gdb/
[binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 #include "tracepoint.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 struct value
173 {
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 int modifiable;
180
181 /* Location of value (if lval). */
182 union
183 {
184 /* If lval == lval_memory, this is the address in the inferior.
185 If lval == lval_register, this is the byte offset into the
186 registers structure. */
187 CORE_ADDR address;
188
189 /* Pointer to internal variable. */
190 struct internalvar *internalvar;
191
192 /* If lval == lval_computed, this is a set of function pointers
193 to use to access and describe the value, and a closure pointer
194 for them to use. */
195 struct
196 {
197 struct lval_funcs *funcs; /* Functions to call. */
198 void *closure; /* Closure for those functions to use. */
199 } computed;
200 } location;
201
202 /* Describes offset of a value within lval of a structure in bytes.
203 If lval == lval_memory, this is an offset to the address. If
204 lval == lval_register, this is a further offset from
205 location.address within the registers structure. Note also the
206 member embedded_offset below. */
207 int offset;
208
209 /* Only used for bitfields; number of bits contained in them. */
210 int bitsize;
211
212 /* Only used for bitfields; position of start of field. For
213 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
214 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
215 int bitpos;
216
217 /* Only used for bitfields; the containing value. This allows a
218 single read from the target when displaying multiple
219 bitfields. */
220 struct value *parent;
221
222 /* Frame register value is relative to. This will be described in
223 the lval enum above as "lval_register". */
224 struct frame_id frame_id;
225
226 /* Type of the value. */
227 struct type *type;
228
229 /* If a value represents a C++ object, then the `type' field gives
230 the object's compile-time type. If the object actually belongs
231 to some class derived from `type', perhaps with other base
232 classes and additional members, then `type' is just a subobject
233 of the real thing, and the full object is probably larger than
234 `type' would suggest.
235
236 If `type' is a dynamic class (i.e. one with a vtable), then GDB
237 can actually determine the object's run-time type by looking at
238 the run-time type information in the vtable. When this
239 information is available, we may elect to read in the entire
240 object, for several reasons:
241
242 - When printing the value, the user would probably rather see the
243 full object, not just the limited portion apparent from the
244 compile-time type.
245
246 - If `type' has virtual base classes, then even printing `type'
247 alone may require reaching outside the `type' portion of the
248 object to wherever the virtual base class has been stored.
249
250 When we store the entire object, `enclosing_type' is the run-time
251 type -- the complete object -- and `embedded_offset' is the
252 offset of `type' within that larger type, in bytes. The
253 value_contents() macro takes `embedded_offset' into account, so
254 most GDB code continues to see the `type' portion of the value,
255 just as the inferior would.
256
257 If `type' is a pointer to an object, then `enclosing_type' is a
258 pointer to the object's run-time type, and `pointed_to_offset' is
259 the offset in bytes from the full object to the pointed-to object
260 -- that is, the value `embedded_offset' would have if we followed
261 the pointer and fetched the complete object. (I don't really see
262 the point. Why not just determine the run-time type when you
263 indirect, and avoid the special case? The contents don't matter
264 until you indirect anyway.)
265
266 If we're not doing anything fancy, `enclosing_type' is equal to
267 `type', and `embedded_offset' is zero, so everything works
268 normally. */
269 struct type *enclosing_type;
270 int embedded_offset;
271 int pointed_to_offset;
272
273 /* Values are stored in a chain, so that they can be deleted easily
274 over calls to the inferior. Values assigned to internal
275 variables, put into the value history or exposed to Python are
276 taken off this list. */
277 struct value *next;
278
279 /* Register number if the value is from a register. */
280 short regnum;
281
282 /* If zero, contents of this value are in the contents field. If
283 nonzero, contents are in inferior. If the lval field is lval_memory,
284 the contents are in inferior memory at location.address plus offset.
285 The lval field may also be lval_register.
286
287 WARNING: This field is used by the code which handles watchpoints
288 (see breakpoint.c) to decide whether a particular value can be
289 watched by hardware watchpoints. If the lazy flag is set for
290 some member of a value chain, it is assumed that this member of
291 the chain doesn't need to be watched as part of watching the
292 value itself. This is how GDB avoids watching the entire struct
293 or array when the user wants to watch a single struct member or
294 array element. If you ever change the way lazy flag is set and
295 reset, be sure to consider this use as well! */
296 char lazy;
297
298 /* If nonzero, this is the value of a variable which does not
299 actually exist in the program. */
300 char optimized_out;
301
302 /* If value is a variable, is it initialized or not. */
303 int initialized;
304
305 /* If value is from the stack. If this is set, read_stack will be
306 used instead of read_memory to enable extra caching. */
307 int stack;
308
309 /* Actual contents of the value. Target byte-order. NULL or not
310 valid if lazy is nonzero. */
311 gdb_byte *contents;
312
313 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
314 rather than available, since the common and default case is for a
315 value to be available. This is filled in at value read time. */
316 VEC(range_s) *unavailable;
317
318 /* The number of references to this value. When a value is created,
319 the value chain holds a reference, so REFERENCE_COUNT is 1. If
320 release_value is called, this value is removed from the chain but
321 the caller of release_value now has a reference to this value.
322 The caller must arrange for a call to value_free later. */
323 int reference_count;
324 };
325
326 int
327 value_bytes_available (const struct value *value, int offset, int length)
328 {
329 gdb_assert (!value->lazy);
330
331 return !ranges_contain (value->unavailable, offset, length);
332 }
333
334 void
335 mark_value_bytes_unavailable (struct value *value, int offset, int length)
336 {
337 range_s newr;
338 int i;
339
340 /* Insert the range sorted. If there's overlap or the new range
341 would be contiguous with an existing range, merge. */
342
343 newr.offset = offset;
344 newr.length = length;
345
346 /* Do a binary search for the position the given range would be
347 inserted if we only considered the starting OFFSET of ranges.
348 Call that position I. Since we also have LENGTH to care for
349 (this is a range afterall), we need to check if the _previous_
350 range overlaps the I range. E.g., calling R the new range:
351
352 #1 - overlaps with previous
353
354 R
355 |-...-|
356 |---| |---| |------| ... |--|
357 0 1 2 N
358
359 I=1
360
361 In the case #1 above, the binary search would return `I=1',
362 meaning, this OFFSET should be inserted at position 1, and the
363 current position 1 should be pushed further (and become 2). But,
364 note that `0' overlaps with R, so we want to merge them.
365
366 A similar consideration needs to be taken if the new range would
367 be contiguous with the previous range:
368
369 #2 - contiguous with previous
370
371 R
372 |-...-|
373 |--| |---| |------| ... |--|
374 0 1 2 N
375
376 I=1
377
378 If there's no overlap with the previous range, as in:
379
380 #3 - not overlapping and not contiguous
381
382 R
383 |-...-|
384 |--| |---| |------| ... |--|
385 0 1 2 N
386
387 I=1
388
389 or if I is 0:
390
391 #4 - R is the range with lowest offset
392
393 R
394 |-...-|
395 |--| |---| |------| ... |--|
396 0 1 2 N
397
398 I=0
399
400 ... we just push the new range to I.
401
402 All the 4 cases above need to consider that the new range may
403 also overlap several of the ranges that follow, or that R may be
404 contiguous with the following range, and merge. E.g.,
405
406 #5 - overlapping following ranges
407
408 R
409 |------------------------|
410 |--| |---| |------| ... |--|
411 0 1 2 N
412
413 I=0
414
415 or:
416
417 R
418 |-------|
419 |--| |---| |------| ... |--|
420 0 1 2 N
421
422 I=1
423
424 */
425
426 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
427 if (i > 0)
428 {
429 struct range *bef = VEC_index (range_s, value->unavailable, i - i);
430
431 if (ranges_overlap (bef->offset, bef->length, offset, length))
432 {
433 /* #1 */
434 ULONGEST l = min (bef->offset, offset);
435 ULONGEST h = max (bef->offset + bef->length, offset + length);
436
437 bef->offset = l;
438 bef->length = h - l;
439 i--;
440 }
441 else if (offset == bef->offset + bef->length)
442 {
443 /* #2 */
444 bef->length += length;
445 i--;
446 }
447 else
448 {
449 /* #3 */
450 VEC_safe_insert (range_s, value->unavailable, i, &newr);
451 }
452 }
453 else
454 {
455 /* #4 */
456 VEC_safe_insert (range_s, value->unavailable, i, &newr);
457 }
458
459 /* Check whether the ranges following the one we've just added or
460 touched can be folded in (#5 above). */
461 if (i + 1 < VEC_length (range_s, value->unavailable))
462 {
463 struct range *t;
464 struct range *r;
465 int removed = 0;
466 int next = i + 1;
467
468 /* Get the range we just touched. */
469 t = VEC_index (range_s, value->unavailable, i);
470 removed = 0;
471
472 i = next;
473 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
474 if (r->offset <= t->offset + t->length)
475 {
476 ULONGEST l, h;
477
478 l = min (t->offset, r->offset);
479 h = max (t->offset + t->length, r->offset + r->length);
480
481 t->offset = l;
482 t->length = h - l;
483
484 removed++;
485 }
486 else
487 {
488 /* If we couldn't merge this one, we won't be able to
489 merge following ones either, since the ranges are
490 always sorted by OFFSET. */
491 break;
492 }
493
494 if (removed != 0)
495 VEC_block_remove (range_s, value->unavailable, next, removed);
496 }
497 }
498
499 /* Find the first range in RANGES that overlaps the range defined by
500 OFFSET and LENGTH, starting at element POS in the RANGES vector,
501 Returns the index into RANGES where such overlapping range was
502 found, or -1 if none was found. */
503
504 static int
505 find_first_range_overlap (VEC(range_s) *ranges, int pos,
506 int offset, int length)
507 {
508 range_s *r;
509 int i;
510
511 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
512 if (ranges_overlap (r->offset, r->length, offset, length))
513 return i;
514
515 return -1;
516 }
517
518 int
519 value_available_contents_eq (const struct value *val1, int offset1,
520 const struct value *val2, int offset2,
521 int length)
522 {
523 int org_len = length;
524 int org_offset1 = offset1;
525 int org_offset2 = offset2;
526 int idx1 = 0, idx2 = 0;
527 int prev_avail;
528
529 /* This routine is used by printing routines, where we should
530 already have read the value. Note that we only know whether a
531 value chunk is available if we've tried to read it. */
532 gdb_assert (!val1->lazy && !val2->lazy);
533
534 /* The offset from either ORG_OFFSET1 or ORG_OFFSET2 where the
535 available contents we haven't compared yet start. */
536 prev_avail = 0;
537
538 while (length > 0)
539 {
540 range_s *r1, *r2;
541 ULONGEST l1, h1;
542 ULONGEST l2, h2;
543
544 idx1 = find_first_range_overlap (val1->unavailable, idx1,
545 offset1, length);
546 idx2 = find_first_range_overlap (val2->unavailable, idx2,
547 offset2, length);
548
549 /* The usual case is for both values to be completely available. */
550 if (idx1 == -1 && idx2 == -1)
551 return (memcmp (val1->contents + org_offset1 + prev_avail,
552 val2->contents + org_offset2 + prev_avail,
553 org_len - prev_avail) == 0);
554 /* The contents only match equal if the available set matches as
555 well. */
556 else if (idx1 == -1 || idx2 == -1)
557 return 0;
558
559 gdb_assert (idx1 != -1 && idx2 != -1);
560
561 r1 = VEC_index (range_s, val1->unavailable, idx1);
562 r2 = VEC_index (range_s, val2->unavailable, idx2);
563
564 /* Get the unavailable windows intersected by the incoming
565 ranges. The first and last ranges that overlap the argument
566 range may be wider than said incoming arguments ranges. */
567 l1 = max (offset1, r1->offset);
568 h1 = min (offset1 + length, r1->offset + r1->length);
569
570 l2 = max (offset2, r2->offset);
571 h2 = min (offset2 + length, r2->offset + r2->length);
572
573 /* Make them relative to the respective start offsets, so we can
574 compare them for equality. */
575 l1 -= offset1;
576 h1 -= offset1;
577
578 l2 -= offset2;
579 h2 -= offset2;
580
581 /* Different availability, no match. */
582 if (l1 != l2 || h1 != h2)
583 return 0;
584
585 /* Compare the _available_ contents. */
586 if (memcmp (val1->contents + org_offset1 + prev_avail,
587 val2->contents + org_offset2 + prev_avail,
588 l2 - prev_avail) != 0)
589 return 0;
590
591 prev_avail += h1;
592 length -= h1;
593 offset1 += h1;
594 offset2 += h1;
595 }
596
597 return 1;
598 }
599
600 /* Prototypes for local functions. */
601
602 static void show_values (char *, int);
603
604 static void show_convenience (char *, int);
605
606
607 /* The value-history records all the values printed
608 by print commands during this session. Each chunk
609 records 60 consecutive values. The first chunk on
610 the chain records the most recent values.
611 The total number of values is in value_history_count. */
612
613 #define VALUE_HISTORY_CHUNK 60
614
615 struct value_history_chunk
616 {
617 struct value_history_chunk *next;
618 struct value *values[VALUE_HISTORY_CHUNK];
619 };
620
621 /* Chain of chunks now in use. */
622
623 static struct value_history_chunk *value_history_chain;
624
625 static int value_history_count; /* Abs number of last entry stored. */
626
627 \f
628 /* List of all value objects currently allocated
629 (except for those released by calls to release_value)
630 This is so they can be freed after each command. */
631
632 static struct value *all_values;
633
634 /* Allocate a lazy value for type TYPE. Its actual content is
635 "lazily" allocated too: the content field of the return value is
636 NULL; it will be allocated when it is fetched from the target. */
637
638 struct value *
639 allocate_value_lazy (struct type *type)
640 {
641 struct value *val;
642
643 /* Call check_typedef on our type to make sure that, if TYPE
644 is a TYPE_CODE_TYPEDEF, its length is set to the length
645 of the target type instead of zero. However, we do not
646 replace the typedef type by the target type, because we want
647 to keep the typedef in order to be able to set the VAL's type
648 description correctly. */
649 check_typedef (type);
650
651 val = (struct value *) xzalloc (sizeof (struct value));
652 val->contents = NULL;
653 val->next = all_values;
654 all_values = val;
655 val->type = type;
656 val->enclosing_type = type;
657 VALUE_LVAL (val) = not_lval;
658 val->location.address = 0;
659 VALUE_FRAME_ID (val) = null_frame_id;
660 val->offset = 0;
661 val->bitpos = 0;
662 val->bitsize = 0;
663 VALUE_REGNUM (val) = -1;
664 val->lazy = 1;
665 val->optimized_out = 0;
666 val->embedded_offset = 0;
667 val->pointed_to_offset = 0;
668 val->modifiable = 1;
669 val->initialized = 1; /* Default to initialized. */
670
671 /* Values start out on the all_values chain. */
672 val->reference_count = 1;
673
674 return val;
675 }
676
677 /* Allocate the contents of VAL if it has not been allocated yet. */
678
679 void
680 allocate_value_contents (struct value *val)
681 {
682 if (!val->contents)
683 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
684 }
685
686 /* Allocate a value and its contents for type TYPE. */
687
688 struct value *
689 allocate_value (struct type *type)
690 {
691 struct value *val = allocate_value_lazy (type);
692
693 allocate_value_contents (val);
694 val->lazy = 0;
695 return val;
696 }
697
698 /* Allocate a value that has the correct length
699 for COUNT repetitions of type TYPE. */
700
701 struct value *
702 allocate_repeat_value (struct type *type, int count)
703 {
704 int low_bound = current_language->string_lower_bound; /* ??? */
705 /* FIXME-type-allocation: need a way to free this type when we are
706 done with it. */
707 struct type *array_type
708 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
709
710 return allocate_value (array_type);
711 }
712
713 struct value *
714 allocate_computed_value (struct type *type,
715 struct lval_funcs *funcs,
716 void *closure)
717 {
718 struct value *v = allocate_value_lazy (type);
719
720 VALUE_LVAL (v) = lval_computed;
721 v->location.computed.funcs = funcs;
722 v->location.computed.closure = closure;
723
724 return v;
725 }
726
727 /* Accessor methods. */
728
729 struct value *
730 value_next (struct value *value)
731 {
732 return value->next;
733 }
734
735 struct type *
736 value_type (const struct value *value)
737 {
738 return value->type;
739 }
740 void
741 deprecated_set_value_type (struct value *value, struct type *type)
742 {
743 value->type = type;
744 }
745
746 int
747 value_offset (const struct value *value)
748 {
749 return value->offset;
750 }
751 void
752 set_value_offset (struct value *value, int offset)
753 {
754 value->offset = offset;
755 }
756
757 int
758 value_bitpos (const struct value *value)
759 {
760 return value->bitpos;
761 }
762 void
763 set_value_bitpos (struct value *value, int bit)
764 {
765 value->bitpos = bit;
766 }
767
768 int
769 value_bitsize (const struct value *value)
770 {
771 return value->bitsize;
772 }
773 void
774 set_value_bitsize (struct value *value, int bit)
775 {
776 value->bitsize = bit;
777 }
778
779 struct value *
780 value_parent (struct value *value)
781 {
782 return value->parent;
783 }
784
785 gdb_byte *
786 value_contents_raw (struct value *value)
787 {
788 allocate_value_contents (value);
789 return value->contents + value->embedded_offset;
790 }
791
792 gdb_byte *
793 value_contents_all_raw (struct value *value)
794 {
795 allocate_value_contents (value);
796 return value->contents;
797 }
798
799 struct type *
800 value_enclosing_type (struct value *value)
801 {
802 return value->enclosing_type;
803 }
804
805 static void
806 require_not_optimized_out (const struct value *value)
807 {
808 if (value->optimized_out)
809 error (_("value has been optimized out"));
810 }
811
812 static void
813 require_available (const struct value *value)
814 {
815 if (!VEC_empty (range_s, value->unavailable))
816 error (_("value is not available"));
817 }
818
819 const gdb_byte *
820 value_contents_for_printing (struct value *value)
821 {
822 if (value->lazy)
823 value_fetch_lazy (value);
824 return value->contents;
825 }
826
827 const gdb_byte *
828 value_contents_for_printing_const (const struct value *value)
829 {
830 gdb_assert (!value->lazy);
831 return value->contents;
832 }
833
834 const gdb_byte *
835 value_contents_all (struct value *value)
836 {
837 const gdb_byte *result = value_contents_for_printing (value);
838 require_not_optimized_out (value);
839 require_available (value);
840 return result;
841 }
842
843 int
844 value_lazy (struct value *value)
845 {
846 return value->lazy;
847 }
848
849 void
850 set_value_lazy (struct value *value, int val)
851 {
852 value->lazy = val;
853 }
854
855 int
856 value_stack (struct value *value)
857 {
858 return value->stack;
859 }
860
861 void
862 set_value_stack (struct value *value, int val)
863 {
864 value->stack = val;
865 }
866
867 const gdb_byte *
868 value_contents (struct value *value)
869 {
870 const gdb_byte *result = value_contents_writeable (value);
871 require_not_optimized_out (value);
872 require_available (value);
873 return result;
874 }
875
876 gdb_byte *
877 value_contents_writeable (struct value *value)
878 {
879 if (value->lazy)
880 value_fetch_lazy (value);
881 return value_contents_raw (value);
882 }
883
884 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
885 this function is different from value_equal; in C the operator ==
886 can return 0 even if the two values being compared are equal. */
887
888 int
889 value_contents_equal (struct value *val1, struct value *val2)
890 {
891 struct type *type1;
892 struct type *type2;
893 int len;
894
895 type1 = check_typedef (value_type (val1));
896 type2 = check_typedef (value_type (val2));
897 len = TYPE_LENGTH (type1);
898 if (len != TYPE_LENGTH (type2))
899 return 0;
900
901 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
902 }
903
904 int
905 value_optimized_out (struct value *value)
906 {
907 return value->optimized_out;
908 }
909
910 void
911 set_value_optimized_out (struct value *value, int val)
912 {
913 value->optimized_out = val;
914 }
915
916 int
917 value_entirely_optimized_out (const struct value *value)
918 {
919 if (!value->optimized_out)
920 return 0;
921 if (value->lval != lval_computed
922 || !value->location.computed.funcs->check_any_valid)
923 return 1;
924 return !value->location.computed.funcs->check_any_valid (value);
925 }
926
927 int
928 value_bits_valid (const struct value *value, int offset, int length)
929 {
930 if (value == NULL || !value->optimized_out)
931 return 1;
932 if (value->lval != lval_computed
933 || !value->location.computed.funcs->check_validity)
934 return 0;
935 return value->location.computed.funcs->check_validity (value, offset,
936 length);
937 }
938
939 int
940 value_bits_synthetic_pointer (const struct value *value,
941 int offset, int length)
942 {
943 if (value == NULL || value->lval != lval_computed
944 || !value->location.computed.funcs->check_synthetic_pointer)
945 return 0;
946 return value->location.computed.funcs->check_synthetic_pointer (value,
947 offset,
948 length);
949 }
950
951 int
952 value_embedded_offset (struct value *value)
953 {
954 return value->embedded_offset;
955 }
956
957 void
958 set_value_embedded_offset (struct value *value, int val)
959 {
960 value->embedded_offset = val;
961 }
962
963 int
964 value_pointed_to_offset (struct value *value)
965 {
966 return value->pointed_to_offset;
967 }
968
969 void
970 set_value_pointed_to_offset (struct value *value, int val)
971 {
972 value->pointed_to_offset = val;
973 }
974
975 struct lval_funcs *
976 value_computed_funcs (struct value *v)
977 {
978 gdb_assert (VALUE_LVAL (v) == lval_computed);
979
980 return v->location.computed.funcs;
981 }
982
983 void *
984 value_computed_closure (const struct value *v)
985 {
986 gdb_assert (v->lval == lval_computed);
987
988 return v->location.computed.closure;
989 }
990
991 enum lval_type *
992 deprecated_value_lval_hack (struct value *value)
993 {
994 return &value->lval;
995 }
996
997 CORE_ADDR
998 value_address (const struct value *value)
999 {
1000 if (value->lval == lval_internalvar
1001 || value->lval == lval_internalvar_component)
1002 return 0;
1003 return value->location.address + value->offset;
1004 }
1005
1006 CORE_ADDR
1007 value_raw_address (struct value *value)
1008 {
1009 if (value->lval == lval_internalvar
1010 || value->lval == lval_internalvar_component)
1011 return 0;
1012 return value->location.address;
1013 }
1014
1015 void
1016 set_value_address (struct value *value, CORE_ADDR addr)
1017 {
1018 gdb_assert (value->lval != lval_internalvar
1019 && value->lval != lval_internalvar_component);
1020 value->location.address = addr;
1021 }
1022
1023 struct internalvar **
1024 deprecated_value_internalvar_hack (struct value *value)
1025 {
1026 return &value->location.internalvar;
1027 }
1028
1029 struct frame_id *
1030 deprecated_value_frame_id_hack (struct value *value)
1031 {
1032 return &value->frame_id;
1033 }
1034
1035 short *
1036 deprecated_value_regnum_hack (struct value *value)
1037 {
1038 return &value->regnum;
1039 }
1040
1041 int
1042 deprecated_value_modifiable (struct value *value)
1043 {
1044 return value->modifiable;
1045 }
1046 void
1047 deprecated_set_value_modifiable (struct value *value, int modifiable)
1048 {
1049 value->modifiable = modifiable;
1050 }
1051 \f
1052 /* Return a mark in the value chain. All values allocated after the
1053 mark is obtained (except for those released) are subject to being freed
1054 if a subsequent value_free_to_mark is passed the mark. */
1055 struct value *
1056 value_mark (void)
1057 {
1058 return all_values;
1059 }
1060
1061 /* Take a reference to VAL. VAL will not be deallocated until all
1062 references are released. */
1063
1064 void
1065 value_incref (struct value *val)
1066 {
1067 val->reference_count++;
1068 }
1069
1070 /* Release a reference to VAL, which was acquired with value_incref.
1071 This function is also called to deallocate values from the value
1072 chain. */
1073
1074 void
1075 value_free (struct value *val)
1076 {
1077 if (val)
1078 {
1079 gdb_assert (val->reference_count > 0);
1080 val->reference_count--;
1081 if (val->reference_count > 0)
1082 return;
1083
1084 /* If there's an associated parent value, drop our reference to
1085 it. */
1086 if (val->parent != NULL)
1087 value_free (val->parent);
1088
1089 if (VALUE_LVAL (val) == lval_computed)
1090 {
1091 struct lval_funcs *funcs = val->location.computed.funcs;
1092
1093 if (funcs->free_closure)
1094 funcs->free_closure (val);
1095 }
1096
1097 xfree (val->contents);
1098 VEC_free (range_s, val->unavailable);
1099 }
1100 xfree (val);
1101 }
1102
1103 /* Free all values allocated since MARK was obtained by value_mark
1104 (except for those released). */
1105 void
1106 value_free_to_mark (struct value *mark)
1107 {
1108 struct value *val;
1109 struct value *next;
1110
1111 for (val = all_values; val && val != mark; val = next)
1112 {
1113 next = val->next;
1114 value_free (val);
1115 }
1116 all_values = val;
1117 }
1118
1119 /* Free all the values that have been allocated (except for those released).
1120 Call after each command, successful or not.
1121 In practice this is called before each command, which is sufficient. */
1122
1123 void
1124 free_all_values (void)
1125 {
1126 struct value *val;
1127 struct value *next;
1128
1129 for (val = all_values; val; val = next)
1130 {
1131 next = val->next;
1132 value_free (val);
1133 }
1134
1135 all_values = 0;
1136 }
1137
1138 /* Frees all the elements in a chain of values. */
1139
1140 void
1141 free_value_chain (struct value *v)
1142 {
1143 struct value *next;
1144
1145 for (; v; v = next)
1146 {
1147 next = value_next (v);
1148 value_free (v);
1149 }
1150 }
1151
1152 /* Remove VAL from the chain all_values
1153 so it will not be freed automatically. */
1154
1155 void
1156 release_value (struct value *val)
1157 {
1158 struct value *v;
1159
1160 if (all_values == val)
1161 {
1162 all_values = val->next;
1163 val->next = NULL;
1164 return;
1165 }
1166
1167 for (v = all_values; v; v = v->next)
1168 {
1169 if (v->next == val)
1170 {
1171 v->next = val->next;
1172 val->next = NULL;
1173 break;
1174 }
1175 }
1176 }
1177
1178 /* Release all values up to mark */
1179 struct value *
1180 value_release_to_mark (struct value *mark)
1181 {
1182 struct value *val;
1183 struct value *next;
1184
1185 for (val = next = all_values; next; next = next->next)
1186 if (next->next == mark)
1187 {
1188 all_values = next->next;
1189 next->next = NULL;
1190 return val;
1191 }
1192 all_values = 0;
1193 return val;
1194 }
1195
1196 /* Return a copy of the value ARG.
1197 It contains the same contents, for same memory address,
1198 but it's a different block of storage. */
1199
1200 struct value *
1201 value_copy (struct value *arg)
1202 {
1203 struct type *encl_type = value_enclosing_type (arg);
1204 struct value *val;
1205
1206 if (value_lazy (arg))
1207 val = allocate_value_lazy (encl_type);
1208 else
1209 val = allocate_value (encl_type);
1210 val->type = arg->type;
1211 VALUE_LVAL (val) = VALUE_LVAL (arg);
1212 val->location = arg->location;
1213 val->offset = arg->offset;
1214 val->bitpos = arg->bitpos;
1215 val->bitsize = arg->bitsize;
1216 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1217 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1218 val->lazy = arg->lazy;
1219 val->optimized_out = arg->optimized_out;
1220 val->embedded_offset = value_embedded_offset (arg);
1221 val->pointed_to_offset = arg->pointed_to_offset;
1222 val->modifiable = arg->modifiable;
1223 if (!value_lazy (val))
1224 {
1225 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1226 TYPE_LENGTH (value_enclosing_type (arg)));
1227
1228 }
1229 val->unavailable = VEC_copy (range_s, arg->unavailable);
1230 val->parent = arg->parent;
1231 if (val->parent)
1232 value_incref (val->parent);
1233 if (VALUE_LVAL (val) == lval_computed)
1234 {
1235 struct lval_funcs *funcs = val->location.computed.funcs;
1236
1237 if (funcs->copy_closure)
1238 val->location.computed.closure = funcs->copy_closure (val);
1239 }
1240 return val;
1241 }
1242
1243 /* Return a version of ARG that is non-lvalue. */
1244
1245 struct value *
1246 value_non_lval (struct value *arg)
1247 {
1248 if (VALUE_LVAL (arg) != not_lval)
1249 {
1250 struct type *enc_type = value_enclosing_type (arg);
1251 struct value *val = allocate_value (enc_type);
1252
1253 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1254 TYPE_LENGTH (enc_type));
1255 val->type = arg->type;
1256 set_value_embedded_offset (val, value_embedded_offset (arg));
1257 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1258 return val;
1259 }
1260 return arg;
1261 }
1262
1263 void
1264 set_value_component_location (struct value *component,
1265 const struct value *whole)
1266 {
1267 if (whole->lval == lval_internalvar)
1268 VALUE_LVAL (component) = lval_internalvar_component;
1269 else
1270 VALUE_LVAL (component) = whole->lval;
1271
1272 component->location = whole->location;
1273 if (whole->lval == lval_computed)
1274 {
1275 struct lval_funcs *funcs = whole->location.computed.funcs;
1276
1277 if (funcs->copy_closure)
1278 component->location.computed.closure = funcs->copy_closure (whole);
1279 }
1280 }
1281
1282 \f
1283 /* Access to the value history. */
1284
1285 /* Record a new value in the value history.
1286 Returns the absolute history index of the entry.
1287 Result of -1 indicates the value was not saved; otherwise it is the
1288 value history index of this new item. */
1289
1290 int
1291 record_latest_value (struct value *val)
1292 {
1293 int i;
1294
1295 /* We don't want this value to have anything to do with the inferior anymore.
1296 In particular, "set $1 = 50" should not affect the variable from which
1297 the value was taken, and fast watchpoints should be able to assume that
1298 a value on the value history never changes. */
1299 if (value_lazy (val))
1300 value_fetch_lazy (val);
1301 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1302 from. This is a bit dubious, because then *&$1 does not just return $1
1303 but the current contents of that location. c'est la vie... */
1304 val->modifiable = 0;
1305 release_value (val);
1306
1307 /* Here we treat value_history_count as origin-zero
1308 and applying to the value being stored now. */
1309
1310 i = value_history_count % VALUE_HISTORY_CHUNK;
1311 if (i == 0)
1312 {
1313 struct value_history_chunk *new
1314 = (struct value_history_chunk *)
1315
1316 xmalloc (sizeof (struct value_history_chunk));
1317 memset (new->values, 0, sizeof new->values);
1318 new->next = value_history_chain;
1319 value_history_chain = new;
1320 }
1321
1322 value_history_chain->values[i] = val;
1323
1324 /* Now we regard value_history_count as origin-one
1325 and applying to the value just stored. */
1326
1327 return ++value_history_count;
1328 }
1329
1330 /* Return a copy of the value in the history with sequence number NUM. */
1331
1332 struct value *
1333 access_value_history (int num)
1334 {
1335 struct value_history_chunk *chunk;
1336 int i;
1337 int absnum = num;
1338
1339 if (absnum <= 0)
1340 absnum += value_history_count;
1341
1342 if (absnum <= 0)
1343 {
1344 if (num == 0)
1345 error (_("The history is empty."));
1346 else if (num == 1)
1347 error (_("There is only one value in the history."));
1348 else
1349 error (_("History does not go back to $$%d."), -num);
1350 }
1351 if (absnum > value_history_count)
1352 error (_("History has not yet reached $%d."), absnum);
1353
1354 absnum--;
1355
1356 /* Now absnum is always absolute and origin zero. */
1357
1358 chunk = value_history_chain;
1359 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1360 - absnum / VALUE_HISTORY_CHUNK;
1361 i > 0; i--)
1362 chunk = chunk->next;
1363
1364 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1365 }
1366
1367 static void
1368 show_values (char *num_exp, int from_tty)
1369 {
1370 int i;
1371 struct value *val;
1372 static int num = 1;
1373
1374 if (num_exp)
1375 {
1376 /* "show values +" should print from the stored position.
1377 "show values <exp>" should print around value number <exp>. */
1378 if (num_exp[0] != '+' || num_exp[1] != '\0')
1379 num = parse_and_eval_long (num_exp) - 5;
1380 }
1381 else
1382 {
1383 /* "show values" means print the last 10 values. */
1384 num = value_history_count - 9;
1385 }
1386
1387 if (num <= 0)
1388 num = 1;
1389
1390 for (i = num; i < num + 10 && i <= value_history_count; i++)
1391 {
1392 struct value_print_options opts;
1393
1394 val = access_value_history (i);
1395 printf_filtered (("$%d = "), i);
1396 get_user_print_options (&opts);
1397 value_print (val, gdb_stdout, &opts);
1398 printf_filtered (("\n"));
1399 }
1400
1401 /* The next "show values +" should start after what we just printed. */
1402 num += 10;
1403
1404 /* Hitting just return after this command should do the same thing as
1405 "show values +". If num_exp is null, this is unnecessary, since
1406 "show values +" is not useful after "show values". */
1407 if (from_tty && num_exp)
1408 {
1409 num_exp[0] = '+';
1410 num_exp[1] = '\0';
1411 }
1412 }
1413 \f
1414 /* Internal variables. These are variables within the debugger
1415 that hold values assigned by debugger commands.
1416 The user refers to them with a '$' prefix
1417 that does not appear in the variable names stored internally. */
1418
1419 struct internalvar
1420 {
1421 struct internalvar *next;
1422 char *name;
1423
1424 /* We support various different kinds of content of an internal variable.
1425 enum internalvar_kind specifies the kind, and union internalvar_data
1426 provides the data associated with this particular kind. */
1427
1428 enum internalvar_kind
1429 {
1430 /* The internal variable is empty. */
1431 INTERNALVAR_VOID,
1432
1433 /* The value of the internal variable is provided directly as
1434 a GDB value object. */
1435 INTERNALVAR_VALUE,
1436
1437 /* A fresh value is computed via a call-back routine on every
1438 access to the internal variable. */
1439 INTERNALVAR_MAKE_VALUE,
1440
1441 /* The internal variable holds a GDB internal convenience function. */
1442 INTERNALVAR_FUNCTION,
1443
1444 /* The variable holds an integer value. */
1445 INTERNALVAR_INTEGER,
1446
1447 /* The variable holds a GDB-provided string. */
1448 INTERNALVAR_STRING,
1449
1450 } kind;
1451
1452 union internalvar_data
1453 {
1454 /* A value object used with INTERNALVAR_VALUE. */
1455 struct value *value;
1456
1457 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1458 internalvar_make_value make_value;
1459
1460 /* The internal function used with INTERNALVAR_FUNCTION. */
1461 struct
1462 {
1463 struct internal_function *function;
1464 /* True if this is the canonical name for the function. */
1465 int canonical;
1466 } fn;
1467
1468 /* An integer value used with INTERNALVAR_INTEGER. */
1469 struct
1470 {
1471 /* If type is non-NULL, it will be used as the type to generate
1472 a value for this internal variable. If type is NULL, a default
1473 integer type for the architecture is used. */
1474 struct type *type;
1475 LONGEST val;
1476 } integer;
1477
1478 /* A string value used with INTERNALVAR_STRING. */
1479 char *string;
1480 } u;
1481 };
1482
1483 static struct internalvar *internalvars;
1484
1485 /* If the variable does not already exist create it and give it the
1486 value given. If no value is given then the default is zero. */
1487 static void
1488 init_if_undefined_command (char* args, int from_tty)
1489 {
1490 struct internalvar* intvar;
1491
1492 /* Parse the expression - this is taken from set_command(). */
1493 struct expression *expr = parse_expression (args);
1494 register struct cleanup *old_chain =
1495 make_cleanup (free_current_contents, &expr);
1496
1497 /* Validate the expression.
1498 Was the expression an assignment?
1499 Or even an expression at all? */
1500 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1501 error (_("Init-if-undefined requires an assignment expression."));
1502
1503 /* Extract the variable from the parsed expression.
1504 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1505 if (expr->elts[1].opcode != OP_INTERNALVAR)
1506 error (_("The first parameter to init-if-undefined "
1507 "should be a GDB variable."));
1508 intvar = expr->elts[2].internalvar;
1509
1510 /* Only evaluate the expression if the lvalue is void.
1511 This may still fail if the expresssion is invalid. */
1512 if (intvar->kind == INTERNALVAR_VOID)
1513 evaluate_expression (expr);
1514
1515 do_cleanups (old_chain);
1516 }
1517
1518
1519 /* Look up an internal variable with name NAME. NAME should not
1520 normally include a dollar sign.
1521
1522 If the specified internal variable does not exist,
1523 the return value is NULL. */
1524
1525 struct internalvar *
1526 lookup_only_internalvar (const char *name)
1527 {
1528 struct internalvar *var;
1529
1530 for (var = internalvars; var; var = var->next)
1531 if (strcmp (var->name, name) == 0)
1532 return var;
1533
1534 return NULL;
1535 }
1536
1537
1538 /* Create an internal variable with name NAME and with a void value.
1539 NAME should not normally include a dollar sign. */
1540
1541 struct internalvar *
1542 create_internalvar (const char *name)
1543 {
1544 struct internalvar *var;
1545
1546 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1547 var->name = concat (name, (char *)NULL);
1548 var->kind = INTERNALVAR_VOID;
1549 var->next = internalvars;
1550 internalvars = var;
1551 return var;
1552 }
1553
1554 /* Create an internal variable with name NAME and register FUN as the
1555 function that value_of_internalvar uses to create a value whenever
1556 this variable is referenced. NAME should not normally include a
1557 dollar sign. */
1558
1559 struct internalvar *
1560 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1561 {
1562 struct internalvar *var = create_internalvar (name);
1563
1564 var->kind = INTERNALVAR_MAKE_VALUE;
1565 var->u.make_value = fun;
1566 return var;
1567 }
1568
1569 /* Look up an internal variable with name NAME. NAME should not
1570 normally include a dollar sign.
1571
1572 If the specified internal variable does not exist,
1573 one is created, with a void value. */
1574
1575 struct internalvar *
1576 lookup_internalvar (const char *name)
1577 {
1578 struct internalvar *var;
1579
1580 var = lookup_only_internalvar (name);
1581 if (var)
1582 return var;
1583
1584 return create_internalvar (name);
1585 }
1586
1587 /* Return current value of internal variable VAR. For variables that
1588 are not inherently typed, use a value type appropriate for GDBARCH. */
1589
1590 struct value *
1591 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1592 {
1593 struct value *val;
1594 struct trace_state_variable *tsv;
1595
1596 /* If there is a trace state variable of the same name, assume that
1597 is what we really want to see. */
1598 tsv = find_trace_state_variable (var->name);
1599 if (tsv)
1600 {
1601 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1602 &(tsv->value));
1603 if (tsv->value_known)
1604 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1605 tsv->value);
1606 else
1607 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1608 return val;
1609 }
1610
1611 switch (var->kind)
1612 {
1613 case INTERNALVAR_VOID:
1614 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1615 break;
1616
1617 case INTERNALVAR_FUNCTION:
1618 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1619 break;
1620
1621 case INTERNALVAR_INTEGER:
1622 if (!var->u.integer.type)
1623 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1624 var->u.integer.val);
1625 else
1626 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1627 break;
1628
1629 case INTERNALVAR_STRING:
1630 val = value_cstring (var->u.string, strlen (var->u.string),
1631 builtin_type (gdbarch)->builtin_char);
1632 break;
1633
1634 case INTERNALVAR_VALUE:
1635 val = value_copy (var->u.value);
1636 if (value_lazy (val))
1637 value_fetch_lazy (val);
1638 break;
1639
1640 case INTERNALVAR_MAKE_VALUE:
1641 val = (*var->u.make_value) (gdbarch, var);
1642 break;
1643
1644 default:
1645 internal_error (__FILE__, __LINE__, _("bad kind"));
1646 }
1647
1648 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1649 on this value go back to affect the original internal variable.
1650
1651 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1652 no underlying modifyable state in the internal variable.
1653
1654 Likewise, if the variable's value is a computed lvalue, we want
1655 references to it to produce another computed lvalue, where
1656 references and assignments actually operate through the
1657 computed value's functions.
1658
1659 This means that internal variables with computed values
1660 behave a little differently from other internal variables:
1661 assignments to them don't just replace the previous value
1662 altogether. At the moment, this seems like the behavior we
1663 want. */
1664
1665 if (var->kind != INTERNALVAR_MAKE_VALUE
1666 && val->lval != lval_computed)
1667 {
1668 VALUE_LVAL (val) = lval_internalvar;
1669 VALUE_INTERNALVAR (val) = var;
1670 }
1671
1672 return val;
1673 }
1674
1675 int
1676 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1677 {
1678 if (var->kind == INTERNALVAR_INTEGER)
1679 {
1680 *result = var->u.integer.val;
1681 return 1;
1682 }
1683
1684 if (var->kind == INTERNALVAR_VALUE)
1685 {
1686 struct type *type = check_typedef (value_type (var->u.value));
1687
1688 if (TYPE_CODE (type) == TYPE_CODE_INT)
1689 {
1690 *result = value_as_long (var->u.value);
1691 return 1;
1692 }
1693 }
1694
1695 return 0;
1696 }
1697
1698 static int
1699 get_internalvar_function (struct internalvar *var,
1700 struct internal_function **result)
1701 {
1702 switch (var->kind)
1703 {
1704 case INTERNALVAR_FUNCTION:
1705 *result = var->u.fn.function;
1706 return 1;
1707
1708 default:
1709 return 0;
1710 }
1711 }
1712
1713 void
1714 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1715 int bitsize, struct value *newval)
1716 {
1717 gdb_byte *addr;
1718
1719 switch (var->kind)
1720 {
1721 case INTERNALVAR_VALUE:
1722 addr = value_contents_writeable (var->u.value);
1723
1724 if (bitsize)
1725 modify_field (value_type (var->u.value), addr + offset,
1726 value_as_long (newval), bitpos, bitsize);
1727 else
1728 memcpy (addr + offset, value_contents (newval),
1729 TYPE_LENGTH (value_type (newval)));
1730 break;
1731
1732 default:
1733 /* We can never get a component of any other kind. */
1734 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1735 }
1736 }
1737
1738 void
1739 set_internalvar (struct internalvar *var, struct value *val)
1740 {
1741 enum internalvar_kind new_kind;
1742 union internalvar_data new_data = { 0 };
1743
1744 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1745 error (_("Cannot overwrite convenience function %s"), var->name);
1746
1747 /* Prepare new contents. */
1748 switch (TYPE_CODE (check_typedef (value_type (val))))
1749 {
1750 case TYPE_CODE_VOID:
1751 new_kind = INTERNALVAR_VOID;
1752 break;
1753
1754 case TYPE_CODE_INTERNAL_FUNCTION:
1755 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1756 new_kind = INTERNALVAR_FUNCTION;
1757 get_internalvar_function (VALUE_INTERNALVAR (val),
1758 &new_data.fn.function);
1759 /* Copies created here are never canonical. */
1760 break;
1761
1762 default:
1763 new_kind = INTERNALVAR_VALUE;
1764 new_data.value = value_copy (val);
1765 new_data.value->modifiable = 1;
1766
1767 /* Force the value to be fetched from the target now, to avoid problems
1768 later when this internalvar is referenced and the target is gone or
1769 has changed. */
1770 if (value_lazy (new_data.value))
1771 value_fetch_lazy (new_data.value);
1772
1773 /* Release the value from the value chain to prevent it from being
1774 deleted by free_all_values. From here on this function should not
1775 call error () until new_data is installed into the var->u to avoid
1776 leaking memory. */
1777 release_value (new_data.value);
1778 break;
1779 }
1780
1781 /* Clean up old contents. */
1782 clear_internalvar (var);
1783
1784 /* Switch over. */
1785 var->kind = new_kind;
1786 var->u = new_data;
1787 /* End code which must not call error(). */
1788 }
1789
1790 void
1791 set_internalvar_integer (struct internalvar *var, LONGEST l)
1792 {
1793 /* Clean up old contents. */
1794 clear_internalvar (var);
1795
1796 var->kind = INTERNALVAR_INTEGER;
1797 var->u.integer.type = NULL;
1798 var->u.integer.val = l;
1799 }
1800
1801 void
1802 set_internalvar_string (struct internalvar *var, const char *string)
1803 {
1804 /* Clean up old contents. */
1805 clear_internalvar (var);
1806
1807 var->kind = INTERNALVAR_STRING;
1808 var->u.string = xstrdup (string);
1809 }
1810
1811 static void
1812 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1813 {
1814 /* Clean up old contents. */
1815 clear_internalvar (var);
1816
1817 var->kind = INTERNALVAR_FUNCTION;
1818 var->u.fn.function = f;
1819 var->u.fn.canonical = 1;
1820 /* Variables installed here are always the canonical version. */
1821 }
1822
1823 void
1824 clear_internalvar (struct internalvar *var)
1825 {
1826 /* Clean up old contents. */
1827 switch (var->kind)
1828 {
1829 case INTERNALVAR_VALUE:
1830 value_free (var->u.value);
1831 break;
1832
1833 case INTERNALVAR_STRING:
1834 xfree (var->u.string);
1835 break;
1836
1837 default:
1838 break;
1839 }
1840
1841 /* Reset to void kind. */
1842 var->kind = INTERNALVAR_VOID;
1843 }
1844
1845 char *
1846 internalvar_name (struct internalvar *var)
1847 {
1848 return var->name;
1849 }
1850
1851 static struct internal_function *
1852 create_internal_function (const char *name,
1853 internal_function_fn handler, void *cookie)
1854 {
1855 struct internal_function *ifn = XNEW (struct internal_function);
1856
1857 ifn->name = xstrdup (name);
1858 ifn->handler = handler;
1859 ifn->cookie = cookie;
1860 return ifn;
1861 }
1862
1863 char *
1864 value_internal_function_name (struct value *val)
1865 {
1866 struct internal_function *ifn;
1867 int result;
1868
1869 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1870 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1871 gdb_assert (result);
1872
1873 return ifn->name;
1874 }
1875
1876 struct value *
1877 call_internal_function (struct gdbarch *gdbarch,
1878 const struct language_defn *language,
1879 struct value *func, int argc, struct value **argv)
1880 {
1881 struct internal_function *ifn;
1882 int result;
1883
1884 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1885 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1886 gdb_assert (result);
1887
1888 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1889 }
1890
1891 /* The 'function' command. This does nothing -- it is just a
1892 placeholder to let "help function NAME" work. This is also used as
1893 the implementation of the sub-command that is created when
1894 registering an internal function. */
1895 static void
1896 function_command (char *command, int from_tty)
1897 {
1898 /* Do nothing. */
1899 }
1900
1901 /* Clean up if an internal function's command is destroyed. */
1902 static void
1903 function_destroyer (struct cmd_list_element *self, void *ignore)
1904 {
1905 xfree (self->name);
1906 xfree (self->doc);
1907 }
1908
1909 /* Add a new internal function. NAME is the name of the function; DOC
1910 is a documentation string describing the function. HANDLER is
1911 called when the function is invoked. COOKIE is an arbitrary
1912 pointer which is passed to HANDLER and is intended for "user
1913 data". */
1914 void
1915 add_internal_function (const char *name, const char *doc,
1916 internal_function_fn handler, void *cookie)
1917 {
1918 struct cmd_list_element *cmd;
1919 struct internal_function *ifn;
1920 struct internalvar *var = lookup_internalvar (name);
1921
1922 ifn = create_internal_function (name, handler, cookie);
1923 set_internalvar_function (var, ifn);
1924
1925 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1926 &functionlist);
1927 cmd->destroyer = function_destroyer;
1928 }
1929
1930 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1931 prevent cycles / duplicates. */
1932
1933 void
1934 preserve_one_value (struct value *value, struct objfile *objfile,
1935 htab_t copied_types)
1936 {
1937 if (TYPE_OBJFILE (value->type) == objfile)
1938 value->type = copy_type_recursive (objfile, value->type, copied_types);
1939
1940 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1941 value->enclosing_type = copy_type_recursive (objfile,
1942 value->enclosing_type,
1943 copied_types);
1944 }
1945
1946 /* Likewise for internal variable VAR. */
1947
1948 static void
1949 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1950 htab_t copied_types)
1951 {
1952 switch (var->kind)
1953 {
1954 case INTERNALVAR_INTEGER:
1955 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1956 var->u.integer.type
1957 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1958 break;
1959
1960 case INTERNALVAR_VALUE:
1961 preserve_one_value (var->u.value, objfile, copied_types);
1962 break;
1963 }
1964 }
1965
1966 /* Update the internal variables and value history when OBJFILE is
1967 discarded; we must copy the types out of the objfile. New global types
1968 will be created for every convenience variable which currently points to
1969 this objfile's types, and the convenience variables will be adjusted to
1970 use the new global types. */
1971
1972 void
1973 preserve_values (struct objfile *objfile)
1974 {
1975 htab_t copied_types;
1976 struct value_history_chunk *cur;
1977 struct internalvar *var;
1978 int i;
1979
1980 /* Create the hash table. We allocate on the objfile's obstack, since
1981 it is soon to be deleted. */
1982 copied_types = create_copied_types_hash (objfile);
1983
1984 for (cur = value_history_chain; cur; cur = cur->next)
1985 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1986 if (cur->values[i])
1987 preserve_one_value (cur->values[i], objfile, copied_types);
1988
1989 for (var = internalvars; var; var = var->next)
1990 preserve_one_internalvar (var, objfile, copied_types);
1991
1992 preserve_python_values (objfile, copied_types);
1993
1994 htab_delete (copied_types);
1995 }
1996
1997 static void
1998 show_convenience (char *ignore, int from_tty)
1999 {
2000 struct gdbarch *gdbarch = get_current_arch ();
2001 struct internalvar *var;
2002 int varseen = 0;
2003 struct value_print_options opts;
2004
2005 get_user_print_options (&opts);
2006 for (var = internalvars; var; var = var->next)
2007 {
2008 if (!varseen)
2009 {
2010 varseen = 1;
2011 }
2012 printf_filtered (("$%s = "), var->name);
2013 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
2014 &opts);
2015 printf_filtered (("\n"));
2016 }
2017 if (!varseen)
2018 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2019 "Convenience variables have "
2020 "names starting with \"$\";\n"
2021 "use \"set\" as in \"set "
2022 "$foo = 5\" to define them.\n"));
2023 }
2024 \f
2025 /* Extract a value as a C number (either long or double).
2026 Knows how to convert fixed values to double, or
2027 floating values to long.
2028 Does not deallocate the value. */
2029
2030 LONGEST
2031 value_as_long (struct value *val)
2032 {
2033 /* This coerces arrays and functions, which is necessary (e.g.
2034 in disassemble_command). It also dereferences references, which
2035 I suspect is the most logical thing to do. */
2036 val = coerce_array (val);
2037 return unpack_long (value_type (val), value_contents (val));
2038 }
2039
2040 DOUBLEST
2041 value_as_double (struct value *val)
2042 {
2043 DOUBLEST foo;
2044 int inv;
2045
2046 foo = unpack_double (value_type (val), value_contents (val), &inv);
2047 if (inv)
2048 error (_("Invalid floating value found in program."));
2049 return foo;
2050 }
2051
2052 /* Extract a value as a C pointer. Does not deallocate the value.
2053 Note that val's type may not actually be a pointer; value_as_long
2054 handles all the cases. */
2055 CORE_ADDR
2056 value_as_address (struct value *val)
2057 {
2058 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2059
2060 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2061 whether we want this to be true eventually. */
2062 #if 0
2063 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2064 non-address (e.g. argument to "signal", "info break", etc.), or
2065 for pointers to char, in which the low bits *are* significant. */
2066 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2067 #else
2068
2069 /* There are several targets (IA-64, PowerPC, and others) which
2070 don't represent pointers to functions as simply the address of
2071 the function's entry point. For example, on the IA-64, a
2072 function pointer points to a two-word descriptor, generated by
2073 the linker, which contains the function's entry point, and the
2074 value the IA-64 "global pointer" register should have --- to
2075 support position-independent code. The linker generates
2076 descriptors only for those functions whose addresses are taken.
2077
2078 On such targets, it's difficult for GDB to convert an arbitrary
2079 function address into a function pointer; it has to either find
2080 an existing descriptor for that function, or call malloc and
2081 build its own. On some targets, it is impossible for GDB to
2082 build a descriptor at all: the descriptor must contain a jump
2083 instruction; data memory cannot be executed; and code memory
2084 cannot be modified.
2085
2086 Upon entry to this function, if VAL is a value of type `function'
2087 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2088 value_address (val) is the address of the function. This is what
2089 you'll get if you evaluate an expression like `main'. The call
2090 to COERCE_ARRAY below actually does all the usual unary
2091 conversions, which includes converting values of type `function'
2092 to `pointer to function'. This is the challenging conversion
2093 discussed above. Then, `unpack_long' will convert that pointer
2094 back into an address.
2095
2096 So, suppose the user types `disassemble foo' on an architecture
2097 with a strange function pointer representation, on which GDB
2098 cannot build its own descriptors, and suppose further that `foo'
2099 has no linker-built descriptor. The address->pointer conversion
2100 will signal an error and prevent the command from running, even
2101 though the next step would have been to convert the pointer
2102 directly back into the same address.
2103
2104 The following shortcut avoids this whole mess. If VAL is a
2105 function, just return its address directly. */
2106 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2107 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2108 return value_address (val);
2109
2110 val = coerce_array (val);
2111
2112 /* Some architectures (e.g. Harvard), map instruction and data
2113 addresses onto a single large unified address space. For
2114 instance: An architecture may consider a large integer in the
2115 range 0x10000000 .. 0x1000ffff to already represent a data
2116 addresses (hence not need a pointer to address conversion) while
2117 a small integer would still need to be converted integer to
2118 pointer to address. Just assume such architectures handle all
2119 integer conversions in a single function. */
2120
2121 /* JimB writes:
2122
2123 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2124 must admonish GDB hackers to make sure its behavior matches the
2125 compiler's, whenever possible.
2126
2127 In general, I think GDB should evaluate expressions the same way
2128 the compiler does. When the user copies an expression out of
2129 their source code and hands it to a `print' command, they should
2130 get the same value the compiler would have computed. Any
2131 deviation from this rule can cause major confusion and annoyance,
2132 and needs to be justified carefully. In other words, GDB doesn't
2133 really have the freedom to do these conversions in clever and
2134 useful ways.
2135
2136 AndrewC pointed out that users aren't complaining about how GDB
2137 casts integers to pointers; they are complaining that they can't
2138 take an address from a disassembly listing and give it to `x/i'.
2139 This is certainly important.
2140
2141 Adding an architecture method like integer_to_address() certainly
2142 makes it possible for GDB to "get it right" in all circumstances
2143 --- the target has complete control over how things get done, so
2144 people can Do The Right Thing for their target without breaking
2145 anyone else. The standard doesn't specify how integers get
2146 converted to pointers; usually, the ABI doesn't either, but
2147 ABI-specific code is a more reasonable place to handle it. */
2148
2149 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2150 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2151 && gdbarch_integer_to_address_p (gdbarch))
2152 return gdbarch_integer_to_address (gdbarch, value_type (val),
2153 value_contents (val));
2154
2155 return unpack_long (value_type (val), value_contents (val));
2156 #endif
2157 }
2158 \f
2159 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2160 as a long, or as a double, assuming the raw data is described
2161 by type TYPE. Knows how to convert different sizes of values
2162 and can convert between fixed and floating point. We don't assume
2163 any alignment for the raw data. Return value is in host byte order.
2164
2165 If you want functions and arrays to be coerced to pointers, and
2166 references to be dereferenced, call value_as_long() instead.
2167
2168 C++: It is assumed that the front-end has taken care of
2169 all matters concerning pointers to members. A pointer
2170 to member which reaches here is considered to be equivalent
2171 to an INT (or some size). After all, it is only an offset. */
2172
2173 LONGEST
2174 unpack_long (struct type *type, const gdb_byte *valaddr)
2175 {
2176 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2177 enum type_code code = TYPE_CODE (type);
2178 int len = TYPE_LENGTH (type);
2179 int nosign = TYPE_UNSIGNED (type);
2180
2181 switch (code)
2182 {
2183 case TYPE_CODE_TYPEDEF:
2184 return unpack_long (check_typedef (type), valaddr);
2185 case TYPE_CODE_ENUM:
2186 case TYPE_CODE_FLAGS:
2187 case TYPE_CODE_BOOL:
2188 case TYPE_CODE_INT:
2189 case TYPE_CODE_CHAR:
2190 case TYPE_CODE_RANGE:
2191 case TYPE_CODE_MEMBERPTR:
2192 if (nosign)
2193 return extract_unsigned_integer (valaddr, len, byte_order);
2194 else
2195 return extract_signed_integer (valaddr, len, byte_order);
2196
2197 case TYPE_CODE_FLT:
2198 return extract_typed_floating (valaddr, type);
2199
2200 case TYPE_CODE_DECFLOAT:
2201 /* libdecnumber has a function to convert from decimal to integer, but
2202 it doesn't work when the decimal number has a fractional part. */
2203 return decimal_to_doublest (valaddr, len, byte_order);
2204
2205 case TYPE_CODE_PTR:
2206 case TYPE_CODE_REF:
2207 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2208 whether we want this to be true eventually. */
2209 return extract_typed_address (valaddr, type);
2210
2211 default:
2212 error (_("Value can't be converted to integer."));
2213 }
2214 return 0; /* Placate lint. */
2215 }
2216
2217 /* Return a double value from the specified type and address.
2218 INVP points to an int which is set to 0 for valid value,
2219 1 for invalid value (bad float format). In either case,
2220 the returned double is OK to use. Argument is in target
2221 format, result is in host format. */
2222
2223 DOUBLEST
2224 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2225 {
2226 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2227 enum type_code code;
2228 int len;
2229 int nosign;
2230
2231 *invp = 0; /* Assume valid. */
2232 CHECK_TYPEDEF (type);
2233 code = TYPE_CODE (type);
2234 len = TYPE_LENGTH (type);
2235 nosign = TYPE_UNSIGNED (type);
2236 if (code == TYPE_CODE_FLT)
2237 {
2238 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2239 floating-point value was valid (using the macro
2240 INVALID_FLOAT). That test/macro have been removed.
2241
2242 It turns out that only the VAX defined this macro and then
2243 only in a non-portable way. Fixing the portability problem
2244 wouldn't help since the VAX floating-point code is also badly
2245 bit-rotten. The target needs to add definitions for the
2246 methods gdbarch_float_format and gdbarch_double_format - these
2247 exactly describe the target floating-point format. The
2248 problem here is that the corresponding floatformat_vax_f and
2249 floatformat_vax_d values these methods should be set to are
2250 also not defined either. Oops!
2251
2252 Hopefully someone will add both the missing floatformat
2253 definitions and the new cases for floatformat_is_valid (). */
2254
2255 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2256 {
2257 *invp = 1;
2258 return 0.0;
2259 }
2260
2261 return extract_typed_floating (valaddr, type);
2262 }
2263 else if (code == TYPE_CODE_DECFLOAT)
2264 return decimal_to_doublest (valaddr, len, byte_order);
2265 else if (nosign)
2266 {
2267 /* Unsigned -- be sure we compensate for signed LONGEST. */
2268 return (ULONGEST) unpack_long (type, valaddr);
2269 }
2270 else
2271 {
2272 /* Signed -- we are OK with unpack_long. */
2273 return unpack_long (type, valaddr);
2274 }
2275 }
2276
2277 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2278 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2279 We don't assume any alignment for the raw data. Return value is in
2280 host byte order.
2281
2282 If you want functions and arrays to be coerced to pointers, and
2283 references to be dereferenced, call value_as_address() instead.
2284
2285 C++: It is assumed that the front-end has taken care of
2286 all matters concerning pointers to members. A pointer
2287 to member which reaches here is considered to be equivalent
2288 to an INT (or some size). After all, it is only an offset. */
2289
2290 CORE_ADDR
2291 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2292 {
2293 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2294 whether we want this to be true eventually. */
2295 return unpack_long (type, valaddr);
2296 }
2297
2298 \f
2299 /* Get the value of the FIELDNO'th field (which must be static) of
2300 TYPE. Return NULL if the field doesn't exist or has been
2301 optimized out. */
2302
2303 struct value *
2304 value_static_field (struct type *type, int fieldno)
2305 {
2306 struct value *retval;
2307
2308 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2309 {
2310 case FIELD_LOC_KIND_PHYSADDR:
2311 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2312 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2313 break;
2314 case FIELD_LOC_KIND_PHYSNAME:
2315 {
2316 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2317 /* TYPE_FIELD_NAME (type, fieldno); */
2318 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2319
2320 if (sym == NULL)
2321 {
2322 /* With some compilers, e.g. HP aCC, static data members are
2323 reported as non-debuggable symbols. */
2324 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2325 NULL, NULL);
2326
2327 if (!msym)
2328 return NULL;
2329 else
2330 {
2331 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2332 SYMBOL_VALUE_ADDRESS (msym));
2333 }
2334 }
2335 else
2336 retval = value_of_variable (sym, NULL);
2337 break;
2338 }
2339 default:
2340 gdb_assert_not_reached ("unexpected field location kind");
2341 }
2342
2343 return retval;
2344 }
2345
2346 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2347 You have to be careful here, since the size of the data area for the value
2348 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2349 than the old enclosing type, you have to allocate more space for the
2350 data. */
2351
2352 void
2353 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2354 {
2355 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2356 val->contents =
2357 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2358
2359 val->enclosing_type = new_encl_type;
2360 }
2361
2362 /* Given a value ARG1 (offset by OFFSET bytes)
2363 of a struct or union type ARG_TYPE,
2364 extract and return the value of one of its (non-static) fields.
2365 FIELDNO says which field. */
2366
2367 struct value *
2368 value_primitive_field (struct value *arg1, int offset,
2369 int fieldno, struct type *arg_type)
2370 {
2371 struct value *v;
2372 struct type *type;
2373
2374 CHECK_TYPEDEF (arg_type);
2375 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2376
2377 /* Call check_typedef on our type to make sure that, if TYPE
2378 is a TYPE_CODE_TYPEDEF, its length is set to the length
2379 of the target type instead of zero. However, we do not
2380 replace the typedef type by the target type, because we want
2381 to keep the typedef in order to be able to print the type
2382 description correctly. */
2383 check_typedef (type);
2384
2385 /* Handle packed fields */
2386
2387 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2388 {
2389 /* Create a new value for the bitfield, with bitpos and bitsize
2390 set. If possible, arrange offset and bitpos so that we can
2391 do a single aligned read of the size of the containing type.
2392 Otherwise, adjust offset to the byte containing the first
2393 bit. Assume that the address, offset, and embedded offset
2394 are sufficiently aligned. */
2395 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2396 int container_bitsize = TYPE_LENGTH (type) * 8;
2397
2398 v = allocate_value_lazy (type);
2399 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2400 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2401 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2402 v->bitpos = bitpos % container_bitsize;
2403 else
2404 v->bitpos = bitpos % 8;
2405 v->offset = (value_embedded_offset (arg1)
2406 + offset
2407 + (bitpos - v->bitpos) / 8);
2408 v->parent = arg1;
2409 value_incref (v->parent);
2410 if (!value_lazy (arg1))
2411 value_fetch_lazy (v);
2412 }
2413 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2414 {
2415 /* This field is actually a base subobject, so preserve the
2416 entire object's contents for later references to virtual
2417 bases, etc. */
2418
2419 /* Lazy register values with offsets are not supported. */
2420 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2421 value_fetch_lazy (arg1);
2422
2423 if (value_lazy (arg1))
2424 v = allocate_value_lazy (value_enclosing_type (arg1));
2425 else
2426 {
2427 v = allocate_value (value_enclosing_type (arg1));
2428 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2429 TYPE_LENGTH (value_enclosing_type (arg1)));
2430 }
2431 v->type = type;
2432 v->offset = value_offset (arg1);
2433 v->embedded_offset = (offset + value_embedded_offset (arg1)
2434 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2435 }
2436 else
2437 {
2438 /* Plain old data member */
2439 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2440
2441 /* Lazy register values with offsets are not supported. */
2442 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2443 value_fetch_lazy (arg1);
2444
2445 if (value_lazy (arg1))
2446 v = allocate_value_lazy (type);
2447 else
2448 {
2449 v = allocate_value (type);
2450 memcpy (value_contents_raw (v),
2451 value_contents_raw (arg1) + offset,
2452 TYPE_LENGTH (type));
2453 }
2454 v->offset = (value_offset (arg1) + offset
2455 + value_embedded_offset (arg1));
2456 }
2457 set_value_component_location (v, arg1);
2458 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2459 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2460 return v;
2461 }
2462
2463 /* Given a value ARG1 of a struct or union type,
2464 extract and return the value of one of its (non-static) fields.
2465 FIELDNO says which field. */
2466
2467 struct value *
2468 value_field (struct value *arg1, int fieldno)
2469 {
2470 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2471 }
2472
2473 /* Return a non-virtual function as a value.
2474 F is the list of member functions which contains the desired method.
2475 J is an index into F which provides the desired method.
2476
2477 We only use the symbol for its address, so be happy with either a
2478 full symbol or a minimal symbol. */
2479
2480 struct value *
2481 value_fn_field (struct value **arg1p, struct fn_field *f,
2482 int j, struct type *type,
2483 int offset)
2484 {
2485 struct value *v;
2486 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2487 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2488 struct symbol *sym;
2489 struct minimal_symbol *msym;
2490
2491 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2492 if (sym != NULL)
2493 {
2494 msym = NULL;
2495 }
2496 else
2497 {
2498 gdb_assert (sym == NULL);
2499 msym = lookup_minimal_symbol (physname, NULL, NULL);
2500 if (msym == NULL)
2501 return NULL;
2502 }
2503
2504 v = allocate_value (ftype);
2505 if (sym)
2506 {
2507 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2508 }
2509 else
2510 {
2511 /* The minimal symbol might point to a function descriptor;
2512 resolve it to the actual code address instead. */
2513 struct objfile *objfile = msymbol_objfile (msym);
2514 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2515
2516 set_value_address (v,
2517 gdbarch_convert_from_func_ptr_addr
2518 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2519 }
2520
2521 if (arg1p)
2522 {
2523 if (type != value_type (*arg1p))
2524 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2525 value_addr (*arg1p)));
2526
2527 /* Move the `this' pointer according to the offset.
2528 VALUE_OFFSET (*arg1p) += offset; */
2529 }
2530
2531 return v;
2532 }
2533
2534 \f
2535
2536 /* Helper function for both unpack_value_bits_as_long and
2537 unpack_bits_as_long. See those functions for more details on the
2538 interface; the only difference is that this function accepts either
2539 a NULL or a non-NULL ORIGINAL_VALUE. */
2540
2541 static int
2542 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2543 int embedded_offset, int bitpos, int bitsize,
2544 const struct value *original_value,
2545 LONGEST *result)
2546 {
2547 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2548 ULONGEST val;
2549 ULONGEST valmask;
2550 int lsbcount;
2551 int bytes_read;
2552 int read_offset;
2553
2554 /* Read the minimum number of bytes required; there may not be
2555 enough bytes to read an entire ULONGEST. */
2556 CHECK_TYPEDEF (field_type);
2557 if (bitsize)
2558 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2559 else
2560 bytes_read = TYPE_LENGTH (field_type);
2561
2562 read_offset = bitpos / 8;
2563
2564 if (original_value != NULL
2565 && !value_bytes_available (original_value, embedded_offset + read_offset,
2566 bytes_read))
2567 return 0;
2568
2569 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2570 bytes_read, byte_order);
2571
2572 /* Extract bits. See comment above. */
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2575 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2576 else
2577 lsbcount = (bitpos % 8);
2578 val >>= lsbcount;
2579
2580 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2581 If the field is signed, and is negative, then sign extend. */
2582
2583 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2584 {
2585 valmask = (((ULONGEST) 1) << bitsize) - 1;
2586 val &= valmask;
2587 if (!TYPE_UNSIGNED (field_type))
2588 {
2589 if (val & (valmask ^ (valmask >> 1)))
2590 {
2591 val |= ~valmask;
2592 }
2593 }
2594 }
2595
2596 *result = val;
2597 return 1;
2598 }
2599
2600 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2601 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2602 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2603 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2604 bits.
2605
2606 Returns false if the value contents are unavailable, otherwise
2607 returns true, indicating a valid value has been stored in *RESULT.
2608
2609 Extracting bits depends on endianness of the machine. Compute the
2610 number of least significant bits to discard. For big endian machines,
2611 we compute the total number of bits in the anonymous object, subtract
2612 off the bit count from the MSB of the object to the MSB of the
2613 bitfield, then the size of the bitfield, which leaves the LSB discard
2614 count. For little endian machines, the discard count is simply the
2615 number of bits from the LSB of the anonymous object to the LSB of the
2616 bitfield.
2617
2618 If the field is signed, we also do sign extension. */
2619
2620 int
2621 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2622 int embedded_offset, int bitpos, int bitsize,
2623 const struct value *original_value,
2624 LONGEST *result)
2625 {
2626 gdb_assert (original_value != NULL);
2627
2628 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2629 bitpos, bitsize, original_value, result);
2630
2631 }
2632
2633 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2634 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2635 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2636 details. */
2637
2638 static int
2639 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2640 int embedded_offset, int fieldno,
2641 const struct value *val, LONGEST *result)
2642 {
2643 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2644 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2645 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2646
2647 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2648 bitpos, bitsize, val,
2649 result);
2650 }
2651
2652 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2653 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2654 ORIGINAL_VALUE, which must not be NULL. See
2655 unpack_value_bits_as_long for more details. */
2656
2657 int
2658 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2659 int embedded_offset, int fieldno,
2660 const struct value *val, LONGEST *result)
2661 {
2662 gdb_assert (val != NULL);
2663
2664 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2665 fieldno, val, result);
2666 }
2667
2668 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2669 object at VALADDR. See unpack_value_bits_as_long for more details.
2670 This function differs from unpack_value_field_as_long in that it
2671 operates without a struct value object. */
2672
2673 LONGEST
2674 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2675 {
2676 LONGEST result;
2677
2678 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2679 return result;
2680 }
2681
2682 /* Return a new value with type TYPE, which is FIELDNO field of the
2683 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2684 of VAL. If the VAL's contents required to extract the bitfield
2685 from are unavailable, the new value is correspondingly marked as
2686 unavailable. */
2687
2688 struct value *
2689 value_field_bitfield (struct type *type, int fieldno,
2690 const gdb_byte *valaddr,
2691 int embedded_offset, const struct value *val)
2692 {
2693 LONGEST l;
2694
2695 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2696 val, &l))
2697 {
2698 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2699 struct value *retval = allocate_value (field_type);
2700 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2701 return retval;
2702 }
2703 else
2704 {
2705 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2706 }
2707 }
2708
2709 /* Modify the value of a bitfield. ADDR points to a block of memory in
2710 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2711 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2712 indicate which bits (in target bit order) comprise the bitfield.
2713 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2714 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2715
2716 void
2717 modify_field (struct type *type, gdb_byte *addr,
2718 LONGEST fieldval, int bitpos, int bitsize)
2719 {
2720 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2721 ULONGEST oword;
2722 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2723 int bytesize;
2724
2725 /* Normalize BITPOS. */
2726 addr += bitpos / 8;
2727 bitpos %= 8;
2728
2729 /* If a negative fieldval fits in the field in question, chop
2730 off the sign extension bits. */
2731 if ((~fieldval & ~(mask >> 1)) == 0)
2732 fieldval &= mask;
2733
2734 /* Warn if value is too big to fit in the field in question. */
2735 if (0 != (fieldval & ~mask))
2736 {
2737 /* FIXME: would like to include fieldval in the message, but
2738 we don't have a sprintf_longest. */
2739 warning (_("Value does not fit in %d bits."), bitsize);
2740
2741 /* Truncate it, otherwise adjoining fields may be corrupted. */
2742 fieldval &= mask;
2743 }
2744
2745 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2746 false valgrind reports. */
2747
2748 bytesize = (bitpos + bitsize + 7) / 8;
2749 oword = extract_unsigned_integer (addr, bytesize, byte_order);
2750
2751 /* Shifting for bit field depends on endianness of the target machine. */
2752 if (gdbarch_bits_big_endian (get_type_arch (type)))
2753 bitpos = bytesize * 8 - bitpos - bitsize;
2754
2755 oword &= ~(mask << bitpos);
2756 oword |= fieldval << bitpos;
2757
2758 store_unsigned_integer (addr, bytesize, byte_order, oword);
2759 }
2760 \f
2761 /* Pack NUM into BUF using a target format of TYPE. */
2762
2763 void
2764 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2765 {
2766 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2767 int len;
2768
2769 type = check_typedef (type);
2770 len = TYPE_LENGTH (type);
2771
2772 switch (TYPE_CODE (type))
2773 {
2774 case TYPE_CODE_INT:
2775 case TYPE_CODE_CHAR:
2776 case TYPE_CODE_ENUM:
2777 case TYPE_CODE_FLAGS:
2778 case TYPE_CODE_BOOL:
2779 case TYPE_CODE_RANGE:
2780 case TYPE_CODE_MEMBERPTR:
2781 store_signed_integer (buf, len, byte_order, num);
2782 break;
2783
2784 case TYPE_CODE_REF:
2785 case TYPE_CODE_PTR:
2786 store_typed_address (buf, type, (CORE_ADDR) num);
2787 break;
2788
2789 default:
2790 error (_("Unexpected type (%d) encountered for integer constant."),
2791 TYPE_CODE (type));
2792 }
2793 }
2794
2795
2796 /* Pack NUM into BUF using a target format of TYPE. */
2797
2798 void
2799 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2800 {
2801 int len;
2802 enum bfd_endian byte_order;
2803
2804 type = check_typedef (type);
2805 len = TYPE_LENGTH (type);
2806 byte_order = gdbarch_byte_order (get_type_arch (type));
2807
2808 switch (TYPE_CODE (type))
2809 {
2810 case TYPE_CODE_INT:
2811 case TYPE_CODE_CHAR:
2812 case TYPE_CODE_ENUM:
2813 case TYPE_CODE_FLAGS:
2814 case TYPE_CODE_BOOL:
2815 case TYPE_CODE_RANGE:
2816 case TYPE_CODE_MEMBERPTR:
2817 store_unsigned_integer (buf, len, byte_order, num);
2818 break;
2819
2820 case TYPE_CODE_REF:
2821 case TYPE_CODE_PTR:
2822 store_typed_address (buf, type, (CORE_ADDR) num);
2823 break;
2824
2825 default:
2826 error (_("Unexpected type (%d) encountered "
2827 "for unsigned integer constant."),
2828 TYPE_CODE (type));
2829 }
2830 }
2831
2832
2833 /* Convert C numbers into newly allocated values. */
2834
2835 struct value *
2836 value_from_longest (struct type *type, LONGEST num)
2837 {
2838 struct value *val = allocate_value (type);
2839
2840 pack_long (value_contents_raw (val), type, num);
2841 return val;
2842 }
2843
2844
2845 /* Convert C unsigned numbers into newly allocated values. */
2846
2847 struct value *
2848 value_from_ulongest (struct type *type, ULONGEST num)
2849 {
2850 struct value *val = allocate_value (type);
2851
2852 pack_unsigned_long (value_contents_raw (val), type, num);
2853
2854 return val;
2855 }
2856
2857
2858 /* Create a value representing a pointer of type TYPE to the address
2859 ADDR. */
2860 struct value *
2861 value_from_pointer (struct type *type, CORE_ADDR addr)
2862 {
2863 struct value *val = allocate_value (type);
2864
2865 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2866 return val;
2867 }
2868
2869
2870 /* Create a value of type TYPE whose contents come from VALADDR, if it
2871 is non-null, and whose memory address (in the inferior) is
2872 ADDRESS. */
2873
2874 struct value *
2875 value_from_contents_and_address (struct type *type,
2876 const gdb_byte *valaddr,
2877 CORE_ADDR address)
2878 {
2879 struct value *v;
2880
2881 if (valaddr == NULL)
2882 v = allocate_value_lazy (type);
2883 else
2884 {
2885 v = allocate_value (type);
2886 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2887 }
2888 set_value_address (v, address);
2889 VALUE_LVAL (v) = lval_memory;
2890 return v;
2891 }
2892
2893 struct value *
2894 value_from_double (struct type *type, DOUBLEST num)
2895 {
2896 struct value *val = allocate_value (type);
2897 struct type *base_type = check_typedef (type);
2898 enum type_code code = TYPE_CODE (base_type);
2899
2900 if (code == TYPE_CODE_FLT)
2901 {
2902 store_typed_floating (value_contents_raw (val), base_type, num);
2903 }
2904 else
2905 error (_("Unexpected type encountered for floating constant."));
2906
2907 return val;
2908 }
2909
2910 struct value *
2911 value_from_decfloat (struct type *type, const gdb_byte *dec)
2912 {
2913 struct value *val = allocate_value (type);
2914
2915 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2916 return val;
2917 }
2918
2919 struct value *
2920 coerce_ref (struct value *arg)
2921 {
2922 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2923
2924 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2925 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2926 unpack_pointer (value_type (arg),
2927 value_contents (arg)));
2928 return arg;
2929 }
2930
2931 struct value *
2932 coerce_array (struct value *arg)
2933 {
2934 struct type *type;
2935
2936 arg = coerce_ref (arg);
2937 type = check_typedef (value_type (arg));
2938
2939 switch (TYPE_CODE (type))
2940 {
2941 case TYPE_CODE_ARRAY:
2942 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
2943 arg = value_coerce_array (arg);
2944 break;
2945 case TYPE_CODE_FUNC:
2946 arg = value_coerce_function (arg);
2947 break;
2948 }
2949 return arg;
2950 }
2951 \f
2952
2953 /* Return true if the function returning the specified type is using
2954 the convention of returning structures in memory (passing in the
2955 address as a hidden first parameter). */
2956
2957 int
2958 using_struct_return (struct gdbarch *gdbarch,
2959 struct type *func_type, struct type *value_type)
2960 {
2961 enum type_code code = TYPE_CODE (value_type);
2962
2963 if (code == TYPE_CODE_ERROR)
2964 error (_("Function return type unknown."));
2965
2966 if (code == TYPE_CODE_VOID)
2967 /* A void return value is never in memory. See also corresponding
2968 code in "print_return_value". */
2969 return 0;
2970
2971 /* Probe the architecture for the return-value convention. */
2972 return (gdbarch_return_value (gdbarch, func_type, value_type,
2973 NULL, NULL, NULL)
2974 != RETURN_VALUE_REGISTER_CONVENTION);
2975 }
2976
2977 /* Set the initialized field in a value struct. */
2978
2979 void
2980 set_value_initialized (struct value *val, int status)
2981 {
2982 val->initialized = status;
2983 }
2984
2985 /* Return the initialized field in a value struct. */
2986
2987 int
2988 value_initialized (struct value *val)
2989 {
2990 return val->initialized;
2991 }
2992
2993 void
2994 _initialize_values (void)
2995 {
2996 add_cmd ("convenience", no_class, show_convenience, _("\
2997 Debugger convenience (\"$foo\") variables.\n\
2998 These variables are created when you assign them values;\n\
2999 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3000 \n\
3001 A few convenience variables are given values automatically:\n\
3002 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3003 \"$__\" holds the contents of the last address examined with \"x\"."),
3004 &showlist);
3005
3006 add_cmd ("values", no_class, show_values, _("\
3007 Elements of value history around item number IDX (or last ten)."),
3008 &showlist);
3009
3010 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3011 Initialize a convenience variable if necessary.\n\
3012 init-if-undefined VARIABLE = EXPRESSION\n\
3013 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3014 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3015 VARIABLE is already initialized."));
3016
3017 add_prefix_cmd ("function", no_class, function_command, _("\
3018 Placeholder command for showing help on convenience functions."),
3019 &functionlist, "function ", 0, &cmdlist);
3020 }