058 /* Since modifying a register can trash the frame chain, and
1059 modifying memory can trash the frame cache, we save the old frame
1060 and then restore the new frame afterwards. */
1061 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1062
1063 switch (VALUE_LVAL (toval))
1064 {
1065 case lval_internalvar:
1066 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1067 return value_of_internalvar (get_type_arch (type),
1068 VALUE_INTERNALVAR (toval));
1069
1070 case lval_internalvar_component:
1071 {
1072 int offset = value_offset (toval);
1073
1074 /* Are we dealing with a bitfield?
1075
1076 It is important to mention that `value_parent (toval)' is
1077 non-NULL iff `value_bitsize (toval)' is non-zero. */
1078 if (value_bitsize (toval))
1079 {
1080 /* VALUE_INTERNALVAR below refers to the parent value, while
1081 the offset is relative to this parent value. */
1082 gdb_assert (value_parent (value_parent (toval)) == NULL);
1083 offset += value_offset (value_parent (toval));
1084 }
1085
1086 set_internalvar_component (VALUE_INTERNALVAR (toval),
1087 offset,
1088 value_bitpos (toval),
1089 value_bitsize (toval),
1090 fromval);
1091 }
1092 break;
1093
1094 case lval_memory:
1095 {
1096 const gdb_byte *dest_buffer;
1097 CORE_ADDR changed_addr;
1098 int changed_len;
1099 gdb_byte buffer[sizeof (LONGEST)];
1100
1101 if (value_bitsize (toval))
1102 {
1103 struct value *parent = value_parent (toval);
1104
1105 changed_addr = value_address (parent) + value_offset (toval);
1106 changed_len = (value_bitpos (toval)
1107 + value_bitsize (toval)
1108 + HOST_CHAR_BIT - 1)
1109 / HOST_CHAR_BIT;
1110
1111 /* If we can read-modify-write exactly the size of the
1112 containing type (e.g. short or int) then do so. This
1113 is safer for volatile bitfields mapped to hardware
1114 registers. */
1115 if (changed_len < TYPE_LENGTH (type)
1116 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1117 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1118 changed_len = TYPE_LENGTH (type);
1119
1120 if (changed_len > (int) sizeof (LONGEST))
1121 error (_("Can't handle bitfields which "
1122 "don't fit in a %d bit word."),
1123 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1124
1125 read_memory (changed_addr, buffer, changed_len);
1126 modify_field (type, buffer, value_as_long (fromval),
1127 value_bitpos (toval), value_bitsize (toval));
1128 dest_buffer = buffer;
1129 }
1130 else
1131 {
1132 changed_addr = value_address (toval);
1133 changed_len = TYPE_LENGTH (type);
1134 dest_buffer = value_contents (fromval);
1135 }
1136
1137 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1138 }
1139 break;
1140
1141 case lval_register:
1142 {
1143 struct frame_info *frame;
1144 struct gdbarch *gdbarch;
1145 int value_reg;
1146
1147 /* Figure out which frame this is in currently. */
1148 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1149 value_reg = VALUE_REGNUM (toval);
1150
1151 if (!frame)
1152 error (_("Value being assigned to is no longer active."));
1153
1154 gdbarch = get_frame_arch (frame);
1155 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1156 {
1157 /* If TOVAL is a special machine register requiring
1158 conversion of program values to a special raw
1159 format. */
1160 gdbarch_value_to_register (gdbarch, frame,
1161 VALUE_REGNUM (toval), type,
1162 value_contents (fromval));
1163 }
1164 else
1165 {
1166 if (value_bitsize (toval))
1167 {
1168 struct value *parent = value_parent (toval);
1169 int offset = value_offset (parent) + value_offset (toval);
1170 int changed_len;
1171 gdb_byte buffer[sizeof (LONGEST)];
1172 int optim, unavail;
1173
1174 changed_len = (value_bitpos (toval)
1175 + value_bitsize (toval)
1176 + HOST_CHAR_BIT - 1)
1177 / HOST_CHAR_BIT;
1178
1179 if (changed_len > (int) sizeof (LONGEST))
1180 error (_("Can't handle bitfields which "
1181 "don't fit in a %d bit word."),
1182 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1183
1184 if (!get_frame_register_bytes (frame, value_reg, offset,
1185 changed_len, buffer,
1186 &optim, &unavail))
1187 {
1188 if (optim)
1189 throw_error (OPTIMIZED_OUT_ERROR,
1190 _("value has been optimized out"));
1191 if (unavail)
1192 throw_error (NOT_AVAILABLE_ERROR,
1193 _("value is not available"));
1194 }
1195
1196 modify_field (type, buffer, value_as_long (fromval),
1197 value_bitpos (toval), value_bitsize (toval));
1198
1199 put_frame_register_bytes (frame, value_reg, offset,
1200 changed_len, buffer);
1201 }
1202 else
1203 {
1204 put_frame_register_bytes (frame, value_reg,
1205 value_offset (toval),
1206 TYPE_LENGTH (type),
1207 value_contents (fromval));
1208 }
1209 }
1210
1211 if (deprecated_register_changed_hook)
1212 deprecated_register_changed_hook (-1);
1213 break;
1214 }
1215
1216 case lval_computed:
1217 {
1218 const struct lval_funcs *funcs = value_computed_funcs (toval);
1219
1220 if (funcs->write != NULL)
1221 {
1222 funcs->write (toval, fromval);
1223 break;
1224 }
1225 }
1226 /* Fall through. */
1227
1228 default:
1229 error (_("Left operand of assignment is not an lvalue."));
1230 }
1231
1232 /* Assigning to the stack pointer, frame pointer, and other
1233 (architecture and calling convention specific) registers may
1234 cause the frame cache and regcache to be out of date. Assigning to memory
1235 also can. We just do this on all assignments to registers or
1236 memory, for simplicity's sake; I doubt the slowdown matters. */
1237 switch (VALUE_LVAL (toval))
1238 {
1239 case lval_memory:
1240 case lval_register:
1241 case lval_computed:
1242
1243 observer_notify_target_changed (&current_target);
1244
1245 /* Having destroyed the frame cache, restore the selected
1246 frame. */
1247
1248 /* FIXME: cagney/2002-11-02: There has to be a better way of
1249 doing this. Instead of constantly saving/restoring the
1250 frame. Why not create a get_selected_frame() function that,
1251 having saved the selected frame's ID can automatically
1252 re-find the previously selected frame automatically. */
1253
1254 {
1255 struct frame_info *fi = frame_find_by_id (old_frame);
1256
1257 if (fi != NULL)
1258 select_frame (fi);
1259 }
1260
1261 break;
1262 default:
1263 break;
1264 }
1265
1266 /* If the field does not entirely fill a LONGEST, then zero the sign
1267 bits. If the field is signed, and is negative, then sign
1268 extend. */
1269 if ((value_bitsize (toval) > 0)
1270 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1271 {
1272 LONGEST fieldval = value_as_long (fromval);
1273 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1274
1275 fieldval &= valmask;
1276 if (!TYPE_UNSIGNED (type)
1277 && (fieldval & (valmask ^ (valmask >> 1))))
1278 fieldval |= ~valmask;
1279
1280 fromval = value_from_longest (type, fieldval);
1281 }
1282
1283 /* The return value is a copy of TOVAL so it shares its location
1284 information, but its contents are updated from FROMVAL. This
1285 implies the returned value is not lazy, even if TOVAL was. */
1286 val = value_copy (toval);
1287 set_value_lazy (val, 0);
1288 memcpy (value_contents_raw (val), value_contents (fromval),
1289 TYPE_LENGTH (type));
1290
1291 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1292 in the case of pointer types. For object types, the enclosing type
1293 and embedded offset must *not* be copied: the target object refered
1294 to by TOVAL retains its original dynamic type after assignment. */
1295 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1296 {
1297 set_value_enclosing_type (val, value_enclosing_type (fromval));
1298 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1299 }
1300
1301 return val;
1302 }
1303
1304 /* Extend a value VAL to COUNT repetitions of its type. */
1305
1306 struct value *
1307 value_repeat (struct value *arg1, int count)
1308 {
1309 struct value *val;
1310
1311 if (VALUE_LVAL (arg1) != lval_memory)
1312 error (_("Only values in memory can be extended with '@'."));
1313 if (count < 1)
1314 error (_("Invalid number %d of repetitions."), count);
1315
1316 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1317
1318 VALUE_LVAL (val) = lval_memory;
1319 set_value_address (val, value_address (arg1));
1320
1321 read_value_memory (val, 0, value_stack (val), value_address (val),
1322 value_contents_all_raw (val),
1323 TYPE_LENGTH (value_enclosing_type (val)));
1324
1325 return val;
1326 }
1327
1328 struct value *
1329 value_of_variable (struct symbol *var, const struct block *b)
1330 {
1331 struct frame_info *frame;
1332
1333 if (!symbol_read_needs_frame (var))
1334 frame = NULL;
1335 else if (!b)
1336 frame = get_selected_frame (_("No frame selected."));
1337 else
1338 {
1339 frame = block_innermost_frame (b);
1340 if (!frame)
1341 {
1342 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1343 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1344 error (_("No frame is currently executing in block %s."),
1345 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1346 else
1347 error (_("No frame is currently executing in specified block"));
1348 }
1349 }
1350
1351 return read_var_value (var, frame);
1352 }
1353
1354 struct value *
1355 address_of_variable (struct symbol *var, const struct block *b)
1356 {
1357 struct type *type = SYMBOL_TYPE (var);
1358 struct value *val;
1359
1360 /* Evaluate it first; if the result is a memory address, we're fine.
1361 Lazy evaluation pays off here. */
1362
1363 val = value_of_variable (var, b);
1364
1365 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1366 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1367 {
1368 CORE_ADDR addr = value_address (val);
1369
1370 return value_from_pointer (lookup_pointer_type (type), addr);
1371 }
1372
1373 /* Not a memory address; check what the problem was. */
1374 switch (VALUE_LVAL (val))
1375 {
1376 case lval_register:
1377 {
1378 struct frame_info *frame;
1379 const char *regname;
1380
1381 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1382 gdb_assert (frame);
1383
1384 regname = gdbarch_register_name (get_frame_arch (frame),
1385 VALUE_REGNUM (val));
1386 gdb_assert (regname && *regname);
1387
1388 error (_("Address requested for identifier "
1389 "\"%s\" which is in register $%s"),
1390 SYMBOL_PRINT_NAME (var), regname);
1391 break;
1392 }
1393
1394 default:
1395 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1396 SYMBOL_PRINT_NAME (var));
1397 break;
1398 }
1399
1400 return val;
1401 }
1402
1403 /* Return one if VAL does not live in target memory, but should in order
1404 to operate on it. Otherwise return zero. */
1405
1406 int
1407 value_must_coerce_to_target (struct value *val)
1408 {
1409 struct type *valtype;
1410
1411 /* The only lval kinds which do not live in target memory. */
1412 if (VALUE_LVAL (val) != not_lval
1413 && VALUE_LVAL (val) != lval_internalvar)
1414 return 0;
1415
1416 valtype = check_typedef (value_type (val));
1417
1418 switch (TYPE_CODE (valtype))
1419 {
1420 case TYPE_CODE_ARRAY:
1421 return TYPE_VECTOR (valtype) ? 0 : 1;
1422 case TYPE_CODE_STRING:
1423 return 1;
1424 default:
1425 return 0;
1426 }
1427 }
1428
1429 /* Make sure that VAL lives in target memory if it's supposed to. For
1430 instance, strings are constructed as character arrays in GDB's
1431 storage, and this function copies them to the target. */
1432
1433 struct value *
1434 value_coerce_to_target (struct value *val)
1435 {
1436 LONGEST length;
1437 CORE_ADDR addr;
1438
1439 if (!value_must_coerce_to_target (val))
1440 return val;
1441
1442 length = TYPE_LENGTH (check_typedef (value_type (val)));
1443 addr = allocate_space_in_inferior (length);
1444 write_memory (addr, value_contents (val), length);
1445 return value_at_lazy (value_type (val), addr);
1446 }
1447
1448 /* Given a value which is an array, return a value which is a pointer
1449 to its first element, regardless of whether or not the array has a
1450 nonzero lower bound.
1451
1452 FIXME: A previous comment here indicated that this routine should
1453 be substracting the array's lower bound. It's not clear to me that
1454 this is correct. Given an array subscripting operation, it would
1455 certainly work to do the adjustment here, essentially computing:
1456
1457 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1458
1459 However I believe a more appropriate and logical place to account
1460 for the lower bound is to do so in value_subscript, essentially
1461 computing:
1462
1463 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1464
1465 As further evidence consider what would happen with operations
1466 other than array subscripting, where the caller would get back a
1467 value that had an address somewhere before the actual first element
1468 of the array, and the information about the lower bound would be
1469 lost because of the coercion to pointer type. */
1470
1471 struct value *
1472 value_coerce_array (struct value *arg1)
1473 {
1474 struct type *type = check_typedef (value_type (arg1));
1475
1476 /* If the user tries to do something requiring a pointer with an
1477 array that has not yet been pushed to the target, then this would
1478 be a good time to do so. */
1479 arg1 = value_coerce_to_target (arg1);
1480
1481 if (VALUE_LVAL (arg1) != lval_memory)
1482 error (_("Attempt to take address of value not located in memory."));
1483
1484 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1485 value_address (arg1));
1486 }
1487
1488 /* Given a value which is a function, return a value which is a pointer
1489 to it. */
1490
1491 struct value *
1492 value_coerce_function (struct value *arg1)
1493 {
1494 struct value *retval;
1495
1496 if (VALUE_LVAL (arg1) != lval_memory)
1497 error (_("Attempt to take address of value not located in memory."));
1498
1499 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1500 value_address (arg1));
1501 return retval;
1502 }
1503
1504 /* Return a pointer value for the object for which ARG1 is the
1505 contents. */
1506
1507 struct value *
1508 value_addr (struct value *arg1)
1509 {
1510 struct value *arg2;
1511 struct type *type = check_typedef (value_type (arg1));
1512
1513 if (TYPE_CODE (type) == TYPE_CODE_REF)
1514 {
1515 /* Copy the value, but change the type from (T&) to (T*). We
1516 keep the same location information, which is efficient, and
1517 allows &(&X) to get the location containing the reference. */
1518 arg2 = value_copy (arg1);
1519 deprecated_set_value_type (arg2,
1520 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1521 return arg2;
1522 }
1523 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1524 return value_coerce_function (arg1);
1525
1526 /* If this is an array that has not yet been pushed to the target,
1527 then this would be a good time to force it to memory. */
1528 arg1 = value_coerce_to_target (arg1);
1529
1530 if (VALUE_LVAL (arg1) != lval_memory)
1531 error (_("Attempt to take address of value not located in memory."));
1532
1533 /* Get target memory address. */
1534 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1535 (value_address (arg1)
1536 + value_embedded_offset (arg1)));
1537
1538 /* This may be a pointer to a base subobject; so remember the
1539 full derived object's type ... */
1540 set_value_enclosing_type (arg2,
1541 lookup_pointer_type (value_enclosing_type (arg1)));
1542 /* ... and also the relative position of the subobject in the full
1543 object. */
1544 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1545 return arg2;
1546 }
1547
1548 /* Return a reference value for the object for which ARG1 is the
1549 contents. */
1550
1551 struct value *
1552 value_ref (struct value *arg1)
1553 {
1554 struct value *arg2;
1555 struct type *type = check_typedef (value_type (arg1));
1556
1557 if (TYPE_CODE (type) == TYPE_CODE_REF)
1558 return arg1;
1559
1560 arg2 = value_addr (arg1);
1561 deprecated_set_value_type (arg2, lookup_reference_type (type));
1562 return arg2;
1563 }
1564
1565 /* Given a value of a pointer type, apply the C unary * operator to
1566 it. */
1567
1568 struct value *
1569 value_ind (struct value *arg1)
1570 {
1571 struct type *base_type;
1572 struct value *arg2;
1573
1574 arg1 = coerce_array (arg1);
1575
1576 base_type = check_typedef (value_type (arg1));
1577
1578 if (VALUE_LVAL (arg1) == lval_computed)
1579 {
1580 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1581
1582 if (funcs->indirect)
1583 {
1584 struct value *result = funcs->indirect (arg1);
1585
1586 if (result)
1587 return result;
1588 }
1589 }
1590
1591 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1592 {
1593 struct type *enc_type;
1594
1595 /* We may be pointing to something embedded in a larger object.
1596 Get the real type of the enclosing object. */
1597 enc_type = check_typedef (value_enclosing_type (arg1));
1598 enc_type = TYPE_TARGET_TYPE (enc_type);
1599
1600 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1601 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1602 /* For functions, go through find_function_addr, which knows
1603 how to handle function descriptors. */
1604 arg2 = value_at_lazy (enc_type,
1605 find_function_addr (arg1, NULL));
1606 else
1607 /* Retrieve the enclosing object pointed to. */
1608 arg2 = value_at_lazy (enc_type,
1609 (value_as_address (arg1)
1610 - value_pointed_to_offset (arg1)));
1611
1612 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1613 }
1614
1615 error (_("Attempt to take contents of a non-pointer value."));
1616 return 0; /* For lint -- never reached. */
1617 }
1618 \f
1619 /* Create a value for an array by allocating space in GDB, copying the
1620 data into that space, and then setting up an array value.
1621
1622 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1623 is populated from the values passed in ELEMVEC.
1624
1625 The element type of the array is inherited from the type of the
1626 first element, and all elements must have the same size (though we
1627 don't currently enforce any restriction on their types). */
1628
1629 struct value *
1630 value_array (int lowbound, int highbound, struct value **elemvec)
1631 {
1632 int nelem;
1633 int idx;
1634 unsigned int typelength;
1635 struct value *val;
1636 struct type *arraytype;
1637
1638 /* Validate that the bounds are reasonable and that each of the
1639 elements have the same size. */
1640
1641 nelem = highbound - lowbound + 1;
1642 if (nelem <= 0)
1643 {
1644 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1645 }
1646 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1647 for (idx = 1; idx < nelem; idx++)
1648 {
1649 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1650 {
1651 error (_("array elements must all be the same size"));
1652 }
1653 }
1654
1655 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1656 lowbound, highbound);
1657
1658 if (!current_language->c_style_arrays)
1659 {
1660 val = allocate_value (arraytype);
1661 for (idx = 0; idx < nelem; idx++)
1662 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1663 typelength);
1664 return val;
1665 }
1666
1667 /* Allocate space to store the array, and then initialize it by
1668 copying in each element. */
1669
1670 val = allocate_value (arraytype);
1671 for (idx = 0; idx < nelem; idx++)
1672 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1673 return val;
1674 }
1675
1676 struct value *
1677 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1678 {
1679 struct value *val;
1680 int lowbound = current_language->string_lower_bound;
1681 ssize_t highbound = len / TYPE_LENGTH (char_type);
1682 struct type *stringtype
1683 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1684
1685 val = allocate_value (stringtype);
1686 memcpy (value_contents_raw (val), ptr, len);
1687 return val;
1688 }
1689
1690 /* Create a value for a string constant by allocating space in the
1691 inferior, copying the data into that space, and returning the
1692 address with type TYPE_CODE_STRING. PTR points to the string
1693 constant data; LEN is number of characters.
1694
1695 Note that string types are like array of char types with a lower
1696 bound of zero and an upper bound of LEN - 1. Also note that the
1697 string may contain embedded null bytes. */
1698
1699 struct value *
1700 value_string (char *ptr, ssize_t len, struct type *char_type)
1701 {
1702 struct value *val;
1703 int lowbound = current_language->string_lower_bound;
1704 ssize_t highbound = len / TYPE_LENGTH (char_type);
1705 struct type *stringtype
1706 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1707
1708 val = allocate_value (stringtype);
1709 memcpy (value_contents_raw (val), ptr, len);
1710 return val;
1711 }
1712
1713 \f
1714 /* See if we can pass arguments in T2 to a function which takes
1715 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1716 a NULL-terminated vector. If some arguments need coercion of some
1717 sort, then the coerced values are written into T2. Return value is
1718 0 if the arguments could be matched, or the position at which they
1719 differ if not.
1720
1721 STATICP is nonzero if the T1 argument list came from a static
1722 member function. T2 will still include the ``this'' pointer, but
1723 it will be skipped.
1724
1725 For non-static member functions, we ignore the first argument,
1726 which is the type of the instance variable. This is because we
1727 want to handle calls with objects from derived classes. This is
1728 not entirely correct: we should actually check to make sure that a
1729 requested operation is type secure, shouldn't we? FIXME. */
1730
1731 static int
1732 typecmp (int staticp, int varargs, int nargs,
1733 struct field t1[], struct value *t2[])
1734 {
1735 int i;
1736
1737 if (t2 == 0)
1738 internal_error (__FILE__, __LINE__,
1739 _("typecmp: no argument list"));
1740
1741 /* Skip ``this'' argument if applicable. T2 will always include
1742 THIS. */
1743 if (staticp)
1744 t2 ++;
1745
1746 for (i = 0;
1747 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1748 i++)
1749 {
1750 struct type *tt1, *tt2;
1751
1752 if (!t2[i])
1753 return i + 1;
1754
1755 tt1 = check_typedef (t1[i].type);
1756 tt2 = check_typedef (value_type (t2[i]));
1757
1758 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1759 /* We should be doing hairy argument matching, as below. */
1760 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1761 == TYPE_CODE (tt2)))
1762 {
1763 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1764 t2[i] = value_coerce_array (t2[i]);
1765 else
1766 t2[i] = value_ref (t2[i]);
1767 continue;
1768 }
1769
1770 /* djb - 20000715 - Until the new type structure is in the
1771 place, and we can attempt things like implicit conversions,
1772 we need to do this so you can take something like a map<const
1773 char *>, and properly access map["hello"], because the
1774 argument to [] will be a reference to a pointer to a char,
1775 and the argument will be a pointer to a char. */
1776 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1777 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1778 {
1779 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1780 }
1781 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1782 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1783 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1784 {
1785 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1786 }
1787 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1788 continue;
1789 /* Array to pointer is a `trivial conversion' according to the
1790 ARM. */
1791
1792 /* We should be doing much hairier argument matching (see
1793 section 13.2 of the ARM), but as a quick kludge, just check
1794 for the same type code. */
1795 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1796 return i + 1;
1797 }
1798 if (varargs || t2[i] == NULL)
1799 return 0;
1800 return i + 1;
1801 }
1802
1803 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1804 and *LAST_BOFFSET, and possibly throws an exception if the field
1805 search has yielded ambiguous results. */
1806
1807 static void
1808 update_search_result (struct value **result_ptr, struct value *v,
1809 int *last_boffset, int boffset,
1810 const char *name, struct type *type)
1811 {
1812 if (v != NULL)
1813 {
1814 if (*result_ptr != NULL
1815 /* The result is not ambiguous if all the classes that are
1816 found occupy the same space. */
1817 && *last_boffset != boffset)
1818 error (_("base class '%s' is ambiguous in type '%s'"),
1819 name, TYPE_SAFE_NAME (type));
1820 *result_ptr = v;
1821 *last_boffset = boffset;
1822 }
1823 }
1824
1825 /* A helper for search_struct_field. This does all the work; most
1826 arguments are as passed to search_struct_field. The result is
1827 stored in *RESULT_PTR, which must be initialized to NULL.
1828 OUTERMOST_TYPE is the type of the initial type passed to
1829 search_struct_field; this is used for error reporting when the
1830 lookup is ambiguous. */
1831
1832 static void
1833 do_search_struct_field (const char *name, struct value *arg1, int offset,
1834 struct type *type, int looking_for_baseclass,
1835 struct value **result_ptr,
1836 int *last_boffset,
1837 struct type *outermost_type)
1838 {
1839 int i;
1840 int nbases;
1841
1842 CHECK_TYPEDEF (type);
1843 nbases = TYPE_N_BASECLASSES (type);
1844
1845 if (!looking_for_baseclass)
1846 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1847 {
1848 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1849
1850 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1851 {
1852 struct value *v;
1853
1854 if (field_is_static (&TYPE_FIELD (type, i)))
1855 v = value_static_field (type, i);
1856 else
1857 v = value_primitive_field (arg1, offset, i, type);
1858 *result_ptr = v;
1859 return;
1860 }
1861
1862 if (t_field_name
1863 && (t_field_name[0] == '\0'
1864 || (TYPE_CODE (type) == TYPE_CODE_UNION
1865 && (strcmp_iw (t_field_name, "else") == 0))))
1866 {
1867 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1868
1869 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1870 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1871 {
1872 /* Look for a match through the fields of an anonymous
1873 union, or anonymous struct. C++ provides anonymous
1874 unions.
1875
1876 In the GNU Chill (now deleted from GDB)
1877 implementation of variant record types, each
1878 <alternative field> has an (anonymous) union type,
1879 each member of the union represents a <variant
1880 alternative>. Each <variant alternative> is
1881 represented as a struct, with a member for each
1882 <variant field>. */
1883
1884 struct value *v = NULL;
1885 int new_offset = offset;
1886
1887 /* This is pretty gross. In G++, the offset in an
1888 anonymous union is relative to the beginning of the
1889 enclosing struct. In the GNU Chill (now deleted
1890 from GDB) implementation of variant records, the
1891 bitpos is zero in an anonymous union field, so we
1892 have to add the offset of the union here. */
1893 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1894 || (TYPE_NFIELDS (field_type) > 0
1895 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1896 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1897
1898 do_search_struct_field (name, arg1, new_offset,
1899 field_type,
1900 looking_for_baseclass, &v,
1901 last_boffset,
1902 outermost_type);
1903 if (v)
1904 {
1905 *result_ptr = v;
1906 return;
1907 }
1908 }
1909 }
1910 }
1911
1912 for (i = 0; i < nbases; i++)
1913 {
1914 struct value *v = NULL;
1915 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1916 /* If we are looking for baseclasses, this is what we get when
1917 we hit them. But it could happen that the base part's member
1918 name is not yet filled in. */
1919 int found_baseclass = (looking_for_baseclass
1920 && TYPE_BASECLASS_NAME (type, i) != NULL
1921 && (strcmp_iw (name,
1922 TYPE_BASECLASS_NAME (type,
1923 i)) == 0));
1924 int boffset = value_embedded_offset (arg1) + offset;
1925
1926 if (BASETYPE_VIA_VIRTUAL (type, i))
1927 {
1928 struct value *v2;
1929
1930 boffset = baseclass_offset (type, i,
1931 value_contents_for_printing (arg1),
1932 value_embedded_offset (arg1) + offset,
1933 value_address (arg1),
1934 arg1);
1935
1936 /* The virtual base class pointer might have been clobbered
1937 by the user program. Make sure that it still points to a
1938 valid memory location. */
1939
1940 boffset += value_embedded_offset (arg1) + offset;
1941 if (boffset < 0
1942 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1943 {
1944 CORE_ADDR base_addr;
1945
1946 base_addr = value_address (arg1) + boffset;
1947 v2 = value_at_lazy (basetype, base_addr);
1948 if (target_read_memory (base_addr,
1949 value_contents_raw (v2),
1950 TYPE_LENGTH (value_type (v2))) != 0)
1951 error (_("virtual baseclass botch"));
1952 }
1953 else
1954 {
1955 v2 = value_copy (arg1);
1956 deprecated_set_value_type (v2, basetype);
1957 set_value_embedded_offset (v2, boffset);
1958 }
1959
1960 if (found_baseclass)
1961 v = v2;
1962 else
1963 {
1964 do_search_struct_field (name, v2, 0,
1965 TYPE_BASECLASS (type, i),
1966 looking_for_baseclass,
1967 result_ptr, last_boffset,
1968 outermost_type);
1969 }
1970 }
1971 else if (found_baseclass)
1972 v = value_primitive_field (arg1, offset, i, type);
1973 else
1974 {
1975 do_search_struct_field (name, arg1,
1976 offset + TYPE_BASECLASS_BITPOS (type,
1977 i) / 8,
1978 basetype, looking_for_baseclass,
1979 result_ptr, last_boffset,
1980 outermost_type);
1981 }
1982
1983 update_search_result (result_ptr, v, last_boffset,
1984 boffset, name, outermost_type);
1985 }
1986 }
1987
1988 /* Helper function used by value_struct_elt to recurse through
1989 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1990 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1991 TYPE. If found, return value, else return NULL.
1992
1993 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1994 fields, look for a baseclass named NAME. */
1995
1996 static struct value *
1997 search_struct_field (const char *name, struct value *arg1, int offset,
1998 struct type *type, int looking_for_baseclass)
1999 {
2000 struct value *result = NULL;
2001 int boffset = 0;
2002
2003 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2004 &result, &boffset, type);
2005 return result;
2006 }
2007
2008 /* Helper function used by value_struct_elt to recurse through
2009 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2010 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2011 TYPE.
2012
2013 If found, return value, else if name matched and args not return
2014 (value) -1, else return NULL. */
2015
2016 static struct value *
2017 search_struct_method (const char *name, struct value **arg1p,
2018 struct value **args, int offset,
2019 int *static_memfuncp, struct type *type)
2020 {
2021 int i;
2022 struct value *v;
2023 int name_matched = 0;
2024 char dem_opname[64];
2025
2026 CHECK_TYPEDEF (type);
2027 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2028 {
2029 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2030
2031 /* FIXME! May need to check for ARM demangling here. */
2032 if (strncmp (t_field_name, "__", 2) == 0 ||
2033 strncmp (t_field_name, "op", 2) == 0 ||
2034 strncmp (t_field_name, "type", 4) == 0)
2035 {
2036 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2037 t_field_name = dem_opname;
2038 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2039 t_field_name = dem_opname;
2040 }
2041 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2042 {
2043 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2044 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2045
2046 name_matched = 1;
2047 check_stub_method_group (type, i);
2048 if (j > 0 && args == 0)
2049 error (_("cannot resolve overloaded method "
2050 "`%s': no arguments supplied"), name);
2051 else if (j == 0 && args == 0)
2052 {
2053 v = value_fn_field (arg1p, f, j, type, offset);
2054 if (v != NULL)
2055 return v;
2056 }
2057 else
2058 while (j >= 0)
2059 {
2060 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2061 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2062 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2063 TYPE_FN_FIELD_ARGS (f, j), args))
2064 {
2065 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2066 return value_virtual_fn_field (arg1p, f, j,
2067 type, offset);
2068 if (TYPE_FN_FIELD_STATIC_P (f, j)
2069 && static_memfuncp)
2070 *static_memfuncp = 1;
2071 v = value_fn_field (arg1p, f, j, type, offset);
2072 if (v != NULL)
2073 return v;
2074 }
2075 j--;
2076 }
2077 }
2078 }
2079
2080 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2081 {
2082 int base_offset;
2083 int this_offset;
2084
2085 if (BASETYPE_VIA_VIRTUAL (type, i))
2086 {
2087 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2088 struct value *base_val;
2089 const gdb_byte *base_valaddr;
2090
2091 /* The virtual base class pointer might have been
2092 clobbered by the user program. Make sure that it
2093 still points to a valid memory location. */
2094
2095 if (offset < 0 || offset >= TYPE_LENGTH (type))
2096 {
2097 gdb_byte *tmp;
2098 struct cleanup *back_to;
2099 CORE_ADDR address;
2100
2101 tmp = xmalloc (TYPE_LENGTH (baseclass));
2102 back_to = make_cleanup (xfree, tmp);
2103 address = value_address (*arg1p);
2104
2105 if (target_read_memory (address + offset,
2106 tmp, TYPE_LENGTH (baseclass)) != 0)
2107 error (_("virtual baseclass botch"));
2108
2109 base_val = value_from_contents_and_address (baseclass,
2110 tmp,
2111 address + offset);
2112 base_valaddr = value_contents_for_printing (base_val);
2113 this_offset = 0;
2114 do_cleanups (back_to);
2115 }
2116 else
2117 {
2118 base_val = *arg1p;
2119 base_valaddr = value_contents_for_printing (*arg1p);
2120 this_offset = offset;
2121 }
2122
2123 base_offset = baseclass_offset (type, i, base_valaddr,
2124 this_offset, value_address (base_val),
2125 base_val);
2126 }
2127 else
2128 {
2129 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2130 }
2131 v = search_struct_method (name, arg1p, args, base_offset + offset,
2132 static_memfuncp, TYPE_BASECLASS (type, i));
2133 if (v == (struct value *) - 1)
2134 {
2135 name_matched = 1;
2136 }
2137 else if (v)
2138 {
2139 /* FIXME-bothner: Why is this commented out? Why is it here? */
2140 /* *arg1p = arg1_tmp; */
2141 return v;
2142 }
2143 }
2144 if (name_matched)
2145 return (struct value *) - 1;
2146 else
2147 return NULL;
2148 }
2149
2150 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2151 extract the component named NAME from the ultimate target
2152 structure/union and return it as a value with its appropriate type.
2153 ERR is used in the error message if *ARGP's type is wrong.
2154
2155 C++: ARGS is a list of argument types to aid in the selection of
2156 an appropriate method. Also, handle derived types.
2157
2158 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2159 where the truthvalue of whether the function that was resolved was
2160 a static member function or not is stored.
2161
2162 ERR is an error message to be printed in case the field is not
2163 found. */
2164
2165 struct value *
2166 value_struct_elt (struct value **argp, struct value **args,
2167 const char *name, int *static_memfuncp, const char *err)
2168 {
2169 struct type *t;
2170 struct value *v;
2171
2172 *argp = coerce_array (*argp);
2173
2174 t = check_typedef (value_type (*argp));
2175
2176 /* Follow pointers until we get to a non-pointer. */
2177
2178 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2179 {
2180 *argp = value_ind (*argp);
2181 /* Don't coerce fn pointer to fn and then back again! */
2182 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2183 *argp = coerce_array (*argp);
2184 t = check_typedef (value_type (*argp));
2185 }
2186
2187 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2188 && TYPE_CODE (t) != TYPE_CODE_UNION)
2189 error (_("Attempt to extract a component of a value that is not a %s."),
2190 err);
2191
2192 /* Assume it's not, unless we see that it is. */
2193 if (static_memfuncp)
2194 *static_memfuncp = 0;
2195
2196 if (!args)
2197 {
2198 /* if there are no arguments ...do this... */
2199
2200 /* Try as a field first, because if we succeed, there is less
2201 work to be done. */
2202 v = search_struct_field (name, *argp, 0, t, 0);
2203 if (v)
2204 return v;
2205
2206 /* C++: If it was not found as a data field, then try to
2207 return it as a pointer to a method. */
2208 v = search_struct_method (name, argp, args, 0,
2209 static_memfuncp, t);
2210
2211 if (v == (struct value *) - 1)
2212 error (_("Cannot take address of method %s."), name);
2213 else if (v == 0)
2214 {
2215 if (TYPE_NFN_FIELDS (t))
2216 error (_("There is no member or method named %s."), name);
2217 else
2218 error (_("There is no member named %s."), name);
2219 }
2220 return v;
2221 }
2222
2223 v = search_struct_method (name, argp, args, 0,
2224 static_memfuncp, t);
2225
2226 if (v == (struct value *) - 1)
2227 {
2228 error (_("One of the arguments you tried to pass to %s could not "
2229 "be converted to what the function wants."), name);
2230 }
2231 else if (v == 0)
2232 {
2233 /* See if user tried to invoke data as function. If so, hand it
2234 back. If it's not callable (i.e., a pointer to function),
2235 gdb should give an error. */
2236 v = search_struct_field (name, *argp, 0, t, 0);
2237 /* If we found an ordinary field, then it is not a method call.
2238 So, treat it as if it were a static member function. */
2239 if (v && static_memfuncp)
2240 *static_memfuncp = 1;
2241 }
2242
2243 if (!v)
2244 throw_error (NOT_FOUND_ERROR,
2245 _("Structure has no component named %s."), name);
2246 return v;
2247 }
2248
2249 /* Search through the methods of an object (and its bases) to find a
2250 specified method. Return the pointer to the fn_field list of
2251 overloaded instances.
2252
2253 Helper function for value_find_oload_list.
2254 ARGP is a pointer to a pointer to a value (the object).
2255 METHOD is a string containing the method name.
2256 OFFSET is the offset within the value.
2257 TYPE is the assumed type of the object.
2258 NUM_FNS is the number of overloaded instances.
2259 BASETYPE is set to the actual type of the subobject where the
2260 method is found.
2261 BOFFSET is the offset of the base subobject where the method is found. */
2262
2263 static struct fn_field *
2264 find_method_list (struct value **argp, const char *method,
2265 int offset, struct type *type, int *num_fns,
2266 struct type **basetype, int *boffset)
2267 {
2268 int i;
2269 struct fn_field *f;
2270 CHECK_TYPEDEF (type);
2271
2272 *num_fns = 0;
2273
2274 /* First check in object itself. */
2275 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2276 {
2277 /* pai: FIXME What about operators and type conversions? */
2278 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2279
2280 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2281 {
2282 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2283 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2284
2285 *num_fns = len;
2286 *basetype = type;
2287 *boffset = offset;
2288
2289 /* Resolve any stub methods. */
2290 check_stub_method_group (type, i);
2291
2292 return f;
2293 }
2294 }
2295
2296 /* Not found in object, check in base subobjects. */
2297 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2298 {
2299 int base_offset;
2300
2301 if (BASETYPE_VIA_VIRTUAL (type, i))
2302 {
2303 base_offset = baseclass_offset (type, i,
2304 value_contents_for_printing (*argp),
2305 value_offset (*argp) + offset,
2306 value_address (*argp), *argp);
2307 }
2308 else /* Non-virtual base, simply use bit position from debug
2309 info. */
2310 {
2311 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2312 }
2313 f = find_method_list (argp, method, base_offset + offset,
2314 TYPE_BASECLASS (type, i), num_fns,
2315 basetype, boffset);
2316 if (f)
2317 return f;
2318 }
2319 return NULL;
2320 }
2321
2322 /* Return the list of overloaded methods of a specified name.
2323
2324 ARGP is a pointer to a pointer to a value (the object).
2325 METHOD is the method name.
2326 OFFSET is the offset within the value contents.
2327 NUM_FNS is the number of overloaded instances.
2328 BASETYPE is set to the type of the base subobject that defines the
2329 method.
2330 BOFFSET is the offset of the base subobject which defines the method. */
2331
2332 static struct fn_field *
2333 value_find_oload_method_list (struct value **argp, const char *method,
2334 int offset, int *num_fns,
2335 struct type **basetype, int *boffset)
2336 {
2337 struct type *t;
2338
2339 t = check_typedef (value_type (*argp));
2340
2341 /* Code snarfed from value_struct_elt. */
2342 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2343 {
2344 *argp = value_ind (*argp);
2345 /* Don't coerce fn pointer to fn and then back again! */
2346 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2347 *argp = coerce_array (*argp);
2348 t = check_typedef (value_type (*argp));
2349 }
2350
2351 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2352 && TYPE_CODE (t) != TYPE_CODE_UNION)
2353 error (_("Attempt to extract a component of a "
2354 "value that is not a struct or union"));
2355
2356 return find_method_list (argp, method, 0, t, num_fns,
2357 basetype, boffset);
2358 }
2359
2360 /* Given an array of arguments (ARGS) (which includes an
2361 entry for "this" in the case of C++ methods), the number of
2362 arguments NARGS, the NAME of a function, and whether it's a method or
2363 not (METHOD), find the best function that matches on the argument types
2364 according to the overload resolution rules.
2365
2366 METHOD can be one of three values:
2367 NON_METHOD for non-member functions.
2368 METHOD: for member functions.
2369 BOTH: used for overload resolution of operators where the
2370 candidates are expected to be either member or non member
2371 functions. In this case the first argument ARGTYPES
2372 (representing 'this') is expected to be a reference to the
2373 target object, and will be dereferenced when attempting the
2374 non-member search.
2375
2376 In the case of class methods, the parameter OBJ is an object value
2377 in which to search for overloaded methods.
2378
2379 In the case of non-method functions, the parameter FSYM is a symbol
2380 corresponding to one of the overloaded functions.
2381
2382 Return value is an integer: 0 -> good match, 10 -> debugger applied
2383 non-standard coercions, 100 -> incompatible.
2384
2385 If a method is being searched for, VALP will hold the value.
2386 If a non-method is being searched for, SYMP will hold the symbol
2387 for it.
2388
2389 If a method is being searched for, and it is a static method,
2390 then STATICP will point to a non-zero value.
2391
2392 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2393 ADL overload candidates when performing overload resolution for a fully
2394 qualified name.
2395
2396 Note: This function does *not* check the value of
2397 overload_resolution. Caller must check it to see whether overload
2398 resolution is permitted. */
2399
2400 int
2401 find_overload_match (struct value **args, int nargs,
2402 const char *name, enum oload_search_type method,
2403 struct value **objp, struct symbol *fsym,
2404 struct value **valp, struct symbol **symp,
2405 int *staticp, const int no_adl)
2406 {
2407 struct value *obj = (objp ? *objp : NULL);
2408 struct type *obj_type = obj ? value_type (obj) : NULL;
2409 /* Index of best overloaded function. */
2410 int func_oload_champ = -1;
2411 int method_oload_champ = -1;
2412
2413 /* The measure for the current best match. */
2414 struct badness_vector *method_badness = NULL;
2415 struct badness_vector *func_badness = NULL;
2416
2417 struct value *temp = obj;
2418 /* For methods, the list of overloaded methods. */
2419 struct fn_field *fns_ptr = NULL;
2420 /* For non-methods, the list of overloaded function symbols. */
2421 struct symbol **oload_syms = NULL;
2422 /* Number of overloaded instances being considered. */
2423 int num_fns = 0;
2424 struct type *basetype = NULL;
2425 int boffset;
2426
2427 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2428
2429 const char *obj_type_name = NULL;
2430 const char *func_name = NULL;
2431 enum oload_classification match_quality;
2432 enum oload_classification method_match_quality = INCOMPATIBLE;
2433 enum oload_classification func_match_quality = INCOMPATIBLE;
2434
2435 /* Get the list of overloaded methods or functions. */
2436 if (method == METHOD || method == BOTH)
2437 {
2438 gdb_assert (obj);
2439
2440 /* OBJ may be a pointer value rather than the object itself. */
2441 obj = coerce_ref (obj);
2442 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2443 obj = coerce_ref (value_ind (obj));
2444 obj_type_name = TYPE_NAME (value_type (obj));
2445
2446 /* First check whether this is a data member, e.g. a pointer to
2447 a function. */
2448 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2449 {
2450 *valp = search_struct_field (name, obj, 0,
2451 check_typedef (value_type (obj)), 0);
2452 if (*valp)
2453 {
2454 *staticp = 1;
2455 do_cleanups (all_cleanups);
2456 return 0;
2457 }
2458 }
2459
2460 /* Retrieve the list of methods with the name NAME. */
2461 fns_ptr = value_find_oload_method_list (&temp, name,
2462 0, &num_fns,
2463 &basetype, &boffset);
2464 /* If this is a method only search, and no methods were found
2465 the search has faild. */
2466 if (method == METHOD && (!fns_ptr || !num_fns))
2467 error (_("Couldn't find method %s%s%s"),
2468 obj_type_name,
2469 (obj_type_name && *obj_type_name) ? "::" : "",
2470 name);
2471 /* If we are dealing with stub method types, they should have
2472 been resolved by find_method_list via
2473 value_find_oload_method_list above. */
2474 if (fns_ptr)
2475 {
2476 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2477 method_oload_champ = find_oload_champ (args, nargs, method,
2478 num_fns, fns_ptr,
2479 oload_syms, &method_badness);
2480
2481 method_match_quality =
2482 classify_oload_match (method_badness, nargs,
2483 oload_method_static (method, fns_ptr,
2484 method_oload_champ));
2485
2486 make_cleanup (xfree, method_badness);
2487 }
2488
2489 }
2490
2491 if (method == NON_METHOD || method == BOTH)
2492 {
2493 const char *qualified_name = NULL;
2494
2495 /* If the overload match is being search for both as a method
2496 and non member function, the first argument must now be
2497 dereferenced. */
2498 if (method == BOTH)
2499 args[0] = value_ind (args[0]);
2500
2501 if (fsym)
2502 {
2503 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2504
2505 /* If we have a function with a C++ name, try to extract just
2506 the function part. Do not try this for non-functions (e.g.
2507 function pointers). */
2508 if (qualified_name
2509 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2510 == TYPE_CODE_FUNC)
2511 {
2512 char *temp;
2513
2514 temp = cp_func_name (qualified_name);
2515
2516 /* If cp_func_name did not remove anything, the name of the
2517 symbol did not include scope or argument types - it was
2518 probably a C-style function. */
2519 if (temp)
2520 {
2521 make_cleanup (xfree, temp);
2522 if (strcmp (temp, qualified_name) == 0)
2523 func_name = NULL;
2524 else
2525 func_name = temp;
2526 }
2527 }
2528 }
2529 else
2530 {
2531 func_name = name;
2532 qualified_name = name;
2533 }
2534
2535 /* If there was no C++ name, this must be a C-style function or
2536 not a function at all. Just return the same symbol. Do the
2537 same if cp_func_name fails for some reason. */
2538 if (func_name == NULL)
2539 {
2540 *symp = fsym;
2541 do_cleanups (all_cleanups);
2542 return 0;
2543 }
2544
2545 func_oload_champ = find_oload_champ_namespace (args, nargs,
2546 func_name,
2547 qualified_name,
2548 &oload_syms,
2549 &func_badness,
2550 no_adl);
2551
2552 if (func_oload_champ >= 0)
2553 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2554
2555 make_cleanup (xfree, oload_syms);
2556 make_cleanup (xfree, func_badness);
2557 }
2558
2559 /* Did we find a match ? */
2560 if (method_oload_champ == -1 && func_oload_champ == -1)
2561 throw_error (NOT_FOUND_ERROR,
2562 _("No symbol \"%s\" in current context."),
2563 name);
2564
2565 /* If we have found both a method match and a function
2566 match, find out which one is better, and calculate match
2567 quality. */
2568 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2569 {
2570 switch (compare_badness (func_badness, method_badness))
2571 {
2572 case 0: /* Top two contenders are equally good. */
2573 /* FIXME: GDB does not support the general ambiguous case.
2574 All candidates should be collected and presented the
2575 user. */
2576 error (_("Ambiguous overload resolution"));
2577 break;
2578 case 1: /* Incomparable top contenders. */
2579 /* This is an error incompatible candidates
2580 should not have been proposed. */
2581 error (_("Internal error: incompatible "
2582 "overload candidates proposed"));
2583 break;
2584 case 2: /* Function champion. */
2585 method_oload_champ = -1;
2586 match_quality = func_match_quality;
2587 break;
2588 case 3: /* Method champion. */
2589 func_oload_champ = -1;
2590 match_quality = method_match_quality;
2591 break;
2592 default:
2593 error (_("Internal error: unexpected overload comparison result"));
2594 break;
2595 }
2596 }
2597 else
2598 {
2599 /* We have either a method match or a function match. */
2600 if (method_oload_champ >= 0)
2601 match_quality = method_match_quality;
2602 else
2603 match_quality = func_match_quality;
2604 }
2605
2606 if (match_quality == INCOMPATIBLE)
2607 {
2608 if (method == METHOD)
2609 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2610 obj_type_name,
2611 (obj_type_name && *obj_type_name) ? "::" : "",
2612 name);
2613 else
2614 error (_("Cannot resolve function %s to any overloaded instance"),
2615 func_name);
2616 }
2617 else if (match_quality == NON_STANDARD)
2618 {
2619 if (method == METHOD)
2620 warning (_("Using non-standard conversion to match "
2621 "method %s%s%s to supplied arguments"),
2622 obj_type_name,
2623 (obj_type_name && *obj_type_name) ? "::" : "",
2624 name);
2625 else
2626 warning (_("Using non-standard conversion to match "
2627 "function %s to supplied arguments"),
2628 func_name);
2629 }
2630
2631 if (staticp != NULL)
2632 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2633
2634 if (method_oload_champ >= 0)
2635 {
2636 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2637 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2638 basetype, boffset);
2639 else
2640 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2641 basetype, boffset);
2642 }
2643 else
2644 *symp = oload_syms[func_oload_champ];
2645
2646 if (objp)
2647 {
2648 struct type *temp_type = check_typedef (value_type (temp));
2649 struct type *objtype = check_typedef (obj_type);
2650
2651 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2652 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2653 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2654 {
2655 temp = value_addr (temp);
2656 }
2657 *objp = temp;
2658 }
2659
2660 do_cleanups (all_cleanups);
2661
2662 switch (match_quality)
2663 {
2664 case INCOMPATIBLE:
2665 return 100;
2666 case NON_STANDARD:
2667 return 10;
2668 default: /* STANDARD */
2669 return 0;
2670 }
2671 }
2672
2673 /* Find the best overload match, searching for FUNC_NAME in namespaces
2674 contained in QUALIFIED_NAME until it either finds a good match or
2675 runs out of namespaces. It stores the overloaded functions in
2676 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2677 calling function is responsible for freeing *OLOAD_SYMS and
2678 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2679 performned. */
2680
2681 static int
2682 find_oload_champ_namespace (struct value **args, int nargs,
2683 const char *func_name,
2684 const char *qualified_name,
2685 struct symbol ***oload_syms,
2686 struct badness_vector **oload_champ_bv,
2687 const int no_adl)
2688 {
2689 int oload_champ;
2690
2691 find_oload_champ_namespace_loop (args, nargs,
2692 func_name,
2693 qualified_name, 0,
2694 oload_syms, oload_champ_bv,
2695 &oload_champ,
2696 no_adl);
2697
2698 return oload_champ;
2699 }
2700
2701 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2702 how deep we've looked for namespaces, and the champ is stored in
2703 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2704 if it isn't. Other arguments are the same as in
2705 find_oload_champ_namespace
2706
2707 It is the caller's responsibility to free *OLOAD_SYMS and
2708 *OLOAD_CHAMP_BV. */
2709
2710 static int
2711 find_oload_champ_namespace_loop (struct value **args, int nargs,
2712 const char *func_name,
2713 const char *qualified_name,
2714 int namespace_len,
2715 struct symbol ***oload_syms,
2716 struct badness_vector **oload_champ_bv,
2717 int *oload_champ,
2718 const int no_adl)
2719 {
2720 int next_namespace_len = namespace_len;
2721 int searched_deeper = 0;
2722 int num_fns = 0;
2723 struct cleanup *old_cleanups;
2724 int new_oload_champ;
2725 struct symbol **new_oload_syms;
2726 struct badness_vector *new_oload_champ_bv;
2727 char *new_namespace;
2728
2729 if (next_namespace_len != 0)
2730 {
2731 gdb_assert (qualified_name[next_namespace_len] == ':');
2732 next_namespace_len += 2;
2733 }
2734 next_namespace_len +=
2735 cp_find_first_component (qualified_name + next_namespace_len);
2736
2737 /* Initialize these to values that can safely be xfree'd. */
2738 *oload_syms = NULL;
2739 *oload_champ_bv = NULL;
2740
2741 /* First, see if we have a deeper namespace we can search in.
2742 If we get a good match there, use it. */
2743
2744 if (qualified_name[next_namespace_len] == ':')
2745 {
2746 searched_deeper = 1;
2747
2748 if (find_oload_champ_namespace_loop (args, nargs,
2749 func_name, qualified_name,
2750 next_namespace_len,
2751 oload_syms, oload_champ_bv,
2752 oload_champ, no_adl))
2753 {
2754 return 1;
2755 }
2756 };
2757
2758 /* If we reach here, either we're in the deepest namespace or we
2759 didn't find a good match in a deeper namespace. But, in the
2760 latter case, we still have a bad match in a deeper namespace;
2761 note that we might not find any match at all in the current
2762 namespace. (There's always a match in the deepest namespace,
2763 because this overload mechanism only gets called if there's a
2764 function symbol to start off with.) */
2765
2766 old_cleanups = make_cleanup (xfree, *oload_syms);
2767 make_cleanup (xfree, *oload_champ_bv);
2768 new_namespace = alloca (namespace_len + 1);
2769 strncpy (new_namespace, qualified_name, namespace_len);
2770 new_namespace[namespace_len] = '\0';
2771 new_oload_syms = make_symbol_overload_list (func_name,
2772 new_namespace);
2773
2774 /* If we have reached the deepest level perform argument
2775 determined lookup. */
2776 if (!searched_deeper && !no_adl)
2777 {
2778 int ix;
2779 struct type **arg_types;
2780
2781 /* Prepare list of argument types for overload resolution. */
2782 arg_types = (struct type **)
2783 alloca (nargs * (sizeof (struct type *)));
2784 for (ix = 0; ix < nargs; ix++)
2785 arg_types[ix] = value_type (args[ix]);
2786 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2787 }
2788
2789 while (new_oload_syms[num_fns])
2790 ++num_fns;
2791
2792 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2793 NULL, new_oload_syms,
2794 &new_oload_champ_bv);
2795
2796 /* Case 1: We found a good match. Free earlier matches (if any),
2797 and return it. Case 2: We didn't find a good match, but we're
2798 not the deepest function. Then go with the bad match that the
2799 deeper function found. Case 3: We found a bad match, and we're
2800 the deepest function. Then return what we found, even though
2801 it's a bad match. */
2802
2803 if (new_oload_champ != -1
2804 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2805 {
2806 *oload_syms = new_oload_syms;
2807 *oload_champ = new_oload_champ;
2808 *oload_champ_bv = new_oload_champ_bv;
2809 do_cleanups (old_cleanups);
2810 return 1;
2811 }
2812 else if (searched_deeper)
2813 {
2814 xfree (new_oload_syms);
2815 xfree (new_oload_champ_bv);
2816 discard_cleanups (old_cleanups);
2817 return 0;
2818 }
2819 else
2820 {
2821 *oload_syms = new_oload_syms;
2822 *oload_champ = new_oload_champ;
2823 *oload_champ_bv = new_oload_champ_bv;
2824 do_cleanups (old_cleanups);
2825 return 0;
2826 }
2827 }
2828
2829 /* Look for a function to take NARGS args of ARGS. Find
2830 the best match from among the overloaded methods or functions
2831 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2832 The number of methods/functions in the list is given by NUM_FNS.
2833 Return the index of the best match; store an indication of the
2834 quality of the match in OLOAD_CHAMP_BV.
2835
2836 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2837
2838 static int
2839 find_oload_champ (struct value **args, int nargs, int method,
2840 int num_fns, struct fn_field *fns_ptr,
2841 struct symbol **oload_syms,
2842 struct badness_vector **oload_champ_bv)
2843 {
2844 int ix;
2845 /* A measure of how good an overloaded instance is. */
2846 struct badness_vector *bv;
2847 /* Index of best overloaded function. */
2848 int oload_champ = -1;
2849 /* Current ambiguity state for overload resolution. */
2850 int oload_ambiguous = 0;
2851 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2852
2853 *oload_champ_bv = NULL;
2854
2855 /* Consider each candidate in turn. */
2856 for (ix = 0; ix < num_fns; ix++)
2857 {
2858 int jj;
2859 int static_offset = oload_method_static (method, fns_ptr, ix);
2860 int nparms;
2861 struct type **parm_types;
2862
2863 if (method)
2864 {
2865 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2866 }
2867 else
2868 {
2869 /* If it's not a method, this is the proper place. */
2870 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2871 }
2872
2873 /* Prepare array of parameter types. */
2874 parm_types = (struct type **)
2875 xmalloc (nparms * (sizeof (struct type *)));
2876 for (jj = 0; jj < nparms; jj++)
2877 parm_types[jj] = (method
2878 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2879 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2880 jj));
2881
2882 /* Compare parameter types to supplied argument types. Skip
2883 THIS for static methods. */
2884 bv = rank_function (parm_types, nparms,
2885 args + static_offset,
2886 nargs - static_offset);
2887
2888 if (!*oload_champ_bv)
2889 {
2890 *oload_champ_bv = bv;
2891 oload_champ = 0;
2892 }
2893 else /* See whether current candidate is better or worse than
2894 previous best. */
2895 switch (compare_badness (bv, *oload_champ_bv))
2896 {
2897 case 0: /* Top two contenders are equally good. */
2898 oload_ambiguous = 1;
2899 break;
2900 case 1: /* Incomparable top contenders. */
2901 oload_ambiguous = 2;
2902 break;
2903 case 2: /* New champion, record details. */
2904 *oload_champ_bv = bv;
2905 oload_ambiguous = 0;
2906 oload_champ = ix;
2907 break;
2908 case 3:
2909 default:
2910 break;
2911 }
2912 xfree (parm_types);
2913 if (overload_debug)
2914 {
2915 if (method)
2916 fprintf_filtered (gdb_stderr,
2917 "Overloaded method instance %s, # of parms %d\n",
2918 fns_ptr[ix].physname, nparms);
2919 else
2920 fprintf_filtered (gdb_stderr,
2921 "Overloaded function instance "
2922 "%s # of parms %d\n",
2923 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2924 nparms);
2925 for (jj = 0; jj < nargs - static_offset; jj++)
2926 fprintf_filtered (gdb_stderr,
2927 "...Badness @ %d : %d\n",
2928 jj, bv->rank[jj].rank);
2929 fprintf_filtered (gdb_stderr, "Overload resolution "
2930 "champion is %d, ambiguous? %d\n",
2931 oload_champ, oload_ambiguous);
2932 }
2933 }
2934
2935 return oload_champ;
2936 }
2937
2938 /* Return 1 if we're looking at a static method, 0 if we're looking at
2939 a non-static method or a function that isn't a method. */
2940
2941 static int
2942 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2943 {
2944 if (method && fns_ptr && index >= 0
2945 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2946 return 1;
2947 else
2948 return 0;
2949 }
2950
2951 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2952
2953 static enum oload_classification
2954 classify_oload_match (struct badness_vector *oload_champ_bv,
2955 int nargs,
2956 int static_offset)
2957 {
2958 int ix;
2959 enum oload_classification worst = STANDARD;
2960
2961 for (ix = 1; ix <= nargs - static_offset; ix++)
2962 {
2963 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2964 or worse return INCOMPATIBLE. */
2965 if (compare_ranks (oload_champ_bv->rank[ix],
2966 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2967 return INCOMPATIBLE; /* Truly mismatched types. */
2968 /* Otherwise If this conversion is as bad as
2969 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2970 else if (compare_ranks (oload_champ_bv->rank[ix],
2971 NS_POINTER_CONVERSION_BADNESS) <= 0)
2972 worst = NON_STANDARD; /* Non-standard type conversions
2973 needed. */
2974 }
2975
2976 /* If no INCOMPATIBLE classification was found, return the worst one
2977 that was found (if any). */
2978 return worst;
2979 }
2980
2981 /* C++: return 1 is NAME is a legitimate name for the destructor of
2982 type TYPE. If TYPE does not have a destructor, or if NAME is
2983 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2984 have CHECK_TYPEDEF applied, this function will apply it itself. */
2985
2986 int
2987 destructor_name_p (const char *name, struct type *type)
2988 {
2989 if (name[0] == '~')
2990 {
2991 const char *dname = type_name_no_tag_or_error (type);
2992 const char *cp = strchr (dname, '<');
2993 unsigned int len;
2994
2995 /* Do not compare the template part for template classes. */
2996 if (cp == NULL)
2997 len = strlen (dname);
2998 else
2999 len = cp - dname;
3000 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3001 error (_("name of destructor must equal name of class"));
3002 else
3003 return 1;
3004 }
3005 return 0;
3006 }
3007
3008 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3009 return the appropriate member (or the address of the member, if
3010 WANT_ADDRESS). This function is used to resolve user expressions
3011 of the form "DOMAIN::NAME". For more details on what happens, see
3012 the comment before value_struct_elt_for_reference. */
3013
3014 struct value *
3015 value_aggregate_elt (struct type *curtype, char *name,
3016 struct type *expect_type, int want_address,
3017 enum noside noside)
3018 {
3019 switch (TYPE_CODE (curtype))
3020 {
3021 case TYPE_CODE_STRUCT:
3022 case TYPE_CODE_UNION:
3023 return value_struct_elt_for_reference (curtype, 0, curtype,
3024 name, expect_type,
3025 want_address, noside);
3026 case TYPE_CODE_NAMESPACE:
3027 return value_namespace_elt (curtype, name,
3028 want_address, noside);
3029 default:
3030 internal_error (__FILE__, __LINE__,
3031 _("non-aggregate type in value_aggregate_elt"));
3032 }
3033 }
3034
3035 /* Compares the two method/function types T1 and T2 for "equality"
3036 with respect to the methods' parameters. If the types of the
3037 two parameter lists are the same, returns 1; 0 otherwise. This
3038 comparison may ignore any artificial parameters in T1 if
3039 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3040 the first artificial parameter in T1, assumed to be a 'this' pointer.
3041
3042 The type T2 is expected to have come from make_params (in eval.c). */
3043
3044 static int
3045 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3046 {
3047 int start = 0;
3048
3049 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3050 ++start;
3051
3052 /* If skipping artificial fields, find the first real field
3053 in T1. */
3054 if (skip_artificial)
3055 {
3056 while (start < TYPE_NFIELDS (t1)
3057 && TYPE_FIELD_ARTIFICIAL (t1, start))
3058 ++start;
3059 }
3060
3061 /* Now compare parameters. */
3062
3063 /* Special case: a method taking void. T1 will contain no
3064 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3065 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3066 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3067 return 1;
3068
3069 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3070 {
3071 int i;
3072
3073 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3074 {
3075 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3076 TYPE_FIELD_TYPE (t2, i), NULL),
3077 EXACT_MATCH_BADNESS) != 0)
3078 return 0;
3079 }
3080
3081 return 1;
3082 }
3083
3084 return 0;
3085 }
3086
3087 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3088 return the address of this member as a "pointer to member" type.
3089 If INTYPE is non-null, then it will be the type of the member we
3090 are looking for. This will help us resolve "pointers to member
3091 functions". This function is used to resolve user expressions of
3092 the form "DOMAIN::NAME". */
3093
3094 static struct value *
3095 value_struct_elt_for_reference (struct type *domain, int offset,
3096 struct type *curtype, char *name,
3097 struct type *intype,
3098 int want_address,
3099 enum noside noside)
3100 {
3101 struct type *t = curtype;
3102 int i;
3103 struct value *v, *result;
3104
3105 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3106 && TYPE_CODE (t) != TYPE_CODE_UNION)
3107 error (_("Internal error: non-aggregate type "
3108 "to value_struct_elt_for_reference"));
3109
3110 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3111 {
3112 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3113
3114 if (t_field_name && strcmp (t_field_name, name) == 0)
3115 {
3116 if (field_is_static (&TYPE_FIELD (t, i)))
3117 {
3118 v = value_static_field (t, i);
3119 if (want_address)
3120 v = value_addr (v);
3121 return v;
3122 }
3123 if (TYPE_FIELD_PACKED (t, i))
3124 error (_("pointers to bitfield members not allowed"));
3125
3126 if (want_address)
3127 return value_from_longest
3128 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3129 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3130 else if (noside != EVAL_NORMAL)
3131 return allocate_value (TYPE_FIELD_TYPE (t, i));
3132 else
3133 {
3134 /* Try to evaluate NAME as a qualified name with implicit
3135 this pointer. In this case, attempt to return the
3136 equivalent to `this->*(&TYPE::NAME)'. */
3137 v = value_of_this_silent (current_language);
3138 if (v != NULL)
3139 {
3140 struct value *ptr;
3141 long mem_offset;
3142 struct type *type, *tmp;
3143
3144 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3145 type = check_typedef (value_type (ptr));
3146 gdb_assert (type != NULL
3147 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3148 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3149 v = value_cast_pointers (tmp, v, 1);
3150 mem_offset = value_as_long (ptr);
3151 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3152 result = value_from_pointer (tmp,
3153 value_as_long (v) + mem_offset);
3154 return value_ind (result);
3155 }
3156
3157 error (_("Cannot reference non-static field \"%s\""), name);
3158 }
3159 }
3160 }
3161
3162 /* C++: If it was not found as a data field, then try to return it
3163 as a pointer to a method. */
3164
3165 /* Perform all necessary dereferencing. */
3166 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3167 intype = TYPE_TARGET_TYPE (intype);
3168
3169 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3170 {
3171 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3172 char dem_opname[64];
3173
3174 if (strncmp (t_field_name, "__", 2) == 0
3175 || strncmp (t_field_name, "op", 2) == 0
3176 || strncmp (t_field_name, "type", 4) == 0)
3177 {
3178 if (cplus_demangle_opname (t_field_name,
3179 dem_opname, DMGL_ANSI))
3180 t_field_name = dem_opname;
3181 else if (cplus_demangle_opname (t_field_name,
3182 dem_opname, 0))
3183 t_field_name = dem_opname;
3184 }
3185 if (t_field_name && strcmp (t_field_name, name) == 0)
3186 {
3187 int j;
3188 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3189 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3190
3191 check_stub_method_group (t, i);
3192
3193 if (intype)
3194 {
3195 for (j = 0; j < len; ++j)
3196 {
3197 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3198 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3199 intype, 1))
3200 break;
3201 }
3202
3203 if (j == len)
3204 error (_("no member function matches "
3205 "that type instantiation"));
3206 }
3207 else
3208 {
3209 int ii;
3210
3211 j = -1;
3212 for (ii = 0; ii < len; ++ii)
3213 {
3214 /* Skip artificial methods. This is necessary if,
3215 for example, the user wants to "print
3216 subclass::subclass" with only one user-defined
3217 constructor. There is no ambiguity in this case.
3218 We are careful here to allow artificial methods
3219 if they are the unique result. */
3220 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3221 {
3222 if (j == -1)
3223 j = ii;
3224 continue;
3225 }
3226
3227 /* Desired method is ambiguous if more than one
3228 method is defined. */
3229 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3230 error (_("non-unique member `%s' requires "
3231 "type instantiation"), name);
3232
3233 j = ii;
3234 }
3235
3236 if (j == -1)
3237 error (_("no matching member function"));
3238 }
3239
3240 if (TYPE_FN_FIELD_STATIC_P (f, j))
3241 {
3242 struct symbol *s =
3243 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3244 0, VAR_DOMAIN, 0);
3245
3246 if (s == NULL)
3247 return NULL;
3248
3249 if (want_address)
3250 return value_addr (read_var_value (s, 0));
3251 else
3252 return read_var_value (s, 0);
3253 }
3254
3255 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3256 {
3257 if (want_address)
3258 {
3259 result = allocate_value
3260 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3261 cplus_make_method_ptr (value_type (result),
3262 value_contents_writeable (result),
3263 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3264 }
3265 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3266 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3267 else
3268 error (_("Cannot reference virtual member function \"%s\""),
3269 name);
3270 }
3271 else
3272 {
3273 struct symbol *s =
3274 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3275 0, VAR_DOMAIN, 0);
3276
3277 if (s == NULL)
3278 return NULL;
3279
3280 v = read_var_value (s, 0);
3281 if (!want_address)
3282 result = v;
3283 else
3284 {
3285 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3286 cplus_make_method_ptr (value_type (result),
3287 value_contents_writeable (result),
3288 value_address (v), 0);
3289 }
3290 }
3291 return result;
3292 }
3293 }
3294 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3295 {
3296 struct value *v;
3297 int base_offset;
3298
3299 if (BASETYPE_VIA_VIRTUAL (t, i))
3300 base_offset = 0;
3301 else
3302 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3303 v = value_struct_elt_for_reference (domain,
3304 offset + base_offset,
3305 TYPE_BASECLASS (t, i),
3306 name, intype,
3307 want_address, noside);
3308 if (v)
3309 return v;
3310 }
3311
3312 /* As a last chance, pretend that CURTYPE is a namespace, and look
3313 it up that way; this (frequently) works for types nested inside
3314 classes. */
3315
3316 return value_maybe_namespace_elt (curtype, name,
3317 want_address, noside);
3318 }
3319
3320 /* C++: Return the member NAME of the namespace given by the type
3321 CURTYPE. */
3322
3323 static struct value *
3324 value_namespace_elt (const struct type *curtype,
3325 char *name, int want_address,
3326 enum noside noside)
3327 {
3328 struct value *retval = value_maybe_namespace_elt (curtype, name,
3329 want_address,
3330 noside);
3331
3332 if (retval == NULL)
3333 error (_("No symbol \"%s\" in namespace \"%s\"."),
3334 name, TYPE_TAG_NAME (curtype));
3335
3336 return retval;
3337 }
3338
3339 /* A helper function used by value_namespace_elt and
3340 value_struct_elt_for_reference. It looks up NAME inside the
3341 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3342 is a class and NAME refers to a type in CURTYPE itself (as opposed
3343 to, say, some base class of CURTYPE). */
3344
3345 static struct value *
3346 value_maybe_namespace_elt (const struct type *curtype,
3347 char *name, int want_address,
3348 enum noside noside)
3349 {
3350 const char *namespace_name = TYPE_TAG_NAME (curtype);
3351 struct symbol *sym;
3352 struct value *result;
3353
3354 sym = cp_lookup_symbol_namespace (namespace_name, name,
3355 get_selected_block (0), VAR_DOMAIN);
3356
3357 if (sym == NULL)
3358 {
3359 char *concatenated_name = alloca (strlen (namespace_name) + 2
3360 + strlen (name) + 1);
3361
3362 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3363 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3364 }
3365
3366 if (sym == NULL)
3367 return NULL;
3368 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3369 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3370 result = allocate_value (SYMBOL_TYPE (sym));
3371 else
3372 result = value_of_variable (sym, get_selected_block (0));
3373
3374 if (result && want_address)
3375 result = value_addr (result);
3376
3377 return result;
3378 }
3379
3380 /* Given a pointer or a reference value V, find its real (RTTI) type.
3381
3382 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3383 and refer to the values computed for the object pointed to. */
3384
3385 struct type *
3386 value_rtti_indirect_type (struct value *v, int *full,
3387 int *top, int *using_enc)
3388 {
3389 struct value *target;
3390 struct type *type, *real_type, *target_type;
3391
3392 type = value_type (v);
3393 type = check_typedef (type);
3394 if (TYPE_CODE (type) == TYPE_CODE_REF)
3395 target = coerce_ref (v);
3396 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3397 target = value_ind (v);
3398 else
3399 return NULL;
3400
3401 real_type = value_rtti_type (target, full, top, using_enc);
3402
3403 if (real_type)
3404 {
3405 /* Copy qualifiers to the referenced object. */
3406 target_type = value_type (target);
3407 real_type = make_cv_type (TYPE_CONST (target_type),
3408 TYPE_VOLATILE (target_type), real_type, NULL);
3409 if (TYPE_CODE (type) == TYPE_CODE_REF)
3410 real_type = lookup_reference_type (real_type);
3411 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3412 real_type = lookup_pointer_type (real_type);
3413 else
3414 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3415
3416 /* Copy qualifiers to the pointer/reference. */
3417 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3418 real_type, NULL);
3419 }
3420
3421 return real_type;
3422 }
3423
3424 /* Given a value pointed to by ARGP, check its real run-time type, and
3425 if that is different from the enclosing type, create a new value
3426 using the real run-time type as the enclosing type (and of the same
3427 type as ARGP) and return it, with the embedded offset adjusted to
3428 be the correct offset to the enclosed object. RTYPE is the type,
3429 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3430 by value_rtti_type(). If these are available, they can be supplied
3431 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3432 NULL if they're not available. */
3433
3434 struct value *
3435 value_full_object (struct value *argp,
3436 struct type *rtype,
3437 int xfull, int xtop,
3438 int xusing_enc)
3439 {
3440 struct type *real_type;
3441 int full = 0;
3442 int top = -1;
3443 int using_enc = 0;
3444 struct value *new_val;
3445
3446 if (rtype)
3447 {
3448 real_type = rtype;
3449 full = xfull;
3450 top = xtop;
3451 using_enc = xusing_enc;
3452 }
3453 else
3454 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3455
3456 /* If no RTTI data, or if object is already complete, do nothing. */
3457 if (!real_type || real_type == value_enclosing_type (argp))
3458 return argp;
3459
3460 /* In a destructor we might see a real type that is a superclass of
3461 the object's type. In this case it is better to leave the object
3462 as-is. */
3463 if (full
3464 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3465 return argp;
3466
3467 /* If we have the full object, but for some reason the enclosing
3468 type is wrong, set it. */
3469 /* pai: FIXME -- sounds iffy */
3470 if (full)
3471 {
3472 argp = value_copy (argp);
3473 set_value_enclosing_type (argp, real_type);
3474 return argp;
3475 }
3476
3477 /* Check if object is in memory. */
3478 if (VALUE_LVAL (argp) != lval_memory)
3479 {
3480 warning (_("Couldn't retrieve complete object of RTTI "
3481 "type %s; object may be in register(s)."),
3482 TYPE_NAME (real_type));
3483
3484 return argp;
3485 }
3486
3487 /* All other cases -- retrieve the complete object. */
3488 /* Go back by the computed top_offset from the beginning of the
3489 object, adjusting for the embedded offset of argp if that's what
3490 value_rtti_type used for its computation. */
3491 new_val = value_at_lazy (real_type, value_address (argp) - top +
3492 (using_enc ? 0 : value_embedded_offset (argp)));
3493 deprecated_set_value_type (new_val, value_type (argp));
3494 set_value_embedded_offset (new_val, (using_enc
3495 ? top + value_embedded_offset (argp)
3496 : top));
3497 return new_val;
3498 }
3499
3500
3501 /* Return the value of the local variable, if one exists. Throw error
3502 otherwise, such as if the request is made in an inappropriate context. */
3503
3504 struct value *
3505 value_of_this (const struct language_defn *lang)
3506 {
3507 struct symbol *sym;
3508 struct block *b;
3509 struct frame_info *frame;
3510
3511 if (!lang->la_name_of_this)
3512 error (_("no `this' in current language"));
3513
3514 frame = get_selected_frame (_("no frame selected"));
3515
3516 b = get_frame_block (frame, NULL);
3517
3518 sym = lookup_language_this (lang, b);
3519 if (sym == NULL)
3520 error (_("current stack frame does not contain a variable named `%s'"),
3521 lang->la_name_of_this);
3522
3523 return read_var_value (sym, frame);
3524 }
3525
3526 /* Return the value of the local variable, if one exists. Return NULL
3527 otherwise. Never throw error. */
3528
3529 struct value *
3530 value_of_this_silent (const struct language_defn *lang)
3531 {
3532 struct value *ret = NULL;
3533 volatile struct gdb_exception except;
3534
3535 TRY_CATCH (except, RETURN_MASK_ERROR)
3536 {
3537 ret = value_of_this (lang);
3538 }
3539
3540 return ret;
3541 }
3542
3543 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3544 elements long, starting at LOWBOUND. The result has the same lower
3545 bound as the original ARRAY. */
3546
3547 struct value *
3548 value_slice (struct value *array, int lowbound, int length)
3549 {
3550 struct type *slice_range_type, *slice_type, *range_type;
3551 LONGEST lowerbound, upperbound;
3552 struct value *slice;
3553 struct type *array_type;
3554
3555 array_type = check_typedef (value_type (array));
3556 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3557 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3558 error (_("cannot take slice of non-array"));
3559
3560 range_type = TYPE_INDEX_TYPE (array_type);
3561 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3562 error (_("slice from bad array or bitstring"));
3563
3564 if (lowbound < lowerbound || length < 0
3565 || lowbound + length - 1 > upperbound)
3566 error (_("slice out of range"));
3567
3568 /* FIXME-type-allocation: need a way to free this type when we are
3569 done with it. */
3570 slice_range_type = create_range_type ((struct type *) NULL,
3571 TYPE_TARGET_TYPE (range_type),
3572 lowbound,
3573 lowbound + length - 1);
3574
3575 {
3576 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3577 LONGEST offset =
3578 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3579
3580 slice_type = create_array_type ((struct type *) NULL,
3581 element_type,
3582 slice_range_type);
3583 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3584
3585 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3586 slice = allocate_value_lazy (slice_type);
3587 else
3588 {
3589 slice = allocate_value (slice_type);
3590 value_contents_copy (slice, 0, array, offset,
3591 TYPE_LENGTH (slice_type));
3592 }
3593
3594 set_value_component_location (slice, array);
3595 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3596 set_value_offset (slice, value_offset (array) + offset);
3597 }
3598 return slice;
3599 }
3600
3601 /* Create a value for a FORTRAN complex number. Currently most of the
3602 time values are coerced to COMPLEX*16 (i.e. a complex number
3603 composed of 2 doubles. This really should be a smarter routine
3604 that figures out precision inteligently as opposed to assuming
3605 doubles. FIXME: fmb */
3606
3607 struct value *
3608 value_literal_complex (struct value *arg1,
3609 struct value *arg2,
3610 struct type *type)
3611 {
3612 struct value *val;
3613 struct type *real_type = TYPE_TARGET_TYPE (type);
3614
3615 val = allocate_value (type);
3616 arg1 = value_cast (real_type, arg1);
3617 arg2 = value_cast (real_type, arg2);
3618
3619 memcpy (value_contents_raw (val),
3620 value_contents (arg1), TYPE_LENGTH (real_type));
3621 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3622 value_contents (arg2), TYPE_LENGTH (real_type));
3623 return val;
3624 }
3625
3626 /* Cast a value into the appropriate complex data type. */
3627
3628 static struct value *
3629 cast_into_complex (struct type *type, struct value *val)
3630 {
3631 struct type *real_type = TYPE_TARGET_TYPE (type);
3632
3633 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3634 {
3635 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3636 struct value *re_val = allocate_value (val_real_type);
3637 struct value *im_val = allocate_value (val_real_type);
3638
3639 memcpy (value_contents_raw (re_val),
3640 value_contents (val), TYPE_LENGTH (val_real_type));
3641 memcpy (value_contents_raw (im_val),
3642 value_contents (val) + TYPE_LENGTH (val_real_type),
3643 TYPE_LENGTH (val_real_type));
3644
3645 return value_literal_complex (re_val, im_val, type);
3646 }
3647 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3648 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3649 return value_literal_complex (val,
3650 value_zero (real_type, not_lval),
3651 type);
3652 else
3653 error (_("cannot cast non-number to complex"));
3654 }
3655
3656 void
3657 _initialize_valops (void)
3658 {
3659 add_setshow_boolean_cmd ("overload-resolution", class_support,
3660 &overload_resolution, _("\
3661 Set overload resolution in evaluating C++ functions."), _("\
3662 Show overload resolution in evaluating C++ functions."),
3663 NULL, NULL,
3664 show_overload_resolution,
3665 &setlist, &showlist);
3666 overload_resolution = 1;
3667 }