http://sourceware.org/ml/gdb-patches/2013-07/msg00056.html
[binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45 #include "user-regs.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 /* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
175 struct value
176 {
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
200 /* If nonzero, this is the value of a variable which does not
201 actually exist in the program. */
202 unsigned int optimized_out : 1;
203
204 /* If value is a variable, is it initialized or not. */
205 unsigned int initialized : 1;
206
207 /* If value is from the stack. If this is set, read_stack will be
208 used instead of read_memory to enable extra caching. */
209 unsigned int stack : 1;
210
211 /* If the value has been released. */
212 unsigned int released : 1;
213
214 /* Location of value (if lval). */
215 union
216 {
217 /* If lval == lval_memory, this is the address in the inferior.
218 If lval == lval_register, this is the byte offset into the
219 registers structure. */
220 CORE_ADDR address;
221
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
224
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
227 for them to use. */
228 struct
229 {
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
232
233 /* Closure for those functions to use. */
234 void *closure;
235 } computed;
236 } location;
237
238 /* Describes offset of a value within lval of a structure in bytes.
239 If lval == lval_memory, this is an offset to the address. If
240 lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the
242 member embedded_offset below. */
243 int offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 int bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 int bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in bytes. The
296 value_contents() macro takes `embedded_offset' into account, so
297 most GDB code continues to see the `type' portion of the value,
298 just as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in bytes from the full object to the pointed-to object
303 -- that is, the value `embedded_offset' would have if we followed
304 the pointer and fetched the complete object. (I don't really see
305 the point. Why not just determine the run-time type when you
306 indirect, and avoid the special case? The contents don't matter
307 until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 int embedded_offset;
314 int pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
320 struct value *next;
321
322 /* Register number if the value is from a register. */
323 short regnum;
324
325 /* Actual contents of the value. Target byte-order. NULL or not
326 valid if lazy is nonzero. */
327 gdb_byte *contents;
328
329 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
330 rather than available, since the common and default case is for a
331 value to be available. This is filled in at value read time. */
332 VEC(range_s) *unavailable;
333 };
334
335 int
336 value_bytes_available (const struct value *value, int offset, int length)
337 {
338 gdb_assert (!value->lazy);
339
340 return !ranges_contain (value->unavailable, offset, length);
341 }
342
343 int
344 value_entirely_available (struct value *value)
345 {
346 /* We can only tell whether the whole value is available when we try
347 to read it. */
348 if (value->lazy)
349 value_fetch_lazy (value);
350
351 if (VEC_empty (range_s, value->unavailable))
352 return 1;
353 return 0;
354 }
355
356 void
357 mark_value_bytes_unavailable (struct value *value, int offset, int length)
358 {
359 range_s newr;
360 int i;
361
362 /* Insert the range sorted. If there's overlap or the new range
363 would be contiguous with an existing range, merge. */
364
365 newr.offset = offset;
366 newr.length = length;
367
368 /* Do a binary search for the position the given range would be
369 inserted if we only considered the starting OFFSET of ranges.
370 Call that position I. Since we also have LENGTH to care for
371 (this is a range afterall), we need to check if the _previous_
372 range overlaps the I range. E.g., calling R the new range:
373
374 #1 - overlaps with previous
375
376 R
377 |-...-|
378 |---| |---| |------| ... |--|
379 0 1 2 N
380
381 I=1
382
383 In the case #1 above, the binary search would return `I=1',
384 meaning, this OFFSET should be inserted at position 1, and the
385 current position 1 should be pushed further (and become 2). But,
386 note that `0' overlaps with R, so we want to merge them.
387
388 A similar consideration needs to be taken if the new range would
389 be contiguous with the previous range:
390
391 #2 - contiguous with previous
392
393 R
394 |-...-|
395 |--| |---| |------| ... |--|
396 0 1 2 N
397
398 I=1
399
400 If there's no overlap with the previous range, as in:
401
402 #3 - not overlapping and not contiguous
403
404 R
405 |-...-|
406 |--| |---| |------| ... |--|
407 0 1 2 N
408
409 I=1
410
411 or if I is 0:
412
413 #4 - R is the range with lowest offset
414
415 R
416 |-...-|
417 |--| |---| |------| ... |--|
418 0 1 2 N
419
420 I=0
421
422 ... we just push the new range to I.
423
424 All the 4 cases above need to consider that the new range may
425 also overlap several of the ranges that follow, or that R may be
426 contiguous with the following range, and merge. E.g.,
427
428 #5 - overlapping following ranges
429
430 R
431 |------------------------|
432 |--| |---| |------| ... |--|
433 0 1 2 N
434
435 I=0
436
437 or:
438
439 R
440 |-------|
441 |--| |---| |------| ... |--|
442 0 1 2 N
443
444 I=1
445
446 */
447
448 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
449 if (i > 0)
450 {
451 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
452
453 if (ranges_overlap (bef->offset, bef->length, offset, length))
454 {
455 /* #1 */
456 ULONGEST l = min (bef->offset, offset);
457 ULONGEST h = max (bef->offset + bef->length, offset + length);
458
459 bef->offset = l;
460 bef->length = h - l;
461 i--;
462 }
463 else if (offset == bef->offset + bef->length)
464 {
465 /* #2 */
466 bef->length += length;
467 i--;
468 }
469 else
470 {
471 /* #3 */
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
473 }
474 }
475 else
476 {
477 /* #4 */
478 VEC_safe_insert (range_s, value->unavailable, i, &newr);
479 }
480
481 /* Check whether the ranges following the one we've just added or
482 touched can be folded in (#5 above). */
483 if (i + 1 < VEC_length (range_s, value->unavailable))
484 {
485 struct range *t;
486 struct range *r;
487 int removed = 0;
488 int next = i + 1;
489
490 /* Get the range we just touched. */
491 t = VEC_index (range_s, value->unavailable, i);
492 removed = 0;
493
494 i = next;
495 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
496 if (r->offset <= t->offset + t->length)
497 {
498 ULONGEST l, h;
499
500 l = min (t->offset, r->offset);
501 h = max (t->offset + t->length, r->offset + r->length);
502
503 t->offset = l;
504 t->length = h - l;
505
506 removed++;
507 }
508 else
509 {
510 /* If we couldn't merge this one, we won't be able to
511 merge following ones either, since the ranges are
512 always sorted by OFFSET. */
513 break;
514 }
515
516 if (removed != 0)
517 VEC_block_remove (range_s, value->unavailable, next, removed);
518 }
519 }
520
521 /* Find the first range in RANGES that overlaps the range defined by
522 OFFSET and LENGTH, starting at element POS in the RANGES vector,
523 Returns the index into RANGES where such overlapping range was
524 found, or -1 if none was found. */
525
526 static int
527 find_first_range_overlap (VEC(range_s) *ranges, int pos,
528 int offset, int length)
529 {
530 range_s *r;
531 int i;
532
533 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
534 if (ranges_overlap (r->offset, r->length, offset, length))
535 return i;
536
537 return -1;
538 }
539
540 int
541 value_available_contents_eq (const struct value *val1, int offset1,
542 const struct value *val2, int offset2,
543 int length)
544 {
545 int idx1 = 0, idx2 = 0;
546
547 /* See function description in value.h. */
548 gdb_assert (!val1->lazy && !val2->lazy);
549
550 while (length > 0)
551 {
552 range_s *r1, *r2;
553 ULONGEST l1, h1;
554 ULONGEST l2, h2;
555
556 idx1 = find_first_range_overlap (val1->unavailable, idx1,
557 offset1, length);
558 idx2 = find_first_range_overlap (val2->unavailable, idx2,
559 offset2, length);
560
561 /* The usual case is for both values to be completely available. */
562 if (idx1 == -1 && idx2 == -1)
563 return (memcmp (val1->contents + offset1,
564 val2->contents + offset2,
565 length) == 0);
566 /* The contents only match equal if the available set matches as
567 well. */
568 else if (idx1 == -1 || idx2 == -1)
569 return 0;
570
571 gdb_assert (idx1 != -1 && idx2 != -1);
572
573 r1 = VEC_index (range_s, val1->unavailable, idx1);
574 r2 = VEC_index (range_s, val2->unavailable, idx2);
575
576 /* Get the unavailable windows intersected by the incoming
577 ranges. The first and last ranges that overlap the argument
578 range may be wider than said incoming arguments ranges. */
579 l1 = max (offset1, r1->offset);
580 h1 = min (offset1 + length, r1->offset + r1->length);
581
582 l2 = max (offset2, r2->offset);
583 h2 = min (offset2 + length, r2->offset + r2->length);
584
585 /* Make them relative to the respective start offsets, so we can
586 compare them for equality. */
587 l1 -= offset1;
588 h1 -= offset1;
589
590 l2 -= offset2;
591 h2 -= offset2;
592
593 /* Different availability, no match. */
594 if (l1 != l2 || h1 != h2)
595 return 0;
596
597 /* Compare the _available_ contents. */
598 if (memcmp (val1->contents + offset1,
599 val2->contents + offset2,
600 l1) != 0)
601 return 0;
602
603 length -= h1;
604 offset1 += h1;
605 offset2 += h1;
606 }
607
608 return 1;
609 }
610
611 /* Prototypes for local functions. */
612
613 static void show_values (char *, int);
614
615 static void show_convenience (char *, int);
616
617
618 /* The value-history records all the values printed
619 by print commands during this session. Each chunk
620 records 60 consecutive values. The first chunk on
621 the chain records the most recent values.
622 The total number of values is in value_history_count. */
623
624 #define VALUE_HISTORY_CHUNK 60
625
626 struct value_history_chunk
627 {
628 struct value_history_chunk *next;
629 struct value *values[VALUE_HISTORY_CHUNK];
630 };
631
632 /* Chain of chunks now in use. */
633
634 static struct value_history_chunk *value_history_chain;
635
636 static int value_history_count; /* Abs number of last entry stored. */
637
638 \f
639 /* List of all value objects currently allocated
640 (except for those released by calls to release_value)
641 This is so they can be freed after each command. */
642
643 static struct value *all_values;
644
645 /* Allocate a lazy value for type TYPE. Its actual content is
646 "lazily" allocated too: the content field of the return value is
647 NULL; it will be allocated when it is fetched from the target. */
648
649 struct value *
650 allocate_value_lazy (struct type *type)
651 {
652 struct value *val;
653
654 /* Call check_typedef on our type to make sure that, if TYPE
655 is a TYPE_CODE_TYPEDEF, its length is set to the length
656 of the target type instead of zero. However, we do not
657 replace the typedef type by the target type, because we want
658 to keep the typedef in order to be able to set the VAL's type
659 description correctly. */
660 check_typedef (type);
661
662 val = (struct value *) xzalloc (sizeof (struct value));
663 val->contents = NULL;
664 val->next = all_values;
665 all_values = val;
666 val->type = type;
667 val->enclosing_type = type;
668 VALUE_LVAL (val) = not_lval;
669 val->location.address = 0;
670 VALUE_FRAME_ID (val) = null_frame_id;
671 val->offset = 0;
672 val->bitpos = 0;
673 val->bitsize = 0;
674 VALUE_REGNUM (val) = -1;
675 val->lazy = 1;
676 val->optimized_out = 0;
677 val->embedded_offset = 0;
678 val->pointed_to_offset = 0;
679 val->modifiable = 1;
680 val->initialized = 1; /* Default to initialized. */
681
682 /* Values start out on the all_values chain. */
683 val->reference_count = 1;
684
685 return val;
686 }
687
688 /* Allocate the contents of VAL if it has not been allocated yet. */
689
690 void
691 allocate_value_contents (struct value *val)
692 {
693 if (!val->contents)
694 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
695 }
696
697 /* Allocate a value and its contents for type TYPE. */
698
699 struct value *
700 allocate_value (struct type *type)
701 {
702 struct value *val = allocate_value_lazy (type);
703
704 allocate_value_contents (val);
705 val->lazy = 0;
706 return val;
707 }
708
709 /* Allocate a value that has the correct length
710 for COUNT repetitions of type TYPE. */
711
712 struct value *
713 allocate_repeat_value (struct type *type, int count)
714 {
715 int low_bound = current_language->string_lower_bound; /* ??? */
716 /* FIXME-type-allocation: need a way to free this type when we are
717 done with it. */
718 struct type *array_type
719 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
720
721 return allocate_value (array_type);
722 }
723
724 struct value *
725 allocate_computed_value (struct type *type,
726 const struct lval_funcs *funcs,
727 void *closure)
728 {
729 struct value *v = allocate_value_lazy (type);
730
731 VALUE_LVAL (v) = lval_computed;
732 v->location.computed.funcs = funcs;
733 v->location.computed.closure = closure;
734
735 return v;
736 }
737
738 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
739
740 struct value *
741 allocate_optimized_out_value (struct type *type)
742 {
743 struct value *retval = allocate_value_lazy (type);
744
745 set_value_optimized_out (retval, 1);
746
747 return retval;
748 }
749
750 /* Accessor methods. */
751
752 struct value *
753 value_next (struct value *value)
754 {
755 return value->next;
756 }
757
758 struct type *
759 value_type (const struct value *value)
760 {
761 return value->type;
762 }
763 void
764 deprecated_set_value_type (struct value *value, struct type *type)
765 {
766 value->type = type;
767 }
768
769 int
770 value_offset (const struct value *value)
771 {
772 return value->offset;
773 }
774 void
775 set_value_offset (struct value *value, int offset)
776 {
777 value->offset = offset;
778 }
779
780 int
781 value_bitpos (const struct value *value)
782 {
783 return value->bitpos;
784 }
785 void
786 set_value_bitpos (struct value *value, int bit)
787 {
788 value->bitpos = bit;
789 }
790
791 int
792 value_bitsize (const struct value *value)
793 {
794 return value->bitsize;
795 }
796 void
797 set_value_bitsize (struct value *value, int bit)
798 {
799 value->bitsize = bit;
800 }
801
802 struct value *
803 value_parent (struct value *value)
804 {
805 return value->parent;
806 }
807
808 /* See value.h. */
809
810 void
811 set_value_parent (struct value *value, struct value *parent)
812 {
813 struct value *old = value->parent;
814
815 value->parent = parent;
816 if (parent != NULL)
817 value_incref (parent);
818 value_free (old);
819 }
820
821 gdb_byte *
822 value_contents_raw (struct value *value)
823 {
824 allocate_value_contents (value);
825 return value->contents + value->embedded_offset;
826 }
827
828 gdb_byte *
829 value_contents_all_raw (struct value *value)
830 {
831 allocate_value_contents (value);
832 return value->contents;
833 }
834
835 struct type *
836 value_enclosing_type (struct value *value)
837 {
838 return value->enclosing_type;
839 }
840
841 /* Look at value.h for description. */
842
843 struct type *
844 value_actual_type (struct value *value, int resolve_simple_types,
845 int *real_type_found)
846 {
847 struct value_print_options opts;
848 struct type *result;
849
850 get_user_print_options (&opts);
851
852 if (real_type_found)
853 *real_type_found = 0;
854 result = value_type (value);
855 if (opts.objectprint)
856 {
857 /* If result's target type is TYPE_CODE_STRUCT, proceed to
858 fetch its rtti type. */
859 if ((TYPE_CODE (result) == TYPE_CODE_PTR
860 || TYPE_CODE (result) == TYPE_CODE_REF)
861 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
862 == TYPE_CODE_STRUCT)
863 {
864 struct type *real_type;
865
866 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
867 if (real_type)
868 {
869 if (real_type_found)
870 *real_type_found = 1;
871 result = real_type;
872 }
873 }
874 else if (resolve_simple_types)
875 {
876 if (real_type_found)
877 *real_type_found = 1;
878 result = value_enclosing_type (value);
879 }
880 }
881
882 return result;
883 }
884
885 static void
886 require_not_optimized_out (const struct value *value)
887 {
888 if (value->optimized_out)
889 error (_("value has been optimized out"));
890 }
891
892 static void
893 require_available (const struct value *value)
894 {
895 if (!VEC_empty (range_s, value->unavailable))
896 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
897 }
898
899 const gdb_byte *
900 value_contents_for_printing (struct value *value)
901 {
902 if (value->lazy)
903 value_fetch_lazy (value);
904 return value->contents;
905 }
906
907 const gdb_byte *
908 value_contents_for_printing_const (const struct value *value)
909 {
910 gdb_assert (!value->lazy);
911 return value->contents;
912 }
913
914 const gdb_byte *
915 value_contents_all (struct value *value)
916 {
917 const gdb_byte *result = value_contents_for_printing (value);
918 require_not_optimized_out (value);
919 require_available (value);
920 return result;
921 }
922
923 /* Copy LENGTH bytes of SRC value's (all) contents
924 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
925 contents, starting at DST_OFFSET. If unavailable contents are
926 being copied from SRC, the corresponding DST contents are marked
927 unavailable accordingly. Neither DST nor SRC may be lazy
928 values.
929
930 It is assumed the contents of DST in the [DST_OFFSET,
931 DST_OFFSET+LENGTH) range are wholly available. */
932
933 void
934 value_contents_copy_raw (struct value *dst, int dst_offset,
935 struct value *src, int src_offset, int length)
936 {
937 range_s *r;
938 int i;
939
940 /* A lazy DST would make that this copy operation useless, since as
941 soon as DST's contents were un-lazied (by a later value_contents
942 call, say), the contents would be overwritten. A lazy SRC would
943 mean we'd be copying garbage. */
944 gdb_assert (!dst->lazy && !src->lazy);
945
946 /* The overwritten DST range gets unavailability ORed in, not
947 replaced. Make sure to remember to implement replacing if it
948 turns out actually necessary. */
949 gdb_assert (value_bytes_available (dst, dst_offset, length));
950
951 /* Copy the data. */
952 memcpy (value_contents_all_raw (dst) + dst_offset,
953 value_contents_all_raw (src) + src_offset,
954 length);
955
956 /* Copy the meta-data, adjusted. */
957 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
958 {
959 ULONGEST h, l;
960
961 l = max (r->offset, src_offset);
962 h = min (r->offset + r->length, src_offset + length);
963
964 if (l < h)
965 mark_value_bytes_unavailable (dst,
966 dst_offset + (l - src_offset),
967 h - l);
968 }
969 }
970
971 /* Copy LENGTH bytes of SRC value's (all) contents
972 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
973 (all) contents, starting at DST_OFFSET. If unavailable contents
974 are being copied from SRC, the corresponding DST contents are
975 marked unavailable accordingly. DST must not be lazy. If SRC is
976 lazy, it will be fetched now. If SRC is not valid (is optimized
977 out), an error is thrown.
978
979 It is assumed the contents of DST in the [DST_OFFSET,
980 DST_OFFSET+LENGTH) range are wholly available. */
981
982 void
983 value_contents_copy (struct value *dst, int dst_offset,
984 struct value *src, int src_offset, int length)
985 {
986 require_not_optimized_out (src);
987
988 if (src->lazy)
989 value_fetch_lazy (src);
990
991 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
992 }
993
994 int
995 value_lazy (struct value *value)
996 {
997 return value->lazy;
998 }
999
1000 void
1001 set_value_lazy (struct value *value, int val)
1002 {
1003 value->lazy = val;
1004 }
1005
1006 int
1007 value_stack (struct value *value)
1008 {
1009 return value->stack;
1010 }
1011
1012 void
1013 set_value_stack (struct value *value, int val)
1014 {
1015 value->stack = val;
1016 }
1017
1018 const gdb_byte *
1019 value_contents (struct value *value)
1020 {
1021 const gdb_byte *result = value_contents_writeable (value);
1022 require_not_optimized_out (value);
1023 require_available (value);
1024 return result;
1025 }
1026
1027 gdb_byte *
1028 value_contents_writeable (struct value *value)
1029 {
1030 if (value->lazy)
1031 value_fetch_lazy (value);
1032 return value_contents_raw (value);
1033 }
1034
1035 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1036 this function is different from value_equal; in C the operator ==
1037 can return 0 even if the two values being compared are equal. */
1038
1039 int
1040 value_contents_equal (struct value *val1, struct value *val2)
1041 {
1042 struct type *type1;
1043 struct type *type2;
1044
1045 type1 = check_typedef (value_type (val1));
1046 type2 = check_typedef (value_type (val2));
1047 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1048 return 0;
1049
1050 return (memcmp (value_contents (val1), value_contents (val2),
1051 TYPE_LENGTH (type1)) == 0);
1052 }
1053
1054 int
1055 value_optimized_out (struct value *value)
1056 {
1057 return value->optimized_out;
1058 }
1059
1060 void
1061 set_value_optimized_out (struct value *value, int val)
1062 {
1063 value->optimized_out = val;
1064 }
1065
1066 int
1067 value_entirely_optimized_out (const struct value *value)
1068 {
1069 if (!value->optimized_out)
1070 return 0;
1071 if (value->lval != lval_computed
1072 || !value->location.computed.funcs->check_any_valid)
1073 return 1;
1074 return !value->location.computed.funcs->check_any_valid (value);
1075 }
1076
1077 int
1078 value_bits_valid (const struct value *value, int offset, int length)
1079 {
1080 if (!value->optimized_out)
1081 return 1;
1082 if (value->lval != lval_computed
1083 || !value->location.computed.funcs->check_validity)
1084 return 0;
1085 return value->location.computed.funcs->check_validity (value, offset,
1086 length);
1087 }
1088
1089 int
1090 value_bits_synthetic_pointer (const struct value *value,
1091 int offset, int length)
1092 {
1093 if (value->lval != lval_computed
1094 || !value->location.computed.funcs->check_synthetic_pointer)
1095 return 0;
1096 return value->location.computed.funcs->check_synthetic_pointer (value,
1097 offset,
1098 length);
1099 }
1100
1101 int
1102 value_embedded_offset (struct value *value)
1103 {
1104 return value->embedded_offset;
1105 }
1106
1107 void
1108 set_value_embedded_offset (struct value *value, int val)
1109 {
1110 value->embedded_offset = val;
1111 }
1112
1113 int
1114 value_pointed_to_offset (struct value *value)
1115 {
1116 return value->pointed_to_offset;
1117 }
1118
1119 void
1120 set_value_pointed_to_offset (struct value *value, int val)
1121 {
1122 value->pointed_to_offset = val;
1123 }
1124
1125 const struct lval_funcs *
1126 value_computed_funcs (const struct value *v)
1127 {
1128 gdb_assert (value_lval_const (v) == lval_computed);
1129
1130 return v->location.computed.funcs;
1131 }
1132
1133 void *
1134 value_computed_closure (const struct value *v)
1135 {
1136 gdb_assert (v->lval == lval_computed);
1137
1138 return v->location.computed.closure;
1139 }
1140
1141 enum lval_type *
1142 deprecated_value_lval_hack (struct value *value)
1143 {
1144 return &value->lval;
1145 }
1146
1147 enum lval_type
1148 value_lval_const (const struct value *value)
1149 {
1150 return value->lval;
1151 }
1152
1153 CORE_ADDR
1154 value_address (const struct value *value)
1155 {
1156 if (value->lval == lval_internalvar
1157 || value->lval == lval_internalvar_component)
1158 return 0;
1159 if (value->parent != NULL)
1160 return value_address (value->parent) + value->offset;
1161 else
1162 return value->location.address + value->offset;
1163 }
1164
1165 CORE_ADDR
1166 value_raw_address (struct value *value)
1167 {
1168 if (value->lval == lval_internalvar
1169 || value->lval == lval_internalvar_component)
1170 return 0;
1171 return value->location.address;
1172 }
1173
1174 void
1175 set_value_address (struct value *value, CORE_ADDR addr)
1176 {
1177 gdb_assert (value->lval != lval_internalvar
1178 && value->lval != lval_internalvar_component);
1179 value->location.address = addr;
1180 }
1181
1182 struct internalvar **
1183 deprecated_value_internalvar_hack (struct value *value)
1184 {
1185 return &value->location.internalvar;
1186 }
1187
1188 struct frame_id *
1189 deprecated_value_frame_id_hack (struct value *value)
1190 {
1191 return &value->frame_id;
1192 }
1193
1194 short *
1195 deprecated_value_regnum_hack (struct value *value)
1196 {
1197 return &value->regnum;
1198 }
1199
1200 int
1201 deprecated_value_modifiable (struct value *value)
1202 {
1203 return value->modifiable;
1204 }
1205 \f
1206 /* Return a mark in the value chain. All values allocated after the
1207 mark is obtained (except for those released) are subject to being freed
1208 if a subsequent value_free_to_mark is passed the mark. */
1209 struct value *
1210 value_mark (void)
1211 {
1212 return all_values;
1213 }
1214
1215 /* Take a reference to VAL. VAL will not be deallocated until all
1216 references are released. */
1217
1218 void
1219 value_incref (struct value *val)
1220 {
1221 val->reference_count++;
1222 }
1223
1224 /* Release a reference to VAL, which was acquired with value_incref.
1225 This function is also called to deallocate values from the value
1226 chain. */
1227
1228 void
1229 value_free (struct value *val)
1230 {
1231 if (val)
1232 {
1233 gdb_assert (val->reference_count > 0);
1234 val->reference_count--;
1235 if (val->reference_count > 0)
1236 return;
1237
1238 /* If there's an associated parent value, drop our reference to
1239 it. */
1240 if (val->parent != NULL)
1241 value_free (val->parent);
1242
1243 if (VALUE_LVAL (val) == lval_computed)
1244 {
1245 const struct lval_funcs *funcs = val->location.computed.funcs;
1246
1247 if (funcs->free_closure)
1248 funcs->free_closure (val);
1249 }
1250
1251 xfree (val->contents);
1252 VEC_free (range_s, val->unavailable);
1253 }
1254 xfree (val);
1255 }
1256
1257 /* Free all values allocated since MARK was obtained by value_mark
1258 (except for those released). */
1259 void
1260 value_free_to_mark (struct value *mark)
1261 {
1262 struct value *val;
1263 struct value *next;
1264
1265 for (val = all_values; val && val != mark; val = next)
1266 {
1267 next = val->next;
1268 val->released = 1;
1269 value_free (val);
1270 }
1271 all_values = val;
1272 }
1273
1274 /* Free all the values that have been allocated (except for those released).
1275 Call after each command, successful or not.
1276 In practice this is called before each command, which is sufficient. */
1277
1278 void
1279 free_all_values (void)
1280 {
1281 struct value *val;
1282 struct value *next;
1283
1284 for (val = all_values; val; val = next)
1285 {
1286 next = val->next;
1287 val->released = 1;
1288 value_free (val);
1289 }
1290
1291 all_values = 0;
1292 }
1293
1294 /* Frees all the elements in a chain of values. */
1295
1296 void
1297 free_value_chain (struct value *v)
1298 {
1299 struct value *next;
1300
1301 for (; v; v = next)
1302 {
1303 next = value_next (v);
1304 value_free (v);
1305 }
1306 }
1307
1308 /* Remove VAL from the chain all_values
1309 so it will not be freed automatically. */
1310
1311 void
1312 release_value (struct value *val)
1313 {
1314 struct value *v;
1315
1316 if (all_values == val)
1317 {
1318 all_values = val->next;
1319 val->next = NULL;
1320 val->released = 1;
1321 return;
1322 }
1323
1324 for (v = all_values; v; v = v->next)
1325 {
1326 if (v->next == val)
1327 {
1328 v->next = val->next;
1329 val->next = NULL;
1330 val->released = 1;
1331 break;
1332 }
1333 }
1334 }
1335
1336 /* If the value is not already released, release it.
1337 If the value is already released, increment its reference count.
1338 That is, this function ensures that the value is released from the
1339 value chain and that the caller owns a reference to it. */
1340
1341 void
1342 release_value_or_incref (struct value *val)
1343 {
1344 if (val->released)
1345 value_incref (val);
1346 else
1347 release_value (val);
1348 }
1349
1350 /* Release all values up to mark */
1351 struct value *
1352 value_release_to_mark (struct value *mark)
1353 {
1354 struct value *val;
1355 struct value *next;
1356
1357 for (val = next = all_values; next; next = next->next)
1358 {
1359 if (next->next == mark)
1360 {
1361 all_values = next->next;
1362 next->next = NULL;
1363 return val;
1364 }
1365 next->released = 1;
1366 }
1367 all_values = 0;
1368 return val;
1369 }
1370
1371 /* Return a copy of the value ARG.
1372 It contains the same contents, for same memory address,
1373 but it's a different block of storage. */
1374
1375 struct value *
1376 value_copy (struct value *arg)
1377 {
1378 struct type *encl_type = value_enclosing_type (arg);
1379 struct value *val;
1380
1381 if (value_lazy (arg))
1382 val = allocate_value_lazy (encl_type);
1383 else
1384 val = allocate_value (encl_type);
1385 val->type = arg->type;
1386 VALUE_LVAL (val) = VALUE_LVAL (arg);
1387 val->location = arg->location;
1388 val->offset = arg->offset;
1389 val->bitpos = arg->bitpos;
1390 val->bitsize = arg->bitsize;
1391 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1392 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1393 val->lazy = arg->lazy;
1394 val->optimized_out = arg->optimized_out;
1395 val->embedded_offset = value_embedded_offset (arg);
1396 val->pointed_to_offset = arg->pointed_to_offset;
1397 val->modifiable = arg->modifiable;
1398 if (!value_lazy (val))
1399 {
1400 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1401 TYPE_LENGTH (value_enclosing_type (arg)));
1402
1403 }
1404 val->unavailable = VEC_copy (range_s, arg->unavailable);
1405 set_value_parent (val, arg->parent);
1406 if (VALUE_LVAL (val) == lval_computed)
1407 {
1408 const struct lval_funcs *funcs = val->location.computed.funcs;
1409
1410 if (funcs->copy_closure)
1411 val->location.computed.closure = funcs->copy_closure (val);
1412 }
1413 return val;
1414 }
1415
1416 /* Return a version of ARG that is non-lvalue. */
1417
1418 struct value *
1419 value_non_lval (struct value *arg)
1420 {
1421 if (VALUE_LVAL (arg) != not_lval)
1422 {
1423 struct type *enc_type = value_enclosing_type (arg);
1424 struct value *val = allocate_value (enc_type);
1425
1426 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1427 TYPE_LENGTH (enc_type));
1428 val->type = arg->type;
1429 set_value_embedded_offset (val, value_embedded_offset (arg));
1430 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1431 return val;
1432 }
1433 return arg;
1434 }
1435
1436 void
1437 set_value_component_location (struct value *component,
1438 const struct value *whole)
1439 {
1440 if (whole->lval == lval_internalvar)
1441 VALUE_LVAL (component) = lval_internalvar_component;
1442 else
1443 VALUE_LVAL (component) = whole->lval;
1444
1445 component->location = whole->location;
1446 if (whole->lval == lval_computed)
1447 {
1448 const struct lval_funcs *funcs = whole->location.computed.funcs;
1449
1450 if (funcs->copy_closure)
1451 component->location.computed.closure = funcs->copy_closure (whole);
1452 }
1453 }
1454
1455 \f
1456 /* Access to the value history. */
1457
1458 /* Record a new value in the value history.
1459 Returns the absolute history index of the entry.
1460 Result of -1 indicates the value was not saved; otherwise it is the
1461 value history index of this new item. */
1462
1463 int
1464 record_latest_value (struct value *val)
1465 {
1466 int i;
1467
1468 /* We don't want this value to have anything to do with the inferior anymore.
1469 In particular, "set $1 = 50" should not affect the variable from which
1470 the value was taken, and fast watchpoints should be able to assume that
1471 a value on the value history never changes. */
1472 if (value_lazy (val))
1473 value_fetch_lazy (val);
1474 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1475 from. This is a bit dubious, because then *&$1 does not just return $1
1476 but the current contents of that location. c'est la vie... */
1477 val->modifiable = 0;
1478 release_value (val);
1479
1480 /* Here we treat value_history_count as origin-zero
1481 and applying to the value being stored now. */
1482
1483 i = value_history_count % VALUE_HISTORY_CHUNK;
1484 if (i == 0)
1485 {
1486 struct value_history_chunk *new
1487 = (struct value_history_chunk *)
1488
1489 xmalloc (sizeof (struct value_history_chunk));
1490 memset (new->values, 0, sizeof new->values);
1491 new->next = value_history_chain;
1492 value_history_chain = new;
1493 }
1494
1495 value_history_chain->values[i] = val;
1496
1497 /* Now we regard value_history_count as origin-one
1498 and applying to the value just stored. */
1499
1500 return ++value_history_count;
1501 }
1502
1503 /* Return a copy of the value in the history with sequence number NUM. */
1504
1505 struct value *
1506 access_value_history (int num)
1507 {
1508 struct value_history_chunk *chunk;
1509 int i;
1510 int absnum = num;
1511
1512 if (absnum <= 0)
1513 absnum += value_history_count;
1514
1515 if (absnum <= 0)
1516 {
1517 if (num == 0)
1518 error (_("The history is empty."));
1519 else if (num == 1)
1520 error (_("There is only one value in the history."));
1521 else
1522 error (_("History does not go back to $$%d."), -num);
1523 }
1524 if (absnum > value_history_count)
1525 error (_("History has not yet reached $%d."), absnum);
1526
1527 absnum--;
1528
1529 /* Now absnum is always absolute and origin zero. */
1530
1531 chunk = value_history_chain;
1532 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1533 - absnum / VALUE_HISTORY_CHUNK;
1534 i > 0; i--)
1535 chunk = chunk->next;
1536
1537 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1538 }
1539
1540 static void
1541 show_values (char *num_exp, int from_tty)
1542 {
1543 int i;
1544 struct value *val;
1545 static int num = 1;
1546
1547 if (num_exp)
1548 {
1549 /* "show values +" should print from the stored position.
1550 "show values <exp>" should print around value number <exp>. */
1551 if (num_exp[0] != '+' || num_exp[1] != '\0')
1552 num = parse_and_eval_long (num_exp) - 5;
1553 }
1554 else
1555 {
1556 /* "show values" means print the last 10 values. */
1557 num = value_history_count - 9;
1558 }
1559
1560 if (num <= 0)
1561 num = 1;
1562
1563 for (i = num; i < num + 10 && i <= value_history_count; i++)
1564 {
1565 struct value_print_options opts;
1566
1567 val = access_value_history (i);
1568 printf_filtered (("$%d = "), i);
1569 get_user_print_options (&opts);
1570 value_print (val, gdb_stdout, &opts);
1571 printf_filtered (("\n"));
1572 }
1573
1574 /* The next "show values +" should start after what we just printed. */
1575 num += 10;
1576
1577 /* Hitting just return after this command should do the same thing as
1578 "show values +". If num_exp is null, this is unnecessary, since
1579 "show values +" is not useful after "show values". */
1580 if (from_tty && num_exp)
1581 {
1582 num_exp[0] = '+';
1583 num_exp[1] = '\0';
1584 }
1585 }
1586 \f
1587 /* Internal variables. These are variables within the debugger
1588 that hold values assigned by debugger commands.
1589 The user refers to them with a '$' prefix
1590 that does not appear in the variable names stored internally. */
1591
1592 struct internalvar
1593 {
1594 struct internalvar *next;
1595 char *name;
1596
1597 /* We support various different kinds of content of an internal variable.
1598 enum internalvar_kind specifies the kind, and union internalvar_data
1599 provides the data associated with this particular kind. */
1600
1601 enum internalvar_kind
1602 {
1603 /* The internal variable is empty. */
1604 INTERNALVAR_VOID,
1605
1606 /* The value of the internal variable is provided directly as
1607 a GDB value object. */
1608 INTERNALVAR_VALUE,
1609
1610 /* A fresh value is computed via a call-back routine on every
1611 access to the internal variable. */
1612 INTERNALVAR_MAKE_VALUE,
1613
1614 /* The internal variable holds a GDB internal convenience function. */
1615 INTERNALVAR_FUNCTION,
1616
1617 /* The variable holds an integer value. */
1618 INTERNALVAR_INTEGER,
1619
1620 /* The variable holds a GDB-provided string. */
1621 INTERNALVAR_STRING,
1622
1623 } kind;
1624
1625 union internalvar_data
1626 {
1627 /* A value object used with INTERNALVAR_VALUE. */
1628 struct value *value;
1629
1630 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1631 struct
1632 {
1633 /* The functions to call. */
1634 const struct internalvar_funcs *functions;
1635
1636 /* The function's user-data. */
1637 void *data;
1638 } make_value;
1639
1640 /* The internal function used with INTERNALVAR_FUNCTION. */
1641 struct
1642 {
1643 struct internal_function *function;
1644 /* True if this is the canonical name for the function. */
1645 int canonical;
1646 } fn;
1647
1648 /* An integer value used with INTERNALVAR_INTEGER. */
1649 struct
1650 {
1651 /* If type is non-NULL, it will be used as the type to generate
1652 a value for this internal variable. If type is NULL, a default
1653 integer type for the architecture is used. */
1654 struct type *type;
1655 LONGEST val;
1656 } integer;
1657
1658 /* A string value used with INTERNALVAR_STRING. */
1659 char *string;
1660 } u;
1661 };
1662
1663 static struct internalvar *internalvars;
1664
1665 /* If the variable does not already exist create it and give it the
1666 value given. If no value is given then the default is zero. */
1667 static void
1668 init_if_undefined_command (char* args, int from_tty)
1669 {
1670 struct internalvar* intvar;
1671
1672 /* Parse the expression - this is taken from set_command(). */
1673 struct expression *expr = parse_expression (args);
1674 register struct cleanup *old_chain =
1675 make_cleanup (free_current_contents, &expr);
1676
1677 /* Validate the expression.
1678 Was the expression an assignment?
1679 Or even an expression at all? */
1680 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1681 error (_("Init-if-undefined requires an assignment expression."));
1682
1683 /* Extract the variable from the parsed expression.
1684 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1685 if (expr->elts[1].opcode != OP_INTERNALVAR)
1686 error (_("The first parameter to init-if-undefined "
1687 "should be a GDB variable."));
1688 intvar = expr->elts[2].internalvar;
1689
1690 /* Only evaluate the expression if the lvalue is void.
1691 This may still fail if the expresssion is invalid. */
1692 if (intvar->kind == INTERNALVAR_VOID)
1693 evaluate_expression (expr);
1694
1695 do_cleanups (old_chain);
1696 }
1697
1698
1699 /* Look up an internal variable with name NAME. NAME should not
1700 normally include a dollar sign.
1701
1702 If the specified internal variable does not exist,
1703 the return value is NULL. */
1704
1705 struct internalvar *
1706 lookup_only_internalvar (const char *name)
1707 {
1708 struct internalvar *var;
1709
1710 for (var = internalvars; var; var = var->next)
1711 if (strcmp (var->name, name) == 0)
1712 return var;
1713
1714 return NULL;
1715 }
1716
1717 /* Complete NAME by comparing it to the names of internal variables.
1718 Returns a vector of newly allocated strings, or NULL if no matches
1719 were found. */
1720
1721 VEC (char_ptr) *
1722 complete_internalvar (const char *name)
1723 {
1724 VEC (char_ptr) *result = NULL;
1725 struct internalvar *var;
1726 int len;
1727
1728 len = strlen (name);
1729
1730 for (var = internalvars; var; var = var->next)
1731 if (strncmp (var->name, name, len) == 0)
1732 {
1733 char *r = xstrdup (var->name);
1734
1735 VEC_safe_push (char_ptr, result, r);
1736 }
1737
1738 return result;
1739 }
1740
1741 /* Create an internal variable with name NAME and with a void value.
1742 NAME should not normally include a dollar sign. */
1743
1744 struct internalvar *
1745 create_internalvar (const char *name)
1746 {
1747 struct internalvar *var;
1748
1749 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1750 var->name = concat (name, (char *)NULL);
1751 var->kind = INTERNALVAR_VOID;
1752 var->next = internalvars;
1753 internalvars = var;
1754 return var;
1755 }
1756
1757 /* Create an internal variable with name NAME and register FUN as the
1758 function that value_of_internalvar uses to create a value whenever
1759 this variable is referenced. NAME should not normally include a
1760 dollar sign. DATA is passed uninterpreted to FUN when it is
1761 called. CLEANUP, if not NULL, is called when the internal variable
1762 is destroyed. It is passed DATA as its only argument. */
1763
1764 struct internalvar *
1765 create_internalvar_type_lazy (const char *name,
1766 const struct internalvar_funcs *funcs,
1767 void *data)
1768 {
1769 struct internalvar *var = create_internalvar (name);
1770
1771 var->kind = INTERNALVAR_MAKE_VALUE;
1772 var->u.make_value.functions = funcs;
1773 var->u.make_value.data = data;
1774 return var;
1775 }
1776
1777 /* See documentation in value.h. */
1778
1779 int
1780 compile_internalvar_to_ax (struct internalvar *var,
1781 struct agent_expr *expr,
1782 struct axs_value *value)
1783 {
1784 if (var->kind != INTERNALVAR_MAKE_VALUE
1785 || var->u.make_value.functions->compile_to_ax == NULL)
1786 return 0;
1787
1788 var->u.make_value.functions->compile_to_ax (var, expr, value,
1789 var->u.make_value.data);
1790 return 1;
1791 }
1792
1793 /* Look up an internal variable with name NAME. NAME should not
1794 normally include a dollar sign.
1795
1796 If the specified internal variable does not exist,
1797 one is created, with a void value. */
1798
1799 struct internalvar *
1800 lookup_internalvar (const char *name)
1801 {
1802 struct internalvar *var;
1803
1804 var = lookup_only_internalvar (name);
1805 if (var)
1806 return var;
1807
1808 return create_internalvar (name);
1809 }
1810
1811 /* Return current value of internal variable VAR. For variables that
1812 are not inherently typed, use a value type appropriate for GDBARCH. */
1813
1814 struct value *
1815 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1816 {
1817 struct value *val;
1818 struct trace_state_variable *tsv;
1819
1820 /* If there is a trace state variable of the same name, assume that
1821 is what we really want to see. */
1822 tsv = find_trace_state_variable (var->name);
1823 if (tsv)
1824 {
1825 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1826 &(tsv->value));
1827 if (tsv->value_known)
1828 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1829 tsv->value);
1830 else
1831 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1832 return val;
1833 }
1834
1835 switch (var->kind)
1836 {
1837 case INTERNALVAR_VOID:
1838 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1839 break;
1840
1841 case INTERNALVAR_FUNCTION:
1842 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1843 break;
1844
1845 case INTERNALVAR_INTEGER:
1846 if (!var->u.integer.type)
1847 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1848 var->u.integer.val);
1849 else
1850 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1851 break;
1852
1853 case INTERNALVAR_STRING:
1854 val = value_cstring (var->u.string, strlen (var->u.string),
1855 builtin_type (gdbarch)->builtin_char);
1856 break;
1857
1858 case INTERNALVAR_VALUE:
1859 val = value_copy (var->u.value);
1860 if (value_lazy (val))
1861 value_fetch_lazy (val);
1862 break;
1863
1864 case INTERNALVAR_MAKE_VALUE:
1865 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1866 var->u.make_value.data);
1867 break;
1868
1869 default:
1870 internal_error (__FILE__, __LINE__, _("bad kind"));
1871 }
1872
1873 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1874 on this value go back to affect the original internal variable.
1875
1876 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1877 no underlying modifyable state in the internal variable.
1878
1879 Likewise, if the variable's value is a computed lvalue, we want
1880 references to it to produce another computed lvalue, where
1881 references and assignments actually operate through the
1882 computed value's functions.
1883
1884 This means that internal variables with computed values
1885 behave a little differently from other internal variables:
1886 assignments to them don't just replace the previous value
1887 altogether. At the moment, this seems like the behavior we
1888 want. */
1889
1890 if (var->kind != INTERNALVAR_MAKE_VALUE
1891 && val->lval != lval_computed)
1892 {
1893 VALUE_LVAL (val) = lval_internalvar;
1894 VALUE_INTERNALVAR (val) = var;
1895 }
1896
1897 return val;
1898 }
1899
1900 int
1901 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1902 {
1903 if (var->kind == INTERNALVAR_INTEGER)
1904 {
1905 *result = var->u.integer.val;
1906 return 1;
1907 }
1908
1909 if (var->kind == INTERNALVAR_VALUE)
1910 {
1911 struct type *type = check_typedef (value_type (var->u.value));
1912
1913 if (TYPE_CODE (type) == TYPE_CODE_INT)
1914 {
1915 *result = value_as_long (var->u.value);
1916 return 1;
1917 }
1918 }
1919
1920 return 0;
1921 }
1922
1923 static int
1924 get_internalvar_function (struct internalvar *var,
1925 struct internal_function **result)
1926 {
1927 switch (var->kind)
1928 {
1929 case INTERNALVAR_FUNCTION:
1930 *result = var->u.fn.function;
1931 return 1;
1932
1933 default:
1934 return 0;
1935 }
1936 }
1937
1938 void
1939 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1940 int bitsize, struct value *newval)
1941 {
1942 gdb_byte *addr;
1943
1944 switch (var->kind)
1945 {
1946 case INTERNALVAR_VALUE:
1947 addr = value_contents_writeable (var->u.value);
1948
1949 if (bitsize)
1950 modify_field (value_type (var->u.value), addr + offset,
1951 value_as_long (newval), bitpos, bitsize);
1952 else
1953 memcpy (addr + offset, value_contents (newval),
1954 TYPE_LENGTH (value_type (newval)));
1955 break;
1956
1957 default:
1958 /* We can never get a component of any other kind. */
1959 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1960 }
1961 }
1962
1963 void
1964 set_internalvar (struct internalvar *var, struct value *val)
1965 {
1966 enum internalvar_kind new_kind;
1967 union internalvar_data new_data = { 0 };
1968
1969 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1970 error (_("Cannot overwrite convenience function %s"), var->name);
1971
1972 /* Prepare new contents. */
1973 switch (TYPE_CODE (check_typedef (value_type (val))))
1974 {
1975 case TYPE_CODE_VOID:
1976 new_kind = INTERNALVAR_VOID;
1977 break;
1978
1979 case TYPE_CODE_INTERNAL_FUNCTION:
1980 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1981 new_kind = INTERNALVAR_FUNCTION;
1982 get_internalvar_function (VALUE_INTERNALVAR (val),
1983 &new_data.fn.function);
1984 /* Copies created here are never canonical. */
1985 break;
1986
1987 default:
1988 new_kind = INTERNALVAR_VALUE;
1989 new_data.value = value_copy (val);
1990 new_data.value->modifiable = 1;
1991
1992 /* Force the value to be fetched from the target now, to avoid problems
1993 later when this internalvar is referenced and the target is gone or
1994 has changed. */
1995 if (value_lazy (new_data.value))
1996 value_fetch_lazy (new_data.value);
1997
1998 /* Release the value from the value chain to prevent it from being
1999 deleted by free_all_values. From here on this function should not
2000 call error () until new_data is installed into the var->u to avoid
2001 leaking memory. */
2002 release_value (new_data.value);
2003 break;
2004 }
2005
2006 /* Clean up old contents. */
2007 clear_internalvar (var);
2008
2009 /* Switch over. */
2010 var->kind = new_kind;
2011 var->u = new_data;
2012 /* End code which must not call error(). */
2013 }
2014
2015 void
2016 set_internalvar_integer (struct internalvar *var, LONGEST l)
2017 {
2018 /* Clean up old contents. */
2019 clear_internalvar (var);
2020
2021 var->kind = INTERNALVAR_INTEGER;
2022 var->u.integer.type = NULL;
2023 var->u.integer.val = l;
2024 }
2025
2026 void
2027 set_internalvar_string (struct internalvar *var, const char *string)
2028 {
2029 /* Clean up old contents. */
2030 clear_internalvar (var);
2031
2032 var->kind = INTERNALVAR_STRING;
2033 var->u.string = xstrdup (string);
2034 }
2035
2036 static void
2037 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2038 {
2039 /* Clean up old contents. */
2040 clear_internalvar (var);
2041
2042 var->kind = INTERNALVAR_FUNCTION;
2043 var->u.fn.function = f;
2044 var->u.fn.canonical = 1;
2045 /* Variables installed here are always the canonical version. */
2046 }
2047
2048 void
2049 clear_internalvar (struct internalvar *var)
2050 {
2051 /* Clean up old contents. */
2052 switch (var->kind)
2053 {
2054 case INTERNALVAR_VALUE:
2055 value_free (var->u.value);
2056 break;
2057
2058 case INTERNALVAR_STRING:
2059 xfree (var->u.string);
2060 break;
2061
2062 case INTERNALVAR_MAKE_VALUE:
2063 if (var->u.make_value.functions->destroy != NULL)
2064 var->u.make_value.functions->destroy (var->u.make_value.data);
2065 break;
2066
2067 default:
2068 break;
2069 }
2070
2071 /* Reset to void kind. */
2072 var->kind = INTERNALVAR_VOID;
2073 }
2074
2075 char *
2076 internalvar_name (struct internalvar *var)
2077 {
2078 return var->name;
2079 }
2080
2081 static struct internal_function *
2082 create_internal_function (const char *name,
2083 internal_function_fn handler, void *cookie)
2084 {
2085 struct internal_function *ifn = XNEW (struct internal_function);
2086
2087 ifn->name = xstrdup (name);
2088 ifn->handler = handler;
2089 ifn->cookie = cookie;
2090 return ifn;
2091 }
2092
2093 char *
2094 value_internal_function_name (struct value *val)
2095 {
2096 struct internal_function *ifn;
2097 int result;
2098
2099 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2100 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2101 gdb_assert (result);
2102
2103 return ifn->name;
2104 }
2105
2106 struct value *
2107 call_internal_function (struct gdbarch *gdbarch,
2108 const struct language_defn *language,
2109 struct value *func, int argc, struct value **argv)
2110 {
2111 struct internal_function *ifn;
2112 int result;
2113
2114 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2115 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2116 gdb_assert (result);
2117
2118 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2119 }
2120
2121 /* The 'function' command. This does nothing -- it is just a
2122 placeholder to let "help function NAME" work. This is also used as
2123 the implementation of the sub-command that is created when
2124 registering an internal function. */
2125 static void
2126 function_command (char *command, int from_tty)
2127 {
2128 /* Do nothing. */
2129 }
2130
2131 /* Clean up if an internal function's command is destroyed. */
2132 static void
2133 function_destroyer (struct cmd_list_element *self, void *ignore)
2134 {
2135 xfree ((char *) self->name);
2136 xfree (self->doc);
2137 }
2138
2139 /* Add a new internal function. NAME is the name of the function; DOC
2140 is a documentation string describing the function. HANDLER is
2141 called when the function is invoked. COOKIE is an arbitrary
2142 pointer which is passed to HANDLER and is intended for "user
2143 data". */
2144 void
2145 add_internal_function (const char *name, const char *doc,
2146 internal_function_fn handler, void *cookie)
2147 {
2148 struct cmd_list_element *cmd;
2149 struct internal_function *ifn;
2150 struct internalvar *var = lookup_internalvar (name);
2151
2152 ifn = create_internal_function (name, handler, cookie);
2153 set_internalvar_function (var, ifn);
2154
2155 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2156 &functionlist);
2157 cmd->destroyer = function_destroyer;
2158 }
2159
2160 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2161 prevent cycles / duplicates. */
2162
2163 void
2164 preserve_one_value (struct value *value, struct objfile *objfile,
2165 htab_t copied_types)
2166 {
2167 if (TYPE_OBJFILE (value->type) == objfile)
2168 value->type = copy_type_recursive (objfile, value->type, copied_types);
2169
2170 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2171 value->enclosing_type = copy_type_recursive (objfile,
2172 value->enclosing_type,
2173 copied_types);
2174 }
2175
2176 /* Likewise for internal variable VAR. */
2177
2178 static void
2179 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2180 htab_t copied_types)
2181 {
2182 switch (var->kind)
2183 {
2184 case INTERNALVAR_INTEGER:
2185 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2186 var->u.integer.type
2187 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2188 break;
2189
2190 case INTERNALVAR_VALUE:
2191 preserve_one_value (var->u.value, objfile, copied_types);
2192 break;
2193 }
2194 }
2195
2196 /* Update the internal variables and value history when OBJFILE is
2197 discarded; we must copy the types out of the objfile. New global types
2198 will be created for every convenience variable which currently points to
2199 this objfile's types, and the convenience variables will be adjusted to
2200 use the new global types. */
2201
2202 void
2203 preserve_values (struct objfile *objfile)
2204 {
2205 htab_t copied_types;
2206 struct value_history_chunk *cur;
2207 struct internalvar *var;
2208 int i;
2209
2210 /* Create the hash table. We allocate on the objfile's obstack, since
2211 it is soon to be deleted. */
2212 copied_types = create_copied_types_hash (objfile);
2213
2214 for (cur = value_history_chain; cur; cur = cur->next)
2215 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2216 if (cur->values[i])
2217 preserve_one_value (cur->values[i], objfile, copied_types);
2218
2219 for (var = internalvars; var; var = var->next)
2220 preserve_one_internalvar (var, objfile, copied_types);
2221
2222 preserve_python_values (objfile, copied_types);
2223
2224 htab_delete (copied_types);
2225 }
2226
2227 static void
2228 show_convenience (char *ignore, int from_tty)
2229 {
2230 struct gdbarch *gdbarch = get_current_arch ();
2231 struct internalvar *var;
2232 int varseen = 0;
2233 struct value_print_options opts;
2234
2235 get_user_print_options (&opts);
2236 for (var = internalvars; var; var = var->next)
2237 {
2238 volatile struct gdb_exception ex;
2239
2240 if (!varseen)
2241 {
2242 varseen = 1;
2243 }
2244 printf_filtered (("$%s = "), var->name);
2245
2246 TRY_CATCH (ex, RETURN_MASK_ERROR)
2247 {
2248 struct value *val;
2249
2250 val = value_of_internalvar (gdbarch, var);
2251 value_print (val, gdb_stdout, &opts);
2252 }
2253 if (ex.reason < 0)
2254 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2255 printf_filtered (("\n"));
2256 }
2257 if (!varseen)
2258 {
2259 /* This text does not mention convenience functions on purpose.
2260 The user can't create them except via Python, and if Python support
2261 is installed this message will never be printed ($_streq will
2262 exist). */
2263 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2264 "Convenience variables have "
2265 "names starting with \"$\";\n"
2266 "use \"set\" as in \"set "
2267 "$foo = 5\" to define them.\n"));
2268 }
2269 }
2270 \f
2271 /* Extract a value as a C number (either long or double).
2272 Knows how to convert fixed values to double, or
2273 floating values to long.
2274 Does not deallocate the value. */
2275
2276 LONGEST
2277 value_as_long (struct value *val)
2278 {
2279 /* This coerces arrays and functions, which is necessary (e.g.
2280 in disassemble_command). It also dereferences references, which
2281 I suspect is the most logical thing to do. */
2282 val = coerce_array (val);
2283 return unpack_long (value_type (val), value_contents (val));
2284 }
2285
2286 DOUBLEST
2287 value_as_double (struct value *val)
2288 {
2289 DOUBLEST foo;
2290 int inv;
2291
2292 foo = unpack_double (value_type (val), value_contents (val), &inv);
2293 if (inv)
2294 error (_("Invalid floating value found in program."));
2295 return foo;
2296 }
2297
2298 /* Extract a value as a C pointer. Does not deallocate the value.
2299 Note that val's type may not actually be a pointer; value_as_long
2300 handles all the cases. */
2301 CORE_ADDR
2302 value_as_address (struct value *val)
2303 {
2304 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2305
2306 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2307 whether we want this to be true eventually. */
2308 #if 0
2309 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2310 non-address (e.g. argument to "signal", "info break", etc.), or
2311 for pointers to char, in which the low bits *are* significant. */
2312 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2313 #else
2314
2315 /* There are several targets (IA-64, PowerPC, and others) which
2316 don't represent pointers to functions as simply the address of
2317 the function's entry point. For example, on the IA-64, a
2318 function pointer points to a two-word descriptor, generated by
2319 the linker, which contains the function's entry point, and the
2320 value the IA-64 "global pointer" register should have --- to
2321 support position-independent code. The linker generates
2322 descriptors only for those functions whose addresses are taken.
2323
2324 On such targets, it's difficult for GDB to convert an arbitrary
2325 function address into a function pointer; it has to either find
2326 an existing descriptor for that function, or call malloc and
2327 build its own. On some targets, it is impossible for GDB to
2328 build a descriptor at all: the descriptor must contain a jump
2329 instruction; data memory cannot be executed; and code memory
2330 cannot be modified.
2331
2332 Upon entry to this function, if VAL is a value of type `function'
2333 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2334 value_address (val) is the address of the function. This is what
2335 you'll get if you evaluate an expression like `main'. The call
2336 to COERCE_ARRAY below actually does all the usual unary
2337 conversions, which includes converting values of type `function'
2338 to `pointer to function'. This is the challenging conversion
2339 discussed above. Then, `unpack_long' will convert that pointer
2340 back into an address.
2341
2342 So, suppose the user types `disassemble foo' on an architecture
2343 with a strange function pointer representation, on which GDB
2344 cannot build its own descriptors, and suppose further that `foo'
2345 has no linker-built descriptor. The address->pointer conversion
2346 will signal an error and prevent the command from running, even
2347 though the next step would have been to convert the pointer
2348 directly back into the same address.
2349
2350 The following shortcut avoids this whole mess. If VAL is a
2351 function, just return its address directly. */
2352 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2353 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2354 return value_address (val);
2355
2356 val = coerce_array (val);
2357
2358 /* Some architectures (e.g. Harvard), map instruction and data
2359 addresses onto a single large unified address space. For
2360 instance: An architecture may consider a large integer in the
2361 range 0x10000000 .. 0x1000ffff to already represent a data
2362 addresses (hence not need a pointer to address conversion) while
2363 a small integer would still need to be converted integer to
2364 pointer to address. Just assume such architectures handle all
2365 integer conversions in a single function. */
2366
2367 /* JimB writes:
2368
2369 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2370 must admonish GDB hackers to make sure its behavior matches the
2371 compiler's, whenever possible.
2372
2373 In general, I think GDB should evaluate expressions the same way
2374 the compiler does. When the user copies an expression out of
2375 their source code and hands it to a `print' command, they should
2376 get the same value the compiler would have computed. Any
2377 deviation from this rule can cause major confusion and annoyance,
2378 and needs to be justified carefully. In other words, GDB doesn't
2379 really have the freedom to do these conversions in clever and
2380 useful ways.
2381
2382 AndrewC pointed out that users aren't complaining about how GDB
2383 casts integers to pointers; they are complaining that they can't
2384 take an address from a disassembly listing and give it to `x/i'.
2385 This is certainly important.
2386
2387 Adding an architecture method like integer_to_address() certainly
2388 makes it possible for GDB to "get it right" in all circumstances
2389 --- the target has complete control over how things get done, so
2390 people can Do The Right Thing for their target without breaking
2391 anyone else. The standard doesn't specify how integers get
2392 converted to pointers; usually, the ABI doesn't either, but
2393 ABI-specific code is a more reasonable place to handle it. */
2394
2395 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2396 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2397 && gdbarch_integer_to_address_p (gdbarch))
2398 return gdbarch_integer_to_address (gdbarch, value_type (val),
2399 value_contents (val));
2400
2401 return unpack_long (value_type (val), value_contents (val));
2402 #endif
2403 }
2404 \f
2405 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2406 as a long, or as a double, assuming the raw data is described
2407 by type TYPE. Knows how to convert different sizes of values
2408 and can convert between fixed and floating point. We don't assume
2409 any alignment for the raw data. Return value is in host byte order.
2410
2411 If you want functions and arrays to be coerced to pointers, and
2412 references to be dereferenced, call value_as_long() instead.
2413
2414 C++: It is assumed that the front-end has taken care of
2415 all matters concerning pointers to members. A pointer
2416 to member which reaches here is considered to be equivalent
2417 to an INT (or some size). After all, it is only an offset. */
2418
2419 LONGEST
2420 unpack_long (struct type *type, const gdb_byte *valaddr)
2421 {
2422 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2423 enum type_code code = TYPE_CODE (type);
2424 int len = TYPE_LENGTH (type);
2425 int nosign = TYPE_UNSIGNED (type);
2426
2427 switch (code)
2428 {
2429 case TYPE_CODE_TYPEDEF:
2430 return unpack_long (check_typedef (type), valaddr);
2431 case TYPE_CODE_ENUM:
2432 case TYPE_CODE_FLAGS:
2433 case TYPE_CODE_BOOL:
2434 case TYPE_CODE_INT:
2435 case TYPE_CODE_CHAR:
2436 case TYPE_CODE_RANGE:
2437 case TYPE_CODE_MEMBERPTR:
2438 if (nosign)
2439 return extract_unsigned_integer (valaddr, len, byte_order);
2440 else
2441 return extract_signed_integer (valaddr, len, byte_order);
2442
2443 case TYPE_CODE_FLT:
2444 return extract_typed_floating (valaddr, type);
2445
2446 case TYPE_CODE_DECFLOAT:
2447 /* libdecnumber has a function to convert from decimal to integer, but
2448 it doesn't work when the decimal number has a fractional part. */
2449 return decimal_to_doublest (valaddr, len, byte_order);
2450
2451 case TYPE_CODE_PTR:
2452 case TYPE_CODE_REF:
2453 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2454 whether we want this to be true eventually. */
2455 return extract_typed_address (valaddr, type);
2456
2457 default:
2458 error (_("Value can't be converted to integer."));
2459 }
2460 return 0; /* Placate lint. */
2461 }
2462
2463 /* Return a double value from the specified type and address.
2464 INVP points to an int which is set to 0 for valid value,
2465 1 for invalid value (bad float format). In either case,
2466 the returned double is OK to use. Argument is in target
2467 format, result is in host format. */
2468
2469 DOUBLEST
2470 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2471 {
2472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2473 enum type_code code;
2474 int len;
2475 int nosign;
2476
2477 *invp = 0; /* Assume valid. */
2478 CHECK_TYPEDEF (type);
2479 code = TYPE_CODE (type);
2480 len = TYPE_LENGTH (type);
2481 nosign = TYPE_UNSIGNED (type);
2482 if (code == TYPE_CODE_FLT)
2483 {
2484 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2485 floating-point value was valid (using the macro
2486 INVALID_FLOAT). That test/macro have been removed.
2487
2488 It turns out that only the VAX defined this macro and then
2489 only in a non-portable way. Fixing the portability problem
2490 wouldn't help since the VAX floating-point code is also badly
2491 bit-rotten. The target needs to add definitions for the
2492 methods gdbarch_float_format and gdbarch_double_format - these
2493 exactly describe the target floating-point format. The
2494 problem here is that the corresponding floatformat_vax_f and
2495 floatformat_vax_d values these methods should be set to are
2496 also not defined either. Oops!
2497
2498 Hopefully someone will add both the missing floatformat
2499 definitions and the new cases for floatformat_is_valid (). */
2500
2501 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2502 {
2503 *invp = 1;
2504 return 0.0;
2505 }
2506
2507 return extract_typed_floating (valaddr, type);
2508 }
2509 else if (code == TYPE_CODE_DECFLOAT)
2510 return decimal_to_doublest (valaddr, len, byte_order);
2511 else if (nosign)
2512 {
2513 /* Unsigned -- be sure we compensate for signed LONGEST. */
2514 return (ULONGEST) unpack_long (type, valaddr);
2515 }
2516 else
2517 {
2518 /* Signed -- we are OK with unpack_long. */
2519 return unpack_long (type, valaddr);
2520 }
2521 }
2522
2523 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2524 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2525 We don't assume any alignment for the raw data. Return value is in
2526 host byte order.
2527
2528 If you want functions and arrays to be coerced to pointers, and
2529 references to be dereferenced, call value_as_address() instead.
2530
2531 C++: It is assumed that the front-end has taken care of
2532 all matters concerning pointers to members. A pointer
2533 to member which reaches here is considered to be equivalent
2534 to an INT (or some size). After all, it is only an offset. */
2535
2536 CORE_ADDR
2537 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2538 {
2539 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2540 whether we want this to be true eventually. */
2541 return unpack_long (type, valaddr);
2542 }
2543
2544 \f
2545 /* Get the value of the FIELDNO'th field (which must be static) of
2546 TYPE. Return NULL if the field doesn't exist or has been
2547 optimized out. */
2548
2549 struct value *
2550 value_static_field (struct type *type, int fieldno)
2551 {
2552 struct value *retval;
2553
2554 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2555 {
2556 case FIELD_LOC_KIND_PHYSADDR:
2557 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2558 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2559 break;
2560 case FIELD_LOC_KIND_PHYSNAME:
2561 {
2562 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2563 /* TYPE_FIELD_NAME (type, fieldno); */
2564 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2565
2566 if (sym == NULL)
2567 {
2568 /* With some compilers, e.g. HP aCC, static data members are
2569 reported as non-debuggable symbols. */
2570 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2571 NULL, NULL);
2572
2573 if (!msym)
2574 return NULL;
2575 else
2576 {
2577 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2578 SYMBOL_VALUE_ADDRESS (msym));
2579 }
2580 }
2581 else
2582 retval = value_of_variable (sym, NULL);
2583 break;
2584 }
2585 default:
2586 gdb_assert_not_reached ("unexpected field location kind");
2587 }
2588
2589 return retval;
2590 }
2591
2592 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2593 You have to be careful here, since the size of the data area for the value
2594 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2595 than the old enclosing type, you have to allocate more space for the
2596 data. */
2597
2598 void
2599 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2600 {
2601 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2602 val->contents =
2603 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2604
2605 val->enclosing_type = new_encl_type;
2606 }
2607
2608 /* Given a value ARG1 (offset by OFFSET bytes)
2609 of a struct or union type ARG_TYPE,
2610 extract and return the value of one of its (non-static) fields.
2611 FIELDNO says which field. */
2612
2613 struct value *
2614 value_primitive_field (struct value *arg1, int offset,
2615 int fieldno, struct type *arg_type)
2616 {
2617 struct value *v;
2618 struct type *type;
2619
2620 CHECK_TYPEDEF (arg_type);
2621 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2622
2623 /* Call check_typedef on our type to make sure that, if TYPE
2624 is a TYPE_CODE_TYPEDEF, its length is set to the length
2625 of the target type instead of zero. However, we do not
2626 replace the typedef type by the target type, because we want
2627 to keep the typedef in order to be able to print the type
2628 description correctly. */
2629 check_typedef (type);
2630
2631 if (value_optimized_out (arg1))
2632 v = allocate_optimized_out_value (type);
2633 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2634 {
2635 /* Handle packed fields.
2636
2637 Create a new value for the bitfield, with bitpos and bitsize
2638 set. If possible, arrange offset and bitpos so that we can
2639 do a single aligned read of the size of the containing type.
2640 Otherwise, adjust offset to the byte containing the first
2641 bit. Assume that the address, offset, and embedded offset
2642 are sufficiently aligned. */
2643
2644 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2645 int container_bitsize = TYPE_LENGTH (type) * 8;
2646
2647 v = allocate_value_lazy (type);
2648 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2649 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2650 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2651 v->bitpos = bitpos % container_bitsize;
2652 else
2653 v->bitpos = bitpos % 8;
2654 v->offset = (value_embedded_offset (arg1)
2655 + offset
2656 + (bitpos - v->bitpos) / 8);
2657 set_value_parent (v, arg1);
2658 if (!value_lazy (arg1))
2659 value_fetch_lazy (v);
2660 }
2661 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2662 {
2663 /* This field is actually a base subobject, so preserve the
2664 entire object's contents for later references to virtual
2665 bases, etc. */
2666 int boffset;
2667
2668 /* Lazy register values with offsets are not supported. */
2669 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2670 value_fetch_lazy (arg1);
2671
2672 /* We special case virtual inheritance here because this
2673 requires access to the contents, which we would rather avoid
2674 for references to ordinary fields of unavailable values. */
2675 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2676 boffset = baseclass_offset (arg_type, fieldno,
2677 value_contents (arg1),
2678 value_embedded_offset (arg1),
2679 value_address (arg1),
2680 arg1);
2681 else
2682 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2683
2684 if (value_lazy (arg1))
2685 v = allocate_value_lazy (value_enclosing_type (arg1));
2686 else
2687 {
2688 v = allocate_value (value_enclosing_type (arg1));
2689 value_contents_copy_raw (v, 0, arg1, 0,
2690 TYPE_LENGTH (value_enclosing_type (arg1)));
2691 }
2692 v->type = type;
2693 v->offset = value_offset (arg1);
2694 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2695 }
2696 else
2697 {
2698 /* Plain old data member */
2699 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2700
2701 /* Lazy register values with offsets are not supported. */
2702 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2703 value_fetch_lazy (arg1);
2704
2705 if (value_lazy (arg1))
2706 v = allocate_value_lazy (type);
2707 else
2708 {
2709 v = allocate_value (type);
2710 value_contents_copy_raw (v, value_embedded_offset (v),
2711 arg1, value_embedded_offset (arg1) + offset,
2712 TYPE_LENGTH (type));
2713 }
2714 v->offset = (value_offset (arg1) + offset
2715 + value_embedded_offset (arg1));
2716 }
2717 set_value_component_location (v, arg1);
2718 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2719 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2720 return v;
2721 }
2722
2723 /* Given a value ARG1 of a struct or union type,
2724 extract and return the value of one of its (non-static) fields.
2725 FIELDNO says which field. */
2726
2727 struct value *
2728 value_field (struct value *arg1, int fieldno)
2729 {
2730 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2731 }
2732
2733 /* Return a non-virtual function as a value.
2734 F is the list of member functions which contains the desired method.
2735 J is an index into F which provides the desired method.
2736
2737 We only use the symbol for its address, so be happy with either a
2738 full symbol or a minimal symbol. */
2739
2740 struct value *
2741 value_fn_field (struct value **arg1p, struct fn_field *f,
2742 int j, struct type *type,
2743 int offset)
2744 {
2745 struct value *v;
2746 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2747 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2748 struct symbol *sym;
2749 struct minimal_symbol *msym;
2750
2751 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2752 if (sym != NULL)
2753 {
2754 msym = NULL;
2755 }
2756 else
2757 {
2758 gdb_assert (sym == NULL);
2759 msym = lookup_minimal_symbol (physname, NULL, NULL);
2760 if (msym == NULL)
2761 return NULL;
2762 }
2763
2764 v = allocate_value (ftype);
2765 if (sym)
2766 {
2767 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2768 }
2769 else
2770 {
2771 /* The minimal symbol might point to a function descriptor;
2772 resolve it to the actual code address instead. */
2773 struct objfile *objfile = msymbol_objfile (msym);
2774 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2775
2776 set_value_address (v,
2777 gdbarch_convert_from_func_ptr_addr
2778 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2779 }
2780
2781 if (arg1p)
2782 {
2783 if (type != value_type (*arg1p))
2784 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2785 value_addr (*arg1p)));
2786
2787 /* Move the `this' pointer according to the offset.
2788 VALUE_OFFSET (*arg1p) += offset; */
2789 }
2790
2791 return v;
2792 }
2793
2794 \f
2795
2796 /* Helper function for both unpack_value_bits_as_long and
2797 unpack_bits_as_long. See those functions for more details on the
2798 interface; the only difference is that this function accepts either
2799 a NULL or a non-NULL ORIGINAL_VALUE. */
2800
2801 static int
2802 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2803 int embedded_offset, int bitpos, int bitsize,
2804 const struct value *original_value,
2805 LONGEST *result)
2806 {
2807 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2808 ULONGEST val;
2809 ULONGEST valmask;
2810 int lsbcount;
2811 int bytes_read;
2812 int read_offset;
2813
2814 /* Read the minimum number of bytes required; there may not be
2815 enough bytes to read an entire ULONGEST. */
2816 CHECK_TYPEDEF (field_type);
2817 if (bitsize)
2818 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2819 else
2820 bytes_read = TYPE_LENGTH (field_type);
2821
2822 read_offset = bitpos / 8;
2823
2824 if (original_value != NULL
2825 && !value_bytes_available (original_value, embedded_offset + read_offset,
2826 bytes_read))
2827 return 0;
2828
2829 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2830 bytes_read, byte_order);
2831
2832 /* Extract bits. See comment above. */
2833
2834 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2835 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2836 else
2837 lsbcount = (bitpos % 8);
2838 val >>= lsbcount;
2839
2840 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2841 If the field is signed, and is negative, then sign extend. */
2842
2843 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2844 {
2845 valmask = (((ULONGEST) 1) << bitsize) - 1;
2846 val &= valmask;
2847 if (!TYPE_UNSIGNED (field_type))
2848 {
2849 if (val & (valmask ^ (valmask >> 1)))
2850 {
2851 val |= ~valmask;
2852 }
2853 }
2854 }
2855
2856 *result = val;
2857 return 1;
2858 }
2859
2860 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2861 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2862 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2863 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2864 bits.
2865
2866 Returns false if the value contents are unavailable, otherwise
2867 returns true, indicating a valid value has been stored in *RESULT.
2868
2869 Extracting bits depends on endianness of the machine. Compute the
2870 number of least significant bits to discard. For big endian machines,
2871 we compute the total number of bits in the anonymous object, subtract
2872 off the bit count from the MSB of the object to the MSB of the
2873 bitfield, then the size of the bitfield, which leaves the LSB discard
2874 count. For little endian machines, the discard count is simply the
2875 number of bits from the LSB of the anonymous object to the LSB of the
2876 bitfield.
2877
2878 If the field is signed, we also do sign extension. */
2879
2880 int
2881 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2882 int embedded_offset, int bitpos, int bitsize,
2883 const struct value *original_value,
2884 LONGEST *result)
2885 {
2886 gdb_assert (original_value != NULL);
2887
2888 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2889 bitpos, bitsize, original_value, result);
2890
2891 }
2892
2893 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2894 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2895 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2896 details. */
2897
2898 static int
2899 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2900 int embedded_offset, int fieldno,
2901 const struct value *val, LONGEST *result)
2902 {
2903 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2904 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2905 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2906
2907 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2908 bitpos, bitsize, val,
2909 result);
2910 }
2911
2912 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2913 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2914 ORIGINAL_VALUE, which must not be NULL. See
2915 unpack_value_bits_as_long for more details. */
2916
2917 int
2918 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2919 int embedded_offset, int fieldno,
2920 const struct value *val, LONGEST *result)
2921 {
2922 gdb_assert (val != NULL);
2923
2924 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2925 fieldno, val, result);
2926 }
2927
2928 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2929 object at VALADDR. See unpack_value_bits_as_long for more details.
2930 This function differs from unpack_value_field_as_long in that it
2931 operates without a struct value object. */
2932
2933 LONGEST
2934 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2935 {
2936 LONGEST result;
2937
2938 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2939 return result;
2940 }
2941
2942 /* Return a new value with type TYPE, which is FIELDNO field of the
2943 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2944 of VAL. If the VAL's contents required to extract the bitfield
2945 from are unavailable, the new value is correspondingly marked as
2946 unavailable. */
2947
2948 struct value *
2949 value_field_bitfield (struct type *type, int fieldno,
2950 const gdb_byte *valaddr,
2951 int embedded_offset, const struct value *val)
2952 {
2953 LONGEST l;
2954
2955 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2956 val, &l))
2957 {
2958 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2959 struct value *retval = allocate_value (field_type);
2960 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2961 return retval;
2962 }
2963 else
2964 {
2965 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2966 }
2967 }
2968
2969 /* Modify the value of a bitfield. ADDR points to a block of memory in
2970 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2971 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2972 indicate which bits (in target bit order) comprise the bitfield.
2973 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2974 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2975
2976 void
2977 modify_field (struct type *type, gdb_byte *addr,
2978 LONGEST fieldval, int bitpos, int bitsize)
2979 {
2980 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2981 ULONGEST oword;
2982 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2983 int bytesize;
2984
2985 /* Normalize BITPOS. */
2986 addr += bitpos / 8;
2987 bitpos %= 8;
2988
2989 /* If a negative fieldval fits in the field in question, chop
2990 off the sign extension bits. */
2991 if ((~fieldval & ~(mask >> 1)) == 0)
2992 fieldval &= mask;
2993
2994 /* Warn if value is too big to fit in the field in question. */
2995 if (0 != (fieldval & ~mask))
2996 {
2997 /* FIXME: would like to include fieldval in the message, but
2998 we don't have a sprintf_longest. */
2999 warning (_("Value does not fit in %d bits."), bitsize);
3000
3001 /* Truncate it, otherwise adjoining fields may be corrupted. */
3002 fieldval &= mask;
3003 }
3004
3005 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3006 false valgrind reports. */
3007
3008 bytesize = (bitpos + bitsize + 7) / 8;
3009 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3010
3011 /* Shifting for bit field depends on endianness of the target machine. */
3012 if (gdbarch_bits_big_endian (get_type_arch (type)))
3013 bitpos = bytesize * 8 - bitpos - bitsize;
3014
3015 oword &= ~(mask << bitpos);
3016 oword |= fieldval << bitpos;
3017
3018 store_unsigned_integer (addr, bytesize, byte_order, oword);
3019 }
3020 \f
3021 /* Pack NUM into BUF using a target format of TYPE. */
3022
3023 void
3024 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3025 {
3026 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3027 int len;
3028
3029 type = check_typedef (type);
3030 len = TYPE_LENGTH (type);
3031
3032 switch (TYPE_CODE (type))
3033 {
3034 case TYPE_CODE_INT:
3035 case TYPE_CODE_CHAR:
3036 case TYPE_CODE_ENUM:
3037 case TYPE_CODE_FLAGS:
3038 case TYPE_CODE_BOOL:
3039 case TYPE_CODE_RANGE:
3040 case TYPE_CODE_MEMBERPTR:
3041 store_signed_integer (buf, len, byte_order, num);
3042 break;
3043
3044 case TYPE_CODE_REF:
3045 case TYPE_CODE_PTR:
3046 store_typed_address (buf, type, (CORE_ADDR) num);
3047 break;
3048
3049 default:
3050 error (_("Unexpected type (%d) encountered for integer constant."),
3051 TYPE_CODE (type));
3052 }
3053 }
3054
3055
3056 /* Pack NUM into BUF using a target format of TYPE. */
3057
3058 static void
3059 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3060 {
3061 int len;
3062 enum bfd_endian byte_order;
3063
3064 type = check_typedef (type);
3065 len = TYPE_LENGTH (type);
3066 byte_order = gdbarch_byte_order (get_type_arch (type));
3067
3068 switch (TYPE_CODE (type))
3069 {
3070 case TYPE_CODE_INT:
3071 case TYPE_CODE_CHAR:
3072 case TYPE_CODE_ENUM:
3073 case TYPE_CODE_FLAGS:
3074 case TYPE_CODE_BOOL:
3075 case TYPE_CODE_RANGE:
3076 case TYPE_CODE_MEMBERPTR:
3077 store_unsigned_integer (buf, len, byte_order, num);
3078 break;
3079
3080 case TYPE_CODE_REF:
3081 case TYPE_CODE_PTR:
3082 store_typed_address (buf, type, (CORE_ADDR) num);
3083 break;
3084
3085 default:
3086 error (_("Unexpected type (%d) encountered "
3087 "for unsigned integer constant."),
3088 TYPE_CODE (type));
3089 }
3090 }
3091
3092
3093 /* Convert C numbers into newly allocated values. */
3094
3095 struct value *
3096 value_from_longest (struct type *type, LONGEST num)
3097 {
3098 struct value *val = allocate_value (type);
3099
3100 pack_long (value_contents_raw (val), type, num);
3101 return val;
3102 }
3103
3104
3105 /* Convert C unsigned numbers into newly allocated values. */
3106
3107 struct value *
3108 value_from_ulongest (struct type *type, ULONGEST num)
3109 {
3110 struct value *val = allocate_value (type);
3111
3112 pack_unsigned_long (value_contents_raw (val), type, num);
3113
3114 return val;
3115 }
3116
3117
3118 /* Create a value representing a pointer of type TYPE to the address
3119 ADDR. */
3120 struct value *
3121 value_from_pointer (struct type *type, CORE_ADDR addr)
3122 {
3123 struct value *val = allocate_value (type);
3124
3125 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3126 return val;
3127 }
3128
3129
3130 /* Create a value of type TYPE whose contents come from VALADDR, if it
3131 is non-null, and whose memory address (in the inferior) is
3132 ADDRESS. */
3133
3134 struct value *
3135 value_from_contents_and_address (struct type *type,
3136 const gdb_byte *valaddr,
3137 CORE_ADDR address)
3138 {
3139 struct value *v;
3140
3141 if (valaddr == NULL)
3142 v = allocate_value_lazy (type);
3143 else
3144 {
3145 v = allocate_value (type);
3146 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3147 }
3148 set_value_address (v, address);
3149 VALUE_LVAL (v) = lval_memory;
3150 return v;
3151 }
3152
3153 /* Create a value of type TYPE holding the contents CONTENTS.
3154 The new value is `not_lval'. */
3155
3156 struct value *
3157 value_from_contents (struct type *type, const gdb_byte *contents)
3158 {
3159 struct value *result;
3160
3161 result = allocate_value (type);
3162 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3163 return result;
3164 }
3165
3166 struct value *
3167 value_from_double (struct type *type, DOUBLEST num)
3168 {
3169 struct value *val = allocate_value (type);
3170 struct type *base_type = check_typedef (type);
3171 enum type_code code = TYPE_CODE (base_type);
3172
3173 if (code == TYPE_CODE_FLT)
3174 {
3175 store_typed_floating (value_contents_raw (val), base_type, num);
3176 }
3177 else
3178 error (_("Unexpected type encountered for floating constant."));
3179
3180 return val;
3181 }
3182
3183 struct value *
3184 value_from_decfloat (struct type *type, const gdb_byte *dec)
3185 {
3186 struct value *val = allocate_value (type);
3187
3188 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3189 return val;
3190 }
3191
3192 /* Extract a value from the history file. Input will be of the form
3193 $digits or $$digits. See block comment above 'write_dollar_variable'
3194 for details. */
3195
3196 struct value *
3197 value_from_history_ref (char *h, char **endp)
3198 {
3199 int index, len;
3200
3201 if (h[0] == '$')
3202 len = 1;
3203 else
3204 return NULL;
3205
3206 if (h[1] == '$')
3207 len = 2;
3208
3209 /* Find length of numeral string. */
3210 for (; isdigit (h[len]); len++)
3211 ;
3212
3213 /* Make sure numeral string is not part of an identifier. */
3214 if (h[len] == '_' || isalpha (h[len]))
3215 return NULL;
3216
3217 /* Now collect the index value. */
3218 if (h[1] == '$')
3219 {
3220 if (len == 2)
3221 {
3222 /* For some bizarre reason, "$$" is equivalent to "$$1",
3223 rather than to "$$0" as it ought to be! */
3224 index = -1;
3225 *endp += len;
3226 }
3227 else
3228 index = -strtol (&h[2], endp, 10);
3229 }
3230 else
3231 {
3232 if (len == 1)
3233 {
3234 /* "$" is equivalent to "$0". */
3235 index = 0;
3236 *endp += len;
3237 }
3238 else
3239 index = strtol (&h[1], endp, 10);
3240 }
3241
3242 return access_value_history (index);
3243 }
3244
3245 struct value *
3246 coerce_ref_if_computed (const struct value *arg)
3247 {
3248 const struct lval_funcs *funcs;
3249
3250 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3251 return NULL;
3252
3253 if (value_lval_const (arg) != lval_computed)
3254 return NULL;
3255
3256 funcs = value_computed_funcs (arg);
3257 if (funcs->coerce_ref == NULL)
3258 return NULL;
3259
3260 return funcs->coerce_ref (arg);
3261 }
3262
3263 /* Look at value.h for description. */
3264
3265 struct value *
3266 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3267 struct type *original_type,
3268 struct value *original_value)
3269 {
3270 /* Re-adjust type. */
3271 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3272
3273 /* Add embedding info. */
3274 set_value_enclosing_type (value, enc_type);
3275 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3276
3277 /* We may be pointing to an object of some derived type. */
3278 return value_full_object (value, NULL, 0, 0, 0);
3279 }
3280
3281 struct value *
3282 coerce_ref (struct value *arg)
3283 {
3284 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3285 struct value *retval;
3286 struct type *enc_type;
3287
3288 retval = coerce_ref_if_computed (arg);
3289 if (retval)
3290 return retval;
3291
3292 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3293 return arg;
3294
3295 enc_type = check_typedef (value_enclosing_type (arg));
3296 enc_type = TYPE_TARGET_TYPE (enc_type);
3297
3298 retval = value_at_lazy (enc_type,
3299 unpack_pointer (value_type (arg),
3300 value_contents (arg)));
3301 return readjust_indirect_value_type (retval, enc_type,
3302 value_type_arg_tmp, arg);
3303 }
3304
3305 struct value *
3306 coerce_array (struct value *arg)
3307 {
3308 struct type *type;
3309
3310 arg = coerce_ref (arg);
3311 type = check_typedef (value_type (arg));
3312
3313 switch (TYPE_CODE (type))
3314 {
3315 case TYPE_CODE_ARRAY:
3316 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3317 arg = value_coerce_array (arg);
3318 break;
3319 case TYPE_CODE_FUNC:
3320 arg = value_coerce_function (arg);
3321 break;
3322 }
3323 return arg;
3324 }
3325 \f
3326
3327 /* Return the return value convention that will be used for the
3328 specified type. */
3329
3330 enum return_value_convention
3331 struct_return_convention (struct gdbarch *gdbarch,
3332 struct value *function, struct type *value_type)
3333 {
3334 enum type_code code = TYPE_CODE (value_type);
3335
3336 if (code == TYPE_CODE_ERROR)
3337 error (_("Function return type unknown."));
3338
3339 /* Probe the architecture for the return-value convention. */
3340 return gdbarch_return_value (gdbarch, function, value_type,
3341 NULL, NULL, NULL);
3342 }
3343
3344 /* Return true if the function returning the specified type is using
3345 the convention of returning structures in memory (passing in the
3346 address as a hidden first parameter). */
3347
3348 int
3349 using_struct_return (struct gdbarch *gdbarch,
3350 struct value *function, struct type *value_type)
3351 {
3352 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3353 /* A void return value is never in memory. See also corresponding
3354 code in "print_return_value". */
3355 return 0;
3356
3357 return (struct_return_convention (gdbarch, function, value_type)
3358 != RETURN_VALUE_REGISTER_CONVENTION);
3359 }
3360
3361 /* Set the initialized field in a value struct. */
3362
3363 void
3364 set_value_initialized (struct value *val, int status)
3365 {
3366 val->initialized = status;
3367 }
3368
3369 /* Return the initialized field in a value struct. */
3370
3371 int
3372 value_initialized (struct value *val)
3373 {
3374 return val->initialized;
3375 }
3376
3377 /* Called only from the value_contents and value_contents_all()
3378 macros, if the current data for a variable needs to be loaded into
3379 value_contents(VAL). Fetches the data from the user's process, and
3380 clears the lazy flag to indicate that the data in the buffer is
3381 valid.
3382
3383 If the value is zero-length, we avoid calling read_memory, which
3384 would abort. We mark the value as fetched anyway -- all 0 bytes of
3385 it.
3386
3387 This function returns a value because it is used in the
3388 value_contents macro as part of an expression, where a void would
3389 not work. The value is ignored. */
3390
3391 int
3392 value_fetch_lazy (struct value *val)
3393 {
3394 gdb_assert (value_lazy (val));
3395 allocate_value_contents (val);
3396 if (value_bitsize (val))
3397 {
3398 /* To read a lazy bitfield, read the entire enclosing value. This
3399 prevents reading the same block of (possibly volatile) memory once
3400 per bitfield. It would be even better to read only the containing
3401 word, but we have no way to record that just specific bits of a
3402 value have been fetched. */
3403 struct type *type = check_typedef (value_type (val));
3404 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3405 struct value *parent = value_parent (val);
3406 LONGEST offset = value_offset (val);
3407 LONGEST num;
3408
3409 if (!value_bits_valid (val,
3410 TARGET_CHAR_BIT * offset + value_bitpos (val),
3411 value_bitsize (val)))
3412 error (_("value has been optimized out"));
3413
3414 if (!unpack_value_bits_as_long (value_type (val),
3415 value_contents_for_printing (parent),
3416 offset,
3417 value_bitpos (val),
3418 value_bitsize (val), parent, &num))
3419 mark_value_bytes_unavailable (val,
3420 value_embedded_offset (val),
3421 TYPE_LENGTH (type));
3422 else
3423 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3424 byte_order, num);
3425 }
3426 else if (VALUE_LVAL (val) == lval_memory)
3427 {
3428 CORE_ADDR addr = value_address (val);
3429 struct type *type = check_typedef (value_enclosing_type (val));
3430
3431 if (TYPE_LENGTH (type))
3432 read_value_memory (val, 0, value_stack (val),
3433 addr, value_contents_all_raw (val),
3434 TYPE_LENGTH (type));
3435 }
3436 else if (VALUE_LVAL (val) == lval_register)
3437 {
3438 struct frame_info *frame;
3439 int regnum;
3440 struct type *type = check_typedef (value_type (val));
3441 struct value *new_val = val, *mark = value_mark ();
3442
3443 /* Offsets are not supported here; lazy register values must
3444 refer to the entire register. */
3445 gdb_assert (value_offset (val) == 0);
3446
3447 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3448 {
3449 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
3450 regnum = VALUE_REGNUM (new_val);
3451
3452 gdb_assert (frame != NULL);
3453
3454 /* Convertible register routines are used for multi-register
3455 values and for interpretation in different types
3456 (e.g. float or int from a double register). Lazy
3457 register values should have the register's natural type,
3458 so they do not apply. */
3459 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3460 regnum, type));
3461
3462 new_val = get_frame_register_value (frame, regnum);
3463 }
3464
3465 /* If it's still lazy (for instance, a saved register on the
3466 stack), fetch it. */
3467 if (value_lazy (new_val))
3468 value_fetch_lazy (new_val);
3469
3470 /* If the register was not saved, mark it optimized out. */
3471 if (value_optimized_out (new_val))
3472 set_value_optimized_out (val, 1);
3473 else
3474 {
3475 set_value_lazy (val, 0);
3476 value_contents_copy (val, value_embedded_offset (val),
3477 new_val, value_embedded_offset (new_val),
3478 TYPE_LENGTH (type));
3479 }
3480
3481 if (frame_debug)
3482 {
3483 struct gdbarch *gdbarch;
3484 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3485 regnum = VALUE_REGNUM (val);
3486 gdbarch = get_frame_arch (frame);
3487
3488 fprintf_unfiltered (gdb_stdlog,
3489 "{ value_fetch_lazy "
3490 "(frame=%d,regnum=%d(%s),...) ",
3491 frame_relative_level (frame), regnum,
3492 user_reg_map_regnum_to_name (gdbarch, regnum));
3493
3494 fprintf_unfiltered (gdb_stdlog, "->");
3495 if (value_optimized_out (new_val))
3496 fprintf_unfiltered (gdb_stdlog, " optimized out");
3497 else
3498 {
3499 int i;
3500 const gdb_byte *buf = value_contents (new_val);
3501
3502 if (VALUE_LVAL (new_val) == lval_register)
3503 fprintf_unfiltered (gdb_stdlog, " register=%d",
3504 VALUE_REGNUM (new_val));
3505 else if (VALUE_LVAL (new_val) == lval_memory)
3506 fprintf_unfiltered (gdb_stdlog, " address=%s",
3507 paddress (gdbarch,
3508 value_address (new_val)));
3509 else
3510 fprintf_unfiltered (gdb_stdlog, " computed");
3511
3512 fprintf_unfiltered (gdb_stdlog, " bytes=");
3513 fprintf_unfiltered (gdb_stdlog, "[");
3514 for (i = 0; i < register_size (gdbarch, regnum); i++)
3515 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3516 fprintf_unfiltered (gdb_stdlog, "]");
3517 }
3518
3519 fprintf_unfiltered (gdb_stdlog, " }\n");
3520 }
3521
3522 /* Dispose of the intermediate values. This prevents
3523 watchpoints from trying to watch the saved frame pointer. */
3524 value_free_to_mark (mark);
3525 }
3526 else if (VALUE_LVAL (val) == lval_computed
3527 && value_computed_funcs (val)->read != NULL)
3528 value_computed_funcs (val)->read (val);
3529 else if (value_optimized_out (val))
3530 /* Keep it optimized out. */;
3531 else
3532 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3533
3534 set_value_lazy (val, 0);
3535 return 0;
3536 }
3537
3538 void
3539 _initialize_values (void)
3540 {
3541 add_cmd ("convenience", no_class, show_convenience, _("\
3542 Debugger convenience (\"$foo\") variables and functions.\n\
3543 Convenience variables are created when you assign them values;\n\
3544 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3545 \n\
3546 A few convenience variables are given values automatically:\n\
3547 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3548 \"$__\" holds the contents of the last address examined with \"x\"."
3549 #ifdef HAVE_PYTHON
3550 "\n\n\
3551 Convenience functions are defined via the Python API."
3552 #endif
3553 ), &showlist);
3554 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3555
3556 add_cmd ("values", no_set_class, show_values, _("\
3557 Elements of value history around item number IDX (or last ten)."),
3558 &showlist);
3559
3560 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3561 Initialize a convenience variable if necessary.\n\
3562 init-if-undefined VARIABLE = EXPRESSION\n\
3563 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3564 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3565 VARIABLE is already initialized."));
3566
3567 add_prefix_cmd ("function", no_class, function_command, _("\
3568 Placeholder command for showing help on convenience functions."),
3569 &functionlist, "function ", 0, &cmdlist);
3570 }