Bring IEEE_FLOAT under gdbarch's control.
[binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1991-1994, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "obstack.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "annotate.h"
34 #include "valprint.h"
35
36 #include <errno.h>
37
38 /* Prototypes for local functions */
39
40 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
41 int len, int *errnoptr);
42
43 static void print_hex_chars (struct ui_file *, unsigned char *,
44 unsigned int);
45
46 static void show_print PARAMS ((char *, int));
47
48 static void set_print PARAMS ((char *, int));
49
50 static void set_radix PARAMS ((char *, int));
51
52 static void show_radix PARAMS ((char *, int));
53
54 static void set_input_radix PARAMS ((char *, int, struct cmd_list_element *));
55
56 static void set_input_radix_1 PARAMS ((int, unsigned));
57
58 static void set_output_radix PARAMS ((char *, int, struct cmd_list_element *));
59
60 static void set_output_radix_1 PARAMS ((int, unsigned));
61
62 void _initialize_valprint PARAMS ((void));
63
64 /* Maximum number of chars to print for a string pointer value or vector
65 contents, or UINT_MAX for no limit. Note that "set print elements 0"
66 stores UINT_MAX in print_max, which displays in a show command as
67 "unlimited". */
68
69 unsigned int print_max;
70 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
71
72 /* Default input and output radixes, and output format letter. */
73
74 unsigned input_radix = 10;
75 unsigned output_radix = 10;
76 int output_format = 0;
77
78 /* Print repeat counts if there are more than this many repetitions of an
79 element in an array. Referenced by the low level language dependent
80 print routines. */
81
82 unsigned int repeat_count_threshold = 10;
83
84 /* If nonzero, stops printing of char arrays at first null. */
85
86 int stop_print_at_null;
87
88 /* Controls pretty printing of structures. */
89
90 int prettyprint_structs;
91
92 /* Controls pretty printing of arrays. */
93
94 int prettyprint_arrays;
95
96 /* If nonzero, causes unions inside structures or other unions to be
97 printed. */
98
99 int unionprint; /* Controls printing of nested unions. */
100
101 /* If nonzero, causes machine addresses to be printed in certain contexts. */
102
103 int addressprint; /* Controls printing of machine addresses */
104 \f
105
106 /* Print data of type TYPE located at VALADDR (within GDB), which came from
107 the inferior at address ADDRESS, onto stdio stream STREAM according to
108 FORMAT (a letter, or 0 for natural format using TYPE).
109
110 If DEREF_REF is nonzero, then dereference references, otherwise just print
111 them like pointers.
112
113 The PRETTY parameter controls prettyprinting.
114
115 If the data are a string pointer, returns the number of string characters
116 printed.
117
118 FIXME: The data at VALADDR is in target byte order. If gdb is ever
119 enhanced to be able to debug more than the single target it was compiled
120 for (specific CPU type and thus specific target byte ordering), then
121 either the print routines are going to have to take this into account,
122 or the data is going to have to be passed into here already converted
123 to the host byte ordering, whichever is more convenient. */
124
125
126 int
127 val_print (type, valaddr, embedded_offset, address,
128 stream, format, deref_ref, recurse, pretty)
129 struct type *type;
130 char *valaddr;
131 int embedded_offset;
132 CORE_ADDR address;
133 struct ui_file *stream;
134 int format;
135 int deref_ref;
136 int recurse;
137 enum val_prettyprint pretty;
138 {
139 struct type *real_type = check_typedef (type);
140 if (pretty == Val_pretty_default)
141 {
142 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
143 }
144
145 QUIT;
146
147 /* Ensure that the type is complete and not just a stub. If the type is
148 only a stub and we can't find and substitute its complete type, then
149 print appropriate string and return. */
150
151 if (TYPE_FLAGS (real_type) & TYPE_FLAG_STUB)
152 {
153 fprintf_filtered (stream, "<incomplete type>");
154 gdb_flush (stream);
155 return (0);
156 }
157
158 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
159 stream, format, deref_ref, recurse, pretty));
160 }
161
162 /* Print the value VAL in C-ish syntax on stream STREAM.
163 FORMAT is a format-letter, or 0 for print in natural format of data type.
164 If the object printed is a string pointer, returns
165 the number of string bytes printed. */
166
167 int
168 value_print (val, stream, format, pretty)
169 value_ptr val;
170 struct ui_file *stream;
171 int format;
172 enum val_prettyprint pretty;
173 {
174 if (val == 0)
175 {
176 printf_filtered ("<address of value unknown>");
177 return 0;
178 }
179 if (VALUE_OPTIMIZED_OUT (val))
180 {
181 printf_filtered ("<value optimized out>");
182 return 0;
183 }
184 return LA_VALUE_PRINT (val, stream, format, pretty);
185 }
186
187 /* Called by various <lang>_val_print routines to print
188 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
189 value. STREAM is where to print the value. */
190
191 void
192 val_print_type_code_int (type, valaddr, stream)
193 struct type *type;
194 char *valaddr;
195 struct ui_file *stream;
196 {
197 if (TYPE_LENGTH (type) > sizeof (LONGEST))
198 {
199 LONGEST val;
200
201 if (TYPE_UNSIGNED (type)
202 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
203 &val))
204 {
205 print_longest (stream, 'u', 0, val);
206 }
207 else
208 {
209 /* Signed, or we couldn't turn an unsigned value into a
210 LONGEST. For signed values, one could assume two's
211 complement (a reasonable assumption, I think) and do
212 better than this. */
213 print_hex_chars (stream, (unsigned char *) valaddr,
214 TYPE_LENGTH (type));
215 }
216 }
217 else
218 {
219 #ifdef PRINT_TYPELESS_INTEGER
220 PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
221 #else
222 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
223 unpack_long (type, valaddr));
224 #endif
225 }
226 }
227
228 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
229 The raison d'etre of this function is to consolidate printing of
230 LONG_LONG's into this one function. Some platforms have long longs but
231 don't have a printf() that supports "ll" in the format string. We handle
232 these by seeing if the number is representable as either a signed or
233 unsigned long, depending upon what format is desired, and if not we just
234 bail out and print the number in hex.
235
236 The format chars b,h,w,g are from print_scalar_formatted(). If USE_LOCAL,
237 format it according to the current language (this should be used for most
238 integers which GDB prints, the exception is things like protocols where
239 the format of the integer is a protocol thing, not a user-visible thing).
240 */
241
242 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
243 static void print_decimal (struct ui_file * stream, char *sign,
244 int use_local, ULONGEST val_ulong);
245 static void
246 print_decimal (stream, sign, use_local, val_ulong)
247 struct ui_file *stream;
248 char *sign;
249 int use_local;
250 ULONGEST val_ulong;
251 {
252 unsigned long temp[3];
253 int i = 0;
254 do
255 {
256 temp[i] = val_ulong % (1000 * 1000 * 1000);
257 val_ulong /= (1000 * 1000 * 1000);
258 i++;
259 }
260 while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
261 switch (i)
262 {
263 case 1:
264 fprintf_filtered (stream, "%s%lu",
265 sign, temp[0]);
266 break;
267 case 2:
268 fprintf_filtered (stream, "%s%lu%09lu",
269 sign, temp[1], temp[0]);
270 break;
271 case 3:
272 fprintf_filtered (stream, "%s%lu%09lu%09lu",
273 sign, temp[2], temp[1], temp[0]);
274 break;
275 default:
276 abort ();
277 }
278 return;
279 }
280 #endif
281
282 void
283 print_longest (stream, format, use_local, val_long)
284 struct ui_file *stream;
285 int format;
286 int use_local;
287 LONGEST val_long;
288 {
289 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
290 if (sizeof (long) < sizeof (LONGEST))
291 {
292 switch (format)
293 {
294 case 'd':
295 {
296 /* Print a signed value, that doesn't fit in a long */
297 if ((long) val_long != val_long)
298 {
299 if (val_long < 0)
300 print_decimal (stream, "-", use_local, -val_long);
301 else
302 print_decimal (stream, "", use_local, val_long);
303 return;
304 }
305 break;
306 }
307 case 'u':
308 {
309 /* Print an unsigned value, that doesn't fit in a long */
310 if ((unsigned long) val_long != (ULONGEST) val_long)
311 {
312 print_decimal (stream, "", use_local, val_long);
313 return;
314 }
315 break;
316 }
317 case 'x':
318 case 'o':
319 case 'b':
320 case 'h':
321 case 'w':
322 case 'g':
323 /* Print as unsigned value, must fit completely in unsigned long */
324 {
325 unsigned long temp = val_long;
326 if (temp != val_long)
327 {
328 /* Urk, can't represent value in long so print in hex.
329 Do shift in two operations so that if sizeof (long)
330 == sizeof (LONGEST) we can avoid warnings from
331 picky compilers about shifts >= the size of the
332 shiftee in bits */
333 unsigned long vbot = (unsigned long) val_long;
334 LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
335 unsigned long vtop = temp >> 1;
336 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
337 return;
338 }
339 break;
340 }
341 }
342 }
343 #endif
344
345 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
346 switch (format)
347 {
348 case 'd':
349 fprintf_filtered (stream,
350 use_local ? local_decimal_format_custom ("ll")
351 : "%lld",
352 val_long);
353 break;
354 case 'u':
355 fprintf_filtered (stream, "%llu", val_long);
356 break;
357 case 'x':
358 fprintf_filtered (stream,
359 use_local ? local_hex_format_custom ("ll")
360 : "%llx",
361 val_long);
362 break;
363 case 'o':
364 fprintf_filtered (stream,
365 use_local ? local_octal_format_custom ("ll")
366 : "%llo",
367 val_long);
368 break;
369 case 'b':
370 fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
371 break;
372 case 'h':
373 fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
374 break;
375 case 'w':
376 fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
377 break;
378 case 'g':
379 fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
380 break;
381 default:
382 abort ();
383 }
384 #else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
385 /* In the following it is important to coerce (val_long) to a long. It does
386 nothing if !LONG_LONG, but it will chop off the top half (which we know
387 we can ignore) if the host supports long longs. */
388
389 switch (format)
390 {
391 case 'd':
392 fprintf_filtered (stream,
393 use_local ? local_decimal_format_custom ("l")
394 : "%ld",
395 (long) val_long);
396 break;
397 case 'u':
398 fprintf_filtered (stream, "%lu", (unsigned long) val_long);
399 break;
400 case 'x':
401 fprintf_filtered (stream,
402 use_local ? local_hex_format_custom ("l")
403 : "%lx",
404 (unsigned long) val_long);
405 break;
406 case 'o':
407 fprintf_filtered (stream,
408 use_local ? local_octal_format_custom ("l")
409 : "%lo",
410 (unsigned long) val_long);
411 break;
412 case 'b':
413 fprintf_filtered (stream, local_hex_format_custom ("02l"),
414 (unsigned long) val_long);
415 break;
416 case 'h':
417 fprintf_filtered (stream, local_hex_format_custom ("04l"),
418 (unsigned long) val_long);
419 break;
420 case 'w':
421 fprintf_filtered (stream, local_hex_format_custom ("08l"),
422 (unsigned long) val_long);
423 break;
424 case 'g':
425 fprintf_filtered (stream, local_hex_format_custom ("016l"),
426 (unsigned long) val_long);
427 break;
428 default:
429 abort ();
430 }
431 #endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
432 }
433
434 #if 0
435 void
436 strcat_longest (format, use_local, val_long, buf, buflen)
437 int format;
438 int use_local;
439 LONGEST val_long;
440 char *buf;
441 int buflen; /* ignored, for now */
442 {
443 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
444 long vtop, vbot;
445
446 vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
447 vbot = (long) val_long;
448
449 if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
450 || ((format == 'u' || format == 'x') && (unsigned long long) val_long > UINT_MAX))
451 {
452 sprintf (buf, "0x%lx%08lx", vtop, vbot);
453 return;
454 }
455 #endif
456
457 #ifdef PRINTF_HAS_LONG_LONG
458 switch (format)
459 {
460 case 'd':
461 sprintf (buf,
462 (use_local ? local_decimal_format_custom ("ll") : "%lld"),
463 val_long);
464 break;
465 case 'u':
466 sprintf (buf, "%llu", val_long);
467 break;
468 case 'x':
469 sprintf (buf,
470 (use_local ? local_hex_format_custom ("ll") : "%llx"),
471
472 val_long);
473 break;
474 case 'o':
475 sprintf (buf,
476 (use_local ? local_octal_format_custom ("ll") : "%llo"),
477 val_long);
478 break;
479 case 'b':
480 sprintf (buf, local_hex_format_custom ("02ll"), val_long);
481 break;
482 case 'h':
483 sprintf (buf, local_hex_format_custom ("04ll"), val_long);
484 break;
485 case 'w':
486 sprintf (buf, local_hex_format_custom ("08ll"), val_long);
487 break;
488 case 'g':
489 sprintf (buf, local_hex_format_custom ("016ll"), val_long);
490 break;
491 default:
492 abort ();
493 }
494 #else /* !PRINTF_HAS_LONG_LONG */
495 /* In the following it is important to coerce (val_long) to a long. It does
496 nothing if !LONG_LONG, but it will chop off the top half (which we know
497 we can ignore) if the host supports long longs. */
498
499 switch (format)
500 {
501 case 'd':
502 sprintf (buf, (use_local ? local_decimal_format_custom ("l") : "%ld"),
503 ((long) val_long));
504 break;
505 case 'u':
506 sprintf (buf, "%lu", ((unsigned long) val_long));
507 break;
508 case 'x':
509 sprintf (buf, (use_local ? local_hex_format_custom ("l") : "%lx"),
510 ((long) val_long));
511 break;
512 case 'o':
513 sprintf (buf, (use_local ? local_octal_format_custom ("l") : "%lo"),
514 ((long) val_long));
515 break;
516 case 'b':
517 sprintf (buf, local_hex_format_custom ("02l"),
518 ((long) val_long));
519 break;
520 case 'h':
521 sprintf (buf, local_hex_format_custom ("04l"),
522 ((long) val_long));
523 break;
524 case 'w':
525 sprintf (buf, local_hex_format_custom ("08l"),
526 ((long) val_long));
527 break;
528 case 'g':
529 sprintf (buf, local_hex_format_custom ("016l"),
530 ((long) val_long));
531 break;
532 default:
533 abort ();
534 }
535
536 #endif /* !PRINTF_HAS_LONG_LONG */
537 }
538 #endif
539
540 /* This used to be a macro, but I don't think it is called often enough
541 to merit such treatment. */
542 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
543 arguments to a function, number in a value history, register number, etc.)
544 where the value must not be larger than can fit in an int. */
545
546 int
547 longest_to_int (arg)
548 LONGEST arg;
549 {
550 /* Let the compiler do the work */
551 int rtnval = (int) arg;
552
553 /* Check for overflows or underflows */
554 if (sizeof (LONGEST) > sizeof (int))
555 {
556 if (rtnval != arg)
557 {
558 error ("Value out of range.");
559 }
560 }
561 return (rtnval);
562 }
563
564
565 /* Provide a default value for IEEE_FLOAT. */
566 #ifndef IEEE_FLOAT
567 #define IEEE_FLOAT (0)
568 #endif
569
570
571 /* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
572 on STREAM. */
573
574 void
575 print_floating (valaddr, type, stream)
576 char *valaddr;
577 struct type *type;
578 struct ui_file *stream;
579 {
580 DOUBLEST doub;
581 int inv;
582 unsigned len = TYPE_LENGTH (type);
583
584 /* Check for NaN's. Note that this code does not depend on us being
585 on an IEEE conforming system. It only depends on the target
586 machine using IEEE representation. This means (a)
587 cross-debugging works right, and (2) IEEE_FLOAT can (and should)
588 be non-zero for systems like the 68881, which uses IEEE
589 representation, but is not IEEE conforming. */
590 if (IEEE_FLOAT)
591 {
592 unsigned long low, high;
593 /* Is the sign bit 0? */
594 int nonnegative;
595 /* Is it is a NaN (i.e. the exponent is all ones and
596 the fraction is nonzero)? */
597 int is_nan;
598
599 /* For lint, initialize these two variables to suppress warning: */
600 low = high = nonnegative = 0;
601 if (len == 4)
602 {
603 /* It's single precision. */
604 /* Assume that floating point byte order is the same as
605 integer byte order. */
606 low = extract_unsigned_integer (valaddr, 4);
607 nonnegative = ((low & 0x80000000) == 0);
608 is_nan = ((((low >> 23) & 0xFF) == 0xFF)
609 && 0 != (low & 0x7FFFFF));
610 low &= 0x7fffff;
611 high = 0;
612 }
613 else if (len == 8)
614 {
615 /* It's double precision. Get the high and low words. */
616
617 /* Assume that floating point byte order is the same as
618 integer byte order. */
619 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
620 {
621 low = extract_unsigned_integer (valaddr + 4, 4);
622 high = extract_unsigned_integer (valaddr, 4);
623 }
624 else
625 {
626 low = extract_unsigned_integer (valaddr, 4);
627 high = extract_unsigned_integer (valaddr + 4, 4);
628 }
629 nonnegative = ((high & 0x80000000) == 0);
630 is_nan = (((high >> 20) & 0x7ff) == 0x7ff
631 && !((((high & 0xfffff) == 0)) && (low == 0)));
632 high &= 0xfffff;
633 }
634 else
635 {
636 #ifdef TARGET_ANALYZE_FLOATING
637 TARGET_ANALYZE_FLOATING;
638 #else
639 /* Extended. We can't detect extended NaNs for this target.
640 Also note that currently extendeds get nuked to double in
641 REGISTER_CONVERTIBLE. */
642 is_nan = 0;
643 #endif
644 }
645
646 if (is_nan)
647 {
648 /* The meaning of the sign and fraction is not defined by IEEE.
649 But the user might know what they mean. For example, they
650 (in an implementation-defined manner) distinguish between
651 signaling and quiet NaN's. */
652 if (high)
653 fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + !!nonnegative,
654 high, low);
655 else
656 fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
657 return;
658 }
659 }
660
661 doub = unpack_double (type, valaddr, &inv);
662 if (inv)
663 {
664 fprintf_filtered (stream, "<invalid float value>");
665 return;
666 }
667
668 if (len < sizeof (double))
669 fprintf_filtered (stream, "%.9g", (double) doub);
670 else if (len == sizeof (double))
671 fprintf_filtered (stream, "%.17g", (double) doub);
672 else
673 #ifdef PRINTF_HAS_LONG_DOUBLE
674 fprintf_filtered (stream, "%.35Lg", doub);
675 #else
676 /* This at least wins with values that are representable as doubles */
677 fprintf_filtered (stream, "%.17g", (double) doub);
678 #endif
679 }
680
681 void
682 print_binary_chars (stream, valaddr, len)
683 struct ui_file *stream;
684 unsigned char *valaddr;
685 unsigned len;
686 {
687
688 #define BITS_IN_BYTES 8
689
690 unsigned char *p;
691 unsigned int i;
692 int b;
693
694 /* Declared "int" so it will be signed.
695 * This ensures that right shift will shift in zeros.
696 */
697 const int mask = 0x080;
698
699 /* FIXME: We should be not printing leading zeroes in most cases. */
700
701 fprintf_filtered (stream, local_binary_format_prefix ());
702 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
703 {
704 for (p = valaddr;
705 p < valaddr + len;
706 p++)
707 {
708 /* Every byte has 8 binary characters; peel off
709 * and print from the MSB end.
710 */
711 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
712 {
713 if (*p & (mask >> i))
714 b = 1;
715 else
716 b = 0;
717
718 fprintf_filtered (stream, "%1d", b);
719 }
720 }
721 }
722 else
723 {
724 for (p = valaddr + len - 1;
725 p >= valaddr;
726 p--)
727 {
728 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
729 {
730 if (*p & (mask >> i))
731 b = 1;
732 else
733 b = 0;
734
735 fprintf_filtered (stream, "%1d", b);
736 }
737 }
738 }
739 fprintf_filtered (stream, local_binary_format_suffix ());
740 }
741
742 /* VALADDR points to an integer of LEN bytes.
743 * Print it in octal on stream or format it in buf.
744 */
745 void
746 print_octal_chars (stream, valaddr, len)
747 struct ui_file *stream;
748 unsigned char *valaddr;
749 unsigned len;
750 {
751 unsigned char *p;
752 unsigned char octa1, octa2, octa3, carry;
753 int cycle;
754
755 /* FIXME: We should be not printing leading zeroes in most cases. */
756
757
758 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
759 * the extra bits, which cycle every three bytes:
760 *
761 * Byte side: 0 1 2 3
762 * | | | |
763 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
764 *
765 * Octal side: 0 1 carry 3 4 carry ...
766 *
767 * Cycle number: 0 1 2
768 *
769 * But of course we are printing from the high side, so we have to
770 * figure out where in the cycle we are so that we end up with no
771 * left over bits at the end.
772 */
773 #define BITS_IN_OCTAL 3
774 #define HIGH_ZERO 0340
775 #define LOW_ZERO 0016
776 #define CARRY_ZERO 0003
777 #define HIGH_ONE 0200
778 #define MID_ONE 0160
779 #define LOW_ONE 0016
780 #define CARRY_ONE 0001
781 #define HIGH_TWO 0300
782 #define MID_TWO 0070
783 #define LOW_TWO 0007
784
785 /* For 32 we start in cycle 2, with two bits and one bit carry;
786 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
787 */
788 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
789 carry = 0;
790
791 fprintf_filtered (stream, local_octal_format_prefix ());
792 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
793 {
794 for (p = valaddr;
795 p < valaddr + len;
796 p++)
797 {
798 switch (cycle)
799 {
800 case 0:
801 /* No carry in, carry out two bits.
802 */
803 octa1 = (HIGH_ZERO & *p) >> 5;
804 octa2 = (LOW_ZERO & *p) >> 2;
805 carry = (CARRY_ZERO & *p);
806 fprintf_filtered (stream, "%o", octa1);
807 fprintf_filtered (stream, "%o", octa2);
808 break;
809
810 case 1:
811 /* Carry in two bits, carry out one bit.
812 */
813 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
814 octa2 = (MID_ONE & *p) >> 4;
815 octa3 = (LOW_ONE & *p) >> 1;
816 carry = (CARRY_ONE & *p);
817 fprintf_filtered (stream, "%o", octa1);
818 fprintf_filtered (stream, "%o", octa2);
819 fprintf_filtered (stream, "%o", octa3);
820 break;
821
822 case 2:
823 /* Carry in one bit, no carry out.
824 */
825 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
826 octa2 = (MID_TWO & *p) >> 3;
827 octa3 = (LOW_TWO & *p);
828 carry = 0;
829 fprintf_filtered (stream, "%o", octa1);
830 fprintf_filtered (stream, "%o", octa2);
831 fprintf_filtered (stream, "%o", octa3);
832 break;
833
834 default:
835 error ("Internal error in octal conversion;");
836 }
837
838 cycle++;
839 cycle = cycle % BITS_IN_OCTAL;
840 }
841 }
842 else
843 {
844 for (p = valaddr + len - 1;
845 p >= valaddr;
846 p--)
847 {
848 switch (cycle)
849 {
850 case 0:
851 /* Carry out, no carry in */
852 octa1 = (HIGH_ZERO & *p) >> 5;
853 octa2 = (LOW_ZERO & *p) >> 2;
854 carry = (CARRY_ZERO & *p);
855 fprintf_filtered (stream, "%o", octa1);
856 fprintf_filtered (stream, "%o", octa2);
857 break;
858
859 case 1:
860 /* Carry in, carry out */
861 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
862 octa2 = (MID_ONE & *p) >> 4;
863 octa3 = (LOW_ONE & *p) >> 1;
864 carry = (CARRY_ONE & *p);
865 fprintf_filtered (stream, "%o", octa1);
866 fprintf_filtered (stream, "%o", octa2);
867 fprintf_filtered (stream, "%o", octa3);
868 break;
869
870 case 2:
871 /* Carry in, no carry out */
872 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
873 octa2 = (MID_TWO & *p) >> 3;
874 octa3 = (LOW_TWO & *p);
875 carry = 0;
876 fprintf_filtered (stream, "%o", octa1);
877 fprintf_filtered (stream, "%o", octa2);
878 fprintf_filtered (stream, "%o", octa3);
879 break;
880
881 default:
882 error ("Internal error in octal conversion;");
883 }
884
885 cycle++;
886 cycle = cycle % BITS_IN_OCTAL;
887 }
888 }
889
890 fprintf_filtered (stream, local_octal_format_suffix ());
891 }
892
893 /* VALADDR points to an integer of LEN bytes.
894 * Print it in decimal on stream or format it in buf.
895 */
896 void
897 print_decimal_chars (stream, valaddr, len)
898 struct ui_file *stream;
899 unsigned char *valaddr;
900 unsigned len;
901 {
902 #define TEN 10
903 #define TWO_TO_FOURTH 16
904 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
905 #define CARRY_LEFT( x ) ((x) % TEN)
906 #define SHIFT( x ) ((x) << 4)
907 #define START_P \
908 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? valaddr : valaddr + len - 1)
909 #define NOT_END_P \
910 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? (p < valaddr + len) : (p >= valaddr))
911 #define NEXT_P \
912 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? p++ : p-- )
913 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
914 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
915
916 unsigned char *p;
917 unsigned char *digits;
918 int carry;
919 int decimal_len;
920 int i, j, decimal_digits;
921 int dummy;
922 int flip;
923
924 /* Base-ten number is less than twice as many digits
925 * as the base 16 number, which is 2 digits per byte.
926 */
927 decimal_len = len * 2 * 2;
928 digits = (unsigned char *) malloc (decimal_len);
929 if (digits == NULL)
930 error ("Can't allocate memory for conversion to decimal.");
931
932 for (i = 0; i < decimal_len; i++)
933 {
934 digits[i] = 0;
935 }
936
937 fprintf_filtered (stream, local_decimal_format_prefix ());
938
939 /* Ok, we have an unknown number of bytes of data to be printed in
940 * decimal.
941 *
942 * Given a hex number (in nibbles) as XYZ, we start by taking X and
943 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
944 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
945 *
946 * The trick is that "digits" holds a base-10 number, but sometimes
947 * the individual digits are > 10.
948 *
949 * Outer loop is per nibble (hex digit) of input, from MSD end to
950 * LSD end.
951 */
952 decimal_digits = 0; /* Number of decimal digits so far */
953 p = START_P;
954 flip = 0;
955 while (NOT_END_P)
956 {
957 /*
958 * Multiply current base-ten number by 16 in place.
959 * Each digit was between 0 and 9, now is between
960 * 0 and 144.
961 */
962 for (j = 0; j < decimal_digits; j++)
963 {
964 digits[j] = SHIFT (digits[j]);
965 }
966
967 /* Take the next nibble off the input and add it to what
968 * we've got in the LSB position. Bottom 'digit' is now
969 * between 0 and 159.
970 *
971 * "flip" is used to run this loop twice for each byte.
972 */
973 if (flip == 0)
974 {
975 /* Take top nibble.
976 */
977 digits[0] += HIGH_NIBBLE (*p);
978 flip = 1;
979 }
980 else
981 {
982 /* Take low nibble and bump our pointer "p".
983 */
984 digits[0] += LOW_NIBBLE (*p);
985 NEXT_P;
986 flip = 0;
987 }
988
989 /* Re-decimalize. We have to do this often enough
990 * that we don't overflow, but once per nibble is
991 * overkill. Easier this way, though. Note that the
992 * carry is often larger than 10 (e.g. max initial
993 * carry out of lowest nibble is 15, could bubble all
994 * the way up greater than 10). So we have to do
995 * the carrying beyond the last current digit.
996 */
997 carry = 0;
998 for (j = 0; j < decimal_len - 1; j++)
999 {
1000 digits[j] += carry;
1001
1002 /* "/" won't handle an unsigned char with
1003 * a value that if signed would be negative.
1004 * So extend to longword int via "dummy".
1005 */
1006 dummy = digits[j];
1007 carry = CARRY_OUT (dummy);
1008 digits[j] = CARRY_LEFT (dummy);
1009
1010 if (j >= decimal_digits && carry == 0)
1011 {
1012 /*
1013 * All higher digits are 0 and we
1014 * no longer have a carry.
1015 *
1016 * Note: "j" is 0-based, "decimal_digits" is
1017 * 1-based.
1018 */
1019 decimal_digits = j + 1;
1020 break;
1021 }
1022 }
1023 }
1024
1025 /* Ok, now "digits" is the decimal representation, with
1026 * the "decimal_digits" actual digits. Print!
1027 */
1028 for (i = decimal_digits - 1; i >= 0; i--)
1029 {
1030 fprintf_filtered (stream, "%1d", digits[i]);
1031 }
1032 free (digits);
1033
1034 fprintf_filtered (stream, local_decimal_format_suffix ());
1035 }
1036
1037 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1038
1039 static void
1040 print_hex_chars (stream, valaddr, len)
1041 struct ui_file *stream;
1042 unsigned char *valaddr;
1043 unsigned len;
1044 {
1045 unsigned char *p;
1046
1047 /* FIXME: We should be not printing leading zeroes in most cases. */
1048
1049 fprintf_filtered (stream, local_hex_format_prefix ());
1050 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1051 {
1052 for (p = valaddr;
1053 p < valaddr + len;
1054 p++)
1055 {
1056 fprintf_filtered (stream, "%02x", *p);
1057 }
1058 }
1059 else
1060 {
1061 for (p = valaddr + len - 1;
1062 p >= valaddr;
1063 p--)
1064 {
1065 fprintf_filtered (stream, "%02x", *p);
1066 }
1067 }
1068 fprintf_filtered (stream, local_hex_format_suffix ());
1069 }
1070
1071 /* Called by various <lang>_val_print routines to print elements of an
1072 array in the form "<elem1>, <elem2>, <elem3>, ...".
1073
1074 (FIXME?) Assumes array element separator is a comma, which is correct
1075 for all languages currently handled.
1076 (FIXME?) Some languages have a notation for repeated array elements,
1077 perhaps we should try to use that notation when appropriate.
1078 */
1079
1080 void
1081 val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
1082 recurse, pretty, i)
1083 struct type *type;
1084 char *valaddr;
1085 CORE_ADDR address;
1086 struct ui_file *stream;
1087 int format;
1088 int deref_ref;
1089 int recurse;
1090 enum val_prettyprint pretty;
1091 unsigned int i;
1092 {
1093 unsigned int things_printed = 0;
1094 unsigned len;
1095 struct type *elttype;
1096 unsigned eltlen;
1097 /* Position of the array element we are examining to see
1098 whether it is repeated. */
1099 unsigned int rep1;
1100 /* Number of repetitions we have detected so far. */
1101 unsigned int reps;
1102
1103 elttype = TYPE_TARGET_TYPE (type);
1104 eltlen = TYPE_LENGTH (check_typedef (elttype));
1105 len = TYPE_LENGTH (type) / eltlen;
1106
1107 annotate_array_section_begin (i, elttype);
1108
1109 for (; i < len && things_printed < print_max; i++)
1110 {
1111 if (i != 0)
1112 {
1113 if (prettyprint_arrays)
1114 {
1115 fprintf_filtered (stream, ",\n");
1116 print_spaces_filtered (2 + 2 * recurse, stream);
1117 }
1118 else
1119 {
1120 fprintf_filtered (stream, ", ");
1121 }
1122 }
1123 wrap_here (n_spaces (2 + 2 * recurse));
1124
1125 rep1 = i + 1;
1126 reps = 1;
1127 while ((rep1 < len) &&
1128 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1129 {
1130 ++reps;
1131 ++rep1;
1132 }
1133
1134 if (reps > repeat_count_threshold)
1135 {
1136 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1137 deref_ref, recurse + 1, pretty);
1138 annotate_elt_rep (reps);
1139 fprintf_filtered (stream, " <repeats %u times>", reps);
1140 annotate_elt_rep_end ();
1141
1142 i = rep1 - 1;
1143 things_printed += repeat_count_threshold;
1144 }
1145 else
1146 {
1147 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1148 deref_ref, recurse + 1, pretty);
1149 annotate_elt ();
1150 things_printed++;
1151 }
1152 }
1153 annotate_array_section_end ();
1154 if (i < len)
1155 {
1156 fprintf_filtered (stream, "...");
1157 }
1158 }
1159
1160 /* Read LEN bytes of target memory at address MEMADDR, placing the
1161 results in GDB's memory at MYADDR. Returns a count of the bytes
1162 actually read, and optionally an errno value in the location
1163 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1164
1165 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1166 function be eliminated. */
1167
1168 static int
1169 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
1170 {
1171 int nread; /* Number of bytes actually read. */
1172 int errcode; /* Error from last read. */
1173
1174 /* First try a complete read. */
1175 errcode = target_read_memory (memaddr, myaddr, len);
1176 if (errcode == 0)
1177 {
1178 /* Got it all. */
1179 nread = len;
1180 }
1181 else
1182 {
1183 /* Loop, reading one byte at a time until we get as much as we can. */
1184 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1185 {
1186 errcode = target_read_memory (memaddr++, myaddr++, 1);
1187 }
1188 /* If an error, the last read was unsuccessful, so adjust count. */
1189 if (errcode != 0)
1190 {
1191 nread--;
1192 }
1193 }
1194 if (errnoptr != NULL)
1195 {
1196 *errnoptr = errcode;
1197 }
1198 return (nread);
1199 }
1200
1201 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1202 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1203 stops at the first null byte, otherwise printing proceeds (including null
1204 bytes) until either print_max or LEN characters have been printed,
1205 whichever is smaller. */
1206
1207 /* FIXME: Use target_read_string. */
1208
1209 int
1210 val_print_string (addr, len, width, stream)
1211 CORE_ADDR addr;
1212 int len;
1213 int width;
1214 struct ui_file *stream;
1215 {
1216 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1217 int errcode; /* Errno returned from bad reads. */
1218 unsigned int fetchlimit; /* Maximum number of chars to print. */
1219 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1220 unsigned int chunksize; /* Size of each fetch, in chars. */
1221 char *buffer = NULL; /* Dynamically growable fetch buffer. */
1222 char *bufptr; /* Pointer to next available byte in buffer. */
1223 char *limit; /* First location past end of fetch buffer. */
1224 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1225 int found_nul; /* Non-zero if we found the nul char */
1226
1227 /* First we need to figure out the limit on the number of characters we are
1228 going to attempt to fetch and print. This is actually pretty simple. If
1229 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1230 LEN is -1, then the limit is print_max. This is true regardless of
1231 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1232 because finding the null byte (or available memory) is what actually
1233 limits the fetch. */
1234
1235 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1236
1237 /* Now decide how large of chunks to try to read in one operation. This
1238 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1239 so we might as well read them all in one operation. If LEN is -1, we
1240 are looking for a null terminator to end the fetching, so we might as
1241 well read in blocks that are large enough to be efficient, but not so
1242 large as to be slow if fetchlimit happens to be large. So we choose the
1243 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1244 200 is way too big for remote debugging over a serial line. */
1245
1246 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1247
1248 /* Loop until we either have all the characters to print, or we encounter
1249 some error, such as bumping into the end of the address space. */
1250
1251 found_nul = 0;
1252 old_chain = make_cleanup (null_cleanup, 0);
1253
1254 if (len > 0)
1255 {
1256 buffer = (char *) xmalloc (len * width);
1257 bufptr = buffer;
1258 old_chain = make_cleanup (free, buffer);
1259
1260 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1261 / width;
1262 addr += nfetch * width;
1263 bufptr += nfetch * width;
1264 }
1265 else if (len == -1)
1266 {
1267 unsigned long bufsize = 0;
1268 do
1269 {
1270 QUIT;
1271 nfetch = min (chunksize, fetchlimit - bufsize);
1272
1273 if (buffer == NULL)
1274 buffer = (char *) xmalloc (nfetch * width);
1275 else
1276 {
1277 discard_cleanups (old_chain);
1278 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1279 }
1280
1281 old_chain = make_cleanup (free, buffer);
1282 bufptr = buffer + bufsize * width;
1283 bufsize += nfetch;
1284
1285 /* Read as much as we can. */
1286 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1287 / width;
1288
1289 /* Scan this chunk for the null byte that terminates the string
1290 to print. If found, we don't need to fetch any more. Note
1291 that bufptr is explicitly left pointing at the next character
1292 after the null byte, or at the next character after the end of
1293 the buffer. */
1294
1295 limit = bufptr + nfetch * width;
1296 while (bufptr < limit)
1297 {
1298 unsigned long c;
1299
1300 c = extract_unsigned_integer (bufptr, width);
1301 addr += width;
1302 bufptr += width;
1303 if (c == 0)
1304 {
1305 /* We don't care about any error which happened after
1306 the NULL terminator. */
1307 errcode = 0;
1308 found_nul = 1;
1309 break;
1310 }
1311 }
1312 }
1313 while (errcode == 0 /* no error */
1314 && bufptr - buffer < fetchlimit * width /* no overrun */
1315 && !found_nul); /* haven't found nul yet */
1316 }
1317 else
1318 { /* length of string is really 0! */
1319 buffer = bufptr = NULL;
1320 errcode = 0;
1321 }
1322
1323 /* bufptr and addr now point immediately beyond the last byte which we
1324 consider part of the string (including a '\0' which ends the string). */
1325
1326 /* We now have either successfully filled the buffer to fetchlimit, or
1327 terminated early due to an error or finding a null char when LEN is -1. */
1328
1329 if (len == -1 && !found_nul)
1330 {
1331 char *peekbuf;
1332
1333 /* We didn't find a null terminator we were looking for. Attempt
1334 to peek at the next character. If not successful, or it is not
1335 a null byte, then force ellipsis to be printed. */
1336
1337 peekbuf = (char *) alloca (width);
1338
1339 if (target_read_memory (addr, peekbuf, width) == 0
1340 && extract_unsigned_integer (peekbuf, width) != 0)
1341 force_ellipsis = 1;
1342 }
1343 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1344 {
1345 /* Getting an error when we have a requested length, or fetching less
1346 than the number of characters actually requested, always make us
1347 print ellipsis. */
1348 force_ellipsis = 1;
1349 }
1350
1351 QUIT;
1352
1353 /* If we get an error before fetching anything, don't print a string.
1354 But if we fetch something and then get an error, print the string
1355 and then the error message. */
1356 if (errcode == 0 || bufptr > buffer)
1357 {
1358 if (addressprint)
1359 {
1360 fputs_filtered (" ", stream);
1361 }
1362 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1363 }
1364
1365 if (errcode != 0)
1366 {
1367 if (errcode == EIO)
1368 {
1369 fprintf_filtered (stream, " <Address ");
1370 print_address_numeric (addr, 1, stream);
1371 fprintf_filtered (stream, " out of bounds>");
1372 }
1373 else
1374 {
1375 fprintf_filtered (stream, " <Error reading address ");
1376 print_address_numeric (addr, 1, stream);
1377 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1378 }
1379 }
1380 gdb_flush (stream);
1381 do_cleanups (old_chain);
1382 return ((bufptr - buffer) / width);
1383 }
1384 \f
1385
1386 /* Validate an input or output radix setting, and make sure the user
1387 knows what they really did here. Radix setting is confusing, e.g.
1388 setting the input radix to "10" never changes it! */
1389
1390 /* ARGSUSED */
1391 static void
1392 set_input_radix (args, from_tty, c)
1393 char *args;
1394 int from_tty;
1395 struct cmd_list_element *c;
1396 {
1397 set_input_radix_1 (from_tty, *(unsigned *) c->var);
1398 }
1399
1400 /* ARGSUSED */
1401 static void
1402 set_input_radix_1 (from_tty, radix)
1403 int from_tty;
1404 unsigned radix;
1405 {
1406 /* We don't currently disallow any input radix except 0 or 1, which don't
1407 make any mathematical sense. In theory, we can deal with any input
1408 radix greater than 1, even if we don't have unique digits for every
1409 value from 0 to radix-1, but in practice we lose on large radix values.
1410 We should either fix the lossage or restrict the radix range more.
1411 (FIXME). */
1412
1413 if (radix < 2)
1414 {
1415 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1416 radix);
1417 }
1418 input_radix = radix;
1419 if (from_tty)
1420 {
1421 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1422 radix, radix, radix);
1423 }
1424 }
1425
1426 /* ARGSUSED */
1427 static void
1428 set_output_radix (args, from_tty, c)
1429 char *args;
1430 int from_tty;
1431 struct cmd_list_element *c;
1432 {
1433 set_output_radix_1 (from_tty, *(unsigned *) c->var);
1434 }
1435
1436 static void
1437 set_output_radix_1 (from_tty, radix)
1438 int from_tty;
1439 unsigned radix;
1440 {
1441 /* Validate the radix and disallow ones that we aren't prepared to
1442 handle correctly, leaving the radix unchanged. */
1443 switch (radix)
1444 {
1445 case 16:
1446 output_format = 'x'; /* hex */
1447 break;
1448 case 10:
1449 output_format = 0; /* decimal */
1450 break;
1451 case 8:
1452 output_format = 'o'; /* octal */
1453 break;
1454 default:
1455 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1456 radix);
1457 }
1458 output_radix = radix;
1459 if (from_tty)
1460 {
1461 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1462 radix, radix, radix);
1463 }
1464 }
1465
1466 /* Set both the input and output radix at once. Try to set the output radix
1467 first, since it has the most restrictive range. An radix that is valid as
1468 an output radix is also valid as an input radix.
1469
1470 It may be useful to have an unusual input radix. If the user wishes to
1471 set an input radix that is not valid as an output radix, he needs to use
1472 the 'set input-radix' command. */
1473
1474 static void
1475 set_radix (arg, from_tty)
1476 char *arg;
1477 int from_tty;
1478 {
1479 unsigned radix;
1480
1481 radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
1482 set_output_radix_1 (0, radix);
1483 set_input_radix_1 (0, radix);
1484 if (from_tty)
1485 {
1486 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1487 radix, radix, radix);
1488 }
1489 }
1490
1491 /* Show both the input and output radices. */
1492
1493 /*ARGSUSED */
1494 static void
1495 show_radix (arg, from_tty)
1496 char *arg;
1497 int from_tty;
1498 {
1499 if (from_tty)
1500 {
1501 if (input_radix == output_radix)
1502 {
1503 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1504 input_radix, input_radix, input_radix);
1505 }
1506 else
1507 {
1508 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1509 input_radix, input_radix, input_radix);
1510 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1511 output_radix, output_radix, output_radix);
1512 }
1513 }
1514 }
1515 \f
1516
1517 /*ARGSUSED */
1518 static void
1519 set_print (arg, from_tty)
1520 char *arg;
1521 int from_tty;
1522 {
1523 printf_unfiltered (
1524 "\"set print\" must be followed by the name of a print subcommand.\n");
1525 help_list (setprintlist, "set print ", -1, gdb_stdout);
1526 }
1527
1528 /*ARGSUSED */
1529 static void
1530 show_print (args, from_tty)
1531 char *args;
1532 int from_tty;
1533 {
1534 cmd_show_list (showprintlist, from_tty, "");
1535 }
1536 \f
1537 void
1538 _initialize_valprint ()
1539 {
1540 struct cmd_list_element *c;
1541
1542 add_prefix_cmd ("print", no_class, set_print,
1543 "Generic command for setting how things print.",
1544 &setprintlist, "set print ", 0, &setlist);
1545 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1546 /* prefer set print to set prompt */
1547 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1548
1549 add_prefix_cmd ("print", no_class, show_print,
1550 "Generic command for showing print settings.",
1551 &showprintlist, "show print ", 0, &showlist);
1552 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1553 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1554
1555 add_show_from_set
1556 (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1557 "Set limit on string chars or array elements to print.\n\
1558 \"set print elements 0\" causes there to be no limit.",
1559 &setprintlist),
1560 &showprintlist);
1561
1562 add_show_from_set
1563 (add_set_cmd ("null-stop", no_class, var_boolean,
1564 (char *) &stop_print_at_null,
1565 "Set printing of char arrays to stop at first null char.",
1566 &setprintlist),
1567 &showprintlist);
1568
1569 add_show_from_set
1570 (add_set_cmd ("repeats", no_class, var_uinteger,
1571 (char *) &repeat_count_threshold,
1572 "Set threshold for repeated print elements.\n\
1573 \"set print repeats 0\" causes all elements to be individually printed.",
1574 &setprintlist),
1575 &showprintlist);
1576
1577 add_show_from_set
1578 (add_set_cmd ("pretty", class_support, var_boolean,
1579 (char *) &prettyprint_structs,
1580 "Set prettyprinting of structures.",
1581 &setprintlist),
1582 &showprintlist);
1583
1584 add_show_from_set
1585 (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1586 "Set printing of unions interior to structures.",
1587 &setprintlist),
1588 &showprintlist);
1589
1590 add_show_from_set
1591 (add_set_cmd ("array", class_support, var_boolean,
1592 (char *) &prettyprint_arrays,
1593 "Set prettyprinting of arrays.",
1594 &setprintlist),
1595 &showprintlist);
1596
1597 add_show_from_set
1598 (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1599 "Set printing of addresses.",
1600 &setprintlist),
1601 &showprintlist);
1602
1603 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1604 (char *) &input_radix,
1605 "Set default input radix for entering numbers.",
1606 &setlist);
1607 add_show_from_set (c, &showlist);
1608 c->function.sfunc = set_input_radix;
1609
1610 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1611 (char *) &output_radix,
1612 "Set default output radix for printing of values.",
1613 &setlist);
1614 add_show_from_set (c, &showlist);
1615 c->function.sfunc = set_output_radix;
1616
1617 /* The "set radix" and "show radix" commands are special in that they are
1618 like normal set and show commands but allow two normally independent
1619 variables to be either set or shown with a single command. So the
1620 usual add_set_cmd() and add_show_from_set() commands aren't really
1621 appropriate. */
1622 add_cmd ("radix", class_support, set_radix,
1623 "Set default input and output number radices.\n\
1624 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1625 Without an argument, sets both radices back to the default value of 10.",
1626 &setlist);
1627 add_cmd ("radix", class_support, show_radix,
1628 "Show the default input and output number radices.\n\
1629 Use 'show input-radix' or 'show output-radix' to independently show each.",
1630 &showlist);
1631
1632 /* Give people the defaults which they are used to. */
1633 prettyprint_structs = 0;
1634 prettyprint_arrays = 0;
1635 unionprint = 1;
1636 addressprint = 1;
1637 print_max = PRINT_MAX_DEFAULT;
1638 }