2010-11-17 Tristan Gingold <gingold@adacore.com>
[binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39
40 #include <errno.h>
41
42 /* Prototypes for local functions */
43
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47 static void show_print (char *, int);
48
49 static void set_print (char *, int);
50
51 static void set_radix (char *, int);
52
53 static void show_radix (char *, int);
54
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56
57 static void set_input_radix_1 (int, unsigned);
58
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60
61 static void set_output_radix_1 (int, unsigned);
62
63 void _initialize_valprint (void);
64
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67 struct value_print_options user_print_options =
68 {
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88 };
89
90 /* Initialize *OPTS to be a copy of the user print options. */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94 *opts = user_print_options;
95 }
96
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104 }
105
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 char format)
111 {
112 *opts = user_print_options;
113 opts->format = format;
114 }
115
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("\
121 Limit on string chars or array elements to print is %s.\n"),
122 value);
123 }
124
125
126 /* Default input and output radixes, and output format letter. */
127
128 unsigned input_radix = 10;
129 static void
130 show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Default input radix for entering numbers is %s.\n"),
135 value);
136 }
137
138 unsigned output_radix = 10;
139 static void
140 show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("\
144 Default output radix for printing of values is %s.\n"),
145 value);
146 }
147
148 /* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
150
151 static void
152 show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
156 }
157
158 /* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
160 print routines. */
161
162 static void
163 show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
167 value);
168 }
169
170 /* If nonzero, stops printing of char arrays at first null. */
171
172 static void
173 show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("\
177 Printing of char arrays to stop at first null char is %s.\n"),
178 value);
179 }
180
181 /* Controls pretty printing of structures. */
182
183 static void
184 show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186 {
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
188 }
189
190 /* Controls pretty printing of arrays. */
191
192 static void
193 show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
197 }
198
199 /* If nonzero, causes unions inside structures or other unions to be
200 printed. */
201
202 static void
203 show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file, _("\
207 Printing of unions interior to structures is %s.\n"),
208 value);
209 }
210
211 /* If nonzero, causes machine addresses to be printed in certain contexts. */
212
213 static void
214 show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216 {
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
218 }
219 \f
220
221 /* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
224
225 static int
226 scalar_type_p (struct type *type)
227 {
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
230 {
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
233 }
234 switch (TYPE_CODE (type))
235 {
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
239 case TYPE_CODE_SET:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
242 return 0;
243 default:
244 return 1;
245 }
246 }
247
248 /* Helper function to check the validity of some bits of a value.
249
250 If TYPE represents some aggregate type (e.g., a structure), return 1.
251
252 Otherwise, any of the bytes starting at OFFSET and extending for
253 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
254 return 0. The checking is done using FUNCS.
255
256 Otherwise, return 1. */
257
258 static int
259 valprint_check_validity (struct ui_file *stream,
260 struct type *type,
261 int offset,
262 const struct value *val)
263 {
264 CHECK_TYPEDEF (type);
265
266 if (TYPE_CODE (type) != TYPE_CODE_UNION
267 && TYPE_CODE (type) != TYPE_CODE_STRUCT
268 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
269 {
270 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset,
271 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
272 {
273 fprintf_filtered (stream, _("<value optimized out>"));
274 return 0;
275 }
276 }
277
278 return 1;
279 }
280
281 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
282 (within GDB), which came from the inferior at address ADDRESS, onto
283 stdio stream STREAM according to OPTIONS.
284
285 If the data are a string pointer, returns the number of string characters
286 printed.
287
288 FIXME: The data at VALADDR is in target byte order. If gdb is ever
289 enhanced to be able to debug more than the single target it was compiled
290 for (specific CPU type and thus specific target byte ordering), then
291 either the print routines are going to have to take this into account,
292 or the data is going to have to be passed into here already converted
293 to the host byte ordering, whichever is more convenient. */
294
295
296 int
297 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
298 CORE_ADDR address, struct ui_file *stream, int recurse,
299 const struct value *val,
300 const struct value_print_options *options,
301 const struct language_defn *language)
302 {
303 volatile struct gdb_exception except;
304 int ret = 0;
305 struct value_print_options local_opts = *options;
306 struct type *real_type = check_typedef (type);
307
308 if (local_opts.pretty == Val_pretty_default)
309 local_opts.pretty = (local_opts.prettyprint_structs
310 ? Val_prettyprint : Val_no_prettyprint);
311
312 QUIT;
313
314 /* Ensure that the type is complete and not just a stub. If the type is
315 only a stub and we can't find and substitute its complete type, then
316 print appropriate string and return. */
317
318 if (TYPE_STUB (real_type))
319 {
320 fprintf_filtered (stream, _("<incomplete type>"));
321 gdb_flush (stream);
322 return (0);
323 }
324
325 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
326 return 0;
327
328 if (!options->raw)
329 {
330 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
331 address, stream, recurse,
332 val, options, language);
333 if (ret)
334 return ret;
335 }
336
337 /* Handle summary mode. If the value is a scalar, print it;
338 otherwise, print an ellipsis. */
339 if (options->summary && !scalar_type_p (type))
340 {
341 fprintf_filtered (stream, "...");
342 return 0;
343 }
344
345 TRY_CATCH (except, RETURN_MASK_ERROR)
346 {
347 ret = language->la_val_print (type, valaddr, embedded_offset, address,
348 stream, recurse, val,
349 &local_opts);
350 }
351 if (except.reason < 0)
352 fprintf_filtered (stream, _("<error reading variable>"));
353
354 return ret;
355 }
356
357 /* Check whether the value VAL is printable. Return 1 if it is;
358 return 0 and print an appropriate error message to STREAM if it
359 is not. */
360
361 static int
362 value_check_printable (struct value *val, struct ui_file *stream)
363 {
364 if (val == 0)
365 {
366 fprintf_filtered (stream, _("<address of value unknown>"));
367 return 0;
368 }
369
370 if (value_entirely_optimized_out (val))
371 {
372 fprintf_filtered (stream, _("<value optimized out>"));
373 return 0;
374 }
375
376 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
377 {
378 fprintf_filtered (stream, _("<internal function %s>"),
379 value_internal_function_name (val));
380 return 0;
381 }
382
383 return 1;
384 }
385
386 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
387 to OPTIONS.
388
389 If the data are a string pointer, returns the number of string characters
390 printed.
391
392 This is a preferable interface to val_print, above, because it uses
393 GDB's value mechanism. */
394
395 int
396 common_val_print (struct value *val, struct ui_file *stream, int recurse,
397 const struct value_print_options *options,
398 const struct language_defn *language)
399 {
400 if (!value_check_printable (val, stream))
401 return 0;
402
403 if (language->la_language == language_ada)
404 /* The value might have a dynamic type, which would cause trouble
405 below when trying to extract the value contents (since the value
406 size is determined from the type size which is unknown). So
407 get a fixed representation of our value. */
408 val = ada_to_fixed_value (val);
409
410 return val_print (value_type (val), value_contents_for_printing (val),
411 value_embedded_offset (val), value_address (val),
412 stream, recurse,
413 val, options, language);
414 }
415
416 /* Print on stream STREAM the value VAL according to OPTIONS. The value
417 is printed using the current_language syntax.
418
419 If the object printed is a string pointer, return the number of string
420 bytes printed. */
421
422 int
423 value_print (struct value *val, struct ui_file *stream,
424 const struct value_print_options *options)
425 {
426 if (!value_check_printable (val, stream))
427 return 0;
428
429 if (!options->raw)
430 {
431 int r = apply_val_pretty_printer (value_type (val),
432 value_contents_for_printing (val),
433 value_embedded_offset (val),
434 value_address (val),
435 stream, 0,
436 val, options, current_language);
437
438 if (r)
439 return r;
440 }
441
442 return LA_VALUE_PRINT (val, stream, options);
443 }
444
445 /* Called by various <lang>_val_print routines to print
446 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
447 value. STREAM is where to print the value. */
448
449 void
450 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
451 struct ui_file *stream)
452 {
453 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
454
455 if (TYPE_LENGTH (type) > sizeof (LONGEST))
456 {
457 LONGEST val;
458
459 if (TYPE_UNSIGNED (type)
460 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
461 byte_order, &val))
462 {
463 print_longest (stream, 'u', 0, val);
464 }
465 else
466 {
467 /* Signed, or we couldn't turn an unsigned value into a
468 LONGEST. For signed values, one could assume two's
469 complement (a reasonable assumption, I think) and do
470 better than this. */
471 print_hex_chars (stream, (unsigned char *) valaddr,
472 TYPE_LENGTH (type), byte_order);
473 }
474 }
475 else
476 {
477 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
478 unpack_long (type, valaddr));
479 }
480 }
481
482 void
483 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
484 struct ui_file *stream)
485 {
486 ULONGEST val = unpack_long (type, valaddr);
487 int bitpos, nfields = TYPE_NFIELDS (type);
488
489 fputs_filtered ("[ ", stream);
490 for (bitpos = 0; bitpos < nfields; bitpos++)
491 {
492 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
493 && (val & ((ULONGEST)1 << bitpos)))
494 {
495 if (TYPE_FIELD_NAME (type, bitpos))
496 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
497 else
498 fprintf_filtered (stream, "#%d ", bitpos);
499 }
500 }
501 fputs_filtered ("]", stream);
502 }
503
504 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
505 The raison d'etre of this function is to consolidate printing of
506 LONG_LONG's into this one function. The format chars b,h,w,g are
507 from print_scalar_formatted(). Numbers are printed using C
508 format.
509
510 USE_C_FORMAT means to use C format in all cases. Without it,
511 'o' and 'x' format do not include the standard C radix prefix
512 (leading 0 or 0x).
513
514 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
515 and was intended to request formating according to the current
516 language and would be used for most integers that GDB prints. The
517 exceptional cases were things like protocols where the format of
518 the integer is a protocol thing, not a user-visible thing). The
519 parameter remains to preserve the information of what things might
520 be printed with language-specific format, should we ever resurrect
521 that capability. */
522
523 void
524 print_longest (struct ui_file *stream, int format, int use_c_format,
525 LONGEST val_long)
526 {
527 const char *val;
528
529 switch (format)
530 {
531 case 'd':
532 val = int_string (val_long, 10, 1, 0, 1); break;
533 case 'u':
534 val = int_string (val_long, 10, 0, 0, 1); break;
535 case 'x':
536 val = int_string (val_long, 16, 0, 0, use_c_format); break;
537 case 'b':
538 val = int_string (val_long, 16, 0, 2, 1); break;
539 case 'h':
540 val = int_string (val_long, 16, 0, 4, 1); break;
541 case 'w':
542 val = int_string (val_long, 16, 0, 8, 1); break;
543 case 'g':
544 val = int_string (val_long, 16, 0, 16, 1); break;
545 break;
546 case 'o':
547 val = int_string (val_long, 8, 0, 0, use_c_format); break;
548 default:
549 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
550 }
551 fputs_filtered (val, stream);
552 }
553
554 /* This used to be a macro, but I don't think it is called often enough
555 to merit such treatment. */
556 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
557 arguments to a function, number in a value history, register number, etc.)
558 where the value must not be larger than can fit in an int. */
559
560 int
561 longest_to_int (LONGEST arg)
562 {
563 /* Let the compiler do the work */
564 int rtnval = (int) arg;
565
566 /* Check for overflows or underflows */
567 if (sizeof (LONGEST) > sizeof (int))
568 {
569 if (rtnval != arg)
570 {
571 error (_("Value out of range."));
572 }
573 }
574 return (rtnval);
575 }
576
577 /* Print a floating point value of type TYPE (not always a
578 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
579
580 void
581 print_floating (const gdb_byte *valaddr, struct type *type,
582 struct ui_file *stream)
583 {
584 DOUBLEST doub;
585 int inv;
586 const struct floatformat *fmt = NULL;
587 unsigned len = TYPE_LENGTH (type);
588 enum float_kind kind;
589
590 /* If it is a floating-point, check for obvious problems. */
591 if (TYPE_CODE (type) == TYPE_CODE_FLT)
592 fmt = floatformat_from_type (type);
593 if (fmt != NULL)
594 {
595 kind = floatformat_classify (fmt, valaddr);
596 if (kind == float_nan)
597 {
598 if (floatformat_is_negative (fmt, valaddr))
599 fprintf_filtered (stream, "-");
600 fprintf_filtered (stream, "nan(");
601 fputs_filtered ("0x", stream);
602 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
603 fprintf_filtered (stream, ")");
604 return;
605 }
606 else if (kind == float_infinite)
607 {
608 if (floatformat_is_negative (fmt, valaddr))
609 fputs_filtered ("-", stream);
610 fputs_filtered ("inf", stream);
611 return;
612 }
613 }
614
615 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
616 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
617 needs to be used as that takes care of any necessary type
618 conversions. Such conversions are of course direct to DOUBLEST
619 and disregard any possible target floating point limitations.
620 For instance, a u64 would be converted and displayed exactly on a
621 host with 80 bit DOUBLEST but with loss of information on a host
622 with 64 bit DOUBLEST. */
623
624 doub = unpack_double (type, valaddr, &inv);
625 if (inv)
626 {
627 fprintf_filtered (stream, "<invalid float value>");
628 return;
629 }
630
631 /* FIXME: kettenis/2001-01-20: The following code makes too much
632 assumptions about the host and target floating point format. */
633
634 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
635 not necessarily be a TYPE_CODE_FLT, the below ignores that and
636 instead uses the type's length to determine the precision of the
637 floating-point value being printed. */
638
639 if (len < sizeof (double))
640 fprintf_filtered (stream, "%.9g", (double) doub);
641 else if (len == sizeof (double))
642 fprintf_filtered (stream, "%.17g", (double) doub);
643 else
644 #ifdef PRINTF_HAS_LONG_DOUBLE
645 fprintf_filtered (stream, "%.35Lg", doub);
646 #else
647 /* This at least wins with values that are representable as
648 doubles. */
649 fprintf_filtered (stream, "%.17g", (double) doub);
650 #endif
651 }
652
653 void
654 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
655 struct ui_file *stream)
656 {
657 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
658 char decstr[MAX_DECIMAL_STRING];
659 unsigned len = TYPE_LENGTH (type);
660
661 decimal_to_string (valaddr, len, byte_order, decstr);
662 fputs_filtered (decstr, stream);
663 return;
664 }
665
666 void
667 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
668 unsigned len, enum bfd_endian byte_order)
669 {
670
671 #define BITS_IN_BYTES 8
672
673 const gdb_byte *p;
674 unsigned int i;
675 int b;
676
677 /* Declared "int" so it will be signed.
678 * This ensures that right shift will shift in zeros.
679 */
680 const int mask = 0x080;
681
682 /* FIXME: We should be not printing leading zeroes in most cases. */
683
684 if (byte_order == BFD_ENDIAN_BIG)
685 {
686 for (p = valaddr;
687 p < valaddr + len;
688 p++)
689 {
690 /* Every byte has 8 binary characters; peel off
691 * and print from the MSB end.
692 */
693 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
694 {
695 if (*p & (mask >> i))
696 b = 1;
697 else
698 b = 0;
699
700 fprintf_filtered (stream, "%1d", b);
701 }
702 }
703 }
704 else
705 {
706 for (p = valaddr + len - 1;
707 p >= valaddr;
708 p--)
709 {
710 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
711 {
712 if (*p & (mask >> i))
713 b = 1;
714 else
715 b = 0;
716
717 fprintf_filtered (stream, "%1d", b);
718 }
719 }
720 }
721 }
722
723 /* VALADDR points to an integer of LEN bytes.
724 * Print it in octal on stream or format it in buf.
725 */
726 void
727 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
728 unsigned len, enum bfd_endian byte_order)
729 {
730 const gdb_byte *p;
731 unsigned char octa1, octa2, octa3, carry;
732 int cycle;
733
734 /* FIXME: We should be not printing leading zeroes in most cases. */
735
736
737 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
738 * the extra bits, which cycle every three bytes:
739 *
740 * Byte side: 0 1 2 3
741 * | | | |
742 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
743 *
744 * Octal side: 0 1 carry 3 4 carry ...
745 *
746 * Cycle number: 0 1 2
747 *
748 * But of course we are printing from the high side, so we have to
749 * figure out where in the cycle we are so that we end up with no
750 * left over bits at the end.
751 */
752 #define BITS_IN_OCTAL 3
753 #define HIGH_ZERO 0340
754 #define LOW_ZERO 0016
755 #define CARRY_ZERO 0003
756 #define HIGH_ONE 0200
757 #define MID_ONE 0160
758 #define LOW_ONE 0016
759 #define CARRY_ONE 0001
760 #define HIGH_TWO 0300
761 #define MID_TWO 0070
762 #define LOW_TWO 0007
763
764 /* For 32 we start in cycle 2, with two bits and one bit carry;
765 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
766 */
767 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
768 carry = 0;
769
770 fputs_filtered ("0", stream);
771 if (byte_order == BFD_ENDIAN_BIG)
772 {
773 for (p = valaddr;
774 p < valaddr + len;
775 p++)
776 {
777 switch (cycle)
778 {
779 case 0:
780 /* No carry in, carry out two bits.
781 */
782 octa1 = (HIGH_ZERO & *p) >> 5;
783 octa2 = (LOW_ZERO & *p) >> 2;
784 carry = (CARRY_ZERO & *p);
785 fprintf_filtered (stream, "%o", octa1);
786 fprintf_filtered (stream, "%o", octa2);
787 break;
788
789 case 1:
790 /* Carry in two bits, carry out one bit.
791 */
792 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
793 octa2 = (MID_ONE & *p) >> 4;
794 octa3 = (LOW_ONE & *p) >> 1;
795 carry = (CARRY_ONE & *p);
796 fprintf_filtered (stream, "%o", octa1);
797 fprintf_filtered (stream, "%o", octa2);
798 fprintf_filtered (stream, "%o", octa3);
799 break;
800
801 case 2:
802 /* Carry in one bit, no carry out.
803 */
804 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
805 octa2 = (MID_TWO & *p) >> 3;
806 octa3 = (LOW_TWO & *p);
807 carry = 0;
808 fprintf_filtered (stream, "%o", octa1);
809 fprintf_filtered (stream, "%o", octa2);
810 fprintf_filtered (stream, "%o", octa3);
811 break;
812
813 default:
814 error (_("Internal error in octal conversion;"));
815 }
816
817 cycle++;
818 cycle = cycle % BITS_IN_OCTAL;
819 }
820 }
821 else
822 {
823 for (p = valaddr + len - 1;
824 p >= valaddr;
825 p--)
826 {
827 switch (cycle)
828 {
829 case 0:
830 /* Carry out, no carry in */
831 octa1 = (HIGH_ZERO & *p) >> 5;
832 octa2 = (LOW_ZERO & *p) >> 2;
833 carry = (CARRY_ZERO & *p);
834 fprintf_filtered (stream, "%o", octa1);
835 fprintf_filtered (stream, "%o", octa2);
836 break;
837
838 case 1:
839 /* Carry in, carry out */
840 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
841 octa2 = (MID_ONE & *p) >> 4;
842 octa3 = (LOW_ONE & *p) >> 1;
843 carry = (CARRY_ONE & *p);
844 fprintf_filtered (stream, "%o", octa1);
845 fprintf_filtered (stream, "%o", octa2);
846 fprintf_filtered (stream, "%o", octa3);
847 break;
848
849 case 2:
850 /* Carry in, no carry out */
851 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
852 octa2 = (MID_TWO & *p) >> 3;
853 octa3 = (LOW_TWO & *p);
854 carry = 0;
855 fprintf_filtered (stream, "%o", octa1);
856 fprintf_filtered (stream, "%o", octa2);
857 fprintf_filtered (stream, "%o", octa3);
858 break;
859
860 default:
861 error (_("Internal error in octal conversion;"));
862 }
863
864 cycle++;
865 cycle = cycle % BITS_IN_OCTAL;
866 }
867 }
868
869 }
870
871 /* VALADDR points to an integer of LEN bytes.
872 * Print it in decimal on stream or format it in buf.
873 */
874 void
875 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
876 unsigned len, enum bfd_endian byte_order)
877 {
878 #define TEN 10
879 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
880 #define CARRY_LEFT( x ) ((x) % TEN)
881 #define SHIFT( x ) ((x) << 4)
882 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
883 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
884
885 const gdb_byte *p;
886 unsigned char *digits;
887 int carry;
888 int decimal_len;
889 int i, j, decimal_digits;
890 int dummy;
891 int flip;
892
893 /* Base-ten number is less than twice as many digits
894 * as the base 16 number, which is 2 digits per byte.
895 */
896 decimal_len = len * 2 * 2;
897 digits = xmalloc (decimal_len);
898
899 for (i = 0; i < decimal_len; i++)
900 {
901 digits[i] = 0;
902 }
903
904 /* Ok, we have an unknown number of bytes of data to be printed in
905 * decimal.
906 *
907 * Given a hex number (in nibbles) as XYZ, we start by taking X and
908 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
909 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
910 *
911 * The trick is that "digits" holds a base-10 number, but sometimes
912 * the individual digits are > 10.
913 *
914 * Outer loop is per nibble (hex digit) of input, from MSD end to
915 * LSD end.
916 */
917 decimal_digits = 0; /* Number of decimal digits so far */
918 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
919 flip = 0;
920 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
921 {
922 /*
923 * Multiply current base-ten number by 16 in place.
924 * Each digit was between 0 and 9, now is between
925 * 0 and 144.
926 */
927 for (j = 0; j < decimal_digits; j++)
928 {
929 digits[j] = SHIFT (digits[j]);
930 }
931
932 /* Take the next nibble off the input and add it to what
933 * we've got in the LSB position. Bottom 'digit' is now
934 * between 0 and 159.
935 *
936 * "flip" is used to run this loop twice for each byte.
937 */
938 if (flip == 0)
939 {
940 /* Take top nibble.
941 */
942 digits[0] += HIGH_NIBBLE (*p);
943 flip = 1;
944 }
945 else
946 {
947 /* Take low nibble and bump our pointer "p".
948 */
949 digits[0] += LOW_NIBBLE (*p);
950 if (byte_order == BFD_ENDIAN_BIG)
951 p++;
952 else
953 p--;
954 flip = 0;
955 }
956
957 /* Re-decimalize. We have to do this often enough
958 * that we don't overflow, but once per nibble is
959 * overkill. Easier this way, though. Note that the
960 * carry is often larger than 10 (e.g. max initial
961 * carry out of lowest nibble is 15, could bubble all
962 * the way up greater than 10). So we have to do
963 * the carrying beyond the last current digit.
964 */
965 carry = 0;
966 for (j = 0; j < decimal_len - 1; j++)
967 {
968 digits[j] += carry;
969
970 /* "/" won't handle an unsigned char with
971 * a value that if signed would be negative.
972 * So extend to longword int via "dummy".
973 */
974 dummy = digits[j];
975 carry = CARRY_OUT (dummy);
976 digits[j] = CARRY_LEFT (dummy);
977
978 if (j >= decimal_digits && carry == 0)
979 {
980 /*
981 * All higher digits are 0 and we
982 * no longer have a carry.
983 *
984 * Note: "j" is 0-based, "decimal_digits" is
985 * 1-based.
986 */
987 decimal_digits = j + 1;
988 break;
989 }
990 }
991 }
992
993 /* Ok, now "digits" is the decimal representation, with
994 * the "decimal_digits" actual digits. Print!
995 */
996 for (i = decimal_digits - 1; i >= 0; i--)
997 {
998 fprintf_filtered (stream, "%1d", digits[i]);
999 }
1000 xfree (digits);
1001 }
1002
1003 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1004
1005 void
1006 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1007 unsigned len, enum bfd_endian byte_order)
1008 {
1009 const gdb_byte *p;
1010
1011 /* FIXME: We should be not printing leading zeroes in most cases. */
1012
1013 fputs_filtered ("0x", stream);
1014 if (byte_order == BFD_ENDIAN_BIG)
1015 {
1016 for (p = valaddr;
1017 p < valaddr + len;
1018 p++)
1019 {
1020 fprintf_filtered (stream, "%02x", *p);
1021 }
1022 }
1023 else
1024 {
1025 for (p = valaddr + len - 1;
1026 p >= valaddr;
1027 p--)
1028 {
1029 fprintf_filtered (stream, "%02x", *p);
1030 }
1031 }
1032 }
1033
1034 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
1035 Omit any leading zero chars. */
1036
1037 void
1038 print_char_chars (struct ui_file *stream, struct type *type,
1039 const gdb_byte *valaddr,
1040 unsigned len, enum bfd_endian byte_order)
1041 {
1042 const gdb_byte *p;
1043
1044 if (byte_order == BFD_ENDIAN_BIG)
1045 {
1046 p = valaddr;
1047 while (p < valaddr + len - 1 && *p == 0)
1048 ++p;
1049
1050 while (p < valaddr + len)
1051 {
1052 LA_EMIT_CHAR (*p, type, stream, '\'');
1053 ++p;
1054 }
1055 }
1056 else
1057 {
1058 p = valaddr + len - 1;
1059 while (p > valaddr && *p == 0)
1060 --p;
1061
1062 while (p >= valaddr)
1063 {
1064 LA_EMIT_CHAR (*p, type, stream, '\'');
1065 --p;
1066 }
1067 }
1068 }
1069
1070 /* Print on STREAM using the given OPTIONS the index for the element
1071 at INDEX of an array whose index type is INDEX_TYPE. */
1072
1073 void
1074 maybe_print_array_index (struct type *index_type, LONGEST index,
1075 struct ui_file *stream,
1076 const struct value_print_options *options)
1077 {
1078 struct value *index_value;
1079
1080 if (!options->print_array_indexes)
1081 return;
1082
1083 index_value = value_from_longest (index_type, index);
1084
1085 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1086 }
1087
1088 /* Called by various <lang>_val_print routines to print elements of an
1089 array in the form "<elem1>, <elem2>, <elem3>, ...".
1090
1091 (FIXME?) Assumes array element separator is a comma, which is correct
1092 for all languages currently handled.
1093 (FIXME?) Some languages have a notation for repeated array elements,
1094 perhaps we should try to use that notation when appropriate.
1095 */
1096
1097 void
1098 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1099 CORE_ADDR address, struct ui_file *stream,
1100 int recurse,
1101 const struct value *val,
1102 const struct value_print_options *options,
1103 unsigned int i)
1104 {
1105 unsigned int things_printed = 0;
1106 unsigned len;
1107 struct type *elttype, *index_type;
1108 unsigned eltlen;
1109 /* Position of the array element we are examining to see
1110 whether it is repeated. */
1111 unsigned int rep1;
1112 /* Number of repetitions we have detected so far. */
1113 unsigned int reps;
1114 LONGEST low_bound, high_bound;
1115
1116 elttype = TYPE_TARGET_TYPE (type);
1117 eltlen = TYPE_LENGTH (check_typedef (elttype));
1118 index_type = TYPE_INDEX_TYPE (type);
1119
1120 if (get_array_bounds (type, &low_bound, &high_bound))
1121 {
1122 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1123 But we have to be a little extra careful, because some languages
1124 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1125 empty arrays. In that situation, the array length is just zero,
1126 not negative! */
1127 if (low_bound > high_bound)
1128 len = 0;
1129 else
1130 len = high_bound - low_bound + 1;
1131 }
1132 else
1133 {
1134 warning (_("unable to get bounds of array, assuming null array"));
1135 low_bound = 0;
1136 len = 0;
1137 }
1138
1139 annotate_array_section_begin (i, elttype);
1140
1141 for (; i < len && things_printed < options->print_max; i++)
1142 {
1143 if (i != 0)
1144 {
1145 if (options->prettyprint_arrays)
1146 {
1147 fprintf_filtered (stream, ",\n");
1148 print_spaces_filtered (2 + 2 * recurse, stream);
1149 }
1150 else
1151 {
1152 fprintf_filtered (stream, ", ");
1153 }
1154 }
1155 wrap_here (n_spaces (2 + 2 * recurse));
1156 maybe_print_array_index (index_type, i + low_bound,
1157 stream, options);
1158
1159 rep1 = i + 1;
1160 reps = 1;
1161 while ((rep1 < len) &&
1162 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1163 {
1164 ++reps;
1165 ++rep1;
1166 }
1167
1168 if (reps > options->repeat_count_threshold)
1169 {
1170 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1171 stream, recurse + 1, val, options, current_language);
1172 annotate_elt_rep (reps);
1173 fprintf_filtered (stream, " <repeats %u times>", reps);
1174 annotate_elt_rep_end ();
1175
1176 i = rep1 - 1;
1177 things_printed += options->repeat_count_threshold;
1178 }
1179 else
1180 {
1181 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1182 stream, recurse + 1, val, options, current_language);
1183 annotate_elt ();
1184 things_printed++;
1185 }
1186 }
1187 annotate_array_section_end ();
1188 if (i < len)
1189 {
1190 fprintf_filtered (stream, "...");
1191 }
1192 }
1193
1194 /* Read LEN bytes of target memory at address MEMADDR, placing the
1195 results in GDB's memory at MYADDR. Returns a count of the bytes
1196 actually read, and optionally an errno value in the location
1197 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1198
1199 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1200 function be eliminated. */
1201
1202 static int
1203 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1204 {
1205 int nread; /* Number of bytes actually read. */
1206 int errcode; /* Error from last read. */
1207
1208 /* First try a complete read. */
1209 errcode = target_read_memory (memaddr, myaddr, len);
1210 if (errcode == 0)
1211 {
1212 /* Got it all. */
1213 nread = len;
1214 }
1215 else
1216 {
1217 /* Loop, reading one byte at a time until we get as much as we can. */
1218 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1219 {
1220 errcode = target_read_memory (memaddr++, myaddr++, 1);
1221 }
1222 /* If an error, the last read was unsuccessful, so adjust count. */
1223 if (errcode != 0)
1224 {
1225 nread--;
1226 }
1227 }
1228 if (errnoptr != NULL)
1229 {
1230 *errnoptr = errcode;
1231 }
1232 return (nread);
1233 }
1234
1235 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1236 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1237 allocated buffer containing the string, which the caller is responsible to
1238 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1239 success, or errno on failure.
1240
1241 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1242 the middle or end of the string). If LEN is -1, stops at the first
1243 null character (not necessarily the first null byte) up to a maximum
1244 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1245 characters as possible from the string.
1246
1247 Unless an exception is thrown, BUFFER will always be allocated, even on
1248 failure. In this case, some characters might have been read before the
1249 failure happened. Check BYTES_READ to recognize this situation.
1250
1251 Note: There was a FIXME asking to make this code use target_read_string,
1252 but this function is more general (can read past null characters, up to
1253 given LEN). Besides, it is used much more often than target_read_string
1254 so it is more tested. Perhaps callers of target_read_string should use
1255 this function instead? */
1256
1257 int
1258 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1259 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1260 {
1261 int found_nul; /* Non-zero if we found the nul char. */
1262 int errcode; /* Errno returned from bad reads. */
1263 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1264 unsigned int chunksize; /* Size of each fetch, in chars. */
1265 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1266 gdb_byte *limit; /* First location past end of fetch buffer. */
1267 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1268
1269 /* Decide how large of chunks to try to read in one operation. This
1270 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1271 so we might as well read them all in one operation. If LEN is -1, we
1272 are looking for a NUL terminator to end the fetching, so we might as
1273 well read in blocks that are large enough to be efficient, but not so
1274 large as to be slow if fetchlimit happens to be large. So we choose the
1275 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1276 200 is way too big for remote debugging over a serial line. */
1277
1278 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1279
1280 /* Loop until we either have all the characters, or we encounter
1281 some error, such as bumping into the end of the address space. */
1282
1283 found_nul = 0;
1284 *buffer = NULL;
1285
1286 old_chain = make_cleanup (free_current_contents, buffer);
1287
1288 if (len > 0)
1289 {
1290 *buffer = (gdb_byte *) xmalloc (len * width);
1291 bufptr = *buffer;
1292
1293 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1294 / width;
1295 addr += nfetch * width;
1296 bufptr += nfetch * width;
1297 }
1298 else if (len == -1)
1299 {
1300 unsigned long bufsize = 0;
1301
1302 do
1303 {
1304 QUIT;
1305 nfetch = min (chunksize, fetchlimit - bufsize);
1306
1307 if (*buffer == NULL)
1308 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1309 else
1310 *buffer = (gdb_byte *) xrealloc (*buffer,
1311 (nfetch + bufsize) * width);
1312
1313 bufptr = *buffer + bufsize * width;
1314 bufsize += nfetch;
1315
1316 /* Read as much as we can. */
1317 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1318 / width;
1319
1320 /* Scan this chunk for the null character that terminates the string
1321 to print. If found, we don't need to fetch any more. Note
1322 that bufptr is explicitly left pointing at the next character
1323 after the null character, or at the next character after the end
1324 of the buffer. */
1325
1326 limit = bufptr + nfetch * width;
1327 while (bufptr < limit)
1328 {
1329 unsigned long c;
1330
1331 c = extract_unsigned_integer (bufptr, width, byte_order);
1332 addr += width;
1333 bufptr += width;
1334 if (c == 0)
1335 {
1336 /* We don't care about any error which happened after
1337 the NUL terminator. */
1338 errcode = 0;
1339 found_nul = 1;
1340 break;
1341 }
1342 }
1343 }
1344 while (errcode == 0 /* no error */
1345 && bufptr - *buffer < fetchlimit * width /* no overrun */
1346 && !found_nul); /* haven't found NUL yet */
1347 }
1348 else
1349 { /* Length of string is really 0! */
1350 /* We always allocate *buffer. */
1351 *buffer = bufptr = xmalloc (1);
1352 errcode = 0;
1353 }
1354
1355 /* bufptr and addr now point immediately beyond the last byte which we
1356 consider part of the string (including a '\0' which ends the string). */
1357 *bytes_read = bufptr - *buffer;
1358
1359 QUIT;
1360
1361 discard_cleanups (old_chain);
1362
1363 return errcode;
1364 }
1365
1366 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1367 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1368 stops at the first null byte, otherwise printing proceeds (including null
1369 bytes) until either print_max or LEN characters have been printed,
1370 whichever is smaller. ENCODING is the name of the string's
1371 encoding. It can be NULL, in which case the target encoding is
1372 assumed. */
1373
1374 int
1375 val_print_string (struct type *elttype, const char *encoding,
1376 CORE_ADDR addr, int len,
1377 struct ui_file *stream,
1378 const struct value_print_options *options)
1379 {
1380 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1381 int errcode; /* Errno returned from bad reads. */
1382 int found_nul; /* Non-zero if we found the nul char */
1383 unsigned int fetchlimit; /* Maximum number of chars to print. */
1384 int bytes_read;
1385 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1386 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1387 struct gdbarch *gdbarch = get_type_arch (elttype);
1388 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1389 int width = TYPE_LENGTH (elttype);
1390
1391 /* First we need to figure out the limit on the number of characters we are
1392 going to attempt to fetch and print. This is actually pretty simple. If
1393 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1394 LEN is -1, then the limit is print_max. This is true regardless of
1395 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1396 because finding the null byte (or available memory) is what actually
1397 limits the fetch. */
1398
1399 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1400
1401 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1402 &buffer, &bytes_read);
1403 old_chain = make_cleanup (xfree, buffer);
1404
1405 addr += bytes_read;
1406
1407 /* We now have either successfully filled the buffer to fetchlimit, or
1408 terminated early due to an error or finding a null char when LEN is -1. */
1409
1410 /* Determine found_nul by looking at the last character read. */
1411 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1412 byte_order) == 0;
1413 if (len == -1 && !found_nul)
1414 {
1415 gdb_byte *peekbuf;
1416
1417 /* We didn't find a NUL terminator we were looking for. Attempt
1418 to peek at the next character. If not successful, or it is not
1419 a null byte, then force ellipsis to be printed. */
1420
1421 peekbuf = (gdb_byte *) alloca (width);
1422
1423 if (target_read_memory (addr, peekbuf, width) == 0
1424 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1425 force_ellipsis = 1;
1426 }
1427 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1428 {
1429 /* Getting an error when we have a requested length, or fetching less
1430 than the number of characters actually requested, always make us
1431 print ellipsis. */
1432 force_ellipsis = 1;
1433 }
1434
1435 /* If we get an error before fetching anything, don't print a string.
1436 But if we fetch something and then get an error, print the string
1437 and then the error message. */
1438 if (errcode == 0 || bytes_read > 0)
1439 {
1440 if (options->addressprint)
1441 {
1442 fputs_filtered (" ", stream);
1443 }
1444 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1445 encoding, force_ellipsis, options);
1446 }
1447
1448 if (errcode != 0)
1449 {
1450 if (errcode == EIO)
1451 {
1452 fprintf_filtered (stream, " <Address ");
1453 fputs_filtered (paddress (gdbarch, addr), stream);
1454 fprintf_filtered (stream, " out of bounds>");
1455 }
1456 else
1457 {
1458 fprintf_filtered (stream, " <Error reading address ");
1459 fputs_filtered (paddress (gdbarch, addr), stream);
1460 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1461 }
1462 }
1463
1464 gdb_flush (stream);
1465 do_cleanups (old_chain);
1466
1467 return (bytes_read / width);
1468 }
1469 \f
1470
1471 /* The 'set input-radix' command writes to this auxiliary variable.
1472 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1473 it is left unchanged. */
1474
1475 static unsigned input_radix_1 = 10;
1476
1477 /* Validate an input or output radix setting, and make sure the user
1478 knows what they really did here. Radix setting is confusing, e.g.
1479 setting the input radix to "10" never changes it! */
1480
1481 static void
1482 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1483 {
1484 set_input_radix_1 (from_tty, input_radix_1);
1485 }
1486
1487 static void
1488 set_input_radix_1 (int from_tty, unsigned radix)
1489 {
1490 /* We don't currently disallow any input radix except 0 or 1, which don't
1491 make any mathematical sense. In theory, we can deal with any input
1492 radix greater than 1, even if we don't have unique digits for every
1493 value from 0 to radix-1, but in practice we lose on large radix values.
1494 We should either fix the lossage or restrict the radix range more.
1495 (FIXME). */
1496
1497 if (radix < 2)
1498 {
1499 input_radix_1 = input_radix;
1500 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1501 radix);
1502 }
1503 input_radix_1 = input_radix = radix;
1504 if (from_tty)
1505 {
1506 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1507 radix, radix, radix);
1508 }
1509 }
1510
1511 /* The 'set output-radix' command writes to this auxiliary variable.
1512 If the requested radix is valid, OUTPUT_RADIX is updated,
1513 otherwise, it is left unchanged. */
1514
1515 static unsigned output_radix_1 = 10;
1516
1517 static void
1518 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1519 {
1520 set_output_radix_1 (from_tty, output_radix_1);
1521 }
1522
1523 static void
1524 set_output_radix_1 (int from_tty, unsigned radix)
1525 {
1526 /* Validate the radix and disallow ones that we aren't prepared to
1527 handle correctly, leaving the radix unchanged. */
1528 switch (radix)
1529 {
1530 case 16:
1531 user_print_options.output_format = 'x'; /* hex */
1532 break;
1533 case 10:
1534 user_print_options.output_format = 0; /* decimal */
1535 break;
1536 case 8:
1537 user_print_options.output_format = 'o'; /* octal */
1538 break;
1539 default:
1540 output_radix_1 = output_radix;
1541 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1542 radix);
1543 }
1544 output_radix_1 = output_radix = radix;
1545 if (from_tty)
1546 {
1547 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1548 radix, radix, radix);
1549 }
1550 }
1551
1552 /* Set both the input and output radix at once. Try to set the output radix
1553 first, since it has the most restrictive range. An radix that is valid as
1554 an output radix is also valid as an input radix.
1555
1556 It may be useful to have an unusual input radix. If the user wishes to
1557 set an input radix that is not valid as an output radix, he needs to use
1558 the 'set input-radix' command. */
1559
1560 static void
1561 set_radix (char *arg, int from_tty)
1562 {
1563 unsigned radix;
1564
1565 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1566 set_output_radix_1 (0, radix);
1567 set_input_radix_1 (0, radix);
1568 if (from_tty)
1569 {
1570 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1571 radix, radix, radix);
1572 }
1573 }
1574
1575 /* Show both the input and output radices. */
1576
1577 static void
1578 show_radix (char *arg, int from_tty)
1579 {
1580 if (from_tty)
1581 {
1582 if (input_radix == output_radix)
1583 {
1584 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1585 input_radix, input_radix, input_radix);
1586 }
1587 else
1588 {
1589 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1590 input_radix, input_radix, input_radix);
1591 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1592 output_radix, output_radix, output_radix);
1593 }
1594 }
1595 }
1596 \f
1597
1598 static void
1599 set_print (char *arg, int from_tty)
1600 {
1601 printf_unfiltered (
1602 "\"set print\" must be followed by the name of a print subcommand.\n");
1603 help_list (setprintlist, "set print ", -1, gdb_stdout);
1604 }
1605
1606 static void
1607 show_print (char *args, int from_tty)
1608 {
1609 cmd_show_list (showprintlist, from_tty, "");
1610 }
1611 \f
1612 void
1613 _initialize_valprint (void)
1614 {
1615 add_prefix_cmd ("print", no_class, set_print,
1616 _("Generic command for setting how things print."),
1617 &setprintlist, "set print ", 0, &setlist);
1618 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1619 /* prefer set print to set prompt */
1620 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1621
1622 add_prefix_cmd ("print", no_class, show_print,
1623 _("Generic command for showing print settings."),
1624 &showprintlist, "show print ", 0, &showlist);
1625 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1626 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1627
1628 add_setshow_uinteger_cmd ("elements", no_class,
1629 &user_print_options.print_max, _("\
1630 Set limit on string chars or array elements to print."), _("\
1631 Show limit on string chars or array elements to print."), _("\
1632 \"set print elements 0\" causes there to be no limit."),
1633 NULL,
1634 show_print_max,
1635 &setprintlist, &showprintlist);
1636
1637 add_setshow_boolean_cmd ("null-stop", no_class,
1638 &user_print_options.stop_print_at_null, _("\
1639 Set printing of char arrays to stop at first null char."), _("\
1640 Show printing of char arrays to stop at first null char."), NULL,
1641 NULL,
1642 show_stop_print_at_null,
1643 &setprintlist, &showprintlist);
1644
1645 add_setshow_uinteger_cmd ("repeats", no_class,
1646 &user_print_options.repeat_count_threshold, _("\
1647 Set threshold for repeated print elements."), _("\
1648 Show threshold for repeated print elements."), _("\
1649 \"set print repeats 0\" causes all elements to be individually printed."),
1650 NULL,
1651 show_repeat_count_threshold,
1652 &setprintlist, &showprintlist);
1653
1654 add_setshow_boolean_cmd ("pretty", class_support,
1655 &user_print_options.prettyprint_structs, _("\
1656 Set prettyprinting of structures."), _("\
1657 Show prettyprinting of structures."), NULL,
1658 NULL,
1659 show_prettyprint_structs,
1660 &setprintlist, &showprintlist);
1661
1662 add_setshow_boolean_cmd ("union", class_support,
1663 &user_print_options.unionprint, _("\
1664 Set printing of unions interior to structures."), _("\
1665 Show printing of unions interior to structures."), NULL,
1666 NULL,
1667 show_unionprint,
1668 &setprintlist, &showprintlist);
1669
1670 add_setshow_boolean_cmd ("array", class_support,
1671 &user_print_options.prettyprint_arrays, _("\
1672 Set prettyprinting of arrays."), _("\
1673 Show prettyprinting of arrays."), NULL,
1674 NULL,
1675 show_prettyprint_arrays,
1676 &setprintlist, &showprintlist);
1677
1678 add_setshow_boolean_cmd ("address", class_support,
1679 &user_print_options.addressprint, _("\
1680 Set printing of addresses."), _("\
1681 Show printing of addresses."), NULL,
1682 NULL,
1683 show_addressprint,
1684 &setprintlist, &showprintlist);
1685
1686 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1687 _("\
1688 Set default input radix for entering numbers."), _("\
1689 Show default input radix for entering numbers."), NULL,
1690 set_input_radix,
1691 show_input_radix,
1692 &setlist, &showlist);
1693
1694 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1695 _("\
1696 Set default output radix for printing of values."), _("\
1697 Show default output radix for printing of values."), NULL,
1698 set_output_radix,
1699 show_output_radix,
1700 &setlist, &showlist);
1701
1702 /* The "set radix" and "show radix" commands are special in that
1703 they are like normal set and show commands but allow two normally
1704 independent variables to be either set or shown with a single
1705 command. So the usual deprecated_add_set_cmd() and [deleted]
1706 add_show_from_set() commands aren't really appropriate. */
1707 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1708 longer true - show can display anything. */
1709 add_cmd ("radix", class_support, set_radix, _("\
1710 Set default input and output number radices.\n\
1711 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1712 Without an argument, sets both radices back to the default value of 10."),
1713 &setlist);
1714 add_cmd ("radix", class_support, show_radix, _("\
1715 Show the default input and output number radices.\n\
1716 Use 'show input-radix' or 'show output-radix' to independently show each."),
1717 &showlist);
1718
1719 add_setshow_boolean_cmd ("array-indexes", class_support,
1720 &user_print_options.print_array_indexes, _("\
1721 Set printing of array indexes."), _("\
1722 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1723 &setprintlist, &showprintlist);
1724 }