* gdbtypes.c (lookup_array_range_type): Add prototype.
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49
50 extern int overload_debug;
51 /* Local functions. */
52
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
55
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
58
59 static struct value *search_struct_method (char *, struct value **,
60 struct value **,
61 int, int *, struct type *);
62
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
65 struct symbol ***,
66 struct badness_vector **);
67
68 static
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
73
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
136 if (sym != NULL)
137 {
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 {
140 error (_("\"%s\" exists in this program but is not a function."),
141 name);
142 }
143
144 if (objf_p)
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146
147 return value_of_variable (sym, NULL);
148 }
149 else
150 {
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
153 if (msymbol != NULL)
154 {
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
174 else
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
198 else
199 error (_("No memory available to program: call to malloc failed"));
200 }
201 return val;
202 }
203
204 static CORE_ADDR
205 allocate_space_in_inferior (int len)
206 {
207 return value_as_long (value_allocate_space_in_inferior (len));
208 }
209
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
214
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
217 {
218 struct type *t1;
219 struct type *t2;
220 struct value *v;
221
222 gdb_assert (type != NULL && v2 != NULL);
223
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
226
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
234
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
239 {
240 v = search_struct_field (type_name_no_tag (t1),
241 v2, 0, t2, 1);
242 if (v)
243 return v;
244 }
245
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
254 if (v)
255 {
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = value_address (v2);
258 addr2 -= value_address (v) + value_embedded_offset (v);
259 return value_at (type, addr2);
260 }
261 }
262
263 return NULL;
264 }
265
266 /* Cast one pointer or reference type to another. Both TYPE and
267 the type of ARG2 should be pointer types, or else both should be
268 reference types. Returns the new pointer or reference. */
269
270 struct value *
271 value_cast_pointers (struct type *type, struct value *arg2)
272 {
273 struct type *type1 = check_typedef (type);
274 struct type *type2 = check_typedef (value_type (arg2));
275 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
276 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
277
278 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
279 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
280 && !value_logical_not (arg2))
281 {
282 struct value *v2;
283
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 v2 = coerce_ref (arg2);
286 else
287 v2 = value_ind (arg2);
288 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
289 && !!"Why did coercion fail?");
290 v2 = value_cast_structs (t1, v2);
291 /* At this point we have what we can have, un-dereference if needed. */
292 if (v2)
293 {
294 struct value *v = value_addr (v2);
295 deprecated_set_value_type (v, type);
296 return v;
297 }
298 }
299
300 /* No superclass found, just change the pointer type. */
301 arg2 = value_copy (arg2);
302 deprecated_set_value_type (arg2, type);
303 arg2 = value_change_enclosing_type (arg2, type);
304 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
305 return arg2;
306 }
307
308 /* Cast value ARG2 to type TYPE and return as a value.
309 More general than a C cast: accepts any two types of the same length,
310 and if ARG2 is an lvalue it can be cast into anything at all. */
311 /* In C++, casts may change pointer or object representations. */
312
313 struct value *
314 value_cast (struct type *type, struct value *arg2)
315 {
316 enum type_code code1;
317 enum type_code code2;
318 int scalar;
319 struct type *type2;
320
321 int convert_to_boolean = 0;
322
323 if (value_type (arg2) == type)
324 return arg2;
325
326 code1 = TYPE_CODE (check_typedef (type));
327
328 /* Check if we are casting struct reference to struct reference. */
329 if (code1 == TYPE_CODE_REF)
330 {
331 /* We dereference type; then we recurse and finally
332 we generate value of the given reference. Nothing wrong with
333 that. */
334 struct type *t1 = check_typedef (type);
335 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
336 struct value *val = value_cast (dereftype, arg2);
337 return value_ref (val);
338 }
339
340 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
341
342 if (code2 == TYPE_CODE_REF)
343 /* We deref the value and then do the cast. */
344 return value_cast (type, coerce_ref (arg2));
345
346 CHECK_TYPEDEF (type);
347 code1 = TYPE_CODE (type);
348 arg2 = coerce_ref (arg2);
349 type2 = check_typedef (value_type (arg2));
350
351 /* You can't cast to a reference type. See value_cast_pointers
352 instead. */
353 gdb_assert (code1 != TYPE_CODE_REF);
354
355 /* A cast to an undetermined-length array_type, such as
356 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
357 where N is sizeof(OBJECT)/sizeof(TYPE). */
358 if (code1 == TYPE_CODE_ARRAY)
359 {
360 struct type *element_type = TYPE_TARGET_TYPE (type);
361 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
362 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
363 {
364 struct type *range_type = TYPE_INDEX_TYPE (type);
365 int val_length = TYPE_LENGTH (type2);
366 LONGEST low_bound, high_bound, new_length;
367 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
368 low_bound = 0, high_bound = 0;
369 new_length = val_length / element_length;
370 if (val_length % element_length != 0)
371 warning (_("array element type size does not divide object size in cast"));
372 /* FIXME-type-allocation: need a way to free this type when
373 we are done with it. */
374 range_type = create_range_type ((struct type *) NULL,
375 TYPE_TARGET_TYPE (range_type),
376 low_bound,
377 new_length + low_bound - 1);
378 deprecated_set_value_type (arg2,
379 create_array_type ((struct type *) NULL,
380 element_type,
381 range_type));
382 return arg2;
383 }
384 }
385
386 if (current_language->c_style_arrays
387 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
388 arg2 = value_coerce_array (arg2);
389
390 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
391 arg2 = value_coerce_function (arg2);
392
393 type2 = check_typedef (value_type (arg2));
394 code2 = TYPE_CODE (type2);
395
396 if (code1 == TYPE_CODE_COMPLEX)
397 return cast_into_complex (type, arg2);
398 if (code1 == TYPE_CODE_BOOL)
399 {
400 code1 = TYPE_CODE_INT;
401 convert_to_boolean = 1;
402 }
403 if (code1 == TYPE_CODE_CHAR)
404 code1 = TYPE_CODE_INT;
405 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
406 code2 = TYPE_CODE_INT;
407
408 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
409 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
410 || code2 == TYPE_CODE_RANGE);
411
412 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
413 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
414 && TYPE_NAME (type) != 0)
415 {
416 struct value *v = value_cast_structs (type, arg2);
417 if (v)
418 return v;
419 }
420
421 if (code1 == TYPE_CODE_FLT && scalar)
422 return value_from_double (type, value_as_double (arg2));
423 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
424 {
425 int dec_len = TYPE_LENGTH (type);
426 gdb_byte dec[16];
427
428 if (code2 == TYPE_CODE_FLT)
429 decimal_from_floating (arg2, dec, dec_len);
430 else if (code2 == TYPE_CODE_DECFLOAT)
431 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
432 dec, dec_len);
433 else
434 /* The only option left is an integral type. */
435 decimal_from_integral (arg2, dec, dec_len);
436
437 return value_from_decfloat (type, dec);
438 }
439 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
440 || code1 == TYPE_CODE_RANGE)
441 && (scalar || code2 == TYPE_CODE_PTR
442 || code2 == TYPE_CODE_MEMBERPTR))
443 {
444 LONGEST longest;
445
446 /* When we cast pointers to integers, we mustn't use
447 gdbarch_pointer_to_address to find the address the pointer
448 represents, as value_as_long would. GDB should evaluate
449 expressions just as the compiler would --- and the compiler
450 sees a cast as a simple reinterpretation of the pointer's
451 bits. */
452 if (code2 == TYPE_CODE_PTR)
453 longest = extract_unsigned_integer (value_contents (arg2),
454 TYPE_LENGTH (type2));
455 else
456 longest = value_as_long (arg2);
457 return value_from_longest (type, convert_to_boolean ?
458 (LONGEST) (longest ? 1 : 0) : longest);
459 }
460 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
461 || code2 == TYPE_CODE_ENUM
462 || code2 == TYPE_CODE_RANGE))
463 {
464 /* TYPE_LENGTH (type) is the length of a pointer, but we really
465 want the length of an address! -- we are really dealing with
466 addresses (i.e., gdb representations) not pointers (i.e.,
467 target representations) here.
468
469 This allows things like "print *(int *)0x01000234" to work
470 without printing a misleading message -- which would
471 otherwise occur when dealing with a target having two byte
472 pointers and four byte addresses. */
473
474 int addr_bit = gdbarch_addr_bit (current_gdbarch);
475
476 LONGEST longest = value_as_long (arg2);
477 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
478 {
479 if (longest >= ((LONGEST) 1 << addr_bit)
480 || longest <= -((LONGEST) 1 << addr_bit))
481 warning (_("value truncated"));
482 }
483 return value_from_longest (type, longest);
484 }
485 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
486 && value_as_long (arg2) == 0)
487 {
488 struct value *result = allocate_value (type);
489 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
490 return result;
491 }
492 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
493 && value_as_long (arg2) == 0)
494 {
495 /* The Itanium C++ ABI represents NULL pointers to members as
496 minus one, instead of biasing the normal case. */
497 return value_from_longest (type, -1);
498 }
499 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
500 {
501 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
502 return value_cast_pointers (type, arg2);
503
504 arg2 = value_copy (arg2);
505 deprecated_set_value_type (arg2, type);
506 arg2 = value_change_enclosing_type (arg2, type);
507 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
508 return arg2;
509 }
510 else if (VALUE_LVAL (arg2) == lval_memory)
511 return value_at_lazy (type, value_address (arg2));
512 else if (code1 == TYPE_CODE_VOID)
513 {
514 return value_zero (builtin_type_void, not_lval);
515 }
516 else
517 {
518 error (_("Invalid cast."));
519 return 0;
520 }
521 }
522
523 /* Create a value of type TYPE that is zero, and return it. */
524
525 struct value *
526 value_zero (struct type *type, enum lval_type lv)
527 {
528 struct value *val = allocate_value (type);
529 VALUE_LVAL (val) = lv;
530
531 return val;
532 }
533
534 /* Create a value of numeric type TYPE that is one, and return it. */
535
536 struct value *
537 value_one (struct type *type, enum lval_type lv)
538 {
539 struct type *type1 = check_typedef (type);
540 struct value *val;
541
542 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
543 {
544 gdb_byte v[16];
545 decimal_from_string (v, TYPE_LENGTH (type), "1");
546 val = value_from_decfloat (type, v);
547 }
548 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
549 {
550 val = value_from_double (type, (DOUBLEST) 1);
551 }
552 else if (is_integral_type (type1))
553 {
554 val = value_from_longest (type, (LONGEST) 1);
555 }
556 else
557 {
558 error (_("Not a numeric type."));
559 }
560
561 VALUE_LVAL (val) = lv;
562 return val;
563 }
564
565 /* Return a value with type TYPE located at ADDR.
566
567 Call value_at only if the data needs to be fetched immediately;
568 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
569 value_at_lazy instead. value_at_lazy simply records the address of
570 the data and sets the lazy-evaluation-required flag. The lazy flag
571 is tested in the value_contents macro, which is used if and when
572 the contents are actually required.
573
574 Note: value_at does *NOT* handle embedded offsets; perform such
575 adjustments before or after calling it. */
576
577 struct value *
578 value_at (struct type *type, CORE_ADDR addr)
579 {
580 struct value *val;
581
582 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
583 error (_("Attempt to dereference a generic pointer."));
584
585 val = allocate_value (type);
586
587 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
588
589 VALUE_LVAL (val) = lval_memory;
590 set_value_address (val, addr);
591
592 return val;
593 }
594
595 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
596
597 struct value *
598 value_at_lazy (struct type *type, CORE_ADDR addr)
599 {
600 struct value *val;
601
602 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
603 error (_("Attempt to dereference a generic pointer."));
604
605 val = allocate_value_lazy (type);
606
607 VALUE_LVAL (val) = lval_memory;
608 set_value_address (val, addr);
609
610 return val;
611 }
612
613 /* Called only from the value_contents and value_contents_all()
614 macros, if the current data for a variable needs to be loaded into
615 value_contents(VAL). Fetches the data from the user's process, and
616 clears the lazy flag to indicate that the data in the buffer is
617 valid.
618
619 If the value is zero-length, we avoid calling read_memory, which
620 would abort. We mark the value as fetched anyway -- all 0 bytes of
621 it.
622
623 This function returns a value because it is used in the
624 value_contents macro as part of an expression, where a void would
625 not work. The value is ignored. */
626
627 int
628 value_fetch_lazy (struct value *val)
629 {
630 gdb_assert (value_lazy (val));
631 allocate_value_contents (val);
632 if (VALUE_LVAL (val) == lval_memory)
633 {
634 CORE_ADDR addr = value_address (val);
635 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
636
637 if (length)
638 read_memory (addr, value_contents_all_raw (val), length);
639 }
640 else if (VALUE_LVAL (val) == lval_register)
641 {
642 struct frame_info *frame;
643 int regnum;
644 struct type *type = check_typedef (value_type (val));
645 struct value *new_val = val, *mark = value_mark ();
646
647 /* Offsets are not supported here; lazy register values must
648 refer to the entire register. */
649 gdb_assert (value_offset (val) == 0);
650
651 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
652 {
653 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
654 regnum = VALUE_REGNUM (new_val);
655
656 gdb_assert (frame != NULL);
657
658 /* Convertible register routines are used for multi-register
659 values and for interpretation in different types
660 (e.g. float or int from a double register). Lazy
661 register values should have the register's natural type,
662 so they do not apply. */
663 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
664 regnum, type));
665
666 new_val = get_frame_register_value (frame, regnum);
667 }
668
669 /* If it's still lazy (for instance, a saved register on the
670 stack), fetch it. */
671 if (value_lazy (new_val))
672 value_fetch_lazy (new_val);
673
674 /* If the register was not saved, mark it unavailable. */
675 if (value_optimized_out (new_val))
676 set_value_optimized_out (val, 1);
677 else
678 memcpy (value_contents_raw (val), value_contents (new_val),
679 TYPE_LENGTH (type));
680
681 if (frame_debug)
682 {
683 struct gdbarch *gdbarch;
684 frame = frame_find_by_id (VALUE_FRAME_ID (val));
685 regnum = VALUE_REGNUM (val);
686 gdbarch = get_frame_arch (frame);
687
688 fprintf_unfiltered (gdb_stdlog, "\
689 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
690 frame_relative_level (frame), regnum,
691 user_reg_map_regnum_to_name (gdbarch, regnum));
692
693 fprintf_unfiltered (gdb_stdlog, "->");
694 if (value_optimized_out (new_val))
695 fprintf_unfiltered (gdb_stdlog, " optimized out");
696 else
697 {
698 int i;
699 const gdb_byte *buf = value_contents (new_val);
700
701 if (VALUE_LVAL (new_val) == lval_register)
702 fprintf_unfiltered (gdb_stdlog, " register=%d",
703 VALUE_REGNUM (new_val));
704 else if (VALUE_LVAL (new_val) == lval_memory)
705 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
706 paddr_nz (value_address (new_val)));
707 else
708 fprintf_unfiltered (gdb_stdlog, " computed");
709
710 fprintf_unfiltered (gdb_stdlog, " bytes=");
711 fprintf_unfiltered (gdb_stdlog, "[");
712 for (i = 0; i < register_size (gdbarch, regnum); i++)
713 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
714 fprintf_unfiltered (gdb_stdlog, "]");
715 }
716
717 fprintf_unfiltered (gdb_stdlog, " }\n");
718 }
719
720 /* Dispose of the intermediate values. This prevents
721 watchpoints from trying to watch the saved frame pointer. */
722 value_free_to_mark (mark);
723 }
724 else if (VALUE_LVAL (val) == lval_computed)
725 value_computed_funcs (val)->read (val);
726 else
727 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
728
729 set_value_lazy (val, 0);
730 return 0;
731 }
732
733
734 /* Store the contents of FROMVAL into the location of TOVAL.
735 Return a new value with the location of TOVAL and contents of FROMVAL. */
736
737 struct value *
738 value_assign (struct value *toval, struct value *fromval)
739 {
740 struct type *type;
741 struct value *val;
742 struct frame_id old_frame;
743
744 if (!deprecated_value_modifiable (toval))
745 error (_("Left operand of assignment is not a modifiable lvalue."));
746
747 toval = coerce_ref (toval);
748
749 type = value_type (toval);
750 if (VALUE_LVAL (toval) != lval_internalvar)
751 {
752 toval = value_coerce_to_target (toval);
753 fromval = value_cast (type, fromval);
754 }
755 else
756 {
757 /* Coerce arrays and functions to pointers, except for arrays
758 which only live in GDB's storage. */
759 if (!value_must_coerce_to_target (fromval))
760 fromval = coerce_array (fromval);
761 }
762
763 CHECK_TYPEDEF (type);
764
765 /* Since modifying a register can trash the frame chain, and
766 modifying memory can trash the frame cache, we save the old frame
767 and then restore the new frame afterwards. */
768 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
769
770 switch (VALUE_LVAL (toval))
771 {
772 case lval_internalvar:
773 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
774 val = value_copy (fromval);
775 val = value_change_enclosing_type (val,
776 value_enclosing_type (fromval));
777 set_value_embedded_offset (val, value_embedded_offset (fromval));
778 set_value_pointed_to_offset (val,
779 value_pointed_to_offset (fromval));
780 return val;
781
782 case lval_internalvar_component:
783 set_internalvar_component (VALUE_INTERNALVAR (toval),
784 value_offset (toval),
785 value_bitpos (toval),
786 value_bitsize (toval),
787 fromval);
788 break;
789
790 case lval_memory:
791 {
792 const gdb_byte *dest_buffer;
793 CORE_ADDR changed_addr;
794 int changed_len;
795 gdb_byte buffer[sizeof (LONGEST)];
796
797 if (value_bitsize (toval))
798 {
799 /* We assume that the argument to read_memory is in units
800 of host chars. FIXME: Is that correct? */
801 changed_len = (value_bitpos (toval)
802 + value_bitsize (toval)
803 + HOST_CHAR_BIT - 1)
804 / HOST_CHAR_BIT;
805
806 if (changed_len > (int) sizeof (LONGEST))
807 error (_("Can't handle bitfields which don't fit in a %d bit word."),
808 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
809
810 read_memory (value_address (toval), buffer, changed_len);
811 modify_field (buffer, value_as_long (fromval),
812 value_bitpos (toval), value_bitsize (toval));
813 changed_addr = value_address (toval);
814 dest_buffer = buffer;
815 }
816 else
817 {
818 changed_addr = value_address (toval);
819 changed_len = TYPE_LENGTH (type);
820 dest_buffer = value_contents (fromval);
821 }
822
823 write_memory (changed_addr, dest_buffer, changed_len);
824 if (deprecated_memory_changed_hook)
825 deprecated_memory_changed_hook (changed_addr, changed_len);
826 }
827 break;
828
829 case lval_register:
830 {
831 struct frame_info *frame;
832 struct gdbarch *gdbarch;
833 int value_reg;
834
835 /* Figure out which frame this is in currently. */
836 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
837 value_reg = VALUE_REGNUM (toval);
838
839 if (!frame)
840 error (_("Value being assigned to is no longer active."));
841
842 gdbarch = get_frame_arch (frame);
843 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
844 {
845 /* If TOVAL is a special machine register requiring
846 conversion of program values to a special raw
847 format. */
848 gdbarch_value_to_register (gdbarch, frame,
849 VALUE_REGNUM (toval), type,
850 value_contents (fromval));
851 }
852 else
853 {
854 if (value_bitsize (toval))
855 {
856 int changed_len;
857 gdb_byte buffer[sizeof (LONGEST)];
858
859 changed_len = (value_bitpos (toval)
860 + value_bitsize (toval)
861 + HOST_CHAR_BIT - 1)
862 / HOST_CHAR_BIT;
863
864 if (changed_len > (int) sizeof (LONGEST))
865 error (_("Can't handle bitfields which don't fit in a %d bit word."),
866 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
867
868 get_frame_register_bytes (frame, value_reg,
869 value_offset (toval),
870 changed_len, buffer);
871
872 modify_field (buffer, value_as_long (fromval),
873 value_bitpos (toval),
874 value_bitsize (toval));
875
876 put_frame_register_bytes (frame, value_reg,
877 value_offset (toval),
878 changed_len, buffer);
879 }
880 else
881 {
882 put_frame_register_bytes (frame, value_reg,
883 value_offset (toval),
884 TYPE_LENGTH (type),
885 value_contents (fromval));
886 }
887 }
888
889 if (deprecated_register_changed_hook)
890 deprecated_register_changed_hook (-1);
891 observer_notify_target_changed (&current_target);
892 break;
893 }
894
895 case lval_computed:
896 {
897 struct lval_funcs *funcs = value_computed_funcs (toval);
898
899 funcs->write (toval, fromval);
900 }
901 break;
902
903 default:
904 error (_("Left operand of assignment is not an lvalue."));
905 }
906
907 /* Assigning to the stack pointer, frame pointer, and other
908 (architecture and calling convention specific) registers may
909 cause the frame cache to be out of date. Assigning to memory
910 also can. We just do this on all assignments to registers or
911 memory, for simplicity's sake; I doubt the slowdown matters. */
912 switch (VALUE_LVAL (toval))
913 {
914 case lval_memory:
915 case lval_register:
916
917 reinit_frame_cache ();
918
919 /* Having destroyed the frame cache, restore the selected
920 frame. */
921
922 /* FIXME: cagney/2002-11-02: There has to be a better way of
923 doing this. Instead of constantly saving/restoring the
924 frame. Why not create a get_selected_frame() function that,
925 having saved the selected frame's ID can automatically
926 re-find the previously selected frame automatically. */
927
928 {
929 struct frame_info *fi = frame_find_by_id (old_frame);
930 if (fi != NULL)
931 select_frame (fi);
932 }
933
934 break;
935 default:
936 break;
937 }
938
939 /* If the field does not entirely fill a LONGEST, then zero the sign
940 bits. If the field is signed, and is negative, then sign
941 extend. */
942 if ((value_bitsize (toval) > 0)
943 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
944 {
945 LONGEST fieldval = value_as_long (fromval);
946 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
947
948 fieldval &= valmask;
949 if (!TYPE_UNSIGNED (type)
950 && (fieldval & (valmask ^ (valmask >> 1))))
951 fieldval |= ~valmask;
952
953 fromval = value_from_longest (type, fieldval);
954 }
955
956 val = value_copy (toval);
957 memcpy (value_contents_raw (val), value_contents (fromval),
958 TYPE_LENGTH (type));
959 deprecated_set_value_type (val, type);
960 val = value_change_enclosing_type (val,
961 value_enclosing_type (fromval));
962 set_value_embedded_offset (val, value_embedded_offset (fromval));
963 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
964
965 return val;
966 }
967
968 /* Extend a value VAL to COUNT repetitions of its type. */
969
970 struct value *
971 value_repeat (struct value *arg1, int count)
972 {
973 struct value *val;
974
975 if (VALUE_LVAL (arg1) != lval_memory)
976 error (_("Only values in memory can be extended with '@'."));
977 if (count < 1)
978 error (_("Invalid number %d of repetitions."), count);
979
980 val = allocate_repeat_value (value_enclosing_type (arg1), count);
981
982 read_memory (value_address (arg1),
983 value_contents_all_raw (val),
984 TYPE_LENGTH (value_enclosing_type (val)));
985 VALUE_LVAL (val) = lval_memory;
986 set_value_address (val, value_address (arg1));
987
988 return val;
989 }
990
991 struct value *
992 value_of_variable (struct symbol *var, struct block *b)
993 {
994 struct value *val;
995 struct frame_info *frame;
996
997 if (!symbol_read_needs_frame (var))
998 frame = NULL;
999 else if (!b)
1000 frame = get_selected_frame (_("No frame selected."));
1001 else
1002 {
1003 frame = block_innermost_frame (b);
1004 if (!frame)
1005 {
1006 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1007 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1008 error (_("No frame is currently executing in block %s."),
1009 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1010 else
1011 error (_("No frame is currently executing in specified block"));
1012 }
1013 }
1014
1015 val = read_var_value (var, frame);
1016 if (!val)
1017 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1018
1019 return val;
1020 }
1021
1022 struct value *
1023 address_of_variable (struct symbol *var, struct block *b)
1024 {
1025 struct type *type = SYMBOL_TYPE (var);
1026 struct value *val;
1027
1028 /* Evaluate it first; if the result is a memory address, we're fine.
1029 Lazy evaluation pays off here. */
1030
1031 val = value_of_variable (var, b);
1032
1033 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1034 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1035 {
1036 CORE_ADDR addr = value_address (val);
1037 return value_from_pointer (lookup_pointer_type (type), addr);
1038 }
1039
1040 /* Not a memory address; check what the problem was. */
1041 switch (VALUE_LVAL (val))
1042 {
1043 case lval_register:
1044 {
1045 struct frame_info *frame;
1046 const char *regname;
1047
1048 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1049 gdb_assert (frame);
1050
1051 regname = gdbarch_register_name (get_frame_arch (frame),
1052 VALUE_REGNUM (val));
1053 gdb_assert (regname && *regname);
1054
1055 error (_("Address requested for identifier "
1056 "\"%s\" which is in register $%s"),
1057 SYMBOL_PRINT_NAME (var), regname);
1058 break;
1059 }
1060
1061 default:
1062 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1063 SYMBOL_PRINT_NAME (var));
1064 break;
1065 }
1066
1067 return val;
1068 }
1069
1070 /* Return one if VAL does not live in target memory, but should in order
1071 to operate on it. Otherwise return zero. */
1072
1073 int
1074 value_must_coerce_to_target (struct value *val)
1075 {
1076 struct type *valtype;
1077
1078 /* The only lval kinds which do not live in target memory. */
1079 if (VALUE_LVAL (val) != not_lval
1080 && VALUE_LVAL (val) != lval_internalvar)
1081 return 0;
1082
1083 valtype = check_typedef (value_type (val));
1084
1085 switch (TYPE_CODE (valtype))
1086 {
1087 case TYPE_CODE_ARRAY:
1088 case TYPE_CODE_STRING:
1089 return 1;
1090 default:
1091 return 0;
1092 }
1093 }
1094
1095 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1096 strings are constructed as character arrays in GDB's storage, and this
1097 function copies them to the target. */
1098
1099 struct value *
1100 value_coerce_to_target (struct value *val)
1101 {
1102 LONGEST length;
1103 CORE_ADDR addr;
1104
1105 if (!value_must_coerce_to_target (val))
1106 return val;
1107
1108 length = TYPE_LENGTH (check_typedef (value_type (val)));
1109 addr = allocate_space_in_inferior (length);
1110 write_memory (addr, value_contents (val), length);
1111 return value_at_lazy (value_type (val), addr);
1112 }
1113
1114 /* Given a value which is an array, return a value which is a pointer
1115 to its first element, regardless of whether or not the array has a
1116 nonzero lower bound.
1117
1118 FIXME: A previous comment here indicated that this routine should
1119 be substracting the array's lower bound. It's not clear to me that
1120 this is correct. Given an array subscripting operation, it would
1121 certainly work to do the adjustment here, essentially computing:
1122
1123 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1124
1125 However I believe a more appropriate and logical place to account
1126 for the lower bound is to do so in value_subscript, essentially
1127 computing:
1128
1129 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1130
1131 As further evidence consider what would happen with operations
1132 other than array subscripting, where the caller would get back a
1133 value that had an address somewhere before the actual first element
1134 of the array, and the information about the lower bound would be
1135 lost because of the coercion to pointer type.
1136 */
1137
1138 struct value *
1139 value_coerce_array (struct value *arg1)
1140 {
1141 struct type *type = check_typedef (value_type (arg1));
1142
1143 /* If the user tries to do something requiring a pointer with an
1144 array that has not yet been pushed to the target, then this would
1145 be a good time to do so. */
1146 arg1 = value_coerce_to_target (arg1);
1147
1148 if (VALUE_LVAL (arg1) != lval_memory)
1149 error (_("Attempt to take address of value not located in memory."));
1150
1151 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1152 value_address (arg1));
1153 }
1154
1155 /* Given a value which is a function, return a value which is a pointer
1156 to it. */
1157
1158 struct value *
1159 value_coerce_function (struct value *arg1)
1160 {
1161 struct value *retval;
1162
1163 if (VALUE_LVAL (arg1) != lval_memory)
1164 error (_("Attempt to take address of value not located in memory."));
1165
1166 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1167 value_address (arg1));
1168 return retval;
1169 }
1170
1171 /* Return a pointer value for the object for which ARG1 is the
1172 contents. */
1173
1174 struct value *
1175 value_addr (struct value *arg1)
1176 {
1177 struct value *arg2;
1178
1179 struct type *type = check_typedef (value_type (arg1));
1180 if (TYPE_CODE (type) == TYPE_CODE_REF)
1181 {
1182 /* Copy the value, but change the type from (T&) to (T*). We
1183 keep the same location information, which is efficient, and
1184 allows &(&X) to get the location containing the reference. */
1185 arg2 = value_copy (arg1);
1186 deprecated_set_value_type (arg2,
1187 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1188 return arg2;
1189 }
1190 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1191 return value_coerce_function (arg1);
1192
1193 /* If this is an array that has not yet been pushed to the target,
1194 then this would be a good time to force it to memory. */
1195 arg1 = value_coerce_to_target (arg1);
1196
1197 if (VALUE_LVAL (arg1) != lval_memory)
1198 error (_("Attempt to take address of value not located in memory."));
1199
1200 /* Get target memory address */
1201 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1202 (value_address (arg1)
1203 + value_embedded_offset (arg1)));
1204
1205 /* This may be a pointer to a base subobject; so remember the
1206 full derived object's type ... */
1207 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1208 /* ... and also the relative position of the subobject in the full
1209 object. */
1210 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1211 return arg2;
1212 }
1213
1214 /* Return a reference value for the object for which ARG1 is the
1215 contents. */
1216
1217 struct value *
1218 value_ref (struct value *arg1)
1219 {
1220 struct value *arg2;
1221
1222 struct type *type = check_typedef (value_type (arg1));
1223 if (TYPE_CODE (type) == TYPE_CODE_REF)
1224 return arg1;
1225
1226 arg2 = value_addr (arg1);
1227 deprecated_set_value_type (arg2, lookup_reference_type (type));
1228 return arg2;
1229 }
1230
1231 /* Given a value of a pointer type, apply the C unary * operator to
1232 it. */
1233
1234 struct value *
1235 value_ind (struct value *arg1)
1236 {
1237 struct type *base_type;
1238 struct value *arg2;
1239
1240 arg1 = coerce_array (arg1);
1241
1242 base_type = check_typedef (value_type (arg1));
1243
1244 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1245 {
1246 struct type *enc_type;
1247 /* We may be pointing to something embedded in a larger object.
1248 Get the real type of the enclosing object. */
1249 enc_type = check_typedef (value_enclosing_type (arg1));
1250 enc_type = TYPE_TARGET_TYPE (enc_type);
1251
1252 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1253 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1254 /* For functions, go through find_function_addr, which knows
1255 how to handle function descriptors. */
1256 arg2 = value_at_lazy (enc_type,
1257 find_function_addr (arg1, NULL));
1258 else
1259 /* Retrieve the enclosing object pointed to */
1260 arg2 = value_at_lazy (enc_type,
1261 (value_as_address (arg1)
1262 - value_pointed_to_offset (arg1)));
1263
1264 /* Re-adjust type. */
1265 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1266 /* Add embedding info. */
1267 arg2 = value_change_enclosing_type (arg2, enc_type);
1268 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1269
1270 /* We may be pointing to an object of some derived type. */
1271 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1272 return arg2;
1273 }
1274
1275 error (_("Attempt to take contents of a non-pointer value."));
1276 return 0; /* For lint -- never reached. */
1277 }
1278 \f
1279 /* Create a value for an array by allocating space in GDB, copying
1280 copying the data into that space, and then setting up an array
1281 value.
1282
1283 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1284 is populated from the values passed in ELEMVEC.
1285
1286 The element type of the array is inherited from the type of the
1287 first element, and all elements must have the same size (though we
1288 don't currently enforce any restriction on their types). */
1289
1290 struct value *
1291 value_array (int lowbound, int highbound, struct value **elemvec)
1292 {
1293 int nelem;
1294 int idx;
1295 unsigned int typelength;
1296 struct value *val;
1297 struct type *arraytype;
1298 CORE_ADDR addr;
1299
1300 /* Validate that the bounds are reasonable and that each of the
1301 elements have the same size. */
1302
1303 nelem = highbound - lowbound + 1;
1304 if (nelem <= 0)
1305 {
1306 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1307 }
1308 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1309 for (idx = 1; idx < nelem; idx++)
1310 {
1311 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1312 {
1313 error (_("array elements must all be the same size"));
1314 }
1315 }
1316
1317 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1318 lowbound, highbound);
1319
1320 if (!current_language->c_style_arrays)
1321 {
1322 val = allocate_value (arraytype);
1323 for (idx = 0; idx < nelem; idx++)
1324 {
1325 memcpy (value_contents_all_raw (val) + (idx * typelength),
1326 value_contents_all (elemvec[idx]),
1327 typelength);
1328 }
1329 return val;
1330 }
1331
1332 /* Allocate space to store the array, and then initialize it by
1333 copying in each element. */
1334
1335 val = allocate_value (arraytype);
1336 for (idx = 0; idx < nelem; idx++)
1337 memcpy (value_contents_writeable (val) + (idx * typelength),
1338 value_contents_all (elemvec[idx]),
1339 typelength);
1340 return val;
1341 }
1342
1343 struct value *
1344 value_cstring (char *ptr, int len, struct type *char_type)
1345 {
1346 struct value *val;
1347 int lowbound = current_language->string_lower_bound;
1348 int highbound = len / TYPE_LENGTH (char_type);
1349 struct type *stringtype
1350 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1351
1352 val = allocate_value (stringtype);
1353 memcpy (value_contents_raw (val), ptr, len);
1354 return val;
1355 }
1356
1357 /* Create a value for a string constant by allocating space in the
1358 inferior, copying the data into that space, and returning the
1359 address with type TYPE_CODE_STRING. PTR points to the string
1360 constant data; LEN is number of characters.
1361
1362 Note that string types are like array of char types with a lower
1363 bound of zero and an upper bound of LEN - 1. Also note that the
1364 string may contain embedded null bytes. */
1365
1366 struct value *
1367 value_string (char *ptr, int len, struct type *char_type)
1368 {
1369 struct value *val;
1370 int lowbound = current_language->string_lower_bound;
1371 int highbound = len / TYPE_LENGTH (char_type);
1372 struct type *stringtype
1373 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1374
1375 val = allocate_value (stringtype);
1376 memcpy (value_contents_raw (val), ptr, len);
1377 return val;
1378 }
1379
1380 struct value *
1381 value_bitstring (char *ptr, int len)
1382 {
1383 struct value *val;
1384 struct type *domain_type = create_range_type (NULL,
1385 builtin_type_int32,
1386 0, len - 1);
1387 struct type *type = create_set_type ((struct type *) NULL,
1388 domain_type);
1389 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1390 val = allocate_value (type);
1391 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1392 return val;
1393 }
1394 \f
1395 /* See if we can pass arguments in T2 to a function which takes
1396 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1397 a NULL-terminated vector. If some arguments need coercion of some
1398 sort, then the coerced values are written into T2. Return value is
1399 0 if the arguments could be matched, or the position at which they
1400 differ if not.
1401
1402 STATICP is nonzero if the T1 argument list came from a static
1403 member function. T2 will still include the ``this'' pointer, but
1404 it will be skipped.
1405
1406 For non-static member functions, we ignore the first argument,
1407 which is the type of the instance variable. This is because we
1408 want to handle calls with objects from derived classes. This is
1409 not entirely correct: we should actually check to make sure that a
1410 requested operation is type secure, shouldn't we? FIXME. */
1411
1412 static int
1413 typecmp (int staticp, int varargs, int nargs,
1414 struct field t1[], struct value *t2[])
1415 {
1416 int i;
1417
1418 if (t2 == 0)
1419 internal_error (__FILE__, __LINE__,
1420 _("typecmp: no argument list"));
1421
1422 /* Skip ``this'' argument if applicable. T2 will always include
1423 THIS. */
1424 if (staticp)
1425 t2 ++;
1426
1427 for (i = 0;
1428 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1429 i++)
1430 {
1431 struct type *tt1, *tt2;
1432
1433 if (!t2[i])
1434 return i + 1;
1435
1436 tt1 = check_typedef (t1[i].type);
1437 tt2 = check_typedef (value_type (t2[i]));
1438
1439 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1440 /* We should be doing hairy argument matching, as below. */
1441 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1442 {
1443 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1444 t2[i] = value_coerce_array (t2[i]);
1445 else
1446 t2[i] = value_ref (t2[i]);
1447 continue;
1448 }
1449
1450 /* djb - 20000715 - Until the new type structure is in the
1451 place, and we can attempt things like implicit conversions,
1452 we need to do this so you can take something like a map<const
1453 char *>, and properly access map["hello"], because the
1454 argument to [] will be a reference to a pointer to a char,
1455 and the argument will be a pointer to a char. */
1456 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1457 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1458 {
1459 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1460 }
1461 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1462 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1463 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1464 {
1465 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1466 }
1467 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1468 continue;
1469 /* Array to pointer is a `trivial conversion' according to the
1470 ARM. */
1471
1472 /* We should be doing much hairier argument matching (see
1473 section 13.2 of the ARM), but as a quick kludge, just check
1474 for the same type code. */
1475 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1476 return i + 1;
1477 }
1478 if (varargs || t2[i] == NULL)
1479 return 0;
1480 return i + 1;
1481 }
1482
1483 /* Helper function used by value_struct_elt to recurse through
1484 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1485 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1486 TYPE. If found, return value, else return NULL.
1487
1488 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1489 fields, look for a baseclass named NAME. */
1490
1491 static struct value *
1492 search_struct_field (char *name, struct value *arg1, int offset,
1493 struct type *type, int looking_for_baseclass)
1494 {
1495 int i;
1496 int nbases = TYPE_N_BASECLASSES (type);
1497
1498 CHECK_TYPEDEF (type);
1499
1500 if (!looking_for_baseclass)
1501 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1502 {
1503 char *t_field_name = TYPE_FIELD_NAME (type, i);
1504
1505 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1506 {
1507 struct value *v;
1508 if (field_is_static (&TYPE_FIELD (type, i)))
1509 {
1510 v = value_static_field (type, i);
1511 if (v == 0)
1512 error (_("field %s is nonexistent or has been optimised out"),
1513 name);
1514 }
1515 else
1516 {
1517 v = value_primitive_field (arg1, offset, i, type);
1518 if (v == 0)
1519 error (_("there is no field named %s"), name);
1520 }
1521 return v;
1522 }
1523
1524 if (t_field_name
1525 && (t_field_name[0] == '\0'
1526 || (TYPE_CODE (type) == TYPE_CODE_UNION
1527 && (strcmp_iw (t_field_name, "else") == 0))))
1528 {
1529 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1530 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1531 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1532 {
1533 /* Look for a match through the fields of an anonymous
1534 union, or anonymous struct. C++ provides anonymous
1535 unions.
1536
1537 In the GNU Chill (now deleted from GDB)
1538 implementation of variant record types, each
1539 <alternative field> has an (anonymous) union type,
1540 each member of the union represents a <variant
1541 alternative>. Each <variant alternative> is
1542 represented as a struct, with a member for each
1543 <variant field>. */
1544
1545 struct value *v;
1546 int new_offset = offset;
1547
1548 /* This is pretty gross. In G++, the offset in an
1549 anonymous union is relative to the beginning of the
1550 enclosing struct. In the GNU Chill (now deleted
1551 from GDB) implementation of variant records, the
1552 bitpos is zero in an anonymous union field, so we
1553 have to add the offset of the union here. */
1554 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1555 || (TYPE_NFIELDS (field_type) > 0
1556 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1557 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1558
1559 v = search_struct_field (name, arg1, new_offset,
1560 field_type,
1561 looking_for_baseclass);
1562 if (v)
1563 return v;
1564 }
1565 }
1566 }
1567
1568 for (i = 0; i < nbases; i++)
1569 {
1570 struct value *v;
1571 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1572 /* If we are looking for baseclasses, this is what we get when
1573 we hit them. But it could happen that the base part's member
1574 name is not yet filled in. */
1575 int found_baseclass = (looking_for_baseclass
1576 && TYPE_BASECLASS_NAME (type, i) != NULL
1577 && (strcmp_iw (name,
1578 TYPE_BASECLASS_NAME (type,
1579 i)) == 0));
1580
1581 if (BASETYPE_VIA_VIRTUAL (type, i))
1582 {
1583 int boffset;
1584 struct value *v2;
1585
1586 boffset = baseclass_offset (type, i,
1587 value_contents (arg1) + offset,
1588 value_address (arg1) + offset);
1589 if (boffset == -1)
1590 error (_("virtual baseclass botch"));
1591
1592 /* The virtual base class pointer might have been clobbered
1593 by the user program. Make sure that it still points to a
1594 valid memory location. */
1595
1596 boffset += offset;
1597 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1598 {
1599 CORE_ADDR base_addr;
1600
1601 v2 = allocate_value (basetype);
1602 base_addr = value_address (arg1) + boffset;
1603 if (target_read_memory (base_addr,
1604 value_contents_raw (v2),
1605 TYPE_LENGTH (basetype)) != 0)
1606 error (_("virtual baseclass botch"));
1607 VALUE_LVAL (v2) = lval_memory;
1608 set_value_address (v2, base_addr);
1609 }
1610 else
1611 {
1612 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1613 v2 = allocate_value_lazy (basetype);
1614 else
1615 {
1616 v2 = allocate_value (basetype);
1617 memcpy (value_contents_raw (v2),
1618 value_contents_raw (arg1) + boffset,
1619 TYPE_LENGTH (basetype));
1620 }
1621 set_value_component_location (v2, arg1);
1622 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1623 set_value_offset (v2, value_offset (arg1) + boffset);
1624 }
1625
1626 if (found_baseclass)
1627 return v2;
1628 v = search_struct_field (name, v2, 0,
1629 TYPE_BASECLASS (type, i),
1630 looking_for_baseclass);
1631 }
1632 else if (found_baseclass)
1633 v = value_primitive_field (arg1, offset, i, type);
1634 else
1635 v = search_struct_field (name, arg1,
1636 offset + TYPE_BASECLASS_BITPOS (type,
1637 i) / 8,
1638 basetype, looking_for_baseclass);
1639 if (v)
1640 return v;
1641 }
1642 return NULL;
1643 }
1644
1645 /* Helper function used by value_struct_elt to recurse through
1646 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1647 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1648 TYPE.
1649
1650 If found, return value, else if name matched and args not return
1651 (value) -1, else return NULL. */
1652
1653 static struct value *
1654 search_struct_method (char *name, struct value **arg1p,
1655 struct value **args, int offset,
1656 int *static_memfuncp, struct type *type)
1657 {
1658 int i;
1659 struct value *v;
1660 int name_matched = 0;
1661 char dem_opname[64];
1662
1663 CHECK_TYPEDEF (type);
1664 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1665 {
1666 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1667 /* FIXME! May need to check for ARM demangling here */
1668 if (strncmp (t_field_name, "__", 2) == 0 ||
1669 strncmp (t_field_name, "op", 2) == 0 ||
1670 strncmp (t_field_name, "type", 4) == 0)
1671 {
1672 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1673 t_field_name = dem_opname;
1674 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1675 t_field_name = dem_opname;
1676 }
1677 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1678 {
1679 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1680 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1681 name_matched = 1;
1682
1683 check_stub_method_group (type, i);
1684 if (j > 0 && args == 0)
1685 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1686 else if (j == 0 && args == 0)
1687 {
1688 v = value_fn_field (arg1p, f, j, type, offset);
1689 if (v != NULL)
1690 return v;
1691 }
1692 else
1693 while (j >= 0)
1694 {
1695 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1696 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1697 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1698 TYPE_FN_FIELD_ARGS (f, j), args))
1699 {
1700 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1701 return value_virtual_fn_field (arg1p, f, j,
1702 type, offset);
1703 if (TYPE_FN_FIELD_STATIC_P (f, j)
1704 && static_memfuncp)
1705 *static_memfuncp = 1;
1706 v = value_fn_field (arg1p, f, j, type, offset);
1707 if (v != NULL)
1708 return v;
1709 }
1710 j--;
1711 }
1712 }
1713 }
1714
1715 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1716 {
1717 int base_offset;
1718
1719 if (BASETYPE_VIA_VIRTUAL (type, i))
1720 {
1721 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1722 const gdb_byte *base_valaddr;
1723
1724 /* The virtual base class pointer might have been
1725 clobbered by the user program. Make sure that it
1726 still points to a valid memory location. */
1727
1728 if (offset < 0 || offset >= TYPE_LENGTH (type))
1729 {
1730 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1731 if (target_read_memory (value_address (*arg1p) + offset,
1732 tmp, TYPE_LENGTH (baseclass)) != 0)
1733 error (_("virtual baseclass botch"));
1734 base_valaddr = tmp;
1735 }
1736 else
1737 base_valaddr = value_contents (*arg1p) + offset;
1738
1739 base_offset = baseclass_offset (type, i, base_valaddr,
1740 value_address (*arg1p) + offset);
1741 if (base_offset == -1)
1742 error (_("virtual baseclass botch"));
1743 }
1744 else
1745 {
1746 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1747 }
1748 v = search_struct_method (name, arg1p, args, base_offset + offset,
1749 static_memfuncp, TYPE_BASECLASS (type, i));
1750 if (v == (struct value *) - 1)
1751 {
1752 name_matched = 1;
1753 }
1754 else if (v)
1755 {
1756 /* FIXME-bothner: Why is this commented out? Why is it here? */
1757 /* *arg1p = arg1_tmp; */
1758 return v;
1759 }
1760 }
1761 if (name_matched)
1762 return (struct value *) - 1;
1763 else
1764 return NULL;
1765 }
1766
1767 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1768 extract the component named NAME from the ultimate target
1769 structure/union and return it as a value with its appropriate type.
1770 ERR is used in the error message if *ARGP's type is wrong.
1771
1772 C++: ARGS is a list of argument types to aid in the selection of
1773 an appropriate method. Also, handle derived types.
1774
1775 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1776 where the truthvalue of whether the function that was resolved was
1777 a static member function or not is stored.
1778
1779 ERR is an error message to be printed in case the field is not
1780 found. */
1781
1782 struct value *
1783 value_struct_elt (struct value **argp, struct value **args,
1784 char *name, int *static_memfuncp, char *err)
1785 {
1786 struct type *t;
1787 struct value *v;
1788
1789 *argp = coerce_array (*argp);
1790
1791 t = check_typedef (value_type (*argp));
1792
1793 /* Follow pointers until we get to a non-pointer. */
1794
1795 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1796 {
1797 *argp = value_ind (*argp);
1798 /* Don't coerce fn pointer to fn and then back again! */
1799 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1800 *argp = coerce_array (*argp);
1801 t = check_typedef (value_type (*argp));
1802 }
1803
1804 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1805 && TYPE_CODE (t) != TYPE_CODE_UNION)
1806 error (_("Attempt to extract a component of a value that is not a %s."), err);
1807
1808 /* Assume it's not, unless we see that it is. */
1809 if (static_memfuncp)
1810 *static_memfuncp = 0;
1811
1812 if (!args)
1813 {
1814 /* if there are no arguments ...do this... */
1815
1816 /* Try as a field first, because if we succeed, there is less
1817 work to be done. */
1818 v = search_struct_field (name, *argp, 0, t, 0);
1819 if (v)
1820 return v;
1821
1822 /* C++: If it was not found as a data field, then try to
1823 return it as a pointer to a method. */
1824 v = search_struct_method (name, argp, args, 0,
1825 static_memfuncp, t);
1826
1827 if (v == (struct value *) - 1)
1828 error (_("Cannot take address of method %s."), name);
1829 else if (v == 0)
1830 {
1831 if (TYPE_NFN_FIELDS (t))
1832 error (_("There is no member or method named %s."), name);
1833 else
1834 error (_("There is no member named %s."), name);
1835 }
1836 return v;
1837 }
1838
1839 v = search_struct_method (name, argp, args, 0,
1840 static_memfuncp, t);
1841
1842 if (v == (struct value *) - 1)
1843 {
1844 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1845 }
1846 else if (v == 0)
1847 {
1848 /* See if user tried to invoke data as function. If so, hand it
1849 back. If it's not callable (i.e., a pointer to function),
1850 gdb should give an error. */
1851 v = search_struct_field (name, *argp, 0, t, 0);
1852 /* If we found an ordinary field, then it is not a method call.
1853 So, treat it as if it were a static member function. */
1854 if (v && static_memfuncp)
1855 *static_memfuncp = 1;
1856 }
1857
1858 if (!v)
1859 error (_("Structure has no component named %s."), name);
1860 return v;
1861 }
1862
1863 /* Search through the methods of an object (and its bases) to find a
1864 specified method. Return the pointer to the fn_field list of
1865 overloaded instances.
1866
1867 Helper function for value_find_oload_list.
1868 ARGP is a pointer to a pointer to a value (the object).
1869 METHOD is a string containing the method name.
1870 OFFSET is the offset within the value.
1871 TYPE is the assumed type of the object.
1872 NUM_FNS is the number of overloaded instances.
1873 BASETYPE is set to the actual type of the subobject where the
1874 method is found.
1875 BOFFSET is the offset of the base subobject where the method is found.
1876 */
1877
1878 static struct fn_field *
1879 find_method_list (struct value **argp, char *method,
1880 int offset, struct type *type, int *num_fns,
1881 struct type **basetype, int *boffset)
1882 {
1883 int i;
1884 struct fn_field *f;
1885 CHECK_TYPEDEF (type);
1886
1887 *num_fns = 0;
1888
1889 /* First check in object itself. */
1890 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1891 {
1892 /* pai: FIXME What about operators and type conversions? */
1893 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1894 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1895 {
1896 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1897 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1898
1899 *num_fns = len;
1900 *basetype = type;
1901 *boffset = offset;
1902
1903 /* Resolve any stub methods. */
1904 check_stub_method_group (type, i);
1905
1906 return f;
1907 }
1908 }
1909
1910 /* Not found in object, check in base subobjects. */
1911 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1912 {
1913 int base_offset;
1914 if (BASETYPE_VIA_VIRTUAL (type, i))
1915 {
1916 base_offset = value_offset (*argp) + offset;
1917 base_offset = baseclass_offset (type, i,
1918 value_contents (*argp) + base_offset,
1919 value_address (*argp) + base_offset);
1920 if (base_offset == -1)
1921 error (_("virtual baseclass botch"));
1922 }
1923 else /* Non-virtual base, simply use bit position from debug
1924 info. */
1925 {
1926 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1927 }
1928 f = find_method_list (argp, method, base_offset + offset,
1929 TYPE_BASECLASS (type, i), num_fns,
1930 basetype, boffset);
1931 if (f)
1932 return f;
1933 }
1934 return NULL;
1935 }
1936
1937 /* Return the list of overloaded methods of a specified name.
1938
1939 ARGP is a pointer to a pointer to a value (the object).
1940 METHOD is the method name.
1941 OFFSET is the offset within the value contents.
1942 NUM_FNS is the number of overloaded instances.
1943 BASETYPE is set to the type of the base subobject that defines the
1944 method.
1945 BOFFSET is the offset of the base subobject which defines the method.
1946 */
1947
1948 struct fn_field *
1949 value_find_oload_method_list (struct value **argp, char *method,
1950 int offset, int *num_fns,
1951 struct type **basetype, int *boffset)
1952 {
1953 struct type *t;
1954
1955 t = check_typedef (value_type (*argp));
1956
1957 /* Code snarfed from value_struct_elt. */
1958 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1959 {
1960 *argp = value_ind (*argp);
1961 /* Don't coerce fn pointer to fn and then back again! */
1962 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1963 *argp = coerce_array (*argp);
1964 t = check_typedef (value_type (*argp));
1965 }
1966
1967 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1968 && TYPE_CODE (t) != TYPE_CODE_UNION)
1969 error (_("Attempt to extract a component of a value that is not a struct or union"));
1970
1971 return find_method_list (argp, method, 0, t, num_fns,
1972 basetype, boffset);
1973 }
1974
1975 /* Given an array of argument types (ARGTYPES) (which includes an
1976 entry for "this" in the case of C++ methods), the number of
1977 arguments NARGS, the NAME of a function whether it's a method or
1978 not (METHOD), and the degree of laxness (LAX) in conforming to
1979 overload resolution rules in ANSI C++, find the best function that
1980 matches on the argument types according to the overload resolution
1981 rules.
1982
1983 In the case of class methods, the parameter OBJ is an object value
1984 in which to search for overloaded methods.
1985
1986 In the case of non-method functions, the parameter FSYM is a symbol
1987 corresponding to one of the overloaded functions.
1988
1989 Return value is an integer: 0 -> good match, 10 -> debugger applied
1990 non-standard coercions, 100 -> incompatible.
1991
1992 If a method is being searched for, VALP will hold the value.
1993 If a non-method is being searched for, SYMP will hold the symbol
1994 for it.
1995
1996 If a method is being searched for, and it is a static method,
1997 then STATICP will point to a non-zero value.
1998
1999 Note: This function does *not* check the value of
2000 overload_resolution. Caller must check it to see whether overload
2001 resolution is permitted.
2002 */
2003
2004 int
2005 find_overload_match (struct type **arg_types, int nargs,
2006 char *name, int method, int lax,
2007 struct value **objp, struct symbol *fsym,
2008 struct value **valp, struct symbol **symp,
2009 int *staticp)
2010 {
2011 struct value *obj = (objp ? *objp : NULL);
2012 /* Index of best overloaded function. */
2013 int oload_champ;
2014 /* The measure for the current best match. */
2015 struct badness_vector *oload_champ_bv = NULL;
2016 struct value *temp = obj;
2017 /* For methods, the list of overloaded methods. */
2018 struct fn_field *fns_ptr = NULL;
2019 /* For non-methods, the list of overloaded function symbols. */
2020 struct symbol **oload_syms = NULL;
2021 /* Number of overloaded instances being considered. */
2022 int num_fns = 0;
2023 struct type *basetype = NULL;
2024 int boffset;
2025 int ix;
2026 int static_offset;
2027 struct cleanup *old_cleanups = NULL;
2028
2029 const char *obj_type_name = NULL;
2030 char *func_name = NULL;
2031 enum oload_classification match_quality;
2032
2033 /* Get the list of overloaded methods or functions. */
2034 if (method)
2035 {
2036 gdb_assert (obj);
2037 obj_type_name = TYPE_NAME (value_type (obj));
2038 /* Hack: evaluate_subexp_standard often passes in a pointer
2039 value rather than the object itself, so try again. */
2040 if ((!obj_type_name || !*obj_type_name)
2041 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2042 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2043
2044 fns_ptr = value_find_oload_method_list (&temp, name,
2045 0, &num_fns,
2046 &basetype, &boffset);
2047 if (!fns_ptr || !num_fns)
2048 error (_("Couldn't find method %s%s%s"),
2049 obj_type_name,
2050 (obj_type_name && *obj_type_name) ? "::" : "",
2051 name);
2052 /* If we are dealing with stub method types, they should have
2053 been resolved by find_method_list via
2054 value_find_oload_method_list above. */
2055 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2056 oload_champ = find_oload_champ (arg_types, nargs, method,
2057 num_fns, fns_ptr,
2058 oload_syms, &oload_champ_bv);
2059 }
2060 else
2061 {
2062 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2063
2064 /* If we have a C++ name, try to extract just the function
2065 part. */
2066 if (qualified_name)
2067 func_name = cp_func_name (qualified_name);
2068
2069 /* If there was no C++ name, this must be a C-style function.
2070 Just return the same symbol. Do the same if cp_func_name
2071 fails for some reason. */
2072 if (func_name == NULL)
2073 {
2074 *symp = fsym;
2075 return 0;
2076 }
2077
2078 old_cleanups = make_cleanup (xfree, func_name);
2079 make_cleanup (xfree, oload_syms);
2080 make_cleanup (xfree, oload_champ_bv);
2081
2082 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2083 func_name,
2084 qualified_name,
2085 &oload_syms,
2086 &oload_champ_bv);
2087 }
2088
2089 /* Check how bad the best match is. */
2090
2091 match_quality =
2092 classify_oload_match (oload_champ_bv, nargs,
2093 oload_method_static (method, fns_ptr,
2094 oload_champ));
2095
2096 if (match_quality == INCOMPATIBLE)
2097 {
2098 if (method)
2099 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2100 obj_type_name,
2101 (obj_type_name && *obj_type_name) ? "::" : "",
2102 name);
2103 else
2104 error (_("Cannot resolve function %s to any overloaded instance"),
2105 func_name);
2106 }
2107 else if (match_quality == NON_STANDARD)
2108 {
2109 if (method)
2110 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2111 obj_type_name,
2112 (obj_type_name && *obj_type_name) ? "::" : "",
2113 name);
2114 else
2115 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2116 func_name);
2117 }
2118
2119 if (method)
2120 {
2121 if (staticp != NULL)
2122 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2123 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2124 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2125 basetype, boffset);
2126 else
2127 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2128 basetype, boffset);
2129 }
2130 else
2131 {
2132 *symp = oload_syms[oload_champ];
2133 }
2134
2135 if (objp)
2136 {
2137 struct type *temp_type = check_typedef (value_type (temp));
2138 struct type *obj_type = check_typedef (value_type (*objp));
2139 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2140 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2141 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2142 {
2143 temp = value_addr (temp);
2144 }
2145 *objp = temp;
2146 }
2147 if (old_cleanups != NULL)
2148 do_cleanups (old_cleanups);
2149
2150 switch (match_quality)
2151 {
2152 case INCOMPATIBLE:
2153 return 100;
2154 case NON_STANDARD:
2155 return 10;
2156 default: /* STANDARD */
2157 return 0;
2158 }
2159 }
2160
2161 /* Find the best overload match, searching for FUNC_NAME in namespaces
2162 contained in QUALIFIED_NAME until it either finds a good match or
2163 runs out of namespaces. It stores the overloaded functions in
2164 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2165 calling function is responsible for freeing *OLOAD_SYMS and
2166 *OLOAD_CHAMP_BV. */
2167
2168 static int
2169 find_oload_champ_namespace (struct type **arg_types, int nargs,
2170 const char *func_name,
2171 const char *qualified_name,
2172 struct symbol ***oload_syms,
2173 struct badness_vector **oload_champ_bv)
2174 {
2175 int oload_champ;
2176
2177 find_oload_champ_namespace_loop (arg_types, nargs,
2178 func_name,
2179 qualified_name, 0,
2180 oload_syms, oload_champ_bv,
2181 &oload_champ);
2182
2183 return oload_champ;
2184 }
2185
2186 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2187 how deep we've looked for namespaces, and the champ is stored in
2188 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2189 if it isn't.
2190
2191 It is the caller's responsibility to free *OLOAD_SYMS and
2192 *OLOAD_CHAMP_BV. */
2193
2194 static int
2195 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2196 const char *func_name,
2197 const char *qualified_name,
2198 int namespace_len,
2199 struct symbol ***oload_syms,
2200 struct badness_vector **oload_champ_bv,
2201 int *oload_champ)
2202 {
2203 int next_namespace_len = namespace_len;
2204 int searched_deeper = 0;
2205 int num_fns = 0;
2206 struct cleanup *old_cleanups;
2207 int new_oload_champ;
2208 struct symbol **new_oload_syms;
2209 struct badness_vector *new_oload_champ_bv;
2210 char *new_namespace;
2211
2212 if (next_namespace_len != 0)
2213 {
2214 gdb_assert (qualified_name[next_namespace_len] == ':');
2215 next_namespace_len += 2;
2216 }
2217 next_namespace_len +=
2218 cp_find_first_component (qualified_name + next_namespace_len);
2219
2220 /* Initialize these to values that can safely be xfree'd. */
2221 *oload_syms = NULL;
2222 *oload_champ_bv = NULL;
2223
2224 /* First, see if we have a deeper namespace we can search in.
2225 If we get a good match there, use it. */
2226
2227 if (qualified_name[next_namespace_len] == ':')
2228 {
2229 searched_deeper = 1;
2230
2231 if (find_oload_champ_namespace_loop (arg_types, nargs,
2232 func_name, qualified_name,
2233 next_namespace_len,
2234 oload_syms, oload_champ_bv,
2235 oload_champ))
2236 {
2237 return 1;
2238 }
2239 };
2240
2241 /* If we reach here, either we're in the deepest namespace or we
2242 didn't find a good match in a deeper namespace. But, in the
2243 latter case, we still have a bad match in a deeper namespace;
2244 note that we might not find any match at all in the current
2245 namespace. (There's always a match in the deepest namespace,
2246 because this overload mechanism only gets called if there's a
2247 function symbol to start off with.) */
2248
2249 old_cleanups = make_cleanup (xfree, *oload_syms);
2250 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2251 new_namespace = alloca (namespace_len + 1);
2252 strncpy (new_namespace, qualified_name, namespace_len);
2253 new_namespace[namespace_len] = '\0';
2254 new_oload_syms = make_symbol_overload_list (func_name,
2255 new_namespace);
2256 while (new_oload_syms[num_fns])
2257 ++num_fns;
2258
2259 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2260 NULL, new_oload_syms,
2261 &new_oload_champ_bv);
2262
2263 /* Case 1: We found a good match. Free earlier matches (if any),
2264 and return it. Case 2: We didn't find a good match, but we're
2265 not the deepest function. Then go with the bad match that the
2266 deeper function found. Case 3: We found a bad match, and we're
2267 the deepest function. Then return what we found, even though
2268 it's a bad match. */
2269
2270 if (new_oload_champ != -1
2271 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2272 {
2273 *oload_syms = new_oload_syms;
2274 *oload_champ = new_oload_champ;
2275 *oload_champ_bv = new_oload_champ_bv;
2276 do_cleanups (old_cleanups);
2277 return 1;
2278 }
2279 else if (searched_deeper)
2280 {
2281 xfree (new_oload_syms);
2282 xfree (new_oload_champ_bv);
2283 discard_cleanups (old_cleanups);
2284 return 0;
2285 }
2286 else
2287 {
2288 gdb_assert (new_oload_champ != -1);
2289 *oload_syms = new_oload_syms;
2290 *oload_champ = new_oload_champ;
2291 *oload_champ_bv = new_oload_champ_bv;
2292 discard_cleanups (old_cleanups);
2293 return 0;
2294 }
2295 }
2296
2297 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2298 the best match from among the overloaded methods or functions
2299 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2300 The number of methods/functions in the list is given by NUM_FNS.
2301 Return the index of the best match; store an indication of the
2302 quality of the match in OLOAD_CHAMP_BV.
2303
2304 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2305
2306 static int
2307 find_oload_champ (struct type **arg_types, int nargs, int method,
2308 int num_fns, struct fn_field *fns_ptr,
2309 struct symbol **oload_syms,
2310 struct badness_vector **oload_champ_bv)
2311 {
2312 int ix;
2313 /* A measure of how good an overloaded instance is. */
2314 struct badness_vector *bv;
2315 /* Index of best overloaded function. */
2316 int oload_champ = -1;
2317 /* Current ambiguity state for overload resolution. */
2318 int oload_ambiguous = 0;
2319 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2320
2321 *oload_champ_bv = NULL;
2322
2323 /* Consider each candidate in turn. */
2324 for (ix = 0; ix < num_fns; ix++)
2325 {
2326 int jj;
2327 int static_offset = oload_method_static (method, fns_ptr, ix);
2328 int nparms;
2329 struct type **parm_types;
2330
2331 if (method)
2332 {
2333 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2334 }
2335 else
2336 {
2337 /* If it's not a method, this is the proper place. */
2338 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2339 }
2340
2341 /* Prepare array of parameter types. */
2342 parm_types = (struct type **)
2343 xmalloc (nparms * (sizeof (struct type *)));
2344 for (jj = 0; jj < nparms; jj++)
2345 parm_types[jj] = (method
2346 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2347 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2348 jj));
2349
2350 /* Compare parameter types to supplied argument types. Skip
2351 THIS for static methods. */
2352 bv = rank_function (parm_types, nparms,
2353 arg_types + static_offset,
2354 nargs - static_offset);
2355
2356 if (!*oload_champ_bv)
2357 {
2358 *oload_champ_bv = bv;
2359 oload_champ = 0;
2360 }
2361 else /* See whether current candidate is better or worse than
2362 previous best. */
2363 switch (compare_badness (bv, *oload_champ_bv))
2364 {
2365 case 0: /* Top two contenders are equally good. */
2366 oload_ambiguous = 1;
2367 break;
2368 case 1: /* Incomparable top contenders. */
2369 oload_ambiguous = 2;
2370 break;
2371 case 2: /* New champion, record details. */
2372 *oload_champ_bv = bv;
2373 oload_ambiguous = 0;
2374 oload_champ = ix;
2375 break;
2376 case 3:
2377 default:
2378 break;
2379 }
2380 xfree (parm_types);
2381 if (overload_debug)
2382 {
2383 if (method)
2384 fprintf_filtered (gdb_stderr,
2385 "Overloaded method instance %s, # of parms %d\n",
2386 fns_ptr[ix].physname, nparms);
2387 else
2388 fprintf_filtered (gdb_stderr,
2389 "Overloaded function instance %s # of parms %d\n",
2390 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2391 nparms);
2392 for (jj = 0; jj < nargs - static_offset; jj++)
2393 fprintf_filtered (gdb_stderr,
2394 "...Badness @ %d : %d\n",
2395 jj, bv->rank[jj]);
2396 fprintf_filtered (gdb_stderr,
2397 "Overload resolution champion is %d, ambiguous? %d\n",
2398 oload_champ, oload_ambiguous);
2399 }
2400 }
2401
2402 return oload_champ;
2403 }
2404
2405 /* Return 1 if we're looking at a static method, 0 if we're looking at
2406 a non-static method or a function that isn't a method. */
2407
2408 static int
2409 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2410 {
2411 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2412 return 1;
2413 else
2414 return 0;
2415 }
2416
2417 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2418
2419 static enum oload_classification
2420 classify_oload_match (struct badness_vector *oload_champ_bv,
2421 int nargs,
2422 int static_offset)
2423 {
2424 int ix;
2425
2426 for (ix = 1; ix <= nargs - static_offset; ix++)
2427 {
2428 if (oload_champ_bv->rank[ix] >= 100)
2429 return INCOMPATIBLE; /* Truly mismatched types. */
2430 else if (oload_champ_bv->rank[ix] >= 10)
2431 return NON_STANDARD; /* Non-standard type conversions
2432 needed. */
2433 }
2434
2435 return STANDARD; /* Only standard conversions needed. */
2436 }
2437
2438 /* C++: return 1 is NAME is a legitimate name for the destructor of
2439 type TYPE. If TYPE does not have a destructor, or if NAME is
2440 inappropriate for TYPE, an error is signaled. */
2441 int
2442 destructor_name_p (const char *name, const struct type *type)
2443 {
2444 if (name[0] == '~')
2445 {
2446 char *dname = type_name_no_tag (type);
2447 char *cp = strchr (dname, '<');
2448 unsigned int len;
2449
2450 /* Do not compare the template part for template classes. */
2451 if (cp == NULL)
2452 len = strlen (dname);
2453 else
2454 len = cp - dname;
2455 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2456 error (_("name of destructor must equal name of class"));
2457 else
2458 return 1;
2459 }
2460 return 0;
2461 }
2462
2463 /* Given TYPE, a structure/union,
2464 return 1 if the component named NAME from the ultimate target
2465 structure/union is defined, otherwise, return 0. */
2466
2467 int
2468 check_field (struct type *type, const char *name)
2469 {
2470 int i;
2471
2472 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2473 {
2474 char *t_field_name = TYPE_FIELD_NAME (type, i);
2475 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2476 return 1;
2477 }
2478
2479 /* C++: If it was not found as a data field, then try to return it
2480 as a pointer to a method. */
2481
2482 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2483 {
2484 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2485 return 1;
2486 }
2487
2488 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2489 if (check_field (TYPE_BASECLASS (type, i), name))
2490 return 1;
2491
2492 return 0;
2493 }
2494
2495 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2496 return the appropriate member (or the address of the member, if
2497 WANT_ADDRESS). This function is used to resolve user expressions
2498 of the form "DOMAIN::NAME". For more details on what happens, see
2499 the comment before value_struct_elt_for_reference. */
2500
2501 struct value *
2502 value_aggregate_elt (struct type *curtype,
2503 char *name, int want_address,
2504 enum noside noside)
2505 {
2506 switch (TYPE_CODE (curtype))
2507 {
2508 case TYPE_CODE_STRUCT:
2509 case TYPE_CODE_UNION:
2510 return value_struct_elt_for_reference (curtype, 0, curtype,
2511 name, NULL,
2512 want_address, noside);
2513 case TYPE_CODE_NAMESPACE:
2514 return value_namespace_elt (curtype, name,
2515 want_address, noside);
2516 default:
2517 internal_error (__FILE__, __LINE__,
2518 _("non-aggregate type in value_aggregate_elt"));
2519 }
2520 }
2521
2522 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2523 return the address of this member as a "pointer to member" type.
2524 If INTYPE is non-null, then it will be the type of the member we
2525 are looking for. This will help us resolve "pointers to member
2526 functions". This function is used to resolve user expressions of
2527 the form "DOMAIN::NAME". */
2528
2529 static struct value *
2530 value_struct_elt_for_reference (struct type *domain, int offset,
2531 struct type *curtype, char *name,
2532 struct type *intype,
2533 int want_address,
2534 enum noside noside)
2535 {
2536 struct type *t = curtype;
2537 int i;
2538 struct value *v, *result;
2539
2540 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2541 && TYPE_CODE (t) != TYPE_CODE_UNION)
2542 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2543
2544 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2545 {
2546 char *t_field_name = TYPE_FIELD_NAME (t, i);
2547
2548 if (t_field_name && strcmp (t_field_name, name) == 0)
2549 {
2550 if (field_is_static (&TYPE_FIELD (t, i)))
2551 {
2552 v = value_static_field (t, i);
2553 if (v == NULL)
2554 error (_("static field %s has been optimized out"),
2555 name);
2556 if (want_address)
2557 v = value_addr (v);
2558 return v;
2559 }
2560 if (TYPE_FIELD_PACKED (t, i))
2561 error (_("pointers to bitfield members not allowed"));
2562
2563 if (want_address)
2564 return value_from_longest
2565 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2566 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2567 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2568 return allocate_value (TYPE_FIELD_TYPE (t, i));
2569 else
2570 error (_("Cannot reference non-static field \"%s\""), name);
2571 }
2572 }
2573
2574 /* C++: If it was not found as a data field, then try to return it
2575 as a pointer to a method. */
2576
2577 /* Perform all necessary dereferencing. */
2578 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2579 intype = TYPE_TARGET_TYPE (intype);
2580
2581 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2582 {
2583 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2584 char dem_opname[64];
2585
2586 if (strncmp (t_field_name, "__", 2) == 0
2587 || strncmp (t_field_name, "op", 2) == 0
2588 || strncmp (t_field_name, "type", 4) == 0)
2589 {
2590 if (cplus_demangle_opname (t_field_name,
2591 dem_opname, DMGL_ANSI))
2592 t_field_name = dem_opname;
2593 else if (cplus_demangle_opname (t_field_name,
2594 dem_opname, 0))
2595 t_field_name = dem_opname;
2596 }
2597 if (t_field_name && strcmp (t_field_name, name) == 0)
2598 {
2599 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2600 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2601
2602 check_stub_method_group (t, i);
2603
2604 if (intype == 0 && j > 1)
2605 error (_("non-unique member `%s' requires type instantiation"), name);
2606 if (intype)
2607 {
2608 while (j--)
2609 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2610 break;
2611 if (j < 0)
2612 error (_("no member function matches that type instantiation"));
2613 }
2614 else
2615 j = 0;
2616
2617 if (TYPE_FN_FIELD_STATIC_P (f, j))
2618 {
2619 struct symbol *s =
2620 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2621 0, VAR_DOMAIN, 0);
2622 if (s == NULL)
2623 return NULL;
2624
2625 if (want_address)
2626 return value_addr (read_var_value (s, 0));
2627 else
2628 return read_var_value (s, 0);
2629 }
2630
2631 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2632 {
2633 if (want_address)
2634 {
2635 result = allocate_value
2636 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2637 cplus_make_method_ptr (value_type (result),
2638 value_contents_writeable (result),
2639 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2640 }
2641 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2642 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2643 else
2644 error (_("Cannot reference virtual member function \"%s\""),
2645 name);
2646 }
2647 else
2648 {
2649 struct symbol *s =
2650 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2651 0, VAR_DOMAIN, 0);
2652 if (s == NULL)
2653 return NULL;
2654
2655 v = read_var_value (s, 0);
2656 if (!want_address)
2657 result = v;
2658 else
2659 {
2660 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2661 cplus_make_method_ptr (value_type (result),
2662 value_contents_writeable (result),
2663 value_address (v), 0);
2664 }
2665 }
2666 return result;
2667 }
2668 }
2669 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2670 {
2671 struct value *v;
2672 int base_offset;
2673
2674 if (BASETYPE_VIA_VIRTUAL (t, i))
2675 base_offset = 0;
2676 else
2677 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2678 v = value_struct_elt_for_reference (domain,
2679 offset + base_offset,
2680 TYPE_BASECLASS (t, i),
2681 name, intype,
2682 want_address, noside);
2683 if (v)
2684 return v;
2685 }
2686
2687 /* As a last chance, pretend that CURTYPE is a namespace, and look
2688 it up that way; this (frequently) works for types nested inside
2689 classes. */
2690
2691 return value_maybe_namespace_elt (curtype, name,
2692 want_address, noside);
2693 }
2694
2695 /* C++: Return the member NAME of the namespace given by the type
2696 CURTYPE. */
2697
2698 static struct value *
2699 value_namespace_elt (const struct type *curtype,
2700 char *name, int want_address,
2701 enum noside noside)
2702 {
2703 struct value *retval = value_maybe_namespace_elt (curtype, name,
2704 want_address,
2705 noside);
2706
2707 if (retval == NULL)
2708 error (_("No symbol \"%s\" in namespace \"%s\"."),
2709 name, TYPE_TAG_NAME (curtype));
2710
2711 return retval;
2712 }
2713
2714 /* A helper function used by value_namespace_elt and
2715 value_struct_elt_for_reference. It looks up NAME inside the
2716 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2717 is a class and NAME refers to a type in CURTYPE itself (as opposed
2718 to, say, some base class of CURTYPE). */
2719
2720 static struct value *
2721 value_maybe_namespace_elt (const struct type *curtype,
2722 char *name, int want_address,
2723 enum noside noside)
2724 {
2725 const char *namespace_name = TYPE_TAG_NAME (curtype);
2726 struct symbol *sym;
2727 struct value *result;
2728
2729 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2730 get_selected_block (0),
2731 VAR_DOMAIN);
2732
2733 if (sym == NULL)
2734 return NULL;
2735 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2736 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2737 result = allocate_value (SYMBOL_TYPE (sym));
2738 else
2739 result = value_of_variable (sym, get_selected_block (0));
2740
2741 if (result && want_address)
2742 result = value_addr (result);
2743
2744 return result;
2745 }
2746
2747 /* Given a pointer value V, find the real (RTTI) type of the object it
2748 points to.
2749
2750 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2751 and refer to the values computed for the object pointed to. */
2752
2753 struct type *
2754 value_rtti_target_type (struct value *v, int *full,
2755 int *top, int *using_enc)
2756 {
2757 struct value *target;
2758
2759 target = value_ind (v);
2760
2761 return value_rtti_type (target, full, top, using_enc);
2762 }
2763
2764 /* Given a value pointed to by ARGP, check its real run-time type, and
2765 if that is different from the enclosing type, create a new value
2766 using the real run-time type as the enclosing type (and of the same
2767 type as ARGP) and return it, with the embedded offset adjusted to
2768 be the correct offset to the enclosed object. RTYPE is the type,
2769 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2770 by value_rtti_type(). If these are available, they can be supplied
2771 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2772 NULL if they're not available. */
2773
2774 struct value *
2775 value_full_object (struct value *argp,
2776 struct type *rtype,
2777 int xfull, int xtop,
2778 int xusing_enc)
2779 {
2780 struct type *real_type;
2781 int full = 0;
2782 int top = -1;
2783 int using_enc = 0;
2784 struct value *new_val;
2785
2786 if (rtype)
2787 {
2788 real_type = rtype;
2789 full = xfull;
2790 top = xtop;
2791 using_enc = xusing_enc;
2792 }
2793 else
2794 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2795
2796 /* If no RTTI data, or if object is already complete, do nothing. */
2797 if (!real_type || real_type == value_enclosing_type (argp))
2798 return argp;
2799
2800 /* If we have the full object, but for some reason the enclosing
2801 type is wrong, set it. */
2802 /* pai: FIXME -- sounds iffy */
2803 if (full)
2804 {
2805 argp = value_change_enclosing_type (argp, real_type);
2806 return argp;
2807 }
2808
2809 /* Check if object is in memory */
2810 if (VALUE_LVAL (argp) != lval_memory)
2811 {
2812 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2813 TYPE_NAME (real_type));
2814
2815 return argp;
2816 }
2817
2818 /* All other cases -- retrieve the complete object. */
2819 /* Go back by the computed top_offset from the beginning of the
2820 object, adjusting for the embedded offset of argp if that's what
2821 value_rtti_type used for its computation. */
2822 new_val = value_at_lazy (real_type, value_address (argp) - top +
2823 (using_enc ? 0 : value_embedded_offset (argp)));
2824 deprecated_set_value_type (new_val, value_type (argp));
2825 set_value_embedded_offset (new_val, (using_enc
2826 ? top + value_embedded_offset (argp)
2827 : top));
2828 return new_val;
2829 }
2830
2831
2832 /* Return the value of the local variable, if one exists.
2833 Flag COMPLAIN signals an error if the request is made in an
2834 inappropriate context. */
2835
2836 struct value *
2837 value_of_local (const char *name, int complain)
2838 {
2839 struct symbol *func, *sym;
2840 struct block *b;
2841 struct value * ret;
2842 struct frame_info *frame;
2843
2844 if (complain)
2845 frame = get_selected_frame (_("no frame selected"));
2846 else
2847 {
2848 frame = deprecated_safe_get_selected_frame ();
2849 if (frame == 0)
2850 return 0;
2851 }
2852
2853 func = get_frame_function (frame);
2854 if (!func)
2855 {
2856 if (complain)
2857 error (_("no `%s' in nameless context"), name);
2858 else
2859 return 0;
2860 }
2861
2862 b = SYMBOL_BLOCK_VALUE (func);
2863 if (dict_empty (BLOCK_DICT (b)))
2864 {
2865 if (complain)
2866 error (_("no args, no `%s'"), name);
2867 else
2868 return 0;
2869 }
2870
2871 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2872 symbol instead of the LOC_ARG one (if both exist). */
2873 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2874 if (sym == NULL)
2875 {
2876 if (complain)
2877 error (_("current stack frame does not contain a variable named `%s'"),
2878 name);
2879 else
2880 return NULL;
2881 }
2882
2883 ret = read_var_value (sym, frame);
2884 if (ret == 0 && complain)
2885 error (_("`%s' argument unreadable"), name);
2886 return ret;
2887 }
2888
2889 /* C++/Objective-C: return the value of the class instance variable,
2890 if one exists. Flag COMPLAIN signals an error if the request is
2891 made in an inappropriate context. */
2892
2893 struct value *
2894 value_of_this (int complain)
2895 {
2896 if (!current_language->la_name_of_this)
2897 return 0;
2898 return value_of_local (current_language->la_name_of_this, complain);
2899 }
2900
2901 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2902 elements long, starting at LOWBOUND. The result has the same lower
2903 bound as the original ARRAY. */
2904
2905 struct value *
2906 value_slice (struct value *array, int lowbound, int length)
2907 {
2908 struct type *slice_range_type, *slice_type, *range_type;
2909 LONGEST lowerbound, upperbound;
2910 struct value *slice;
2911 struct type *array_type;
2912
2913 array_type = check_typedef (value_type (array));
2914 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2915 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2916 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2917 error (_("cannot take slice of non-array"));
2918
2919 range_type = TYPE_INDEX_TYPE (array_type);
2920 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2921 error (_("slice from bad array or bitstring"));
2922
2923 if (lowbound < lowerbound || length < 0
2924 || lowbound + length - 1 > upperbound)
2925 error (_("slice out of range"));
2926
2927 /* FIXME-type-allocation: need a way to free this type when we are
2928 done with it. */
2929 slice_range_type = create_range_type ((struct type *) NULL,
2930 TYPE_TARGET_TYPE (range_type),
2931 lowbound,
2932 lowbound + length - 1);
2933 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2934 {
2935 int i;
2936
2937 slice_type = create_set_type ((struct type *) NULL,
2938 slice_range_type);
2939 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2940 slice = value_zero (slice_type, not_lval);
2941
2942 for (i = 0; i < length; i++)
2943 {
2944 int element = value_bit_index (array_type,
2945 value_contents (array),
2946 lowbound + i);
2947 if (element < 0)
2948 error (_("internal error accessing bitstring"));
2949 else if (element > 0)
2950 {
2951 int j = i % TARGET_CHAR_BIT;
2952 if (gdbarch_bits_big_endian (current_gdbarch))
2953 j = TARGET_CHAR_BIT - 1 - j;
2954 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2955 }
2956 }
2957 /* We should set the address, bitssize, and bitspos, so the
2958 slice can be used on the LHS, but that may require extensions
2959 to value_assign. For now, just leave as a non_lval.
2960 FIXME. */
2961 }
2962 else
2963 {
2964 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2965 LONGEST offset =
2966 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2967
2968 slice_type = create_array_type ((struct type *) NULL,
2969 element_type,
2970 slice_range_type);
2971 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2972
2973 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2974 slice = allocate_value_lazy (slice_type);
2975 else
2976 {
2977 slice = allocate_value (slice_type);
2978 memcpy (value_contents_writeable (slice),
2979 value_contents (array) + offset,
2980 TYPE_LENGTH (slice_type));
2981 }
2982
2983 set_value_component_location (slice, array);
2984 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2985 set_value_offset (slice, value_offset (array) + offset);
2986 }
2987 return slice;
2988 }
2989
2990 /* Create a value for a FORTRAN complex number. Currently most of the
2991 time values are coerced to COMPLEX*16 (i.e. a complex number
2992 composed of 2 doubles. This really should be a smarter routine
2993 that figures out precision inteligently as opposed to assuming
2994 doubles. FIXME: fmb */
2995
2996 struct value *
2997 value_literal_complex (struct value *arg1,
2998 struct value *arg2,
2999 struct type *type)
3000 {
3001 struct value *val;
3002 struct type *real_type = TYPE_TARGET_TYPE (type);
3003
3004 val = allocate_value (type);
3005 arg1 = value_cast (real_type, arg1);
3006 arg2 = value_cast (real_type, arg2);
3007
3008 memcpy (value_contents_raw (val),
3009 value_contents (arg1), TYPE_LENGTH (real_type));
3010 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3011 value_contents (arg2), TYPE_LENGTH (real_type));
3012 return val;
3013 }
3014
3015 /* Cast a value into the appropriate complex data type. */
3016
3017 static struct value *
3018 cast_into_complex (struct type *type, struct value *val)
3019 {
3020 struct type *real_type = TYPE_TARGET_TYPE (type);
3021
3022 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3023 {
3024 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3025 struct value *re_val = allocate_value (val_real_type);
3026 struct value *im_val = allocate_value (val_real_type);
3027
3028 memcpy (value_contents_raw (re_val),
3029 value_contents (val), TYPE_LENGTH (val_real_type));
3030 memcpy (value_contents_raw (im_val),
3031 value_contents (val) + TYPE_LENGTH (val_real_type),
3032 TYPE_LENGTH (val_real_type));
3033
3034 return value_literal_complex (re_val, im_val, type);
3035 }
3036 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3037 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3038 return value_literal_complex (val,
3039 value_zero (real_type, not_lval),
3040 type);
3041 else
3042 error (_("cannot cast non-number to complex"));
3043 }
3044
3045 void
3046 _initialize_valops (void)
3047 {
3048 add_setshow_boolean_cmd ("overload-resolution", class_support,
3049 &overload_resolution, _("\
3050 Set overload resolution in evaluating C++ functions."), _("\
3051 Show overload resolution in evaluating C++ functions."),
3052 NULL, NULL,
3053 show_overload_resolution,
3054 &setlist, &showlist);
3055 overload_resolution = 1;
3056 }