Base support for <unavailable> value contents.
[binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 #include "tracepoint.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 struct value
173 {
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 int modifiable;
180
181 /* Location of value (if lval). */
182 union
183 {
184 /* If lval == lval_memory, this is the address in the inferior.
185 If lval == lval_register, this is the byte offset into the
186 registers structure. */
187 CORE_ADDR address;
188
189 /* Pointer to internal variable. */
190 struct internalvar *internalvar;
191
192 /* If lval == lval_computed, this is a set of function pointers
193 to use to access and describe the value, and a closure pointer
194 for them to use. */
195 struct
196 {
197 struct lval_funcs *funcs; /* Functions to call. */
198 void *closure; /* Closure for those functions to use. */
199 } computed;
200 } location;
201
202 /* Describes offset of a value within lval of a structure in bytes.
203 If lval == lval_memory, this is an offset to the address. If
204 lval == lval_register, this is a further offset from
205 location.address within the registers structure. Note also the
206 member embedded_offset below. */
207 int offset;
208
209 /* Only used for bitfields; number of bits contained in them. */
210 int bitsize;
211
212 /* Only used for bitfields; position of start of field. For
213 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
214 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
215 int bitpos;
216
217 /* Only used for bitfields; the containing value. This allows a
218 single read from the target when displaying multiple
219 bitfields. */
220 struct value *parent;
221
222 /* Frame register value is relative to. This will be described in
223 the lval enum above as "lval_register". */
224 struct frame_id frame_id;
225
226 /* Type of the value. */
227 struct type *type;
228
229 /* If a value represents a C++ object, then the `type' field gives
230 the object's compile-time type. If the object actually belongs
231 to some class derived from `type', perhaps with other base
232 classes and additional members, then `type' is just a subobject
233 of the real thing, and the full object is probably larger than
234 `type' would suggest.
235
236 If `type' is a dynamic class (i.e. one with a vtable), then GDB
237 can actually determine the object's run-time type by looking at
238 the run-time type information in the vtable. When this
239 information is available, we may elect to read in the entire
240 object, for several reasons:
241
242 - When printing the value, the user would probably rather see the
243 full object, not just the limited portion apparent from the
244 compile-time type.
245
246 - If `type' has virtual base classes, then even printing `type'
247 alone may require reaching outside the `type' portion of the
248 object to wherever the virtual base class has been stored.
249
250 When we store the entire object, `enclosing_type' is the run-time
251 type -- the complete object -- and `embedded_offset' is the
252 offset of `type' within that larger type, in bytes. The
253 value_contents() macro takes `embedded_offset' into account, so
254 most GDB code continues to see the `type' portion of the value,
255 just as the inferior would.
256
257 If `type' is a pointer to an object, then `enclosing_type' is a
258 pointer to the object's run-time type, and `pointed_to_offset' is
259 the offset in bytes from the full object to the pointed-to object
260 -- that is, the value `embedded_offset' would have if we followed
261 the pointer and fetched the complete object. (I don't really see
262 the point. Why not just determine the run-time type when you
263 indirect, and avoid the special case? The contents don't matter
264 until you indirect anyway.)
265
266 If we're not doing anything fancy, `enclosing_type' is equal to
267 `type', and `embedded_offset' is zero, so everything works
268 normally. */
269 struct type *enclosing_type;
270 int embedded_offset;
271 int pointed_to_offset;
272
273 /* Values are stored in a chain, so that they can be deleted easily
274 over calls to the inferior. Values assigned to internal
275 variables, put into the value history or exposed to Python are
276 taken off this list. */
277 struct value *next;
278
279 /* Register number if the value is from a register. */
280 short regnum;
281
282 /* If zero, contents of this value are in the contents field. If
283 nonzero, contents are in inferior. If the lval field is lval_memory,
284 the contents are in inferior memory at location.address plus offset.
285 The lval field may also be lval_register.
286
287 WARNING: This field is used by the code which handles watchpoints
288 (see breakpoint.c) to decide whether a particular value can be
289 watched by hardware watchpoints. If the lazy flag is set for
290 some member of a value chain, it is assumed that this member of
291 the chain doesn't need to be watched as part of watching the
292 value itself. This is how GDB avoids watching the entire struct
293 or array when the user wants to watch a single struct member or
294 array element. If you ever change the way lazy flag is set and
295 reset, be sure to consider this use as well! */
296 char lazy;
297
298 /* If nonzero, this is the value of a variable which does not
299 actually exist in the program. */
300 char optimized_out;
301
302 /* If value is a variable, is it initialized or not. */
303 int initialized;
304
305 /* If value is from the stack. If this is set, read_stack will be
306 used instead of read_memory to enable extra caching. */
307 int stack;
308
309 /* Actual contents of the value. Target byte-order. NULL or not
310 valid if lazy is nonzero. */
311 gdb_byte *contents;
312
313 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
314 rather than available, since the common and default case is for a
315 value to be available. This is filled in at value read time. */
316 VEC(range_s) *unavailable;
317
318 /* The number of references to this value. When a value is created,
319 the value chain holds a reference, so REFERENCE_COUNT is 1. If
320 release_value is called, this value is removed from the chain but
321 the caller of release_value now has a reference to this value.
322 The caller must arrange for a call to value_free later. */
323 int reference_count;
324 };
325
326 int
327 value_bytes_available (const struct value *value, int offset, int length)
328 {
329 gdb_assert (!value->lazy);
330
331 return !ranges_contain (value->unavailable, offset, length);
332 }
333
334 void
335 mark_value_bytes_unavailable (struct value *value, int offset, int length)
336 {
337 range_s newr;
338 int i;
339
340 /* Insert the range sorted. If there's overlap or the new range
341 would be contiguous with an existing range, merge. */
342
343 newr.offset = offset;
344 newr.length = length;
345
346 /* Do a binary search for the position the given range would be
347 inserted if we only considered the starting OFFSET of ranges.
348 Call that position I. Since we also have LENGTH to care for
349 (this is a range afterall), we need to check if the _previous_
350 range overlaps the I range. E.g., calling R the new range:
351
352 #1 - overlaps with previous
353
354 R
355 |-...-|
356 |---| |---| |------| ... |--|
357 0 1 2 N
358
359 I=1
360
361 In the case #1 above, the binary search would return `I=1',
362 meaning, this OFFSET should be inserted at position 1, and the
363 current position 1 should be pushed further (and become 2). But,
364 note that `0' overlaps with R, so we want to merge them.
365
366 A similar consideration needs to be taken if the new range would
367 be contiguous with the previous range:
368
369 #2 - contiguous with previous
370
371 R
372 |-...-|
373 |--| |---| |------| ... |--|
374 0 1 2 N
375
376 I=1
377
378 If there's no overlap with the previous range, as in:
379
380 #3 - not overlapping and not contiguous
381
382 R
383 |-...-|
384 |--| |---| |------| ... |--|
385 0 1 2 N
386
387 I=1
388
389 or if I is 0:
390
391 #4 - R is the range with lowest offset
392
393 R
394 |-...-|
395 |--| |---| |------| ... |--|
396 0 1 2 N
397
398 I=0
399
400 ... we just push the new range to I.
401
402 All the 4 cases above need to consider that the new range may
403 also overlap several of the ranges that follow, or that R may be
404 contiguous with the following range, and merge. E.g.,
405
406 #5 - overlapping following ranges
407
408 R
409 |------------------------|
410 |--| |---| |------| ... |--|
411 0 1 2 N
412
413 I=0
414
415 or:
416
417 R
418 |-------|
419 |--| |---| |------| ... |--|
420 0 1 2 N
421
422 I=1
423
424 */
425
426 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
427 if (i > 0)
428 {
429 struct range *bef = VEC_index (range_s, value->unavailable, i - i);
430
431 if (ranges_overlap (bef->offset, bef->length, offset, length))
432 {
433 /* #1 */
434 ULONGEST l = min (bef->offset, offset);
435 ULONGEST h = max (bef->offset + bef->length, offset + length);
436
437 bef->offset = l;
438 bef->length = h - l;
439 i--;
440 }
441 else if (offset == bef->offset + bef->length)
442 {
443 /* #2 */
444 bef->length += length;
445 i--;
446 }
447 else
448 {
449 /* #3 */
450 VEC_safe_insert (range_s, value->unavailable, i, &newr);
451 }
452 }
453 else
454 {
455 /* #4 */
456 VEC_safe_insert (range_s, value->unavailable, i, &newr);
457 }
458
459 /* Check whether the ranges following the one we've just added or
460 touched can be folded in (#5 above). */
461 if (i + 1 < VEC_length (range_s, value->unavailable))
462 {
463 struct range *t;
464 struct range *r;
465 int removed = 0;
466 int next = i + 1;
467
468 /* Get the range we just touched. */
469 t = VEC_index (range_s, value->unavailable, i);
470 removed = 0;
471
472 i = next;
473 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
474 if (r->offset <= t->offset + t->length)
475 {
476 ULONGEST l, h;
477
478 l = min (t->offset, r->offset);
479 h = max (t->offset + t->length, r->offset + r->length);
480
481 t->offset = l;
482 t->length = h - l;
483
484 removed++;
485 }
486 else
487 {
488 /* If we couldn't merge this one, we won't be able to
489 merge following ones either, since the ranges are
490 always sorted by OFFSET. */
491 break;
492 }
493
494 if (removed != 0)
495 VEC_block_remove (range_s, value->unavailable, next, removed);
496 }
497 }
498
499 /* Prototypes for local functions. */
500
501 static void show_values (char *, int);
502
503 static void show_convenience (char *, int);
504
505
506 /* The value-history records all the values printed
507 by print commands during this session. Each chunk
508 records 60 consecutive values. The first chunk on
509 the chain records the most recent values.
510 The total number of values is in value_history_count. */
511
512 #define VALUE_HISTORY_CHUNK 60
513
514 struct value_history_chunk
515 {
516 struct value_history_chunk *next;
517 struct value *values[VALUE_HISTORY_CHUNK];
518 };
519
520 /* Chain of chunks now in use. */
521
522 static struct value_history_chunk *value_history_chain;
523
524 static int value_history_count; /* Abs number of last entry stored. */
525
526 \f
527 /* List of all value objects currently allocated
528 (except for those released by calls to release_value)
529 This is so they can be freed after each command. */
530
531 static struct value *all_values;
532
533 /* Allocate a lazy value for type TYPE. Its actual content is
534 "lazily" allocated too: the content field of the return value is
535 NULL; it will be allocated when it is fetched from the target. */
536
537 struct value *
538 allocate_value_lazy (struct type *type)
539 {
540 struct value *val;
541
542 /* Call check_typedef on our type to make sure that, if TYPE
543 is a TYPE_CODE_TYPEDEF, its length is set to the length
544 of the target type instead of zero. However, we do not
545 replace the typedef type by the target type, because we want
546 to keep the typedef in order to be able to set the VAL's type
547 description correctly. */
548 check_typedef (type);
549
550 val = (struct value *) xzalloc (sizeof (struct value));
551 val->contents = NULL;
552 val->next = all_values;
553 all_values = val;
554 val->type = type;
555 val->enclosing_type = type;
556 VALUE_LVAL (val) = not_lval;
557 val->location.address = 0;
558 VALUE_FRAME_ID (val) = null_frame_id;
559 val->offset = 0;
560 val->bitpos = 0;
561 val->bitsize = 0;
562 VALUE_REGNUM (val) = -1;
563 val->lazy = 1;
564 val->optimized_out = 0;
565 val->embedded_offset = 0;
566 val->pointed_to_offset = 0;
567 val->modifiable = 1;
568 val->initialized = 1; /* Default to initialized. */
569
570 /* Values start out on the all_values chain. */
571 val->reference_count = 1;
572
573 return val;
574 }
575
576 /* Allocate the contents of VAL if it has not been allocated yet. */
577
578 void
579 allocate_value_contents (struct value *val)
580 {
581 if (!val->contents)
582 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
583 }
584
585 /* Allocate a value and its contents for type TYPE. */
586
587 struct value *
588 allocate_value (struct type *type)
589 {
590 struct value *val = allocate_value_lazy (type);
591
592 allocate_value_contents (val);
593 val->lazy = 0;
594 return val;
595 }
596
597 /* Allocate a value that has the correct length
598 for COUNT repetitions of type TYPE. */
599
600 struct value *
601 allocate_repeat_value (struct type *type, int count)
602 {
603 int low_bound = current_language->string_lower_bound; /* ??? */
604 /* FIXME-type-allocation: need a way to free this type when we are
605 done with it. */
606 struct type *array_type
607 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
608
609 return allocate_value (array_type);
610 }
611
612 struct value *
613 allocate_computed_value (struct type *type,
614 struct lval_funcs *funcs,
615 void *closure)
616 {
617 struct value *v = allocate_value_lazy (type);
618
619 VALUE_LVAL (v) = lval_computed;
620 v->location.computed.funcs = funcs;
621 v->location.computed.closure = closure;
622
623 return v;
624 }
625
626 /* Accessor methods. */
627
628 struct value *
629 value_next (struct value *value)
630 {
631 return value->next;
632 }
633
634 struct type *
635 value_type (const struct value *value)
636 {
637 return value->type;
638 }
639 void
640 deprecated_set_value_type (struct value *value, struct type *type)
641 {
642 value->type = type;
643 }
644
645 int
646 value_offset (const struct value *value)
647 {
648 return value->offset;
649 }
650 void
651 set_value_offset (struct value *value, int offset)
652 {
653 value->offset = offset;
654 }
655
656 int
657 value_bitpos (const struct value *value)
658 {
659 return value->bitpos;
660 }
661 void
662 set_value_bitpos (struct value *value, int bit)
663 {
664 value->bitpos = bit;
665 }
666
667 int
668 value_bitsize (const struct value *value)
669 {
670 return value->bitsize;
671 }
672 void
673 set_value_bitsize (struct value *value, int bit)
674 {
675 value->bitsize = bit;
676 }
677
678 struct value *
679 value_parent (struct value *value)
680 {
681 return value->parent;
682 }
683
684 gdb_byte *
685 value_contents_raw (struct value *value)
686 {
687 allocate_value_contents (value);
688 return value->contents + value->embedded_offset;
689 }
690
691 gdb_byte *
692 value_contents_all_raw (struct value *value)
693 {
694 allocate_value_contents (value);
695 return value->contents;
696 }
697
698 struct type *
699 value_enclosing_type (struct value *value)
700 {
701 return value->enclosing_type;
702 }
703
704 static void
705 require_not_optimized_out (const struct value *value)
706 {
707 if (value->optimized_out)
708 error (_("value has been optimized out"));
709 }
710
711 static void
712 require_available (const struct value *value)
713 {
714 if (!VEC_empty (range_s, value->unavailable))
715 error (_("value is not available"));
716 }
717
718 const gdb_byte *
719 value_contents_for_printing (struct value *value)
720 {
721 if (value->lazy)
722 value_fetch_lazy (value);
723 return value->contents;
724 }
725
726 const gdb_byte *
727 value_contents_for_printing_const (const struct value *value)
728 {
729 gdb_assert (!value->lazy);
730 return value->contents;
731 }
732
733 const gdb_byte *
734 value_contents_all (struct value *value)
735 {
736 const gdb_byte *result = value_contents_for_printing (value);
737 require_not_optimized_out (value);
738 require_available (value);
739 return result;
740 }
741
742 int
743 value_lazy (struct value *value)
744 {
745 return value->lazy;
746 }
747
748 void
749 set_value_lazy (struct value *value, int val)
750 {
751 value->lazy = val;
752 }
753
754 int
755 value_stack (struct value *value)
756 {
757 return value->stack;
758 }
759
760 void
761 set_value_stack (struct value *value, int val)
762 {
763 value->stack = val;
764 }
765
766 const gdb_byte *
767 value_contents (struct value *value)
768 {
769 const gdb_byte *result = value_contents_writeable (value);
770 require_not_optimized_out (value);
771 require_available (value);
772 return result;
773 }
774
775 gdb_byte *
776 value_contents_writeable (struct value *value)
777 {
778 if (value->lazy)
779 value_fetch_lazy (value);
780 return value_contents_raw (value);
781 }
782
783 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
784 this function is different from value_equal; in C the operator ==
785 can return 0 even if the two values being compared are equal. */
786
787 int
788 value_contents_equal (struct value *val1, struct value *val2)
789 {
790 struct type *type1;
791 struct type *type2;
792 int len;
793
794 type1 = check_typedef (value_type (val1));
795 type2 = check_typedef (value_type (val2));
796 len = TYPE_LENGTH (type1);
797 if (len != TYPE_LENGTH (type2))
798 return 0;
799
800 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
801 }
802
803 int
804 value_optimized_out (struct value *value)
805 {
806 return value->optimized_out;
807 }
808
809 void
810 set_value_optimized_out (struct value *value, int val)
811 {
812 value->optimized_out = val;
813 }
814
815 int
816 value_entirely_optimized_out (const struct value *value)
817 {
818 if (!value->optimized_out)
819 return 0;
820 if (value->lval != lval_computed
821 || !value->location.computed.funcs->check_any_valid)
822 return 1;
823 return !value->location.computed.funcs->check_any_valid (value);
824 }
825
826 int
827 value_bits_valid (const struct value *value, int offset, int length)
828 {
829 if (value == NULL || !value->optimized_out)
830 return 1;
831 if (value->lval != lval_computed
832 || !value->location.computed.funcs->check_validity)
833 return 0;
834 return value->location.computed.funcs->check_validity (value, offset,
835 length);
836 }
837
838 int
839 value_bits_synthetic_pointer (const struct value *value,
840 int offset, int length)
841 {
842 if (value == NULL || value->lval != lval_computed
843 || !value->location.computed.funcs->check_synthetic_pointer)
844 return 0;
845 return value->location.computed.funcs->check_synthetic_pointer (value,
846 offset,
847 length);
848 }
849
850 int
851 value_embedded_offset (struct value *value)
852 {
853 return value->embedded_offset;
854 }
855
856 void
857 set_value_embedded_offset (struct value *value, int val)
858 {
859 value->embedded_offset = val;
860 }
861
862 int
863 value_pointed_to_offset (struct value *value)
864 {
865 return value->pointed_to_offset;
866 }
867
868 void
869 set_value_pointed_to_offset (struct value *value, int val)
870 {
871 value->pointed_to_offset = val;
872 }
873
874 struct lval_funcs *
875 value_computed_funcs (struct value *v)
876 {
877 gdb_assert (VALUE_LVAL (v) == lval_computed);
878
879 return v->location.computed.funcs;
880 }
881
882 void *
883 value_computed_closure (const struct value *v)
884 {
885 gdb_assert (v->lval == lval_computed);
886
887 return v->location.computed.closure;
888 }
889
890 enum lval_type *
891 deprecated_value_lval_hack (struct value *value)
892 {
893 return &value->lval;
894 }
895
896 CORE_ADDR
897 value_address (const struct value *value)
898 {
899 if (value->lval == lval_internalvar
900 || value->lval == lval_internalvar_component)
901 return 0;
902 return value->location.address + value->offset;
903 }
904
905 CORE_ADDR
906 value_raw_address (struct value *value)
907 {
908 if (value->lval == lval_internalvar
909 || value->lval == lval_internalvar_component)
910 return 0;
911 return value->location.address;
912 }
913
914 void
915 set_value_address (struct value *value, CORE_ADDR addr)
916 {
917 gdb_assert (value->lval != lval_internalvar
918 && value->lval != lval_internalvar_component);
919 value->location.address = addr;
920 }
921
922 struct internalvar **
923 deprecated_value_internalvar_hack (struct value *value)
924 {
925 return &value->location.internalvar;
926 }
927
928 struct frame_id *
929 deprecated_value_frame_id_hack (struct value *value)
930 {
931 return &value->frame_id;
932 }
933
934 short *
935 deprecated_value_regnum_hack (struct value *value)
936 {
937 return &value->regnum;
938 }
939
940 int
941 deprecated_value_modifiable (struct value *value)
942 {
943 return value->modifiable;
944 }
945 void
946 deprecated_set_value_modifiable (struct value *value, int modifiable)
947 {
948 value->modifiable = modifiable;
949 }
950 \f
951 /* Return a mark in the value chain. All values allocated after the
952 mark is obtained (except for those released) are subject to being freed
953 if a subsequent value_free_to_mark is passed the mark. */
954 struct value *
955 value_mark (void)
956 {
957 return all_values;
958 }
959
960 /* Take a reference to VAL. VAL will not be deallocated until all
961 references are released. */
962
963 void
964 value_incref (struct value *val)
965 {
966 val->reference_count++;
967 }
968
969 /* Release a reference to VAL, which was acquired with value_incref.
970 This function is also called to deallocate values from the value
971 chain. */
972
973 void
974 value_free (struct value *val)
975 {
976 if (val)
977 {
978 gdb_assert (val->reference_count > 0);
979 val->reference_count--;
980 if (val->reference_count > 0)
981 return;
982
983 /* If there's an associated parent value, drop our reference to
984 it. */
985 if (val->parent != NULL)
986 value_free (val->parent);
987
988 if (VALUE_LVAL (val) == lval_computed)
989 {
990 struct lval_funcs *funcs = val->location.computed.funcs;
991
992 if (funcs->free_closure)
993 funcs->free_closure (val);
994 }
995
996 xfree (val->contents);
997 VEC_free (range_s, val->unavailable);
998 }
999 xfree (val);
1000 }
1001
1002 /* Free all values allocated since MARK was obtained by value_mark
1003 (except for those released). */
1004 void
1005 value_free_to_mark (struct value *mark)
1006 {
1007 struct value *val;
1008 struct value *next;
1009
1010 for (val = all_values; val && val != mark; val = next)
1011 {
1012 next = val->next;
1013 value_free (val);
1014 }
1015 all_values = val;
1016 }
1017
1018 /* Free all the values that have been allocated (except for those released).
1019 Call after each command, successful or not.
1020 In practice this is called before each command, which is sufficient. */
1021
1022 void
1023 free_all_values (void)
1024 {
1025 struct value *val;
1026 struct value *next;
1027
1028 for (val = all_values; val; val = next)
1029 {
1030 next = val->next;
1031 value_free (val);
1032 }
1033
1034 all_values = 0;
1035 }
1036
1037 /* Frees all the elements in a chain of values. */
1038
1039 void
1040 free_value_chain (struct value *v)
1041 {
1042 struct value *next;
1043
1044 for (; v; v = next)
1045 {
1046 next = value_next (v);
1047 value_free (v);
1048 }
1049 }
1050
1051 /* Remove VAL from the chain all_values
1052 so it will not be freed automatically. */
1053
1054 void
1055 release_value (struct value *val)
1056 {
1057 struct value *v;
1058
1059 if (all_values == val)
1060 {
1061 all_values = val->next;
1062 val->next = NULL;
1063 return;
1064 }
1065
1066 for (v = all_values; v; v = v->next)
1067 {
1068 if (v->next == val)
1069 {
1070 v->next = val->next;
1071 val->next = NULL;
1072 break;
1073 }
1074 }
1075 }
1076
1077 /* Release all values up to mark */
1078 struct value *
1079 value_release_to_mark (struct value *mark)
1080 {
1081 struct value *val;
1082 struct value *next;
1083
1084 for (val = next = all_values; next; next = next->next)
1085 if (next->next == mark)
1086 {
1087 all_values = next->next;
1088 next->next = NULL;
1089 return val;
1090 }
1091 all_values = 0;
1092 return val;
1093 }
1094
1095 /* Return a copy of the value ARG.
1096 It contains the same contents, for same memory address,
1097 but it's a different block of storage. */
1098
1099 struct value *
1100 value_copy (struct value *arg)
1101 {
1102 struct type *encl_type = value_enclosing_type (arg);
1103 struct value *val;
1104
1105 if (value_lazy (arg))
1106 val = allocate_value_lazy (encl_type);
1107 else
1108 val = allocate_value (encl_type);
1109 val->type = arg->type;
1110 VALUE_LVAL (val) = VALUE_LVAL (arg);
1111 val->location = arg->location;
1112 val->offset = arg->offset;
1113 val->bitpos = arg->bitpos;
1114 val->bitsize = arg->bitsize;
1115 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1116 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1117 val->lazy = arg->lazy;
1118 val->optimized_out = arg->optimized_out;
1119 val->embedded_offset = value_embedded_offset (arg);
1120 val->pointed_to_offset = arg->pointed_to_offset;
1121 val->modifiable = arg->modifiable;
1122 if (!value_lazy (val))
1123 {
1124 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1125 TYPE_LENGTH (value_enclosing_type (arg)));
1126
1127 }
1128 val->unavailable = VEC_copy (range_s, arg->unavailable);
1129 val->parent = arg->parent;
1130 if (val->parent)
1131 value_incref (val->parent);
1132 if (VALUE_LVAL (val) == lval_computed)
1133 {
1134 struct lval_funcs *funcs = val->location.computed.funcs;
1135
1136 if (funcs->copy_closure)
1137 val->location.computed.closure = funcs->copy_closure (val);
1138 }
1139 return val;
1140 }
1141
1142 /* Return a version of ARG that is non-lvalue. */
1143
1144 struct value *
1145 value_non_lval (struct value *arg)
1146 {
1147 if (VALUE_LVAL (arg) != not_lval)
1148 {
1149 struct type *enc_type = value_enclosing_type (arg);
1150 struct value *val = allocate_value (enc_type);
1151
1152 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1153 TYPE_LENGTH (enc_type));
1154 val->type = arg->type;
1155 set_value_embedded_offset (val, value_embedded_offset (arg));
1156 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1157 return val;
1158 }
1159 return arg;
1160 }
1161
1162 void
1163 set_value_component_location (struct value *component,
1164 const struct value *whole)
1165 {
1166 if (whole->lval == lval_internalvar)
1167 VALUE_LVAL (component) = lval_internalvar_component;
1168 else
1169 VALUE_LVAL (component) = whole->lval;
1170
1171 component->location = whole->location;
1172 if (whole->lval == lval_computed)
1173 {
1174 struct lval_funcs *funcs = whole->location.computed.funcs;
1175
1176 if (funcs->copy_closure)
1177 component->location.computed.closure = funcs->copy_closure (whole);
1178 }
1179 }
1180
1181 \f
1182 /* Access to the value history. */
1183
1184 /* Record a new value in the value history.
1185 Returns the absolute history index of the entry.
1186 Result of -1 indicates the value was not saved; otherwise it is the
1187 value history index of this new item. */
1188
1189 int
1190 record_latest_value (struct value *val)
1191 {
1192 int i;
1193
1194 /* We don't want this value to have anything to do with the inferior anymore.
1195 In particular, "set $1 = 50" should not affect the variable from which
1196 the value was taken, and fast watchpoints should be able to assume that
1197 a value on the value history never changes. */
1198 if (value_lazy (val))
1199 value_fetch_lazy (val);
1200 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1201 from. This is a bit dubious, because then *&$1 does not just return $1
1202 but the current contents of that location. c'est la vie... */
1203 val->modifiable = 0;
1204 release_value (val);
1205
1206 /* Here we treat value_history_count as origin-zero
1207 and applying to the value being stored now. */
1208
1209 i = value_history_count % VALUE_HISTORY_CHUNK;
1210 if (i == 0)
1211 {
1212 struct value_history_chunk *new
1213 = (struct value_history_chunk *)
1214
1215 xmalloc (sizeof (struct value_history_chunk));
1216 memset (new->values, 0, sizeof new->values);
1217 new->next = value_history_chain;
1218 value_history_chain = new;
1219 }
1220
1221 value_history_chain->values[i] = val;
1222
1223 /* Now we regard value_history_count as origin-one
1224 and applying to the value just stored. */
1225
1226 return ++value_history_count;
1227 }
1228
1229 /* Return a copy of the value in the history with sequence number NUM. */
1230
1231 struct value *
1232 access_value_history (int num)
1233 {
1234 struct value_history_chunk *chunk;
1235 int i;
1236 int absnum = num;
1237
1238 if (absnum <= 0)
1239 absnum += value_history_count;
1240
1241 if (absnum <= 0)
1242 {
1243 if (num == 0)
1244 error (_("The history is empty."));
1245 else if (num == 1)
1246 error (_("There is only one value in the history."));
1247 else
1248 error (_("History does not go back to $$%d."), -num);
1249 }
1250 if (absnum > value_history_count)
1251 error (_("History has not yet reached $%d."), absnum);
1252
1253 absnum--;
1254
1255 /* Now absnum is always absolute and origin zero. */
1256
1257 chunk = value_history_chain;
1258 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1259 - absnum / VALUE_HISTORY_CHUNK;
1260 i > 0; i--)
1261 chunk = chunk->next;
1262
1263 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1264 }
1265
1266 static void
1267 show_values (char *num_exp, int from_tty)
1268 {
1269 int i;
1270 struct value *val;
1271 static int num = 1;
1272
1273 if (num_exp)
1274 {
1275 /* "show values +" should print from the stored position.
1276 "show values <exp>" should print around value number <exp>. */
1277 if (num_exp[0] != '+' || num_exp[1] != '\0')
1278 num = parse_and_eval_long (num_exp) - 5;
1279 }
1280 else
1281 {
1282 /* "show values" means print the last 10 values. */
1283 num = value_history_count - 9;
1284 }
1285
1286 if (num <= 0)
1287 num = 1;
1288
1289 for (i = num; i < num + 10 && i <= value_history_count; i++)
1290 {
1291 struct value_print_options opts;
1292
1293 val = access_value_history (i);
1294 printf_filtered (("$%d = "), i);
1295 get_user_print_options (&opts);
1296 value_print (val, gdb_stdout, &opts);
1297 printf_filtered (("\n"));
1298 }
1299
1300 /* The next "show values +" should start after what we just printed. */
1301 num += 10;
1302
1303 /* Hitting just return after this command should do the same thing as
1304 "show values +". If num_exp is null, this is unnecessary, since
1305 "show values +" is not useful after "show values". */
1306 if (from_tty && num_exp)
1307 {
1308 num_exp[0] = '+';
1309 num_exp[1] = '\0';
1310 }
1311 }
1312 \f
1313 /* Internal variables. These are variables within the debugger
1314 that hold values assigned by debugger commands.
1315 The user refers to them with a '$' prefix
1316 that does not appear in the variable names stored internally. */
1317
1318 struct internalvar
1319 {
1320 struct internalvar *next;
1321 char *name;
1322
1323 /* We support various different kinds of content of an internal variable.
1324 enum internalvar_kind specifies the kind, and union internalvar_data
1325 provides the data associated with this particular kind. */
1326
1327 enum internalvar_kind
1328 {
1329 /* The internal variable is empty. */
1330 INTERNALVAR_VOID,
1331
1332 /* The value of the internal variable is provided directly as
1333 a GDB value object. */
1334 INTERNALVAR_VALUE,
1335
1336 /* A fresh value is computed via a call-back routine on every
1337 access to the internal variable. */
1338 INTERNALVAR_MAKE_VALUE,
1339
1340 /* The internal variable holds a GDB internal convenience function. */
1341 INTERNALVAR_FUNCTION,
1342
1343 /* The variable holds an integer value. */
1344 INTERNALVAR_INTEGER,
1345
1346 /* The variable holds a pointer value. */
1347 INTERNALVAR_POINTER,
1348
1349 /* The variable holds a GDB-provided string. */
1350 INTERNALVAR_STRING,
1351
1352 } kind;
1353
1354 union internalvar_data
1355 {
1356 /* A value object used with INTERNALVAR_VALUE. */
1357 struct value *value;
1358
1359 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1360 internalvar_make_value make_value;
1361
1362 /* The internal function used with INTERNALVAR_FUNCTION. */
1363 struct
1364 {
1365 struct internal_function *function;
1366 /* True if this is the canonical name for the function. */
1367 int canonical;
1368 } fn;
1369
1370 /* An integer value used with INTERNALVAR_INTEGER. */
1371 struct
1372 {
1373 /* If type is non-NULL, it will be used as the type to generate
1374 a value for this internal variable. If type is NULL, a default
1375 integer type for the architecture is used. */
1376 struct type *type;
1377 LONGEST val;
1378 } integer;
1379
1380 /* A pointer value used with INTERNALVAR_POINTER. */
1381 struct
1382 {
1383 struct type *type;
1384 CORE_ADDR val;
1385 } pointer;
1386
1387 /* A string value used with INTERNALVAR_STRING. */
1388 char *string;
1389 } u;
1390 };
1391
1392 static struct internalvar *internalvars;
1393
1394 /* If the variable does not already exist create it and give it the
1395 value given. If no value is given then the default is zero. */
1396 static void
1397 init_if_undefined_command (char* args, int from_tty)
1398 {
1399 struct internalvar* intvar;
1400
1401 /* Parse the expression - this is taken from set_command(). */
1402 struct expression *expr = parse_expression (args);
1403 register struct cleanup *old_chain =
1404 make_cleanup (free_current_contents, &expr);
1405
1406 /* Validate the expression.
1407 Was the expression an assignment?
1408 Or even an expression at all? */
1409 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1410 error (_("Init-if-undefined requires an assignment expression."));
1411
1412 /* Extract the variable from the parsed expression.
1413 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1414 if (expr->elts[1].opcode != OP_INTERNALVAR)
1415 error (_("The first parameter to init-if-undefined "
1416 "should be a GDB variable."));
1417 intvar = expr->elts[2].internalvar;
1418
1419 /* Only evaluate the expression if the lvalue is void.
1420 This may still fail if the expresssion is invalid. */
1421 if (intvar->kind == INTERNALVAR_VOID)
1422 evaluate_expression (expr);
1423
1424 do_cleanups (old_chain);
1425 }
1426
1427
1428 /* Look up an internal variable with name NAME. NAME should not
1429 normally include a dollar sign.
1430
1431 If the specified internal variable does not exist,
1432 the return value is NULL. */
1433
1434 struct internalvar *
1435 lookup_only_internalvar (const char *name)
1436 {
1437 struct internalvar *var;
1438
1439 for (var = internalvars; var; var = var->next)
1440 if (strcmp (var->name, name) == 0)
1441 return var;
1442
1443 return NULL;
1444 }
1445
1446
1447 /* Create an internal variable with name NAME and with a void value.
1448 NAME should not normally include a dollar sign. */
1449
1450 struct internalvar *
1451 create_internalvar (const char *name)
1452 {
1453 struct internalvar *var;
1454
1455 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1456 var->name = concat (name, (char *)NULL);
1457 var->kind = INTERNALVAR_VOID;
1458 var->next = internalvars;
1459 internalvars = var;
1460 return var;
1461 }
1462
1463 /* Create an internal variable with name NAME and register FUN as the
1464 function that value_of_internalvar uses to create a value whenever
1465 this variable is referenced. NAME should not normally include a
1466 dollar sign. */
1467
1468 struct internalvar *
1469 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1470 {
1471 struct internalvar *var = create_internalvar (name);
1472
1473 var->kind = INTERNALVAR_MAKE_VALUE;
1474 var->u.make_value = fun;
1475 return var;
1476 }
1477
1478 /* Look up an internal variable with name NAME. NAME should not
1479 normally include a dollar sign.
1480
1481 If the specified internal variable does not exist,
1482 one is created, with a void value. */
1483
1484 struct internalvar *
1485 lookup_internalvar (const char *name)
1486 {
1487 struct internalvar *var;
1488
1489 var = lookup_only_internalvar (name);
1490 if (var)
1491 return var;
1492
1493 return create_internalvar (name);
1494 }
1495
1496 /* Return current value of internal variable VAR. For variables that
1497 are not inherently typed, use a value type appropriate for GDBARCH. */
1498
1499 struct value *
1500 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1501 {
1502 struct value *val;
1503 struct trace_state_variable *tsv;
1504
1505 /* If there is a trace state variable of the same name, assume that
1506 is what we really want to see. */
1507 tsv = find_trace_state_variable (var->name);
1508 if (tsv)
1509 {
1510 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1511 &(tsv->value));
1512 if (tsv->value_known)
1513 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1514 tsv->value);
1515 else
1516 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1517 return val;
1518 }
1519
1520 switch (var->kind)
1521 {
1522 case INTERNALVAR_VOID:
1523 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1524 break;
1525
1526 case INTERNALVAR_FUNCTION:
1527 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1528 break;
1529
1530 case INTERNALVAR_INTEGER:
1531 if (!var->u.integer.type)
1532 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1533 var->u.integer.val);
1534 else
1535 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1536 break;
1537
1538 case INTERNALVAR_POINTER:
1539 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1540 break;
1541
1542 case INTERNALVAR_STRING:
1543 val = value_cstring (var->u.string, strlen (var->u.string),
1544 builtin_type (gdbarch)->builtin_char);
1545 break;
1546
1547 case INTERNALVAR_VALUE:
1548 val = value_copy (var->u.value);
1549 if (value_lazy (val))
1550 value_fetch_lazy (val);
1551 break;
1552
1553 case INTERNALVAR_MAKE_VALUE:
1554 val = (*var->u.make_value) (gdbarch, var);
1555 break;
1556
1557 default:
1558 internal_error (__FILE__, __LINE__, _("bad kind"));
1559 }
1560
1561 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1562 on this value go back to affect the original internal variable.
1563
1564 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1565 no underlying modifyable state in the internal variable.
1566
1567 Likewise, if the variable's value is a computed lvalue, we want
1568 references to it to produce another computed lvalue, where
1569 references and assignments actually operate through the
1570 computed value's functions.
1571
1572 This means that internal variables with computed values
1573 behave a little differently from other internal variables:
1574 assignments to them don't just replace the previous value
1575 altogether. At the moment, this seems like the behavior we
1576 want. */
1577
1578 if (var->kind != INTERNALVAR_MAKE_VALUE
1579 && val->lval != lval_computed)
1580 {
1581 VALUE_LVAL (val) = lval_internalvar;
1582 VALUE_INTERNALVAR (val) = var;
1583 }
1584
1585 return val;
1586 }
1587
1588 int
1589 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1590 {
1591 switch (var->kind)
1592 {
1593 case INTERNALVAR_INTEGER:
1594 *result = var->u.integer.val;
1595 return 1;
1596
1597 default:
1598 return 0;
1599 }
1600 }
1601
1602 static int
1603 get_internalvar_function (struct internalvar *var,
1604 struct internal_function **result)
1605 {
1606 switch (var->kind)
1607 {
1608 case INTERNALVAR_FUNCTION:
1609 *result = var->u.fn.function;
1610 return 1;
1611
1612 default:
1613 return 0;
1614 }
1615 }
1616
1617 void
1618 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1619 int bitsize, struct value *newval)
1620 {
1621 gdb_byte *addr;
1622
1623 switch (var->kind)
1624 {
1625 case INTERNALVAR_VALUE:
1626 addr = value_contents_writeable (var->u.value);
1627
1628 if (bitsize)
1629 modify_field (value_type (var->u.value), addr + offset,
1630 value_as_long (newval), bitpos, bitsize);
1631 else
1632 memcpy (addr + offset, value_contents (newval),
1633 TYPE_LENGTH (value_type (newval)));
1634 break;
1635
1636 default:
1637 /* We can never get a component of any other kind. */
1638 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1639 }
1640 }
1641
1642 void
1643 set_internalvar (struct internalvar *var, struct value *val)
1644 {
1645 enum internalvar_kind new_kind;
1646 union internalvar_data new_data = { 0 };
1647
1648 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1649 error (_("Cannot overwrite convenience function %s"), var->name);
1650
1651 /* Prepare new contents. */
1652 switch (TYPE_CODE (check_typedef (value_type (val))))
1653 {
1654 case TYPE_CODE_VOID:
1655 new_kind = INTERNALVAR_VOID;
1656 break;
1657
1658 case TYPE_CODE_INTERNAL_FUNCTION:
1659 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1660 new_kind = INTERNALVAR_FUNCTION;
1661 get_internalvar_function (VALUE_INTERNALVAR (val),
1662 &new_data.fn.function);
1663 /* Copies created here are never canonical. */
1664 break;
1665
1666 case TYPE_CODE_INT:
1667 new_kind = INTERNALVAR_INTEGER;
1668 new_data.integer.type = value_type (val);
1669 new_data.integer.val = value_as_long (val);
1670 break;
1671
1672 case TYPE_CODE_PTR:
1673 new_kind = INTERNALVAR_POINTER;
1674 new_data.pointer.type = value_type (val);
1675 new_data.pointer.val = value_as_address (val);
1676 break;
1677
1678 default:
1679 new_kind = INTERNALVAR_VALUE;
1680 new_data.value = value_copy (val);
1681 new_data.value->modifiable = 1;
1682
1683 /* Force the value to be fetched from the target now, to avoid problems
1684 later when this internalvar is referenced and the target is gone or
1685 has changed. */
1686 if (value_lazy (new_data.value))
1687 value_fetch_lazy (new_data.value);
1688
1689 /* Release the value from the value chain to prevent it from being
1690 deleted by free_all_values. From here on this function should not
1691 call error () until new_data is installed into the var->u to avoid
1692 leaking memory. */
1693 release_value (new_data.value);
1694 break;
1695 }
1696
1697 /* Clean up old contents. */
1698 clear_internalvar (var);
1699
1700 /* Switch over. */
1701 var->kind = new_kind;
1702 var->u = new_data;
1703 /* End code which must not call error(). */
1704 }
1705
1706 void
1707 set_internalvar_integer (struct internalvar *var, LONGEST l)
1708 {
1709 /* Clean up old contents. */
1710 clear_internalvar (var);
1711
1712 var->kind = INTERNALVAR_INTEGER;
1713 var->u.integer.type = NULL;
1714 var->u.integer.val = l;
1715 }
1716
1717 void
1718 set_internalvar_string (struct internalvar *var, const char *string)
1719 {
1720 /* Clean up old contents. */
1721 clear_internalvar (var);
1722
1723 var->kind = INTERNALVAR_STRING;
1724 var->u.string = xstrdup (string);
1725 }
1726
1727 static void
1728 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1729 {
1730 /* Clean up old contents. */
1731 clear_internalvar (var);
1732
1733 var->kind = INTERNALVAR_FUNCTION;
1734 var->u.fn.function = f;
1735 var->u.fn.canonical = 1;
1736 /* Variables installed here are always the canonical version. */
1737 }
1738
1739 void
1740 clear_internalvar (struct internalvar *var)
1741 {
1742 /* Clean up old contents. */
1743 switch (var->kind)
1744 {
1745 case INTERNALVAR_VALUE:
1746 value_free (var->u.value);
1747 break;
1748
1749 case INTERNALVAR_STRING:
1750 xfree (var->u.string);
1751 break;
1752
1753 default:
1754 break;
1755 }
1756
1757 /* Reset to void kind. */
1758 var->kind = INTERNALVAR_VOID;
1759 }
1760
1761 char *
1762 internalvar_name (struct internalvar *var)
1763 {
1764 return var->name;
1765 }
1766
1767 static struct internal_function *
1768 create_internal_function (const char *name,
1769 internal_function_fn handler, void *cookie)
1770 {
1771 struct internal_function *ifn = XNEW (struct internal_function);
1772
1773 ifn->name = xstrdup (name);
1774 ifn->handler = handler;
1775 ifn->cookie = cookie;
1776 return ifn;
1777 }
1778
1779 char *
1780 value_internal_function_name (struct value *val)
1781 {
1782 struct internal_function *ifn;
1783 int result;
1784
1785 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1786 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1787 gdb_assert (result);
1788
1789 return ifn->name;
1790 }
1791
1792 struct value *
1793 call_internal_function (struct gdbarch *gdbarch,
1794 const struct language_defn *language,
1795 struct value *func, int argc, struct value **argv)
1796 {
1797 struct internal_function *ifn;
1798 int result;
1799
1800 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1801 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1802 gdb_assert (result);
1803
1804 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1805 }
1806
1807 /* The 'function' command. This does nothing -- it is just a
1808 placeholder to let "help function NAME" work. This is also used as
1809 the implementation of the sub-command that is created when
1810 registering an internal function. */
1811 static void
1812 function_command (char *command, int from_tty)
1813 {
1814 /* Do nothing. */
1815 }
1816
1817 /* Clean up if an internal function's command is destroyed. */
1818 static void
1819 function_destroyer (struct cmd_list_element *self, void *ignore)
1820 {
1821 xfree (self->name);
1822 xfree (self->doc);
1823 }
1824
1825 /* Add a new internal function. NAME is the name of the function; DOC
1826 is a documentation string describing the function. HANDLER is
1827 called when the function is invoked. COOKIE is an arbitrary
1828 pointer which is passed to HANDLER and is intended for "user
1829 data". */
1830 void
1831 add_internal_function (const char *name, const char *doc,
1832 internal_function_fn handler, void *cookie)
1833 {
1834 struct cmd_list_element *cmd;
1835 struct internal_function *ifn;
1836 struct internalvar *var = lookup_internalvar (name);
1837
1838 ifn = create_internal_function (name, handler, cookie);
1839 set_internalvar_function (var, ifn);
1840
1841 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1842 &functionlist);
1843 cmd->destroyer = function_destroyer;
1844 }
1845
1846 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1847 prevent cycles / duplicates. */
1848
1849 void
1850 preserve_one_value (struct value *value, struct objfile *objfile,
1851 htab_t copied_types)
1852 {
1853 if (TYPE_OBJFILE (value->type) == objfile)
1854 value->type = copy_type_recursive (objfile, value->type, copied_types);
1855
1856 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1857 value->enclosing_type = copy_type_recursive (objfile,
1858 value->enclosing_type,
1859 copied_types);
1860 }
1861
1862 /* Likewise for internal variable VAR. */
1863
1864 static void
1865 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1866 htab_t copied_types)
1867 {
1868 switch (var->kind)
1869 {
1870 case INTERNALVAR_INTEGER:
1871 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1872 var->u.integer.type
1873 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1874 break;
1875
1876 case INTERNALVAR_POINTER:
1877 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1878 var->u.pointer.type
1879 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1880 break;
1881
1882 case INTERNALVAR_VALUE:
1883 preserve_one_value (var->u.value, objfile, copied_types);
1884 break;
1885 }
1886 }
1887
1888 /* Update the internal variables and value history when OBJFILE is
1889 discarded; we must copy the types out of the objfile. New global types
1890 will be created for every convenience variable which currently points to
1891 this objfile's types, and the convenience variables will be adjusted to
1892 use the new global types. */
1893
1894 void
1895 preserve_values (struct objfile *objfile)
1896 {
1897 htab_t copied_types;
1898 struct value_history_chunk *cur;
1899 struct internalvar *var;
1900 int i;
1901
1902 /* Create the hash table. We allocate on the objfile's obstack, since
1903 it is soon to be deleted. */
1904 copied_types = create_copied_types_hash (objfile);
1905
1906 for (cur = value_history_chain; cur; cur = cur->next)
1907 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1908 if (cur->values[i])
1909 preserve_one_value (cur->values[i], objfile, copied_types);
1910
1911 for (var = internalvars; var; var = var->next)
1912 preserve_one_internalvar (var, objfile, copied_types);
1913
1914 preserve_python_values (objfile, copied_types);
1915
1916 htab_delete (copied_types);
1917 }
1918
1919 static void
1920 show_convenience (char *ignore, int from_tty)
1921 {
1922 struct gdbarch *gdbarch = get_current_arch ();
1923 struct internalvar *var;
1924 int varseen = 0;
1925 struct value_print_options opts;
1926
1927 get_user_print_options (&opts);
1928 for (var = internalvars; var; var = var->next)
1929 {
1930 if (!varseen)
1931 {
1932 varseen = 1;
1933 }
1934 printf_filtered (("$%s = "), var->name);
1935 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1936 &opts);
1937 printf_filtered (("\n"));
1938 }
1939 if (!varseen)
1940 printf_unfiltered (_("No debugger convenience variables now defined.\n"
1941 "Convenience variables have "
1942 "names starting with \"$\";\n"
1943 "use \"set\" as in \"set "
1944 "$foo = 5\" to define them.\n"));
1945 }
1946 \f
1947 /* Extract a value as a C number (either long or double).
1948 Knows how to convert fixed values to double, or
1949 floating values to long.
1950 Does not deallocate the value. */
1951
1952 LONGEST
1953 value_as_long (struct value *val)
1954 {
1955 /* This coerces arrays and functions, which is necessary (e.g.
1956 in disassemble_command). It also dereferences references, which
1957 I suspect is the most logical thing to do. */
1958 val = coerce_array (val);
1959 return unpack_long (value_type (val), value_contents (val));
1960 }
1961
1962 DOUBLEST
1963 value_as_double (struct value *val)
1964 {
1965 DOUBLEST foo;
1966 int inv;
1967
1968 foo = unpack_double (value_type (val), value_contents (val), &inv);
1969 if (inv)
1970 error (_("Invalid floating value found in program."));
1971 return foo;
1972 }
1973
1974 /* Extract a value as a C pointer. Does not deallocate the value.
1975 Note that val's type may not actually be a pointer; value_as_long
1976 handles all the cases. */
1977 CORE_ADDR
1978 value_as_address (struct value *val)
1979 {
1980 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1981
1982 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1983 whether we want this to be true eventually. */
1984 #if 0
1985 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1986 non-address (e.g. argument to "signal", "info break", etc.), or
1987 for pointers to char, in which the low bits *are* significant. */
1988 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1989 #else
1990
1991 /* There are several targets (IA-64, PowerPC, and others) which
1992 don't represent pointers to functions as simply the address of
1993 the function's entry point. For example, on the IA-64, a
1994 function pointer points to a two-word descriptor, generated by
1995 the linker, which contains the function's entry point, and the
1996 value the IA-64 "global pointer" register should have --- to
1997 support position-independent code. The linker generates
1998 descriptors only for those functions whose addresses are taken.
1999
2000 On such targets, it's difficult for GDB to convert an arbitrary
2001 function address into a function pointer; it has to either find
2002 an existing descriptor for that function, or call malloc and
2003 build its own. On some targets, it is impossible for GDB to
2004 build a descriptor at all: the descriptor must contain a jump
2005 instruction; data memory cannot be executed; and code memory
2006 cannot be modified.
2007
2008 Upon entry to this function, if VAL is a value of type `function'
2009 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2010 value_address (val) is the address of the function. This is what
2011 you'll get if you evaluate an expression like `main'. The call
2012 to COERCE_ARRAY below actually does all the usual unary
2013 conversions, which includes converting values of type `function'
2014 to `pointer to function'. This is the challenging conversion
2015 discussed above. Then, `unpack_long' will convert that pointer
2016 back into an address.
2017
2018 So, suppose the user types `disassemble foo' on an architecture
2019 with a strange function pointer representation, on which GDB
2020 cannot build its own descriptors, and suppose further that `foo'
2021 has no linker-built descriptor. The address->pointer conversion
2022 will signal an error and prevent the command from running, even
2023 though the next step would have been to convert the pointer
2024 directly back into the same address.
2025
2026 The following shortcut avoids this whole mess. If VAL is a
2027 function, just return its address directly. */
2028 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2029 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2030 return value_address (val);
2031
2032 val = coerce_array (val);
2033
2034 /* Some architectures (e.g. Harvard), map instruction and data
2035 addresses onto a single large unified address space. For
2036 instance: An architecture may consider a large integer in the
2037 range 0x10000000 .. 0x1000ffff to already represent a data
2038 addresses (hence not need a pointer to address conversion) while
2039 a small integer would still need to be converted integer to
2040 pointer to address. Just assume such architectures handle all
2041 integer conversions in a single function. */
2042
2043 /* JimB writes:
2044
2045 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2046 must admonish GDB hackers to make sure its behavior matches the
2047 compiler's, whenever possible.
2048
2049 In general, I think GDB should evaluate expressions the same way
2050 the compiler does. When the user copies an expression out of
2051 their source code and hands it to a `print' command, they should
2052 get the same value the compiler would have computed. Any
2053 deviation from this rule can cause major confusion and annoyance,
2054 and needs to be justified carefully. In other words, GDB doesn't
2055 really have the freedom to do these conversions in clever and
2056 useful ways.
2057
2058 AndrewC pointed out that users aren't complaining about how GDB
2059 casts integers to pointers; they are complaining that they can't
2060 take an address from a disassembly listing and give it to `x/i'.
2061 This is certainly important.
2062
2063 Adding an architecture method like integer_to_address() certainly
2064 makes it possible for GDB to "get it right" in all circumstances
2065 --- the target has complete control over how things get done, so
2066 people can Do The Right Thing for their target without breaking
2067 anyone else. The standard doesn't specify how integers get
2068 converted to pointers; usually, the ABI doesn't either, but
2069 ABI-specific code is a more reasonable place to handle it. */
2070
2071 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2072 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2073 && gdbarch_integer_to_address_p (gdbarch))
2074 return gdbarch_integer_to_address (gdbarch, value_type (val),
2075 value_contents (val));
2076
2077 return unpack_long (value_type (val), value_contents (val));
2078 #endif
2079 }
2080 \f
2081 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2082 as a long, or as a double, assuming the raw data is described
2083 by type TYPE. Knows how to convert different sizes of values
2084 and can convert between fixed and floating point. We don't assume
2085 any alignment for the raw data. Return value is in host byte order.
2086
2087 If you want functions and arrays to be coerced to pointers, and
2088 references to be dereferenced, call value_as_long() instead.
2089
2090 C++: It is assumed that the front-end has taken care of
2091 all matters concerning pointers to members. A pointer
2092 to member which reaches here is considered to be equivalent
2093 to an INT (or some size). After all, it is only an offset. */
2094
2095 LONGEST
2096 unpack_long (struct type *type, const gdb_byte *valaddr)
2097 {
2098 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2099 enum type_code code = TYPE_CODE (type);
2100 int len = TYPE_LENGTH (type);
2101 int nosign = TYPE_UNSIGNED (type);
2102
2103 switch (code)
2104 {
2105 case TYPE_CODE_TYPEDEF:
2106 return unpack_long (check_typedef (type), valaddr);
2107 case TYPE_CODE_ENUM:
2108 case TYPE_CODE_FLAGS:
2109 case TYPE_CODE_BOOL:
2110 case TYPE_CODE_INT:
2111 case TYPE_CODE_CHAR:
2112 case TYPE_CODE_RANGE:
2113 case TYPE_CODE_MEMBERPTR:
2114 if (nosign)
2115 return extract_unsigned_integer (valaddr, len, byte_order);
2116 else
2117 return extract_signed_integer (valaddr, len, byte_order);
2118
2119 case TYPE_CODE_FLT:
2120 return extract_typed_floating (valaddr, type);
2121
2122 case TYPE_CODE_DECFLOAT:
2123 /* libdecnumber has a function to convert from decimal to integer, but
2124 it doesn't work when the decimal number has a fractional part. */
2125 return decimal_to_doublest (valaddr, len, byte_order);
2126
2127 case TYPE_CODE_PTR:
2128 case TYPE_CODE_REF:
2129 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2130 whether we want this to be true eventually. */
2131 return extract_typed_address (valaddr, type);
2132
2133 default:
2134 error (_("Value can't be converted to integer."));
2135 }
2136 return 0; /* Placate lint. */
2137 }
2138
2139 /* Return a double value from the specified type and address.
2140 INVP points to an int which is set to 0 for valid value,
2141 1 for invalid value (bad float format). In either case,
2142 the returned double is OK to use. Argument is in target
2143 format, result is in host format. */
2144
2145 DOUBLEST
2146 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2147 {
2148 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2149 enum type_code code;
2150 int len;
2151 int nosign;
2152
2153 *invp = 0; /* Assume valid. */
2154 CHECK_TYPEDEF (type);
2155 code = TYPE_CODE (type);
2156 len = TYPE_LENGTH (type);
2157 nosign = TYPE_UNSIGNED (type);
2158 if (code == TYPE_CODE_FLT)
2159 {
2160 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2161 floating-point value was valid (using the macro
2162 INVALID_FLOAT). That test/macro have been removed.
2163
2164 It turns out that only the VAX defined this macro and then
2165 only in a non-portable way. Fixing the portability problem
2166 wouldn't help since the VAX floating-point code is also badly
2167 bit-rotten. The target needs to add definitions for the
2168 methods gdbarch_float_format and gdbarch_double_format - these
2169 exactly describe the target floating-point format. The
2170 problem here is that the corresponding floatformat_vax_f and
2171 floatformat_vax_d values these methods should be set to are
2172 also not defined either. Oops!
2173
2174 Hopefully someone will add both the missing floatformat
2175 definitions and the new cases for floatformat_is_valid (). */
2176
2177 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2178 {
2179 *invp = 1;
2180 return 0.0;
2181 }
2182
2183 return extract_typed_floating (valaddr, type);
2184 }
2185 else if (code == TYPE_CODE_DECFLOAT)
2186 return decimal_to_doublest (valaddr, len, byte_order);
2187 else if (nosign)
2188 {
2189 /* Unsigned -- be sure we compensate for signed LONGEST. */
2190 return (ULONGEST) unpack_long (type, valaddr);
2191 }
2192 else
2193 {
2194 /* Signed -- we are OK with unpack_long. */
2195 return unpack_long (type, valaddr);
2196 }
2197 }
2198
2199 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2200 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2201 We don't assume any alignment for the raw data. Return value is in
2202 host byte order.
2203
2204 If you want functions and arrays to be coerced to pointers, and
2205 references to be dereferenced, call value_as_address() instead.
2206
2207 C++: It is assumed that the front-end has taken care of
2208 all matters concerning pointers to members. A pointer
2209 to member which reaches here is considered to be equivalent
2210 to an INT (or some size). After all, it is only an offset. */
2211
2212 CORE_ADDR
2213 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2214 {
2215 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2216 whether we want this to be true eventually. */
2217 return unpack_long (type, valaddr);
2218 }
2219
2220 \f
2221 /* Get the value of the FIELDNO'th field (which must be static) of
2222 TYPE. Return NULL if the field doesn't exist or has been
2223 optimized out. */
2224
2225 struct value *
2226 value_static_field (struct type *type, int fieldno)
2227 {
2228 struct value *retval;
2229
2230 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2231 {
2232 case FIELD_LOC_KIND_PHYSADDR:
2233 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2234 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2235 break;
2236 case FIELD_LOC_KIND_PHYSNAME:
2237 {
2238 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2239 /* TYPE_FIELD_NAME (type, fieldno); */
2240 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2241
2242 if (sym == NULL)
2243 {
2244 /* With some compilers, e.g. HP aCC, static data members are
2245 reported as non-debuggable symbols. */
2246 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2247 NULL, NULL);
2248
2249 if (!msym)
2250 return NULL;
2251 else
2252 {
2253 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2254 SYMBOL_VALUE_ADDRESS (msym));
2255 }
2256 }
2257 else
2258 retval = value_of_variable (sym, NULL);
2259 break;
2260 }
2261 default:
2262 gdb_assert_not_reached ("unexpected field location kind");
2263 }
2264
2265 return retval;
2266 }
2267
2268 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2269 You have to be careful here, since the size of the data area for the value
2270 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2271 than the old enclosing type, you have to allocate more space for the
2272 data. */
2273
2274 void
2275 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2276 {
2277 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2278 val->contents =
2279 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2280
2281 val->enclosing_type = new_encl_type;
2282 }
2283
2284 /* Given a value ARG1 (offset by OFFSET bytes)
2285 of a struct or union type ARG_TYPE,
2286 extract and return the value of one of its (non-static) fields.
2287 FIELDNO says which field. */
2288
2289 struct value *
2290 value_primitive_field (struct value *arg1, int offset,
2291 int fieldno, struct type *arg_type)
2292 {
2293 struct value *v;
2294 struct type *type;
2295
2296 CHECK_TYPEDEF (arg_type);
2297 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2298
2299 /* Call check_typedef on our type to make sure that, if TYPE
2300 is a TYPE_CODE_TYPEDEF, its length is set to the length
2301 of the target type instead of zero. However, we do not
2302 replace the typedef type by the target type, because we want
2303 to keep the typedef in order to be able to print the type
2304 description correctly. */
2305 check_typedef (type);
2306
2307 /* Handle packed fields */
2308
2309 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2310 {
2311 /* Create a new value for the bitfield, with bitpos and bitsize
2312 set. If possible, arrange offset and bitpos so that we can
2313 do a single aligned read of the size of the containing type.
2314 Otherwise, adjust offset to the byte containing the first
2315 bit. Assume that the address, offset, and embedded offset
2316 are sufficiently aligned. */
2317 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2318 int container_bitsize = TYPE_LENGTH (type) * 8;
2319
2320 v = allocate_value_lazy (type);
2321 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2322 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2323 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2324 v->bitpos = bitpos % container_bitsize;
2325 else
2326 v->bitpos = bitpos % 8;
2327 v->offset = (value_embedded_offset (arg1)
2328 + offset
2329 + (bitpos - v->bitpos) / 8);
2330 v->parent = arg1;
2331 value_incref (v->parent);
2332 if (!value_lazy (arg1))
2333 value_fetch_lazy (v);
2334 }
2335 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2336 {
2337 /* This field is actually a base subobject, so preserve the
2338 entire object's contents for later references to virtual
2339 bases, etc. */
2340
2341 /* Lazy register values with offsets are not supported. */
2342 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2343 value_fetch_lazy (arg1);
2344
2345 if (value_lazy (arg1))
2346 v = allocate_value_lazy (value_enclosing_type (arg1));
2347 else
2348 {
2349 v = allocate_value (value_enclosing_type (arg1));
2350 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2351 TYPE_LENGTH (value_enclosing_type (arg1)));
2352 }
2353 v->type = type;
2354 v->offset = value_offset (arg1);
2355 v->embedded_offset = (offset + value_embedded_offset (arg1)
2356 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2357 }
2358 else
2359 {
2360 /* Plain old data member */
2361 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2362
2363 /* Lazy register values with offsets are not supported. */
2364 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2365 value_fetch_lazy (arg1);
2366
2367 if (value_lazy (arg1))
2368 v = allocate_value_lazy (type);
2369 else
2370 {
2371 v = allocate_value (type);
2372 memcpy (value_contents_raw (v),
2373 value_contents_raw (arg1) + offset,
2374 TYPE_LENGTH (type));
2375 }
2376 v->offset = (value_offset (arg1) + offset
2377 + value_embedded_offset (arg1));
2378 }
2379 set_value_component_location (v, arg1);
2380 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2381 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2382 return v;
2383 }
2384
2385 /* Given a value ARG1 of a struct or union type,
2386 extract and return the value of one of its (non-static) fields.
2387 FIELDNO says which field. */
2388
2389 struct value *
2390 value_field (struct value *arg1, int fieldno)
2391 {
2392 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2393 }
2394
2395 /* Return a non-virtual function as a value.
2396 F is the list of member functions which contains the desired method.
2397 J is an index into F which provides the desired method.
2398
2399 We only use the symbol for its address, so be happy with either a
2400 full symbol or a minimal symbol. */
2401
2402 struct value *
2403 value_fn_field (struct value **arg1p, struct fn_field *f,
2404 int j, struct type *type,
2405 int offset)
2406 {
2407 struct value *v;
2408 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2409 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2410 struct symbol *sym;
2411 struct minimal_symbol *msym;
2412
2413 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2414 if (sym != NULL)
2415 {
2416 msym = NULL;
2417 }
2418 else
2419 {
2420 gdb_assert (sym == NULL);
2421 msym = lookup_minimal_symbol (physname, NULL, NULL);
2422 if (msym == NULL)
2423 return NULL;
2424 }
2425
2426 v = allocate_value (ftype);
2427 if (sym)
2428 {
2429 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2430 }
2431 else
2432 {
2433 /* The minimal symbol might point to a function descriptor;
2434 resolve it to the actual code address instead. */
2435 struct objfile *objfile = msymbol_objfile (msym);
2436 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2437
2438 set_value_address (v,
2439 gdbarch_convert_from_func_ptr_addr
2440 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2441 }
2442
2443 if (arg1p)
2444 {
2445 if (type != value_type (*arg1p))
2446 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2447 value_addr (*arg1p)));
2448
2449 /* Move the `this' pointer according to the offset.
2450 VALUE_OFFSET (*arg1p) += offset; */
2451 }
2452
2453 return v;
2454 }
2455
2456 \f
2457 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2458 object at VALADDR. The bitfield starts at BITPOS bits and contains
2459 BITSIZE bits.
2460
2461 Extracting bits depends on endianness of the machine. Compute the
2462 number of least significant bits to discard. For big endian machines,
2463 we compute the total number of bits in the anonymous object, subtract
2464 off the bit count from the MSB of the object to the MSB of the
2465 bitfield, then the size of the bitfield, which leaves the LSB discard
2466 count. For little endian machines, the discard count is simply the
2467 number of bits from the LSB of the anonymous object to the LSB of the
2468 bitfield.
2469
2470 If the field is signed, we also do sign extension. */
2471
2472 LONGEST
2473 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2474 int bitpos, int bitsize)
2475 {
2476 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2477 ULONGEST val;
2478 ULONGEST valmask;
2479 int lsbcount;
2480 int bytes_read;
2481
2482 /* Read the minimum number of bytes required; there may not be
2483 enough bytes to read an entire ULONGEST. */
2484 CHECK_TYPEDEF (field_type);
2485 if (bitsize)
2486 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2487 else
2488 bytes_read = TYPE_LENGTH (field_type);
2489
2490 val = extract_unsigned_integer (valaddr + bitpos / 8,
2491 bytes_read, byte_order);
2492
2493 /* Extract bits. See comment above. */
2494
2495 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2496 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2497 else
2498 lsbcount = (bitpos % 8);
2499 val >>= lsbcount;
2500
2501 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2502 If the field is signed, and is negative, then sign extend. */
2503
2504 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2505 {
2506 valmask = (((ULONGEST) 1) << bitsize) - 1;
2507 val &= valmask;
2508 if (!TYPE_UNSIGNED (field_type))
2509 {
2510 if (val & (valmask ^ (valmask >> 1)))
2511 {
2512 val |= ~valmask;
2513 }
2514 }
2515 }
2516 return (val);
2517 }
2518
2519 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2520 VALADDR. See unpack_bits_as_long for more details. */
2521
2522 LONGEST
2523 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2524 {
2525 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2526 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2527 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2528
2529 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2530 }
2531
2532 /* Modify the value of a bitfield. ADDR points to a block of memory in
2533 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2534 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2535 indicate which bits (in target bit order) comprise the bitfield.
2536 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2537 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2538
2539 void
2540 modify_field (struct type *type, gdb_byte *addr,
2541 LONGEST fieldval, int bitpos, int bitsize)
2542 {
2543 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2544 ULONGEST oword;
2545 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2546 int bytesize;
2547
2548 /* Normalize BITPOS. */
2549 addr += bitpos / 8;
2550 bitpos %= 8;
2551
2552 /* If a negative fieldval fits in the field in question, chop
2553 off the sign extension bits. */
2554 if ((~fieldval & ~(mask >> 1)) == 0)
2555 fieldval &= mask;
2556
2557 /* Warn if value is too big to fit in the field in question. */
2558 if (0 != (fieldval & ~mask))
2559 {
2560 /* FIXME: would like to include fieldval in the message, but
2561 we don't have a sprintf_longest. */
2562 warning (_("Value does not fit in %d bits."), bitsize);
2563
2564 /* Truncate it, otherwise adjoining fields may be corrupted. */
2565 fieldval &= mask;
2566 }
2567
2568 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2569 false valgrind reports. */
2570
2571 bytesize = (bitpos + bitsize + 7) / 8;
2572 oword = extract_unsigned_integer (addr, bytesize, byte_order);
2573
2574 /* Shifting for bit field depends on endianness of the target machine. */
2575 if (gdbarch_bits_big_endian (get_type_arch (type)))
2576 bitpos = bytesize * 8 - bitpos - bitsize;
2577
2578 oword &= ~(mask << bitpos);
2579 oword |= fieldval << bitpos;
2580
2581 store_unsigned_integer (addr, bytesize, byte_order, oword);
2582 }
2583 \f
2584 /* Pack NUM into BUF using a target format of TYPE. */
2585
2586 void
2587 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2588 {
2589 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2590 int len;
2591
2592 type = check_typedef (type);
2593 len = TYPE_LENGTH (type);
2594
2595 switch (TYPE_CODE (type))
2596 {
2597 case TYPE_CODE_INT:
2598 case TYPE_CODE_CHAR:
2599 case TYPE_CODE_ENUM:
2600 case TYPE_CODE_FLAGS:
2601 case TYPE_CODE_BOOL:
2602 case TYPE_CODE_RANGE:
2603 case TYPE_CODE_MEMBERPTR:
2604 store_signed_integer (buf, len, byte_order, num);
2605 break;
2606
2607 case TYPE_CODE_REF:
2608 case TYPE_CODE_PTR:
2609 store_typed_address (buf, type, (CORE_ADDR) num);
2610 break;
2611
2612 default:
2613 error (_("Unexpected type (%d) encountered for integer constant."),
2614 TYPE_CODE (type));
2615 }
2616 }
2617
2618
2619 /* Pack NUM into BUF using a target format of TYPE. */
2620
2621 void
2622 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2623 {
2624 int len;
2625 enum bfd_endian byte_order;
2626
2627 type = check_typedef (type);
2628 len = TYPE_LENGTH (type);
2629 byte_order = gdbarch_byte_order (get_type_arch (type));
2630
2631 switch (TYPE_CODE (type))
2632 {
2633 case TYPE_CODE_INT:
2634 case TYPE_CODE_CHAR:
2635 case TYPE_CODE_ENUM:
2636 case TYPE_CODE_FLAGS:
2637 case TYPE_CODE_BOOL:
2638 case TYPE_CODE_RANGE:
2639 case TYPE_CODE_MEMBERPTR:
2640 store_unsigned_integer (buf, len, byte_order, num);
2641 break;
2642
2643 case TYPE_CODE_REF:
2644 case TYPE_CODE_PTR:
2645 store_typed_address (buf, type, (CORE_ADDR) num);
2646 break;
2647
2648 default:
2649 error (_("Unexpected type (%d) encountered "
2650 "for unsigned integer constant."),
2651 TYPE_CODE (type));
2652 }
2653 }
2654
2655
2656 /* Convert C numbers into newly allocated values. */
2657
2658 struct value *
2659 value_from_longest (struct type *type, LONGEST num)
2660 {
2661 struct value *val = allocate_value (type);
2662
2663 pack_long (value_contents_raw (val), type, num);
2664 return val;
2665 }
2666
2667
2668 /* Convert C unsigned numbers into newly allocated values. */
2669
2670 struct value *
2671 value_from_ulongest (struct type *type, ULONGEST num)
2672 {
2673 struct value *val = allocate_value (type);
2674
2675 pack_unsigned_long (value_contents_raw (val), type, num);
2676
2677 return val;
2678 }
2679
2680
2681 /* Create a value representing a pointer of type TYPE to the address
2682 ADDR. */
2683 struct value *
2684 value_from_pointer (struct type *type, CORE_ADDR addr)
2685 {
2686 struct value *val = allocate_value (type);
2687
2688 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2689 return val;
2690 }
2691
2692
2693 /* Create a value of type TYPE whose contents come from VALADDR, if it
2694 is non-null, and whose memory address (in the inferior) is
2695 ADDRESS. */
2696
2697 struct value *
2698 value_from_contents_and_address (struct type *type,
2699 const gdb_byte *valaddr,
2700 CORE_ADDR address)
2701 {
2702 struct value *v;
2703
2704 if (valaddr == NULL)
2705 v = allocate_value_lazy (type);
2706 else
2707 {
2708 v = allocate_value (type);
2709 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2710 }
2711 set_value_address (v, address);
2712 VALUE_LVAL (v) = lval_memory;
2713 return v;
2714 }
2715
2716 struct value *
2717 value_from_double (struct type *type, DOUBLEST num)
2718 {
2719 struct value *val = allocate_value (type);
2720 struct type *base_type = check_typedef (type);
2721 enum type_code code = TYPE_CODE (base_type);
2722
2723 if (code == TYPE_CODE_FLT)
2724 {
2725 store_typed_floating (value_contents_raw (val), base_type, num);
2726 }
2727 else
2728 error (_("Unexpected type encountered for floating constant."));
2729
2730 return val;
2731 }
2732
2733 struct value *
2734 value_from_decfloat (struct type *type, const gdb_byte *dec)
2735 {
2736 struct value *val = allocate_value (type);
2737
2738 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2739 return val;
2740 }
2741
2742 struct value *
2743 coerce_ref (struct value *arg)
2744 {
2745 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2746
2747 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2748 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2749 unpack_pointer (value_type (arg),
2750 value_contents (arg)));
2751 return arg;
2752 }
2753
2754 struct value *
2755 coerce_array (struct value *arg)
2756 {
2757 struct type *type;
2758
2759 arg = coerce_ref (arg);
2760 type = check_typedef (value_type (arg));
2761
2762 switch (TYPE_CODE (type))
2763 {
2764 case TYPE_CODE_ARRAY:
2765 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
2766 arg = value_coerce_array (arg);
2767 break;
2768 case TYPE_CODE_FUNC:
2769 arg = value_coerce_function (arg);
2770 break;
2771 }
2772 return arg;
2773 }
2774 \f
2775
2776 /* Return true if the function returning the specified type is using
2777 the convention of returning structures in memory (passing in the
2778 address as a hidden first parameter). */
2779
2780 int
2781 using_struct_return (struct gdbarch *gdbarch,
2782 struct type *func_type, struct type *value_type)
2783 {
2784 enum type_code code = TYPE_CODE (value_type);
2785
2786 if (code == TYPE_CODE_ERROR)
2787 error (_("Function return type unknown."));
2788
2789 if (code == TYPE_CODE_VOID)
2790 /* A void return value is never in memory. See also corresponding
2791 code in "print_return_value". */
2792 return 0;
2793
2794 /* Probe the architecture for the return-value convention. */
2795 return (gdbarch_return_value (gdbarch, func_type, value_type,
2796 NULL, NULL, NULL)
2797 != RETURN_VALUE_REGISTER_CONVENTION);
2798 }
2799
2800 /* Set the initialized field in a value struct. */
2801
2802 void
2803 set_value_initialized (struct value *val, int status)
2804 {
2805 val->initialized = status;
2806 }
2807
2808 /* Return the initialized field in a value struct. */
2809
2810 int
2811 value_initialized (struct value *val)
2812 {
2813 return val->initialized;
2814 }
2815
2816 void
2817 _initialize_values (void)
2818 {
2819 add_cmd ("convenience", no_class, show_convenience, _("\
2820 Debugger convenience (\"$foo\") variables.\n\
2821 These variables are created when you assign them values;\n\
2822 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2823 \n\
2824 A few convenience variables are given values automatically:\n\
2825 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2826 \"$__\" holds the contents of the last address examined with \"x\"."),
2827 &showlist);
2828
2829 add_cmd ("values", no_class, show_values, _("\
2830 Elements of value history around item number IDX (or last ten)."),
2831 &showlist);
2832
2833 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2834 Initialize a convenience variable if necessary.\n\
2835 init-if-undefined VARIABLE = EXPRESSION\n\
2836 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2837 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2838 VARIABLE is already initialized."));
2839
2840 add_prefix_cmd ("function", no_class, function_command, _("\
2841 Placeholder command for showing help on convenience functions."),
2842 &functionlist, "function ", 0, &cmdlist);
2843 }