internal_error: remove need to pass __FILE__/__LINE__
[binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdbsupport/gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43 #include "c-lang.h"
44 #include "cp-abi.h"
45 #include "inferior.h"
46 #include "gdbsupport/selftest.h"
47 #include "selftest-arch.h"
48
49 /* Maximum number of wchars returned from wchar_iterate. */
50 #define MAX_WCHARS 4
51
52 /* A convenience macro to compute the size of a wchar_t buffer containing X
53 characters. */
54 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
55
56 /* Character buffer size saved while iterating over wchars. */
57 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
58
59 /* A structure to encapsulate state information from iterated
60 character conversions. */
61 struct converted_character
62 {
63 /* The number of characters converted. */
64 int num_chars;
65
66 /* The result of the conversion. See charset.h for more. */
67 enum wchar_iterate_result result;
68
69 /* The (saved) converted character(s). */
70 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
71
72 /* The first converted target byte. */
73 const gdb_byte *buf;
74
75 /* The number of bytes converted. */
76 size_t buflen;
77
78 /* How many times this character(s) is repeated. */
79 int repeat_count;
80 };
81
82 /* Command lists for set/show print raw. */
83 struct cmd_list_element *setprintrawlist;
84 struct cmd_list_element *showprintrawlist;
85
86 /* Prototypes for local functions */
87
88 static void set_input_radix_1 (int, unsigned);
89
90 static void set_output_radix_1 (int, unsigned);
91
92 static void val_print_type_code_flags (struct type *type,
93 struct value *original_value,
94 int embedded_offset,
95 struct ui_file *stream);
96
97 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
98 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
99
100 struct value_print_options user_print_options =
101 {
102 Val_prettyformat_default, /* prettyformat */
103 0, /* prettyformat_arrays */
104 0, /* prettyformat_structs */
105 0, /* vtblprint */
106 1, /* unionprint */
107 1, /* addressprint */
108 false, /* nibblesprint */
109 0, /* objectprint */
110 PRINT_MAX_DEFAULT, /* print_max */
111 10, /* repeat_count_threshold */
112 0, /* output_format */
113 0, /* format */
114 1, /* memory_tag_violations */
115 0, /* stop_print_at_null */
116 0, /* print_array_indexes */
117 0, /* deref_ref */
118 1, /* static_field_print */
119 1, /* pascal_static_field_print */
120 0, /* raw */
121 0, /* summary */
122 1, /* symbol_print */
123 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
124 };
125
126 /* Initialize *OPTS to be a copy of the user print options. */
127 void
128 get_user_print_options (struct value_print_options *opts)
129 {
130 *opts = user_print_options;
131 }
132
133 /* Initialize *OPTS to be a copy of the user print options, but with
134 pretty-formatting disabled. */
135 void
136 get_no_prettyformat_print_options (struct value_print_options *opts)
137 {
138 *opts = user_print_options;
139 opts->prettyformat = Val_no_prettyformat;
140 }
141
142 /* Initialize *OPTS to be a copy of the user print options, but using
143 FORMAT as the formatting option. */
144 void
145 get_formatted_print_options (struct value_print_options *opts,
146 char format)
147 {
148 *opts = user_print_options;
149 opts->format = format;
150 }
151
152 static void
153 show_print_max (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 gdb_printf (file,
157 _("Limit on string chars or array "
158 "elements to print is %s.\n"),
159 value);
160 }
161
162
163 /* Default input and output radixes, and output format letter. */
164
165 unsigned input_radix = 10;
166 static void
167 show_input_radix (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 gdb_printf (file,
171 _("Default input radix for entering numbers is %s.\n"),
172 value);
173 }
174
175 unsigned output_radix = 10;
176 static void
177 show_output_radix (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179 {
180 gdb_printf (file,
181 _("Default output radix for printing of values is %s.\n"),
182 value);
183 }
184
185 /* By default we print arrays without printing the index of each element in
186 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
187
188 static void
189 show_print_array_indexes (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 gdb_printf (file, _("Printing of array indexes is %s.\n"), value);
193 }
194
195 /* Print repeat counts if there are more than this many repetitions of an
196 element in an array. Referenced by the low level language dependent
197 print routines. */
198
199 static void
200 show_repeat_count_threshold (struct ui_file *file, int from_tty,
201 struct cmd_list_element *c, const char *value)
202 {
203 gdb_printf (file, _("Threshold for repeated print elements is %s.\n"),
204 value);
205 }
206
207 /* If nonzero, prints memory tag violations for pointers. */
208
209 static void
210 show_memory_tag_violations (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 gdb_printf (file,
214 _("Printing of memory tag violations is %s.\n"),
215 value);
216 }
217
218 /* If nonzero, stops printing of char arrays at first null. */
219
220 static void
221 show_stop_print_at_null (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 gdb_printf (file,
225 _("Printing of char arrays to stop "
226 "at first null char is %s.\n"),
227 value);
228 }
229
230 /* Controls pretty printing of structures. */
231
232 static void
233 show_prettyformat_structs (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 gdb_printf (file, _("Pretty formatting of structures is %s.\n"), value);
237 }
238
239 /* Controls pretty printing of arrays. */
240
241 static void
242 show_prettyformat_arrays (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 gdb_printf (file, _("Pretty formatting of arrays is %s.\n"), value);
246 }
247
248 /* If nonzero, causes unions inside structures or other unions to be
249 printed. */
250
251 static void
252 show_unionprint (struct ui_file *file, int from_tty,
253 struct cmd_list_element *c, const char *value)
254 {
255 gdb_printf (file,
256 _("Printing of unions interior to structures is %s.\n"),
257 value);
258 }
259
260 /* Controls the format of printing binary values. */
261
262 static void
263 show_nibbles (struct ui_file *file, int from_tty,
264 struct cmd_list_element *c, const char *value)
265 {
266 gdb_printf (file,
267 _("Printing binary values in groups is %s.\n"),
268 value);
269 }
270
271 /* If nonzero, causes machine addresses to be printed in certain contexts. */
272
273 static void
274 show_addressprint (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276 {
277 gdb_printf (file, _("Printing of addresses is %s.\n"), value);
278 }
279
280 static void
281 show_symbol_print (struct ui_file *file, int from_tty,
282 struct cmd_list_element *c, const char *value)
283 {
284 gdb_printf (file,
285 _("Printing of symbols when printing pointers is %s.\n"),
286 value);
287 }
288
289 \f
290
291 /* A helper function for val_print. When printing in "summary" mode,
292 we want to print scalar arguments, but not aggregate arguments.
293 This function distinguishes between the two. */
294
295 int
296 val_print_scalar_type_p (struct type *type)
297 {
298 type = check_typedef (type);
299 while (TYPE_IS_REFERENCE (type))
300 {
301 type = type->target_type ();
302 type = check_typedef (type);
303 }
304 switch (type->code ())
305 {
306 case TYPE_CODE_ARRAY:
307 case TYPE_CODE_STRUCT:
308 case TYPE_CODE_UNION:
309 case TYPE_CODE_SET:
310 case TYPE_CODE_STRING:
311 return 0;
312 default:
313 return 1;
314 }
315 }
316
317 /* A helper function for val_print. When printing with limited depth we
318 want to print string and scalar arguments, but not aggregate arguments.
319 This function distinguishes between the two. */
320
321 static bool
322 val_print_scalar_or_string_type_p (struct type *type,
323 const struct language_defn *language)
324 {
325 return (val_print_scalar_type_p (type)
326 || language->is_string_type_p (type));
327 }
328
329 /* See valprint.h. */
330
331 int
332 valprint_check_validity (struct ui_file *stream,
333 struct type *type,
334 LONGEST embedded_offset,
335 const struct value *val)
336 {
337 type = check_typedef (type);
338
339 if (type_not_associated (type))
340 {
341 val_print_not_associated (stream);
342 return 0;
343 }
344
345 if (type_not_allocated (type))
346 {
347 val_print_not_allocated (stream);
348 return 0;
349 }
350
351 if (type->code () != TYPE_CODE_UNION
352 && type->code () != TYPE_CODE_STRUCT
353 && type->code () != TYPE_CODE_ARRAY)
354 {
355 if (value_bits_any_optimized_out (val,
356 TARGET_CHAR_BIT * embedded_offset,
357 TARGET_CHAR_BIT * type->length ()))
358 {
359 val_print_optimized_out (val, stream);
360 return 0;
361 }
362
363 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
364 TARGET_CHAR_BIT * type->length ()))
365 {
366 const int is_ref = type->code () == TYPE_CODE_REF;
367 int ref_is_addressable = 0;
368
369 if (is_ref)
370 {
371 const struct value *deref_val = coerce_ref_if_computed (val);
372
373 if (deref_val != NULL)
374 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
375 }
376
377 if (!is_ref || !ref_is_addressable)
378 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
379 stream);
380
381 /* C++ references should be valid even if they're synthetic. */
382 return is_ref;
383 }
384
385 if (!value_bytes_available (val, embedded_offset, type->length ()))
386 {
387 val_print_unavailable (stream);
388 return 0;
389 }
390 }
391
392 return 1;
393 }
394
395 void
396 val_print_optimized_out (const struct value *val, struct ui_file *stream)
397 {
398 if (val != NULL && value_lval_const (val) == lval_register)
399 val_print_not_saved (stream);
400 else
401 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
402 }
403
404 void
405 val_print_not_saved (struct ui_file *stream)
406 {
407 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
408 }
409
410 void
411 val_print_unavailable (struct ui_file *stream)
412 {
413 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
414 }
415
416 void
417 val_print_invalid_address (struct ui_file *stream)
418 {
419 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
420 }
421
422 /* Print a pointer based on the type of its target.
423
424 Arguments to this functions are roughly the same as those in
425 generic_val_print. A difference is that ADDRESS is the address to print,
426 with embedded_offset already added. ELTTYPE represents
427 the pointed type after check_typedef. */
428
429 static void
430 print_unpacked_pointer (struct type *type, struct type *elttype,
431 CORE_ADDR address, struct ui_file *stream,
432 const struct value_print_options *options)
433 {
434 struct gdbarch *gdbarch = type->arch ();
435
436 if (elttype->code () == TYPE_CODE_FUNC)
437 {
438 /* Try to print what function it points to. */
439 print_function_pointer_address (options, gdbarch, address, stream);
440 return;
441 }
442
443 if (options->symbol_print)
444 print_address_demangle (options, gdbarch, address, stream, demangle);
445 else if (options->addressprint)
446 gdb_puts (paddress (gdbarch, address), stream);
447 }
448
449 /* generic_val_print helper for TYPE_CODE_ARRAY. */
450
451 static void
452 generic_val_print_array (struct value *val,
453 struct ui_file *stream, int recurse,
454 const struct value_print_options *options,
455 const struct
456 generic_val_print_decorations *decorations)
457 {
458 struct type *type = check_typedef (value_type (val));
459 struct type *unresolved_elttype = type->target_type ();
460 struct type *elttype = check_typedef (unresolved_elttype);
461
462 if (type->length () > 0 && unresolved_elttype->length () > 0)
463 {
464 LONGEST low_bound, high_bound;
465
466 if (!get_array_bounds (type, &low_bound, &high_bound))
467 error (_("Could not determine the array high bound"));
468
469 gdb_puts (decorations->array_start, stream);
470 value_print_array_elements (val, stream, recurse, options, 0);
471 gdb_puts (decorations->array_end, stream);
472 }
473 else
474 {
475 /* Array of unspecified length: treat like pointer to first elt. */
476 print_unpacked_pointer (type, elttype, value_address (val),
477 stream, options);
478 }
479
480 }
481
482 /* generic_value_print helper for TYPE_CODE_PTR. */
483
484 static void
485 generic_value_print_ptr (struct value *val, struct ui_file *stream,
486 const struct value_print_options *options)
487 {
488
489 if (options->format && options->format != 's')
490 value_print_scalar_formatted (val, options, 0, stream);
491 else
492 {
493 struct type *type = check_typedef (value_type (val));
494 struct type *elttype = check_typedef (type->target_type ());
495 const gdb_byte *valaddr = value_contents_for_printing (val).data ();
496 CORE_ADDR addr = unpack_pointer (type, valaddr);
497
498 print_unpacked_pointer (type, elttype, addr, stream, options);
499 }
500 }
501
502
503 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
504
505 static void
506 print_ref_address (struct type *type, const gdb_byte *address_buffer,
507 int embedded_offset, struct ui_file *stream)
508 {
509 struct gdbarch *gdbarch = type->arch ();
510
511 if (address_buffer != NULL)
512 {
513 CORE_ADDR address
514 = extract_typed_address (address_buffer + embedded_offset, type);
515
516 gdb_printf (stream, "@");
517 gdb_puts (paddress (gdbarch, address), stream);
518 }
519 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
520 }
521
522 /* If VAL is addressable, return the value contents buffer of a value that
523 represents a pointer to VAL. Otherwise return NULL. */
524
525 static const gdb_byte *
526 get_value_addr_contents (struct value *deref_val)
527 {
528 gdb_assert (deref_val != NULL);
529
530 if (value_lval_const (deref_val) == lval_memory)
531 return value_contents_for_printing_const (value_addr (deref_val)).data ();
532 else
533 {
534 /* We have a non-addressable value, such as a DW_AT_const_value. */
535 return NULL;
536 }
537 }
538
539 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
540
541 static void
542 generic_val_print_ref (struct type *type,
543 int embedded_offset, struct ui_file *stream, int recurse,
544 struct value *original_value,
545 const struct value_print_options *options)
546 {
547 struct type *elttype = check_typedef (type->target_type ());
548 struct value *deref_val = NULL;
549 const int value_is_synthetic
550 = value_bits_synthetic_pointer (original_value,
551 TARGET_CHAR_BIT * embedded_offset,
552 TARGET_CHAR_BIT * type->length ());
553 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
554 || options->deref_ref);
555 const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
556 const gdb_byte *valaddr = value_contents_for_printing (original_value).data ();
557
558 if (must_coerce_ref && type_is_defined)
559 {
560 deref_val = coerce_ref_if_computed (original_value);
561
562 if (deref_val != NULL)
563 {
564 /* More complicated computed references are not supported. */
565 gdb_assert (embedded_offset == 0);
566 }
567 else
568 deref_val = value_at (type->target_type (),
569 unpack_pointer (type, valaddr + embedded_offset));
570 }
571 /* Else, original_value isn't a synthetic reference or we don't have to print
572 the reference's contents.
573
574 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
575 cause original_value to be a not_lval instead of an lval_computed,
576 which will make value_bits_synthetic_pointer return false.
577 This happens because if options->objectprint is true, c_value_print will
578 overwrite original_value's contents with the result of coercing
579 the reference through value_addr, and then set its type back to
580 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
581 we can simply treat it as non-synthetic and move on. */
582
583 if (options->addressprint)
584 {
585 const gdb_byte *address = (value_is_synthetic && type_is_defined
586 ? get_value_addr_contents (deref_val)
587 : valaddr);
588
589 print_ref_address (type, address, embedded_offset, stream);
590
591 if (options->deref_ref)
592 gdb_puts (": ", stream);
593 }
594
595 if (options->deref_ref)
596 {
597 if (type_is_defined)
598 common_val_print (deref_val, stream, recurse, options,
599 current_language);
600 else
601 gdb_puts ("???", stream);
602 }
603 }
604
605 /* Helper function for generic_val_print_enum.
606 This is also used to print enums in TYPE_CODE_FLAGS values. */
607
608 static void
609 generic_val_print_enum_1 (struct type *type, LONGEST val,
610 struct ui_file *stream)
611 {
612 unsigned int i;
613 unsigned int len;
614
615 len = type->num_fields ();
616 for (i = 0; i < len; i++)
617 {
618 QUIT;
619 if (val == type->field (i).loc_enumval ())
620 {
621 break;
622 }
623 }
624 if (i < len)
625 {
626 fputs_styled (type->field (i).name (), variable_name_style.style (),
627 stream);
628 }
629 else if (type->is_flag_enum ())
630 {
631 int first = 1;
632
633 /* We have a "flag" enum, so we try to decompose it into pieces as
634 appropriate. The enum may have multiple enumerators representing
635 the same bit, in which case we choose to only print the first one
636 we find. */
637 for (i = 0; i < len; ++i)
638 {
639 QUIT;
640
641 ULONGEST enumval = type->field (i).loc_enumval ();
642 int nbits = count_one_bits_ll (enumval);
643
644 gdb_assert (nbits == 0 || nbits == 1);
645
646 if ((val & enumval) != 0)
647 {
648 if (first)
649 {
650 gdb_puts ("(", stream);
651 first = 0;
652 }
653 else
654 gdb_puts (" | ", stream);
655
656 val &= ~type->field (i).loc_enumval ();
657 fputs_styled (type->field (i).name (),
658 variable_name_style.style (), stream);
659 }
660 }
661
662 if (val != 0)
663 {
664 /* There are leftover bits, print them. */
665 if (first)
666 gdb_puts ("(", stream);
667 else
668 gdb_puts (" | ", stream);
669
670 gdb_puts ("unknown: 0x", stream);
671 print_longest (stream, 'x', 0, val);
672 gdb_puts (")", stream);
673 }
674 else if (first)
675 {
676 /* Nothing has been printed and the value is 0, the enum value must
677 have been 0. */
678 gdb_puts ("0", stream);
679 }
680 else
681 {
682 /* Something has been printed, close the parenthesis. */
683 gdb_puts (")", stream);
684 }
685 }
686 else
687 print_longest (stream, 'd', 0, val);
688 }
689
690 /* generic_val_print helper for TYPE_CODE_ENUM. */
691
692 static void
693 generic_val_print_enum (struct type *type,
694 int embedded_offset, struct ui_file *stream,
695 struct value *original_value,
696 const struct value_print_options *options)
697 {
698 LONGEST val;
699 struct gdbarch *gdbarch = type->arch ();
700 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
701
702 gdb_assert (!options->format);
703
704 const gdb_byte *valaddr = value_contents_for_printing (original_value).data ();
705
706 val = unpack_long (type, valaddr + embedded_offset * unit_size);
707
708 generic_val_print_enum_1 (type, val, stream);
709 }
710
711 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
712
713 static void
714 generic_val_print_func (struct type *type,
715 int embedded_offset, CORE_ADDR address,
716 struct ui_file *stream,
717 struct value *original_value,
718 const struct value_print_options *options)
719 {
720 struct gdbarch *gdbarch = type->arch ();
721
722 gdb_assert (!options->format);
723
724 /* FIXME, we should consider, at least for ANSI C language,
725 eliminating the distinction made between FUNCs and POINTERs to
726 FUNCs. */
727 gdb_printf (stream, "{");
728 type_print (type, "", stream, -1);
729 gdb_printf (stream, "} ");
730 /* Try to print what function it points to, and its address. */
731 print_address_demangle (options, gdbarch, address, stream, demangle);
732 }
733
734 /* generic_value_print helper for TYPE_CODE_BOOL. */
735
736 static void
737 generic_value_print_bool
738 (struct value *value, struct ui_file *stream,
739 const struct value_print_options *options,
740 const struct generic_val_print_decorations *decorations)
741 {
742 if (options->format || options->output_format)
743 {
744 struct value_print_options opts = *options;
745 opts.format = (options->format ? options->format
746 : options->output_format);
747 value_print_scalar_formatted (value, &opts, 0, stream);
748 }
749 else
750 {
751 const gdb_byte *valaddr = value_contents_for_printing (value).data ();
752 struct type *type = check_typedef (value_type (value));
753 LONGEST val = unpack_long (type, valaddr);
754 if (val == 0)
755 gdb_puts (decorations->false_name, stream);
756 else if (val == 1)
757 gdb_puts (decorations->true_name, stream);
758 else
759 print_longest (stream, 'd', 0, val);
760 }
761 }
762
763 /* generic_value_print helper for TYPE_CODE_INT. */
764
765 static void
766 generic_value_print_int (struct value *val, struct ui_file *stream,
767 const struct value_print_options *options)
768 {
769 struct value_print_options opts = *options;
770
771 opts.format = (options->format ? options->format
772 : options->output_format);
773 value_print_scalar_formatted (val, &opts, 0, stream);
774 }
775
776 /* generic_value_print helper for TYPE_CODE_CHAR. */
777
778 static void
779 generic_value_print_char (struct value *value, struct ui_file *stream,
780 const struct value_print_options *options)
781 {
782 if (options->format || options->output_format)
783 {
784 struct value_print_options opts = *options;
785
786 opts.format = (options->format ? options->format
787 : options->output_format);
788 value_print_scalar_formatted (value, &opts, 0, stream);
789 }
790 else
791 {
792 struct type *unresolved_type = value_type (value);
793 struct type *type = check_typedef (unresolved_type);
794 const gdb_byte *valaddr = value_contents_for_printing (value).data ();
795
796 LONGEST val = unpack_long (type, valaddr);
797 if (type->is_unsigned ())
798 gdb_printf (stream, "%u", (unsigned int) val);
799 else
800 gdb_printf (stream, "%d", (int) val);
801 gdb_puts (" ", stream);
802 current_language->printchar (val, unresolved_type, stream);
803 }
804 }
805
806 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
807
808 static void
809 generic_val_print_float (struct type *type, struct ui_file *stream,
810 struct value *original_value,
811 const struct value_print_options *options)
812 {
813 gdb_assert (!options->format);
814
815 const gdb_byte *valaddr = value_contents_for_printing (original_value).data ();
816
817 print_floating (valaddr, type, stream);
818 }
819
820 /* generic_val_print helper for TYPE_CODE_FIXED_POINT. */
821
822 static void
823 generic_val_print_fixed_point (struct value *val, struct ui_file *stream,
824 const struct value_print_options *options)
825 {
826 if (options->format)
827 value_print_scalar_formatted (val, options, 0, stream);
828 else
829 {
830 struct type *type = value_type (val);
831
832 const gdb_byte *valaddr = value_contents_for_printing (val).data ();
833 gdb_mpf f;
834
835 f.read_fixed_point (gdb::make_array_view (valaddr, type->length ()),
836 type_byte_order (type), type->is_unsigned (),
837 type->fixed_point_scaling_factor ());
838
839 const char *fmt = type->length () < 4 ? "%.11Fg" : "%.17Fg";
840 std::string str = gmp_string_printf (fmt, f.val);
841 gdb_printf (stream, "%s", str.c_str ());
842 }
843 }
844
845 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
846
847 static void
848 generic_value_print_complex (struct value *val, struct ui_file *stream,
849 const struct value_print_options *options,
850 const struct generic_val_print_decorations
851 *decorations)
852 {
853 gdb_printf (stream, "%s", decorations->complex_prefix);
854
855 struct value *real_part = value_real_part (val);
856 value_print_scalar_formatted (real_part, options, 0, stream);
857 gdb_printf (stream, "%s", decorations->complex_infix);
858
859 struct value *imag_part = value_imaginary_part (val);
860 value_print_scalar_formatted (imag_part, options, 0, stream);
861 gdb_printf (stream, "%s", decorations->complex_suffix);
862 }
863
864 /* generic_value_print helper for TYPE_CODE_MEMBERPTR. */
865
866 static void
867 generic_value_print_memberptr
868 (struct value *val, struct ui_file *stream,
869 int recurse,
870 const struct value_print_options *options,
871 const struct generic_val_print_decorations *decorations)
872 {
873 if (!options->format)
874 {
875 /* Member pointers are essentially specific to C++, and so if we
876 encounter one, we should print it according to C++ rules. */
877 struct type *type = check_typedef (value_type (val));
878 const gdb_byte *valaddr = value_contents_for_printing (val).data ();
879 cp_print_class_member (valaddr, type, stream, "&");
880 }
881 else
882 generic_value_print (val, stream, recurse, options, decorations);
883 }
884
885 /* See valprint.h. */
886
887 void
888 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
889 const struct value_print_options *options,
890 const struct generic_val_print_decorations *decorations)
891 {
892 struct type *type = value_type (val);
893
894 type = check_typedef (type);
895
896 if (is_fixed_point_type (type))
897 type = type->fixed_point_type_base_type ();
898
899 /* Widen a subrange to its target type, then use that type's
900 printer. */
901 while (type->code () == TYPE_CODE_RANGE)
902 {
903 type = check_typedef (type->target_type ());
904 val = value_cast (type, val);
905 }
906
907 switch (type->code ())
908 {
909 case TYPE_CODE_ARRAY:
910 generic_val_print_array (val, stream, recurse, options, decorations);
911 break;
912
913 case TYPE_CODE_MEMBERPTR:
914 generic_value_print_memberptr (val, stream, recurse, options,
915 decorations);
916 break;
917
918 case TYPE_CODE_PTR:
919 generic_value_print_ptr (val, stream, options);
920 break;
921
922 case TYPE_CODE_REF:
923 case TYPE_CODE_RVALUE_REF:
924 generic_val_print_ref (type, 0, stream, recurse,
925 val, options);
926 break;
927
928 case TYPE_CODE_ENUM:
929 if (options->format)
930 value_print_scalar_formatted (val, options, 0, stream);
931 else
932 generic_val_print_enum (type, 0, stream, val, options);
933 break;
934
935 case TYPE_CODE_FLAGS:
936 if (options->format)
937 value_print_scalar_formatted (val, options, 0, stream);
938 else
939 val_print_type_code_flags (type, val, 0, stream);
940 break;
941
942 case TYPE_CODE_FUNC:
943 case TYPE_CODE_METHOD:
944 if (options->format)
945 value_print_scalar_formatted (val, options, 0, stream);
946 else
947 generic_val_print_func (type, 0, value_address (val), stream,
948 val, options);
949 break;
950
951 case TYPE_CODE_BOOL:
952 generic_value_print_bool (val, stream, options, decorations);
953 break;
954
955 case TYPE_CODE_INT:
956 generic_value_print_int (val, stream, options);
957 break;
958
959 case TYPE_CODE_CHAR:
960 generic_value_print_char (val, stream, options);
961 break;
962
963 case TYPE_CODE_FLT:
964 case TYPE_CODE_DECFLOAT:
965 if (options->format)
966 value_print_scalar_formatted (val, options, 0, stream);
967 else
968 generic_val_print_float (type, stream, val, options);
969 break;
970
971 case TYPE_CODE_FIXED_POINT:
972 generic_val_print_fixed_point (val, stream, options);
973 break;
974
975 case TYPE_CODE_VOID:
976 gdb_puts (decorations->void_name, stream);
977 break;
978
979 case TYPE_CODE_ERROR:
980 gdb_printf (stream, "%s", TYPE_ERROR_NAME (type));
981 break;
982
983 case TYPE_CODE_UNDEF:
984 /* This happens (without TYPE_STUB set) on systems which don't use
985 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
986 and no complete type for struct foo in that file. */
987 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
988 break;
989
990 case TYPE_CODE_COMPLEX:
991 generic_value_print_complex (val, stream, options, decorations);
992 break;
993
994 case TYPE_CODE_METHODPTR:
995 cplus_print_method_ptr (value_contents_for_printing (val).data (), type,
996 stream);
997 break;
998
999 case TYPE_CODE_UNION:
1000 case TYPE_CODE_STRUCT:
1001 default:
1002 error (_("Unhandled type code %d in symbol table."),
1003 type->code ());
1004 }
1005 }
1006
1007 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1008 to OPTIONS.
1009
1010 This is a preferable interface to val_print, above, because it uses
1011 GDB's value mechanism. */
1012
1013 void
1014 common_val_print (struct value *value, struct ui_file *stream, int recurse,
1015 const struct value_print_options *options,
1016 const struct language_defn *language)
1017 {
1018 if (language->la_language == language_ada)
1019 /* The value might have a dynamic type, which would cause trouble
1020 below when trying to extract the value contents (since the value
1021 size is determined from the type size which is unknown). So
1022 get a fixed representation of our value. */
1023 value = ada_to_fixed_value (value);
1024
1025 if (value_lazy (value))
1026 value_fetch_lazy (value);
1027
1028 struct value_print_options local_opts = *options;
1029 struct type *type = value_type (value);
1030 struct type *real_type = check_typedef (type);
1031
1032 if (local_opts.prettyformat == Val_prettyformat_default)
1033 local_opts.prettyformat = (local_opts.prettyformat_structs
1034 ? Val_prettyformat : Val_no_prettyformat);
1035
1036 QUIT;
1037
1038 /* Ensure that the type is complete and not just a stub. If the type is
1039 only a stub and we can't find and substitute its complete type, then
1040 print appropriate string and return. */
1041
1042 if (real_type->is_stub ())
1043 {
1044 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
1045 return;
1046 }
1047
1048 if (!valprint_check_validity (stream, real_type, 0, value))
1049 return;
1050
1051 if (!options->raw)
1052 {
1053 if (apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
1054 language))
1055 return;
1056 }
1057
1058 /* Handle summary mode. If the value is a scalar, print it;
1059 otherwise, print an ellipsis. */
1060 if (options->summary && !val_print_scalar_type_p (type))
1061 {
1062 gdb_printf (stream, "...");
1063 return;
1064 }
1065
1066 /* If this value is too deep then don't print it. */
1067 if (!val_print_scalar_or_string_type_p (type, language)
1068 && val_print_check_max_depth (stream, recurse, options, language))
1069 return;
1070
1071 try
1072 {
1073 language->value_print_inner (value, stream, recurse, &local_opts);
1074 }
1075 catch (const gdb_exception_error &except)
1076 {
1077 fprintf_styled (stream, metadata_style.style (),
1078 _("<error reading variable: %s>"), except.what ());
1079 }
1080 }
1081
1082 /* See valprint.h. */
1083
1084 bool
1085 val_print_check_max_depth (struct ui_file *stream, int recurse,
1086 const struct value_print_options *options,
1087 const struct language_defn *language)
1088 {
1089 if (options->max_depth > -1 && recurse >= options->max_depth)
1090 {
1091 gdb_assert (language->struct_too_deep_ellipsis () != NULL);
1092 gdb_puts (language->struct_too_deep_ellipsis (), stream);
1093 return true;
1094 }
1095
1096 return false;
1097 }
1098
1099 /* Check whether the value VAL is printable. Return 1 if it is;
1100 return 0 and print an appropriate error message to STREAM according to
1101 OPTIONS if it is not. */
1102
1103 static int
1104 value_check_printable (struct value *val, struct ui_file *stream,
1105 const struct value_print_options *options)
1106 {
1107 if (val == 0)
1108 {
1109 fprintf_styled (stream, metadata_style.style (),
1110 _("<address of value unknown>"));
1111 return 0;
1112 }
1113
1114 if (value_entirely_optimized_out (val))
1115 {
1116 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1117 gdb_printf (stream, "...");
1118 else
1119 val_print_optimized_out (val, stream);
1120 return 0;
1121 }
1122
1123 if (value_entirely_unavailable (val))
1124 {
1125 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1126 gdb_printf (stream, "...");
1127 else
1128 val_print_unavailable (stream);
1129 return 0;
1130 }
1131
1132 if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
1133 {
1134 fprintf_styled (stream, metadata_style.style (),
1135 _("<internal function %s>"),
1136 value_internal_function_name (val));
1137 return 0;
1138 }
1139
1140 if (type_not_associated (value_type (val)))
1141 {
1142 val_print_not_associated (stream);
1143 return 0;
1144 }
1145
1146 if (type_not_allocated (value_type (val)))
1147 {
1148 val_print_not_allocated (stream);
1149 return 0;
1150 }
1151
1152 return 1;
1153 }
1154
1155 /* See valprint.h. */
1156
1157 void
1158 common_val_print_checked (struct value *val, struct ui_file *stream,
1159 int recurse,
1160 const struct value_print_options *options,
1161 const struct language_defn *language)
1162 {
1163 if (!value_check_printable (val, stream, options))
1164 return;
1165 common_val_print (val, stream, recurse, options, language);
1166 }
1167
1168 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1169 is printed using the current_language syntax. */
1170
1171 void
1172 value_print (struct value *val, struct ui_file *stream,
1173 const struct value_print_options *options)
1174 {
1175 scoped_value_mark free_values;
1176
1177 if (!value_check_printable (val, stream, options))
1178 return;
1179
1180 if (!options->raw)
1181 {
1182 int r
1183 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1184 current_language);
1185
1186 if (r)
1187 return;
1188 }
1189
1190 current_language->value_print (val, stream, options);
1191 }
1192
1193 /* Meant to be used in debug sessions, so don't export it in a header file. */
1194 extern void ATTRIBUTE_UNUSED debug_val (struct value *val);
1195
1196 /* Print VAL. */
1197
1198 void ATTRIBUTE_UNUSED
1199 debug_val (struct value *val)
1200 {
1201 value_print (val, gdb_stdlog, &user_print_options);
1202 gdb_flush (gdb_stdlog);
1203 }
1204
1205 static void
1206 val_print_type_code_flags (struct type *type, struct value *original_value,
1207 int embedded_offset, struct ui_file *stream)
1208 {
1209 const gdb_byte *valaddr = (value_contents_for_printing (original_value).data ()
1210 + embedded_offset);
1211 ULONGEST val = unpack_long (type, valaddr);
1212 int field, nfields = type->num_fields ();
1213 struct gdbarch *gdbarch = type->arch ();
1214 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1215
1216 gdb_puts ("[", stream);
1217 for (field = 0; field < nfields; field++)
1218 {
1219 if (type->field (field).name ()[0] != '\0')
1220 {
1221 struct type *field_type = type->field (field).type ();
1222
1223 if (field_type == bool_type
1224 /* We require boolean types here to be one bit wide. This is a
1225 problematic place to notify the user of an internal error
1226 though. Instead just fall through and print the field as an
1227 int. */
1228 && TYPE_FIELD_BITSIZE (type, field) == 1)
1229 {
1230 if (val & ((ULONGEST)1 << type->field (field).loc_bitpos ()))
1231 gdb_printf
1232 (stream, " %ps",
1233 styled_string (variable_name_style.style (),
1234 type->field (field).name ()));
1235 }
1236 else
1237 {
1238 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1239 ULONGEST field_val = val >> type->field (field).loc_bitpos ();
1240
1241 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1242 field_val &= ((ULONGEST) 1 << field_len) - 1;
1243 gdb_printf (stream, " %ps=",
1244 styled_string (variable_name_style.style (),
1245 type->field (field).name ()));
1246 if (field_type->code () == TYPE_CODE_ENUM)
1247 generic_val_print_enum_1 (field_type, field_val, stream);
1248 else
1249 print_longest (stream, 'd', 0, field_val);
1250 }
1251 }
1252 }
1253 gdb_puts (" ]", stream);
1254 }
1255
1256 /* See valprint.h. */
1257
1258 void
1259 value_print_scalar_formatted (struct value *val,
1260 const struct value_print_options *options,
1261 int size,
1262 struct ui_file *stream)
1263 {
1264 struct type *type = check_typedef (value_type (val));
1265
1266 gdb_assert (val != NULL);
1267
1268 /* If we get here with a string format, try again without it. Go
1269 all the way back to the language printers, which may call us
1270 again. */
1271 if (options->format == 's')
1272 {
1273 struct value_print_options opts = *options;
1274 opts.format = 0;
1275 opts.deref_ref = 0;
1276 common_val_print (val, stream, 0, &opts, current_language);
1277 return;
1278 }
1279
1280 /* value_contents_for_printing fetches all VAL's contents. They are
1281 needed to check whether VAL is optimized-out or unavailable
1282 below. */
1283 const gdb_byte *valaddr = value_contents_for_printing (val).data ();
1284
1285 /* A scalar object that does not have all bits available can't be
1286 printed, because all bits contribute to its representation. */
1287 if (value_bits_any_optimized_out (val, 0,
1288 TARGET_CHAR_BIT * type->length ()))
1289 val_print_optimized_out (val, stream);
1290 else if (!value_bytes_available (val, 0, type->length ()))
1291 val_print_unavailable (stream);
1292 else
1293 print_scalar_formatted (valaddr, type, options, size, stream);
1294 }
1295
1296 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1297 The raison d'etre of this function is to consolidate printing of
1298 LONG_LONG's into this one function. The format chars b,h,w,g are
1299 from print_scalar_formatted(). Numbers are printed using C
1300 format.
1301
1302 USE_C_FORMAT means to use C format in all cases. Without it,
1303 'o' and 'x' format do not include the standard C radix prefix
1304 (leading 0 or 0x).
1305
1306 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1307 and was intended to request formatting according to the current
1308 language and would be used for most integers that GDB prints. The
1309 exceptional cases were things like protocols where the format of
1310 the integer is a protocol thing, not a user-visible thing). The
1311 parameter remains to preserve the information of what things might
1312 be printed with language-specific format, should we ever resurrect
1313 that capability. */
1314
1315 void
1316 print_longest (struct ui_file *stream, int format, int use_c_format,
1317 LONGEST val_long)
1318 {
1319 const char *val;
1320
1321 switch (format)
1322 {
1323 case 'd':
1324 val = int_string (val_long, 10, 1, 0, 1); break;
1325 case 'u':
1326 val = int_string (val_long, 10, 0, 0, 1); break;
1327 case 'x':
1328 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1329 case 'b':
1330 val = int_string (val_long, 16, 0, 2, 1); break;
1331 case 'h':
1332 val = int_string (val_long, 16, 0, 4, 1); break;
1333 case 'w':
1334 val = int_string (val_long, 16, 0, 8, 1); break;
1335 case 'g':
1336 val = int_string (val_long, 16, 0, 16, 1); break;
1337 break;
1338 case 'o':
1339 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1340 default:
1341 internal_error (_("failed internal consistency check"));
1342 }
1343 gdb_puts (val, stream);
1344 }
1345
1346 /* This used to be a macro, but I don't think it is called often enough
1347 to merit such treatment. */
1348 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1349 arguments to a function, number in a value history, register number, etc.)
1350 where the value must not be larger than can fit in an int. */
1351
1352 int
1353 longest_to_int (LONGEST arg)
1354 {
1355 /* Let the compiler do the work. */
1356 int rtnval = (int) arg;
1357
1358 /* Check for overflows or underflows. */
1359 if (sizeof (LONGEST) > sizeof (int))
1360 {
1361 if (rtnval != arg)
1362 {
1363 error (_("Value out of range."));
1364 }
1365 }
1366 return (rtnval);
1367 }
1368
1369 /* Print a floating point value of floating-point type TYPE,
1370 pointed to in GDB by VALADDR, on STREAM. */
1371
1372 void
1373 print_floating (const gdb_byte *valaddr, struct type *type,
1374 struct ui_file *stream)
1375 {
1376 std::string str = target_float_to_string (valaddr, type);
1377 gdb_puts (str.c_str (), stream);
1378 }
1379
1380 void
1381 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1382 unsigned len, enum bfd_endian byte_order, bool zero_pad,
1383 const struct value_print_options *options)
1384 {
1385 const gdb_byte *p;
1386 unsigned int i;
1387 int b;
1388 bool seen_a_one = false;
1389 const char *digit_separator = nullptr;
1390
1391 /* Declared "int" so it will be signed.
1392 This ensures that right shift will shift in zeros. */
1393
1394 const int mask = 0x080;
1395
1396 if (options->nibblesprint)
1397 digit_separator = current_language->get_digit_separator();
1398
1399 if (byte_order == BFD_ENDIAN_BIG)
1400 {
1401 for (p = valaddr;
1402 p < valaddr + len;
1403 p++)
1404 {
1405 /* Every byte has 8 binary characters; peel off
1406 and print from the MSB end. */
1407
1408 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1409 {
1410 if (options->nibblesprint && seen_a_one && i % 4 == 0)
1411 gdb_putc (*digit_separator, stream);
1412
1413 if (*p & (mask >> i))
1414 b = '1';
1415 else
1416 b = '0';
1417
1418 if (zero_pad || seen_a_one || b == '1')
1419 gdb_putc (b, stream);
1420 else if (options->nibblesprint)
1421 {
1422 if ((0xf0 & (mask >> i) && (*p & 0xf0))
1423 || (0x0f & (mask >> i) && (*p & 0x0f)))
1424 gdb_putc (b, stream);
1425 }
1426
1427 if (b == '1')
1428 seen_a_one = true;
1429 }
1430 }
1431 }
1432 else
1433 {
1434 for (p = valaddr + len - 1;
1435 p >= valaddr;
1436 p--)
1437 {
1438 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1439 {
1440 if (options->nibblesprint && seen_a_one && i % 4 == 0)
1441 gdb_putc (*digit_separator, stream);
1442
1443 if (*p & (mask >> i))
1444 b = '1';
1445 else
1446 b = '0';
1447
1448 if (zero_pad || seen_a_one || b == '1')
1449 gdb_putc (b, stream);
1450 else if (options->nibblesprint)
1451 {
1452 if ((0xf0 & (mask >> i) && (*p & 0xf0))
1453 || (0x0f & (mask >> i) && (*p & 0x0f)))
1454 gdb_putc (b, stream);
1455 }
1456
1457 if (b == '1')
1458 seen_a_one = true;
1459 }
1460 }
1461 }
1462
1463 /* When not zero-padding, ensure that something is printed when the
1464 input is 0. */
1465 if (!zero_pad && !seen_a_one)
1466 gdb_putc ('0', stream);
1467 }
1468
1469 /* A helper for print_octal_chars that emits a single octal digit,
1470 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1471
1472 static void
1473 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1474 {
1475 if (*seen_a_one || digit != 0)
1476 gdb_printf (stream, "%o", digit);
1477 if (digit != 0)
1478 *seen_a_one = true;
1479 }
1480
1481 /* VALADDR points to an integer of LEN bytes.
1482 Print it in octal on stream or format it in buf. */
1483
1484 void
1485 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1486 unsigned len, enum bfd_endian byte_order)
1487 {
1488 const gdb_byte *p;
1489 unsigned char octa1, octa2, octa3, carry;
1490 int cycle;
1491
1492 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1493 * the extra bits, which cycle every three bytes:
1494 *
1495 * Byte side: 0 1 2 3
1496 * | | | |
1497 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1498 *
1499 * Octal side: 0 1 carry 3 4 carry ...
1500 *
1501 * Cycle number: 0 1 2
1502 *
1503 * But of course we are printing from the high side, so we have to
1504 * figure out where in the cycle we are so that we end up with no
1505 * left over bits at the end.
1506 */
1507 #define BITS_IN_OCTAL 3
1508 #define HIGH_ZERO 0340
1509 #define LOW_ZERO 0034
1510 #define CARRY_ZERO 0003
1511 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1512 "cycle zero constants are wrong");
1513 #define HIGH_ONE 0200
1514 #define MID_ONE 0160
1515 #define LOW_ONE 0016
1516 #define CARRY_ONE 0001
1517 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1518 "cycle one constants are wrong");
1519 #define HIGH_TWO 0300
1520 #define MID_TWO 0070
1521 #define LOW_TWO 0007
1522 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1523 "cycle two constants are wrong");
1524
1525 /* For 32 we start in cycle 2, with two bits and one bit carry;
1526 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1527
1528 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1529 carry = 0;
1530
1531 gdb_puts ("0", stream);
1532 bool seen_a_one = false;
1533 if (byte_order == BFD_ENDIAN_BIG)
1534 {
1535 for (p = valaddr;
1536 p < valaddr + len;
1537 p++)
1538 {
1539 switch (cycle)
1540 {
1541 case 0:
1542 /* No carry in, carry out two bits. */
1543
1544 octa1 = (HIGH_ZERO & *p) >> 5;
1545 octa2 = (LOW_ZERO & *p) >> 2;
1546 carry = (CARRY_ZERO & *p);
1547 emit_octal_digit (stream, &seen_a_one, octa1);
1548 emit_octal_digit (stream, &seen_a_one, octa2);
1549 break;
1550
1551 case 1:
1552 /* Carry in two bits, carry out one bit. */
1553
1554 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1555 octa2 = (MID_ONE & *p) >> 4;
1556 octa3 = (LOW_ONE & *p) >> 1;
1557 carry = (CARRY_ONE & *p);
1558 emit_octal_digit (stream, &seen_a_one, octa1);
1559 emit_octal_digit (stream, &seen_a_one, octa2);
1560 emit_octal_digit (stream, &seen_a_one, octa3);
1561 break;
1562
1563 case 2:
1564 /* Carry in one bit, no carry out. */
1565
1566 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1567 octa2 = (MID_TWO & *p) >> 3;
1568 octa3 = (LOW_TWO & *p);
1569 carry = 0;
1570 emit_octal_digit (stream, &seen_a_one, octa1);
1571 emit_octal_digit (stream, &seen_a_one, octa2);
1572 emit_octal_digit (stream, &seen_a_one, octa3);
1573 break;
1574
1575 default:
1576 error (_("Internal error in octal conversion;"));
1577 }
1578
1579 cycle++;
1580 cycle = cycle % BITS_IN_OCTAL;
1581 }
1582 }
1583 else
1584 {
1585 for (p = valaddr + len - 1;
1586 p >= valaddr;
1587 p--)
1588 {
1589 switch (cycle)
1590 {
1591 case 0:
1592 /* Carry out, no carry in */
1593
1594 octa1 = (HIGH_ZERO & *p) >> 5;
1595 octa2 = (LOW_ZERO & *p) >> 2;
1596 carry = (CARRY_ZERO & *p);
1597 emit_octal_digit (stream, &seen_a_one, octa1);
1598 emit_octal_digit (stream, &seen_a_one, octa2);
1599 break;
1600
1601 case 1:
1602 /* Carry in, carry out */
1603
1604 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1605 octa2 = (MID_ONE & *p) >> 4;
1606 octa3 = (LOW_ONE & *p) >> 1;
1607 carry = (CARRY_ONE & *p);
1608 emit_octal_digit (stream, &seen_a_one, octa1);
1609 emit_octal_digit (stream, &seen_a_one, octa2);
1610 emit_octal_digit (stream, &seen_a_one, octa3);
1611 break;
1612
1613 case 2:
1614 /* Carry in, no carry out */
1615
1616 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1617 octa2 = (MID_TWO & *p) >> 3;
1618 octa3 = (LOW_TWO & *p);
1619 carry = 0;
1620 emit_octal_digit (stream, &seen_a_one, octa1);
1621 emit_octal_digit (stream, &seen_a_one, octa2);
1622 emit_octal_digit (stream, &seen_a_one, octa3);
1623 break;
1624
1625 default:
1626 error (_("Internal error in octal conversion;"));
1627 }
1628
1629 cycle++;
1630 cycle = cycle % BITS_IN_OCTAL;
1631 }
1632 }
1633
1634 }
1635
1636 /* Possibly negate the integer represented by BYTES. It contains LEN
1637 bytes in the specified byte order. If the integer is negative,
1638 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1639 nothing and return false. */
1640
1641 static bool
1642 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1643 enum bfd_endian byte_order,
1644 gdb::byte_vector *out_vec)
1645 {
1646 gdb_byte sign_byte;
1647 gdb_assert (len > 0);
1648 if (byte_order == BFD_ENDIAN_BIG)
1649 sign_byte = bytes[0];
1650 else
1651 sign_byte = bytes[len - 1];
1652 if ((sign_byte & 0x80) == 0)
1653 return false;
1654
1655 out_vec->resize (len);
1656
1657 /* Compute -x == 1 + ~x. */
1658 if (byte_order == BFD_ENDIAN_LITTLE)
1659 {
1660 unsigned carry = 1;
1661 for (unsigned i = 0; i < len; ++i)
1662 {
1663 unsigned tem = (0xff & ~bytes[i]) + carry;
1664 (*out_vec)[i] = tem & 0xff;
1665 carry = tem / 256;
1666 }
1667 }
1668 else
1669 {
1670 unsigned carry = 1;
1671 for (unsigned i = len; i > 0; --i)
1672 {
1673 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1674 (*out_vec)[i - 1] = tem & 0xff;
1675 carry = tem / 256;
1676 }
1677 }
1678
1679 return true;
1680 }
1681
1682 /* VALADDR points to an integer of LEN bytes.
1683 Print it in decimal on stream or format it in buf. */
1684
1685 void
1686 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1687 unsigned len, bool is_signed,
1688 enum bfd_endian byte_order)
1689 {
1690 #define TEN 10
1691 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1692 #define CARRY_LEFT( x ) ((x) % TEN)
1693 #define SHIFT( x ) ((x) << 4)
1694 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1695 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1696
1697 const gdb_byte *p;
1698 int carry;
1699 int decimal_len;
1700 int i, j, decimal_digits;
1701 int dummy;
1702 int flip;
1703
1704 gdb::byte_vector negated_bytes;
1705 if (is_signed
1706 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1707 {
1708 gdb_puts ("-", stream);
1709 valaddr = negated_bytes.data ();
1710 }
1711
1712 /* Base-ten number is less than twice as many digits
1713 as the base 16 number, which is 2 digits per byte. */
1714
1715 decimal_len = len * 2 * 2;
1716 std::vector<unsigned char> digits (decimal_len, 0);
1717
1718 /* Ok, we have an unknown number of bytes of data to be printed in
1719 * decimal.
1720 *
1721 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1722 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1723 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1724 *
1725 * The trick is that "digits" holds a base-10 number, but sometimes
1726 * the individual digits are > 10.
1727 *
1728 * Outer loop is per nibble (hex digit) of input, from MSD end to
1729 * LSD end.
1730 */
1731 decimal_digits = 0; /* Number of decimal digits so far */
1732 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1733 flip = 0;
1734 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1735 {
1736 /*
1737 * Multiply current base-ten number by 16 in place.
1738 * Each digit was between 0 and 9, now is between
1739 * 0 and 144.
1740 */
1741 for (j = 0; j < decimal_digits; j++)
1742 {
1743 digits[j] = SHIFT (digits[j]);
1744 }
1745
1746 /* Take the next nibble off the input and add it to what
1747 * we've got in the LSB position. Bottom 'digit' is now
1748 * between 0 and 159.
1749 *
1750 * "flip" is used to run this loop twice for each byte.
1751 */
1752 if (flip == 0)
1753 {
1754 /* Take top nibble. */
1755
1756 digits[0] += HIGH_NIBBLE (*p);
1757 flip = 1;
1758 }
1759 else
1760 {
1761 /* Take low nibble and bump our pointer "p". */
1762
1763 digits[0] += LOW_NIBBLE (*p);
1764 if (byte_order == BFD_ENDIAN_BIG)
1765 p++;
1766 else
1767 p--;
1768 flip = 0;
1769 }
1770
1771 /* Re-decimalize. We have to do this often enough
1772 * that we don't overflow, but once per nibble is
1773 * overkill. Easier this way, though. Note that the
1774 * carry is often larger than 10 (e.g. max initial
1775 * carry out of lowest nibble is 15, could bubble all
1776 * the way up greater than 10). So we have to do
1777 * the carrying beyond the last current digit.
1778 */
1779 carry = 0;
1780 for (j = 0; j < decimal_len - 1; j++)
1781 {
1782 digits[j] += carry;
1783
1784 /* "/" won't handle an unsigned char with
1785 * a value that if signed would be negative.
1786 * So extend to longword int via "dummy".
1787 */
1788 dummy = digits[j];
1789 carry = CARRY_OUT (dummy);
1790 digits[j] = CARRY_LEFT (dummy);
1791
1792 if (j >= decimal_digits && carry == 0)
1793 {
1794 /*
1795 * All higher digits are 0 and we
1796 * no longer have a carry.
1797 *
1798 * Note: "j" is 0-based, "decimal_digits" is
1799 * 1-based.
1800 */
1801 decimal_digits = j + 1;
1802 break;
1803 }
1804 }
1805 }
1806
1807 /* Ok, now "digits" is the decimal representation, with
1808 the "decimal_digits" actual digits. Print! */
1809
1810 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1811 ;
1812
1813 for (; i >= 0; i--)
1814 {
1815 gdb_printf (stream, "%1d", digits[i]);
1816 }
1817 }
1818
1819 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1820
1821 void
1822 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1823 unsigned len, enum bfd_endian byte_order,
1824 bool zero_pad)
1825 {
1826 const gdb_byte *p;
1827
1828 gdb_puts ("0x", stream);
1829 if (byte_order == BFD_ENDIAN_BIG)
1830 {
1831 p = valaddr;
1832
1833 if (!zero_pad)
1834 {
1835 /* Strip leading 0 bytes, but be sure to leave at least a
1836 single byte at the end. */
1837 for (; p < valaddr + len - 1 && !*p; ++p)
1838 ;
1839 }
1840
1841 const gdb_byte *first = p;
1842 for (;
1843 p < valaddr + len;
1844 p++)
1845 {
1846 /* When not zero-padding, use a different format for the
1847 very first byte printed. */
1848 if (!zero_pad && p == first)
1849 gdb_printf (stream, "%x", *p);
1850 else
1851 gdb_printf (stream, "%02x", *p);
1852 }
1853 }
1854 else
1855 {
1856 p = valaddr + len - 1;
1857
1858 if (!zero_pad)
1859 {
1860 /* Strip leading 0 bytes, but be sure to leave at least a
1861 single byte at the end. */
1862 for (; p >= valaddr + 1 && !*p; --p)
1863 ;
1864 }
1865
1866 const gdb_byte *first = p;
1867 for (;
1868 p >= valaddr;
1869 p--)
1870 {
1871 /* When not zero-padding, use a different format for the
1872 very first byte printed. */
1873 if (!zero_pad && p == first)
1874 gdb_printf (stream, "%x", *p);
1875 else
1876 gdb_printf (stream, "%02x", *p);
1877 }
1878 }
1879 }
1880
1881 /* Print function pointer with inferior address ADDRESS onto stdio
1882 stream STREAM. */
1883
1884 void
1885 print_function_pointer_address (const struct value_print_options *options,
1886 struct gdbarch *gdbarch,
1887 CORE_ADDR address,
1888 struct ui_file *stream)
1889 {
1890 CORE_ADDR func_addr = gdbarch_convert_from_func_ptr_addr
1891 (gdbarch, address, current_inferior ()->top_target ());
1892
1893 /* If the function pointer is represented by a description, print
1894 the address of the description. */
1895 if (options->addressprint && func_addr != address)
1896 {
1897 gdb_puts ("@", stream);
1898 gdb_puts (paddress (gdbarch, address), stream);
1899 gdb_puts (": ", stream);
1900 }
1901 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1902 }
1903
1904
1905 /* Print on STREAM using the given OPTIONS the index for the element
1906 at INDEX of an array whose index type is INDEX_TYPE. */
1907
1908 void
1909 maybe_print_array_index (struct type *index_type, LONGEST index,
1910 struct ui_file *stream,
1911 const struct value_print_options *options)
1912 {
1913 if (!options->print_array_indexes)
1914 return;
1915
1916 current_language->print_array_index (index_type, index, stream, options);
1917 }
1918
1919 /* See valprint.h. */
1920
1921 void
1922 value_print_array_elements (struct value *val, struct ui_file *stream,
1923 int recurse,
1924 const struct value_print_options *options,
1925 unsigned int i)
1926 {
1927 unsigned int things_printed = 0;
1928 unsigned len;
1929 struct type *elttype, *index_type;
1930 unsigned eltlen;
1931 /* Position of the array element we are examining to see
1932 whether it is repeated. */
1933 unsigned int rep1;
1934 /* Number of repetitions we have detected so far. */
1935 unsigned int reps;
1936 LONGEST low_bound, high_bound;
1937
1938 struct type *type = check_typedef (value_type (val));
1939
1940 elttype = type->target_type ();
1941 eltlen = type_length_units (check_typedef (elttype));
1942 index_type = type->index_type ();
1943 if (index_type->code () == TYPE_CODE_RANGE)
1944 index_type = index_type->target_type ();
1945
1946 if (get_array_bounds (type, &low_bound, &high_bound))
1947 {
1948 /* The array length should normally be HIGH_BOUND - LOW_BOUND +
1949 1. But we have to be a little extra careful, because some
1950 languages such as Ada allow LOW_BOUND to be greater than
1951 HIGH_BOUND for empty arrays. In that situation, the array
1952 length is just zero, not negative! */
1953 if (low_bound > high_bound)
1954 len = 0;
1955 else
1956 len = high_bound - low_bound + 1;
1957 }
1958 else
1959 {
1960 warning (_("unable to get bounds of array, assuming null array"));
1961 low_bound = 0;
1962 len = 0;
1963 }
1964
1965 annotate_array_section_begin (i, elttype);
1966
1967 for (; i < len && things_printed < options->print_max; i++)
1968 {
1969 scoped_value_mark free_values;
1970
1971 if (i != 0)
1972 {
1973 if (options->prettyformat_arrays)
1974 {
1975 gdb_printf (stream, ",\n");
1976 print_spaces (2 + 2 * recurse, stream);
1977 }
1978 else
1979 gdb_printf (stream, ", ");
1980 }
1981 else if (options->prettyformat_arrays)
1982 {
1983 gdb_printf (stream, "\n");
1984 print_spaces (2 + 2 * recurse, stream);
1985 }
1986 stream->wrap_here (2 + 2 * recurse);
1987 maybe_print_array_index (index_type, i + low_bound,
1988 stream, options);
1989
1990 rep1 = i + 1;
1991 reps = 1;
1992 /* Only check for reps if repeat_count_threshold is not set to
1993 UINT_MAX (unlimited). */
1994 if (options->repeat_count_threshold < UINT_MAX)
1995 {
1996 while (rep1 < len
1997 && value_contents_eq (val, i * eltlen,
1998 val, rep1 * eltlen,
1999 eltlen))
2000 {
2001 ++reps;
2002 ++rep1;
2003 }
2004 }
2005
2006 struct value *element = value_from_component (val, elttype, eltlen * i);
2007 common_val_print (element, stream, recurse + 1, options,
2008 current_language);
2009
2010 if (reps > options->repeat_count_threshold)
2011 {
2012 annotate_elt_rep (reps);
2013 gdb_printf (stream, " %p[<repeats %u times>%p]",
2014 metadata_style.style ().ptr (), reps, nullptr);
2015 annotate_elt_rep_end ();
2016
2017 i = rep1 - 1;
2018 things_printed += options->repeat_count_threshold;
2019 }
2020 else
2021 {
2022 annotate_elt ();
2023 things_printed++;
2024 }
2025 }
2026 annotate_array_section_end ();
2027 if (i < len)
2028 gdb_printf (stream, "...");
2029 if (options->prettyformat_arrays)
2030 {
2031 gdb_printf (stream, "\n");
2032 print_spaces (2 * recurse, stream);
2033 }
2034 }
2035
2036 /* Return true if print_wchar can display W without resorting to a
2037 numeric escape, false otherwise. */
2038
2039 static int
2040 wchar_printable (gdb_wchar_t w)
2041 {
2042 return (gdb_iswprint (w)
2043 || w == LCST ('\a') || w == LCST ('\b')
2044 || w == LCST ('\f') || w == LCST ('\n')
2045 || w == LCST ('\r') || w == LCST ('\t')
2046 || w == LCST ('\v'));
2047 }
2048
2049 /* A helper function that converts the contents of STRING to wide
2050 characters and then appends them to OUTPUT. */
2051
2052 static void
2053 append_string_as_wide (const char *string,
2054 struct obstack *output)
2055 {
2056 for (; *string; ++string)
2057 {
2058 gdb_wchar_t w = gdb_btowc (*string);
2059 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2060 }
2061 }
2062
2063 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2064 original (target) bytes representing the character, ORIG_LEN is the
2065 number of valid bytes. WIDTH is the number of bytes in a base
2066 characters of the type. OUTPUT is an obstack to which wide
2067 characters are emitted. QUOTER is a (narrow) character indicating
2068 the style of quotes surrounding the character to be printed.
2069 NEED_ESCAPE is an in/out flag which is used to track numeric
2070 escapes across calls. */
2071
2072 static void
2073 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2074 int orig_len, int width,
2075 enum bfd_endian byte_order,
2076 struct obstack *output,
2077 int quoter, bool *need_escapep)
2078 {
2079 bool need_escape = *need_escapep;
2080
2081 *need_escapep = false;
2082
2083 /* If any additional cases are added to this switch block, then the
2084 function wchar_printable will likely need updating too. */
2085 switch (w)
2086 {
2087 case LCST ('\a'):
2088 obstack_grow_wstr (output, LCST ("\\a"));
2089 break;
2090 case LCST ('\b'):
2091 obstack_grow_wstr (output, LCST ("\\b"));
2092 break;
2093 case LCST ('\f'):
2094 obstack_grow_wstr (output, LCST ("\\f"));
2095 break;
2096 case LCST ('\n'):
2097 obstack_grow_wstr (output, LCST ("\\n"));
2098 break;
2099 case LCST ('\r'):
2100 obstack_grow_wstr (output, LCST ("\\r"));
2101 break;
2102 case LCST ('\t'):
2103 obstack_grow_wstr (output, LCST ("\\t"));
2104 break;
2105 case LCST ('\v'):
2106 obstack_grow_wstr (output, LCST ("\\v"));
2107 break;
2108 default:
2109 {
2110 if (gdb_iswprint (w) && !(need_escape && gdb_iswxdigit (w)))
2111 {
2112 gdb_wchar_t wchar = w;
2113
2114 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2115 obstack_grow_wstr (output, LCST ("\\"));
2116 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2117 }
2118 else
2119 {
2120 int i;
2121
2122 for (i = 0; i + width <= orig_len; i += width)
2123 {
2124 char octal[30];
2125 ULONGEST value;
2126
2127 value = extract_unsigned_integer (&orig[i], width,
2128 byte_order);
2129 /* If the value fits in 3 octal digits, print it that
2130 way. Otherwise, print it as a hex escape. */
2131 if (value <= 0777)
2132 {
2133 xsnprintf (octal, sizeof (octal), "\\%.3o",
2134 (int) (value & 0777));
2135 *need_escapep = false;
2136 }
2137 else
2138 {
2139 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2140 /* A hex escape might require the next character
2141 to be escaped, because, unlike with octal,
2142 hex escapes have no length limit. */
2143 *need_escapep = true;
2144 }
2145 append_string_as_wide (octal, output);
2146 }
2147 /* If we somehow have extra bytes, print them now. */
2148 while (i < orig_len)
2149 {
2150 char octal[5];
2151
2152 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2153 *need_escapep = false;
2154 append_string_as_wide (octal, output);
2155 ++i;
2156 }
2157 }
2158 break;
2159 }
2160 }
2161 }
2162
2163 /* Print the character C on STREAM as part of the contents of a
2164 literal string whose delimiter is QUOTER. ENCODING names the
2165 encoding of C. */
2166
2167 void
2168 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2169 int quoter, const char *encoding)
2170 {
2171 enum bfd_endian byte_order
2172 = type_byte_order (type);
2173 gdb_byte *c_buf;
2174 bool need_escape = false;
2175
2176 c_buf = (gdb_byte *) alloca (type->length ());
2177 pack_long (c_buf, type, c);
2178
2179 wchar_iterator iter (c_buf, type->length (), encoding, type->length ());
2180
2181 /* This holds the printable form of the wchar_t data. */
2182 auto_obstack wchar_buf;
2183
2184 while (1)
2185 {
2186 int num_chars;
2187 gdb_wchar_t *chars;
2188 const gdb_byte *buf;
2189 size_t buflen;
2190 int print_escape = 1;
2191 enum wchar_iterate_result result;
2192
2193 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2194 if (num_chars < 0)
2195 break;
2196 if (num_chars > 0)
2197 {
2198 /* If all characters are printable, print them. Otherwise,
2199 we're going to have to print an escape sequence. We
2200 check all characters because we want to print the target
2201 bytes in the escape sequence, and we don't know character
2202 boundaries there. */
2203 int i;
2204
2205 print_escape = 0;
2206 for (i = 0; i < num_chars; ++i)
2207 if (!wchar_printable (chars[i]))
2208 {
2209 print_escape = 1;
2210 break;
2211 }
2212
2213 if (!print_escape)
2214 {
2215 for (i = 0; i < num_chars; ++i)
2216 print_wchar (chars[i], buf, buflen,
2217 type->length (), byte_order,
2218 &wchar_buf, quoter, &need_escape);
2219 }
2220 }
2221
2222 /* This handles the NUM_CHARS == 0 case as well. */
2223 if (print_escape)
2224 print_wchar (gdb_WEOF, buf, buflen, type->length (),
2225 byte_order, &wchar_buf, quoter, &need_escape);
2226 }
2227
2228 /* The output in the host encoding. */
2229 auto_obstack output;
2230
2231 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2232 (gdb_byte *) obstack_base (&wchar_buf),
2233 obstack_object_size (&wchar_buf),
2234 sizeof (gdb_wchar_t), &output, translit_char);
2235 obstack_1grow (&output, '\0');
2236
2237 gdb_puts ((const char *) obstack_base (&output), stream);
2238 }
2239
2240 /* Return the repeat count of the next character/byte in ITER,
2241 storing the result in VEC. */
2242
2243 static int
2244 count_next_character (wchar_iterator *iter,
2245 std::vector<converted_character> *vec)
2246 {
2247 struct converted_character *current;
2248
2249 if (vec->empty ())
2250 {
2251 struct converted_character tmp;
2252 gdb_wchar_t *chars;
2253
2254 tmp.num_chars
2255 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2256 if (tmp.num_chars > 0)
2257 {
2258 gdb_assert (tmp.num_chars < MAX_WCHARS);
2259 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2260 }
2261 vec->push_back (tmp);
2262 }
2263
2264 current = &vec->back ();
2265
2266 /* Count repeated characters or bytes. */
2267 current->repeat_count = 1;
2268 if (current->num_chars == -1)
2269 {
2270 /* EOF */
2271 return -1;
2272 }
2273 else
2274 {
2275 gdb_wchar_t *chars;
2276 struct converted_character d;
2277 int repeat;
2278
2279 d.repeat_count = 0;
2280
2281 while (1)
2282 {
2283 /* Get the next character. */
2284 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2285
2286 /* If a character was successfully converted, save the character
2287 into the converted character. */
2288 if (d.num_chars > 0)
2289 {
2290 gdb_assert (d.num_chars < MAX_WCHARS);
2291 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2292 }
2293
2294 /* Determine if the current character is the same as this
2295 new character. */
2296 if (d.num_chars == current->num_chars && d.result == current->result)
2297 {
2298 /* There are two cases to consider:
2299
2300 1) Equality of converted character (num_chars > 0)
2301 2) Equality of non-converted character (num_chars == 0) */
2302 if ((current->num_chars > 0
2303 && memcmp (current->chars, d.chars,
2304 WCHAR_BUFLEN (current->num_chars)) == 0)
2305 || (current->num_chars == 0
2306 && current->buflen == d.buflen
2307 && memcmp (current->buf, d.buf, current->buflen) == 0))
2308 ++current->repeat_count;
2309 else
2310 break;
2311 }
2312 else
2313 break;
2314 }
2315
2316 /* Push this next converted character onto the result vector. */
2317 repeat = current->repeat_count;
2318 vec->push_back (d);
2319 return repeat;
2320 }
2321 }
2322
2323 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2324 character to use with string output. WIDTH is the size of the output
2325 character type. BYTE_ORDER is the target byte order. OPTIONS
2326 is the user's print options. */
2327
2328 static void
2329 print_converted_chars_to_obstack (struct obstack *obstack,
2330 const std::vector<converted_character> &chars,
2331 int quote_char, int width,
2332 enum bfd_endian byte_order,
2333 const struct value_print_options *options)
2334 {
2335 unsigned int idx;
2336 const converted_character *elem;
2337 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2338 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2339 bool need_escape = false;
2340
2341 /* Set the start state. */
2342 idx = 0;
2343 last = state = START;
2344 elem = NULL;
2345
2346 while (1)
2347 {
2348 switch (state)
2349 {
2350 case START:
2351 /* Nothing to do. */
2352 break;
2353
2354 case SINGLE:
2355 {
2356 int j;
2357
2358 /* We are outputting a single character
2359 (< options->repeat_count_threshold). */
2360
2361 if (last != SINGLE)
2362 {
2363 /* We were outputting some other type of content, so we
2364 must output and a comma and a quote. */
2365 if (last != START)
2366 obstack_grow_wstr (obstack, LCST (", "));
2367 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2368 }
2369 /* Output the character. */
2370 for (j = 0; j < elem->repeat_count; ++j)
2371 {
2372 if (elem->result == wchar_iterate_ok)
2373 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2374 byte_order, obstack, quote_char, &need_escape);
2375 else
2376 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2377 byte_order, obstack, quote_char, &need_escape);
2378 }
2379 }
2380 break;
2381
2382 case REPEAT:
2383 {
2384 int j;
2385
2386 /* We are outputting a character with a repeat count
2387 greater than options->repeat_count_threshold. */
2388
2389 if (last == SINGLE)
2390 {
2391 /* We were outputting a single string. Terminate the
2392 string. */
2393 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2394 }
2395 if (last != START)
2396 obstack_grow_wstr (obstack, LCST (", "));
2397
2398 /* Output the character and repeat string. */
2399 obstack_grow_wstr (obstack, LCST ("'"));
2400 if (elem->result == wchar_iterate_ok)
2401 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2402 byte_order, obstack, quote_char, &need_escape);
2403 else
2404 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2405 byte_order, obstack, quote_char, &need_escape);
2406 obstack_grow_wstr (obstack, LCST ("'"));
2407 std::string s = string_printf (_(" <repeats %u times>"),
2408 elem->repeat_count);
2409 for (j = 0; s[j]; ++j)
2410 {
2411 gdb_wchar_t w = gdb_btowc (s[j]);
2412 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2413 }
2414 }
2415 break;
2416
2417 case INCOMPLETE:
2418 /* We are outputting an incomplete sequence. */
2419 if (last == SINGLE)
2420 {
2421 /* If we were outputting a string of SINGLE characters,
2422 terminate the quote. */
2423 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2424 }
2425 if (last != START)
2426 obstack_grow_wstr (obstack, LCST (", "));
2427
2428 /* Output the incomplete sequence string. */
2429 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2430 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2431 obstack, 0, &need_escape);
2432 obstack_grow_wstr (obstack, LCST (">"));
2433
2434 /* We do not attempt to output anything after this. */
2435 state = FINISH;
2436 break;
2437
2438 case FINISH:
2439 /* All done. If we were outputting a string of SINGLE
2440 characters, the string must be terminated. Otherwise,
2441 REPEAT and INCOMPLETE are always left properly terminated. */
2442 if (last == SINGLE)
2443 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2444
2445 return;
2446 }
2447
2448 /* Get the next element and state. */
2449 last = state;
2450 if (state != FINISH)
2451 {
2452 elem = &chars[idx++];
2453 switch (elem->result)
2454 {
2455 case wchar_iterate_ok:
2456 case wchar_iterate_invalid:
2457 if (elem->repeat_count > options->repeat_count_threshold)
2458 state = REPEAT;
2459 else
2460 state = SINGLE;
2461 break;
2462
2463 case wchar_iterate_incomplete:
2464 state = INCOMPLETE;
2465 break;
2466
2467 case wchar_iterate_eof:
2468 state = FINISH;
2469 break;
2470 }
2471 }
2472 }
2473 }
2474
2475 /* Print the character string STRING, printing at most LENGTH
2476 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2477 the type of each character. OPTIONS holds the printing options;
2478 printing stops early if the number hits print_max; repeat counts
2479 are printed as appropriate. Print ellipses at the end if we had to
2480 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2481 QUOTE_CHAR is the character to print at each end of the string. If
2482 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2483 omitted. */
2484
2485 void
2486 generic_printstr (struct ui_file *stream, struct type *type,
2487 const gdb_byte *string, unsigned int length,
2488 const char *encoding, int force_ellipses,
2489 int quote_char, int c_style_terminator,
2490 const struct value_print_options *options)
2491 {
2492 enum bfd_endian byte_order = type_byte_order (type);
2493 unsigned int i;
2494 int width = type->length ();
2495 int finished = 0;
2496 struct converted_character *last;
2497
2498 if (length == -1)
2499 {
2500 unsigned long current_char = 1;
2501
2502 for (i = 0; current_char; ++i)
2503 {
2504 QUIT;
2505 current_char = extract_unsigned_integer (string + i * width,
2506 width, byte_order);
2507 }
2508 length = i;
2509 }
2510
2511 /* If the string was not truncated due to `set print elements', and
2512 the last byte of it is a null, we don't print that, in
2513 traditional C style. */
2514 if (c_style_terminator
2515 && !force_ellipses
2516 && length > 0
2517 && (extract_unsigned_integer (string + (length - 1) * width,
2518 width, byte_order) == 0))
2519 length--;
2520
2521 if (length == 0)
2522 {
2523 gdb_printf (stream, "%c%c", quote_char, quote_char);
2524 return;
2525 }
2526
2527 /* Arrange to iterate over the characters, in wchar_t form. */
2528 wchar_iterator iter (string, length * width, encoding, width);
2529 std::vector<converted_character> converted_chars;
2530
2531 /* Convert characters until the string is over or the maximum
2532 number of printed characters has been reached. */
2533 i = 0;
2534 while (i < options->print_max)
2535 {
2536 int r;
2537
2538 QUIT;
2539
2540 /* Grab the next character and repeat count. */
2541 r = count_next_character (&iter, &converted_chars);
2542
2543 /* If less than zero, the end of the input string was reached. */
2544 if (r < 0)
2545 break;
2546
2547 /* Otherwise, add the count to the total print count and get
2548 the next character. */
2549 i += r;
2550 }
2551
2552 /* Get the last element and determine if the entire string was
2553 processed. */
2554 last = &converted_chars.back ();
2555 finished = (last->result == wchar_iterate_eof);
2556
2557 /* Ensure that CONVERTED_CHARS is terminated. */
2558 last->result = wchar_iterate_eof;
2559
2560 /* WCHAR_BUF is the obstack we use to represent the string in
2561 wchar_t form. */
2562 auto_obstack wchar_buf;
2563
2564 /* Print the output string to the obstack. */
2565 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2566 width, byte_order, options);
2567
2568 if (force_ellipses || !finished)
2569 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2570
2571 /* OUTPUT is where we collect `char's for printing. */
2572 auto_obstack output;
2573
2574 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2575 (gdb_byte *) obstack_base (&wchar_buf),
2576 obstack_object_size (&wchar_buf),
2577 sizeof (gdb_wchar_t), &output, translit_char);
2578 obstack_1grow (&output, '\0');
2579
2580 gdb_puts ((const char *) obstack_base (&output), stream);
2581 }
2582
2583 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2584 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2585 stops at the first null byte, otherwise printing proceeds (including null
2586 bytes) until either print_max or LEN characters have been printed,
2587 whichever is smaller. ENCODING is the name of the string's
2588 encoding. It can be NULL, in which case the target encoding is
2589 assumed. */
2590
2591 int
2592 val_print_string (struct type *elttype, const char *encoding,
2593 CORE_ADDR addr, int len,
2594 struct ui_file *stream,
2595 const struct value_print_options *options)
2596 {
2597 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2598 int err; /* Non-zero if we got a bad read. */
2599 int found_nul; /* Non-zero if we found the nul char. */
2600 unsigned int fetchlimit; /* Maximum number of chars to print. */
2601 int bytes_read;
2602 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2603 struct gdbarch *gdbarch = elttype->arch ();
2604 enum bfd_endian byte_order = type_byte_order (elttype);
2605 int width = elttype->length ();
2606
2607 /* First we need to figure out the limit on the number of characters we are
2608 going to attempt to fetch and print. This is actually pretty simple. If
2609 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2610 LEN is -1, then the limit is print_max. This is true regardless of
2611 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2612 because finding the null byte (or available memory) is what actually
2613 limits the fetch. */
2614
2615 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2616 options->print_max));
2617
2618 err = target_read_string (addr, len, width, fetchlimit,
2619 &buffer, &bytes_read);
2620
2621 addr += bytes_read;
2622
2623 /* We now have either successfully filled the buffer to fetchlimit,
2624 or terminated early due to an error or finding a null char when
2625 LEN is -1. */
2626
2627 /* Determine found_nul by looking at the last character read. */
2628 found_nul = 0;
2629 if (bytes_read >= width)
2630 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2631 width, byte_order) == 0;
2632 if (len == -1 && !found_nul)
2633 {
2634 gdb_byte *peekbuf;
2635
2636 /* We didn't find a NUL terminator we were looking for. Attempt
2637 to peek at the next character. If not successful, or it is not
2638 a null byte, then force ellipsis to be printed. */
2639
2640 peekbuf = (gdb_byte *) alloca (width);
2641
2642 if (target_read_memory (addr, peekbuf, width) == 0
2643 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2644 force_ellipsis = 1;
2645 }
2646 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2647 {
2648 /* Getting an error when we have a requested length, or fetching less
2649 than the number of characters actually requested, always make us
2650 print ellipsis. */
2651 force_ellipsis = 1;
2652 }
2653
2654 /* If we get an error before fetching anything, don't print a string.
2655 But if we fetch something and then get an error, print the string
2656 and then the error message. */
2657 if (err == 0 || bytes_read > 0)
2658 current_language->printstr (stream, elttype, buffer.get (),
2659 bytes_read / width,
2660 encoding, force_ellipsis, options);
2661
2662 if (err != 0)
2663 {
2664 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2665
2666 gdb_printf (stream, _("<error: %ps>"),
2667 styled_string (metadata_style.style (),
2668 str.c_str ()));
2669 }
2670
2671 return (bytes_read / width);
2672 }
2673
2674 /* Handle 'show print max-depth'. */
2675
2676 static void
2677 show_print_max_depth (struct ui_file *file, int from_tty,
2678 struct cmd_list_element *c, const char *value)
2679 {
2680 gdb_printf (file, _("Maximum print depth is %s.\n"), value);
2681 }
2682 \f
2683
2684 /* The 'set input-radix' command writes to this auxiliary variable.
2685 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2686 it is left unchanged. */
2687
2688 static unsigned input_radix_1 = 10;
2689
2690 /* Validate an input or output radix setting, and make sure the user
2691 knows what they really did here. Radix setting is confusing, e.g.
2692 setting the input radix to "10" never changes it! */
2693
2694 static void
2695 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2696 {
2697 set_input_radix_1 (from_tty, input_radix_1);
2698 }
2699
2700 static void
2701 set_input_radix_1 (int from_tty, unsigned radix)
2702 {
2703 /* We don't currently disallow any input radix except 0 or 1, which don't
2704 make any mathematical sense. In theory, we can deal with any input
2705 radix greater than 1, even if we don't have unique digits for every
2706 value from 0 to radix-1, but in practice we lose on large radix values.
2707 We should either fix the lossage or restrict the radix range more.
2708 (FIXME). */
2709
2710 if (radix < 2)
2711 {
2712 input_radix_1 = input_radix;
2713 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2714 radix);
2715 }
2716 input_radix_1 = input_radix = radix;
2717 if (from_tty)
2718 {
2719 gdb_printf (_("Input radix now set to "
2720 "decimal %u, hex %x, octal %o.\n"),
2721 radix, radix, radix);
2722 }
2723 }
2724
2725 /* The 'set output-radix' command writes to this auxiliary variable.
2726 If the requested radix is valid, OUTPUT_RADIX is updated,
2727 otherwise, it is left unchanged. */
2728
2729 static unsigned output_radix_1 = 10;
2730
2731 static void
2732 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2733 {
2734 set_output_radix_1 (from_tty, output_radix_1);
2735 }
2736
2737 static void
2738 set_output_radix_1 (int from_tty, unsigned radix)
2739 {
2740 /* Validate the radix and disallow ones that we aren't prepared to
2741 handle correctly, leaving the radix unchanged. */
2742 switch (radix)
2743 {
2744 case 16:
2745 user_print_options.output_format = 'x'; /* hex */
2746 break;
2747 case 10:
2748 user_print_options.output_format = 0; /* decimal */
2749 break;
2750 case 8:
2751 user_print_options.output_format = 'o'; /* octal */
2752 break;
2753 default:
2754 output_radix_1 = output_radix;
2755 error (_("Unsupported output radix ``decimal %u''; "
2756 "output radix unchanged."),
2757 radix);
2758 }
2759 output_radix_1 = output_radix = radix;
2760 if (from_tty)
2761 {
2762 gdb_printf (_("Output radix now set to "
2763 "decimal %u, hex %x, octal %o.\n"),
2764 radix, radix, radix);
2765 }
2766 }
2767
2768 /* Set both the input and output radix at once. Try to set the output radix
2769 first, since it has the most restrictive range. An radix that is valid as
2770 an output radix is also valid as an input radix.
2771
2772 It may be useful to have an unusual input radix. If the user wishes to
2773 set an input radix that is not valid as an output radix, he needs to use
2774 the 'set input-radix' command. */
2775
2776 static void
2777 set_radix (const char *arg, int from_tty)
2778 {
2779 unsigned radix;
2780
2781 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2782 set_output_radix_1 (0, radix);
2783 set_input_radix_1 (0, radix);
2784 if (from_tty)
2785 {
2786 gdb_printf (_("Input and output radices now set to "
2787 "decimal %u, hex %x, octal %o.\n"),
2788 radix, radix, radix);
2789 }
2790 }
2791
2792 /* Show both the input and output radices. */
2793
2794 static void
2795 show_radix (const char *arg, int from_tty)
2796 {
2797 if (from_tty)
2798 {
2799 if (input_radix == output_radix)
2800 {
2801 gdb_printf (_("Input and output radices set to "
2802 "decimal %u, hex %x, octal %o.\n"),
2803 input_radix, input_radix, input_radix);
2804 }
2805 else
2806 {
2807 gdb_printf (_("Input radix set to decimal "
2808 "%u, hex %x, octal %o.\n"),
2809 input_radix, input_radix, input_radix);
2810 gdb_printf (_("Output radix set to decimal "
2811 "%u, hex %x, octal %o.\n"),
2812 output_radix, output_radix, output_radix);
2813 }
2814 }
2815 }
2816 \f
2817
2818 /* Controls printing of vtbl's. */
2819 static void
2820 show_vtblprint (struct ui_file *file, int from_tty,
2821 struct cmd_list_element *c, const char *value)
2822 {
2823 gdb_printf (file, _("\
2824 Printing of C++ virtual function tables is %s.\n"),
2825 value);
2826 }
2827
2828 /* Controls looking up an object's derived type using what we find in
2829 its vtables. */
2830 static void
2831 show_objectprint (struct ui_file *file, int from_tty,
2832 struct cmd_list_element *c,
2833 const char *value)
2834 {
2835 gdb_printf (file, _("\
2836 Printing of object's derived type based on vtable info is %s.\n"),
2837 value);
2838 }
2839
2840 static void
2841 show_static_field_print (struct ui_file *file, int from_tty,
2842 struct cmd_list_element *c,
2843 const char *value)
2844 {
2845 gdb_printf (file,
2846 _("Printing of C++ static members is %s.\n"),
2847 value);
2848 }
2849
2850 \f
2851
2852 /* A couple typedefs to make writing the options a bit more
2853 convenient. */
2854 using boolean_option_def
2855 = gdb::option::boolean_option_def<value_print_options>;
2856 using uinteger_option_def
2857 = gdb::option::uinteger_option_def<value_print_options>;
2858 using zuinteger_unlimited_option_def
2859 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2860
2861 /* Definitions of options for the "print" and "compile print"
2862 commands. */
2863 static const gdb::option::option_def value_print_option_defs[] = {
2864
2865 boolean_option_def {
2866 "address",
2867 [] (value_print_options *opt) { return &opt->addressprint; },
2868 show_addressprint, /* show_cmd_cb */
2869 N_("Set printing of addresses."),
2870 N_("Show printing of addresses."),
2871 NULL, /* help_doc */
2872 },
2873
2874 boolean_option_def {
2875 "array",
2876 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
2877 show_prettyformat_arrays, /* show_cmd_cb */
2878 N_("Set pretty formatting of arrays."),
2879 N_("Show pretty formatting of arrays."),
2880 NULL, /* help_doc */
2881 },
2882
2883 boolean_option_def {
2884 "array-indexes",
2885 [] (value_print_options *opt) { return &opt->print_array_indexes; },
2886 show_print_array_indexes, /* show_cmd_cb */
2887 N_("Set printing of array indexes."),
2888 N_("Show printing of array indexes."),
2889 NULL, /* help_doc */
2890 },
2891
2892 boolean_option_def {
2893 "nibbles",
2894 [] (value_print_options *opt) { return &opt->nibblesprint; },
2895 show_nibbles, /* show_cmd_cb */
2896 N_("Set whether to print binary values in groups of four bits."),
2897 N_("Show whether to print binary values in groups of four bits."),
2898 NULL, /* help_doc */
2899 },
2900
2901 uinteger_option_def {
2902 "elements",
2903 [] (value_print_options *opt) { return &opt->print_max; },
2904 show_print_max, /* show_cmd_cb */
2905 N_("Set limit on string chars or array elements to print."),
2906 N_("Show limit on string chars or array elements to print."),
2907 N_("\"unlimited\" causes there to be no limit."),
2908 },
2909
2910 zuinteger_unlimited_option_def {
2911 "max-depth",
2912 [] (value_print_options *opt) { return &opt->max_depth; },
2913 show_print_max_depth, /* show_cmd_cb */
2914 N_("Set maximum print depth for nested structures, unions and arrays."),
2915 N_("Show maximum print depth for nested structures, unions, and arrays."),
2916 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
2917 will be replaced with either '{...}' or '(...)' depending on the language.\n\
2918 Use \"unlimited\" to print the complete structure.")
2919 },
2920
2921 boolean_option_def {
2922 "memory-tag-violations",
2923 [] (value_print_options *opt) { return &opt->memory_tag_violations; },
2924 show_memory_tag_violations, /* show_cmd_cb */
2925 N_("Set printing of memory tag violations for pointers."),
2926 N_("Show printing of memory tag violations for pointers."),
2927 N_("Issue a warning when the printed value is a pointer\n\
2928 whose logical tag doesn't match the allocation tag of the memory\n\
2929 location it points to."),
2930 },
2931
2932 boolean_option_def {
2933 "null-stop",
2934 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
2935 show_stop_print_at_null, /* show_cmd_cb */
2936 N_("Set printing of char arrays to stop at first null char."),
2937 N_("Show printing of char arrays to stop at first null char."),
2938 NULL, /* help_doc */
2939 },
2940
2941 boolean_option_def {
2942 "object",
2943 [] (value_print_options *opt) { return &opt->objectprint; },
2944 show_objectprint, /* show_cmd_cb */
2945 _("Set printing of C++ virtual function tables."),
2946 _("Show printing of C++ virtual function tables."),
2947 NULL, /* help_doc */
2948 },
2949
2950 boolean_option_def {
2951 "pretty",
2952 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
2953 show_prettyformat_structs, /* show_cmd_cb */
2954 N_("Set pretty formatting of structures."),
2955 N_("Show pretty formatting of structures."),
2956 NULL, /* help_doc */
2957 },
2958
2959 boolean_option_def {
2960 "raw-values",
2961 [] (value_print_options *opt) { return &opt->raw; },
2962 NULL, /* show_cmd_cb */
2963 N_("Set whether to print values in raw form."),
2964 N_("Show whether to print values in raw form."),
2965 N_("If set, values are printed in raw form, bypassing any\n\
2966 pretty-printers for that value.")
2967 },
2968
2969 uinteger_option_def {
2970 "repeats",
2971 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
2972 show_repeat_count_threshold, /* show_cmd_cb */
2973 N_("Set threshold for repeated print elements."),
2974 N_("Show threshold for repeated print elements."),
2975 N_("\"unlimited\" causes all elements to be individually printed."),
2976 },
2977
2978 boolean_option_def {
2979 "static-members",
2980 [] (value_print_options *opt) { return &opt->static_field_print; },
2981 show_static_field_print, /* show_cmd_cb */
2982 N_("Set printing of C++ static members."),
2983 N_("Show printing of C++ static members."),
2984 NULL, /* help_doc */
2985 },
2986
2987 boolean_option_def {
2988 "symbol",
2989 [] (value_print_options *opt) { return &opt->symbol_print; },
2990 show_symbol_print, /* show_cmd_cb */
2991 N_("Set printing of symbol names when printing pointers."),
2992 N_("Show printing of symbol names when printing pointers."),
2993 NULL, /* help_doc */
2994 },
2995
2996 boolean_option_def {
2997 "union",
2998 [] (value_print_options *opt) { return &opt->unionprint; },
2999 show_unionprint, /* show_cmd_cb */
3000 N_("Set printing of unions interior to structures."),
3001 N_("Show printing of unions interior to structures."),
3002 NULL, /* help_doc */
3003 },
3004
3005 boolean_option_def {
3006 "vtbl",
3007 [] (value_print_options *opt) { return &opt->vtblprint; },
3008 show_vtblprint, /* show_cmd_cb */
3009 N_("Set printing of C++ virtual function tables."),
3010 N_("Show printing of C++ virtual function tables."),
3011 NULL, /* help_doc */
3012 },
3013 };
3014
3015 /* See valprint.h. */
3016
3017 gdb::option::option_def_group
3018 make_value_print_options_def_group (value_print_options *opts)
3019 {
3020 return {{value_print_option_defs}, opts};
3021 }
3022
3023 #if GDB_SELF_TEST
3024
3025 /* Test printing of TYPE_CODE_FLAGS values. */
3026
3027 static void
3028 test_print_flags (gdbarch *arch)
3029 {
3030 type *flags_type = arch_flags_type (arch, "test_type", 32);
3031 type *field_type = builtin_type (arch)->builtin_uint32;
3032
3033 /* Value: 1010 1010
3034 Fields: CCCB BAAA */
3035 append_flags_type_field (flags_type, 0, 3, field_type, "A");
3036 append_flags_type_field (flags_type, 3, 2, field_type, "B");
3037 append_flags_type_field (flags_type, 5, 3, field_type, "C");
3038
3039 value *val = allocate_value (flags_type);
3040 gdb_byte *contents = value_contents_writeable (val).data ();
3041 store_unsigned_integer (contents, 4, gdbarch_byte_order (arch), 0xaa);
3042
3043 string_file out;
3044 val_print_type_code_flags (flags_type, val, 0, &out);
3045 SELF_CHECK (out.string () == "[ A=2 B=1 C=5 ]");
3046 }
3047
3048 #endif
3049
3050 void _initialize_valprint ();
3051 void
3052 _initialize_valprint ()
3053 {
3054 #if GDB_SELF_TEST
3055 selftests::register_test_foreach_arch ("print-flags", test_print_flags);
3056 #endif
3057
3058 set_show_commands setshow_print_cmds
3059 = add_setshow_prefix_cmd ("print", no_class,
3060 _("Generic command for setting how things print."),
3061 _("Generic command for showing print settings."),
3062 &setprintlist, &showprintlist,
3063 &setlist, &showlist);
3064 add_alias_cmd ("p", setshow_print_cmds.set, no_class, 1, &setlist);
3065 /* Prefer set print to set prompt. */
3066 add_alias_cmd ("pr", setshow_print_cmds.set, no_class, 1, &setlist);
3067 add_alias_cmd ("p", setshow_print_cmds.show, no_class, 1, &showlist);
3068 add_alias_cmd ("pr", setshow_print_cmds.show, no_class, 1, &showlist);
3069
3070 set_show_commands setshow_print_raw_cmds
3071 = add_setshow_prefix_cmd
3072 ("raw", no_class,
3073 _("Generic command for setting what things to print in \"raw\" mode."),
3074 _("Generic command for showing \"print raw\" settings."),
3075 &setprintrawlist, &showprintrawlist, &setprintlist, &showprintlist);
3076 deprecate_cmd (setshow_print_raw_cmds.set, nullptr);
3077 deprecate_cmd (setshow_print_raw_cmds.show, nullptr);
3078
3079 gdb::option::add_setshow_cmds_for_options
3080 (class_support, &user_print_options, value_print_option_defs,
3081 &setprintlist, &showprintlist);
3082
3083 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3084 _("\
3085 Set default input radix for entering numbers."), _("\
3086 Show default input radix for entering numbers."), NULL,
3087 set_input_radix,
3088 show_input_radix,
3089 &setlist, &showlist);
3090
3091 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3092 _("\
3093 Set default output radix for printing of values."), _("\
3094 Show default output radix for printing of values."), NULL,
3095 set_output_radix,
3096 show_output_radix,
3097 &setlist, &showlist);
3098
3099 /* The "set radix" and "show radix" commands are special in that
3100 they are like normal set and show commands but allow two normally
3101 independent variables to be either set or shown with a single
3102 command. So the usual deprecated_add_set_cmd() and [deleted]
3103 add_show_from_set() commands aren't really appropriate. */
3104 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3105 longer true - show can display anything. */
3106 add_cmd ("radix", class_support, set_radix, _("\
3107 Set default input and output number radices.\n\
3108 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3109 Without an argument, sets both radices back to the default value of 10."),
3110 &setlist);
3111 add_cmd ("radix", class_support, show_radix, _("\
3112 Show the default input and output number radices.\n\
3113 Use 'show input-radix' or 'show output-radix' to independently show each."),
3114 &showlist);
3115 }