gdb:
[binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
43 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
64
65 struct value_print_options user_print_options =
66 {
67 Val_pretty_default, /* pretty */
68 0, /* prettyprint_arrays */
69 0, /* prettyprint_structs */
70 0, /* vtblprint */
71 1, /* unionprint */
72 1, /* addressprint */
73 0, /* objectprint */
74 PRINT_MAX_DEFAULT, /* print_max */
75 10, /* repeat_count_threshold */
76 0, /* output_format */
77 0, /* format */
78 0, /* stop_print_at_null */
79 0, /* inspect_it */
80 0, /* print_array_indexes */
81 0, /* deref_ref */
82 1, /* static_field_print */
83 1 /* pascal_static_field_print */
84 };
85
86 /* Initialize *OPTS to be a copy of the user print options. */
87 void
88 get_user_print_options (struct value_print_options *opts)
89 {
90 *opts = user_print_options;
91 }
92
93 /* Initialize *OPTS to be a copy of the user print options, but with
94 pretty-printing disabled. */
95 void
96 get_raw_print_options (struct value_print_options *opts)
97 {
98 *opts = user_print_options;
99 opts->pretty = Val_no_prettyprint;
100 }
101
102 /* Initialize *OPTS to be a copy of the user print options, but using
103 FORMAT as the formatting option. */
104 void
105 get_formatted_print_options (struct value_print_options *opts,
106 char format)
107 {
108 *opts = user_print_options;
109 opts->format = format;
110 }
111
112 static void
113 show_print_max (struct ui_file *file, int from_tty,
114 struct cmd_list_element *c, const char *value)
115 {
116 fprintf_filtered (file, _("\
117 Limit on string chars or array elements to print is %s.\n"),
118 value);
119 }
120
121
122 /* Default input and output radixes, and output format letter. */
123
124 unsigned input_radix = 10;
125 static void
126 show_input_radix (struct ui_file *file, int from_tty,
127 struct cmd_list_element *c, const char *value)
128 {
129 fprintf_filtered (file, _("\
130 Default input radix for entering numbers is %s.\n"),
131 value);
132 }
133
134 unsigned output_radix = 10;
135 static void
136 show_output_radix (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("\
140 Default output radix for printing of values is %s.\n"),
141 value);
142 }
143
144 /* By default we print arrays without printing the index of each element in
145 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
146
147 static void
148 show_print_array_indexes (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
152 }
153
154 /* Print repeat counts if there are more than this many repetitions of an
155 element in an array. Referenced by the low level language dependent
156 print routines. */
157
158 static void
159 show_repeat_count_threshold (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
163 value);
164 }
165
166 /* If nonzero, stops printing of char arrays at first null. */
167
168 static void
169 show_stop_print_at_null (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("\
173 Printing of char arrays to stop at first null char is %s.\n"),
174 value);
175 }
176
177 /* Controls pretty printing of structures. */
178
179 static void
180 show_prettyprint_structs (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
184 }
185
186 /* Controls pretty printing of arrays. */
187
188 static void
189 show_prettyprint_arrays (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
193 }
194
195 /* If nonzero, causes unions inside structures or other unions to be
196 printed. */
197
198 static void
199 show_unionprint (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file, _("\
203 Printing of unions interior to structures is %s.\n"),
204 value);
205 }
206
207 /* If nonzero, causes machine addresses to be printed in certain contexts. */
208
209 static void
210 show_addressprint (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
214 }
215 \f
216
217 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
218 (within GDB), which came from the inferior at address ADDRESS, onto
219 stdio stream STREAM according to OPTIONS.
220
221 If the data are a string pointer, returns the number of string characters
222 printed.
223
224 FIXME: The data at VALADDR is in target byte order. If gdb is ever
225 enhanced to be able to debug more than the single target it was compiled
226 for (specific CPU type and thus specific target byte ordering), then
227 either the print routines are going to have to take this into account,
228 or the data is going to have to be passed into here already converted
229 to the host byte ordering, whichever is more convenient. */
230
231
232 int
233 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
234 CORE_ADDR address, struct ui_file *stream, int recurse,
235 const struct value_print_options *options,
236 const struct language_defn *language)
237 {
238 volatile struct gdb_exception except;
239 int ret = 0;
240 struct value_print_options local_opts = *options;
241 struct type *real_type = check_typedef (type);
242
243 if (local_opts.pretty == Val_pretty_default)
244 local_opts.pretty = (local_opts.prettyprint_structs
245 ? Val_prettyprint : Val_no_prettyprint);
246
247 QUIT;
248
249 /* Ensure that the type is complete and not just a stub. If the type is
250 only a stub and we can't find and substitute its complete type, then
251 print appropriate string and return. */
252
253 if (TYPE_STUB (real_type))
254 {
255 fprintf_filtered (stream, "<incomplete type>");
256 gdb_flush (stream);
257 return (0);
258 }
259
260 TRY_CATCH (except, RETURN_MASK_ERROR)
261 {
262 ret = language->la_val_print (type, valaddr, embedded_offset, address,
263 stream, recurse, &local_opts);
264 }
265 if (except.reason < 0)
266 fprintf_filtered (stream, _("<error reading variable>"));
267
268 return ret;
269 }
270
271 /* Check whether the value VAL is printable. Return 1 if it is;
272 return 0 and print an appropriate error message to STREAM if it
273 is not. */
274
275 static int
276 value_check_printable (struct value *val, struct ui_file *stream)
277 {
278 if (val == 0)
279 {
280 fprintf_filtered (stream, _("<address of value unknown>"));
281 return 0;
282 }
283
284 if (value_optimized_out (val))
285 {
286 fprintf_filtered (stream, _("<value optimized out>"));
287 return 0;
288 }
289
290 return 1;
291 }
292
293 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
294 to OPTIONS.
295
296 If the data are a string pointer, returns the number of string characters
297 printed.
298
299 This is a preferable interface to val_print, above, because it uses
300 GDB's value mechanism. */
301
302 int
303 common_val_print (struct value *val, struct ui_file *stream, int recurse,
304 const struct value_print_options *options,
305 const struct language_defn *language)
306 {
307 if (!value_check_printable (val, stream))
308 return 0;
309
310 return val_print (value_type (val), value_contents_all (val),
311 value_embedded_offset (val), VALUE_ADDRESS (val),
312 stream, recurse, options, language);
313 }
314
315 /* Print the value VAL in C-ish syntax on stream STREAM according to
316 OPTIONS.
317 If the object printed is a string pointer, returns
318 the number of string bytes printed. */
319
320 int
321 value_print (struct value *val, struct ui_file *stream,
322 const struct value_print_options *options)
323 {
324 if (!value_check_printable (val, stream))
325 return 0;
326
327 return LA_VALUE_PRINT (val, stream, options);
328 }
329
330 /* Called by various <lang>_val_print routines to print
331 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
332 value. STREAM is where to print the value. */
333
334 void
335 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
336 struct ui_file *stream)
337 {
338 enum bfd_endian byte_order = gdbarch_byte_order (current_gdbarch);
339
340 if (TYPE_LENGTH (type) > sizeof (LONGEST))
341 {
342 LONGEST val;
343
344 if (TYPE_UNSIGNED (type)
345 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
346 &val))
347 {
348 print_longest (stream, 'u', 0, val);
349 }
350 else
351 {
352 /* Signed, or we couldn't turn an unsigned value into a
353 LONGEST. For signed values, one could assume two's
354 complement (a reasonable assumption, I think) and do
355 better than this. */
356 print_hex_chars (stream, (unsigned char *) valaddr,
357 TYPE_LENGTH (type), byte_order);
358 }
359 }
360 else
361 {
362 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
363 unpack_long (type, valaddr));
364 }
365 }
366
367 void
368 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
369 struct ui_file *stream)
370 {
371 ULONGEST val = unpack_long (type, valaddr);
372 int bitpos, nfields = TYPE_NFIELDS (type);
373
374 fputs_filtered ("[ ", stream);
375 for (bitpos = 0; bitpos < nfields; bitpos++)
376 {
377 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
378 && (val & ((ULONGEST)1 << bitpos)))
379 {
380 if (TYPE_FIELD_NAME (type, bitpos))
381 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
382 else
383 fprintf_filtered (stream, "#%d ", bitpos);
384 }
385 }
386 fputs_filtered ("]", stream);
387 }
388
389 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
390 The raison d'etre of this function is to consolidate printing of
391 LONG_LONG's into this one function. The format chars b,h,w,g are
392 from print_scalar_formatted(). Numbers are printed using C
393 format.
394
395 USE_C_FORMAT means to use C format in all cases. Without it,
396 'o' and 'x' format do not include the standard C radix prefix
397 (leading 0 or 0x).
398
399 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
400 and was intended to request formating according to the current
401 language and would be used for most integers that GDB prints. The
402 exceptional cases were things like protocols where the format of
403 the integer is a protocol thing, not a user-visible thing). The
404 parameter remains to preserve the information of what things might
405 be printed with language-specific format, should we ever resurrect
406 that capability. */
407
408 void
409 print_longest (struct ui_file *stream, int format, int use_c_format,
410 LONGEST val_long)
411 {
412 const char *val;
413
414 switch (format)
415 {
416 case 'd':
417 val = int_string (val_long, 10, 1, 0, 1); break;
418 case 'u':
419 val = int_string (val_long, 10, 0, 0, 1); break;
420 case 'x':
421 val = int_string (val_long, 16, 0, 0, use_c_format); break;
422 case 'b':
423 val = int_string (val_long, 16, 0, 2, 1); break;
424 case 'h':
425 val = int_string (val_long, 16, 0, 4, 1); break;
426 case 'w':
427 val = int_string (val_long, 16, 0, 8, 1); break;
428 case 'g':
429 val = int_string (val_long, 16, 0, 16, 1); break;
430 break;
431 case 'o':
432 val = int_string (val_long, 8, 0, 0, use_c_format); break;
433 default:
434 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
435 }
436 fputs_filtered (val, stream);
437 }
438
439 /* This used to be a macro, but I don't think it is called often enough
440 to merit such treatment. */
441 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
442 arguments to a function, number in a value history, register number, etc.)
443 where the value must not be larger than can fit in an int. */
444
445 int
446 longest_to_int (LONGEST arg)
447 {
448 /* Let the compiler do the work */
449 int rtnval = (int) arg;
450
451 /* Check for overflows or underflows */
452 if (sizeof (LONGEST) > sizeof (int))
453 {
454 if (rtnval != arg)
455 {
456 error (_("Value out of range."));
457 }
458 }
459 return (rtnval);
460 }
461
462 /* Print a floating point value of type TYPE (not always a
463 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
464
465 void
466 print_floating (const gdb_byte *valaddr, struct type *type,
467 struct ui_file *stream)
468 {
469 DOUBLEST doub;
470 int inv;
471 const struct floatformat *fmt = NULL;
472 unsigned len = TYPE_LENGTH (type);
473 enum float_kind kind;
474
475 /* If it is a floating-point, check for obvious problems. */
476 if (TYPE_CODE (type) == TYPE_CODE_FLT)
477 fmt = floatformat_from_type (type);
478 if (fmt != NULL)
479 {
480 kind = floatformat_classify (fmt, valaddr);
481 if (kind == float_nan)
482 {
483 if (floatformat_is_negative (fmt, valaddr))
484 fprintf_filtered (stream, "-");
485 fprintf_filtered (stream, "nan(");
486 fputs_filtered ("0x", stream);
487 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
488 fprintf_filtered (stream, ")");
489 return;
490 }
491 else if (kind == float_infinite)
492 {
493 if (floatformat_is_negative (fmt, valaddr))
494 fputs_filtered ("-", stream);
495 fputs_filtered ("inf", stream);
496 return;
497 }
498 }
499
500 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
501 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
502 needs to be used as that takes care of any necessary type
503 conversions. Such conversions are of course direct to DOUBLEST
504 and disregard any possible target floating point limitations.
505 For instance, a u64 would be converted and displayed exactly on a
506 host with 80 bit DOUBLEST but with loss of information on a host
507 with 64 bit DOUBLEST. */
508
509 doub = unpack_double (type, valaddr, &inv);
510 if (inv)
511 {
512 fprintf_filtered (stream, "<invalid float value>");
513 return;
514 }
515
516 /* FIXME: kettenis/2001-01-20: The following code makes too much
517 assumptions about the host and target floating point format. */
518
519 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
520 not necessarily be a TYPE_CODE_FLT, the below ignores that and
521 instead uses the type's length to determine the precision of the
522 floating-point value being printed. */
523
524 if (len < sizeof (double))
525 fprintf_filtered (stream, "%.9g", (double) doub);
526 else if (len == sizeof (double))
527 fprintf_filtered (stream, "%.17g", (double) doub);
528 else
529 #ifdef PRINTF_HAS_LONG_DOUBLE
530 fprintf_filtered (stream, "%.35Lg", doub);
531 #else
532 /* This at least wins with values that are representable as
533 doubles. */
534 fprintf_filtered (stream, "%.17g", (double) doub);
535 #endif
536 }
537
538 void
539 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
540 struct ui_file *stream)
541 {
542 char decstr[MAX_DECIMAL_STRING];
543 unsigned len = TYPE_LENGTH (type);
544
545 decimal_to_string (valaddr, len, decstr);
546 fputs_filtered (decstr, stream);
547 return;
548 }
549
550 void
551 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
552 unsigned len, enum bfd_endian byte_order)
553 {
554
555 #define BITS_IN_BYTES 8
556
557 const gdb_byte *p;
558 unsigned int i;
559 int b;
560
561 /* Declared "int" so it will be signed.
562 * This ensures that right shift will shift in zeros.
563 */
564 const int mask = 0x080;
565
566 /* FIXME: We should be not printing leading zeroes in most cases. */
567
568 if (byte_order == BFD_ENDIAN_BIG)
569 {
570 for (p = valaddr;
571 p < valaddr + len;
572 p++)
573 {
574 /* Every byte has 8 binary characters; peel off
575 * and print from the MSB end.
576 */
577 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
578 {
579 if (*p & (mask >> i))
580 b = 1;
581 else
582 b = 0;
583
584 fprintf_filtered (stream, "%1d", b);
585 }
586 }
587 }
588 else
589 {
590 for (p = valaddr + len - 1;
591 p >= valaddr;
592 p--)
593 {
594 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
595 {
596 if (*p & (mask >> i))
597 b = 1;
598 else
599 b = 0;
600
601 fprintf_filtered (stream, "%1d", b);
602 }
603 }
604 }
605 }
606
607 /* VALADDR points to an integer of LEN bytes.
608 * Print it in octal on stream or format it in buf.
609 */
610 void
611 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
612 unsigned len, enum bfd_endian byte_order)
613 {
614 const gdb_byte *p;
615 unsigned char octa1, octa2, octa3, carry;
616 int cycle;
617
618 /* FIXME: We should be not printing leading zeroes in most cases. */
619
620
621 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
622 * the extra bits, which cycle every three bytes:
623 *
624 * Byte side: 0 1 2 3
625 * | | | |
626 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
627 *
628 * Octal side: 0 1 carry 3 4 carry ...
629 *
630 * Cycle number: 0 1 2
631 *
632 * But of course we are printing from the high side, so we have to
633 * figure out where in the cycle we are so that we end up with no
634 * left over bits at the end.
635 */
636 #define BITS_IN_OCTAL 3
637 #define HIGH_ZERO 0340
638 #define LOW_ZERO 0016
639 #define CARRY_ZERO 0003
640 #define HIGH_ONE 0200
641 #define MID_ONE 0160
642 #define LOW_ONE 0016
643 #define CARRY_ONE 0001
644 #define HIGH_TWO 0300
645 #define MID_TWO 0070
646 #define LOW_TWO 0007
647
648 /* For 32 we start in cycle 2, with two bits and one bit carry;
649 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
650 */
651 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
652 carry = 0;
653
654 fputs_filtered ("0", stream);
655 if (byte_order == BFD_ENDIAN_BIG)
656 {
657 for (p = valaddr;
658 p < valaddr + len;
659 p++)
660 {
661 switch (cycle)
662 {
663 case 0:
664 /* No carry in, carry out two bits.
665 */
666 octa1 = (HIGH_ZERO & *p) >> 5;
667 octa2 = (LOW_ZERO & *p) >> 2;
668 carry = (CARRY_ZERO & *p);
669 fprintf_filtered (stream, "%o", octa1);
670 fprintf_filtered (stream, "%o", octa2);
671 break;
672
673 case 1:
674 /* Carry in two bits, carry out one bit.
675 */
676 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
677 octa2 = (MID_ONE & *p) >> 4;
678 octa3 = (LOW_ONE & *p) >> 1;
679 carry = (CARRY_ONE & *p);
680 fprintf_filtered (stream, "%o", octa1);
681 fprintf_filtered (stream, "%o", octa2);
682 fprintf_filtered (stream, "%o", octa3);
683 break;
684
685 case 2:
686 /* Carry in one bit, no carry out.
687 */
688 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
689 octa2 = (MID_TWO & *p) >> 3;
690 octa3 = (LOW_TWO & *p);
691 carry = 0;
692 fprintf_filtered (stream, "%o", octa1);
693 fprintf_filtered (stream, "%o", octa2);
694 fprintf_filtered (stream, "%o", octa3);
695 break;
696
697 default:
698 error (_("Internal error in octal conversion;"));
699 }
700
701 cycle++;
702 cycle = cycle % BITS_IN_OCTAL;
703 }
704 }
705 else
706 {
707 for (p = valaddr + len - 1;
708 p >= valaddr;
709 p--)
710 {
711 switch (cycle)
712 {
713 case 0:
714 /* Carry out, no carry in */
715 octa1 = (HIGH_ZERO & *p) >> 5;
716 octa2 = (LOW_ZERO & *p) >> 2;
717 carry = (CARRY_ZERO & *p);
718 fprintf_filtered (stream, "%o", octa1);
719 fprintf_filtered (stream, "%o", octa2);
720 break;
721
722 case 1:
723 /* Carry in, carry out */
724 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
725 octa2 = (MID_ONE & *p) >> 4;
726 octa3 = (LOW_ONE & *p) >> 1;
727 carry = (CARRY_ONE & *p);
728 fprintf_filtered (stream, "%o", octa1);
729 fprintf_filtered (stream, "%o", octa2);
730 fprintf_filtered (stream, "%o", octa3);
731 break;
732
733 case 2:
734 /* Carry in, no carry out */
735 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
736 octa2 = (MID_TWO & *p) >> 3;
737 octa3 = (LOW_TWO & *p);
738 carry = 0;
739 fprintf_filtered (stream, "%o", octa1);
740 fprintf_filtered (stream, "%o", octa2);
741 fprintf_filtered (stream, "%o", octa3);
742 break;
743
744 default:
745 error (_("Internal error in octal conversion;"));
746 }
747
748 cycle++;
749 cycle = cycle % BITS_IN_OCTAL;
750 }
751 }
752
753 }
754
755 /* VALADDR points to an integer of LEN bytes.
756 * Print it in decimal on stream or format it in buf.
757 */
758 void
759 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
760 unsigned len, enum bfd_endian byte_order)
761 {
762 #define TEN 10
763 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
764 #define CARRY_LEFT( x ) ((x) % TEN)
765 #define SHIFT( x ) ((x) << 4)
766 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
767 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
768
769 const gdb_byte *p;
770 unsigned char *digits;
771 int carry;
772 int decimal_len;
773 int i, j, decimal_digits;
774 int dummy;
775 int flip;
776
777 /* Base-ten number is less than twice as many digits
778 * as the base 16 number, which is 2 digits per byte.
779 */
780 decimal_len = len * 2 * 2;
781 digits = xmalloc (decimal_len);
782
783 for (i = 0; i < decimal_len; i++)
784 {
785 digits[i] = 0;
786 }
787
788 /* Ok, we have an unknown number of bytes of data to be printed in
789 * decimal.
790 *
791 * Given a hex number (in nibbles) as XYZ, we start by taking X and
792 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
793 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
794 *
795 * The trick is that "digits" holds a base-10 number, but sometimes
796 * the individual digits are > 10.
797 *
798 * Outer loop is per nibble (hex digit) of input, from MSD end to
799 * LSD end.
800 */
801 decimal_digits = 0; /* Number of decimal digits so far */
802 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
803 flip = 0;
804 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
805 {
806 /*
807 * Multiply current base-ten number by 16 in place.
808 * Each digit was between 0 and 9, now is between
809 * 0 and 144.
810 */
811 for (j = 0; j < decimal_digits; j++)
812 {
813 digits[j] = SHIFT (digits[j]);
814 }
815
816 /* Take the next nibble off the input and add it to what
817 * we've got in the LSB position. Bottom 'digit' is now
818 * between 0 and 159.
819 *
820 * "flip" is used to run this loop twice for each byte.
821 */
822 if (flip == 0)
823 {
824 /* Take top nibble.
825 */
826 digits[0] += HIGH_NIBBLE (*p);
827 flip = 1;
828 }
829 else
830 {
831 /* Take low nibble and bump our pointer "p".
832 */
833 digits[0] += LOW_NIBBLE (*p);
834 if (byte_order == BFD_ENDIAN_BIG)
835 p++;
836 else
837 p--;
838 flip = 0;
839 }
840
841 /* Re-decimalize. We have to do this often enough
842 * that we don't overflow, but once per nibble is
843 * overkill. Easier this way, though. Note that the
844 * carry is often larger than 10 (e.g. max initial
845 * carry out of lowest nibble is 15, could bubble all
846 * the way up greater than 10). So we have to do
847 * the carrying beyond the last current digit.
848 */
849 carry = 0;
850 for (j = 0; j < decimal_len - 1; j++)
851 {
852 digits[j] += carry;
853
854 /* "/" won't handle an unsigned char with
855 * a value that if signed would be negative.
856 * So extend to longword int via "dummy".
857 */
858 dummy = digits[j];
859 carry = CARRY_OUT (dummy);
860 digits[j] = CARRY_LEFT (dummy);
861
862 if (j >= decimal_digits && carry == 0)
863 {
864 /*
865 * All higher digits are 0 and we
866 * no longer have a carry.
867 *
868 * Note: "j" is 0-based, "decimal_digits" is
869 * 1-based.
870 */
871 decimal_digits = j + 1;
872 break;
873 }
874 }
875 }
876
877 /* Ok, now "digits" is the decimal representation, with
878 * the "decimal_digits" actual digits. Print!
879 */
880 for (i = decimal_digits - 1; i >= 0; i--)
881 {
882 fprintf_filtered (stream, "%1d", digits[i]);
883 }
884 xfree (digits);
885 }
886
887 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
888
889 void
890 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
891 unsigned len, enum bfd_endian byte_order)
892 {
893 const gdb_byte *p;
894
895 /* FIXME: We should be not printing leading zeroes in most cases. */
896
897 fputs_filtered ("0x", stream);
898 if (byte_order == BFD_ENDIAN_BIG)
899 {
900 for (p = valaddr;
901 p < valaddr + len;
902 p++)
903 {
904 fprintf_filtered (stream, "%02x", *p);
905 }
906 }
907 else
908 {
909 for (p = valaddr + len - 1;
910 p >= valaddr;
911 p--)
912 {
913 fprintf_filtered (stream, "%02x", *p);
914 }
915 }
916 }
917
918 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
919 Omit any leading zero chars. */
920
921 void
922 print_char_chars (struct ui_file *stream, struct type *type,
923 const gdb_byte *valaddr,
924 unsigned len, enum bfd_endian byte_order)
925 {
926 const gdb_byte *p;
927
928 if (byte_order == BFD_ENDIAN_BIG)
929 {
930 p = valaddr;
931 while (p < valaddr + len - 1 && *p == 0)
932 ++p;
933
934 while (p < valaddr + len)
935 {
936 LA_EMIT_CHAR (*p, type, stream, '\'');
937 ++p;
938 }
939 }
940 else
941 {
942 p = valaddr + len - 1;
943 while (p > valaddr && *p == 0)
944 --p;
945
946 while (p >= valaddr)
947 {
948 LA_EMIT_CHAR (*p, type, stream, '\'');
949 --p;
950 }
951 }
952 }
953
954 /* Assuming TYPE is a simple, non-empty array type, compute its upper
955 and lower bound. Save the low bound into LOW_BOUND if not NULL.
956 Save the high bound into HIGH_BOUND if not NULL.
957
958 Return 1 if the operation was successful. Return zero otherwise,
959 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
960
961 Computing the array upper and lower bounds is pretty easy, but this
962 function does some additional verifications before returning them.
963 If something incorrect is detected, it is better to return a status
964 rather than throwing an error, making it easier for the caller to
965 implement an error-recovery plan. For instance, it may decide to
966 warn the user that the bounds were not found and then use some
967 default values instead. */
968
969 int
970 get_array_bounds (struct type *type, long *low_bound, long *high_bound)
971 {
972 struct type *index = TYPE_INDEX_TYPE (type);
973 long low = 0;
974 long high = 0;
975
976 if (index == NULL)
977 return 0;
978
979 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
980 {
981 low = TYPE_LOW_BOUND (index);
982 high = TYPE_HIGH_BOUND (index);
983 }
984 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
985 {
986 const int n_enums = TYPE_NFIELDS (index);
987
988 low = TYPE_FIELD_BITPOS (index, 0);
989 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
990 }
991 else
992 return 0;
993
994 /* Abort if the lower bound is greater than the higher bound, except
995 when low = high + 1. This is a very common idiom used in Ada when
996 defining empty ranges (for instance "range 1 .. 0"). */
997 if (low > high + 1)
998 return 0;
999
1000 if (low_bound)
1001 *low_bound = low;
1002
1003 if (high_bound)
1004 *high_bound = high;
1005
1006 return 1;
1007 }
1008
1009 /* Print on STREAM using the given OPTIONS the index for the element
1010 at INDEX of an array whose index type is INDEX_TYPE. */
1011
1012 void
1013 maybe_print_array_index (struct type *index_type, LONGEST index,
1014 struct ui_file *stream,
1015 const struct value_print_options *options)
1016 {
1017 struct value *index_value;
1018
1019 if (!options->print_array_indexes)
1020 return;
1021
1022 index_value = value_from_longest (index_type, index);
1023
1024 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1025 }
1026
1027 /* Called by various <lang>_val_print routines to print elements of an
1028 array in the form "<elem1>, <elem2>, <elem3>, ...".
1029
1030 (FIXME?) Assumes array element separator is a comma, which is correct
1031 for all languages currently handled.
1032 (FIXME?) Some languages have a notation for repeated array elements,
1033 perhaps we should try to use that notation when appropriate.
1034 */
1035
1036 void
1037 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1038 CORE_ADDR address, struct ui_file *stream,
1039 int recurse,
1040 const struct value_print_options *options,
1041 unsigned int i)
1042 {
1043 unsigned int things_printed = 0;
1044 unsigned len;
1045 struct type *elttype, *index_type;
1046 unsigned eltlen;
1047 /* Position of the array element we are examining to see
1048 whether it is repeated. */
1049 unsigned int rep1;
1050 /* Number of repetitions we have detected so far. */
1051 unsigned int reps;
1052 long low_bound_index = 0;
1053
1054 elttype = TYPE_TARGET_TYPE (type);
1055 eltlen = TYPE_LENGTH (check_typedef (elttype));
1056 index_type = TYPE_INDEX_TYPE (type);
1057
1058 /* Compute the number of elements in the array. On most arrays,
1059 the size of its elements is not zero, and so the number of elements
1060 is simply the size of the array divided by the size of the elements.
1061 But for arrays of elements whose size is zero, we need to look at
1062 the bounds. */
1063 if (eltlen != 0)
1064 len = TYPE_LENGTH (type) / eltlen;
1065 else
1066 {
1067 long low, hi;
1068 if (get_array_bounds (type, &low, &hi))
1069 len = hi - low + 1;
1070 else
1071 {
1072 warning (_("unable to get bounds of array, assuming null array"));
1073 len = 0;
1074 }
1075 }
1076
1077 /* Get the array low bound. This only makes sense if the array
1078 has one or more element in it. */
1079 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
1080 {
1081 warning (_("unable to get low bound of array, using zero as default"));
1082 low_bound_index = 0;
1083 }
1084
1085 annotate_array_section_begin (i, elttype);
1086
1087 for (; i < len && things_printed < options->print_max; i++)
1088 {
1089 if (i != 0)
1090 {
1091 if (options->prettyprint_arrays)
1092 {
1093 fprintf_filtered (stream, ",\n");
1094 print_spaces_filtered (2 + 2 * recurse, stream);
1095 }
1096 else
1097 {
1098 fprintf_filtered (stream, ", ");
1099 }
1100 }
1101 wrap_here (n_spaces (2 + 2 * recurse));
1102 maybe_print_array_index (index_type, i + low_bound_index,
1103 stream, options);
1104
1105 rep1 = i + 1;
1106 reps = 1;
1107 while ((rep1 < len) &&
1108 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1109 {
1110 ++reps;
1111 ++rep1;
1112 }
1113
1114 if (reps > options->repeat_count_threshold)
1115 {
1116 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1117 stream, recurse + 1, options, current_language);
1118 annotate_elt_rep (reps);
1119 fprintf_filtered (stream, " <repeats %u times>", reps);
1120 annotate_elt_rep_end ();
1121
1122 i = rep1 - 1;
1123 things_printed += options->repeat_count_threshold;
1124 }
1125 else
1126 {
1127 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1128 stream, recurse + 1, options, current_language);
1129 annotate_elt ();
1130 things_printed++;
1131 }
1132 }
1133 annotate_array_section_end ();
1134 if (i < len)
1135 {
1136 fprintf_filtered (stream, "...");
1137 }
1138 }
1139
1140 /* Read LEN bytes of target memory at address MEMADDR, placing the
1141 results in GDB's memory at MYADDR. Returns a count of the bytes
1142 actually read, and optionally an errno value in the location
1143 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1144
1145 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1146 function be eliminated. */
1147
1148 static int
1149 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1150 {
1151 int nread; /* Number of bytes actually read. */
1152 int errcode; /* Error from last read. */
1153
1154 /* First try a complete read. */
1155 errcode = target_read_memory (memaddr, myaddr, len);
1156 if (errcode == 0)
1157 {
1158 /* Got it all. */
1159 nread = len;
1160 }
1161 else
1162 {
1163 /* Loop, reading one byte at a time until we get as much as we can. */
1164 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1165 {
1166 errcode = target_read_memory (memaddr++, myaddr++, 1);
1167 }
1168 /* If an error, the last read was unsuccessful, so adjust count. */
1169 if (errcode != 0)
1170 {
1171 nread--;
1172 }
1173 }
1174 if (errnoptr != NULL)
1175 {
1176 *errnoptr = errcode;
1177 }
1178 return (nread);
1179 }
1180
1181 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1182 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1183 allocated buffer containing the string, which the caller is responsible to
1184 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1185 success, or errno on failure.
1186
1187 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1188 the middle or end of the string). If LEN is -1, stops at the first
1189 null character (not necessarily the first null byte) up to a maximum
1190 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1191 characters as possible from the string.
1192
1193 Unless an exception is thrown, BUFFER will always be allocated, even on
1194 failure. In this case, some characters might have been read before the
1195 failure happened. Check BYTES_READ to recognize this situation.
1196
1197 Note: There was a FIXME asking to make this code use target_read_string,
1198 but this function is more general (can read past null characters, up to
1199 given LEN). Besides, it is used much more often than target_read_string
1200 so it is more tested. Perhaps callers of target_read_string should use
1201 this function instead? */
1202
1203 int
1204 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1205 gdb_byte **buffer, int *bytes_read)
1206 {
1207 int found_nul; /* Non-zero if we found the nul char. */
1208 int errcode; /* Errno returned from bad reads. */
1209 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1210 unsigned int chunksize; /* Size of each fetch, in chars. */
1211 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1212 gdb_byte *limit; /* First location past end of fetch buffer. */
1213 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1214
1215 /* Decide how large of chunks to try to read in one operation. This
1216 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1217 so we might as well read them all in one operation. If LEN is -1, we
1218 are looking for a NUL terminator to end the fetching, so we might as
1219 well read in blocks that are large enough to be efficient, but not so
1220 large as to be slow if fetchlimit happens to be large. So we choose the
1221 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1222 200 is way too big for remote debugging over a serial line. */
1223
1224 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1225
1226 /* Loop until we either have all the characters, or we encounter
1227 some error, such as bumping into the end of the address space. */
1228
1229 found_nul = 0;
1230 *buffer = NULL;
1231
1232 old_chain = make_cleanup (free_current_contents, buffer);
1233
1234 if (len > 0)
1235 {
1236 *buffer = (gdb_byte *) xmalloc (len * width);
1237 bufptr = *buffer;
1238
1239 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1240 / width;
1241 addr += nfetch * width;
1242 bufptr += nfetch * width;
1243 }
1244 else if (len == -1)
1245 {
1246 unsigned long bufsize = 0;
1247
1248 do
1249 {
1250 QUIT;
1251 nfetch = min (chunksize, fetchlimit - bufsize);
1252
1253 if (*buffer == NULL)
1254 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1255 else
1256 *buffer = (gdb_byte *) xrealloc (*buffer,
1257 (nfetch + bufsize) * width);
1258
1259 bufptr = *buffer + bufsize * width;
1260 bufsize += nfetch;
1261
1262 /* Read as much as we can. */
1263 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1264 / width;
1265
1266 /* Scan this chunk for the null character that terminates the string
1267 to print. If found, we don't need to fetch any more. Note
1268 that bufptr is explicitly left pointing at the next character
1269 after the null character, or at the next character after the end
1270 of the buffer. */
1271
1272 limit = bufptr + nfetch * width;
1273 while (bufptr < limit)
1274 {
1275 unsigned long c;
1276
1277 c = extract_unsigned_integer (bufptr, width);
1278 addr += width;
1279 bufptr += width;
1280 if (c == 0)
1281 {
1282 /* We don't care about any error which happened after
1283 the NUL terminator. */
1284 errcode = 0;
1285 found_nul = 1;
1286 break;
1287 }
1288 }
1289 }
1290 while (errcode == 0 /* no error */
1291 && bufptr - *buffer < fetchlimit * width /* no overrun */
1292 && !found_nul); /* haven't found NUL yet */
1293 }
1294 else
1295 { /* Length of string is really 0! */
1296 /* We always allocate *buffer. */
1297 *buffer = bufptr = xmalloc (1);
1298 errcode = 0;
1299 }
1300
1301 /* bufptr and addr now point immediately beyond the last byte which we
1302 consider part of the string (including a '\0' which ends the string). */
1303 *bytes_read = bufptr - *buffer;
1304
1305 QUIT;
1306
1307 discard_cleanups (old_chain);
1308
1309 return errcode;
1310 }
1311
1312 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1313 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1314 stops at the first null byte, otherwise printing proceeds (including null
1315 bytes) until either print_max or LEN characters have been printed,
1316 whichever is smaller. */
1317
1318 int
1319 val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1320 struct ui_file *stream,
1321 const struct value_print_options *options)
1322 {
1323 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1324 int errcode; /* Errno returned from bad reads. */
1325 int found_nul; /* Non-zero if we found the nul char */
1326 unsigned int fetchlimit; /* Maximum number of chars to print. */
1327 int bytes_read;
1328 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1329 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1330 int width = TYPE_LENGTH (elttype);
1331
1332 /* First we need to figure out the limit on the number of characters we are
1333 going to attempt to fetch and print. This is actually pretty simple. If
1334 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1335 LEN is -1, then the limit is print_max. This is true regardless of
1336 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1337 because finding the null byte (or available memory) is what actually
1338 limits the fetch. */
1339
1340 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1341
1342 errcode = read_string (addr, len, width, fetchlimit, &buffer, &bytes_read);
1343 old_chain = make_cleanup (xfree, buffer);
1344
1345 addr += bytes_read;
1346
1347 /* We now have either successfully filled the buffer to fetchlimit, or
1348 terminated early due to an error or finding a null char when LEN is -1. */
1349
1350 /* Determine found_nul by looking at the last character read. */
1351 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width) == 0;
1352
1353 if (len == -1 && !found_nul)
1354 {
1355 gdb_byte *peekbuf;
1356
1357 /* We didn't find a NUL terminator we were looking for. Attempt
1358 to peek at the next character. If not successful, or it is not
1359 a null byte, then force ellipsis to be printed. */
1360
1361 peekbuf = (gdb_byte *) alloca (width);
1362
1363 if (target_read_memory (addr, peekbuf, width) == 0
1364 && extract_unsigned_integer (peekbuf, width) != 0)
1365 force_ellipsis = 1;
1366 }
1367 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1368 {
1369 /* Getting an error when we have a requested length, or fetching less
1370 than the number of characters actually requested, always make us
1371 print ellipsis. */
1372 force_ellipsis = 1;
1373 }
1374
1375 /* If we get an error before fetching anything, don't print a string.
1376 But if we fetch something and then get an error, print the string
1377 and then the error message. */
1378 if (errcode == 0 || bytes_read > 0)
1379 {
1380 if (options->addressprint)
1381 {
1382 fputs_filtered (" ", stream);
1383 }
1384 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width, force_ellipsis, options);
1385 }
1386
1387 if (errcode != 0)
1388 {
1389 if (errcode == EIO)
1390 {
1391 fprintf_filtered (stream, " <Address ");
1392 fputs_filtered (paddress (addr), stream);
1393 fprintf_filtered (stream, " out of bounds>");
1394 }
1395 else
1396 {
1397 fprintf_filtered (stream, " <Error reading address ");
1398 fputs_filtered (paddress (addr), stream);
1399 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1400 }
1401 }
1402
1403 gdb_flush (stream);
1404 do_cleanups (old_chain);
1405
1406 return (bytes_read / width);
1407 }
1408 \f
1409
1410 /* The 'set input-radix' command writes to this auxiliary variable.
1411 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1412 it is left unchanged. */
1413
1414 static unsigned input_radix_1 = 10;
1415
1416 /* Validate an input or output radix setting, and make sure the user
1417 knows what they really did here. Radix setting is confusing, e.g.
1418 setting the input radix to "10" never changes it! */
1419
1420 static void
1421 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1422 {
1423 set_input_radix_1 (from_tty, input_radix_1);
1424 }
1425
1426 static void
1427 set_input_radix_1 (int from_tty, unsigned radix)
1428 {
1429 /* We don't currently disallow any input radix except 0 or 1, which don't
1430 make any mathematical sense. In theory, we can deal with any input
1431 radix greater than 1, even if we don't have unique digits for every
1432 value from 0 to radix-1, but in practice we lose on large radix values.
1433 We should either fix the lossage or restrict the radix range more.
1434 (FIXME). */
1435
1436 if (radix < 2)
1437 {
1438 input_radix_1 = input_radix;
1439 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1440 radix);
1441 }
1442 input_radix_1 = input_radix = radix;
1443 if (from_tty)
1444 {
1445 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1446 radix, radix, radix);
1447 }
1448 }
1449
1450 /* The 'set output-radix' command writes to this auxiliary variable.
1451 If the requested radix is valid, OUTPUT_RADIX is updated,
1452 otherwise, it is left unchanged. */
1453
1454 static unsigned output_radix_1 = 10;
1455
1456 static void
1457 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1458 {
1459 set_output_radix_1 (from_tty, output_radix_1);
1460 }
1461
1462 static void
1463 set_output_radix_1 (int from_tty, unsigned radix)
1464 {
1465 /* Validate the radix and disallow ones that we aren't prepared to
1466 handle correctly, leaving the radix unchanged. */
1467 switch (radix)
1468 {
1469 case 16:
1470 user_print_options.output_format = 'x'; /* hex */
1471 break;
1472 case 10:
1473 user_print_options.output_format = 0; /* decimal */
1474 break;
1475 case 8:
1476 user_print_options.output_format = 'o'; /* octal */
1477 break;
1478 default:
1479 output_radix_1 = output_radix;
1480 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1481 radix);
1482 }
1483 output_radix_1 = output_radix = radix;
1484 if (from_tty)
1485 {
1486 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1487 radix, radix, radix);
1488 }
1489 }
1490
1491 /* Set both the input and output radix at once. Try to set the output radix
1492 first, since it has the most restrictive range. An radix that is valid as
1493 an output radix is also valid as an input radix.
1494
1495 It may be useful to have an unusual input radix. If the user wishes to
1496 set an input radix that is not valid as an output radix, he needs to use
1497 the 'set input-radix' command. */
1498
1499 static void
1500 set_radix (char *arg, int from_tty)
1501 {
1502 unsigned radix;
1503
1504 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1505 set_output_radix_1 (0, radix);
1506 set_input_radix_1 (0, radix);
1507 if (from_tty)
1508 {
1509 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1510 radix, radix, radix);
1511 }
1512 }
1513
1514 /* Show both the input and output radices. */
1515
1516 static void
1517 show_radix (char *arg, int from_tty)
1518 {
1519 if (from_tty)
1520 {
1521 if (input_radix == output_radix)
1522 {
1523 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1524 input_radix, input_radix, input_radix);
1525 }
1526 else
1527 {
1528 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1529 input_radix, input_radix, input_radix);
1530 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1531 output_radix, output_radix, output_radix);
1532 }
1533 }
1534 }
1535 \f
1536
1537 static void
1538 set_print (char *arg, int from_tty)
1539 {
1540 printf_unfiltered (
1541 "\"set print\" must be followed by the name of a print subcommand.\n");
1542 help_list (setprintlist, "set print ", -1, gdb_stdout);
1543 }
1544
1545 static void
1546 show_print (char *args, int from_tty)
1547 {
1548 cmd_show_list (showprintlist, from_tty, "");
1549 }
1550 \f
1551 void
1552 _initialize_valprint (void)
1553 {
1554 struct cmd_list_element *c;
1555
1556 add_prefix_cmd ("print", no_class, set_print,
1557 _("Generic command for setting how things print."),
1558 &setprintlist, "set print ", 0, &setlist);
1559 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1560 /* prefer set print to set prompt */
1561 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1562
1563 add_prefix_cmd ("print", no_class, show_print,
1564 _("Generic command for showing print settings."),
1565 &showprintlist, "show print ", 0, &showlist);
1566 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1567 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1568
1569 add_setshow_uinteger_cmd ("elements", no_class,
1570 &user_print_options.print_max, _("\
1571 Set limit on string chars or array elements to print."), _("\
1572 Show limit on string chars or array elements to print."), _("\
1573 \"set print elements 0\" causes there to be no limit."),
1574 NULL,
1575 show_print_max,
1576 &setprintlist, &showprintlist);
1577
1578 add_setshow_boolean_cmd ("null-stop", no_class,
1579 &user_print_options.stop_print_at_null, _("\
1580 Set printing of char arrays to stop at first null char."), _("\
1581 Show printing of char arrays to stop at first null char."), NULL,
1582 NULL,
1583 show_stop_print_at_null,
1584 &setprintlist, &showprintlist);
1585
1586 add_setshow_uinteger_cmd ("repeats", no_class,
1587 &user_print_options.repeat_count_threshold, _("\
1588 Set threshold for repeated print elements."), _("\
1589 Show threshold for repeated print elements."), _("\
1590 \"set print repeats 0\" causes all elements to be individually printed."),
1591 NULL,
1592 show_repeat_count_threshold,
1593 &setprintlist, &showprintlist);
1594
1595 add_setshow_boolean_cmd ("pretty", class_support,
1596 &user_print_options.prettyprint_structs, _("\
1597 Set prettyprinting of structures."), _("\
1598 Show prettyprinting of structures."), NULL,
1599 NULL,
1600 show_prettyprint_structs,
1601 &setprintlist, &showprintlist);
1602
1603 add_setshow_boolean_cmd ("union", class_support,
1604 &user_print_options.unionprint, _("\
1605 Set printing of unions interior to structures."), _("\
1606 Show printing of unions interior to structures."), NULL,
1607 NULL,
1608 show_unionprint,
1609 &setprintlist, &showprintlist);
1610
1611 add_setshow_boolean_cmd ("array", class_support,
1612 &user_print_options.prettyprint_arrays, _("\
1613 Set prettyprinting of arrays."), _("\
1614 Show prettyprinting of arrays."), NULL,
1615 NULL,
1616 show_prettyprint_arrays,
1617 &setprintlist, &showprintlist);
1618
1619 add_setshow_boolean_cmd ("address", class_support,
1620 &user_print_options.addressprint, _("\
1621 Set printing of addresses."), _("\
1622 Show printing of addresses."), NULL,
1623 NULL,
1624 show_addressprint,
1625 &setprintlist, &showprintlist);
1626
1627 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1628 _("\
1629 Set default input radix for entering numbers."), _("\
1630 Show default input radix for entering numbers."), NULL,
1631 set_input_radix,
1632 show_input_radix,
1633 &setlist, &showlist);
1634
1635 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1636 _("\
1637 Set default output radix for printing of values."), _("\
1638 Show default output radix for printing of values."), NULL,
1639 set_output_radix,
1640 show_output_radix,
1641 &setlist, &showlist);
1642
1643 /* The "set radix" and "show radix" commands are special in that
1644 they are like normal set and show commands but allow two normally
1645 independent variables to be either set or shown with a single
1646 command. So the usual deprecated_add_set_cmd() and [deleted]
1647 add_show_from_set() commands aren't really appropriate. */
1648 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1649 longer true - show can display anything. */
1650 add_cmd ("radix", class_support, set_radix, _("\
1651 Set default input and output number radices.\n\
1652 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1653 Without an argument, sets both radices back to the default value of 10."),
1654 &setlist);
1655 add_cmd ("radix", class_support, show_radix, _("\
1656 Show the default input and output number radices.\n\
1657 Use 'show input-radix' or 'show output-radix' to independently show each."),
1658 &showlist);
1659
1660 add_setshow_boolean_cmd ("array-indexes", class_support,
1661 &user_print_options.print_array_indexes, _("\
1662 Set printing of array indexes."), _("\
1663 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1664 &setprintlist, &showprintlist);
1665 }