Fix typo; some progress in ppcbug support
[binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "obstack.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "annotate.h"
33
34 #include <errno.h>
35
36 /* Prototypes for local functions */
37
38 static void
39 print_hex_chars PARAMS ((GDB_FILE *, unsigned char *, unsigned int));
40
41 static void
42 show_print PARAMS ((char *, int));
43
44 static void
45 set_print PARAMS ((char *, int));
46
47 static void
48 set_radix PARAMS ((char *, int));
49
50 static void
51 show_radix PARAMS ((char *, int));
52
53 static void
54 set_input_radix PARAMS ((char *, int, struct cmd_list_element *));
55
56 static void
57 set_input_radix_1 PARAMS ((int, unsigned));
58
59 static void
60 set_output_radix PARAMS ((char *, int, struct cmd_list_element *));
61
62 static void
63 set_output_radix_1 PARAMS ((int, unsigned));
64
65 /* Maximum number of chars to print for a string pointer value or vector
66 contents, or UINT_MAX for no limit. Note that "set print elements 0"
67 stores UINT_MAX in print_max, which displays in a show command as
68 "unlimited". */
69
70 unsigned int print_max;
71 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
72
73 /* Default input and output radixes, and output format letter. */
74
75 unsigned input_radix = 10;
76 unsigned output_radix = 10;
77 int output_format = 0;
78
79 /* Print repeat counts if there are more than this many repetitions of an
80 element in an array. Referenced by the low level language dependent
81 print routines. */
82
83 unsigned int repeat_count_threshold = 10;
84
85 /* If nonzero, stops printing of char arrays at first null. */
86
87 int stop_print_at_null;
88
89 /* Controls pretty printing of structures. */
90
91 int prettyprint_structs;
92
93 /* Controls pretty printing of arrays. */
94
95 int prettyprint_arrays;
96
97 /* If nonzero, causes unions inside structures or other unions to be
98 printed. */
99
100 int unionprint; /* Controls printing of nested unions. */
101
102 /* If nonzero, causes machine addresses to be printed in certain contexts. */
103
104 int addressprint; /* Controls printing of machine addresses */
105
106 \f
107 /* Print data of type TYPE located at VALADDR (within GDB), which came from
108 the inferior at address ADDRESS, onto stdio stream STREAM according to
109 FORMAT (a letter, or 0 for natural format using TYPE).
110
111 If DEREF_REF is nonzero, then dereference references, otherwise just print
112 them like pointers.
113
114 The PRETTY parameter controls prettyprinting.
115
116 If the data are a string pointer, returns the number of string characters
117 printed.
118
119 FIXME: The data at VALADDR is in target byte order. If gdb is ever
120 enhanced to be able to debug more than the single target it was compiled
121 for (specific CPU type and thus specific target byte ordering), then
122 either the print routines are going to have to take this into account,
123 or the data is going to have to be passed into here already converted
124 to the host byte ordering, whichever is more convenient. */
125
126
127 int
128 val_print (type, valaddr, address, stream, format, deref_ref, recurse, pretty)
129 struct type *type;
130 char *valaddr;
131 CORE_ADDR address;
132 GDB_FILE *stream;
133 int format;
134 int deref_ref;
135 int recurse;
136 enum val_prettyprint pretty;
137 {
138 struct type *real_type = check_typedef (type);
139 if (pretty == Val_pretty_default)
140 {
141 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
142 }
143
144 QUIT;
145
146 /* Ensure that the type is complete and not just a stub. If the type is
147 only a stub and we can't find and substitute its complete type, then
148 print appropriate string and return. */
149
150 if (TYPE_FLAGS (real_type) & TYPE_FLAG_STUB
151 || TYPE_LENGTH (real_type) == 0)
152 {
153 fprintf_filtered (stream, "<incomplete type>");
154 gdb_flush (stream);
155 return (0);
156 }
157
158 return (LA_VAL_PRINT (type, valaddr, address, stream, format, deref_ref,
159 recurse, pretty));
160 }
161
162 /* Print the value VAL in C-ish syntax on stream STREAM.
163 FORMAT is a format-letter, or 0 for print in natural format of data type.
164 If the object printed is a string pointer, returns
165 the number of string bytes printed. */
166
167 int
168 value_print (val, stream, format, pretty)
169 value_ptr val;
170 GDB_FILE *stream;
171 int format;
172 enum val_prettyprint pretty;
173 {
174 if (val == 0)
175 {
176 printf_filtered ("<address of value unknown>");
177 return 0;
178 }
179 if (VALUE_OPTIMIZED_OUT (val))
180 {
181 printf_filtered ("<value optimized out>");
182 return 0;
183 }
184 return LA_VALUE_PRINT (val, stream, format, pretty);
185 }
186
187 /* Called by various <lang>_val_print routines to print TYPE_CODE_INT's */
188
189 void
190 val_print_type_code_int (type, valaddr, stream)
191 struct type *type;
192 char *valaddr;
193 GDB_FILE *stream;
194 {
195 char *p;
196 /* Pointer to first (i.e. lowest address) nonzero character. */
197 char *first_addr;
198 unsigned int len;
199
200 if (TYPE_LENGTH (type) > sizeof (LONGEST))
201 {
202 if (TYPE_UNSIGNED (type))
203 {
204 /* First figure out whether the number in fact has zeros
205 in all its bytes more significant than least significant
206 sizeof (LONGEST) ones. */
207 len = TYPE_LENGTH (type);
208
209 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
210 {
211 for (p = valaddr;
212 len > sizeof (LONGEST) && p < valaddr + TYPE_LENGTH (type);
213 p++)
214 {
215 if (*p == 0)
216 {
217 len--;
218 }
219 else
220 {
221 break;
222 }
223 }
224 first_addr = p;
225 }
226 else
227 {
228 first_addr = valaddr;
229 for (p = valaddr + TYPE_LENGTH (type) - 1;
230 len > sizeof (LONGEST) && p >= valaddr;
231 p--)
232 {
233 if (*p == 0)
234 {
235 len--;
236 }
237 else
238 {
239 break;
240 }
241 }
242 }
243
244 if (len <= sizeof (LONGEST))
245 {
246 /* The most significant bytes are zero, so we can just get
247 the least significant sizeof (LONGEST) bytes and print it
248 in decimal. */
249 print_longest (stream, 'u', 0,
250 extract_unsigned_integer (first_addr,
251 sizeof (LONGEST)));
252 }
253 else
254 {
255 /* It is big, so print it in hex. */
256 print_hex_chars (stream, (unsigned char *) first_addr, len);
257 }
258 }
259 else
260 {
261 /* Signed. One could assume two's complement (a reasonable
262 assumption, I think) and do better than this. */
263 print_hex_chars (stream, (unsigned char *) valaddr,
264 TYPE_LENGTH (type));
265 }
266 }
267 else
268 {
269 #ifdef PRINT_TYPELESS_INTEGER
270 PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
271 #else
272 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
273 unpack_long (type, valaddr));
274 #endif
275 }
276 }
277
278 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
279 The raison d'etre of this function is to consolidate printing of LONG_LONG's
280 into this one function. Some platforms have long longs but don't have a
281 printf() that supports "ll" in the format string. We handle these by seeing
282 if the number is actually a long, and if not we just bail out and print the
283 number in hex. The format chars b,h,w,g are from
284 print_scalar_formatted(). If USE_LOCAL, format it according to the current
285 language (this should be used for most integers which GDB prints, the
286 exception is things like protocols where the format of the integer is
287 a protocol thing, not a user-visible thing). */
288
289 void
290 print_longest (stream, format, use_local, val_long)
291 GDB_FILE *stream;
292 int format;
293 int use_local;
294 LONGEST val_long;
295 {
296 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
297 long vtop, vbot;
298
299 vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
300 vbot = (long) val_long;
301
302 if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
303 || ((format == 'u' || format == 'x') && (unsigned long long)val_long > UINT_MAX))
304 {
305 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
306 return;
307 }
308 #endif
309
310 #ifdef PRINTF_HAS_LONG_LONG
311 switch (format)
312 {
313 case 'd':
314 fprintf_filtered (stream,
315 use_local ? local_decimal_format_custom ("ll")
316 : "%lld",
317 val_long);
318 break;
319 case 'u':
320 fprintf_filtered (stream, "%llu", val_long);
321 break;
322 case 'x':
323 fprintf_filtered (stream,
324 use_local ? local_hex_format_custom ("ll")
325 : "%llx",
326 val_long);
327 break;
328 case 'o':
329 fprintf_filtered (stream,
330 use_local ? local_octal_format_custom ("ll")
331 : "%llo",
332 val_long);
333 break;
334 case 'b':
335 fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
336 break;
337 case 'h':
338 fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
339 break;
340 case 'w':
341 fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
342 break;
343 case 'g':
344 fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
345 break;
346 default:
347 abort ();
348 }
349 #else /* !PRINTF_HAS_LONG_LONG */
350 /* In the following it is important to coerce (val_long) to a long. It does
351 nothing if !LONG_LONG, but it will chop off the top half (which we know
352 we can ignore) if the host supports long longs. */
353
354 switch (format)
355 {
356 case 'd':
357 fprintf_filtered (stream,
358 use_local ? local_decimal_format_custom ("l")
359 : "%ld",
360 (long) val_long);
361 break;
362 case 'u':
363 fprintf_filtered (stream, "%lu", (unsigned long) val_long);
364 break;
365 case 'x':
366 fprintf_filtered (stream,
367 use_local ? local_hex_format_custom ("l")
368 : "%lx",
369 (long) val_long);
370 break;
371 case 'o':
372 fprintf_filtered (stream,
373 use_local ? local_octal_format_custom ("l")
374 : "%lo",
375 (long) val_long);
376 break;
377 case 'b':
378 fprintf_filtered (stream, local_hex_format_custom ("02l"),
379 (long) val_long);
380 break;
381 case 'h':
382 fprintf_filtered (stream, local_hex_format_custom ("04l"),
383 (long) val_long);
384 break;
385 case 'w':
386 fprintf_filtered (stream, local_hex_format_custom ("08l"),
387 (long) val_long);
388 break;
389 case 'g':
390 fprintf_filtered (stream, local_hex_format_custom ("016l"),
391 (long) val_long);
392 break;
393 default:
394 abort ();
395 }
396 #endif /* !PRINTF_HAS_LONG_LONG */
397 }
398
399 /* This used to be a macro, but I don't think it is called often enough
400 to merit such treatment. */
401 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
402 arguments to a function, number in a value history, register number, etc.)
403 where the value must not be larger than can fit in an int. */
404
405 int
406 longest_to_int (arg)
407 LONGEST arg;
408 {
409
410 /* This check is in case a system header has botched the
411 definition of INT_MIN, like on BSDI. */
412 if (sizeof (LONGEST) <= sizeof (int))
413 return arg;
414
415 if (arg > INT_MAX || arg < INT_MIN)
416 error ("Value out of range.");
417
418 return arg;
419 }
420
421 /* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
422 on STREAM. */
423
424 void
425 print_floating (valaddr, type, stream)
426 char *valaddr;
427 struct type *type;
428 GDB_FILE *stream;
429 {
430 double doub;
431 int inv;
432 unsigned len = TYPE_LENGTH (type);
433
434 #if defined (IEEE_FLOAT)
435
436 /* Check for NaN's. Note that this code does not depend on us being
437 on an IEEE conforming system. It only depends on the target
438 machine using IEEE representation. This means (a)
439 cross-debugging works right, and (2) IEEE_FLOAT can (and should)
440 be defined for systems like the 68881, which uses IEEE
441 representation, but is not IEEE conforming. */
442
443 {
444 unsigned long low, high;
445 /* Is the sign bit 0? */
446 int nonnegative;
447 /* Is it is a NaN (i.e. the exponent is all ones and
448 the fraction is nonzero)? */
449 int is_nan;
450
451 if (len == 4)
452 {
453 /* It's single precision. */
454 /* Assume that floating point byte order is the same as
455 integer byte order. */
456 low = extract_unsigned_integer (valaddr, 4);
457 nonnegative = ((low & 0x80000000) == 0);
458 is_nan = ((((low >> 23) & 0xFF) == 0xFF)
459 && 0 != (low & 0x7FFFFF));
460 low &= 0x7fffff;
461 high = 0;
462 }
463 else if (len == 8)
464 {
465 /* It's double precision. Get the high and low words. */
466
467 /* Assume that floating point byte order is the same as
468 integer byte order. */
469 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
470 {
471 low = extract_unsigned_integer (valaddr + 4, 4);
472 high = extract_unsigned_integer (valaddr, 4);
473 }
474 else
475 {
476 low = extract_unsigned_integer (valaddr, 4);
477 high = extract_unsigned_integer (valaddr + 4, 4);
478 }
479 nonnegative = ((high & 0x80000000) == 0);
480 is_nan = (((high >> 20) & 0x7ff) == 0x7ff
481 && ! ((((high & 0xfffff) == 0)) && (low == 0)));
482 high &= 0xfffff;
483 }
484 else
485 /* Extended. We can't detect NaNs for extendeds yet. Also note
486 that currently extendeds get nuked to double in
487 REGISTER_CONVERTIBLE. */
488 is_nan = 0;
489
490 if (is_nan)
491 {
492 /* The meaning of the sign and fraction is not defined by IEEE.
493 But the user might know what they mean. For example, they
494 (in an implementation-defined manner) distinguish between
495 signaling and quiet NaN's. */
496 if (high)
497 fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + nonnegative,
498 high, low);
499 else
500 fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
501 return;
502 }
503 }
504 #endif /* IEEE_FLOAT. */
505
506 doub = unpack_double (type, valaddr, &inv);
507 if (inv)
508 fprintf_filtered (stream, "<invalid float value>");
509 else
510 fprintf_filtered (stream, len <= sizeof(float) ? "%.9g" : "%.17g", doub);
511 }
512
513 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
514
515 static void
516 print_hex_chars (stream, valaddr, len)
517 GDB_FILE *stream;
518 unsigned char *valaddr;
519 unsigned len;
520 {
521 unsigned char *p;
522
523 /* FIXME: We should be not printing leading zeroes in most cases. */
524
525 fprintf_filtered (stream, local_hex_format_prefix ());
526 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
527 {
528 for (p = valaddr;
529 p < valaddr + len;
530 p++)
531 {
532 fprintf_filtered (stream, "%02x", *p);
533 }
534 }
535 else
536 {
537 for (p = valaddr + len - 1;
538 p >= valaddr;
539 p--)
540 {
541 fprintf_filtered (stream, "%02x", *p);
542 }
543 }
544 fprintf_filtered (stream, local_hex_format_suffix ());
545 }
546
547 /* Called by various <lang>_val_print routines to print elements of an
548 array in the form "<elem1>, <elem2>, <elem3>, ...".
549
550 (FIXME?) Assumes array element separator is a comma, which is correct
551 for all languages currently handled.
552 (FIXME?) Some languages have a notation for repeated array elements,
553 perhaps we should try to use that notation when appropriate.
554 */
555
556 void
557 val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
558 recurse, pretty, i)
559 struct type *type;
560 char *valaddr;
561 CORE_ADDR address;
562 GDB_FILE *stream;
563 int format;
564 int deref_ref;
565 int recurse;
566 enum val_prettyprint pretty;
567 unsigned int i;
568 {
569 unsigned int things_printed = 0;
570 unsigned len;
571 struct type *elttype;
572 unsigned eltlen;
573 /* Position of the array element we are examining to see
574 whether it is repeated. */
575 unsigned int rep1;
576 /* Number of repetitions we have detected so far. */
577 unsigned int reps;
578
579 elttype = TYPE_TARGET_TYPE (type);
580 eltlen = TYPE_LENGTH (check_typedef (elttype));
581 len = TYPE_LENGTH (type) / eltlen;
582
583 annotate_array_section_begin (i, elttype);
584
585 for (; i < len && things_printed < print_max; i++)
586 {
587 if (i != 0)
588 {
589 if (prettyprint_arrays)
590 {
591 fprintf_filtered (stream, ",\n");
592 print_spaces_filtered (2 + 2 * recurse, stream);
593 }
594 else
595 {
596 fprintf_filtered (stream, ", ");
597 }
598 }
599 wrap_here (n_spaces (2 + 2 * recurse));
600
601 rep1 = i + 1;
602 reps = 1;
603 while ((rep1 < len) &&
604 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
605 {
606 ++reps;
607 ++rep1;
608 }
609
610 if (reps > repeat_count_threshold)
611 {
612 val_print (elttype, valaddr + i * eltlen, 0, stream, format,
613 deref_ref, recurse + 1, pretty);
614 annotate_elt_rep (reps);
615 fprintf_filtered (stream, " <repeats %u times>", reps);
616 annotate_elt_rep_end ();
617
618 i = rep1 - 1;
619 things_printed += repeat_count_threshold;
620 }
621 else
622 {
623 val_print (elttype, valaddr + i * eltlen, 0, stream, format,
624 deref_ref, recurse + 1, pretty);
625 annotate_elt ();
626 things_printed++;
627 }
628 }
629 annotate_array_section_end ();
630 if (i < len)
631 {
632 fprintf_filtered (stream, "...");
633 }
634 }
635
636 /* Print a string from the inferior, starting at ADDR and printing up to LEN
637 characters, to STREAM. If LEN is zero, printing stops at the first null
638 byte, otherwise printing proceeds (including null bytes) until either
639 print_max or LEN characters have been printed, whichever is smaller. */
640
641 /* FIXME: All callers supply LEN of zero. Supplying a non-zero LEN is
642 pointless, this routine just then becomes a convoluted version of
643 target_read_memory_partial. Removing all the LEN stuff would simplify
644 this routine enormously.
645
646 FIXME: Use target_read_string. */
647
648 int
649 val_print_string (addr, len, stream)
650 CORE_ADDR addr;
651 unsigned int len;
652 GDB_FILE *stream;
653 {
654 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
655 int errcode; /* Errno returned from bad reads. */
656 unsigned int fetchlimit; /* Maximum number of bytes to fetch. */
657 unsigned int nfetch; /* Bytes to fetch / bytes fetched. */
658 unsigned int chunksize; /* Size of each fetch, in bytes. */
659 int bufsize; /* Size of current fetch buffer. */
660 char *buffer = NULL; /* Dynamically growable fetch buffer. */
661 char *bufptr; /* Pointer to next available byte in buffer. */
662 char *limit; /* First location past end of fetch buffer. */
663 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
664 char peekchar; /* Place into which we can read one char. */
665
666 /* First we need to figure out the limit on the number of characters we are
667 going to attempt to fetch and print. This is actually pretty simple. If
668 LEN is nonzero, then the limit is the minimum of LEN and print_max. If
669 LEN is zero, then the limit is print_max. This is true regardless of
670 whether print_max is zero, UINT_MAX (unlimited), or something in between,
671 because finding the null byte (or available memory) is what actually
672 limits the fetch. */
673
674 fetchlimit = (len == 0 ? print_max : min (len, print_max));
675
676 /* Now decide how large of chunks to try to read in one operation. This
677 is also pretty simple. If LEN is nonzero, then we want fetchlimit bytes,
678 so we might as well read them all in one operation. If LEN is zero, we
679 are looking for a null terminator to end the fetching, so we might as
680 well read in blocks that are large enough to be efficient, but not so
681 large as to be slow if fetchlimit happens to be large. So we choose the
682 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
683 200 is way too big for remote debugging over a serial line. */
684
685 chunksize = (len == 0 ? min (8, fetchlimit) : fetchlimit);
686
687 /* Loop until we either have all the characters to print, or we encounter
688 some error, such as bumping into the end of the address space. */
689
690 bufsize = 0;
691 do {
692 QUIT;
693 /* Figure out how much to fetch this time, and grow the buffer to fit. */
694 nfetch = min (chunksize, fetchlimit - bufsize);
695 bufsize += nfetch;
696 if (buffer == NULL)
697 {
698 buffer = (char *) xmalloc (bufsize);
699 bufptr = buffer;
700 }
701 else
702 {
703 discard_cleanups (old_chain);
704 buffer = (char *) xrealloc (buffer, bufsize);
705 bufptr = buffer + bufsize - nfetch;
706 }
707 old_chain = make_cleanup (free, buffer);
708
709 /* Read as much as we can. */
710 nfetch = target_read_memory_partial (addr, bufptr, nfetch, &errcode);
711 if (len != 0)
712 {
713 addr += nfetch;
714 bufptr += nfetch;
715 }
716 else
717 {
718 /* Scan this chunk for the null byte that terminates the string
719 to print. If found, we don't need to fetch any more. Note
720 that bufptr is explicitly left pointing at the next character
721 after the null byte, or at the next character after the end of
722 the buffer. */
723 limit = bufptr + nfetch;
724 while (bufptr < limit)
725 {
726 ++addr;
727 ++bufptr;
728 if (bufptr[-1] == '\0')
729 {
730 /* We don't care about any error which happened after
731 the NULL terminator. */
732 errcode = 0;
733 break;
734 }
735 }
736 }
737 } while (errcode == 0 /* no error */
738 && bufsize < fetchlimit /* no overrun */
739 && !(len == 0 && *(bufptr - 1) == '\0')); /* no null term */
740
741 /* bufptr and addr now point immediately beyond the last byte which we
742 consider part of the string (including a '\0' which ends the string). */
743
744 /* We now have either successfully filled the buffer to fetchlimit, or
745 terminated early due to an error or finding a null byte when LEN is
746 zero. */
747
748 if (len == 0 && bufptr > buffer && *(bufptr - 1) != '\0')
749 {
750 /* We didn't find a null terminator we were looking for. Attempt
751 to peek at the next character. If not successful, or it is not
752 a null byte, then force ellipsis to be printed. */
753 if (target_read_memory (addr, &peekchar, 1) != 0 || peekchar != '\0')
754 {
755 force_ellipsis = 1;
756 }
757 }
758 else if ((len != 0 && errcode != 0) || (len > bufptr - buffer))
759 {
760 /* Getting an error when we have a requested length, or fetching less
761 than the number of characters actually requested, always make us
762 print ellipsis. */
763 force_ellipsis = 1;
764 }
765
766 QUIT;
767
768 /* If we get an error before fetching anything, don't print a string.
769 But if we fetch something and then get an error, print the string
770 and then the error message. */
771 if (errcode == 0 || bufptr > buffer)
772 {
773 if (addressprint)
774 {
775 fputs_filtered (" ", stream);
776 }
777 LA_PRINT_STRING (stream, buffer, bufptr - buffer, force_ellipsis);
778 }
779
780 if (errcode != 0)
781 {
782 if (errcode == EIO)
783 {
784 fprintf_filtered (stream, " <Address ");
785 print_address_numeric (addr, 1, stream);
786 fprintf_filtered (stream, " out of bounds>");
787 }
788 else
789 {
790 fprintf_filtered (stream, " <Error reading address ");
791 print_address_numeric (addr, 1, stream);
792 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
793 }
794 }
795 gdb_flush (stream);
796 do_cleanups (old_chain);
797 return (bufptr - buffer);
798 }
799
800 \f
801 /* Validate an input or output radix setting, and make sure the user
802 knows what they really did here. Radix setting is confusing, e.g.
803 setting the input radix to "10" never changes it! */
804
805 /* ARGSUSED */
806 static void
807 set_input_radix (args, from_tty, c)
808 char *args;
809 int from_tty;
810 struct cmd_list_element *c;
811 {
812 set_input_radix_1 (from_tty, *(unsigned *)c->var);
813 }
814
815 /* ARGSUSED */
816 static void
817 set_input_radix_1 (from_tty, radix)
818 int from_tty;
819 unsigned radix;
820 {
821 /* We don't currently disallow any input radix except 0 or 1, which don't
822 make any mathematical sense. In theory, we can deal with any input
823 radix greater than 1, even if we don't have unique digits for every
824 value from 0 to radix-1, but in practice we lose on large radix values.
825 We should either fix the lossage or restrict the radix range more.
826 (FIXME). */
827
828 if (radix < 2)
829 {
830 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
831 radix);
832 }
833 input_radix = radix;
834 if (from_tty)
835 {
836 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
837 radix, radix, radix);
838 }
839 }
840
841 /* ARGSUSED */
842 static void
843 set_output_radix (args, from_tty, c)
844 char *args;
845 int from_tty;
846 struct cmd_list_element *c;
847 {
848 set_output_radix_1 (from_tty, *(unsigned *)c->var);
849 }
850
851 static void
852 set_output_radix_1 (from_tty, radix)
853 int from_tty;
854 unsigned radix;
855 {
856 /* Validate the radix and disallow ones that we aren't prepared to
857 handle correctly, leaving the radix unchanged. */
858 switch (radix)
859 {
860 case 16:
861 output_format = 'x'; /* hex */
862 break;
863 case 10:
864 output_format = 0; /* decimal */
865 break;
866 case 8:
867 output_format = 'o'; /* octal */
868 break;
869 default:
870 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
871 radix);
872 }
873 output_radix = radix;
874 if (from_tty)
875 {
876 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
877 radix, radix, radix);
878 }
879 }
880
881 /* Set both the input and output radix at once. Try to set the output radix
882 first, since it has the most restrictive range. An radix that is valid as
883 an output radix is also valid as an input radix.
884
885 It may be useful to have an unusual input radix. If the user wishes to
886 set an input radix that is not valid as an output radix, he needs to use
887 the 'set input-radix' command. */
888
889 static void
890 set_radix (arg, from_tty)
891 char *arg;
892 int from_tty;
893 {
894 unsigned radix;
895
896 radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
897 set_output_radix_1 (0, radix);
898 set_input_radix_1 (0, radix);
899 if (from_tty)
900 {
901 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
902 radix, radix, radix);
903 }
904 }
905
906 /* Show both the input and output radices. */
907
908 /*ARGSUSED*/
909 static void
910 show_radix (arg, from_tty)
911 char *arg;
912 int from_tty;
913 {
914 if (from_tty)
915 {
916 if (input_radix == output_radix)
917 {
918 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
919 input_radix, input_radix, input_radix);
920 }
921 else
922 {
923 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
924 input_radix, input_radix, input_radix);
925 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
926 output_radix, output_radix, output_radix);
927 }
928 }
929 }
930
931 \f
932 /*ARGSUSED*/
933 static void
934 set_print (arg, from_tty)
935 char *arg;
936 int from_tty;
937 {
938 printf_unfiltered (
939 "\"set print\" must be followed by the name of a print subcommand.\n");
940 help_list (setprintlist, "set print ", -1, gdb_stdout);
941 }
942
943 /*ARGSUSED*/
944 static void
945 show_print (args, from_tty)
946 char *args;
947 int from_tty;
948 {
949 cmd_show_list (showprintlist, from_tty, "");
950 }
951 \f
952 void
953 _initialize_valprint ()
954 {
955 struct cmd_list_element *c;
956
957 add_prefix_cmd ("print", no_class, set_print,
958 "Generic command for setting how things print.",
959 &setprintlist, "set print ", 0, &setlist);
960 add_alias_cmd ("p", "print", no_class, 1, &setlist);
961 /* prefer set print to set prompt */
962 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
963
964 add_prefix_cmd ("print", no_class, show_print,
965 "Generic command for showing print settings.",
966 &showprintlist, "show print ", 0, &showlist);
967 add_alias_cmd ("p", "print", no_class, 1, &showlist);
968 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
969
970 add_show_from_set
971 (add_set_cmd ("elements", no_class, var_uinteger, (char *)&print_max,
972 "Set limit on string chars or array elements to print.\n\
973 \"set print elements 0\" causes there to be no limit.",
974 &setprintlist),
975 &showprintlist);
976
977 add_show_from_set
978 (add_set_cmd ("null-stop", no_class, var_boolean,
979 (char *)&stop_print_at_null,
980 "Set printing of char arrays to stop at first null char.",
981 &setprintlist),
982 &showprintlist);
983
984 add_show_from_set
985 (add_set_cmd ("repeats", no_class, var_uinteger,
986 (char *)&repeat_count_threshold,
987 "Set threshold for repeated print elements.\n\
988 \"set print repeats 0\" causes all elements to be individually printed.",
989 &setprintlist),
990 &showprintlist);
991
992 add_show_from_set
993 (add_set_cmd ("pretty", class_support, var_boolean,
994 (char *)&prettyprint_structs,
995 "Set prettyprinting of structures.",
996 &setprintlist),
997 &showprintlist);
998
999 add_show_from_set
1000 (add_set_cmd ("union", class_support, var_boolean, (char *)&unionprint,
1001 "Set printing of unions interior to structures.",
1002 &setprintlist),
1003 &showprintlist);
1004
1005 add_show_from_set
1006 (add_set_cmd ("array", class_support, var_boolean,
1007 (char *)&prettyprint_arrays,
1008 "Set prettyprinting of arrays.",
1009 &setprintlist),
1010 &showprintlist);
1011
1012 add_show_from_set
1013 (add_set_cmd ("address", class_support, var_boolean, (char *)&addressprint,
1014 "Set printing of addresses.",
1015 &setprintlist),
1016 &showprintlist);
1017
1018 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1019 (char *)&input_radix,
1020 "Set default input radix for entering numbers.",
1021 &setlist);
1022 add_show_from_set (c, &showlist);
1023 c->function.sfunc = set_input_radix;
1024
1025 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1026 (char *)&output_radix,
1027 "Set default output radix for printing of values.",
1028 &setlist);
1029 add_show_from_set (c, &showlist);
1030 c->function.sfunc = set_output_radix;
1031
1032 /* The "set radix" and "show radix" commands are special in that they are
1033 like normal set and show commands but allow two normally independent
1034 variables to be either set or shown with a single command. So the
1035 usual add_set_cmd() and add_show_from_set() commands aren't really
1036 appropriate. */
1037 add_cmd ("radix", class_support, set_radix,
1038 "Set default input and output number radices.\n\
1039 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1040 Without an argument, sets both radices back to the default value of 10.",
1041 &setlist);
1042 add_cmd ("radix", class_support, show_radix,
1043 "Show the default input and output number radices.\n\
1044 Use 'show input-radix' or 'show output-radix' to independently show each.",
1045 &showlist);
1046
1047 /* Give people the defaults which they are used to. */
1048 prettyprint_structs = 0;
1049 prettyprint_arrays = 0;
1050 unionprint = 1;
1051 addressprint = 1;
1052 print_max = PRINT_MAX_DEFAULT;
1053 }