9990d432e3506804d2198a55502a3d0ed462a74c
[binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdbsupport/gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43 #include "c-lang.h"
44 #include "cp-abi.h"
45 #include "inferior.h"
46 #include "gdbsupport/selftest.h"
47 #include "selftest-arch.h"
48
49 /* Maximum number of wchars returned from wchar_iterate. */
50 #define MAX_WCHARS 4
51
52 /* A convenience macro to compute the size of a wchar_t buffer containing X
53 characters. */
54 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
55
56 /* Character buffer size saved while iterating over wchars. */
57 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
58
59 /* A structure to encapsulate state information from iterated
60 character conversions. */
61 struct converted_character
62 {
63 /* The number of characters converted. */
64 int num_chars;
65
66 /* The result of the conversion. See charset.h for more. */
67 enum wchar_iterate_result result;
68
69 /* The (saved) converted character(s). */
70 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
71
72 /* The first converted target byte. */
73 const gdb_byte *buf;
74
75 /* The number of bytes converted. */
76 size_t buflen;
77
78 /* How many times this character(s) is repeated. */
79 int repeat_count;
80 };
81
82 /* Command lists for set/show print raw. */
83 struct cmd_list_element *setprintrawlist;
84 struct cmd_list_element *showprintrawlist;
85
86 /* Prototypes for local functions */
87
88 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
89 int len, int *errptr);
90
91 static void set_input_radix_1 (int, unsigned);
92
93 static void set_output_radix_1 (int, unsigned);
94
95 static void val_print_type_code_flags (struct type *type,
96 struct value *original_value,
97 int embedded_offset,
98 struct ui_file *stream);
99
100 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
101 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
102
103 struct value_print_options user_print_options =
104 {
105 Val_prettyformat_default, /* prettyformat */
106 0, /* prettyformat_arrays */
107 0, /* prettyformat_structs */
108 0, /* vtblprint */
109 1, /* unionprint */
110 1, /* addressprint */
111 0, /* objectprint */
112 PRINT_MAX_DEFAULT, /* print_max */
113 10, /* repeat_count_threshold */
114 0, /* output_format */
115 0, /* format */
116 1, /* memory_tag_violations */
117 0, /* stop_print_at_null */
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
121 1, /* pascal_static_field_print */
122 0, /* raw */
123 0, /* summary */
124 1, /* symbol_print */
125 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
126 1 /* finish_print */
127 };
128
129 /* Initialize *OPTS to be a copy of the user print options. */
130 void
131 get_user_print_options (struct value_print_options *opts)
132 {
133 *opts = user_print_options;
134 }
135
136 /* Initialize *OPTS to be a copy of the user print options, but with
137 pretty-formatting disabled. */
138 void
139 get_no_prettyformat_print_options (struct value_print_options *opts)
140 {
141 *opts = user_print_options;
142 opts->prettyformat = Val_no_prettyformat;
143 }
144
145 /* Initialize *OPTS to be a copy of the user print options, but using
146 FORMAT as the formatting option. */
147 void
148 get_formatted_print_options (struct value_print_options *opts,
149 char format)
150 {
151 *opts = user_print_options;
152 opts->format = format;
153 }
154
155 static void
156 show_print_max (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 gdb_printf (file,
160 _("Limit on string chars or array "
161 "elements to print is %s.\n"),
162 value);
163 }
164
165
166 /* Default input and output radixes, and output format letter. */
167
168 unsigned input_radix = 10;
169 static void
170 show_input_radix (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 gdb_printf (file,
174 _("Default input radix for entering numbers is %s.\n"),
175 value);
176 }
177
178 unsigned output_radix = 10;
179 static void
180 show_output_radix (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 gdb_printf (file,
184 _("Default output radix for printing of values is %s.\n"),
185 value);
186 }
187
188 /* By default we print arrays without printing the index of each element in
189 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
190
191 static void
192 show_print_array_indexes (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 gdb_printf (file, _("Printing of array indexes is %s.\n"), value);
196 }
197
198 /* Print repeat counts if there are more than this many repetitions of an
199 element in an array. Referenced by the low level language dependent
200 print routines. */
201
202 static void
203 show_repeat_count_threshold (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 gdb_printf (file, _("Threshold for repeated print elements is %s.\n"),
207 value);
208 }
209
210 /* If nonzero, prints memory tag violations for pointers. */
211
212 static void
213 show_memory_tag_violations (struct ui_file *file, int from_tty,
214 struct cmd_list_element *c, const char *value)
215 {
216 gdb_printf (file,
217 _("Printing of memory tag violations is %s.\n"),
218 value);
219 }
220
221 /* If nonzero, stops printing of char arrays at first null. */
222
223 static void
224 show_stop_print_at_null (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226 {
227 gdb_printf (file,
228 _("Printing of char arrays to stop "
229 "at first null char is %s.\n"),
230 value);
231 }
232
233 /* Controls pretty printing of structures. */
234
235 static void
236 show_prettyformat_structs (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 gdb_printf (file, _("Pretty formatting of structures is %s.\n"), value);
240 }
241
242 /* Controls pretty printing of arrays. */
243
244 static void
245 show_prettyformat_arrays (struct ui_file *file, int from_tty,
246 struct cmd_list_element *c, const char *value)
247 {
248 gdb_printf (file, _("Pretty formatting of arrays is %s.\n"), value);
249 }
250
251 /* If nonzero, causes unions inside structures or other unions to be
252 printed. */
253
254 static void
255 show_unionprint (struct ui_file *file, int from_tty,
256 struct cmd_list_element *c, const char *value)
257 {
258 gdb_printf (file,
259 _("Printing of unions interior to structures is %s.\n"),
260 value);
261 }
262
263 /* If nonzero, causes machine addresses to be printed in certain contexts. */
264
265 static void
266 show_addressprint (struct ui_file *file, int from_tty,
267 struct cmd_list_element *c, const char *value)
268 {
269 gdb_printf (file, _("Printing of addresses is %s.\n"), value);
270 }
271
272 static void
273 show_symbol_print (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275 {
276 gdb_printf (file,
277 _("Printing of symbols when printing pointers is %s.\n"),
278 value);
279 }
280
281 \f
282
283 /* A helper function for val_print. When printing in "summary" mode,
284 we want to print scalar arguments, but not aggregate arguments.
285 This function distinguishes between the two. */
286
287 int
288 val_print_scalar_type_p (struct type *type)
289 {
290 type = check_typedef (type);
291 while (TYPE_IS_REFERENCE (type))
292 {
293 type = TYPE_TARGET_TYPE (type);
294 type = check_typedef (type);
295 }
296 switch (type->code ())
297 {
298 case TYPE_CODE_ARRAY:
299 case TYPE_CODE_STRUCT:
300 case TYPE_CODE_UNION:
301 case TYPE_CODE_SET:
302 case TYPE_CODE_STRING:
303 return 0;
304 default:
305 return 1;
306 }
307 }
308
309 /* A helper function for val_print. When printing with limited depth we
310 want to print string and scalar arguments, but not aggregate arguments.
311 This function distinguishes between the two. */
312
313 static bool
314 val_print_scalar_or_string_type_p (struct type *type,
315 const struct language_defn *language)
316 {
317 return (val_print_scalar_type_p (type)
318 || language->is_string_type_p (type));
319 }
320
321 /* See valprint.h. */
322
323 int
324 valprint_check_validity (struct ui_file *stream,
325 struct type *type,
326 LONGEST embedded_offset,
327 const struct value *val)
328 {
329 type = check_typedef (type);
330
331 if (type_not_associated (type))
332 {
333 val_print_not_associated (stream);
334 return 0;
335 }
336
337 if (type_not_allocated (type))
338 {
339 val_print_not_allocated (stream);
340 return 0;
341 }
342
343 if (type->code () != TYPE_CODE_UNION
344 && type->code () != TYPE_CODE_STRUCT
345 && type->code () != TYPE_CODE_ARRAY)
346 {
347 if (value_bits_any_optimized_out (val,
348 TARGET_CHAR_BIT * embedded_offset,
349 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
350 {
351 val_print_optimized_out (val, stream);
352 return 0;
353 }
354
355 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
356 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
357 {
358 const int is_ref = type->code () == TYPE_CODE_REF;
359 int ref_is_addressable = 0;
360
361 if (is_ref)
362 {
363 const struct value *deref_val = coerce_ref_if_computed (val);
364
365 if (deref_val != NULL)
366 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
367 }
368
369 if (!is_ref || !ref_is_addressable)
370 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
371 stream);
372
373 /* C++ references should be valid even if they're synthetic. */
374 return is_ref;
375 }
376
377 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
378 {
379 val_print_unavailable (stream);
380 return 0;
381 }
382 }
383
384 return 1;
385 }
386
387 void
388 val_print_optimized_out (const struct value *val, struct ui_file *stream)
389 {
390 if (val != NULL && value_lval_const (val) == lval_register)
391 val_print_not_saved (stream);
392 else
393 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
394 }
395
396 void
397 val_print_not_saved (struct ui_file *stream)
398 {
399 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
400 }
401
402 void
403 val_print_unavailable (struct ui_file *stream)
404 {
405 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
406 }
407
408 void
409 val_print_invalid_address (struct ui_file *stream)
410 {
411 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
412 }
413
414 /* Print a pointer based on the type of its target.
415
416 Arguments to this functions are roughly the same as those in
417 generic_val_print. A difference is that ADDRESS is the address to print,
418 with embedded_offset already added. ELTTYPE represents
419 the pointed type after check_typedef. */
420
421 static void
422 print_unpacked_pointer (struct type *type, struct type *elttype,
423 CORE_ADDR address, struct ui_file *stream,
424 const struct value_print_options *options)
425 {
426 struct gdbarch *gdbarch = type->arch ();
427
428 if (elttype->code () == TYPE_CODE_FUNC)
429 {
430 /* Try to print what function it points to. */
431 print_function_pointer_address (options, gdbarch, address, stream);
432 return;
433 }
434
435 if (options->symbol_print)
436 print_address_demangle (options, gdbarch, address, stream, demangle);
437 else if (options->addressprint)
438 gdb_puts (paddress (gdbarch, address), stream);
439 }
440
441 /* generic_val_print helper for TYPE_CODE_ARRAY. */
442
443 static void
444 generic_val_print_array (struct value *val,
445 struct ui_file *stream, int recurse,
446 const struct value_print_options *options,
447 const struct
448 generic_val_print_decorations *decorations)
449 {
450 struct type *type = check_typedef (value_type (val));
451 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
452 struct type *elttype = check_typedef (unresolved_elttype);
453
454 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
455 {
456 LONGEST low_bound, high_bound;
457
458 if (!get_array_bounds (type, &low_bound, &high_bound))
459 error (_("Could not determine the array high bound"));
460
461 gdb_puts (decorations->array_start, stream);
462 value_print_array_elements (val, stream, recurse, options, 0);
463 gdb_puts (decorations->array_end, stream);
464 }
465 else
466 {
467 /* Array of unspecified length: treat like pointer to first elt. */
468 print_unpacked_pointer (type, elttype, value_address (val),
469 stream, options);
470 }
471
472 }
473
474 /* generic_value_print helper for TYPE_CODE_PTR. */
475
476 static void
477 generic_value_print_ptr (struct value *val, struct ui_file *stream,
478 const struct value_print_options *options)
479 {
480
481 if (options->format && options->format != 's')
482 value_print_scalar_formatted (val, options, 0, stream);
483 else
484 {
485 struct type *type = check_typedef (value_type (val));
486 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
487 const gdb_byte *valaddr = value_contents_for_printing (val).data ();
488 CORE_ADDR addr = unpack_pointer (type, valaddr);
489
490 print_unpacked_pointer (type, elttype, addr, stream, options);
491 }
492 }
493
494
495 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
496
497 static void
498 print_ref_address (struct type *type, const gdb_byte *address_buffer,
499 int embedded_offset, struct ui_file *stream)
500 {
501 struct gdbarch *gdbarch = type->arch ();
502
503 if (address_buffer != NULL)
504 {
505 CORE_ADDR address
506 = extract_typed_address (address_buffer + embedded_offset, type);
507
508 gdb_printf (stream, "@");
509 gdb_puts (paddress (gdbarch, address), stream);
510 }
511 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
512 }
513
514 /* If VAL is addressable, return the value contents buffer of a value that
515 represents a pointer to VAL. Otherwise return NULL. */
516
517 static const gdb_byte *
518 get_value_addr_contents (struct value *deref_val)
519 {
520 gdb_assert (deref_val != NULL);
521
522 if (value_lval_const (deref_val) == lval_memory)
523 return value_contents_for_printing_const (value_addr (deref_val)).data ();
524 else
525 {
526 /* We have a non-addressable value, such as a DW_AT_const_value. */
527 return NULL;
528 }
529 }
530
531 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
532
533 static void
534 generic_val_print_ref (struct type *type,
535 int embedded_offset, struct ui_file *stream, int recurse,
536 struct value *original_value,
537 const struct value_print_options *options)
538 {
539 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
540 struct value *deref_val = NULL;
541 const int value_is_synthetic
542 = value_bits_synthetic_pointer (original_value,
543 TARGET_CHAR_BIT * embedded_offset,
544 TARGET_CHAR_BIT * TYPE_LENGTH (type));
545 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
546 || options->deref_ref);
547 const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
548 const gdb_byte *valaddr = value_contents_for_printing (original_value).data ();
549
550 if (must_coerce_ref && type_is_defined)
551 {
552 deref_val = coerce_ref_if_computed (original_value);
553
554 if (deref_val != NULL)
555 {
556 /* More complicated computed references are not supported. */
557 gdb_assert (embedded_offset == 0);
558 }
559 else
560 deref_val = value_at (TYPE_TARGET_TYPE (type),
561 unpack_pointer (type, valaddr + embedded_offset));
562 }
563 /* Else, original_value isn't a synthetic reference or we don't have to print
564 the reference's contents.
565
566 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
567 cause original_value to be a not_lval instead of an lval_computed,
568 which will make value_bits_synthetic_pointer return false.
569 This happens because if options->objectprint is true, c_value_print will
570 overwrite original_value's contents with the result of coercing
571 the reference through value_addr, and then set its type back to
572 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
573 we can simply treat it as non-synthetic and move on. */
574
575 if (options->addressprint)
576 {
577 const gdb_byte *address = (value_is_synthetic && type_is_defined
578 ? get_value_addr_contents (deref_val)
579 : valaddr);
580
581 print_ref_address (type, address, embedded_offset, stream);
582
583 if (options->deref_ref)
584 gdb_puts (": ", stream);
585 }
586
587 if (options->deref_ref)
588 {
589 if (type_is_defined)
590 common_val_print (deref_val, stream, recurse, options,
591 current_language);
592 else
593 gdb_puts ("???", stream);
594 }
595 }
596
597 /* Helper function for generic_val_print_enum.
598 This is also used to print enums in TYPE_CODE_FLAGS values. */
599
600 static void
601 generic_val_print_enum_1 (struct type *type, LONGEST val,
602 struct ui_file *stream)
603 {
604 unsigned int i;
605 unsigned int len;
606
607 len = type->num_fields ();
608 for (i = 0; i < len; i++)
609 {
610 QUIT;
611 if (val == type->field (i).loc_enumval ())
612 {
613 break;
614 }
615 }
616 if (i < len)
617 {
618 fputs_styled (type->field (i).name (), variable_name_style.style (),
619 stream);
620 }
621 else if (type->is_flag_enum ())
622 {
623 int first = 1;
624
625 /* We have a "flag" enum, so we try to decompose it into pieces as
626 appropriate. The enum may have multiple enumerators representing
627 the same bit, in which case we choose to only print the first one
628 we find. */
629 for (i = 0; i < len; ++i)
630 {
631 QUIT;
632
633 ULONGEST enumval = type->field (i).loc_enumval ();
634 int nbits = count_one_bits_ll (enumval);
635
636 gdb_assert (nbits == 0 || nbits == 1);
637
638 if ((val & enumval) != 0)
639 {
640 if (first)
641 {
642 gdb_puts ("(", stream);
643 first = 0;
644 }
645 else
646 gdb_puts (" | ", stream);
647
648 val &= ~type->field (i).loc_enumval ();
649 fputs_styled (type->field (i).name (),
650 variable_name_style.style (), stream);
651 }
652 }
653
654 if (val != 0)
655 {
656 /* There are leftover bits, print them. */
657 if (first)
658 gdb_puts ("(", stream);
659 else
660 gdb_puts (" | ", stream);
661
662 gdb_puts ("unknown: 0x", stream);
663 print_longest (stream, 'x', 0, val);
664 gdb_puts (")", stream);
665 }
666 else if (first)
667 {
668 /* Nothing has been printed and the value is 0, the enum value must
669 have been 0. */
670 gdb_puts ("0", stream);
671 }
672 else
673 {
674 /* Something has been printed, close the parenthesis. */
675 gdb_puts (")", stream);
676 }
677 }
678 else
679 print_longest (stream, 'd', 0, val);
680 }
681
682 /* generic_val_print helper for TYPE_CODE_ENUM. */
683
684 static void
685 generic_val_print_enum (struct type *type,
686 int embedded_offset, struct ui_file *stream,
687 struct value *original_value,
688 const struct value_print_options *options)
689 {
690 LONGEST val;
691 struct gdbarch *gdbarch = type->arch ();
692 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
693
694 gdb_assert (!options->format);
695
696 const gdb_byte *valaddr = value_contents_for_printing (original_value).data ();
697
698 val = unpack_long (type, valaddr + embedded_offset * unit_size);
699
700 generic_val_print_enum_1 (type, val, stream);
701 }
702
703 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
704
705 static void
706 generic_val_print_func (struct type *type,
707 int embedded_offset, CORE_ADDR address,
708 struct ui_file *stream,
709 struct value *original_value,
710 const struct value_print_options *options)
711 {
712 struct gdbarch *gdbarch = type->arch ();
713
714 gdb_assert (!options->format);
715
716 /* FIXME, we should consider, at least for ANSI C language,
717 eliminating the distinction made between FUNCs and POINTERs to
718 FUNCs. */
719 gdb_printf (stream, "{");
720 type_print (type, "", stream, -1);
721 gdb_printf (stream, "} ");
722 /* Try to print what function it points to, and its address. */
723 print_address_demangle (options, gdbarch, address, stream, demangle);
724 }
725
726 /* generic_value_print helper for TYPE_CODE_BOOL. */
727
728 static void
729 generic_value_print_bool
730 (struct value *value, struct ui_file *stream,
731 const struct value_print_options *options,
732 const struct generic_val_print_decorations *decorations)
733 {
734 if (options->format || options->output_format)
735 {
736 struct value_print_options opts = *options;
737 opts.format = (options->format ? options->format
738 : options->output_format);
739 value_print_scalar_formatted (value, &opts, 0, stream);
740 }
741 else
742 {
743 const gdb_byte *valaddr = value_contents_for_printing (value).data ();
744 struct type *type = check_typedef (value_type (value));
745 LONGEST val = unpack_long (type, valaddr);
746 if (val == 0)
747 gdb_puts (decorations->false_name, stream);
748 else if (val == 1)
749 gdb_puts (decorations->true_name, stream);
750 else
751 print_longest (stream, 'd', 0, val);
752 }
753 }
754
755 /* generic_value_print helper for TYPE_CODE_INT. */
756
757 static void
758 generic_value_print_int (struct value *val, struct ui_file *stream,
759 const struct value_print_options *options)
760 {
761 struct value_print_options opts = *options;
762
763 opts.format = (options->format ? options->format
764 : options->output_format);
765 value_print_scalar_formatted (val, &opts, 0, stream);
766 }
767
768 /* generic_value_print helper for TYPE_CODE_CHAR. */
769
770 static void
771 generic_value_print_char (struct value *value, struct ui_file *stream,
772 const struct value_print_options *options)
773 {
774 if (options->format || options->output_format)
775 {
776 struct value_print_options opts = *options;
777
778 opts.format = (options->format ? options->format
779 : options->output_format);
780 value_print_scalar_formatted (value, &opts, 0, stream);
781 }
782 else
783 {
784 struct type *unresolved_type = value_type (value);
785 struct type *type = check_typedef (unresolved_type);
786 const gdb_byte *valaddr = value_contents_for_printing (value).data ();
787
788 LONGEST val = unpack_long (type, valaddr);
789 if (type->is_unsigned ())
790 gdb_printf (stream, "%u", (unsigned int) val);
791 else
792 gdb_printf (stream, "%d", (int) val);
793 gdb_puts (" ", stream);
794 current_language->printchar (val, unresolved_type, stream);
795 }
796 }
797
798 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
799
800 static void
801 generic_val_print_float (struct type *type, struct ui_file *stream,
802 struct value *original_value,
803 const struct value_print_options *options)
804 {
805 gdb_assert (!options->format);
806
807 const gdb_byte *valaddr = value_contents_for_printing (original_value).data ();
808
809 print_floating (valaddr, type, stream);
810 }
811
812 /* generic_val_print helper for TYPE_CODE_FIXED_POINT. */
813
814 static void
815 generic_val_print_fixed_point (struct value *val, struct ui_file *stream,
816 const struct value_print_options *options)
817 {
818 if (options->format)
819 value_print_scalar_formatted (val, options, 0, stream);
820 else
821 {
822 struct type *type = value_type (val);
823
824 const gdb_byte *valaddr = value_contents_for_printing (val).data ();
825 gdb_mpf f;
826
827 f.read_fixed_point (gdb::make_array_view (valaddr, TYPE_LENGTH (type)),
828 type_byte_order (type), type->is_unsigned (),
829 type->fixed_point_scaling_factor ());
830
831 const char *fmt = TYPE_LENGTH (type) < 4 ? "%.11Fg" : "%.17Fg";
832 std::string str = gmp_string_printf (fmt, f.val);
833 gdb_printf (stream, "%s", str.c_str ());
834 }
835 }
836
837 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
838
839 static void
840 generic_value_print_complex (struct value *val, struct ui_file *stream,
841 const struct value_print_options *options,
842 const struct generic_val_print_decorations
843 *decorations)
844 {
845 gdb_printf (stream, "%s", decorations->complex_prefix);
846
847 struct value *real_part = value_real_part (val);
848 value_print_scalar_formatted (real_part, options, 0, stream);
849 gdb_printf (stream, "%s", decorations->complex_infix);
850
851 struct value *imag_part = value_imaginary_part (val);
852 value_print_scalar_formatted (imag_part, options, 0, stream);
853 gdb_printf (stream, "%s", decorations->complex_suffix);
854 }
855
856 /* generic_value_print helper for TYPE_CODE_MEMBERPTR. */
857
858 static void
859 generic_value_print_memberptr
860 (struct value *val, struct ui_file *stream,
861 int recurse,
862 const struct value_print_options *options,
863 const struct generic_val_print_decorations *decorations)
864 {
865 if (!options->format)
866 {
867 /* Member pointers are essentially specific to C++, and so if we
868 encounter one, we should print it according to C++ rules. */
869 struct type *type = check_typedef (value_type (val));
870 const gdb_byte *valaddr = value_contents_for_printing (val).data ();
871 cp_print_class_member (valaddr, type, stream, "&");
872 }
873 else
874 generic_value_print (val, stream, recurse, options, decorations);
875 }
876
877 /* See valprint.h. */
878
879 void
880 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
881 const struct value_print_options *options,
882 const struct generic_val_print_decorations *decorations)
883 {
884 struct type *type = value_type (val);
885
886 type = check_typedef (type);
887
888 if (is_fixed_point_type (type))
889 type = type->fixed_point_type_base_type ();
890
891 /* Widen a subrange to its target type, then use that type's
892 printer. */
893 while (type->code () == TYPE_CODE_RANGE)
894 {
895 type = check_typedef (TYPE_TARGET_TYPE (type));
896 val = value_cast (type, val);
897 }
898
899 switch (type->code ())
900 {
901 case TYPE_CODE_ARRAY:
902 generic_val_print_array (val, stream, recurse, options, decorations);
903 break;
904
905 case TYPE_CODE_MEMBERPTR:
906 generic_value_print_memberptr (val, stream, recurse, options,
907 decorations);
908 break;
909
910 case TYPE_CODE_PTR:
911 generic_value_print_ptr (val, stream, options);
912 break;
913
914 case TYPE_CODE_REF:
915 case TYPE_CODE_RVALUE_REF:
916 generic_val_print_ref (type, 0, stream, recurse,
917 val, options);
918 break;
919
920 case TYPE_CODE_ENUM:
921 if (options->format)
922 value_print_scalar_formatted (val, options, 0, stream);
923 else
924 generic_val_print_enum (type, 0, stream, val, options);
925 break;
926
927 case TYPE_CODE_FLAGS:
928 if (options->format)
929 value_print_scalar_formatted (val, options, 0, stream);
930 else
931 val_print_type_code_flags (type, val, 0, stream);
932 break;
933
934 case TYPE_CODE_FUNC:
935 case TYPE_CODE_METHOD:
936 if (options->format)
937 value_print_scalar_formatted (val, options, 0, stream);
938 else
939 generic_val_print_func (type, 0, value_address (val), stream,
940 val, options);
941 break;
942
943 case TYPE_CODE_BOOL:
944 generic_value_print_bool (val, stream, options, decorations);
945 break;
946
947 case TYPE_CODE_INT:
948 generic_value_print_int (val, stream, options);
949 break;
950
951 case TYPE_CODE_CHAR:
952 generic_value_print_char (val, stream, options);
953 break;
954
955 case TYPE_CODE_FLT:
956 case TYPE_CODE_DECFLOAT:
957 if (options->format)
958 value_print_scalar_formatted (val, options, 0, stream);
959 else
960 generic_val_print_float (type, stream, val, options);
961 break;
962
963 case TYPE_CODE_FIXED_POINT:
964 generic_val_print_fixed_point (val, stream, options);
965 break;
966
967 case TYPE_CODE_VOID:
968 gdb_puts (decorations->void_name, stream);
969 break;
970
971 case TYPE_CODE_ERROR:
972 gdb_printf (stream, "%s", TYPE_ERROR_NAME (type));
973 break;
974
975 case TYPE_CODE_UNDEF:
976 /* This happens (without TYPE_STUB set) on systems which don't use
977 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
978 and no complete type for struct foo in that file. */
979 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
980 break;
981
982 case TYPE_CODE_COMPLEX:
983 generic_value_print_complex (val, stream, options, decorations);
984 break;
985
986 case TYPE_CODE_METHODPTR:
987 cplus_print_method_ptr (value_contents_for_printing (val).data (), type,
988 stream);
989 break;
990
991 case TYPE_CODE_UNION:
992 case TYPE_CODE_STRUCT:
993 default:
994 error (_("Unhandled type code %d in symbol table."),
995 type->code ());
996 }
997 }
998
999 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1000 to OPTIONS.
1001
1002 This is a preferable interface to val_print, above, because it uses
1003 GDB's value mechanism. */
1004
1005 void
1006 common_val_print (struct value *value, struct ui_file *stream, int recurse,
1007 const struct value_print_options *options,
1008 const struct language_defn *language)
1009 {
1010 if (language->la_language == language_ada)
1011 /* The value might have a dynamic type, which would cause trouble
1012 below when trying to extract the value contents (since the value
1013 size is determined from the type size which is unknown). So
1014 get a fixed representation of our value. */
1015 value = ada_to_fixed_value (value);
1016
1017 if (value_lazy (value))
1018 value_fetch_lazy (value);
1019
1020 struct value_print_options local_opts = *options;
1021 struct type *type = value_type (value);
1022 struct type *real_type = check_typedef (type);
1023
1024 if (local_opts.prettyformat == Val_prettyformat_default)
1025 local_opts.prettyformat = (local_opts.prettyformat_structs
1026 ? Val_prettyformat : Val_no_prettyformat);
1027
1028 QUIT;
1029
1030 /* Ensure that the type is complete and not just a stub. If the type is
1031 only a stub and we can't find and substitute its complete type, then
1032 print appropriate string and return. */
1033
1034 if (real_type->is_stub ())
1035 {
1036 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1037 return;
1038 }
1039
1040 if (!valprint_check_validity (stream, real_type, 0, value))
1041 return;
1042
1043 if (!options->raw)
1044 {
1045 if (apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
1046 language))
1047 return;
1048 }
1049
1050 /* Handle summary mode. If the value is a scalar, print it;
1051 otherwise, print an ellipsis. */
1052 if (options->summary && !val_print_scalar_type_p (type))
1053 {
1054 gdb_printf (stream, "...");
1055 return;
1056 }
1057
1058 /* If this value is too deep then don't print it. */
1059 if (!val_print_scalar_or_string_type_p (type, language)
1060 && val_print_check_max_depth (stream, recurse, options, language))
1061 return;
1062
1063 try
1064 {
1065 language->value_print_inner (value, stream, recurse, &local_opts);
1066 }
1067 catch (const gdb_exception_error &except)
1068 {
1069 fprintf_styled (stream, metadata_style.style (),
1070 _("<error reading variable: %s>"), except.what ());
1071 }
1072 }
1073
1074 /* See valprint.h. */
1075
1076 bool
1077 val_print_check_max_depth (struct ui_file *stream, int recurse,
1078 const struct value_print_options *options,
1079 const struct language_defn *language)
1080 {
1081 if (options->max_depth > -1 && recurse >= options->max_depth)
1082 {
1083 gdb_assert (language->struct_too_deep_ellipsis () != NULL);
1084 gdb_puts (language->struct_too_deep_ellipsis (), stream);
1085 return true;
1086 }
1087
1088 return false;
1089 }
1090
1091 /* Check whether the value VAL is printable. Return 1 if it is;
1092 return 0 and print an appropriate error message to STREAM according to
1093 OPTIONS if it is not. */
1094
1095 static int
1096 value_check_printable (struct value *val, struct ui_file *stream,
1097 const struct value_print_options *options)
1098 {
1099 if (val == 0)
1100 {
1101 fprintf_styled (stream, metadata_style.style (),
1102 _("<address of value unknown>"));
1103 return 0;
1104 }
1105
1106 if (value_entirely_optimized_out (val))
1107 {
1108 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1109 gdb_printf (stream, "...");
1110 else
1111 val_print_optimized_out (val, stream);
1112 return 0;
1113 }
1114
1115 if (value_entirely_unavailable (val))
1116 {
1117 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1118 gdb_printf (stream, "...");
1119 else
1120 val_print_unavailable (stream);
1121 return 0;
1122 }
1123
1124 if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
1125 {
1126 fprintf_styled (stream, metadata_style.style (),
1127 _("<internal function %s>"),
1128 value_internal_function_name (val));
1129 return 0;
1130 }
1131
1132 if (type_not_associated (value_type (val)))
1133 {
1134 val_print_not_associated (stream);
1135 return 0;
1136 }
1137
1138 if (type_not_allocated (value_type (val)))
1139 {
1140 val_print_not_allocated (stream);
1141 return 0;
1142 }
1143
1144 return 1;
1145 }
1146
1147 /* See valprint.h. */
1148
1149 void
1150 common_val_print_checked (struct value *val, struct ui_file *stream,
1151 int recurse,
1152 const struct value_print_options *options,
1153 const struct language_defn *language)
1154 {
1155 if (!value_check_printable (val, stream, options))
1156 return;
1157 common_val_print (val, stream, recurse, options, language);
1158 }
1159
1160 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1161 is printed using the current_language syntax. */
1162
1163 void
1164 value_print (struct value *val, struct ui_file *stream,
1165 const struct value_print_options *options)
1166 {
1167 scoped_value_mark free_values;
1168
1169 if (!value_check_printable (val, stream, options))
1170 return;
1171
1172 if (!options->raw)
1173 {
1174 int r
1175 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1176 current_language);
1177
1178 if (r)
1179 return;
1180 }
1181
1182 current_language->value_print (val, stream, options);
1183 }
1184
1185 static void
1186 val_print_type_code_flags (struct type *type, struct value *original_value,
1187 int embedded_offset, struct ui_file *stream)
1188 {
1189 const gdb_byte *valaddr = (value_contents_for_printing (original_value).data ()
1190 + embedded_offset);
1191 ULONGEST val = unpack_long (type, valaddr);
1192 int field, nfields = type->num_fields ();
1193 struct gdbarch *gdbarch = type->arch ();
1194 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1195
1196 gdb_puts ("[", stream);
1197 for (field = 0; field < nfields; field++)
1198 {
1199 if (type->field (field).name ()[0] != '\0')
1200 {
1201 struct type *field_type = type->field (field).type ();
1202
1203 if (field_type == bool_type
1204 /* We require boolean types here to be one bit wide. This is a
1205 problematic place to notify the user of an internal error
1206 though. Instead just fall through and print the field as an
1207 int. */
1208 && TYPE_FIELD_BITSIZE (type, field) == 1)
1209 {
1210 if (val & ((ULONGEST)1 << type->field (field).loc_bitpos ()))
1211 gdb_printf
1212 (stream, " %ps",
1213 styled_string (variable_name_style.style (),
1214 type->field (field).name ()));
1215 }
1216 else
1217 {
1218 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1219 ULONGEST field_val = val >> type->field (field).loc_bitpos ();
1220
1221 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1222 field_val &= ((ULONGEST) 1 << field_len) - 1;
1223 gdb_printf (stream, " %ps=",
1224 styled_string (variable_name_style.style (),
1225 type->field (field).name ()));
1226 if (field_type->code () == TYPE_CODE_ENUM)
1227 generic_val_print_enum_1 (field_type, field_val, stream);
1228 else
1229 print_longest (stream, 'd', 0, field_val);
1230 }
1231 }
1232 }
1233 gdb_puts (" ]", stream);
1234 }
1235
1236 /* See valprint.h. */
1237
1238 void
1239 value_print_scalar_formatted (struct value *val,
1240 const struct value_print_options *options,
1241 int size,
1242 struct ui_file *stream)
1243 {
1244 struct type *type = check_typedef (value_type (val));
1245
1246 gdb_assert (val != NULL);
1247
1248 /* If we get here with a string format, try again without it. Go
1249 all the way back to the language printers, which may call us
1250 again. */
1251 if (options->format == 's')
1252 {
1253 struct value_print_options opts = *options;
1254 opts.format = 0;
1255 opts.deref_ref = 0;
1256 common_val_print (val, stream, 0, &opts, current_language);
1257 return;
1258 }
1259
1260 /* value_contents_for_printing fetches all VAL's contents. They are
1261 needed to check whether VAL is optimized-out or unavailable
1262 below. */
1263 const gdb_byte *valaddr = value_contents_for_printing (val).data ();
1264
1265 /* A scalar object that does not have all bits available can't be
1266 printed, because all bits contribute to its representation. */
1267 if (value_bits_any_optimized_out (val, 0,
1268 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1269 val_print_optimized_out (val, stream);
1270 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1271 val_print_unavailable (stream);
1272 else
1273 print_scalar_formatted (valaddr, type, options, size, stream);
1274 }
1275
1276 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1277 The raison d'etre of this function is to consolidate printing of
1278 LONG_LONG's into this one function. The format chars b,h,w,g are
1279 from print_scalar_formatted(). Numbers are printed using C
1280 format.
1281
1282 USE_C_FORMAT means to use C format in all cases. Without it,
1283 'o' and 'x' format do not include the standard C radix prefix
1284 (leading 0 or 0x).
1285
1286 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1287 and was intended to request formatting according to the current
1288 language and would be used for most integers that GDB prints. The
1289 exceptional cases were things like protocols where the format of
1290 the integer is a protocol thing, not a user-visible thing). The
1291 parameter remains to preserve the information of what things might
1292 be printed with language-specific format, should we ever resurrect
1293 that capability. */
1294
1295 void
1296 print_longest (struct ui_file *stream, int format, int use_c_format,
1297 LONGEST val_long)
1298 {
1299 const char *val;
1300
1301 switch (format)
1302 {
1303 case 'd':
1304 val = int_string (val_long, 10, 1, 0, 1); break;
1305 case 'u':
1306 val = int_string (val_long, 10, 0, 0, 1); break;
1307 case 'x':
1308 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1309 case 'b':
1310 val = int_string (val_long, 16, 0, 2, 1); break;
1311 case 'h':
1312 val = int_string (val_long, 16, 0, 4, 1); break;
1313 case 'w':
1314 val = int_string (val_long, 16, 0, 8, 1); break;
1315 case 'g':
1316 val = int_string (val_long, 16, 0, 16, 1); break;
1317 break;
1318 case 'o':
1319 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1320 default:
1321 internal_error (__FILE__, __LINE__,
1322 _("failed internal consistency check"));
1323 }
1324 gdb_puts (val, stream);
1325 }
1326
1327 /* This used to be a macro, but I don't think it is called often enough
1328 to merit such treatment. */
1329 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1330 arguments to a function, number in a value history, register number, etc.)
1331 where the value must not be larger than can fit in an int. */
1332
1333 int
1334 longest_to_int (LONGEST arg)
1335 {
1336 /* Let the compiler do the work. */
1337 int rtnval = (int) arg;
1338
1339 /* Check for overflows or underflows. */
1340 if (sizeof (LONGEST) > sizeof (int))
1341 {
1342 if (rtnval != arg)
1343 {
1344 error (_("Value out of range."));
1345 }
1346 }
1347 return (rtnval);
1348 }
1349
1350 /* Print a floating point value of floating-point type TYPE,
1351 pointed to in GDB by VALADDR, on STREAM. */
1352
1353 void
1354 print_floating (const gdb_byte *valaddr, struct type *type,
1355 struct ui_file *stream)
1356 {
1357 std::string str = target_float_to_string (valaddr, type);
1358 gdb_puts (str.c_str (), stream);
1359 }
1360
1361 void
1362 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1363 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1364 {
1365 const gdb_byte *p;
1366 unsigned int i;
1367 int b;
1368 bool seen_a_one = false;
1369
1370 /* Declared "int" so it will be signed.
1371 This ensures that right shift will shift in zeros. */
1372
1373 const int mask = 0x080;
1374
1375 if (byte_order == BFD_ENDIAN_BIG)
1376 {
1377 for (p = valaddr;
1378 p < valaddr + len;
1379 p++)
1380 {
1381 /* Every byte has 8 binary characters; peel off
1382 and print from the MSB end. */
1383
1384 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1385 {
1386 if (*p & (mask >> i))
1387 b = '1';
1388 else
1389 b = '0';
1390
1391 if (zero_pad || seen_a_one || b == '1')
1392 gdb_putc (b, stream);
1393 if (b == '1')
1394 seen_a_one = true;
1395 }
1396 }
1397 }
1398 else
1399 {
1400 for (p = valaddr + len - 1;
1401 p >= valaddr;
1402 p--)
1403 {
1404 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1405 {
1406 if (*p & (mask >> i))
1407 b = '1';
1408 else
1409 b = '0';
1410
1411 if (zero_pad || seen_a_one || b == '1')
1412 gdb_putc (b, stream);
1413 if (b == '1')
1414 seen_a_one = true;
1415 }
1416 }
1417 }
1418
1419 /* When not zero-padding, ensure that something is printed when the
1420 input is 0. */
1421 if (!zero_pad && !seen_a_one)
1422 gdb_putc ('0', stream);
1423 }
1424
1425 /* A helper for print_octal_chars that emits a single octal digit,
1426 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1427
1428 static void
1429 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1430 {
1431 if (*seen_a_one || digit != 0)
1432 gdb_printf (stream, "%o", digit);
1433 if (digit != 0)
1434 *seen_a_one = true;
1435 }
1436
1437 /* VALADDR points to an integer of LEN bytes.
1438 Print it in octal on stream or format it in buf. */
1439
1440 void
1441 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1442 unsigned len, enum bfd_endian byte_order)
1443 {
1444 const gdb_byte *p;
1445 unsigned char octa1, octa2, octa3, carry;
1446 int cycle;
1447
1448 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1449 * the extra bits, which cycle every three bytes:
1450 *
1451 * Byte side: 0 1 2 3
1452 * | | | |
1453 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1454 *
1455 * Octal side: 0 1 carry 3 4 carry ...
1456 *
1457 * Cycle number: 0 1 2
1458 *
1459 * But of course we are printing from the high side, so we have to
1460 * figure out where in the cycle we are so that we end up with no
1461 * left over bits at the end.
1462 */
1463 #define BITS_IN_OCTAL 3
1464 #define HIGH_ZERO 0340
1465 #define LOW_ZERO 0034
1466 #define CARRY_ZERO 0003
1467 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1468 "cycle zero constants are wrong");
1469 #define HIGH_ONE 0200
1470 #define MID_ONE 0160
1471 #define LOW_ONE 0016
1472 #define CARRY_ONE 0001
1473 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1474 "cycle one constants are wrong");
1475 #define HIGH_TWO 0300
1476 #define MID_TWO 0070
1477 #define LOW_TWO 0007
1478 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1479 "cycle two constants are wrong");
1480
1481 /* For 32 we start in cycle 2, with two bits and one bit carry;
1482 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1483
1484 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1485 carry = 0;
1486
1487 gdb_puts ("0", stream);
1488 bool seen_a_one = false;
1489 if (byte_order == BFD_ENDIAN_BIG)
1490 {
1491 for (p = valaddr;
1492 p < valaddr + len;
1493 p++)
1494 {
1495 switch (cycle)
1496 {
1497 case 0:
1498 /* No carry in, carry out two bits. */
1499
1500 octa1 = (HIGH_ZERO & *p) >> 5;
1501 octa2 = (LOW_ZERO & *p) >> 2;
1502 carry = (CARRY_ZERO & *p);
1503 emit_octal_digit (stream, &seen_a_one, octa1);
1504 emit_octal_digit (stream, &seen_a_one, octa2);
1505 break;
1506
1507 case 1:
1508 /* Carry in two bits, carry out one bit. */
1509
1510 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1511 octa2 = (MID_ONE & *p) >> 4;
1512 octa3 = (LOW_ONE & *p) >> 1;
1513 carry = (CARRY_ONE & *p);
1514 emit_octal_digit (stream, &seen_a_one, octa1);
1515 emit_octal_digit (stream, &seen_a_one, octa2);
1516 emit_octal_digit (stream, &seen_a_one, octa3);
1517 break;
1518
1519 case 2:
1520 /* Carry in one bit, no carry out. */
1521
1522 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1523 octa2 = (MID_TWO & *p) >> 3;
1524 octa3 = (LOW_TWO & *p);
1525 carry = 0;
1526 emit_octal_digit (stream, &seen_a_one, octa1);
1527 emit_octal_digit (stream, &seen_a_one, octa2);
1528 emit_octal_digit (stream, &seen_a_one, octa3);
1529 break;
1530
1531 default:
1532 error (_("Internal error in octal conversion;"));
1533 }
1534
1535 cycle++;
1536 cycle = cycle % BITS_IN_OCTAL;
1537 }
1538 }
1539 else
1540 {
1541 for (p = valaddr + len - 1;
1542 p >= valaddr;
1543 p--)
1544 {
1545 switch (cycle)
1546 {
1547 case 0:
1548 /* Carry out, no carry in */
1549
1550 octa1 = (HIGH_ZERO & *p) >> 5;
1551 octa2 = (LOW_ZERO & *p) >> 2;
1552 carry = (CARRY_ZERO & *p);
1553 emit_octal_digit (stream, &seen_a_one, octa1);
1554 emit_octal_digit (stream, &seen_a_one, octa2);
1555 break;
1556
1557 case 1:
1558 /* Carry in, carry out */
1559
1560 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1561 octa2 = (MID_ONE & *p) >> 4;
1562 octa3 = (LOW_ONE & *p) >> 1;
1563 carry = (CARRY_ONE & *p);
1564 emit_octal_digit (stream, &seen_a_one, octa1);
1565 emit_octal_digit (stream, &seen_a_one, octa2);
1566 emit_octal_digit (stream, &seen_a_one, octa3);
1567 break;
1568
1569 case 2:
1570 /* Carry in, no carry out */
1571
1572 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1573 octa2 = (MID_TWO & *p) >> 3;
1574 octa3 = (LOW_TWO & *p);
1575 carry = 0;
1576 emit_octal_digit (stream, &seen_a_one, octa1);
1577 emit_octal_digit (stream, &seen_a_one, octa2);
1578 emit_octal_digit (stream, &seen_a_one, octa3);
1579 break;
1580
1581 default:
1582 error (_("Internal error in octal conversion;"));
1583 }
1584
1585 cycle++;
1586 cycle = cycle % BITS_IN_OCTAL;
1587 }
1588 }
1589
1590 }
1591
1592 /* Possibly negate the integer represented by BYTES. It contains LEN
1593 bytes in the specified byte order. If the integer is negative,
1594 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1595 nothing and return false. */
1596
1597 static bool
1598 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1599 enum bfd_endian byte_order,
1600 gdb::byte_vector *out_vec)
1601 {
1602 gdb_byte sign_byte;
1603 gdb_assert (len > 0);
1604 if (byte_order == BFD_ENDIAN_BIG)
1605 sign_byte = bytes[0];
1606 else
1607 sign_byte = bytes[len - 1];
1608 if ((sign_byte & 0x80) == 0)
1609 return false;
1610
1611 out_vec->resize (len);
1612
1613 /* Compute -x == 1 + ~x. */
1614 if (byte_order == BFD_ENDIAN_LITTLE)
1615 {
1616 unsigned carry = 1;
1617 for (unsigned i = 0; i < len; ++i)
1618 {
1619 unsigned tem = (0xff & ~bytes[i]) + carry;
1620 (*out_vec)[i] = tem & 0xff;
1621 carry = tem / 256;
1622 }
1623 }
1624 else
1625 {
1626 unsigned carry = 1;
1627 for (unsigned i = len; i > 0; --i)
1628 {
1629 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1630 (*out_vec)[i - 1] = tem & 0xff;
1631 carry = tem / 256;
1632 }
1633 }
1634
1635 return true;
1636 }
1637
1638 /* VALADDR points to an integer of LEN bytes.
1639 Print it in decimal on stream or format it in buf. */
1640
1641 void
1642 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1643 unsigned len, bool is_signed,
1644 enum bfd_endian byte_order)
1645 {
1646 #define TEN 10
1647 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1648 #define CARRY_LEFT( x ) ((x) % TEN)
1649 #define SHIFT( x ) ((x) << 4)
1650 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1651 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1652
1653 const gdb_byte *p;
1654 int carry;
1655 int decimal_len;
1656 int i, j, decimal_digits;
1657 int dummy;
1658 int flip;
1659
1660 gdb::byte_vector negated_bytes;
1661 if (is_signed
1662 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1663 {
1664 gdb_puts ("-", stream);
1665 valaddr = negated_bytes.data ();
1666 }
1667
1668 /* Base-ten number is less than twice as many digits
1669 as the base 16 number, which is 2 digits per byte. */
1670
1671 decimal_len = len * 2 * 2;
1672 std::vector<unsigned char> digits (decimal_len, 0);
1673
1674 /* Ok, we have an unknown number of bytes of data to be printed in
1675 * decimal.
1676 *
1677 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1678 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1679 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1680 *
1681 * The trick is that "digits" holds a base-10 number, but sometimes
1682 * the individual digits are > 10.
1683 *
1684 * Outer loop is per nibble (hex digit) of input, from MSD end to
1685 * LSD end.
1686 */
1687 decimal_digits = 0; /* Number of decimal digits so far */
1688 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1689 flip = 0;
1690 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1691 {
1692 /*
1693 * Multiply current base-ten number by 16 in place.
1694 * Each digit was between 0 and 9, now is between
1695 * 0 and 144.
1696 */
1697 for (j = 0; j < decimal_digits; j++)
1698 {
1699 digits[j] = SHIFT (digits[j]);
1700 }
1701
1702 /* Take the next nibble off the input and add it to what
1703 * we've got in the LSB position. Bottom 'digit' is now
1704 * between 0 and 159.
1705 *
1706 * "flip" is used to run this loop twice for each byte.
1707 */
1708 if (flip == 0)
1709 {
1710 /* Take top nibble. */
1711
1712 digits[0] += HIGH_NIBBLE (*p);
1713 flip = 1;
1714 }
1715 else
1716 {
1717 /* Take low nibble and bump our pointer "p". */
1718
1719 digits[0] += LOW_NIBBLE (*p);
1720 if (byte_order == BFD_ENDIAN_BIG)
1721 p++;
1722 else
1723 p--;
1724 flip = 0;
1725 }
1726
1727 /* Re-decimalize. We have to do this often enough
1728 * that we don't overflow, but once per nibble is
1729 * overkill. Easier this way, though. Note that the
1730 * carry is often larger than 10 (e.g. max initial
1731 * carry out of lowest nibble is 15, could bubble all
1732 * the way up greater than 10). So we have to do
1733 * the carrying beyond the last current digit.
1734 */
1735 carry = 0;
1736 for (j = 0; j < decimal_len - 1; j++)
1737 {
1738 digits[j] += carry;
1739
1740 /* "/" won't handle an unsigned char with
1741 * a value that if signed would be negative.
1742 * So extend to longword int via "dummy".
1743 */
1744 dummy = digits[j];
1745 carry = CARRY_OUT (dummy);
1746 digits[j] = CARRY_LEFT (dummy);
1747
1748 if (j >= decimal_digits && carry == 0)
1749 {
1750 /*
1751 * All higher digits are 0 and we
1752 * no longer have a carry.
1753 *
1754 * Note: "j" is 0-based, "decimal_digits" is
1755 * 1-based.
1756 */
1757 decimal_digits = j + 1;
1758 break;
1759 }
1760 }
1761 }
1762
1763 /* Ok, now "digits" is the decimal representation, with
1764 the "decimal_digits" actual digits. Print! */
1765
1766 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1767 ;
1768
1769 for (; i >= 0; i--)
1770 {
1771 gdb_printf (stream, "%1d", digits[i]);
1772 }
1773 }
1774
1775 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1776
1777 void
1778 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1779 unsigned len, enum bfd_endian byte_order,
1780 bool zero_pad)
1781 {
1782 const gdb_byte *p;
1783
1784 gdb_puts ("0x", stream);
1785 if (byte_order == BFD_ENDIAN_BIG)
1786 {
1787 p = valaddr;
1788
1789 if (!zero_pad)
1790 {
1791 /* Strip leading 0 bytes, but be sure to leave at least a
1792 single byte at the end. */
1793 for (; p < valaddr + len - 1 && !*p; ++p)
1794 ;
1795 }
1796
1797 const gdb_byte *first = p;
1798 for (;
1799 p < valaddr + len;
1800 p++)
1801 {
1802 /* When not zero-padding, use a different format for the
1803 very first byte printed. */
1804 if (!zero_pad && p == first)
1805 gdb_printf (stream, "%x", *p);
1806 else
1807 gdb_printf (stream, "%02x", *p);
1808 }
1809 }
1810 else
1811 {
1812 p = valaddr + len - 1;
1813
1814 if (!zero_pad)
1815 {
1816 /* Strip leading 0 bytes, but be sure to leave at least a
1817 single byte at the end. */
1818 for (; p >= valaddr + 1 && !*p; --p)
1819 ;
1820 }
1821
1822 const gdb_byte *first = p;
1823 for (;
1824 p >= valaddr;
1825 p--)
1826 {
1827 /* When not zero-padding, use a different format for the
1828 very first byte printed. */
1829 if (!zero_pad && p == first)
1830 gdb_printf (stream, "%x", *p);
1831 else
1832 gdb_printf (stream, "%02x", *p);
1833 }
1834 }
1835 }
1836
1837 /* Print function pointer with inferior address ADDRESS onto stdio
1838 stream STREAM. */
1839
1840 void
1841 print_function_pointer_address (const struct value_print_options *options,
1842 struct gdbarch *gdbarch,
1843 CORE_ADDR address,
1844 struct ui_file *stream)
1845 {
1846 CORE_ADDR func_addr = gdbarch_convert_from_func_ptr_addr
1847 (gdbarch, address, current_inferior ()->top_target ());
1848
1849 /* If the function pointer is represented by a description, print
1850 the address of the description. */
1851 if (options->addressprint && func_addr != address)
1852 {
1853 gdb_puts ("@", stream);
1854 gdb_puts (paddress (gdbarch, address), stream);
1855 gdb_puts (": ", stream);
1856 }
1857 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1858 }
1859
1860
1861 /* Print on STREAM using the given OPTIONS the index for the element
1862 at INDEX of an array whose index type is INDEX_TYPE. */
1863
1864 void
1865 maybe_print_array_index (struct type *index_type, LONGEST index,
1866 struct ui_file *stream,
1867 const struct value_print_options *options)
1868 {
1869 if (!options->print_array_indexes)
1870 return;
1871
1872 current_language->print_array_index (index_type, index, stream, options);
1873 }
1874
1875 /* See valprint.h. */
1876
1877 void
1878 value_print_array_elements (struct value *val, struct ui_file *stream,
1879 int recurse,
1880 const struct value_print_options *options,
1881 unsigned int i)
1882 {
1883 unsigned int things_printed = 0;
1884 unsigned len;
1885 struct type *elttype, *index_type;
1886 unsigned eltlen;
1887 /* Position of the array element we are examining to see
1888 whether it is repeated. */
1889 unsigned int rep1;
1890 /* Number of repetitions we have detected so far. */
1891 unsigned int reps;
1892 LONGEST low_bound, high_bound;
1893
1894 struct type *type = check_typedef (value_type (val));
1895
1896 elttype = TYPE_TARGET_TYPE (type);
1897 eltlen = type_length_units (check_typedef (elttype));
1898 index_type = type->index_type ();
1899 if (index_type->code () == TYPE_CODE_RANGE)
1900 index_type = TYPE_TARGET_TYPE (index_type);
1901
1902 if (get_array_bounds (type, &low_bound, &high_bound))
1903 {
1904 /* The array length should normally be HIGH_BOUND - LOW_BOUND +
1905 1. But we have to be a little extra careful, because some
1906 languages such as Ada allow LOW_BOUND to be greater than
1907 HIGH_BOUND for empty arrays. In that situation, the array
1908 length is just zero, not negative! */
1909 if (low_bound > high_bound)
1910 len = 0;
1911 else
1912 len = high_bound - low_bound + 1;
1913 }
1914 else
1915 {
1916 warning (_("unable to get bounds of array, assuming null array"));
1917 low_bound = 0;
1918 len = 0;
1919 }
1920
1921 annotate_array_section_begin (i, elttype);
1922
1923 for (; i < len && things_printed < options->print_max; i++)
1924 {
1925 scoped_value_mark free_values;
1926
1927 if (i != 0)
1928 {
1929 if (options->prettyformat_arrays)
1930 {
1931 gdb_printf (stream, ",\n");
1932 print_spaces (2 + 2 * recurse, stream);
1933 }
1934 else
1935 gdb_printf (stream, ", ");
1936 }
1937 else if (options->prettyformat_arrays)
1938 {
1939 gdb_printf (stream, "\n");
1940 print_spaces (2 + 2 * recurse, stream);
1941 }
1942 stream->wrap_here (2 + 2 * recurse);
1943 maybe_print_array_index (index_type, i + low_bound,
1944 stream, options);
1945
1946 rep1 = i + 1;
1947 reps = 1;
1948 /* Only check for reps if repeat_count_threshold is not set to
1949 UINT_MAX (unlimited). */
1950 if (options->repeat_count_threshold < UINT_MAX)
1951 {
1952 while (rep1 < len
1953 && value_contents_eq (val, i * eltlen,
1954 val, rep1 * eltlen,
1955 eltlen))
1956 {
1957 ++reps;
1958 ++rep1;
1959 }
1960 }
1961
1962 struct value *element = value_from_component (val, elttype, eltlen * i);
1963 common_val_print (element, stream, recurse + 1, options,
1964 current_language);
1965
1966 if (reps > options->repeat_count_threshold)
1967 {
1968 annotate_elt_rep (reps);
1969 gdb_printf (stream, " %p[<repeats %u times>%p]",
1970 metadata_style.style ().ptr (), reps, nullptr);
1971 annotate_elt_rep_end ();
1972
1973 i = rep1 - 1;
1974 things_printed += options->repeat_count_threshold;
1975 }
1976 else
1977 {
1978 annotate_elt ();
1979 things_printed++;
1980 }
1981 }
1982 annotate_array_section_end ();
1983 if (i < len)
1984 gdb_printf (stream, "...");
1985 if (options->prettyformat_arrays)
1986 {
1987 gdb_printf (stream, "\n");
1988 print_spaces (2 * recurse, stream);
1989 }
1990 }
1991
1992 /* Read LEN bytes of target memory at address MEMADDR, placing the
1993 results in GDB's memory at MYADDR. Returns a count of the bytes
1994 actually read, and optionally a target_xfer_status value in the
1995 location pointed to by ERRPTR if ERRPTR is non-null. */
1996
1997 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1998 function be eliminated. */
1999
2000 static int
2001 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2002 int len, int *errptr)
2003 {
2004 int nread; /* Number of bytes actually read. */
2005 int errcode; /* Error from last read. */
2006
2007 /* First try a complete read. */
2008 errcode = target_read_memory (memaddr, myaddr, len);
2009 if (errcode == 0)
2010 {
2011 /* Got it all. */
2012 nread = len;
2013 }
2014 else
2015 {
2016 /* Loop, reading one byte at a time until we get as much as we can. */
2017 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2018 {
2019 errcode = target_read_memory (memaddr++, myaddr++, 1);
2020 }
2021 /* If an error, the last read was unsuccessful, so adjust count. */
2022 if (errcode != 0)
2023 {
2024 nread--;
2025 }
2026 }
2027 if (errptr != NULL)
2028 {
2029 *errptr = errcode;
2030 }
2031 return (nread);
2032 }
2033
2034 /* Read a string from the inferior, at ADDR, with LEN characters of
2035 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2036 will be set to a newly allocated buffer containing the string, and
2037 BYTES_READ will be set to the number of bytes read. Returns 0 on
2038 success, or a target_xfer_status on failure.
2039
2040 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2041 (including eventual NULs in the middle or end of the string).
2042
2043 If LEN is -1, stops at the first null character (not necessarily
2044 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2045 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2046 the string.
2047
2048 Unless an exception is thrown, BUFFER will always be allocated, even on
2049 failure. In this case, some characters might have been read before the
2050 failure happened. Check BYTES_READ to recognize this situation. */
2051
2052 int
2053 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2054 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2055 int *bytes_read)
2056 {
2057 int errcode; /* Errno returned from bad reads. */
2058 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2059 gdb_byte *bufptr; /* Pointer to next available byte in
2060 buffer. */
2061
2062 /* Loop until we either have all the characters, or we encounter
2063 some error, such as bumping into the end of the address space. */
2064
2065 buffer->reset (nullptr);
2066
2067 if (len > 0)
2068 {
2069 /* We want fetchlimit chars, so we might as well read them all in
2070 one operation. */
2071 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2072
2073 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2074 bufptr = buffer->get ();
2075
2076 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2077 / width;
2078 addr += nfetch * width;
2079 bufptr += nfetch * width;
2080 }
2081 else if (len == -1)
2082 {
2083 unsigned long bufsize = 0;
2084 unsigned int chunksize; /* Size of each fetch, in chars. */
2085 int found_nul; /* Non-zero if we found the nul char. */
2086 gdb_byte *limit; /* First location past end of fetch buffer. */
2087
2088 found_nul = 0;
2089 /* We are looking for a NUL terminator to end the fetching, so we
2090 might as well read in blocks that are large enough to be efficient,
2091 but not so large as to be slow if fetchlimit happens to be large.
2092 So we choose the minimum of 8 and fetchlimit. We used to use 200
2093 instead of 8 but 200 is way too big for remote debugging over a
2094 serial line. */
2095 chunksize = std::min (8u, fetchlimit);
2096
2097 do
2098 {
2099 QUIT;
2100 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2101
2102 if (*buffer == NULL)
2103 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2104 else
2105 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2106 (nfetch + bufsize) * width));
2107
2108 bufptr = buffer->get () + bufsize * width;
2109 bufsize += nfetch;
2110
2111 /* Read as much as we can. */
2112 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2113 / width;
2114
2115 /* Scan this chunk for the null character that terminates the string
2116 to print. If found, we don't need to fetch any more. Note
2117 that bufptr is explicitly left pointing at the next character
2118 after the null character, or at the next character after the end
2119 of the buffer. */
2120
2121 limit = bufptr + nfetch * width;
2122 while (bufptr < limit)
2123 {
2124 unsigned long c;
2125
2126 c = extract_unsigned_integer (bufptr, width, byte_order);
2127 addr += width;
2128 bufptr += width;
2129 if (c == 0)
2130 {
2131 /* We don't care about any error which happened after
2132 the NUL terminator. */
2133 errcode = 0;
2134 found_nul = 1;
2135 break;
2136 }
2137 }
2138 }
2139 while (errcode == 0 /* no error */
2140 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2141 && !found_nul); /* haven't found NUL yet */
2142 }
2143 else
2144 { /* Length of string is really 0! */
2145 /* We always allocate *buffer. */
2146 buffer->reset ((gdb_byte *) xmalloc (1));
2147 bufptr = buffer->get ();
2148 errcode = 0;
2149 }
2150
2151 /* bufptr and addr now point immediately beyond the last byte which we
2152 consider part of the string (including a '\0' which ends the string). */
2153 *bytes_read = bufptr - buffer->get ();
2154
2155 QUIT;
2156
2157 return errcode;
2158 }
2159
2160 /* Return true if print_wchar can display W without resorting to a
2161 numeric escape, false otherwise. */
2162
2163 static int
2164 wchar_printable (gdb_wchar_t w)
2165 {
2166 return (gdb_iswprint (w)
2167 || w == LCST ('\a') || w == LCST ('\b')
2168 || w == LCST ('\f') || w == LCST ('\n')
2169 || w == LCST ('\r') || w == LCST ('\t')
2170 || w == LCST ('\v'));
2171 }
2172
2173 /* A helper function that converts the contents of STRING to wide
2174 characters and then appends them to OUTPUT. */
2175
2176 static void
2177 append_string_as_wide (const char *string,
2178 struct obstack *output)
2179 {
2180 for (; *string; ++string)
2181 {
2182 gdb_wchar_t w = gdb_btowc (*string);
2183 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2184 }
2185 }
2186
2187 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2188 original (target) bytes representing the character, ORIG_LEN is the
2189 number of valid bytes. WIDTH is the number of bytes in a base
2190 characters of the type. OUTPUT is an obstack to which wide
2191 characters are emitted. QUOTER is a (narrow) character indicating
2192 the style of quotes surrounding the character to be printed.
2193 NEED_ESCAPE is an in/out flag which is used to track numeric
2194 escapes across calls. */
2195
2196 static void
2197 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2198 int orig_len, int width,
2199 enum bfd_endian byte_order,
2200 struct obstack *output,
2201 int quoter, int *need_escapep)
2202 {
2203 int need_escape = *need_escapep;
2204
2205 *need_escapep = 0;
2206
2207 /* iswprint implementation on Windows returns 1 for tab character.
2208 In order to avoid different printout on this host, we explicitly
2209 use wchar_printable function. */
2210 switch (w)
2211 {
2212 case LCST ('\a'):
2213 obstack_grow_wstr (output, LCST ("\\a"));
2214 break;
2215 case LCST ('\b'):
2216 obstack_grow_wstr (output, LCST ("\\b"));
2217 break;
2218 case LCST ('\f'):
2219 obstack_grow_wstr (output, LCST ("\\f"));
2220 break;
2221 case LCST ('\n'):
2222 obstack_grow_wstr (output, LCST ("\\n"));
2223 break;
2224 case LCST ('\r'):
2225 obstack_grow_wstr (output, LCST ("\\r"));
2226 break;
2227 case LCST ('\t'):
2228 obstack_grow_wstr (output, LCST ("\\t"));
2229 break;
2230 case LCST ('\v'):
2231 obstack_grow_wstr (output, LCST ("\\v"));
2232 break;
2233 default:
2234 {
2235 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2236 && w != LCST ('8')
2237 && w != LCST ('9'))))
2238 {
2239 gdb_wchar_t wchar = w;
2240
2241 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2242 obstack_grow_wstr (output, LCST ("\\"));
2243 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2244 }
2245 else
2246 {
2247 int i;
2248
2249 for (i = 0; i + width <= orig_len; i += width)
2250 {
2251 char octal[30];
2252 ULONGEST value;
2253
2254 value = extract_unsigned_integer (&orig[i], width,
2255 byte_order);
2256 /* If the value fits in 3 octal digits, print it that
2257 way. Otherwise, print it as a hex escape. */
2258 if (value <= 0777)
2259 xsnprintf (octal, sizeof (octal), "\\%.3o",
2260 (int) (value & 0777));
2261 else
2262 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2263 append_string_as_wide (octal, output);
2264 }
2265 /* If we somehow have extra bytes, print them now. */
2266 while (i < orig_len)
2267 {
2268 char octal[5];
2269
2270 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2271 append_string_as_wide (octal, output);
2272 ++i;
2273 }
2274
2275 *need_escapep = 1;
2276 }
2277 break;
2278 }
2279 }
2280 }
2281
2282 /* Print the character C on STREAM as part of the contents of a
2283 literal string whose delimiter is QUOTER. ENCODING names the
2284 encoding of C. */
2285
2286 void
2287 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2288 int quoter, const char *encoding)
2289 {
2290 enum bfd_endian byte_order
2291 = type_byte_order (type);
2292 gdb_byte *c_buf;
2293 int need_escape = 0;
2294
2295 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2296 pack_long (c_buf, type, c);
2297
2298 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2299
2300 /* This holds the printable form of the wchar_t data. */
2301 auto_obstack wchar_buf;
2302
2303 while (1)
2304 {
2305 int num_chars;
2306 gdb_wchar_t *chars;
2307 const gdb_byte *buf;
2308 size_t buflen;
2309 int print_escape = 1;
2310 enum wchar_iterate_result result;
2311
2312 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2313 if (num_chars < 0)
2314 break;
2315 if (num_chars > 0)
2316 {
2317 /* If all characters are printable, print them. Otherwise,
2318 we're going to have to print an escape sequence. We
2319 check all characters because we want to print the target
2320 bytes in the escape sequence, and we don't know character
2321 boundaries there. */
2322 int i;
2323
2324 print_escape = 0;
2325 for (i = 0; i < num_chars; ++i)
2326 if (!wchar_printable (chars[i]))
2327 {
2328 print_escape = 1;
2329 break;
2330 }
2331
2332 if (!print_escape)
2333 {
2334 for (i = 0; i < num_chars; ++i)
2335 print_wchar (chars[i], buf, buflen,
2336 TYPE_LENGTH (type), byte_order,
2337 &wchar_buf, quoter, &need_escape);
2338 }
2339 }
2340
2341 /* This handles the NUM_CHARS == 0 case as well. */
2342 if (print_escape)
2343 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2344 byte_order, &wchar_buf, quoter, &need_escape);
2345 }
2346
2347 /* The output in the host encoding. */
2348 auto_obstack output;
2349
2350 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2351 (gdb_byte *) obstack_base (&wchar_buf),
2352 obstack_object_size (&wchar_buf),
2353 sizeof (gdb_wchar_t), &output, translit_char);
2354 obstack_1grow (&output, '\0');
2355
2356 gdb_puts ((const char *) obstack_base (&output), stream);
2357 }
2358
2359 /* Return the repeat count of the next character/byte in ITER,
2360 storing the result in VEC. */
2361
2362 static int
2363 count_next_character (wchar_iterator *iter,
2364 std::vector<converted_character> *vec)
2365 {
2366 struct converted_character *current;
2367
2368 if (vec->empty ())
2369 {
2370 struct converted_character tmp;
2371 gdb_wchar_t *chars;
2372
2373 tmp.num_chars
2374 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2375 if (tmp.num_chars > 0)
2376 {
2377 gdb_assert (tmp.num_chars < MAX_WCHARS);
2378 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2379 }
2380 vec->push_back (tmp);
2381 }
2382
2383 current = &vec->back ();
2384
2385 /* Count repeated characters or bytes. */
2386 current->repeat_count = 1;
2387 if (current->num_chars == -1)
2388 {
2389 /* EOF */
2390 return -1;
2391 }
2392 else
2393 {
2394 gdb_wchar_t *chars;
2395 struct converted_character d;
2396 int repeat;
2397
2398 d.repeat_count = 0;
2399
2400 while (1)
2401 {
2402 /* Get the next character. */
2403 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2404
2405 /* If a character was successfully converted, save the character
2406 into the converted character. */
2407 if (d.num_chars > 0)
2408 {
2409 gdb_assert (d.num_chars < MAX_WCHARS);
2410 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2411 }
2412
2413 /* Determine if the current character is the same as this
2414 new character. */
2415 if (d.num_chars == current->num_chars && d.result == current->result)
2416 {
2417 /* There are two cases to consider:
2418
2419 1) Equality of converted character (num_chars > 0)
2420 2) Equality of non-converted character (num_chars == 0) */
2421 if ((current->num_chars > 0
2422 && memcmp (current->chars, d.chars,
2423 WCHAR_BUFLEN (current->num_chars)) == 0)
2424 || (current->num_chars == 0
2425 && current->buflen == d.buflen
2426 && memcmp (current->buf, d.buf, current->buflen) == 0))
2427 ++current->repeat_count;
2428 else
2429 break;
2430 }
2431 else
2432 break;
2433 }
2434
2435 /* Push this next converted character onto the result vector. */
2436 repeat = current->repeat_count;
2437 vec->push_back (d);
2438 return repeat;
2439 }
2440 }
2441
2442 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2443 character to use with string output. WIDTH is the size of the output
2444 character type. BYTE_ORDER is the target byte order. OPTIONS
2445 is the user's print options. */
2446
2447 static void
2448 print_converted_chars_to_obstack (struct obstack *obstack,
2449 const std::vector<converted_character> &chars,
2450 int quote_char, int width,
2451 enum bfd_endian byte_order,
2452 const struct value_print_options *options)
2453 {
2454 unsigned int idx;
2455 const converted_character *elem;
2456 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2457 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2458 int need_escape = 0;
2459
2460 /* Set the start state. */
2461 idx = 0;
2462 last = state = START;
2463 elem = NULL;
2464
2465 while (1)
2466 {
2467 switch (state)
2468 {
2469 case START:
2470 /* Nothing to do. */
2471 break;
2472
2473 case SINGLE:
2474 {
2475 int j;
2476
2477 /* We are outputting a single character
2478 (< options->repeat_count_threshold). */
2479
2480 if (last != SINGLE)
2481 {
2482 /* We were outputting some other type of content, so we
2483 must output and a comma and a quote. */
2484 if (last != START)
2485 obstack_grow_wstr (obstack, LCST (", "));
2486 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2487 }
2488 /* Output the character. */
2489 for (j = 0; j < elem->repeat_count; ++j)
2490 {
2491 if (elem->result == wchar_iterate_ok)
2492 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2493 byte_order, obstack, quote_char, &need_escape);
2494 else
2495 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2496 byte_order, obstack, quote_char, &need_escape);
2497 }
2498 }
2499 break;
2500
2501 case REPEAT:
2502 {
2503 int j;
2504
2505 /* We are outputting a character with a repeat count
2506 greater than options->repeat_count_threshold. */
2507
2508 if (last == SINGLE)
2509 {
2510 /* We were outputting a single string. Terminate the
2511 string. */
2512 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2513 }
2514 if (last != START)
2515 obstack_grow_wstr (obstack, LCST (", "));
2516
2517 /* Output the character and repeat string. */
2518 obstack_grow_wstr (obstack, LCST ("'"));
2519 if (elem->result == wchar_iterate_ok)
2520 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2521 byte_order, obstack, quote_char, &need_escape);
2522 else
2523 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2524 byte_order, obstack, quote_char, &need_escape);
2525 obstack_grow_wstr (obstack, LCST ("'"));
2526 std::string s = string_printf (_(" <repeats %u times>"),
2527 elem->repeat_count);
2528 for (j = 0; s[j]; ++j)
2529 {
2530 gdb_wchar_t w = gdb_btowc (s[j]);
2531 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2532 }
2533 }
2534 break;
2535
2536 case INCOMPLETE:
2537 /* We are outputting an incomplete sequence. */
2538 if (last == SINGLE)
2539 {
2540 /* If we were outputting a string of SINGLE characters,
2541 terminate the quote. */
2542 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2543 }
2544 if (last != START)
2545 obstack_grow_wstr (obstack, LCST (", "));
2546
2547 /* Output the incomplete sequence string. */
2548 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2549 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2550 obstack, 0, &need_escape);
2551 obstack_grow_wstr (obstack, LCST (">"));
2552
2553 /* We do not attempt to output anything after this. */
2554 state = FINISH;
2555 break;
2556
2557 case FINISH:
2558 /* All done. If we were outputting a string of SINGLE
2559 characters, the string must be terminated. Otherwise,
2560 REPEAT and INCOMPLETE are always left properly terminated. */
2561 if (last == SINGLE)
2562 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2563
2564 return;
2565 }
2566
2567 /* Get the next element and state. */
2568 last = state;
2569 if (state != FINISH)
2570 {
2571 elem = &chars[idx++];
2572 switch (elem->result)
2573 {
2574 case wchar_iterate_ok:
2575 case wchar_iterate_invalid:
2576 if (elem->repeat_count > options->repeat_count_threshold)
2577 state = REPEAT;
2578 else
2579 state = SINGLE;
2580 break;
2581
2582 case wchar_iterate_incomplete:
2583 state = INCOMPLETE;
2584 break;
2585
2586 case wchar_iterate_eof:
2587 state = FINISH;
2588 break;
2589 }
2590 }
2591 }
2592 }
2593
2594 /* Print the character string STRING, printing at most LENGTH
2595 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2596 the type of each character. OPTIONS holds the printing options;
2597 printing stops early if the number hits print_max; repeat counts
2598 are printed as appropriate. Print ellipses at the end if we had to
2599 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2600 QUOTE_CHAR is the character to print at each end of the string. If
2601 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2602 omitted. */
2603
2604 void
2605 generic_printstr (struct ui_file *stream, struct type *type,
2606 const gdb_byte *string, unsigned int length,
2607 const char *encoding, int force_ellipses,
2608 int quote_char, int c_style_terminator,
2609 const struct value_print_options *options)
2610 {
2611 enum bfd_endian byte_order = type_byte_order (type);
2612 unsigned int i;
2613 int width = TYPE_LENGTH (type);
2614 int finished = 0;
2615 struct converted_character *last;
2616
2617 if (length == -1)
2618 {
2619 unsigned long current_char = 1;
2620
2621 for (i = 0; current_char; ++i)
2622 {
2623 QUIT;
2624 current_char = extract_unsigned_integer (string + i * width,
2625 width, byte_order);
2626 }
2627 length = i;
2628 }
2629
2630 /* If the string was not truncated due to `set print elements', and
2631 the last byte of it is a null, we don't print that, in
2632 traditional C style. */
2633 if (c_style_terminator
2634 && !force_ellipses
2635 && length > 0
2636 && (extract_unsigned_integer (string + (length - 1) * width,
2637 width, byte_order) == 0))
2638 length--;
2639
2640 if (length == 0)
2641 {
2642 gdb_puts ("\"\"", stream);
2643 return;
2644 }
2645
2646 /* Arrange to iterate over the characters, in wchar_t form. */
2647 wchar_iterator iter (string, length * width, encoding, width);
2648 std::vector<converted_character> converted_chars;
2649
2650 /* Convert characters until the string is over or the maximum
2651 number of printed characters has been reached. */
2652 i = 0;
2653 while (i < options->print_max)
2654 {
2655 int r;
2656
2657 QUIT;
2658
2659 /* Grab the next character and repeat count. */
2660 r = count_next_character (&iter, &converted_chars);
2661
2662 /* If less than zero, the end of the input string was reached. */
2663 if (r < 0)
2664 break;
2665
2666 /* Otherwise, add the count to the total print count and get
2667 the next character. */
2668 i += r;
2669 }
2670
2671 /* Get the last element and determine if the entire string was
2672 processed. */
2673 last = &converted_chars.back ();
2674 finished = (last->result == wchar_iterate_eof);
2675
2676 /* Ensure that CONVERTED_CHARS is terminated. */
2677 last->result = wchar_iterate_eof;
2678
2679 /* WCHAR_BUF is the obstack we use to represent the string in
2680 wchar_t form. */
2681 auto_obstack wchar_buf;
2682
2683 /* Print the output string to the obstack. */
2684 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2685 width, byte_order, options);
2686
2687 if (force_ellipses || !finished)
2688 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2689
2690 /* OUTPUT is where we collect `char's for printing. */
2691 auto_obstack output;
2692
2693 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2694 (gdb_byte *) obstack_base (&wchar_buf),
2695 obstack_object_size (&wchar_buf),
2696 sizeof (gdb_wchar_t), &output, translit_char);
2697 obstack_1grow (&output, '\0');
2698
2699 gdb_puts ((const char *) obstack_base (&output), stream);
2700 }
2701
2702 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2703 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2704 stops at the first null byte, otherwise printing proceeds (including null
2705 bytes) until either print_max or LEN characters have been printed,
2706 whichever is smaller. ENCODING is the name of the string's
2707 encoding. It can be NULL, in which case the target encoding is
2708 assumed. */
2709
2710 int
2711 val_print_string (struct type *elttype, const char *encoding,
2712 CORE_ADDR addr, int len,
2713 struct ui_file *stream,
2714 const struct value_print_options *options)
2715 {
2716 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2717 int err; /* Non-zero if we got a bad read. */
2718 int found_nul; /* Non-zero if we found the nul char. */
2719 unsigned int fetchlimit; /* Maximum number of chars to print. */
2720 int bytes_read;
2721 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2722 struct gdbarch *gdbarch = elttype->arch ();
2723 enum bfd_endian byte_order = type_byte_order (elttype);
2724 int width = TYPE_LENGTH (elttype);
2725
2726 /* First we need to figure out the limit on the number of characters we are
2727 going to attempt to fetch and print. This is actually pretty simple. If
2728 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2729 LEN is -1, then the limit is print_max. This is true regardless of
2730 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2731 because finding the null byte (or available memory) is what actually
2732 limits the fetch. */
2733
2734 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2735 options->print_max));
2736
2737 err = read_string (addr, len, width, fetchlimit, byte_order,
2738 &buffer, &bytes_read);
2739
2740 addr += bytes_read;
2741
2742 /* We now have either successfully filled the buffer to fetchlimit,
2743 or terminated early due to an error or finding a null char when
2744 LEN is -1. */
2745
2746 /* Determine found_nul by looking at the last character read. */
2747 found_nul = 0;
2748 if (bytes_read >= width)
2749 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2750 width, byte_order) == 0;
2751 if (len == -1 && !found_nul)
2752 {
2753 gdb_byte *peekbuf;
2754
2755 /* We didn't find a NUL terminator we were looking for. Attempt
2756 to peek at the next character. If not successful, or it is not
2757 a null byte, then force ellipsis to be printed. */
2758
2759 peekbuf = (gdb_byte *) alloca (width);
2760
2761 if (target_read_memory (addr, peekbuf, width) == 0
2762 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2763 force_ellipsis = 1;
2764 }
2765 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2766 {
2767 /* Getting an error when we have a requested length, or fetching less
2768 than the number of characters actually requested, always make us
2769 print ellipsis. */
2770 force_ellipsis = 1;
2771 }
2772
2773 /* If we get an error before fetching anything, don't print a string.
2774 But if we fetch something and then get an error, print the string
2775 and then the error message. */
2776 if (err == 0 || bytes_read > 0)
2777 current_language->printstr (stream, elttype, buffer.get (),
2778 bytes_read / width,
2779 encoding, force_ellipsis, options);
2780
2781 if (err != 0)
2782 {
2783 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2784
2785 gdb_printf (stream, _("<error: %ps>"),
2786 styled_string (metadata_style.style (),
2787 str.c_str ()));
2788 }
2789
2790 return (bytes_read / width);
2791 }
2792
2793 /* Handle 'show print max-depth'. */
2794
2795 static void
2796 show_print_max_depth (struct ui_file *file, int from_tty,
2797 struct cmd_list_element *c, const char *value)
2798 {
2799 gdb_printf (file, _("Maximum print depth is %s.\n"), value);
2800 }
2801 \f
2802
2803 /* The 'set input-radix' command writes to this auxiliary variable.
2804 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2805 it is left unchanged. */
2806
2807 static unsigned input_radix_1 = 10;
2808
2809 /* Validate an input or output radix setting, and make sure the user
2810 knows what they really did here. Radix setting is confusing, e.g.
2811 setting the input radix to "10" never changes it! */
2812
2813 static void
2814 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2815 {
2816 set_input_radix_1 (from_tty, input_radix_1);
2817 }
2818
2819 static void
2820 set_input_radix_1 (int from_tty, unsigned radix)
2821 {
2822 /* We don't currently disallow any input radix except 0 or 1, which don't
2823 make any mathematical sense. In theory, we can deal with any input
2824 radix greater than 1, even if we don't have unique digits for every
2825 value from 0 to radix-1, but in practice we lose on large radix values.
2826 We should either fix the lossage or restrict the radix range more.
2827 (FIXME). */
2828
2829 if (radix < 2)
2830 {
2831 input_radix_1 = input_radix;
2832 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2833 radix);
2834 }
2835 input_radix_1 = input_radix = radix;
2836 if (from_tty)
2837 {
2838 gdb_printf (_("Input radix now set to "
2839 "decimal %u, hex %x, octal %o.\n"),
2840 radix, radix, radix);
2841 }
2842 }
2843
2844 /* The 'set output-radix' command writes to this auxiliary variable.
2845 If the requested radix is valid, OUTPUT_RADIX is updated,
2846 otherwise, it is left unchanged. */
2847
2848 static unsigned output_radix_1 = 10;
2849
2850 static void
2851 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2852 {
2853 set_output_radix_1 (from_tty, output_radix_1);
2854 }
2855
2856 static void
2857 set_output_radix_1 (int from_tty, unsigned radix)
2858 {
2859 /* Validate the radix and disallow ones that we aren't prepared to
2860 handle correctly, leaving the radix unchanged. */
2861 switch (radix)
2862 {
2863 case 16:
2864 user_print_options.output_format = 'x'; /* hex */
2865 break;
2866 case 10:
2867 user_print_options.output_format = 0; /* decimal */
2868 break;
2869 case 8:
2870 user_print_options.output_format = 'o'; /* octal */
2871 break;
2872 default:
2873 output_radix_1 = output_radix;
2874 error (_("Unsupported output radix ``decimal %u''; "
2875 "output radix unchanged."),
2876 radix);
2877 }
2878 output_radix_1 = output_radix = radix;
2879 if (from_tty)
2880 {
2881 gdb_printf (_("Output radix now set to "
2882 "decimal %u, hex %x, octal %o.\n"),
2883 radix, radix, radix);
2884 }
2885 }
2886
2887 /* Set both the input and output radix at once. Try to set the output radix
2888 first, since it has the most restrictive range. An radix that is valid as
2889 an output radix is also valid as an input radix.
2890
2891 It may be useful to have an unusual input radix. If the user wishes to
2892 set an input radix that is not valid as an output radix, he needs to use
2893 the 'set input-radix' command. */
2894
2895 static void
2896 set_radix (const char *arg, int from_tty)
2897 {
2898 unsigned radix;
2899
2900 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2901 set_output_radix_1 (0, radix);
2902 set_input_radix_1 (0, radix);
2903 if (from_tty)
2904 {
2905 gdb_printf (_("Input and output radices now set to "
2906 "decimal %u, hex %x, octal %o.\n"),
2907 radix, radix, radix);
2908 }
2909 }
2910
2911 /* Show both the input and output radices. */
2912
2913 static void
2914 show_radix (const char *arg, int from_tty)
2915 {
2916 if (from_tty)
2917 {
2918 if (input_radix == output_radix)
2919 {
2920 gdb_printf (_("Input and output radices set to "
2921 "decimal %u, hex %x, octal %o.\n"),
2922 input_radix, input_radix, input_radix);
2923 }
2924 else
2925 {
2926 gdb_printf (_("Input radix set to decimal "
2927 "%u, hex %x, octal %o.\n"),
2928 input_radix, input_radix, input_radix);
2929 gdb_printf (_("Output radix set to decimal "
2930 "%u, hex %x, octal %o.\n"),
2931 output_radix, output_radix, output_radix);
2932 }
2933 }
2934 }
2935 \f
2936
2937 /* Controls printing of vtbl's. */
2938 static void
2939 show_vtblprint (struct ui_file *file, int from_tty,
2940 struct cmd_list_element *c, const char *value)
2941 {
2942 gdb_printf (file, _("\
2943 Printing of C++ virtual function tables is %s.\n"),
2944 value);
2945 }
2946
2947 /* Controls looking up an object's derived type using what we find in
2948 its vtables. */
2949 static void
2950 show_objectprint (struct ui_file *file, int from_tty,
2951 struct cmd_list_element *c,
2952 const char *value)
2953 {
2954 gdb_printf (file, _("\
2955 Printing of object's derived type based on vtable info is %s.\n"),
2956 value);
2957 }
2958
2959 static void
2960 show_static_field_print (struct ui_file *file, int from_tty,
2961 struct cmd_list_element *c,
2962 const char *value)
2963 {
2964 gdb_printf (file,
2965 _("Printing of C++ static members is %s.\n"),
2966 value);
2967 }
2968
2969 \f
2970
2971 /* A couple typedefs to make writing the options a bit more
2972 convenient. */
2973 using boolean_option_def
2974 = gdb::option::boolean_option_def<value_print_options>;
2975 using uinteger_option_def
2976 = gdb::option::uinteger_option_def<value_print_options>;
2977 using zuinteger_unlimited_option_def
2978 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2979
2980 /* Definitions of options for the "print" and "compile print"
2981 commands. */
2982 static const gdb::option::option_def value_print_option_defs[] = {
2983
2984 boolean_option_def {
2985 "address",
2986 [] (value_print_options *opt) { return &opt->addressprint; },
2987 show_addressprint, /* show_cmd_cb */
2988 N_("Set printing of addresses."),
2989 N_("Show printing of addresses."),
2990 NULL, /* help_doc */
2991 },
2992
2993 boolean_option_def {
2994 "array",
2995 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
2996 show_prettyformat_arrays, /* show_cmd_cb */
2997 N_("Set pretty formatting of arrays."),
2998 N_("Show pretty formatting of arrays."),
2999 NULL, /* help_doc */
3000 },
3001
3002 boolean_option_def {
3003 "array-indexes",
3004 [] (value_print_options *opt) { return &opt->print_array_indexes; },
3005 show_print_array_indexes, /* show_cmd_cb */
3006 N_("Set printing of array indexes."),
3007 N_("Show printing of array indexes."),
3008 NULL, /* help_doc */
3009 },
3010
3011 uinteger_option_def {
3012 "elements",
3013 [] (value_print_options *opt) { return &opt->print_max; },
3014 show_print_max, /* show_cmd_cb */
3015 N_("Set limit on string chars or array elements to print."),
3016 N_("Show limit on string chars or array elements to print."),
3017 N_("\"unlimited\" causes there to be no limit."),
3018 },
3019
3020 zuinteger_unlimited_option_def {
3021 "max-depth",
3022 [] (value_print_options *opt) { return &opt->max_depth; },
3023 show_print_max_depth, /* show_cmd_cb */
3024 N_("Set maximum print depth for nested structures, unions and arrays."),
3025 N_("Show maximum print depth for nested structures, unions, and arrays."),
3026 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3027 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3028 Use \"unlimited\" to print the complete structure.")
3029 },
3030
3031 boolean_option_def {
3032 "memory-tag-violations",
3033 [] (value_print_options *opt) { return &opt->memory_tag_violations; },
3034 show_memory_tag_violations, /* show_cmd_cb */
3035 N_("Set printing of memory tag violations for pointers."),
3036 N_("Show printing of memory tag violations for pointers."),
3037 N_("Issue a warning when the printed value is a pointer\n\
3038 whose logical tag doesn't match the allocation tag of the memory\n\
3039 location it points to."),
3040 },
3041
3042 boolean_option_def {
3043 "null-stop",
3044 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3045 show_stop_print_at_null, /* show_cmd_cb */
3046 N_("Set printing of char arrays to stop at first null char."),
3047 N_("Show printing of char arrays to stop at first null char."),
3048 NULL, /* help_doc */
3049 },
3050
3051 boolean_option_def {
3052 "object",
3053 [] (value_print_options *opt) { return &opt->objectprint; },
3054 show_objectprint, /* show_cmd_cb */
3055 _("Set printing of C++ virtual function tables."),
3056 _("Show printing of C++ virtual function tables."),
3057 NULL, /* help_doc */
3058 },
3059
3060 boolean_option_def {
3061 "pretty",
3062 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3063 show_prettyformat_structs, /* show_cmd_cb */
3064 N_("Set pretty formatting of structures."),
3065 N_("Show pretty formatting of structures."),
3066 NULL, /* help_doc */
3067 },
3068
3069 boolean_option_def {
3070 "raw-values",
3071 [] (value_print_options *opt) { return &opt->raw; },
3072 NULL, /* show_cmd_cb */
3073 N_("Set whether to print values in raw form."),
3074 N_("Show whether to print values in raw form."),
3075 N_("If set, values are printed in raw form, bypassing any\n\
3076 pretty-printers for that value.")
3077 },
3078
3079 uinteger_option_def {
3080 "repeats",
3081 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3082 show_repeat_count_threshold, /* show_cmd_cb */
3083 N_("Set threshold for repeated print elements."),
3084 N_("Show threshold for repeated print elements."),
3085 N_("\"unlimited\" causes all elements to be individually printed."),
3086 },
3087
3088 boolean_option_def {
3089 "static-members",
3090 [] (value_print_options *opt) { return &opt->static_field_print; },
3091 show_static_field_print, /* show_cmd_cb */
3092 N_("Set printing of C++ static members."),
3093 N_("Show printing of C++ static members."),
3094 NULL, /* help_doc */
3095 },
3096
3097 boolean_option_def {
3098 "symbol",
3099 [] (value_print_options *opt) { return &opt->symbol_print; },
3100 show_symbol_print, /* show_cmd_cb */
3101 N_("Set printing of symbol names when printing pointers."),
3102 N_("Show printing of symbol names when printing pointers."),
3103 NULL, /* help_doc */
3104 },
3105
3106 boolean_option_def {
3107 "union",
3108 [] (value_print_options *opt) { return &opt->unionprint; },
3109 show_unionprint, /* show_cmd_cb */
3110 N_("Set printing of unions interior to structures."),
3111 N_("Show printing of unions interior to structures."),
3112 NULL, /* help_doc */
3113 },
3114
3115 boolean_option_def {
3116 "vtbl",
3117 [] (value_print_options *opt) { return &opt->vtblprint; },
3118 show_vtblprint, /* show_cmd_cb */
3119 N_("Set printing of C++ virtual function tables."),
3120 N_("Show printing of C++ virtual function tables."),
3121 NULL, /* help_doc */
3122 },
3123 };
3124
3125 /* See valprint.h. */
3126
3127 gdb::option::option_def_group
3128 make_value_print_options_def_group (value_print_options *opts)
3129 {
3130 return {{value_print_option_defs}, opts};
3131 }
3132
3133 #if GDB_SELF_TEST
3134
3135 /* Test printing of TYPE_CODE_FLAGS values. */
3136
3137 static void
3138 test_print_flags (gdbarch *arch)
3139 {
3140 type *flags_type = arch_flags_type (arch, "test_type", 32);
3141 type *field_type = builtin_type (arch)->builtin_uint32;
3142
3143 /* Value: 1010 1010
3144 Fields: CCCB BAAA */
3145 append_flags_type_field (flags_type, 0, 3, field_type, "A");
3146 append_flags_type_field (flags_type, 3, 2, field_type, "B");
3147 append_flags_type_field (flags_type, 5, 3, field_type, "C");
3148
3149 value *val = allocate_value (flags_type);
3150 gdb_byte *contents = value_contents_writeable (val).data ();
3151 store_unsigned_integer (contents, 4, gdbarch_byte_order (arch), 0xaa);
3152
3153 string_file out;
3154 val_print_type_code_flags (flags_type, val, 0, &out);
3155 SELF_CHECK (out.string () == "[ A=2 B=1 C=5 ]");
3156 }
3157
3158 #endif
3159
3160 void _initialize_valprint ();
3161 void
3162 _initialize_valprint ()
3163 {
3164 #if GDB_SELF_TEST
3165 selftests::register_test_foreach_arch ("print-flags", test_print_flags);
3166 #endif
3167
3168 set_show_commands setshow_print_cmds
3169 = add_setshow_prefix_cmd ("print", no_class,
3170 _("Generic command for setting how things print."),
3171 _("Generic command for showing print settings."),
3172 &setprintlist, &showprintlist,
3173 &setlist, &showlist);
3174 add_alias_cmd ("p", setshow_print_cmds.set, no_class, 1, &setlist);
3175 /* Prefer set print to set prompt. */
3176 add_alias_cmd ("pr", setshow_print_cmds.set, no_class, 1, &setlist);
3177 add_alias_cmd ("p", setshow_print_cmds.show, no_class, 1, &showlist);
3178 add_alias_cmd ("pr", setshow_print_cmds.show, no_class, 1, &showlist);
3179
3180 set_show_commands setshow_print_raw_cmds
3181 = add_setshow_prefix_cmd
3182 ("raw", no_class,
3183 _("Generic command for setting what things to print in \"raw\" mode."),
3184 _("Generic command for showing \"print raw\" settings."),
3185 &setprintrawlist, &showprintrawlist, &setprintlist, &showprintlist);
3186 deprecate_cmd (setshow_print_raw_cmds.set, nullptr);
3187 deprecate_cmd (setshow_print_raw_cmds.show, nullptr);
3188
3189 gdb::option::add_setshow_cmds_for_options
3190 (class_support, &user_print_options, value_print_option_defs,
3191 &setprintlist, &showprintlist);
3192
3193 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3194 _("\
3195 Set default input radix for entering numbers."), _("\
3196 Show default input radix for entering numbers."), NULL,
3197 set_input_radix,
3198 show_input_radix,
3199 &setlist, &showlist);
3200
3201 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3202 _("\
3203 Set default output radix for printing of values."), _("\
3204 Show default output radix for printing of values."), NULL,
3205 set_output_radix,
3206 show_output_radix,
3207 &setlist, &showlist);
3208
3209 /* The "set radix" and "show radix" commands are special in that
3210 they are like normal set and show commands but allow two normally
3211 independent variables to be either set or shown with a single
3212 command. So the usual deprecated_add_set_cmd() and [deleted]
3213 add_show_from_set() commands aren't really appropriate. */
3214 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3215 longer true - show can display anything. */
3216 add_cmd ("radix", class_support, set_radix, _("\
3217 Set default input and output number radices.\n\
3218 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3219 Without an argument, sets both radices back to the default value of 10."),
3220 &setlist);
3221 add_cmd ("radix", class_support, show_radix, _("\
3222 Show the default input and output number radices.\n\
3223 Use 'show input-radix' or 'show output-radix' to independently show each."),
3224 &showlist);
3225 }