Factor out "Detaching from program" message printing
[binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "floatformat.h"
31 #include "doublest.h"
32 #include "dfp.h"
33 #include "extension.h"
34 #include "ada-lang.h"
35 #include "gdb_obstack.h"
36 #include "charset.h"
37 #include "typeprint.h"
38 #include <ctype.h>
39
40 /* Maximum number of wchars returned from wchar_iterate. */
41 #define MAX_WCHARS 4
42
43 /* A convenience macro to compute the size of a wchar_t buffer containing X
44 characters. */
45 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
46
47 /* Character buffer size saved while iterating over wchars. */
48 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
49
50 /* A structure to encapsulate state information from iterated
51 character conversions. */
52 struct converted_character
53 {
54 /* The number of characters converted. */
55 int num_chars;
56
57 /* The result of the conversion. See charset.h for more. */
58 enum wchar_iterate_result result;
59
60 /* The (saved) converted character(s). */
61 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
62
63 /* The first converted target byte. */
64 const gdb_byte *buf;
65
66 /* The number of bytes converted. */
67 size_t buflen;
68
69 /* How many times this character(s) is repeated. */
70 int repeat_count;
71 };
72
73 typedef struct converted_character converted_character_d;
74 DEF_VEC_O (converted_character_d);
75
76 /* Command lists for set/show print raw. */
77 struct cmd_list_element *setprintrawlist;
78 struct cmd_list_element *showprintrawlist;
79
80 /* Prototypes for local functions */
81
82 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
83 int len, int *errptr);
84
85 static void show_print (char *, int);
86
87 static void set_print (char *, int);
88
89 static void set_radix (char *, int);
90
91 static void show_radix (char *, int);
92
93 static void set_input_radix (char *, int, struct cmd_list_element *);
94
95 static void set_input_radix_1 (int, unsigned);
96
97 static void set_output_radix (char *, int, struct cmd_list_element *);
98
99 static void set_output_radix_1 (int, unsigned);
100
101 static void val_print_type_code_flags (struct type *type,
102 const gdb_byte *valaddr,
103 struct ui_file *stream);
104
105 void _initialize_valprint (void);
106
107 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
108
109 struct value_print_options user_print_options =
110 {
111 Val_prettyformat_default, /* prettyformat */
112 0, /* prettyformat_arrays */
113 0, /* prettyformat_structs */
114 0, /* vtblprint */
115 1, /* unionprint */
116 1, /* addressprint */
117 0, /* objectprint */
118 PRINT_MAX_DEFAULT, /* print_max */
119 10, /* repeat_count_threshold */
120 0, /* output_format */
121 0, /* format */
122 0, /* stop_print_at_null */
123 0, /* print_array_indexes */
124 0, /* deref_ref */
125 1, /* static_field_print */
126 1, /* pascal_static_field_print */
127 0, /* raw */
128 0, /* summary */
129 1 /* symbol_print */
130 };
131
132 /* Initialize *OPTS to be a copy of the user print options. */
133 void
134 get_user_print_options (struct value_print_options *opts)
135 {
136 *opts = user_print_options;
137 }
138
139 /* Initialize *OPTS to be a copy of the user print options, but with
140 pretty-formatting disabled. */
141 void
142 get_no_prettyformat_print_options (struct value_print_options *opts)
143 {
144 *opts = user_print_options;
145 opts->prettyformat = Val_no_prettyformat;
146 }
147
148 /* Initialize *OPTS to be a copy of the user print options, but using
149 FORMAT as the formatting option. */
150 void
151 get_formatted_print_options (struct value_print_options *opts,
152 char format)
153 {
154 *opts = user_print_options;
155 opts->format = format;
156 }
157
158 static void
159 show_print_max (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file,
163 _("Limit on string chars or array "
164 "elements to print is %s.\n"),
165 value);
166 }
167
168
169 /* Default input and output radixes, and output format letter. */
170
171 unsigned input_radix = 10;
172 static void
173 show_input_radix (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file,
177 _("Default input radix for entering numbers is %s.\n"),
178 value);
179 }
180
181 unsigned output_radix = 10;
182 static void
183 show_output_radix (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file,
187 _("Default output radix for printing of values is %s.\n"),
188 value);
189 }
190
191 /* By default we print arrays without printing the index of each element in
192 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
193
194 static void
195 show_print_array_indexes (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
199 }
200
201 /* Print repeat counts if there are more than this many repetitions of an
202 element in an array. Referenced by the low level language dependent
203 print routines. */
204
205 static void
206 show_repeat_count_threshold (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
210 value);
211 }
212
213 /* If nonzero, stops printing of char arrays at first null. */
214
215 static void
216 show_stop_print_at_null (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file,
220 _("Printing of char arrays to stop "
221 "at first null char is %s.\n"),
222 value);
223 }
224
225 /* Controls pretty printing of structures. */
226
227 static void
228 show_prettyformat_structs (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230 {
231 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
232 }
233
234 /* Controls pretty printing of arrays. */
235
236 static void
237 show_prettyformat_arrays (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
241 }
242
243 /* If nonzero, causes unions inside structures or other unions to be
244 printed. */
245
246 static void
247 show_unionprint (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 fprintf_filtered (file,
251 _("Printing of unions interior to structures is %s.\n"),
252 value);
253 }
254
255 /* If nonzero, causes machine addresses to be printed in certain contexts. */
256
257 static void
258 show_addressprint (struct ui_file *file, int from_tty,
259 struct cmd_list_element *c, const char *value)
260 {
261 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
262 }
263
264 static void
265 show_symbol_print (struct ui_file *file, int from_tty,
266 struct cmd_list_element *c, const char *value)
267 {
268 fprintf_filtered (file,
269 _("Printing of symbols when printing pointers is %s.\n"),
270 value);
271 }
272
273 \f
274
275 /* A helper function for val_print. When printing in "summary" mode,
276 we want to print scalar arguments, but not aggregate arguments.
277 This function distinguishes between the two. */
278
279 int
280 val_print_scalar_type_p (struct type *type)
281 {
282 type = check_typedef (type);
283 while (TYPE_CODE (type) == TYPE_CODE_REF)
284 {
285 type = TYPE_TARGET_TYPE (type);
286 type = check_typedef (type);
287 }
288 switch (TYPE_CODE (type))
289 {
290 case TYPE_CODE_ARRAY:
291 case TYPE_CODE_STRUCT:
292 case TYPE_CODE_UNION:
293 case TYPE_CODE_SET:
294 case TYPE_CODE_STRING:
295 return 0;
296 default:
297 return 1;
298 }
299 }
300
301 /* See its definition in value.h. */
302
303 int
304 valprint_check_validity (struct ui_file *stream,
305 struct type *type,
306 LONGEST embedded_offset,
307 const struct value *val)
308 {
309 type = check_typedef (type);
310
311 if (type_not_associated (type))
312 {
313 val_print_not_associated (stream);
314 return 0;
315 }
316
317 if (type_not_allocated (type))
318 {
319 val_print_not_allocated (stream);
320 return 0;
321 }
322
323 if (TYPE_CODE (type) != TYPE_CODE_UNION
324 && TYPE_CODE (type) != TYPE_CODE_STRUCT
325 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
326 {
327 if (value_bits_any_optimized_out (val,
328 TARGET_CHAR_BIT * embedded_offset,
329 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
330 {
331 val_print_optimized_out (val, stream);
332 return 0;
333 }
334
335 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
336 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
337 {
338 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
339 int ref_is_addressable = 0;
340
341 if (is_ref)
342 {
343 const struct value *deref_val = coerce_ref_if_computed (val);
344
345 if (deref_val != NULL)
346 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
347 }
348
349 if (!is_ref || !ref_is_addressable)
350 fputs_filtered (_("<synthetic pointer>"), stream);
351
352 /* C++ references should be valid even if they're synthetic. */
353 return is_ref;
354 }
355
356 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
357 {
358 val_print_unavailable (stream);
359 return 0;
360 }
361 }
362
363 return 1;
364 }
365
366 void
367 val_print_optimized_out (const struct value *val, struct ui_file *stream)
368 {
369 if (val != NULL && value_lval_const (val) == lval_register)
370 val_print_not_saved (stream);
371 else
372 fprintf_filtered (stream, _("<optimized out>"));
373 }
374
375 void
376 val_print_not_saved (struct ui_file *stream)
377 {
378 fprintf_filtered (stream, _("<not saved>"));
379 }
380
381 void
382 val_print_unavailable (struct ui_file *stream)
383 {
384 fprintf_filtered (stream, _("<unavailable>"));
385 }
386
387 void
388 val_print_invalid_address (struct ui_file *stream)
389 {
390 fprintf_filtered (stream, _("<invalid address>"));
391 }
392
393 /* Print a pointer based on the type of its target.
394
395 Arguments to this functions are roughly the same as those in
396 generic_val_print. A difference is that ADDRESS is the address to print,
397 with embedded_offset already added. ELTTYPE represents
398 the pointed type after check_typedef. */
399
400 static void
401 print_unpacked_pointer (struct type *type, struct type *elttype,
402 CORE_ADDR address, struct ui_file *stream,
403 const struct value_print_options *options)
404 {
405 struct gdbarch *gdbarch = get_type_arch (type);
406
407 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
408 {
409 /* Try to print what function it points to. */
410 print_function_pointer_address (options, gdbarch, address, stream);
411 return;
412 }
413
414 if (options->symbol_print)
415 print_address_demangle (options, gdbarch, address, stream, demangle);
416 else if (options->addressprint)
417 fputs_filtered (paddress (gdbarch, address), stream);
418 }
419
420 /* generic_val_print helper for TYPE_CODE_ARRAY. */
421
422 static void
423 generic_val_print_array (struct type *type, const gdb_byte *valaddr,
424 int embedded_offset, CORE_ADDR address,
425 struct ui_file *stream, int recurse,
426 const struct value *original_value,
427 const struct value_print_options *options,
428 const struct
429 generic_val_print_decorations *decorations)
430 {
431 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
432 struct type *elttype = check_typedef (unresolved_elttype);
433
434 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
435 {
436 LONGEST low_bound, high_bound;
437
438 if (!get_array_bounds (type, &low_bound, &high_bound))
439 error (_("Could not determine the array high bound"));
440
441 if (options->prettyformat_arrays)
442 {
443 print_spaces_filtered (2 + 2 * recurse, stream);
444 }
445
446 fputs_filtered (decorations->array_start, stream);
447 val_print_array_elements (type, valaddr, embedded_offset,
448 address, stream,
449 recurse, original_value, options, 0);
450 fputs_filtered (decorations->array_end, stream);
451 }
452 else
453 {
454 /* Array of unspecified length: treat like pointer to first elt. */
455 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
456 options);
457 }
458
459 }
460
461 /* generic_val_print helper for TYPE_CODE_PTR. */
462
463 static void
464 generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
465 int embedded_offset, struct ui_file *stream,
466 const struct value *original_value,
467 const struct value_print_options *options)
468 {
469 struct gdbarch *gdbarch = get_type_arch (type);
470 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
471
472 if (options->format && options->format != 's')
473 {
474 val_print_scalar_formatted (type, valaddr, embedded_offset,
475 original_value, options, 0, stream);
476 }
477 else
478 {
479 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
480 struct type *elttype = check_typedef (unresolved_elttype);
481 CORE_ADDR addr = unpack_pointer (type,
482 valaddr + embedded_offset * unit_size);
483
484 print_unpacked_pointer (type, elttype, addr, stream, options);
485 }
486 }
487
488
489 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
490
491 static void
492 generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
493 int embedded_offset, struct ui_file *stream,
494 const struct value *original_value,
495 const struct value_print_options *options)
496 {
497 val_print_scalar_formatted (type, valaddr, embedded_offset,
498 original_value, options, 0, stream);
499 }
500
501 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
502
503 static void
504 print_ref_address (struct type *type, const gdb_byte *address_buffer,
505 int embedded_offset, struct ui_file *stream)
506 {
507 struct gdbarch *gdbarch = get_type_arch (type);
508
509 if (address_buffer != NULL)
510 {
511 CORE_ADDR address
512 = extract_typed_address (address_buffer + embedded_offset, type);
513
514 fprintf_filtered (stream, "@");
515 fputs_filtered (paddress (gdbarch, address), stream);
516 }
517 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
518 }
519
520 /* If VAL is addressable, return the value contents buffer of a value that
521 represents a pointer to VAL. Otherwise return NULL. */
522
523 static const gdb_byte *
524 get_value_addr_contents (struct value *deref_val)
525 {
526 gdb_assert (deref_val != NULL);
527
528 if (value_lval_const (deref_val) == lval_memory)
529 return value_contents_for_printing_const (value_addr (deref_val));
530 else
531 {
532 /* We have a non-addressable value, such as a DW_AT_const_value. */
533 return NULL;
534 }
535 }
536
537 /* generic_val_print helper for TYPE_CODE_REF. */
538
539 static void
540 generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
541 int embedded_offset, struct ui_file *stream, int recurse,
542 const struct value *original_value,
543 const struct value_print_options *options)
544 {
545 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
546 struct value *deref_val = NULL;
547 const int value_is_synthetic
548 = value_bits_synthetic_pointer (original_value,
549 TARGET_CHAR_BIT * embedded_offset,
550 TARGET_CHAR_BIT * TYPE_LENGTH (type));
551 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
552 || options->deref_ref);
553 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
554
555 if (must_coerce_ref && type_is_defined)
556 {
557 deref_val = coerce_ref_if_computed (original_value);
558
559 if (deref_val != NULL)
560 {
561 /* More complicated computed references are not supported. */
562 gdb_assert (embedded_offset == 0);
563 }
564 else
565 deref_val = value_at (TYPE_TARGET_TYPE (type),
566 unpack_pointer (type, valaddr + embedded_offset));
567 }
568 /* Else, original_value isn't a synthetic reference or we don't have to print
569 the reference's contents.
570
571 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
572 cause original_value to be a not_lval instead of an lval_computed,
573 which will make value_bits_synthetic_pointer return false.
574 This happens because if options->objectprint is true, c_value_print will
575 overwrite original_value's contents with the result of coercing
576 the reference through value_addr, and then set its type back to
577 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
578 we can simply treat it as non-synthetic and move on. */
579
580 if (options->addressprint)
581 {
582 const gdb_byte *address = (value_is_synthetic && type_is_defined
583 ? get_value_addr_contents (deref_val)
584 : valaddr);
585
586 print_ref_address (type, address, embedded_offset, stream);
587
588 if (options->deref_ref)
589 fputs_filtered (": ", stream);
590 }
591
592 if (options->deref_ref)
593 {
594 if (type_is_defined)
595 common_val_print (deref_val, stream, recurse, options,
596 current_language);
597 else
598 fputs_filtered ("???", stream);
599 }
600 }
601
602 /* Helper function for generic_val_print_enum.
603 This is also used to print enums in TYPE_CODE_FLAGS values. */
604
605 static void
606 generic_val_print_enum_1 (struct type *type, LONGEST val,
607 struct ui_file *stream)
608 {
609 unsigned int i;
610 unsigned int len;
611
612 len = TYPE_NFIELDS (type);
613 for (i = 0; i < len; i++)
614 {
615 QUIT;
616 if (val == TYPE_FIELD_ENUMVAL (type, i))
617 {
618 break;
619 }
620 }
621 if (i < len)
622 {
623 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
624 }
625 else if (TYPE_FLAG_ENUM (type))
626 {
627 int first = 1;
628
629 /* We have a "flag" enum, so we try to decompose it into
630 pieces as appropriate. A flag enum has disjoint
631 constants by definition. */
632 fputs_filtered ("(", stream);
633 for (i = 0; i < len; ++i)
634 {
635 QUIT;
636
637 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
638 {
639 if (!first)
640 fputs_filtered (" | ", stream);
641 first = 0;
642
643 val &= ~TYPE_FIELD_ENUMVAL (type, i);
644 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
645 }
646 }
647
648 if (first || val != 0)
649 {
650 if (!first)
651 fputs_filtered (" | ", stream);
652 fputs_filtered ("unknown: ", stream);
653 print_longest (stream, 'd', 0, val);
654 }
655
656 fputs_filtered (")", stream);
657 }
658 else
659 print_longest (stream, 'd', 0, val);
660 }
661
662 /* generic_val_print helper for TYPE_CODE_ENUM. */
663
664 static void
665 generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
666 int embedded_offset, struct ui_file *stream,
667 const struct value *original_value,
668 const struct value_print_options *options)
669 {
670 LONGEST val;
671 struct gdbarch *gdbarch = get_type_arch (type);
672 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
673
674 if (options->format)
675 {
676 val_print_scalar_formatted (type, valaddr, embedded_offset,
677 original_value, options, 0, stream);
678 return;
679 }
680 val = unpack_long (type, valaddr + embedded_offset * unit_size);
681
682 generic_val_print_enum_1 (type, val, stream);
683 }
684
685 /* generic_val_print helper for TYPE_CODE_FLAGS. */
686
687 static void
688 generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
689 int embedded_offset, struct ui_file *stream,
690 const struct value *original_value,
691 const struct value_print_options *options)
692
693 {
694 if (options->format)
695 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
696 options, 0, stream);
697 else
698 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
699 }
700
701 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
702
703 static void
704 generic_val_print_func (struct type *type, const gdb_byte *valaddr,
705 int embedded_offset, CORE_ADDR address,
706 struct ui_file *stream,
707 const struct value *original_value,
708 const struct value_print_options *options)
709 {
710 struct gdbarch *gdbarch = get_type_arch (type);
711
712 if (options->format)
713 {
714 val_print_scalar_formatted (type, valaddr, embedded_offset,
715 original_value, options, 0, stream);
716 }
717 else
718 {
719 /* FIXME, we should consider, at least for ANSI C language,
720 eliminating the distinction made between FUNCs and POINTERs
721 to FUNCs. */
722 fprintf_filtered (stream, "{");
723 type_print (type, "", stream, -1);
724 fprintf_filtered (stream, "} ");
725 /* Try to print what function it points to, and its address. */
726 print_address_demangle (options, gdbarch, address, stream, demangle);
727 }
728 }
729
730 /* generic_val_print helper for TYPE_CODE_BOOL. */
731
732 static void
733 generic_val_print_bool (struct type *type, const gdb_byte *valaddr,
734 int embedded_offset, struct ui_file *stream,
735 const struct value *original_value,
736 const struct value_print_options *options,
737 const struct generic_val_print_decorations *decorations)
738 {
739 LONGEST val;
740 struct gdbarch *gdbarch = get_type_arch (type);
741 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
742
743 if (options->format || options->output_format)
744 {
745 struct value_print_options opts = *options;
746 opts.format = (options->format ? options->format
747 : options->output_format);
748 val_print_scalar_formatted (type, valaddr, embedded_offset,
749 original_value, &opts, 0, stream);
750 }
751 else
752 {
753 val = unpack_long (type, valaddr + embedded_offset * unit_size);
754 if (val == 0)
755 fputs_filtered (decorations->false_name, stream);
756 else if (val == 1)
757 fputs_filtered (decorations->true_name, stream);
758 else
759 print_longest (stream, 'd', 0, val);
760 }
761 }
762
763 /* generic_val_print helper for TYPE_CODE_INT. */
764
765 static void
766 generic_val_print_int (struct type *type, const gdb_byte *valaddr,
767 int embedded_offset, struct ui_file *stream,
768 const struct value *original_value,
769 const struct value_print_options *options)
770 {
771 struct gdbarch *gdbarch = get_type_arch (type);
772 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
773
774 if (options->format || options->output_format)
775 {
776 struct value_print_options opts = *options;
777
778 opts.format = (options->format ? options->format
779 : options->output_format);
780 val_print_scalar_formatted (type, valaddr, embedded_offset,
781 original_value, &opts, 0, stream);
782 }
783 else
784 val_print_type_code_int (type, valaddr + embedded_offset * unit_size,
785 stream);
786 }
787
788 /* generic_val_print helper for TYPE_CODE_CHAR. */
789
790 static void
791 generic_val_print_char (struct type *type, struct type *unresolved_type,
792 const gdb_byte *valaddr, int embedded_offset,
793 struct ui_file *stream,
794 const struct value *original_value,
795 const struct value_print_options *options)
796 {
797 LONGEST val;
798 struct gdbarch *gdbarch = get_type_arch (type);
799 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
800
801 if (options->format || options->output_format)
802 {
803 struct value_print_options opts = *options;
804
805 opts.format = (options->format ? options->format
806 : options->output_format);
807 val_print_scalar_formatted (type, valaddr, embedded_offset,
808 original_value, &opts, 0, stream);
809 }
810 else
811 {
812 val = unpack_long (type, valaddr + embedded_offset * unit_size);
813 if (TYPE_UNSIGNED (type))
814 fprintf_filtered (stream, "%u", (unsigned int) val);
815 else
816 fprintf_filtered (stream, "%d", (int) val);
817 fputs_filtered (" ", stream);
818 LA_PRINT_CHAR (val, unresolved_type, stream);
819 }
820 }
821
822 /* generic_val_print helper for TYPE_CODE_FLT. */
823
824 static void
825 generic_val_print_float (struct type *type, const gdb_byte *valaddr,
826 int embedded_offset, struct ui_file *stream,
827 const struct value *original_value,
828 const struct value_print_options *options)
829 {
830 struct gdbarch *gdbarch = get_type_arch (type);
831 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
832
833 if (options->format)
834 {
835 val_print_scalar_formatted (type, valaddr, embedded_offset,
836 original_value, options, 0, stream);
837 }
838 else
839 {
840 print_floating (valaddr + embedded_offset * unit_size, type, stream);
841 }
842 }
843
844 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
845
846 static void
847 generic_val_print_decfloat (struct type *type, const gdb_byte *valaddr,
848 int embedded_offset, struct ui_file *stream,
849 const struct value *original_value,
850 const struct value_print_options *options)
851 {
852 struct gdbarch *gdbarch = get_type_arch (type);
853 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
854
855 if (options->format)
856 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
857 options, 0, stream);
858 else
859 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
860 stream);
861 }
862
863 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
864
865 static void
866 generic_val_print_complex (struct type *type, const gdb_byte *valaddr,
867 int embedded_offset, struct ui_file *stream,
868 const struct value *original_value,
869 const struct value_print_options *options,
870 const struct generic_val_print_decorations
871 *decorations)
872 {
873 struct gdbarch *gdbarch = get_type_arch (type);
874 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
875
876 fprintf_filtered (stream, "%s", decorations->complex_prefix);
877 if (options->format)
878 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), valaddr,
879 embedded_offset, original_value, options, 0,
880 stream);
881 else
882 print_floating (valaddr + embedded_offset * unit_size,
883 TYPE_TARGET_TYPE (type), stream);
884 fprintf_filtered (stream, "%s", decorations->complex_infix);
885 if (options->format)
886 val_print_scalar_formatted (TYPE_TARGET_TYPE (type), valaddr,
887 embedded_offset
888 + type_length_units (TYPE_TARGET_TYPE (type)),
889 original_value, options, 0, stream);
890 else
891 print_floating (valaddr + embedded_offset * unit_size
892 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
893 TYPE_TARGET_TYPE (type), stream);
894 fprintf_filtered (stream, "%s", decorations->complex_suffix);
895 }
896
897 /* A generic val_print that is suitable for use by language
898 implementations of the la_val_print method. This function can
899 handle most type codes, though not all, notably exception
900 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
901 the caller.
902
903 Most arguments are as to val_print.
904
905 The additional DECORATIONS argument can be used to customize the
906 output in some small, language-specific ways. */
907
908 void
909 generic_val_print (struct type *type, const gdb_byte *valaddr,
910 int embedded_offset, CORE_ADDR address,
911 struct ui_file *stream, int recurse,
912 const struct value *original_value,
913 const struct value_print_options *options,
914 const struct generic_val_print_decorations *decorations)
915 {
916 struct type *unresolved_type = type;
917
918 type = check_typedef (type);
919 switch (TYPE_CODE (type))
920 {
921 case TYPE_CODE_ARRAY:
922 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
923 recurse, original_value, options, decorations);
924 break;
925
926 case TYPE_CODE_MEMBERPTR:
927 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
928 original_value, options);
929 break;
930
931 case TYPE_CODE_PTR:
932 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
933 original_value, options);
934 break;
935
936 case TYPE_CODE_REF:
937 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
938 original_value, options);
939 break;
940
941 case TYPE_CODE_ENUM:
942 generic_val_print_enum (type, valaddr, embedded_offset, stream,
943 original_value, options);
944 break;
945
946 case TYPE_CODE_FLAGS:
947 generic_val_print_flags (type, valaddr, embedded_offset, stream,
948 original_value, options);
949 break;
950
951 case TYPE_CODE_FUNC:
952 case TYPE_CODE_METHOD:
953 generic_val_print_func (type, valaddr, embedded_offset, address, stream,
954 original_value, options);
955 break;
956
957 case TYPE_CODE_BOOL:
958 generic_val_print_bool (type, valaddr, embedded_offset, stream,
959 original_value, options, decorations);
960 break;
961
962 case TYPE_CODE_RANGE:
963 /* FIXME: create_static_range_type does not set the unsigned bit in a
964 range type (I think it probably should copy it from the
965 target type), so we won't print values which are too large to
966 fit in a signed integer correctly. */
967 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
968 print with the target type, though, because the size of our
969 type and the target type might differ). */
970
971 /* FALLTHROUGH */
972
973 case TYPE_CODE_INT:
974 generic_val_print_int (type, valaddr, embedded_offset, stream,
975 original_value, options);
976 break;
977
978 case TYPE_CODE_CHAR:
979 generic_val_print_char (type, unresolved_type, valaddr, embedded_offset,
980 stream, original_value, options);
981 break;
982
983 case TYPE_CODE_FLT:
984 generic_val_print_float (type, valaddr, embedded_offset, stream,
985 original_value, options);
986 break;
987
988 case TYPE_CODE_DECFLOAT:
989 generic_val_print_decfloat (type, valaddr, embedded_offset, stream,
990 original_value, options);
991 break;
992
993 case TYPE_CODE_VOID:
994 fputs_filtered (decorations->void_name, stream);
995 break;
996
997 case TYPE_CODE_ERROR:
998 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
999 break;
1000
1001 case TYPE_CODE_UNDEF:
1002 /* This happens (without TYPE_FLAG_STUB set) on systems which
1003 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
1004 "struct foo *bar" and no complete type for struct foo in that
1005 file. */
1006 fprintf_filtered (stream, _("<incomplete type>"));
1007 break;
1008
1009 case TYPE_CODE_COMPLEX:
1010 generic_val_print_complex (type, valaddr, embedded_offset, stream,
1011 original_value, options, decorations);
1012 break;
1013
1014 case TYPE_CODE_UNION:
1015 case TYPE_CODE_STRUCT:
1016 case TYPE_CODE_METHODPTR:
1017 default:
1018 error (_("Unhandled type code %d in symbol table."),
1019 TYPE_CODE (type));
1020 }
1021 gdb_flush (stream);
1022 }
1023
1024 /* Print using the given LANGUAGE the data of type TYPE located at
1025 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
1026 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
1027 STREAM according to OPTIONS. VAL is the whole object that came
1028 from ADDRESS. VALADDR must point to the head of VAL's contents
1029 buffer.
1030
1031 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1032 further helper subroutines as subfields of TYPE are printed. In
1033 such cases, VALADDR is passed down unadjusted, as well as VAL, so
1034 that VAL can be queried for metadata about the contents data being
1035 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1036 buffer. For example: "has this field been optimized out", or "I'm
1037 printing an object while inspecting a traceframe; has this
1038 particular piece of data been collected?".
1039
1040 RECURSE indicates the amount of indentation to supply before
1041 continuation lines; this amount is roughly twice the value of
1042 RECURSE. */
1043
1044 void
1045 val_print (struct type *type, const gdb_byte *valaddr, LONGEST embedded_offset,
1046 CORE_ADDR address, struct ui_file *stream, int recurse,
1047 const struct value *val,
1048 const struct value_print_options *options,
1049 const struct language_defn *language)
1050 {
1051 int ret = 0;
1052 struct value_print_options local_opts = *options;
1053 struct type *real_type = check_typedef (type);
1054
1055 if (local_opts.prettyformat == Val_prettyformat_default)
1056 local_opts.prettyformat = (local_opts.prettyformat_structs
1057 ? Val_prettyformat : Val_no_prettyformat);
1058
1059 QUIT;
1060
1061 /* Ensure that the type is complete and not just a stub. If the type is
1062 only a stub and we can't find and substitute its complete type, then
1063 print appropriate string and return. */
1064
1065 if (TYPE_STUB (real_type))
1066 {
1067 fprintf_filtered (stream, _("<incomplete type>"));
1068 gdb_flush (stream);
1069 return;
1070 }
1071
1072 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1073 return;
1074
1075 if (!options->raw)
1076 {
1077 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
1078 address, stream, recurse,
1079 val, options, language);
1080 if (ret)
1081 return;
1082 }
1083
1084 /* Handle summary mode. If the value is a scalar, print it;
1085 otherwise, print an ellipsis. */
1086 if (options->summary && !val_print_scalar_type_p (type))
1087 {
1088 fprintf_filtered (stream, "...");
1089 return;
1090 }
1091
1092 TRY
1093 {
1094 language->la_val_print (type, valaddr, embedded_offset, address,
1095 stream, recurse, val,
1096 &local_opts);
1097 }
1098 CATCH (except, RETURN_MASK_ERROR)
1099 {
1100 fprintf_filtered (stream, _("<error reading variable>"));
1101 }
1102 END_CATCH
1103 }
1104
1105 /* Check whether the value VAL is printable. Return 1 if it is;
1106 return 0 and print an appropriate error message to STREAM according to
1107 OPTIONS if it is not. */
1108
1109 static int
1110 value_check_printable (struct value *val, struct ui_file *stream,
1111 const struct value_print_options *options)
1112 {
1113 if (val == 0)
1114 {
1115 fprintf_filtered (stream, _("<address of value unknown>"));
1116 return 0;
1117 }
1118
1119 if (value_entirely_optimized_out (val))
1120 {
1121 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1122 fprintf_filtered (stream, "...");
1123 else
1124 val_print_optimized_out (val, stream);
1125 return 0;
1126 }
1127
1128 if (value_entirely_unavailable (val))
1129 {
1130 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1131 fprintf_filtered (stream, "...");
1132 else
1133 val_print_unavailable (stream);
1134 return 0;
1135 }
1136
1137 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1138 {
1139 fprintf_filtered (stream, _("<internal function %s>"),
1140 value_internal_function_name (val));
1141 return 0;
1142 }
1143
1144 if (type_not_associated (value_type (val)))
1145 {
1146 val_print_not_associated (stream);
1147 return 0;
1148 }
1149
1150 if (type_not_allocated (value_type (val)))
1151 {
1152 val_print_not_allocated (stream);
1153 return 0;
1154 }
1155
1156 return 1;
1157 }
1158
1159 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1160 to OPTIONS.
1161
1162 This is a preferable interface to val_print, above, because it uses
1163 GDB's value mechanism. */
1164
1165 void
1166 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1167 const struct value_print_options *options,
1168 const struct language_defn *language)
1169 {
1170 if (!value_check_printable (val, stream, options))
1171 return;
1172
1173 if (language->la_language == language_ada)
1174 /* The value might have a dynamic type, which would cause trouble
1175 below when trying to extract the value contents (since the value
1176 size is determined from the type size which is unknown). So
1177 get a fixed representation of our value. */
1178 val = ada_to_fixed_value (val);
1179
1180 val_print (value_type (val), value_contents_for_printing (val),
1181 value_embedded_offset (val), value_address (val),
1182 stream, recurse,
1183 val, options, language);
1184 }
1185
1186 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1187 is printed using the current_language syntax. */
1188
1189 void
1190 value_print (struct value *val, struct ui_file *stream,
1191 const struct value_print_options *options)
1192 {
1193 if (!value_check_printable (val, stream, options))
1194 return;
1195
1196 if (!options->raw)
1197 {
1198 int r
1199 = apply_ext_lang_val_pretty_printer (value_type (val),
1200 value_contents_for_printing (val),
1201 value_embedded_offset (val),
1202 value_address (val),
1203 stream, 0,
1204 val, options, current_language);
1205
1206 if (r)
1207 return;
1208 }
1209
1210 LA_VALUE_PRINT (val, stream, options);
1211 }
1212
1213 /* Called by various <lang>_val_print routines to print
1214 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1215 value. STREAM is where to print the value. */
1216
1217 void
1218 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
1219 struct ui_file *stream)
1220 {
1221 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1222
1223 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1224 {
1225 LONGEST val;
1226
1227 if (TYPE_UNSIGNED (type)
1228 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
1229 byte_order, &val))
1230 {
1231 print_longest (stream, 'u', 0, val);
1232 }
1233 else
1234 {
1235 /* Signed, or we couldn't turn an unsigned value into a
1236 LONGEST. For signed values, one could assume two's
1237 complement (a reasonable assumption, I think) and do
1238 better than this. */
1239 print_hex_chars (stream, (unsigned char *) valaddr,
1240 TYPE_LENGTH (type), byte_order);
1241 }
1242 }
1243 else
1244 {
1245 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1246 unpack_long (type, valaddr));
1247 }
1248 }
1249
1250 static void
1251 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1252 struct ui_file *stream)
1253 {
1254 ULONGEST val = unpack_long (type, valaddr);
1255 int field, nfields = TYPE_NFIELDS (type);
1256 struct gdbarch *gdbarch = get_type_arch (type);
1257 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1258
1259 fputs_filtered ("[", stream);
1260 for (field = 0; field < nfields; field++)
1261 {
1262 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1263 {
1264 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1265
1266 if (field_type == bool_type
1267 /* We require boolean types here to be one bit wide. This is a
1268 problematic place to notify the user of an internal error
1269 though. Instead just fall through and print the field as an
1270 int. */
1271 && TYPE_FIELD_BITSIZE (type, field) == 1)
1272 {
1273 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1274 fprintf_filtered (stream, " %s",
1275 TYPE_FIELD_NAME (type, field));
1276 }
1277 else
1278 {
1279 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1280 ULONGEST field_val
1281 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1282
1283 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1284 field_val &= ((ULONGEST) 1 << field_len) - 1;
1285 fprintf_filtered (stream, " %s=",
1286 TYPE_FIELD_NAME (type, field));
1287 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1288 generic_val_print_enum_1 (field_type, field_val, stream);
1289 else
1290 print_longest (stream, 'd', 0, field_val);
1291 }
1292 }
1293 }
1294 fputs_filtered (" ]", stream);
1295 }
1296
1297 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1298 according to OPTIONS and SIZE on STREAM. Format i is not supported
1299 at this level.
1300
1301 This is how the elements of an array or structure are printed
1302 with a format. */
1303
1304 void
1305 val_print_scalar_formatted (struct type *type,
1306 const gdb_byte *valaddr, LONGEST embedded_offset,
1307 const struct value *val,
1308 const struct value_print_options *options,
1309 int size,
1310 struct ui_file *stream)
1311 {
1312 struct gdbarch *arch = get_type_arch (type);
1313 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1314
1315 gdb_assert (val != NULL);
1316 gdb_assert (valaddr == value_contents_for_printing_const (val));
1317
1318 /* If we get here with a string format, try again without it. Go
1319 all the way back to the language printers, which may call us
1320 again. */
1321 if (options->format == 's')
1322 {
1323 struct value_print_options opts = *options;
1324 opts.format = 0;
1325 opts.deref_ref = 0;
1326 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1327 current_language);
1328 return;
1329 }
1330
1331 /* A scalar object that does not have all bits available can't be
1332 printed, because all bits contribute to its representation. */
1333 if (value_bits_any_optimized_out (val,
1334 TARGET_CHAR_BIT * embedded_offset,
1335 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1336 val_print_optimized_out (val, stream);
1337 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1338 val_print_unavailable (stream);
1339 else
1340 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1341 options, size, stream);
1342 }
1343
1344 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1345 The raison d'etre of this function is to consolidate printing of
1346 LONG_LONG's into this one function. The format chars b,h,w,g are
1347 from print_scalar_formatted(). Numbers are printed using C
1348 format.
1349
1350 USE_C_FORMAT means to use C format in all cases. Without it,
1351 'o' and 'x' format do not include the standard C radix prefix
1352 (leading 0 or 0x).
1353
1354 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1355 and was intended to request formating according to the current
1356 language and would be used for most integers that GDB prints. The
1357 exceptional cases were things like protocols where the format of
1358 the integer is a protocol thing, not a user-visible thing). The
1359 parameter remains to preserve the information of what things might
1360 be printed with language-specific format, should we ever resurrect
1361 that capability. */
1362
1363 void
1364 print_longest (struct ui_file *stream, int format, int use_c_format,
1365 LONGEST val_long)
1366 {
1367 const char *val;
1368
1369 switch (format)
1370 {
1371 case 'd':
1372 val = int_string (val_long, 10, 1, 0, 1); break;
1373 case 'u':
1374 val = int_string (val_long, 10, 0, 0, 1); break;
1375 case 'x':
1376 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1377 case 'b':
1378 val = int_string (val_long, 16, 0, 2, 1); break;
1379 case 'h':
1380 val = int_string (val_long, 16, 0, 4, 1); break;
1381 case 'w':
1382 val = int_string (val_long, 16, 0, 8, 1); break;
1383 case 'g':
1384 val = int_string (val_long, 16, 0, 16, 1); break;
1385 break;
1386 case 'o':
1387 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1388 default:
1389 internal_error (__FILE__, __LINE__,
1390 _("failed internal consistency check"));
1391 }
1392 fputs_filtered (val, stream);
1393 }
1394
1395 /* This used to be a macro, but I don't think it is called often enough
1396 to merit such treatment. */
1397 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1398 arguments to a function, number in a value history, register number, etc.)
1399 where the value must not be larger than can fit in an int. */
1400
1401 int
1402 longest_to_int (LONGEST arg)
1403 {
1404 /* Let the compiler do the work. */
1405 int rtnval = (int) arg;
1406
1407 /* Check for overflows or underflows. */
1408 if (sizeof (LONGEST) > sizeof (int))
1409 {
1410 if (rtnval != arg)
1411 {
1412 error (_("Value out of range."));
1413 }
1414 }
1415 return (rtnval);
1416 }
1417
1418 /* Print a floating point value of type TYPE (not always a
1419 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1420
1421 void
1422 print_floating (const gdb_byte *valaddr, struct type *type,
1423 struct ui_file *stream)
1424 {
1425 DOUBLEST doub;
1426 int inv;
1427 const struct floatformat *fmt = NULL;
1428 unsigned len = TYPE_LENGTH (type);
1429 enum float_kind kind;
1430
1431 /* If it is a floating-point, check for obvious problems. */
1432 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1433 fmt = floatformat_from_type (type);
1434 if (fmt != NULL)
1435 {
1436 kind = floatformat_classify (fmt, valaddr);
1437 if (kind == float_nan)
1438 {
1439 if (floatformat_is_negative (fmt, valaddr))
1440 fprintf_filtered (stream, "-");
1441 fprintf_filtered (stream, "nan(");
1442 fputs_filtered ("0x", stream);
1443 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1444 fprintf_filtered (stream, ")");
1445 return;
1446 }
1447 else if (kind == float_infinite)
1448 {
1449 if (floatformat_is_negative (fmt, valaddr))
1450 fputs_filtered ("-", stream);
1451 fputs_filtered ("inf", stream);
1452 return;
1453 }
1454 }
1455
1456 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1457 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1458 needs to be used as that takes care of any necessary type
1459 conversions. Such conversions are of course direct to DOUBLEST
1460 and disregard any possible target floating point limitations.
1461 For instance, a u64 would be converted and displayed exactly on a
1462 host with 80 bit DOUBLEST but with loss of information on a host
1463 with 64 bit DOUBLEST. */
1464
1465 doub = unpack_double (type, valaddr, &inv);
1466 if (inv)
1467 {
1468 fprintf_filtered (stream, "<invalid float value>");
1469 return;
1470 }
1471
1472 /* FIXME: kettenis/2001-01-20: The following code makes too much
1473 assumptions about the host and target floating point format. */
1474
1475 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1476 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1477 instead uses the type's length to determine the precision of the
1478 floating-point value being printed. */
1479
1480 if (len < sizeof (double))
1481 fprintf_filtered (stream, "%.9g", (double) doub);
1482 else if (len == sizeof (double))
1483 fprintf_filtered (stream, "%.17g", (double) doub);
1484 else
1485 #ifdef PRINTF_HAS_LONG_DOUBLE
1486 fprintf_filtered (stream, "%.35Lg", doub);
1487 #else
1488 /* This at least wins with values that are representable as
1489 doubles. */
1490 fprintf_filtered (stream, "%.17g", (double) doub);
1491 #endif
1492 }
1493
1494 void
1495 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1496 struct ui_file *stream)
1497 {
1498 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1499 char decstr[MAX_DECIMAL_STRING];
1500 unsigned len = TYPE_LENGTH (type);
1501
1502 decimal_to_string (valaddr, len, byte_order, decstr);
1503 fputs_filtered (decstr, stream);
1504 return;
1505 }
1506
1507 void
1508 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1509 unsigned len, enum bfd_endian byte_order)
1510 {
1511
1512 #define BITS_IN_BYTES 8
1513
1514 const gdb_byte *p;
1515 unsigned int i;
1516 int b;
1517
1518 /* Declared "int" so it will be signed.
1519 This ensures that right shift will shift in zeros. */
1520
1521 const int mask = 0x080;
1522
1523 /* FIXME: We should be not printing leading zeroes in most cases. */
1524
1525 if (byte_order == BFD_ENDIAN_BIG)
1526 {
1527 for (p = valaddr;
1528 p < valaddr + len;
1529 p++)
1530 {
1531 /* Every byte has 8 binary characters; peel off
1532 and print from the MSB end. */
1533
1534 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1535 {
1536 if (*p & (mask >> i))
1537 b = 1;
1538 else
1539 b = 0;
1540
1541 fprintf_filtered (stream, "%1d", b);
1542 }
1543 }
1544 }
1545 else
1546 {
1547 for (p = valaddr + len - 1;
1548 p >= valaddr;
1549 p--)
1550 {
1551 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1552 {
1553 if (*p & (mask >> i))
1554 b = 1;
1555 else
1556 b = 0;
1557
1558 fprintf_filtered (stream, "%1d", b);
1559 }
1560 }
1561 }
1562 }
1563
1564 /* VALADDR points to an integer of LEN bytes.
1565 Print it in octal on stream or format it in buf. */
1566
1567 void
1568 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1569 unsigned len, enum bfd_endian byte_order)
1570 {
1571 const gdb_byte *p;
1572 unsigned char octa1, octa2, octa3, carry;
1573 int cycle;
1574
1575 /* FIXME: We should be not printing leading zeroes in most cases. */
1576
1577
1578 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1579 * the extra bits, which cycle every three bytes:
1580 *
1581 * Byte side: 0 1 2 3
1582 * | | | |
1583 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1584 *
1585 * Octal side: 0 1 carry 3 4 carry ...
1586 *
1587 * Cycle number: 0 1 2
1588 *
1589 * But of course we are printing from the high side, so we have to
1590 * figure out where in the cycle we are so that we end up with no
1591 * left over bits at the end.
1592 */
1593 #define BITS_IN_OCTAL 3
1594 #define HIGH_ZERO 0340
1595 #define LOW_ZERO 0016
1596 #define CARRY_ZERO 0003
1597 #define HIGH_ONE 0200
1598 #define MID_ONE 0160
1599 #define LOW_ONE 0016
1600 #define CARRY_ONE 0001
1601 #define HIGH_TWO 0300
1602 #define MID_TWO 0070
1603 #define LOW_TWO 0007
1604
1605 /* For 32 we start in cycle 2, with two bits and one bit carry;
1606 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1607
1608 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1609 carry = 0;
1610
1611 fputs_filtered ("0", stream);
1612 if (byte_order == BFD_ENDIAN_BIG)
1613 {
1614 for (p = valaddr;
1615 p < valaddr + len;
1616 p++)
1617 {
1618 switch (cycle)
1619 {
1620 case 0:
1621 /* No carry in, carry out two bits. */
1622
1623 octa1 = (HIGH_ZERO & *p) >> 5;
1624 octa2 = (LOW_ZERO & *p) >> 2;
1625 carry = (CARRY_ZERO & *p);
1626 fprintf_filtered (stream, "%o", octa1);
1627 fprintf_filtered (stream, "%o", octa2);
1628 break;
1629
1630 case 1:
1631 /* Carry in two bits, carry out one bit. */
1632
1633 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1634 octa2 = (MID_ONE & *p) >> 4;
1635 octa3 = (LOW_ONE & *p) >> 1;
1636 carry = (CARRY_ONE & *p);
1637 fprintf_filtered (stream, "%o", octa1);
1638 fprintf_filtered (stream, "%o", octa2);
1639 fprintf_filtered (stream, "%o", octa3);
1640 break;
1641
1642 case 2:
1643 /* Carry in one bit, no carry out. */
1644
1645 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1646 octa2 = (MID_TWO & *p) >> 3;
1647 octa3 = (LOW_TWO & *p);
1648 carry = 0;
1649 fprintf_filtered (stream, "%o", octa1);
1650 fprintf_filtered (stream, "%o", octa2);
1651 fprintf_filtered (stream, "%o", octa3);
1652 break;
1653
1654 default:
1655 error (_("Internal error in octal conversion;"));
1656 }
1657
1658 cycle++;
1659 cycle = cycle % BITS_IN_OCTAL;
1660 }
1661 }
1662 else
1663 {
1664 for (p = valaddr + len - 1;
1665 p >= valaddr;
1666 p--)
1667 {
1668 switch (cycle)
1669 {
1670 case 0:
1671 /* Carry out, no carry in */
1672
1673 octa1 = (HIGH_ZERO & *p) >> 5;
1674 octa2 = (LOW_ZERO & *p) >> 2;
1675 carry = (CARRY_ZERO & *p);
1676 fprintf_filtered (stream, "%o", octa1);
1677 fprintf_filtered (stream, "%o", octa2);
1678 break;
1679
1680 case 1:
1681 /* Carry in, carry out */
1682
1683 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1684 octa2 = (MID_ONE & *p) >> 4;
1685 octa3 = (LOW_ONE & *p) >> 1;
1686 carry = (CARRY_ONE & *p);
1687 fprintf_filtered (stream, "%o", octa1);
1688 fprintf_filtered (stream, "%o", octa2);
1689 fprintf_filtered (stream, "%o", octa3);
1690 break;
1691
1692 case 2:
1693 /* Carry in, no carry out */
1694
1695 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1696 octa2 = (MID_TWO & *p) >> 3;
1697 octa3 = (LOW_TWO & *p);
1698 carry = 0;
1699 fprintf_filtered (stream, "%o", octa1);
1700 fprintf_filtered (stream, "%o", octa2);
1701 fprintf_filtered (stream, "%o", octa3);
1702 break;
1703
1704 default:
1705 error (_("Internal error in octal conversion;"));
1706 }
1707
1708 cycle++;
1709 cycle = cycle % BITS_IN_OCTAL;
1710 }
1711 }
1712
1713 }
1714
1715 /* VALADDR points to an integer of LEN bytes.
1716 Print it in decimal on stream or format it in buf. */
1717
1718 void
1719 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1720 unsigned len, enum bfd_endian byte_order)
1721 {
1722 #define TEN 10
1723 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1724 #define CARRY_LEFT( x ) ((x) % TEN)
1725 #define SHIFT( x ) ((x) << 4)
1726 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1727 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1728
1729 const gdb_byte *p;
1730 unsigned char *digits;
1731 int carry;
1732 int decimal_len;
1733 int i, j, decimal_digits;
1734 int dummy;
1735 int flip;
1736
1737 /* Base-ten number is less than twice as many digits
1738 as the base 16 number, which is 2 digits per byte. */
1739
1740 decimal_len = len * 2 * 2;
1741 digits = (unsigned char *) xmalloc (decimal_len);
1742
1743 for (i = 0; i < decimal_len; i++)
1744 {
1745 digits[i] = 0;
1746 }
1747
1748 /* Ok, we have an unknown number of bytes of data to be printed in
1749 * decimal.
1750 *
1751 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1752 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1753 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1754 *
1755 * The trick is that "digits" holds a base-10 number, but sometimes
1756 * the individual digits are > 10.
1757 *
1758 * Outer loop is per nibble (hex digit) of input, from MSD end to
1759 * LSD end.
1760 */
1761 decimal_digits = 0; /* Number of decimal digits so far */
1762 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1763 flip = 0;
1764 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1765 {
1766 /*
1767 * Multiply current base-ten number by 16 in place.
1768 * Each digit was between 0 and 9, now is between
1769 * 0 and 144.
1770 */
1771 for (j = 0; j < decimal_digits; j++)
1772 {
1773 digits[j] = SHIFT (digits[j]);
1774 }
1775
1776 /* Take the next nibble off the input and add it to what
1777 * we've got in the LSB position. Bottom 'digit' is now
1778 * between 0 and 159.
1779 *
1780 * "flip" is used to run this loop twice for each byte.
1781 */
1782 if (flip == 0)
1783 {
1784 /* Take top nibble. */
1785
1786 digits[0] += HIGH_NIBBLE (*p);
1787 flip = 1;
1788 }
1789 else
1790 {
1791 /* Take low nibble and bump our pointer "p". */
1792
1793 digits[0] += LOW_NIBBLE (*p);
1794 if (byte_order == BFD_ENDIAN_BIG)
1795 p++;
1796 else
1797 p--;
1798 flip = 0;
1799 }
1800
1801 /* Re-decimalize. We have to do this often enough
1802 * that we don't overflow, but once per nibble is
1803 * overkill. Easier this way, though. Note that the
1804 * carry is often larger than 10 (e.g. max initial
1805 * carry out of lowest nibble is 15, could bubble all
1806 * the way up greater than 10). So we have to do
1807 * the carrying beyond the last current digit.
1808 */
1809 carry = 0;
1810 for (j = 0; j < decimal_len - 1; j++)
1811 {
1812 digits[j] += carry;
1813
1814 /* "/" won't handle an unsigned char with
1815 * a value that if signed would be negative.
1816 * So extend to longword int via "dummy".
1817 */
1818 dummy = digits[j];
1819 carry = CARRY_OUT (dummy);
1820 digits[j] = CARRY_LEFT (dummy);
1821
1822 if (j >= decimal_digits && carry == 0)
1823 {
1824 /*
1825 * All higher digits are 0 and we
1826 * no longer have a carry.
1827 *
1828 * Note: "j" is 0-based, "decimal_digits" is
1829 * 1-based.
1830 */
1831 decimal_digits = j + 1;
1832 break;
1833 }
1834 }
1835 }
1836
1837 /* Ok, now "digits" is the decimal representation, with
1838 the "decimal_digits" actual digits. Print! */
1839
1840 for (i = decimal_digits - 1; i >= 0; i--)
1841 {
1842 fprintf_filtered (stream, "%1d", digits[i]);
1843 }
1844 xfree (digits);
1845 }
1846
1847 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1848
1849 void
1850 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1851 unsigned len, enum bfd_endian byte_order)
1852 {
1853 const gdb_byte *p;
1854
1855 /* FIXME: We should be not printing leading zeroes in most cases. */
1856
1857 fputs_filtered ("0x", stream);
1858 if (byte_order == BFD_ENDIAN_BIG)
1859 {
1860 for (p = valaddr;
1861 p < valaddr + len;
1862 p++)
1863 {
1864 fprintf_filtered (stream, "%02x", *p);
1865 }
1866 }
1867 else
1868 {
1869 for (p = valaddr + len - 1;
1870 p >= valaddr;
1871 p--)
1872 {
1873 fprintf_filtered (stream, "%02x", *p);
1874 }
1875 }
1876 }
1877
1878 /* VALADDR points to a char integer of LEN bytes.
1879 Print it out in appropriate language form on stream.
1880 Omit any leading zero chars. */
1881
1882 void
1883 print_char_chars (struct ui_file *stream, struct type *type,
1884 const gdb_byte *valaddr,
1885 unsigned len, enum bfd_endian byte_order)
1886 {
1887 const gdb_byte *p;
1888
1889 if (byte_order == BFD_ENDIAN_BIG)
1890 {
1891 p = valaddr;
1892 while (p < valaddr + len - 1 && *p == 0)
1893 ++p;
1894
1895 while (p < valaddr + len)
1896 {
1897 LA_EMIT_CHAR (*p, type, stream, '\'');
1898 ++p;
1899 }
1900 }
1901 else
1902 {
1903 p = valaddr + len - 1;
1904 while (p > valaddr && *p == 0)
1905 --p;
1906
1907 while (p >= valaddr)
1908 {
1909 LA_EMIT_CHAR (*p, type, stream, '\'');
1910 --p;
1911 }
1912 }
1913 }
1914
1915 /* Print function pointer with inferior address ADDRESS onto stdio
1916 stream STREAM. */
1917
1918 void
1919 print_function_pointer_address (const struct value_print_options *options,
1920 struct gdbarch *gdbarch,
1921 CORE_ADDR address,
1922 struct ui_file *stream)
1923 {
1924 CORE_ADDR func_addr
1925 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1926 &current_target);
1927
1928 /* If the function pointer is represented by a description, print
1929 the address of the description. */
1930 if (options->addressprint && func_addr != address)
1931 {
1932 fputs_filtered ("@", stream);
1933 fputs_filtered (paddress (gdbarch, address), stream);
1934 fputs_filtered (": ", stream);
1935 }
1936 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1937 }
1938
1939
1940 /* Print on STREAM using the given OPTIONS the index for the element
1941 at INDEX of an array whose index type is INDEX_TYPE. */
1942
1943 void
1944 maybe_print_array_index (struct type *index_type, LONGEST index,
1945 struct ui_file *stream,
1946 const struct value_print_options *options)
1947 {
1948 struct value *index_value;
1949
1950 if (!options->print_array_indexes)
1951 return;
1952
1953 index_value = value_from_longest (index_type, index);
1954
1955 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1956 }
1957
1958 /* Called by various <lang>_val_print routines to print elements of an
1959 array in the form "<elem1>, <elem2>, <elem3>, ...".
1960
1961 (FIXME?) Assumes array element separator is a comma, which is correct
1962 for all languages currently handled.
1963 (FIXME?) Some languages have a notation for repeated array elements,
1964 perhaps we should try to use that notation when appropriate. */
1965
1966 void
1967 val_print_array_elements (struct type *type,
1968 const gdb_byte *valaddr, LONGEST embedded_offset,
1969 CORE_ADDR address, struct ui_file *stream,
1970 int recurse,
1971 const struct value *val,
1972 const struct value_print_options *options,
1973 unsigned int i)
1974 {
1975 unsigned int things_printed = 0;
1976 unsigned len;
1977 struct type *elttype, *index_type, *base_index_type;
1978 unsigned eltlen;
1979 /* Position of the array element we are examining to see
1980 whether it is repeated. */
1981 unsigned int rep1;
1982 /* Number of repetitions we have detected so far. */
1983 unsigned int reps;
1984 LONGEST low_bound, high_bound;
1985 LONGEST low_pos, high_pos;
1986
1987 elttype = TYPE_TARGET_TYPE (type);
1988 eltlen = type_length_units (check_typedef (elttype));
1989 index_type = TYPE_INDEX_TYPE (type);
1990
1991 if (get_array_bounds (type, &low_bound, &high_bound))
1992 {
1993 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1994 base_index_type = TYPE_TARGET_TYPE (index_type);
1995 else
1996 base_index_type = index_type;
1997
1998 /* Non-contiguous enumerations types can by used as index types
1999 in some languages (e.g. Ada). In this case, the array length
2000 shall be computed from the positions of the first and last
2001 literal in the enumeration type, and not from the values
2002 of these literals. */
2003 if (!discrete_position (base_index_type, low_bound, &low_pos)
2004 || !discrete_position (base_index_type, high_bound, &high_pos))
2005 {
2006 warning (_("unable to get positions in array, use bounds instead"));
2007 low_pos = low_bound;
2008 high_pos = high_bound;
2009 }
2010
2011 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2012 But we have to be a little extra careful, because some languages
2013 such as Ada allow LOW_POS to be greater than HIGH_POS for
2014 empty arrays. In that situation, the array length is just zero,
2015 not negative! */
2016 if (low_pos > high_pos)
2017 len = 0;
2018 else
2019 len = high_pos - low_pos + 1;
2020 }
2021 else
2022 {
2023 warning (_("unable to get bounds of array, assuming null array"));
2024 low_bound = 0;
2025 len = 0;
2026 }
2027
2028 annotate_array_section_begin (i, elttype);
2029
2030 for (; i < len && things_printed < options->print_max; i++)
2031 {
2032 if (i != 0)
2033 {
2034 if (options->prettyformat_arrays)
2035 {
2036 fprintf_filtered (stream, ",\n");
2037 print_spaces_filtered (2 + 2 * recurse, stream);
2038 }
2039 else
2040 {
2041 fprintf_filtered (stream, ", ");
2042 }
2043 }
2044 wrap_here (n_spaces (2 + 2 * recurse));
2045 maybe_print_array_index (index_type, i + low_bound,
2046 stream, options);
2047
2048 rep1 = i + 1;
2049 reps = 1;
2050 /* Only check for reps if repeat_count_threshold is not set to
2051 UINT_MAX (unlimited). */
2052 if (options->repeat_count_threshold < UINT_MAX)
2053 {
2054 while (rep1 < len
2055 && value_contents_eq (val,
2056 embedded_offset + i * eltlen,
2057 val,
2058 (embedded_offset
2059 + rep1 * eltlen),
2060 eltlen))
2061 {
2062 ++reps;
2063 ++rep1;
2064 }
2065 }
2066
2067 if (reps > options->repeat_count_threshold)
2068 {
2069 val_print (elttype, valaddr, embedded_offset + i * eltlen,
2070 address, stream, recurse + 1, val, options,
2071 current_language);
2072 annotate_elt_rep (reps);
2073 fprintf_filtered (stream, " <repeats %u times>", reps);
2074 annotate_elt_rep_end ();
2075
2076 i = rep1 - 1;
2077 things_printed += options->repeat_count_threshold;
2078 }
2079 else
2080 {
2081 val_print (elttype, valaddr, embedded_offset + i * eltlen,
2082 address,
2083 stream, recurse + 1, val, options, current_language);
2084 annotate_elt ();
2085 things_printed++;
2086 }
2087 }
2088 annotate_array_section_end ();
2089 if (i < len)
2090 {
2091 fprintf_filtered (stream, "...");
2092 }
2093 }
2094
2095 /* Read LEN bytes of target memory at address MEMADDR, placing the
2096 results in GDB's memory at MYADDR. Returns a count of the bytes
2097 actually read, and optionally a target_xfer_status value in the
2098 location pointed to by ERRPTR if ERRPTR is non-null. */
2099
2100 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2101 function be eliminated. */
2102
2103 static int
2104 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2105 int len, int *errptr)
2106 {
2107 int nread; /* Number of bytes actually read. */
2108 int errcode; /* Error from last read. */
2109
2110 /* First try a complete read. */
2111 errcode = target_read_memory (memaddr, myaddr, len);
2112 if (errcode == 0)
2113 {
2114 /* Got it all. */
2115 nread = len;
2116 }
2117 else
2118 {
2119 /* Loop, reading one byte at a time until we get as much as we can. */
2120 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2121 {
2122 errcode = target_read_memory (memaddr++, myaddr++, 1);
2123 }
2124 /* If an error, the last read was unsuccessful, so adjust count. */
2125 if (errcode != 0)
2126 {
2127 nread--;
2128 }
2129 }
2130 if (errptr != NULL)
2131 {
2132 *errptr = errcode;
2133 }
2134 return (nread);
2135 }
2136
2137 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2138 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2139 allocated buffer containing the string, which the caller is responsible to
2140 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2141 success, or a target_xfer_status on failure.
2142
2143 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2144 (including eventual NULs in the middle or end of the string).
2145
2146 If LEN is -1, stops at the first null character (not necessarily
2147 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2148 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2149 the string.
2150
2151 Unless an exception is thrown, BUFFER will always be allocated, even on
2152 failure. In this case, some characters might have been read before the
2153 failure happened. Check BYTES_READ to recognize this situation.
2154
2155 Note: There was a FIXME asking to make this code use target_read_string,
2156 but this function is more general (can read past null characters, up to
2157 given LEN). Besides, it is used much more often than target_read_string
2158 so it is more tested. Perhaps callers of target_read_string should use
2159 this function instead? */
2160
2161 int
2162 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2163 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2164 {
2165 int errcode; /* Errno returned from bad reads. */
2166 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2167 gdb_byte *bufptr; /* Pointer to next available byte in
2168 buffer. */
2169 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2170
2171 /* Loop until we either have all the characters, or we encounter
2172 some error, such as bumping into the end of the address space. */
2173
2174 *buffer = NULL;
2175
2176 old_chain = make_cleanup (free_current_contents, buffer);
2177
2178 if (len > 0)
2179 {
2180 /* We want fetchlimit chars, so we might as well read them all in
2181 one operation. */
2182 unsigned int fetchlen = min (len, fetchlimit);
2183
2184 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2185 bufptr = *buffer;
2186
2187 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2188 / width;
2189 addr += nfetch * width;
2190 bufptr += nfetch * width;
2191 }
2192 else if (len == -1)
2193 {
2194 unsigned long bufsize = 0;
2195 unsigned int chunksize; /* Size of each fetch, in chars. */
2196 int found_nul; /* Non-zero if we found the nul char. */
2197 gdb_byte *limit; /* First location past end of fetch buffer. */
2198
2199 found_nul = 0;
2200 /* We are looking for a NUL terminator to end the fetching, so we
2201 might as well read in blocks that are large enough to be efficient,
2202 but not so large as to be slow if fetchlimit happens to be large.
2203 So we choose the minimum of 8 and fetchlimit. We used to use 200
2204 instead of 8 but 200 is way too big for remote debugging over a
2205 serial line. */
2206 chunksize = min (8, fetchlimit);
2207
2208 do
2209 {
2210 QUIT;
2211 nfetch = min (chunksize, fetchlimit - bufsize);
2212
2213 if (*buffer == NULL)
2214 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2215 else
2216 *buffer = (gdb_byte *) xrealloc (*buffer,
2217 (nfetch + bufsize) * width);
2218
2219 bufptr = *buffer + bufsize * width;
2220 bufsize += nfetch;
2221
2222 /* Read as much as we can. */
2223 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2224 / width;
2225
2226 /* Scan this chunk for the null character that terminates the string
2227 to print. If found, we don't need to fetch any more. Note
2228 that bufptr is explicitly left pointing at the next character
2229 after the null character, or at the next character after the end
2230 of the buffer. */
2231
2232 limit = bufptr + nfetch * width;
2233 while (bufptr < limit)
2234 {
2235 unsigned long c;
2236
2237 c = extract_unsigned_integer (bufptr, width, byte_order);
2238 addr += width;
2239 bufptr += width;
2240 if (c == 0)
2241 {
2242 /* We don't care about any error which happened after
2243 the NUL terminator. */
2244 errcode = 0;
2245 found_nul = 1;
2246 break;
2247 }
2248 }
2249 }
2250 while (errcode == 0 /* no error */
2251 && bufptr - *buffer < fetchlimit * width /* no overrun */
2252 && !found_nul); /* haven't found NUL yet */
2253 }
2254 else
2255 { /* Length of string is really 0! */
2256 /* We always allocate *buffer. */
2257 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2258 errcode = 0;
2259 }
2260
2261 /* bufptr and addr now point immediately beyond the last byte which we
2262 consider part of the string (including a '\0' which ends the string). */
2263 *bytes_read = bufptr - *buffer;
2264
2265 QUIT;
2266
2267 discard_cleanups (old_chain);
2268
2269 return errcode;
2270 }
2271
2272 /* Return true if print_wchar can display W without resorting to a
2273 numeric escape, false otherwise. */
2274
2275 static int
2276 wchar_printable (gdb_wchar_t w)
2277 {
2278 return (gdb_iswprint (w)
2279 || w == LCST ('\a') || w == LCST ('\b')
2280 || w == LCST ('\f') || w == LCST ('\n')
2281 || w == LCST ('\r') || w == LCST ('\t')
2282 || w == LCST ('\v'));
2283 }
2284
2285 /* A helper function that converts the contents of STRING to wide
2286 characters and then appends them to OUTPUT. */
2287
2288 static void
2289 append_string_as_wide (const char *string,
2290 struct obstack *output)
2291 {
2292 for (; *string; ++string)
2293 {
2294 gdb_wchar_t w = gdb_btowc (*string);
2295 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2296 }
2297 }
2298
2299 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2300 original (target) bytes representing the character, ORIG_LEN is the
2301 number of valid bytes. WIDTH is the number of bytes in a base
2302 characters of the type. OUTPUT is an obstack to which wide
2303 characters are emitted. QUOTER is a (narrow) character indicating
2304 the style of quotes surrounding the character to be printed.
2305 NEED_ESCAPE is an in/out flag which is used to track numeric
2306 escapes across calls. */
2307
2308 static void
2309 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2310 int orig_len, int width,
2311 enum bfd_endian byte_order,
2312 struct obstack *output,
2313 int quoter, int *need_escapep)
2314 {
2315 int need_escape = *need_escapep;
2316
2317 *need_escapep = 0;
2318
2319 /* iswprint implementation on Windows returns 1 for tab character.
2320 In order to avoid different printout on this host, we explicitly
2321 use wchar_printable function. */
2322 switch (w)
2323 {
2324 case LCST ('\a'):
2325 obstack_grow_wstr (output, LCST ("\\a"));
2326 break;
2327 case LCST ('\b'):
2328 obstack_grow_wstr (output, LCST ("\\b"));
2329 break;
2330 case LCST ('\f'):
2331 obstack_grow_wstr (output, LCST ("\\f"));
2332 break;
2333 case LCST ('\n'):
2334 obstack_grow_wstr (output, LCST ("\\n"));
2335 break;
2336 case LCST ('\r'):
2337 obstack_grow_wstr (output, LCST ("\\r"));
2338 break;
2339 case LCST ('\t'):
2340 obstack_grow_wstr (output, LCST ("\\t"));
2341 break;
2342 case LCST ('\v'):
2343 obstack_grow_wstr (output, LCST ("\\v"));
2344 break;
2345 default:
2346 {
2347 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2348 && w != LCST ('8')
2349 && w != LCST ('9'))))
2350 {
2351 gdb_wchar_t wchar = w;
2352
2353 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2354 obstack_grow_wstr (output, LCST ("\\"));
2355 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2356 }
2357 else
2358 {
2359 int i;
2360
2361 for (i = 0; i + width <= orig_len; i += width)
2362 {
2363 char octal[30];
2364 ULONGEST value;
2365
2366 value = extract_unsigned_integer (&orig[i], width,
2367 byte_order);
2368 /* If the value fits in 3 octal digits, print it that
2369 way. Otherwise, print it as a hex escape. */
2370 if (value <= 0777)
2371 xsnprintf (octal, sizeof (octal), "\\%.3o",
2372 (int) (value & 0777));
2373 else
2374 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2375 append_string_as_wide (octal, output);
2376 }
2377 /* If we somehow have extra bytes, print them now. */
2378 while (i < orig_len)
2379 {
2380 char octal[5];
2381
2382 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2383 append_string_as_wide (octal, output);
2384 ++i;
2385 }
2386
2387 *need_escapep = 1;
2388 }
2389 break;
2390 }
2391 }
2392 }
2393
2394 /* Print the character C on STREAM as part of the contents of a
2395 literal string whose delimiter is QUOTER. ENCODING names the
2396 encoding of C. */
2397
2398 void
2399 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2400 int quoter, const char *encoding)
2401 {
2402 enum bfd_endian byte_order
2403 = gdbarch_byte_order (get_type_arch (type));
2404 struct obstack wchar_buf, output;
2405 struct cleanup *cleanups;
2406 gdb_byte *buf;
2407 struct wchar_iterator *iter;
2408 int need_escape = 0;
2409
2410 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2411 pack_long (buf, type, c);
2412
2413 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2414 encoding, TYPE_LENGTH (type));
2415 cleanups = make_cleanup_wchar_iterator (iter);
2416
2417 /* This holds the printable form of the wchar_t data. */
2418 obstack_init (&wchar_buf);
2419 make_cleanup_obstack_free (&wchar_buf);
2420
2421 while (1)
2422 {
2423 int num_chars;
2424 gdb_wchar_t *chars;
2425 const gdb_byte *buf;
2426 size_t buflen;
2427 int print_escape = 1;
2428 enum wchar_iterate_result result;
2429
2430 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2431 if (num_chars < 0)
2432 break;
2433 if (num_chars > 0)
2434 {
2435 /* If all characters are printable, print them. Otherwise,
2436 we're going to have to print an escape sequence. We
2437 check all characters because we want to print the target
2438 bytes in the escape sequence, and we don't know character
2439 boundaries there. */
2440 int i;
2441
2442 print_escape = 0;
2443 for (i = 0; i < num_chars; ++i)
2444 if (!wchar_printable (chars[i]))
2445 {
2446 print_escape = 1;
2447 break;
2448 }
2449
2450 if (!print_escape)
2451 {
2452 for (i = 0; i < num_chars; ++i)
2453 print_wchar (chars[i], buf, buflen,
2454 TYPE_LENGTH (type), byte_order,
2455 &wchar_buf, quoter, &need_escape);
2456 }
2457 }
2458
2459 /* This handles the NUM_CHARS == 0 case as well. */
2460 if (print_escape)
2461 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2462 byte_order, &wchar_buf, quoter, &need_escape);
2463 }
2464
2465 /* The output in the host encoding. */
2466 obstack_init (&output);
2467 make_cleanup_obstack_free (&output);
2468
2469 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2470 (gdb_byte *) obstack_base (&wchar_buf),
2471 obstack_object_size (&wchar_buf),
2472 sizeof (gdb_wchar_t), &output, translit_char);
2473 obstack_1grow (&output, '\0');
2474
2475 fputs_filtered ((const char *) obstack_base (&output), stream);
2476
2477 do_cleanups (cleanups);
2478 }
2479
2480 /* Return the repeat count of the next character/byte in ITER,
2481 storing the result in VEC. */
2482
2483 static int
2484 count_next_character (struct wchar_iterator *iter,
2485 VEC (converted_character_d) **vec)
2486 {
2487 struct converted_character *current;
2488
2489 if (VEC_empty (converted_character_d, *vec))
2490 {
2491 struct converted_character tmp;
2492 gdb_wchar_t *chars;
2493
2494 tmp.num_chars
2495 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2496 if (tmp.num_chars > 0)
2497 {
2498 gdb_assert (tmp.num_chars < MAX_WCHARS);
2499 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2500 }
2501 VEC_safe_push (converted_character_d, *vec, &tmp);
2502 }
2503
2504 current = VEC_last (converted_character_d, *vec);
2505
2506 /* Count repeated characters or bytes. */
2507 current->repeat_count = 1;
2508 if (current->num_chars == -1)
2509 {
2510 /* EOF */
2511 return -1;
2512 }
2513 else
2514 {
2515 gdb_wchar_t *chars;
2516 struct converted_character d;
2517 int repeat;
2518
2519 d.repeat_count = 0;
2520
2521 while (1)
2522 {
2523 /* Get the next character. */
2524 d.num_chars
2525 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2526
2527 /* If a character was successfully converted, save the character
2528 into the converted character. */
2529 if (d.num_chars > 0)
2530 {
2531 gdb_assert (d.num_chars < MAX_WCHARS);
2532 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2533 }
2534
2535 /* Determine if the current character is the same as this
2536 new character. */
2537 if (d.num_chars == current->num_chars && d.result == current->result)
2538 {
2539 /* There are two cases to consider:
2540
2541 1) Equality of converted character (num_chars > 0)
2542 2) Equality of non-converted character (num_chars == 0) */
2543 if ((current->num_chars > 0
2544 && memcmp (current->chars, d.chars,
2545 WCHAR_BUFLEN (current->num_chars)) == 0)
2546 || (current->num_chars == 0
2547 && current->buflen == d.buflen
2548 && memcmp (current->buf, d.buf, current->buflen) == 0))
2549 ++current->repeat_count;
2550 else
2551 break;
2552 }
2553 else
2554 break;
2555 }
2556
2557 /* Push this next converted character onto the result vector. */
2558 repeat = current->repeat_count;
2559 VEC_safe_push (converted_character_d, *vec, &d);
2560 return repeat;
2561 }
2562 }
2563
2564 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2565 character to use with string output. WIDTH is the size of the output
2566 character type. BYTE_ORDER is the the target byte order. OPTIONS
2567 is the user's print options. */
2568
2569 static void
2570 print_converted_chars_to_obstack (struct obstack *obstack,
2571 VEC (converted_character_d) *chars,
2572 int quote_char, int width,
2573 enum bfd_endian byte_order,
2574 const struct value_print_options *options)
2575 {
2576 unsigned int idx;
2577 struct converted_character *elem;
2578 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2579 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2580 int need_escape = 0;
2581
2582 /* Set the start state. */
2583 idx = 0;
2584 last = state = START;
2585 elem = NULL;
2586
2587 while (1)
2588 {
2589 switch (state)
2590 {
2591 case START:
2592 /* Nothing to do. */
2593 break;
2594
2595 case SINGLE:
2596 {
2597 int j;
2598
2599 /* We are outputting a single character
2600 (< options->repeat_count_threshold). */
2601
2602 if (last != SINGLE)
2603 {
2604 /* We were outputting some other type of content, so we
2605 must output and a comma and a quote. */
2606 if (last != START)
2607 obstack_grow_wstr (obstack, LCST (", "));
2608 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2609 }
2610 /* Output the character. */
2611 for (j = 0; j < elem->repeat_count; ++j)
2612 {
2613 if (elem->result == wchar_iterate_ok)
2614 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2615 byte_order, obstack, quote_char, &need_escape);
2616 else
2617 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2618 byte_order, obstack, quote_char, &need_escape);
2619 }
2620 }
2621 break;
2622
2623 case REPEAT:
2624 {
2625 int j;
2626 char *s;
2627
2628 /* We are outputting a character with a repeat count
2629 greater than options->repeat_count_threshold. */
2630
2631 if (last == SINGLE)
2632 {
2633 /* We were outputting a single string. Terminate the
2634 string. */
2635 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2636 }
2637 if (last != START)
2638 obstack_grow_wstr (obstack, LCST (", "));
2639
2640 /* Output the character and repeat string. */
2641 obstack_grow_wstr (obstack, LCST ("'"));
2642 if (elem->result == wchar_iterate_ok)
2643 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2644 byte_order, obstack, quote_char, &need_escape);
2645 else
2646 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2647 byte_order, obstack, quote_char, &need_escape);
2648 obstack_grow_wstr (obstack, LCST ("'"));
2649 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2650 for (j = 0; s[j]; ++j)
2651 {
2652 gdb_wchar_t w = gdb_btowc (s[j]);
2653 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2654 }
2655 xfree (s);
2656 }
2657 break;
2658
2659 case INCOMPLETE:
2660 /* We are outputting an incomplete sequence. */
2661 if (last == SINGLE)
2662 {
2663 /* If we were outputting a string of SINGLE characters,
2664 terminate the quote. */
2665 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2666 }
2667 if (last != START)
2668 obstack_grow_wstr (obstack, LCST (", "));
2669
2670 /* Output the incomplete sequence string. */
2671 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2672 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2673 obstack, 0, &need_escape);
2674 obstack_grow_wstr (obstack, LCST (">"));
2675
2676 /* We do not attempt to outupt anything after this. */
2677 state = FINISH;
2678 break;
2679
2680 case FINISH:
2681 /* All done. If we were outputting a string of SINGLE
2682 characters, the string must be terminated. Otherwise,
2683 REPEAT and INCOMPLETE are always left properly terminated. */
2684 if (last == SINGLE)
2685 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2686
2687 return;
2688 }
2689
2690 /* Get the next element and state. */
2691 last = state;
2692 if (state != FINISH)
2693 {
2694 elem = VEC_index (converted_character_d, chars, idx++);
2695 switch (elem->result)
2696 {
2697 case wchar_iterate_ok:
2698 case wchar_iterate_invalid:
2699 if (elem->repeat_count > options->repeat_count_threshold)
2700 state = REPEAT;
2701 else
2702 state = SINGLE;
2703 break;
2704
2705 case wchar_iterate_incomplete:
2706 state = INCOMPLETE;
2707 break;
2708
2709 case wchar_iterate_eof:
2710 state = FINISH;
2711 break;
2712 }
2713 }
2714 }
2715 }
2716
2717 /* Print the character string STRING, printing at most LENGTH
2718 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2719 the type of each character. OPTIONS holds the printing options;
2720 printing stops early if the number hits print_max; repeat counts
2721 are printed as appropriate. Print ellipses at the end if we had to
2722 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2723 QUOTE_CHAR is the character to print at each end of the string. If
2724 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2725 omitted. */
2726
2727 void
2728 generic_printstr (struct ui_file *stream, struct type *type,
2729 const gdb_byte *string, unsigned int length,
2730 const char *encoding, int force_ellipses,
2731 int quote_char, int c_style_terminator,
2732 const struct value_print_options *options)
2733 {
2734 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2735 unsigned int i;
2736 int width = TYPE_LENGTH (type);
2737 struct obstack wchar_buf, output;
2738 struct cleanup *cleanup;
2739 struct wchar_iterator *iter;
2740 int finished = 0;
2741 struct converted_character *last;
2742 VEC (converted_character_d) *converted_chars;
2743
2744 if (length == -1)
2745 {
2746 unsigned long current_char = 1;
2747
2748 for (i = 0; current_char; ++i)
2749 {
2750 QUIT;
2751 current_char = extract_unsigned_integer (string + i * width,
2752 width, byte_order);
2753 }
2754 length = i;
2755 }
2756
2757 /* If the string was not truncated due to `set print elements', and
2758 the last byte of it is a null, we don't print that, in
2759 traditional C style. */
2760 if (c_style_terminator
2761 && !force_ellipses
2762 && length > 0
2763 && (extract_unsigned_integer (string + (length - 1) * width,
2764 width, byte_order) == 0))
2765 length--;
2766
2767 if (length == 0)
2768 {
2769 fputs_filtered ("\"\"", stream);
2770 return;
2771 }
2772
2773 /* Arrange to iterate over the characters, in wchar_t form. */
2774 iter = make_wchar_iterator (string, length * width, encoding, width);
2775 cleanup = make_cleanup_wchar_iterator (iter);
2776 converted_chars = NULL;
2777 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2778
2779 /* Convert characters until the string is over or the maximum
2780 number of printed characters has been reached. */
2781 i = 0;
2782 while (i < options->print_max)
2783 {
2784 int r;
2785
2786 QUIT;
2787
2788 /* Grab the next character and repeat count. */
2789 r = count_next_character (iter, &converted_chars);
2790
2791 /* If less than zero, the end of the input string was reached. */
2792 if (r < 0)
2793 break;
2794
2795 /* Otherwise, add the count to the total print count and get
2796 the next character. */
2797 i += r;
2798 }
2799
2800 /* Get the last element and determine if the entire string was
2801 processed. */
2802 last = VEC_last (converted_character_d, converted_chars);
2803 finished = (last->result == wchar_iterate_eof);
2804
2805 /* Ensure that CONVERTED_CHARS is terminated. */
2806 last->result = wchar_iterate_eof;
2807
2808 /* WCHAR_BUF is the obstack we use to represent the string in
2809 wchar_t form. */
2810 obstack_init (&wchar_buf);
2811 make_cleanup_obstack_free (&wchar_buf);
2812
2813 /* Print the output string to the obstack. */
2814 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2815 width, byte_order, options);
2816
2817 if (force_ellipses || !finished)
2818 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2819
2820 /* OUTPUT is where we collect `char's for printing. */
2821 obstack_init (&output);
2822 make_cleanup_obstack_free (&output);
2823
2824 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2825 (gdb_byte *) obstack_base (&wchar_buf),
2826 obstack_object_size (&wchar_buf),
2827 sizeof (gdb_wchar_t), &output, translit_char);
2828 obstack_1grow (&output, '\0');
2829
2830 fputs_filtered ((const char *) obstack_base (&output), stream);
2831
2832 do_cleanups (cleanup);
2833 }
2834
2835 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2836 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2837 stops at the first null byte, otherwise printing proceeds (including null
2838 bytes) until either print_max or LEN characters have been printed,
2839 whichever is smaller. ENCODING is the name of the string's
2840 encoding. It can be NULL, in which case the target encoding is
2841 assumed. */
2842
2843 int
2844 val_print_string (struct type *elttype, const char *encoding,
2845 CORE_ADDR addr, int len,
2846 struct ui_file *stream,
2847 const struct value_print_options *options)
2848 {
2849 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2850 int err; /* Non-zero if we got a bad read. */
2851 int found_nul; /* Non-zero if we found the nul char. */
2852 unsigned int fetchlimit; /* Maximum number of chars to print. */
2853 int bytes_read;
2854 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2855 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2856 struct gdbarch *gdbarch = get_type_arch (elttype);
2857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2858 int width = TYPE_LENGTH (elttype);
2859
2860 /* First we need to figure out the limit on the number of characters we are
2861 going to attempt to fetch and print. This is actually pretty simple. If
2862 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2863 LEN is -1, then the limit is print_max. This is true regardless of
2864 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2865 because finding the null byte (or available memory) is what actually
2866 limits the fetch. */
2867
2868 fetchlimit = (len == -1 ? options->print_max : min (len,
2869 options->print_max));
2870
2871 err = read_string (addr, len, width, fetchlimit, byte_order,
2872 &buffer, &bytes_read);
2873 old_chain = make_cleanup (xfree, buffer);
2874
2875 addr += bytes_read;
2876
2877 /* We now have either successfully filled the buffer to fetchlimit,
2878 or terminated early due to an error or finding a null char when
2879 LEN is -1. */
2880
2881 /* Determine found_nul by looking at the last character read. */
2882 found_nul = 0;
2883 if (bytes_read >= width)
2884 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2885 byte_order) == 0;
2886 if (len == -1 && !found_nul)
2887 {
2888 gdb_byte *peekbuf;
2889
2890 /* We didn't find a NUL terminator we were looking for. Attempt
2891 to peek at the next character. If not successful, or it is not
2892 a null byte, then force ellipsis to be printed. */
2893
2894 peekbuf = (gdb_byte *) alloca (width);
2895
2896 if (target_read_memory (addr, peekbuf, width) == 0
2897 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2898 force_ellipsis = 1;
2899 }
2900 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2901 {
2902 /* Getting an error when we have a requested length, or fetching less
2903 than the number of characters actually requested, always make us
2904 print ellipsis. */
2905 force_ellipsis = 1;
2906 }
2907
2908 /* If we get an error before fetching anything, don't print a string.
2909 But if we fetch something and then get an error, print the string
2910 and then the error message. */
2911 if (err == 0 || bytes_read > 0)
2912 {
2913 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2914 encoding, force_ellipsis, options);
2915 }
2916
2917 if (err != 0)
2918 {
2919 char *str;
2920
2921 str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2922 make_cleanup (xfree, str);
2923
2924 fprintf_filtered (stream, "<error: ");
2925 fputs_filtered (str, stream);
2926 fprintf_filtered (stream, ">");
2927 }
2928
2929 gdb_flush (stream);
2930 do_cleanups (old_chain);
2931
2932 return (bytes_read / width);
2933 }
2934 \f
2935
2936 /* The 'set input-radix' command writes to this auxiliary variable.
2937 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2938 it is left unchanged. */
2939
2940 static unsigned input_radix_1 = 10;
2941
2942 /* Validate an input or output radix setting, and make sure the user
2943 knows what they really did here. Radix setting is confusing, e.g.
2944 setting the input radix to "10" never changes it! */
2945
2946 static void
2947 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2948 {
2949 set_input_radix_1 (from_tty, input_radix_1);
2950 }
2951
2952 static void
2953 set_input_radix_1 (int from_tty, unsigned radix)
2954 {
2955 /* We don't currently disallow any input radix except 0 or 1, which don't
2956 make any mathematical sense. In theory, we can deal with any input
2957 radix greater than 1, even if we don't have unique digits for every
2958 value from 0 to radix-1, but in practice we lose on large radix values.
2959 We should either fix the lossage or restrict the radix range more.
2960 (FIXME). */
2961
2962 if (radix < 2)
2963 {
2964 input_radix_1 = input_radix;
2965 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2966 radix);
2967 }
2968 input_radix_1 = input_radix = radix;
2969 if (from_tty)
2970 {
2971 printf_filtered (_("Input radix now set to "
2972 "decimal %u, hex %x, octal %o.\n"),
2973 radix, radix, radix);
2974 }
2975 }
2976
2977 /* The 'set output-radix' command writes to this auxiliary variable.
2978 If the requested radix is valid, OUTPUT_RADIX is updated,
2979 otherwise, it is left unchanged. */
2980
2981 static unsigned output_radix_1 = 10;
2982
2983 static void
2984 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2985 {
2986 set_output_radix_1 (from_tty, output_radix_1);
2987 }
2988
2989 static void
2990 set_output_radix_1 (int from_tty, unsigned radix)
2991 {
2992 /* Validate the radix and disallow ones that we aren't prepared to
2993 handle correctly, leaving the radix unchanged. */
2994 switch (radix)
2995 {
2996 case 16:
2997 user_print_options.output_format = 'x'; /* hex */
2998 break;
2999 case 10:
3000 user_print_options.output_format = 0; /* decimal */
3001 break;
3002 case 8:
3003 user_print_options.output_format = 'o'; /* octal */
3004 break;
3005 default:
3006 output_radix_1 = output_radix;
3007 error (_("Unsupported output radix ``decimal %u''; "
3008 "output radix unchanged."),
3009 radix);
3010 }
3011 output_radix_1 = output_radix = radix;
3012 if (from_tty)
3013 {
3014 printf_filtered (_("Output radix now set to "
3015 "decimal %u, hex %x, octal %o.\n"),
3016 radix, radix, radix);
3017 }
3018 }
3019
3020 /* Set both the input and output radix at once. Try to set the output radix
3021 first, since it has the most restrictive range. An radix that is valid as
3022 an output radix is also valid as an input radix.
3023
3024 It may be useful to have an unusual input radix. If the user wishes to
3025 set an input radix that is not valid as an output radix, he needs to use
3026 the 'set input-radix' command. */
3027
3028 static void
3029 set_radix (char *arg, int from_tty)
3030 {
3031 unsigned radix;
3032
3033 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3034 set_output_radix_1 (0, radix);
3035 set_input_radix_1 (0, radix);
3036 if (from_tty)
3037 {
3038 printf_filtered (_("Input and output radices now set to "
3039 "decimal %u, hex %x, octal %o.\n"),
3040 radix, radix, radix);
3041 }
3042 }
3043
3044 /* Show both the input and output radices. */
3045
3046 static void
3047 show_radix (char *arg, int from_tty)
3048 {
3049 if (from_tty)
3050 {
3051 if (input_radix == output_radix)
3052 {
3053 printf_filtered (_("Input and output radices set to "
3054 "decimal %u, hex %x, octal %o.\n"),
3055 input_radix, input_radix, input_radix);
3056 }
3057 else
3058 {
3059 printf_filtered (_("Input radix set to decimal "
3060 "%u, hex %x, octal %o.\n"),
3061 input_radix, input_radix, input_radix);
3062 printf_filtered (_("Output radix set to decimal "
3063 "%u, hex %x, octal %o.\n"),
3064 output_radix, output_radix, output_radix);
3065 }
3066 }
3067 }
3068 \f
3069
3070 static void
3071 set_print (char *arg, int from_tty)
3072 {
3073 printf_unfiltered (
3074 "\"set print\" must be followed by the name of a print subcommand.\n");
3075 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3076 }
3077
3078 static void
3079 show_print (char *args, int from_tty)
3080 {
3081 cmd_show_list (showprintlist, from_tty, "");
3082 }
3083
3084 static void
3085 set_print_raw (char *arg, int from_tty)
3086 {
3087 printf_unfiltered (
3088 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3089 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3090 }
3091
3092 static void
3093 show_print_raw (char *args, int from_tty)
3094 {
3095 cmd_show_list (showprintrawlist, from_tty, "");
3096 }
3097
3098 \f
3099 void
3100 _initialize_valprint (void)
3101 {
3102 add_prefix_cmd ("print", no_class, set_print,
3103 _("Generic command for setting how things print."),
3104 &setprintlist, "set print ", 0, &setlist);
3105 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3106 /* Prefer set print to set prompt. */
3107 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3108
3109 add_prefix_cmd ("print", no_class, show_print,
3110 _("Generic command for showing print settings."),
3111 &showprintlist, "show print ", 0, &showlist);
3112 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3113 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3114
3115 add_prefix_cmd ("raw", no_class, set_print_raw,
3116 _("\
3117 Generic command for setting what things to print in \"raw\" mode."),
3118 &setprintrawlist, "set print raw ", 0, &setprintlist);
3119 add_prefix_cmd ("raw", no_class, show_print_raw,
3120 _("Generic command for showing \"print raw\" settings."),
3121 &showprintrawlist, "show print raw ", 0, &showprintlist);
3122
3123 add_setshow_uinteger_cmd ("elements", no_class,
3124 &user_print_options.print_max, _("\
3125 Set limit on string chars or array elements to print."), _("\
3126 Show limit on string chars or array elements to print."), _("\
3127 \"set print elements unlimited\" causes there to be no limit."),
3128 NULL,
3129 show_print_max,
3130 &setprintlist, &showprintlist);
3131
3132 add_setshow_boolean_cmd ("null-stop", no_class,
3133 &user_print_options.stop_print_at_null, _("\
3134 Set printing of char arrays to stop at first null char."), _("\
3135 Show printing of char arrays to stop at first null char."), NULL,
3136 NULL,
3137 show_stop_print_at_null,
3138 &setprintlist, &showprintlist);
3139
3140 add_setshow_uinteger_cmd ("repeats", no_class,
3141 &user_print_options.repeat_count_threshold, _("\
3142 Set threshold for repeated print elements."), _("\
3143 Show threshold for repeated print elements."), _("\
3144 \"set print repeats unlimited\" causes all elements to be individually printed."),
3145 NULL,
3146 show_repeat_count_threshold,
3147 &setprintlist, &showprintlist);
3148
3149 add_setshow_boolean_cmd ("pretty", class_support,
3150 &user_print_options.prettyformat_structs, _("\
3151 Set pretty formatting of structures."), _("\
3152 Show pretty formatting of structures."), NULL,
3153 NULL,
3154 show_prettyformat_structs,
3155 &setprintlist, &showprintlist);
3156
3157 add_setshow_boolean_cmd ("union", class_support,
3158 &user_print_options.unionprint, _("\
3159 Set printing of unions interior to structures."), _("\
3160 Show printing of unions interior to structures."), NULL,
3161 NULL,
3162 show_unionprint,
3163 &setprintlist, &showprintlist);
3164
3165 add_setshow_boolean_cmd ("array", class_support,
3166 &user_print_options.prettyformat_arrays, _("\
3167 Set pretty formatting of arrays."), _("\
3168 Show pretty formatting of arrays."), NULL,
3169 NULL,
3170 show_prettyformat_arrays,
3171 &setprintlist, &showprintlist);
3172
3173 add_setshow_boolean_cmd ("address", class_support,
3174 &user_print_options.addressprint, _("\
3175 Set printing of addresses."), _("\
3176 Show printing of addresses."), NULL,
3177 NULL,
3178 show_addressprint,
3179 &setprintlist, &showprintlist);
3180
3181 add_setshow_boolean_cmd ("symbol", class_support,
3182 &user_print_options.symbol_print, _("\
3183 Set printing of symbol names when printing pointers."), _("\
3184 Show printing of symbol names when printing pointers."),
3185 NULL, NULL,
3186 show_symbol_print,
3187 &setprintlist, &showprintlist);
3188
3189 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3190 _("\
3191 Set default input radix for entering numbers."), _("\
3192 Show default input radix for entering numbers."), NULL,
3193 set_input_radix,
3194 show_input_radix,
3195 &setlist, &showlist);
3196
3197 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3198 _("\
3199 Set default output radix for printing of values."), _("\
3200 Show default output radix for printing of values."), NULL,
3201 set_output_radix,
3202 show_output_radix,
3203 &setlist, &showlist);
3204
3205 /* The "set radix" and "show radix" commands are special in that
3206 they are like normal set and show commands but allow two normally
3207 independent variables to be either set or shown with a single
3208 command. So the usual deprecated_add_set_cmd() and [deleted]
3209 add_show_from_set() commands aren't really appropriate. */
3210 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3211 longer true - show can display anything. */
3212 add_cmd ("radix", class_support, set_radix, _("\
3213 Set default input and output number radices.\n\
3214 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3215 Without an argument, sets both radices back to the default value of 10."),
3216 &setlist);
3217 add_cmd ("radix", class_support, show_radix, _("\
3218 Show the default input and output number radices.\n\
3219 Use 'show input-radix' or 'show output-radix' to independently show each."),
3220 &showlist);
3221
3222 add_setshow_boolean_cmd ("array-indexes", class_support,
3223 &user_print_options.print_array_indexes, _("\
3224 Set printing of array indexes."), _("\
3225 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3226 &setprintlist, &showprintlist);
3227 }