Fix bug in value_bits_valid.
[binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45 #include "user-regs.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 /* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
175 struct value
176 {
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
200 /* If nonzero, this is the value of a variable which does not
201 actually exist in the program. */
202 unsigned int optimized_out : 1;
203
204 /* If value is a variable, is it initialized or not. */
205 unsigned int initialized : 1;
206
207 /* If value is from the stack. If this is set, read_stack will be
208 used instead of read_memory to enable extra caching. */
209 unsigned int stack : 1;
210
211 /* If the value has been released. */
212 unsigned int released : 1;
213
214 /* Location of value (if lval). */
215 union
216 {
217 /* If lval == lval_memory, this is the address in the inferior.
218 If lval == lval_register, this is the byte offset into the
219 registers structure. */
220 CORE_ADDR address;
221
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
224
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
227 for them to use. */
228 struct
229 {
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
232
233 /* Closure for those functions to use. */
234 void *closure;
235 } computed;
236 } location;
237
238 /* Describes offset of a value within lval of a structure in bytes.
239 If lval == lval_memory, this is an offset to the address. If
240 lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the
242 member embedded_offset below. */
243 int offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 int bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 int bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in bytes. The
296 value_contents() macro takes `embedded_offset' into account, so
297 most GDB code continues to see the `type' portion of the value,
298 just as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in bytes from the full object to the pointed-to object
303 -- that is, the value `embedded_offset' would have if we followed
304 the pointer and fetched the complete object. (I don't really see
305 the point. Why not just determine the run-time type when you
306 indirect, and avoid the special case? The contents don't matter
307 until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 int embedded_offset;
314 int pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
320 struct value *next;
321
322 /* Register number if the value is from a register. */
323 short regnum;
324
325 /* Actual contents of the value. Target byte-order. NULL or not
326 valid if lazy is nonzero. */
327 gdb_byte *contents;
328
329 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
330 rather than available, since the common and default case is for a
331 value to be available. This is filled in at value read time. */
332 VEC(range_s) *unavailable;
333 };
334
335 int
336 value_bytes_available (const struct value *value, int offset, int length)
337 {
338 gdb_assert (!value->lazy);
339
340 return !ranges_contain (value->unavailable, offset, length);
341 }
342
343 int
344 value_entirely_available (struct value *value)
345 {
346 /* We can only tell whether the whole value is available when we try
347 to read it. */
348 if (value->lazy)
349 value_fetch_lazy (value);
350
351 if (VEC_empty (range_s, value->unavailable))
352 return 1;
353 return 0;
354 }
355
356 void
357 mark_value_bytes_unavailable (struct value *value, int offset, int length)
358 {
359 range_s newr;
360 int i;
361
362 /* Insert the range sorted. If there's overlap or the new range
363 would be contiguous with an existing range, merge. */
364
365 newr.offset = offset;
366 newr.length = length;
367
368 /* Do a binary search for the position the given range would be
369 inserted if we only considered the starting OFFSET of ranges.
370 Call that position I. Since we also have LENGTH to care for
371 (this is a range afterall), we need to check if the _previous_
372 range overlaps the I range. E.g., calling R the new range:
373
374 #1 - overlaps with previous
375
376 R
377 |-...-|
378 |---| |---| |------| ... |--|
379 0 1 2 N
380
381 I=1
382
383 In the case #1 above, the binary search would return `I=1',
384 meaning, this OFFSET should be inserted at position 1, and the
385 current position 1 should be pushed further (and become 2). But,
386 note that `0' overlaps with R, so we want to merge them.
387
388 A similar consideration needs to be taken if the new range would
389 be contiguous with the previous range:
390
391 #2 - contiguous with previous
392
393 R
394 |-...-|
395 |--| |---| |------| ... |--|
396 0 1 2 N
397
398 I=1
399
400 If there's no overlap with the previous range, as in:
401
402 #3 - not overlapping and not contiguous
403
404 R
405 |-...-|
406 |--| |---| |------| ... |--|
407 0 1 2 N
408
409 I=1
410
411 or if I is 0:
412
413 #4 - R is the range with lowest offset
414
415 R
416 |-...-|
417 |--| |---| |------| ... |--|
418 0 1 2 N
419
420 I=0
421
422 ... we just push the new range to I.
423
424 All the 4 cases above need to consider that the new range may
425 also overlap several of the ranges that follow, or that R may be
426 contiguous with the following range, and merge. E.g.,
427
428 #5 - overlapping following ranges
429
430 R
431 |------------------------|
432 |--| |---| |------| ... |--|
433 0 1 2 N
434
435 I=0
436
437 or:
438
439 R
440 |-------|
441 |--| |---| |------| ... |--|
442 0 1 2 N
443
444 I=1
445
446 */
447
448 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
449 if (i > 0)
450 {
451 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
452
453 if (ranges_overlap (bef->offset, bef->length, offset, length))
454 {
455 /* #1 */
456 ULONGEST l = min (bef->offset, offset);
457 ULONGEST h = max (bef->offset + bef->length, offset + length);
458
459 bef->offset = l;
460 bef->length = h - l;
461 i--;
462 }
463 else if (offset == bef->offset + bef->length)
464 {
465 /* #2 */
466 bef->length += length;
467 i--;
468 }
469 else
470 {
471 /* #3 */
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
473 }
474 }
475 else
476 {
477 /* #4 */
478 VEC_safe_insert (range_s, value->unavailable, i, &newr);
479 }
480
481 /* Check whether the ranges following the one we've just added or
482 touched can be folded in (#5 above). */
483 if (i + 1 < VEC_length (range_s, value->unavailable))
484 {
485 struct range *t;
486 struct range *r;
487 int removed = 0;
488 int next = i + 1;
489
490 /* Get the range we just touched. */
491 t = VEC_index (range_s, value->unavailable, i);
492 removed = 0;
493
494 i = next;
495 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
496 if (r->offset <= t->offset + t->length)
497 {
498 ULONGEST l, h;
499
500 l = min (t->offset, r->offset);
501 h = max (t->offset + t->length, r->offset + r->length);
502
503 t->offset = l;
504 t->length = h - l;
505
506 removed++;
507 }
508 else
509 {
510 /* If we couldn't merge this one, we won't be able to
511 merge following ones either, since the ranges are
512 always sorted by OFFSET. */
513 break;
514 }
515
516 if (removed != 0)
517 VEC_block_remove (range_s, value->unavailable, next, removed);
518 }
519 }
520
521 /* Find the first range in RANGES that overlaps the range defined by
522 OFFSET and LENGTH, starting at element POS in the RANGES vector,
523 Returns the index into RANGES where such overlapping range was
524 found, or -1 if none was found. */
525
526 static int
527 find_first_range_overlap (VEC(range_s) *ranges, int pos,
528 int offset, int length)
529 {
530 range_s *r;
531 int i;
532
533 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
534 if (ranges_overlap (r->offset, r->length, offset, length))
535 return i;
536
537 return -1;
538 }
539
540 int
541 value_available_contents_eq (const struct value *val1, int offset1,
542 const struct value *val2, int offset2,
543 int length)
544 {
545 int idx1 = 0, idx2 = 0;
546
547 /* See function description in value.h. */
548 gdb_assert (!val1->lazy && !val2->lazy);
549
550 while (length > 0)
551 {
552 range_s *r1, *r2;
553 ULONGEST l1, h1;
554 ULONGEST l2, h2;
555
556 idx1 = find_first_range_overlap (val1->unavailable, idx1,
557 offset1, length);
558 idx2 = find_first_range_overlap (val2->unavailable, idx2,
559 offset2, length);
560
561 /* The usual case is for both values to be completely available. */
562 if (idx1 == -1 && idx2 == -1)
563 return (memcmp (val1->contents + offset1,
564 val2->contents + offset2,
565 length) == 0);
566 /* The contents only match equal if the available set matches as
567 well. */
568 else if (idx1 == -1 || idx2 == -1)
569 return 0;
570
571 gdb_assert (idx1 != -1 && idx2 != -1);
572
573 r1 = VEC_index (range_s, val1->unavailable, idx1);
574 r2 = VEC_index (range_s, val2->unavailable, idx2);
575
576 /* Get the unavailable windows intersected by the incoming
577 ranges. The first and last ranges that overlap the argument
578 range may be wider than said incoming arguments ranges. */
579 l1 = max (offset1, r1->offset);
580 h1 = min (offset1 + length, r1->offset + r1->length);
581
582 l2 = max (offset2, r2->offset);
583 h2 = min (offset2 + length, r2->offset + r2->length);
584
585 /* Make them relative to the respective start offsets, so we can
586 compare them for equality. */
587 l1 -= offset1;
588 h1 -= offset1;
589
590 l2 -= offset2;
591 h2 -= offset2;
592
593 /* Different availability, no match. */
594 if (l1 != l2 || h1 != h2)
595 return 0;
596
597 /* Compare the _available_ contents. */
598 if (memcmp (val1->contents + offset1,
599 val2->contents + offset2,
600 l1) != 0)
601 return 0;
602
603 length -= h1;
604 offset1 += h1;
605 offset2 += h1;
606 }
607
608 return 1;
609 }
610
611 /* Prototypes for local functions. */
612
613 static void show_values (char *, int);
614
615 static void show_convenience (char *, int);
616
617
618 /* The value-history records all the values printed
619 by print commands during this session. Each chunk
620 records 60 consecutive values. The first chunk on
621 the chain records the most recent values.
622 The total number of values is in value_history_count. */
623
624 #define VALUE_HISTORY_CHUNK 60
625
626 struct value_history_chunk
627 {
628 struct value_history_chunk *next;
629 struct value *values[VALUE_HISTORY_CHUNK];
630 };
631
632 /* Chain of chunks now in use. */
633
634 static struct value_history_chunk *value_history_chain;
635
636 static int value_history_count; /* Abs number of last entry stored. */
637
638 \f
639 /* List of all value objects currently allocated
640 (except for those released by calls to release_value)
641 This is so they can be freed after each command. */
642
643 static struct value *all_values;
644
645 /* Allocate a lazy value for type TYPE. Its actual content is
646 "lazily" allocated too: the content field of the return value is
647 NULL; it will be allocated when it is fetched from the target. */
648
649 struct value *
650 allocate_value_lazy (struct type *type)
651 {
652 struct value *val;
653
654 /* Call check_typedef on our type to make sure that, if TYPE
655 is a TYPE_CODE_TYPEDEF, its length is set to the length
656 of the target type instead of zero. However, we do not
657 replace the typedef type by the target type, because we want
658 to keep the typedef in order to be able to set the VAL's type
659 description correctly. */
660 check_typedef (type);
661
662 val = (struct value *) xzalloc (sizeof (struct value));
663 val->contents = NULL;
664 val->next = all_values;
665 all_values = val;
666 val->type = type;
667 val->enclosing_type = type;
668 VALUE_LVAL (val) = not_lval;
669 val->location.address = 0;
670 VALUE_FRAME_ID (val) = null_frame_id;
671 val->offset = 0;
672 val->bitpos = 0;
673 val->bitsize = 0;
674 VALUE_REGNUM (val) = -1;
675 val->lazy = 1;
676 val->optimized_out = 0;
677 val->embedded_offset = 0;
678 val->pointed_to_offset = 0;
679 val->modifiable = 1;
680 val->initialized = 1; /* Default to initialized. */
681
682 /* Values start out on the all_values chain. */
683 val->reference_count = 1;
684
685 return val;
686 }
687
688 /* Allocate the contents of VAL if it has not been allocated yet. */
689
690 void
691 allocate_value_contents (struct value *val)
692 {
693 if (!val->contents)
694 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
695 }
696
697 /* Allocate a value and its contents for type TYPE. */
698
699 struct value *
700 allocate_value (struct type *type)
701 {
702 struct value *val = allocate_value_lazy (type);
703
704 allocate_value_contents (val);
705 val->lazy = 0;
706 return val;
707 }
708
709 /* Allocate a value that has the correct length
710 for COUNT repetitions of type TYPE. */
711
712 struct value *
713 allocate_repeat_value (struct type *type, int count)
714 {
715 int low_bound = current_language->string_lower_bound; /* ??? */
716 /* FIXME-type-allocation: need a way to free this type when we are
717 done with it. */
718 struct type *array_type
719 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
720
721 return allocate_value (array_type);
722 }
723
724 struct value *
725 allocate_computed_value (struct type *type,
726 const struct lval_funcs *funcs,
727 void *closure)
728 {
729 struct value *v = allocate_value_lazy (type);
730
731 VALUE_LVAL (v) = lval_computed;
732 v->location.computed.funcs = funcs;
733 v->location.computed.closure = closure;
734
735 return v;
736 }
737
738 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
739
740 struct value *
741 allocate_optimized_out_value (struct type *type)
742 {
743 struct value *retval = allocate_value_lazy (type);
744
745 set_value_optimized_out (retval, 1);
746
747 return retval;
748 }
749
750 /* Accessor methods. */
751
752 struct value *
753 value_next (struct value *value)
754 {
755 return value->next;
756 }
757
758 struct type *
759 value_type (const struct value *value)
760 {
761 return value->type;
762 }
763 void
764 deprecated_set_value_type (struct value *value, struct type *type)
765 {
766 value->type = type;
767 }
768
769 int
770 value_offset (const struct value *value)
771 {
772 return value->offset;
773 }
774 void
775 set_value_offset (struct value *value, int offset)
776 {
777 value->offset = offset;
778 }
779
780 int
781 value_bitpos (const struct value *value)
782 {
783 return value->bitpos;
784 }
785 void
786 set_value_bitpos (struct value *value, int bit)
787 {
788 value->bitpos = bit;
789 }
790
791 int
792 value_bitsize (const struct value *value)
793 {
794 return value->bitsize;
795 }
796 void
797 set_value_bitsize (struct value *value, int bit)
798 {
799 value->bitsize = bit;
800 }
801
802 struct value *
803 value_parent (struct value *value)
804 {
805 return value->parent;
806 }
807
808 /* See value.h. */
809
810 void
811 set_value_parent (struct value *value, struct value *parent)
812 {
813 struct value *old = value->parent;
814
815 value->parent = parent;
816 if (parent != NULL)
817 value_incref (parent);
818 value_free (old);
819 }
820
821 gdb_byte *
822 value_contents_raw (struct value *value)
823 {
824 allocate_value_contents (value);
825 return value->contents + value->embedded_offset;
826 }
827
828 gdb_byte *
829 value_contents_all_raw (struct value *value)
830 {
831 allocate_value_contents (value);
832 return value->contents;
833 }
834
835 struct type *
836 value_enclosing_type (struct value *value)
837 {
838 return value->enclosing_type;
839 }
840
841 /* Look at value.h for description. */
842
843 struct type *
844 value_actual_type (struct value *value, int resolve_simple_types,
845 int *real_type_found)
846 {
847 struct value_print_options opts;
848 struct type *result;
849
850 get_user_print_options (&opts);
851
852 if (real_type_found)
853 *real_type_found = 0;
854 result = value_type (value);
855 if (opts.objectprint)
856 {
857 /* If result's target type is TYPE_CODE_STRUCT, proceed to
858 fetch its rtti type. */
859 if ((TYPE_CODE (result) == TYPE_CODE_PTR
860 || TYPE_CODE (result) == TYPE_CODE_REF)
861 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
862 == TYPE_CODE_STRUCT)
863 {
864 struct type *real_type;
865
866 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
867 if (real_type)
868 {
869 if (real_type_found)
870 *real_type_found = 1;
871 result = real_type;
872 }
873 }
874 else if (resolve_simple_types)
875 {
876 if (real_type_found)
877 *real_type_found = 1;
878 result = value_enclosing_type (value);
879 }
880 }
881
882 return result;
883 }
884
885 static void
886 require_not_optimized_out (const struct value *value)
887 {
888 if (value->optimized_out)
889 error (_("value has been optimized out"));
890 }
891
892 static void
893 require_available (const struct value *value)
894 {
895 if (!VEC_empty (range_s, value->unavailable))
896 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
897 }
898
899 const gdb_byte *
900 value_contents_for_printing (struct value *value)
901 {
902 if (value->lazy)
903 value_fetch_lazy (value);
904 return value->contents;
905 }
906
907 const gdb_byte *
908 value_contents_for_printing_const (const struct value *value)
909 {
910 gdb_assert (!value->lazy);
911 return value->contents;
912 }
913
914 const gdb_byte *
915 value_contents_all (struct value *value)
916 {
917 const gdb_byte *result = value_contents_for_printing (value);
918 require_not_optimized_out (value);
919 require_available (value);
920 return result;
921 }
922
923 /* Copy LENGTH bytes of SRC value's (all) contents
924 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
925 contents, starting at DST_OFFSET. If unavailable contents are
926 being copied from SRC, the corresponding DST contents are marked
927 unavailable accordingly. Neither DST nor SRC may be lazy
928 values.
929
930 It is assumed the contents of DST in the [DST_OFFSET,
931 DST_OFFSET+LENGTH) range are wholly available. */
932
933 void
934 value_contents_copy_raw (struct value *dst, int dst_offset,
935 struct value *src, int src_offset, int length)
936 {
937 range_s *r;
938 int i;
939
940 /* A lazy DST would make that this copy operation useless, since as
941 soon as DST's contents were un-lazied (by a later value_contents
942 call, say), the contents would be overwritten. A lazy SRC would
943 mean we'd be copying garbage. */
944 gdb_assert (!dst->lazy && !src->lazy);
945
946 /* The overwritten DST range gets unavailability ORed in, not
947 replaced. Make sure to remember to implement replacing if it
948 turns out actually necessary. */
949 gdb_assert (value_bytes_available (dst, dst_offset, length));
950
951 /* Copy the data. */
952 memcpy (value_contents_all_raw (dst) + dst_offset,
953 value_contents_all_raw (src) + src_offset,
954 length);
955
956 /* Copy the meta-data, adjusted. */
957 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
958 {
959 ULONGEST h, l;
960
961 l = max (r->offset, src_offset);
962 h = min (r->offset + r->length, src_offset + length);
963
964 if (l < h)
965 mark_value_bytes_unavailable (dst,
966 dst_offset + (l - src_offset),
967 h - l);
968 }
969 }
970
971 /* Copy LENGTH bytes of SRC value's (all) contents
972 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
973 (all) contents, starting at DST_OFFSET. If unavailable contents
974 are being copied from SRC, the corresponding DST contents are
975 marked unavailable accordingly. DST must not be lazy. If SRC is
976 lazy, it will be fetched now. If SRC is not valid (is optimized
977 out), an error is thrown.
978
979 It is assumed the contents of DST in the [DST_OFFSET,
980 DST_OFFSET+LENGTH) range are wholly available. */
981
982 void
983 value_contents_copy (struct value *dst, int dst_offset,
984 struct value *src, int src_offset, int length)
985 {
986 require_not_optimized_out (src);
987
988 if (src->lazy)
989 value_fetch_lazy (src);
990
991 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
992 }
993
994 int
995 value_lazy (struct value *value)
996 {
997 return value->lazy;
998 }
999
1000 void
1001 set_value_lazy (struct value *value, int val)
1002 {
1003 value->lazy = val;
1004 }
1005
1006 int
1007 value_stack (struct value *value)
1008 {
1009 return value->stack;
1010 }
1011
1012 void
1013 set_value_stack (struct value *value, int val)
1014 {
1015 value->stack = val;
1016 }
1017
1018 const gdb_byte *
1019 value_contents (struct value *value)
1020 {
1021 const gdb_byte *result = value_contents_writeable (value);
1022 require_not_optimized_out (value);
1023 require_available (value);
1024 return result;
1025 }
1026
1027 gdb_byte *
1028 value_contents_writeable (struct value *value)
1029 {
1030 if (value->lazy)
1031 value_fetch_lazy (value);
1032 return value_contents_raw (value);
1033 }
1034
1035 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1036 this function is different from value_equal; in C the operator ==
1037 can return 0 even if the two values being compared are equal. */
1038
1039 int
1040 value_contents_equal (struct value *val1, struct value *val2)
1041 {
1042 struct type *type1;
1043 struct type *type2;
1044
1045 type1 = check_typedef (value_type (val1));
1046 type2 = check_typedef (value_type (val2));
1047 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1048 return 0;
1049
1050 return (memcmp (value_contents (val1), value_contents (val2),
1051 TYPE_LENGTH (type1)) == 0);
1052 }
1053
1054 int
1055 value_optimized_out (struct value *value)
1056 {
1057 /* We can only know if a value is optimized out once we have tried to
1058 fetch it. */
1059 if (!value->optimized_out && value->lazy)
1060 value_fetch_lazy (value);
1061
1062 return value->optimized_out;
1063 }
1064
1065 void
1066 set_value_optimized_out (struct value *value, int val)
1067 {
1068 value->optimized_out = val;
1069 }
1070
1071 int
1072 value_entirely_optimized_out (const struct value *value)
1073 {
1074 if (!value->optimized_out)
1075 return 0;
1076 if (value->lval != lval_computed
1077 || !value->location.computed.funcs->check_any_valid)
1078 return 1;
1079 return !value->location.computed.funcs->check_any_valid (value);
1080 }
1081
1082 int
1083 value_bits_valid (const struct value *value, int offset, int length)
1084 {
1085 if (value->lval != lval_computed
1086 || !value->location.computed.funcs->check_validity)
1087 return !value->optimized_out;
1088 else
1089 return value->location.computed.funcs->check_validity (value, offset,
1090 length);
1091 }
1092
1093 int
1094 value_bits_synthetic_pointer (const struct value *value,
1095 int offset, int length)
1096 {
1097 if (value->lval != lval_computed
1098 || !value->location.computed.funcs->check_synthetic_pointer)
1099 return 0;
1100 return value->location.computed.funcs->check_synthetic_pointer (value,
1101 offset,
1102 length);
1103 }
1104
1105 int
1106 value_embedded_offset (struct value *value)
1107 {
1108 return value->embedded_offset;
1109 }
1110
1111 void
1112 set_value_embedded_offset (struct value *value, int val)
1113 {
1114 value->embedded_offset = val;
1115 }
1116
1117 int
1118 value_pointed_to_offset (struct value *value)
1119 {
1120 return value->pointed_to_offset;
1121 }
1122
1123 void
1124 set_value_pointed_to_offset (struct value *value, int val)
1125 {
1126 value->pointed_to_offset = val;
1127 }
1128
1129 const struct lval_funcs *
1130 value_computed_funcs (const struct value *v)
1131 {
1132 gdb_assert (value_lval_const (v) == lval_computed);
1133
1134 return v->location.computed.funcs;
1135 }
1136
1137 void *
1138 value_computed_closure (const struct value *v)
1139 {
1140 gdb_assert (v->lval == lval_computed);
1141
1142 return v->location.computed.closure;
1143 }
1144
1145 enum lval_type *
1146 deprecated_value_lval_hack (struct value *value)
1147 {
1148 return &value->lval;
1149 }
1150
1151 enum lval_type
1152 value_lval_const (const struct value *value)
1153 {
1154 return value->lval;
1155 }
1156
1157 CORE_ADDR
1158 value_address (const struct value *value)
1159 {
1160 if (value->lval == lval_internalvar
1161 || value->lval == lval_internalvar_component)
1162 return 0;
1163 if (value->parent != NULL)
1164 return value_address (value->parent) + value->offset;
1165 else
1166 return value->location.address + value->offset;
1167 }
1168
1169 CORE_ADDR
1170 value_raw_address (struct value *value)
1171 {
1172 if (value->lval == lval_internalvar
1173 || value->lval == lval_internalvar_component)
1174 return 0;
1175 return value->location.address;
1176 }
1177
1178 void
1179 set_value_address (struct value *value, CORE_ADDR addr)
1180 {
1181 gdb_assert (value->lval != lval_internalvar
1182 && value->lval != lval_internalvar_component);
1183 value->location.address = addr;
1184 }
1185
1186 struct internalvar **
1187 deprecated_value_internalvar_hack (struct value *value)
1188 {
1189 return &value->location.internalvar;
1190 }
1191
1192 struct frame_id *
1193 deprecated_value_frame_id_hack (struct value *value)
1194 {
1195 return &value->frame_id;
1196 }
1197
1198 short *
1199 deprecated_value_regnum_hack (struct value *value)
1200 {
1201 return &value->regnum;
1202 }
1203
1204 int
1205 deprecated_value_modifiable (struct value *value)
1206 {
1207 return value->modifiable;
1208 }
1209 \f
1210 /* Return a mark in the value chain. All values allocated after the
1211 mark is obtained (except for those released) are subject to being freed
1212 if a subsequent value_free_to_mark is passed the mark. */
1213 struct value *
1214 value_mark (void)
1215 {
1216 return all_values;
1217 }
1218
1219 /* Take a reference to VAL. VAL will not be deallocated until all
1220 references are released. */
1221
1222 void
1223 value_incref (struct value *val)
1224 {
1225 val->reference_count++;
1226 }
1227
1228 /* Release a reference to VAL, which was acquired with value_incref.
1229 This function is also called to deallocate values from the value
1230 chain. */
1231
1232 void
1233 value_free (struct value *val)
1234 {
1235 if (val)
1236 {
1237 gdb_assert (val->reference_count > 0);
1238 val->reference_count--;
1239 if (val->reference_count > 0)
1240 return;
1241
1242 /* If there's an associated parent value, drop our reference to
1243 it. */
1244 if (val->parent != NULL)
1245 value_free (val->parent);
1246
1247 if (VALUE_LVAL (val) == lval_computed)
1248 {
1249 const struct lval_funcs *funcs = val->location.computed.funcs;
1250
1251 if (funcs->free_closure)
1252 funcs->free_closure (val);
1253 }
1254
1255 xfree (val->contents);
1256 VEC_free (range_s, val->unavailable);
1257 }
1258 xfree (val);
1259 }
1260
1261 /* Free all values allocated since MARK was obtained by value_mark
1262 (except for those released). */
1263 void
1264 value_free_to_mark (struct value *mark)
1265 {
1266 struct value *val;
1267 struct value *next;
1268
1269 for (val = all_values; val && val != mark; val = next)
1270 {
1271 next = val->next;
1272 val->released = 1;
1273 value_free (val);
1274 }
1275 all_values = val;
1276 }
1277
1278 /* Free all the values that have been allocated (except for those released).
1279 Call after each command, successful or not.
1280 In practice this is called before each command, which is sufficient. */
1281
1282 void
1283 free_all_values (void)
1284 {
1285 struct value *val;
1286 struct value *next;
1287
1288 for (val = all_values; val; val = next)
1289 {
1290 next = val->next;
1291 val->released = 1;
1292 value_free (val);
1293 }
1294
1295 all_values = 0;
1296 }
1297
1298 /* Frees all the elements in a chain of values. */
1299
1300 void
1301 free_value_chain (struct value *v)
1302 {
1303 struct value *next;
1304
1305 for (; v; v = next)
1306 {
1307 next = value_next (v);
1308 value_free (v);
1309 }
1310 }
1311
1312 /* Remove VAL from the chain all_values
1313 so it will not be freed automatically. */
1314
1315 void
1316 release_value (struct value *val)
1317 {
1318 struct value *v;
1319
1320 if (all_values == val)
1321 {
1322 all_values = val->next;
1323 val->next = NULL;
1324 val->released = 1;
1325 return;
1326 }
1327
1328 for (v = all_values; v; v = v->next)
1329 {
1330 if (v->next == val)
1331 {
1332 v->next = val->next;
1333 val->next = NULL;
1334 val->released = 1;
1335 break;
1336 }
1337 }
1338 }
1339
1340 /* If the value is not already released, release it.
1341 If the value is already released, increment its reference count.
1342 That is, this function ensures that the value is released from the
1343 value chain and that the caller owns a reference to it. */
1344
1345 void
1346 release_value_or_incref (struct value *val)
1347 {
1348 if (val->released)
1349 value_incref (val);
1350 else
1351 release_value (val);
1352 }
1353
1354 /* Release all values up to mark */
1355 struct value *
1356 value_release_to_mark (struct value *mark)
1357 {
1358 struct value *val;
1359 struct value *next;
1360
1361 for (val = next = all_values; next; next = next->next)
1362 {
1363 if (next->next == mark)
1364 {
1365 all_values = next->next;
1366 next->next = NULL;
1367 return val;
1368 }
1369 next->released = 1;
1370 }
1371 all_values = 0;
1372 return val;
1373 }
1374
1375 /* Return a copy of the value ARG.
1376 It contains the same contents, for same memory address,
1377 but it's a different block of storage. */
1378
1379 struct value *
1380 value_copy (struct value *arg)
1381 {
1382 struct type *encl_type = value_enclosing_type (arg);
1383 struct value *val;
1384
1385 if (value_lazy (arg))
1386 val = allocate_value_lazy (encl_type);
1387 else
1388 val = allocate_value (encl_type);
1389 val->type = arg->type;
1390 VALUE_LVAL (val) = VALUE_LVAL (arg);
1391 val->location = arg->location;
1392 val->offset = arg->offset;
1393 val->bitpos = arg->bitpos;
1394 val->bitsize = arg->bitsize;
1395 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1396 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1397 val->lazy = arg->lazy;
1398 val->optimized_out = arg->optimized_out;
1399 val->embedded_offset = value_embedded_offset (arg);
1400 val->pointed_to_offset = arg->pointed_to_offset;
1401 val->modifiable = arg->modifiable;
1402 if (!value_lazy (val))
1403 {
1404 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1405 TYPE_LENGTH (value_enclosing_type (arg)));
1406
1407 }
1408 val->unavailable = VEC_copy (range_s, arg->unavailable);
1409 set_value_parent (val, arg->parent);
1410 if (VALUE_LVAL (val) == lval_computed)
1411 {
1412 const struct lval_funcs *funcs = val->location.computed.funcs;
1413
1414 if (funcs->copy_closure)
1415 val->location.computed.closure = funcs->copy_closure (val);
1416 }
1417 return val;
1418 }
1419
1420 /* Return a version of ARG that is non-lvalue. */
1421
1422 struct value *
1423 value_non_lval (struct value *arg)
1424 {
1425 if (VALUE_LVAL (arg) != not_lval)
1426 {
1427 struct type *enc_type = value_enclosing_type (arg);
1428 struct value *val = allocate_value (enc_type);
1429
1430 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1431 TYPE_LENGTH (enc_type));
1432 val->type = arg->type;
1433 set_value_embedded_offset (val, value_embedded_offset (arg));
1434 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1435 return val;
1436 }
1437 return arg;
1438 }
1439
1440 void
1441 set_value_component_location (struct value *component,
1442 const struct value *whole)
1443 {
1444 if (whole->lval == lval_internalvar)
1445 VALUE_LVAL (component) = lval_internalvar_component;
1446 else
1447 VALUE_LVAL (component) = whole->lval;
1448
1449 component->location = whole->location;
1450 if (whole->lval == lval_computed)
1451 {
1452 const struct lval_funcs *funcs = whole->location.computed.funcs;
1453
1454 if (funcs->copy_closure)
1455 component->location.computed.closure = funcs->copy_closure (whole);
1456 }
1457 }
1458
1459 \f
1460 /* Access to the value history. */
1461
1462 /* Record a new value in the value history.
1463 Returns the absolute history index of the entry.
1464 Result of -1 indicates the value was not saved; otherwise it is the
1465 value history index of this new item. */
1466
1467 int
1468 record_latest_value (struct value *val)
1469 {
1470 int i;
1471
1472 /* We don't want this value to have anything to do with the inferior anymore.
1473 In particular, "set $1 = 50" should not affect the variable from which
1474 the value was taken, and fast watchpoints should be able to assume that
1475 a value on the value history never changes. */
1476 if (value_lazy (val))
1477 value_fetch_lazy (val);
1478 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1479 from. This is a bit dubious, because then *&$1 does not just return $1
1480 but the current contents of that location. c'est la vie... */
1481 val->modifiable = 0;
1482 release_value (val);
1483
1484 /* Here we treat value_history_count as origin-zero
1485 and applying to the value being stored now. */
1486
1487 i = value_history_count % VALUE_HISTORY_CHUNK;
1488 if (i == 0)
1489 {
1490 struct value_history_chunk *new
1491 = (struct value_history_chunk *)
1492
1493 xmalloc (sizeof (struct value_history_chunk));
1494 memset (new->values, 0, sizeof new->values);
1495 new->next = value_history_chain;
1496 value_history_chain = new;
1497 }
1498
1499 value_history_chain->values[i] = val;
1500
1501 /* Now we regard value_history_count as origin-one
1502 and applying to the value just stored. */
1503
1504 return ++value_history_count;
1505 }
1506
1507 /* Return a copy of the value in the history with sequence number NUM. */
1508
1509 struct value *
1510 access_value_history (int num)
1511 {
1512 struct value_history_chunk *chunk;
1513 int i;
1514 int absnum = num;
1515
1516 if (absnum <= 0)
1517 absnum += value_history_count;
1518
1519 if (absnum <= 0)
1520 {
1521 if (num == 0)
1522 error (_("The history is empty."));
1523 else if (num == 1)
1524 error (_("There is only one value in the history."));
1525 else
1526 error (_("History does not go back to $$%d."), -num);
1527 }
1528 if (absnum > value_history_count)
1529 error (_("History has not yet reached $%d."), absnum);
1530
1531 absnum--;
1532
1533 /* Now absnum is always absolute and origin zero. */
1534
1535 chunk = value_history_chain;
1536 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1537 - absnum / VALUE_HISTORY_CHUNK;
1538 i > 0; i--)
1539 chunk = chunk->next;
1540
1541 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1542 }
1543
1544 static void
1545 show_values (char *num_exp, int from_tty)
1546 {
1547 int i;
1548 struct value *val;
1549 static int num = 1;
1550
1551 if (num_exp)
1552 {
1553 /* "show values +" should print from the stored position.
1554 "show values <exp>" should print around value number <exp>. */
1555 if (num_exp[0] != '+' || num_exp[1] != '\0')
1556 num = parse_and_eval_long (num_exp) - 5;
1557 }
1558 else
1559 {
1560 /* "show values" means print the last 10 values. */
1561 num = value_history_count - 9;
1562 }
1563
1564 if (num <= 0)
1565 num = 1;
1566
1567 for (i = num; i < num + 10 && i <= value_history_count; i++)
1568 {
1569 struct value_print_options opts;
1570
1571 val = access_value_history (i);
1572 printf_filtered (("$%d = "), i);
1573 get_user_print_options (&opts);
1574 value_print (val, gdb_stdout, &opts);
1575 printf_filtered (("\n"));
1576 }
1577
1578 /* The next "show values +" should start after what we just printed. */
1579 num += 10;
1580
1581 /* Hitting just return after this command should do the same thing as
1582 "show values +". If num_exp is null, this is unnecessary, since
1583 "show values +" is not useful after "show values". */
1584 if (from_tty && num_exp)
1585 {
1586 num_exp[0] = '+';
1587 num_exp[1] = '\0';
1588 }
1589 }
1590 \f
1591 /* Internal variables. These are variables within the debugger
1592 that hold values assigned by debugger commands.
1593 The user refers to them with a '$' prefix
1594 that does not appear in the variable names stored internally. */
1595
1596 struct internalvar
1597 {
1598 struct internalvar *next;
1599 char *name;
1600
1601 /* We support various different kinds of content of an internal variable.
1602 enum internalvar_kind specifies the kind, and union internalvar_data
1603 provides the data associated with this particular kind. */
1604
1605 enum internalvar_kind
1606 {
1607 /* The internal variable is empty. */
1608 INTERNALVAR_VOID,
1609
1610 /* The value of the internal variable is provided directly as
1611 a GDB value object. */
1612 INTERNALVAR_VALUE,
1613
1614 /* A fresh value is computed via a call-back routine on every
1615 access to the internal variable. */
1616 INTERNALVAR_MAKE_VALUE,
1617
1618 /* The internal variable holds a GDB internal convenience function. */
1619 INTERNALVAR_FUNCTION,
1620
1621 /* The variable holds an integer value. */
1622 INTERNALVAR_INTEGER,
1623
1624 /* The variable holds a GDB-provided string. */
1625 INTERNALVAR_STRING,
1626
1627 } kind;
1628
1629 union internalvar_data
1630 {
1631 /* A value object used with INTERNALVAR_VALUE. */
1632 struct value *value;
1633
1634 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1635 struct
1636 {
1637 /* The functions to call. */
1638 const struct internalvar_funcs *functions;
1639
1640 /* The function's user-data. */
1641 void *data;
1642 } make_value;
1643
1644 /* The internal function used with INTERNALVAR_FUNCTION. */
1645 struct
1646 {
1647 struct internal_function *function;
1648 /* True if this is the canonical name for the function. */
1649 int canonical;
1650 } fn;
1651
1652 /* An integer value used with INTERNALVAR_INTEGER. */
1653 struct
1654 {
1655 /* If type is non-NULL, it will be used as the type to generate
1656 a value for this internal variable. If type is NULL, a default
1657 integer type for the architecture is used. */
1658 struct type *type;
1659 LONGEST val;
1660 } integer;
1661
1662 /* A string value used with INTERNALVAR_STRING. */
1663 char *string;
1664 } u;
1665 };
1666
1667 static struct internalvar *internalvars;
1668
1669 /* If the variable does not already exist create it and give it the
1670 value given. If no value is given then the default is zero. */
1671 static void
1672 init_if_undefined_command (char* args, int from_tty)
1673 {
1674 struct internalvar* intvar;
1675
1676 /* Parse the expression - this is taken from set_command(). */
1677 struct expression *expr = parse_expression (args);
1678 register struct cleanup *old_chain =
1679 make_cleanup (free_current_contents, &expr);
1680
1681 /* Validate the expression.
1682 Was the expression an assignment?
1683 Or even an expression at all? */
1684 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1685 error (_("Init-if-undefined requires an assignment expression."));
1686
1687 /* Extract the variable from the parsed expression.
1688 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1689 if (expr->elts[1].opcode != OP_INTERNALVAR)
1690 error (_("The first parameter to init-if-undefined "
1691 "should be a GDB variable."));
1692 intvar = expr->elts[2].internalvar;
1693
1694 /* Only evaluate the expression if the lvalue is void.
1695 This may still fail if the expresssion is invalid. */
1696 if (intvar->kind == INTERNALVAR_VOID)
1697 evaluate_expression (expr);
1698
1699 do_cleanups (old_chain);
1700 }
1701
1702
1703 /* Look up an internal variable with name NAME. NAME should not
1704 normally include a dollar sign.
1705
1706 If the specified internal variable does not exist,
1707 the return value is NULL. */
1708
1709 struct internalvar *
1710 lookup_only_internalvar (const char *name)
1711 {
1712 struct internalvar *var;
1713
1714 for (var = internalvars; var; var = var->next)
1715 if (strcmp (var->name, name) == 0)
1716 return var;
1717
1718 return NULL;
1719 }
1720
1721 /* Complete NAME by comparing it to the names of internal variables.
1722 Returns a vector of newly allocated strings, or NULL if no matches
1723 were found. */
1724
1725 VEC (char_ptr) *
1726 complete_internalvar (const char *name)
1727 {
1728 VEC (char_ptr) *result = NULL;
1729 struct internalvar *var;
1730 int len;
1731
1732 len = strlen (name);
1733
1734 for (var = internalvars; var; var = var->next)
1735 if (strncmp (var->name, name, len) == 0)
1736 {
1737 char *r = xstrdup (var->name);
1738
1739 VEC_safe_push (char_ptr, result, r);
1740 }
1741
1742 return result;
1743 }
1744
1745 /* Create an internal variable with name NAME and with a void value.
1746 NAME should not normally include a dollar sign. */
1747
1748 struct internalvar *
1749 create_internalvar (const char *name)
1750 {
1751 struct internalvar *var;
1752
1753 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754 var->name = concat (name, (char *)NULL);
1755 var->kind = INTERNALVAR_VOID;
1756 var->next = internalvars;
1757 internalvars = var;
1758 return var;
1759 }
1760
1761 /* Create an internal variable with name NAME and register FUN as the
1762 function that value_of_internalvar uses to create a value whenever
1763 this variable is referenced. NAME should not normally include a
1764 dollar sign. DATA is passed uninterpreted to FUN when it is
1765 called. CLEANUP, if not NULL, is called when the internal variable
1766 is destroyed. It is passed DATA as its only argument. */
1767
1768 struct internalvar *
1769 create_internalvar_type_lazy (const char *name,
1770 const struct internalvar_funcs *funcs,
1771 void *data)
1772 {
1773 struct internalvar *var = create_internalvar (name);
1774
1775 var->kind = INTERNALVAR_MAKE_VALUE;
1776 var->u.make_value.functions = funcs;
1777 var->u.make_value.data = data;
1778 return var;
1779 }
1780
1781 /* See documentation in value.h. */
1782
1783 int
1784 compile_internalvar_to_ax (struct internalvar *var,
1785 struct agent_expr *expr,
1786 struct axs_value *value)
1787 {
1788 if (var->kind != INTERNALVAR_MAKE_VALUE
1789 || var->u.make_value.functions->compile_to_ax == NULL)
1790 return 0;
1791
1792 var->u.make_value.functions->compile_to_ax (var, expr, value,
1793 var->u.make_value.data);
1794 return 1;
1795 }
1796
1797 /* Look up an internal variable with name NAME. NAME should not
1798 normally include a dollar sign.
1799
1800 If the specified internal variable does not exist,
1801 one is created, with a void value. */
1802
1803 struct internalvar *
1804 lookup_internalvar (const char *name)
1805 {
1806 struct internalvar *var;
1807
1808 var = lookup_only_internalvar (name);
1809 if (var)
1810 return var;
1811
1812 return create_internalvar (name);
1813 }
1814
1815 /* Return current value of internal variable VAR. For variables that
1816 are not inherently typed, use a value type appropriate for GDBARCH. */
1817
1818 struct value *
1819 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1820 {
1821 struct value *val;
1822 struct trace_state_variable *tsv;
1823
1824 /* If there is a trace state variable of the same name, assume that
1825 is what we really want to see. */
1826 tsv = find_trace_state_variable (var->name);
1827 if (tsv)
1828 {
1829 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1830 &(tsv->value));
1831 if (tsv->value_known)
1832 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1833 tsv->value);
1834 else
1835 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1836 return val;
1837 }
1838
1839 switch (var->kind)
1840 {
1841 case INTERNALVAR_VOID:
1842 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1843 break;
1844
1845 case INTERNALVAR_FUNCTION:
1846 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1847 break;
1848
1849 case INTERNALVAR_INTEGER:
1850 if (!var->u.integer.type)
1851 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1852 var->u.integer.val);
1853 else
1854 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1855 break;
1856
1857 case INTERNALVAR_STRING:
1858 val = value_cstring (var->u.string, strlen (var->u.string),
1859 builtin_type (gdbarch)->builtin_char);
1860 break;
1861
1862 case INTERNALVAR_VALUE:
1863 val = value_copy (var->u.value);
1864 if (value_lazy (val))
1865 value_fetch_lazy (val);
1866 break;
1867
1868 case INTERNALVAR_MAKE_VALUE:
1869 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1870 var->u.make_value.data);
1871 break;
1872
1873 default:
1874 internal_error (__FILE__, __LINE__, _("bad kind"));
1875 }
1876
1877 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1878 on this value go back to affect the original internal variable.
1879
1880 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1881 no underlying modifyable state in the internal variable.
1882
1883 Likewise, if the variable's value is a computed lvalue, we want
1884 references to it to produce another computed lvalue, where
1885 references and assignments actually operate through the
1886 computed value's functions.
1887
1888 This means that internal variables with computed values
1889 behave a little differently from other internal variables:
1890 assignments to them don't just replace the previous value
1891 altogether. At the moment, this seems like the behavior we
1892 want. */
1893
1894 if (var->kind != INTERNALVAR_MAKE_VALUE
1895 && val->lval != lval_computed)
1896 {
1897 VALUE_LVAL (val) = lval_internalvar;
1898 VALUE_INTERNALVAR (val) = var;
1899 }
1900
1901 return val;
1902 }
1903
1904 int
1905 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1906 {
1907 if (var->kind == INTERNALVAR_INTEGER)
1908 {
1909 *result = var->u.integer.val;
1910 return 1;
1911 }
1912
1913 if (var->kind == INTERNALVAR_VALUE)
1914 {
1915 struct type *type = check_typedef (value_type (var->u.value));
1916
1917 if (TYPE_CODE (type) == TYPE_CODE_INT)
1918 {
1919 *result = value_as_long (var->u.value);
1920 return 1;
1921 }
1922 }
1923
1924 return 0;
1925 }
1926
1927 static int
1928 get_internalvar_function (struct internalvar *var,
1929 struct internal_function **result)
1930 {
1931 switch (var->kind)
1932 {
1933 case INTERNALVAR_FUNCTION:
1934 *result = var->u.fn.function;
1935 return 1;
1936
1937 default:
1938 return 0;
1939 }
1940 }
1941
1942 void
1943 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1944 int bitsize, struct value *newval)
1945 {
1946 gdb_byte *addr;
1947
1948 switch (var->kind)
1949 {
1950 case INTERNALVAR_VALUE:
1951 addr = value_contents_writeable (var->u.value);
1952
1953 if (bitsize)
1954 modify_field (value_type (var->u.value), addr + offset,
1955 value_as_long (newval), bitpos, bitsize);
1956 else
1957 memcpy (addr + offset, value_contents (newval),
1958 TYPE_LENGTH (value_type (newval)));
1959 break;
1960
1961 default:
1962 /* We can never get a component of any other kind. */
1963 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1964 }
1965 }
1966
1967 void
1968 set_internalvar (struct internalvar *var, struct value *val)
1969 {
1970 enum internalvar_kind new_kind;
1971 union internalvar_data new_data = { 0 };
1972
1973 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1974 error (_("Cannot overwrite convenience function %s"), var->name);
1975
1976 /* Prepare new contents. */
1977 switch (TYPE_CODE (check_typedef (value_type (val))))
1978 {
1979 case TYPE_CODE_VOID:
1980 new_kind = INTERNALVAR_VOID;
1981 break;
1982
1983 case TYPE_CODE_INTERNAL_FUNCTION:
1984 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1985 new_kind = INTERNALVAR_FUNCTION;
1986 get_internalvar_function (VALUE_INTERNALVAR (val),
1987 &new_data.fn.function);
1988 /* Copies created here are never canonical. */
1989 break;
1990
1991 default:
1992 new_kind = INTERNALVAR_VALUE;
1993 new_data.value = value_copy (val);
1994 new_data.value->modifiable = 1;
1995
1996 /* Force the value to be fetched from the target now, to avoid problems
1997 later when this internalvar is referenced and the target is gone or
1998 has changed. */
1999 if (value_lazy (new_data.value))
2000 value_fetch_lazy (new_data.value);
2001
2002 /* Release the value from the value chain to prevent it from being
2003 deleted by free_all_values. From here on this function should not
2004 call error () until new_data is installed into the var->u to avoid
2005 leaking memory. */
2006 release_value (new_data.value);
2007 break;
2008 }
2009
2010 /* Clean up old contents. */
2011 clear_internalvar (var);
2012
2013 /* Switch over. */
2014 var->kind = new_kind;
2015 var->u = new_data;
2016 /* End code which must not call error(). */
2017 }
2018
2019 void
2020 set_internalvar_integer (struct internalvar *var, LONGEST l)
2021 {
2022 /* Clean up old contents. */
2023 clear_internalvar (var);
2024
2025 var->kind = INTERNALVAR_INTEGER;
2026 var->u.integer.type = NULL;
2027 var->u.integer.val = l;
2028 }
2029
2030 void
2031 set_internalvar_string (struct internalvar *var, const char *string)
2032 {
2033 /* Clean up old contents. */
2034 clear_internalvar (var);
2035
2036 var->kind = INTERNALVAR_STRING;
2037 var->u.string = xstrdup (string);
2038 }
2039
2040 static void
2041 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2042 {
2043 /* Clean up old contents. */
2044 clear_internalvar (var);
2045
2046 var->kind = INTERNALVAR_FUNCTION;
2047 var->u.fn.function = f;
2048 var->u.fn.canonical = 1;
2049 /* Variables installed here are always the canonical version. */
2050 }
2051
2052 void
2053 clear_internalvar (struct internalvar *var)
2054 {
2055 /* Clean up old contents. */
2056 switch (var->kind)
2057 {
2058 case INTERNALVAR_VALUE:
2059 value_free (var->u.value);
2060 break;
2061
2062 case INTERNALVAR_STRING:
2063 xfree (var->u.string);
2064 break;
2065
2066 case INTERNALVAR_MAKE_VALUE:
2067 if (var->u.make_value.functions->destroy != NULL)
2068 var->u.make_value.functions->destroy (var->u.make_value.data);
2069 break;
2070
2071 default:
2072 break;
2073 }
2074
2075 /* Reset to void kind. */
2076 var->kind = INTERNALVAR_VOID;
2077 }
2078
2079 char *
2080 internalvar_name (struct internalvar *var)
2081 {
2082 return var->name;
2083 }
2084
2085 static struct internal_function *
2086 create_internal_function (const char *name,
2087 internal_function_fn handler, void *cookie)
2088 {
2089 struct internal_function *ifn = XNEW (struct internal_function);
2090
2091 ifn->name = xstrdup (name);
2092 ifn->handler = handler;
2093 ifn->cookie = cookie;
2094 return ifn;
2095 }
2096
2097 char *
2098 value_internal_function_name (struct value *val)
2099 {
2100 struct internal_function *ifn;
2101 int result;
2102
2103 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2104 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2105 gdb_assert (result);
2106
2107 return ifn->name;
2108 }
2109
2110 struct value *
2111 call_internal_function (struct gdbarch *gdbarch,
2112 const struct language_defn *language,
2113 struct value *func, int argc, struct value **argv)
2114 {
2115 struct internal_function *ifn;
2116 int result;
2117
2118 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2119 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2120 gdb_assert (result);
2121
2122 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2123 }
2124
2125 /* The 'function' command. This does nothing -- it is just a
2126 placeholder to let "help function NAME" work. This is also used as
2127 the implementation of the sub-command that is created when
2128 registering an internal function. */
2129 static void
2130 function_command (char *command, int from_tty)
2131 {
2132 /* Do nothing. */
2133 }
2134
2135 /* Clean up if an internal function's command is destroyed. */
2136 static void
2137 function_destroyer (struct cmd_list_element *self, void *ignore)
2138 {
2139 xfree ((char *) self->name);
2140 xfree (self->doc);
2141 }
2142
2143 /* Add a new internal function. NAME is the name of the function; DOC
2144 is a documentation string describing the function. HANDLER is
2145 called when the function is invoked. COOKIE is an arbitrary
2146 pointer which is passed to HANDLER and is intended for "user
2147 data". */
2148 void
2149 add_internal_function (const char *name, const char *doc,
2150 internal_function_fn handler, void *cookie)
2151 {
2152 struct cmd_list_element *cmd;
2153 struct internal_function *ifn;
2154 struct internalvar *var = lookup_internalvar (name);
2155
2156 ifn = create_internal_function (name, handler, cookie);
2157 set_internalvar_function (var, ifn);
2158
2159 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2160 &functionlist);
2161 cmd->destroyer = function_destroyer;
2162 }
2163
2164 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2165 prevent cycles / duplicates. */
2166
2167 void
2168 preserve_one_value (struct value *value, struct objfile *objfile,
2169 htab_t copied_types)
2170 {
2171 if (TYPE_OBJFILE (value->type) == objfile)
2172 value->type = copy_type_recursive (objfile, value->type, copied_types);
2173
2174 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2175 value->enclosing_type = copy_type_recursive (objfile,
2176 value->enclosing_type,
2177 copied_types);
2178 }
2179
2180 /* Likewise for internal variable VAR. */
2181
2182 static void
2183 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2184 htab_t copied_types)
2185 {
2186 switch (var->kind)
2187 {
2188 case INTERNALVAR_INTEGER:
2189 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2190 var->u.integer.type
2191 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2192 break;
2193
2194 case INTERNALVAR_VALUE:
2195 preserve_one_value (var->u.value, objfile, copied_types);
2196 break;
2197 }
2198 }
2199
2200 /* Update the internal variables and value history when OBJFILE is
2201 discarded; we must copy the types out of the objfile. New global types
2202 will be created for every convenience variable which currently points to
2203 this objfile's types, and the convenience variables will be adjusted to
2204 use the new global types. */
2205
2206 void
2207 preserve_values (struct objfile *objfile)
2208 {
2209 htab_t copied_types;
2210 struct value_history_chunk *cur;
2211 struct internalvar *var;
2212 int i;
2213
2214 /* Create the hash table. We allocate on the objfile's obstack, since
2215 it is soon to be deleted. */
2216 copied_types = create_copied_types_hash (objfile);
2217
2218 for (cur = value_history_chain; cur; cur = cur->next)
2219 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2220 if (cur->values[i])
2221 preserve_one_value (cur->values[i], objfile, copied_types);
2222
2223 for (var = internalvars; var; var = var->next)
2224 preserve_one_internalvar (var, objfile, copied_types);
2225
2226 preserve_python_values (objfile, copied_types);
2227
2228 htab_delete (copied_types);
2229 }
2230
2231 static void
2232 show_convenience (char *ignore, int from_tty)
2233 {
2234 struct gdbarch *gdbarch = get_current_arch ();
2235 struct internalvar *var;
2236 int varseen = 0;
2237 struct value_print_options opts;
2238
2239 get_user_print_options (&opts);
2240 for (var = internalvars; var; var = var->next)
2241 {
2242 volatile struct gdb_exception ex;
2243
2244 if (!varseen)
2245 {
2246 varseen = 1;
2247 }
2248 printf_filtered (("$%s = "), var->name);
2249
2250 TRY_CATCH (ex, RETURN_MASK_ERROR)
2251 {
2252 struct value *val;
2253
2254 val = value_of_internalvar (gdbarch, var);
2255 value_print (val, gdb_stdout, &opts);
2256 }
2257 if (ex.reason < 0)
2258 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2259 printf_filtered (("\n"));
2260 }
2261 if (!varseen)
2262 {
2263 /* This text does not mention convenience functions on purpose.
2264 The user can't create them except via Python, and if Python support
2265 is installed this message will never be printed ($_streq will
2266 exist). */
2267 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2268 "Convenience variables have "
2269 "names starting with \"$\";\n"
2270 "use \"set\" as in \"set "
2271 "$foo = 5\" to define them.\n"));
2272 }
2273 }
2274 \f
2275 /* Extract a value as a C number (either long or double).
2276 Knows how to convert fixed values to double, or
2277 floating values to long.
2278 Does not deallocate the value. */
2279
2280 LONGEST
2281 value_as_long (struct value *val)
2282 {
2283 /* This coerces arrays and functions, which is necessary (e.g.
2284 in disassemble_command). It also dereferences references, which
2285 I suspect is the most logical thing to do. */
2286 val = coerce_array (val);
2287 return unpack_long (value_type (val), value_contents (val));
2288 }
2289
2290 DOUBLEST
2291 value_as_double (struct value *val)
2292 {
2293 DOUBLEST foo;
2294 int inv;
2295
2296 foo = unpack_double (value_type (val), value_contents (val), &inv);
2297 if (inv)
2298 error (_("Invalid floating value found in program."));
2299 return foo;
2300 }
2301
2302 /* Extract a value as a C pointer. Does not deallocate the value.
2303 Note that val's type may not actually be a pointer; value_as_long
2304 handles all the cases. */
2305 CORE_ADDR
2306 value_as_address (struct value *val)
2307 {
2308 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2309
2310 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2311 whether we want this to be true eventually. */
2312 #if 0
2313 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2314 non-address (e.g. argument to "signal", "info break", etc.), or
2315 for pointers to char, in which the low bits *are* significant. */
2316 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2317 #else
2318
2319 /* There are several targets (IA-64, PowerPC, and others) which
2320 don't represent pointers to functions as simply the address of
2321 the function's entry point. For example, on the IA-64, a
2322 function pointer points to a two-word descriptor, generated by
2323 the linker, which contains the function's entry point, and the
2324 value the IA-64 "global pointer" register should have --- to
2325 support position-independent code. The linker generates
2326 descriptors only for those functions whose addresses are taken.
2327
2328 On such targets, it's difficult for GDB to convert an arbitrary
2329 function address into a function pointer; it has to either find
2330 an existing descriptor for that function, or call malloc and
2331 build its own. On some targets, it is impossible for GDB to
2332 build a descriptor at all: the descriptor must contain a jump
2333 instruction; data memory cannot be executed; and code memory
2334 cannot be modified.
2335
2336 Upon entry to this function, if VAL is a value of type `function'
2337 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2338 value_address (val) is the address of the function. This is what
2339 you'll get if you evaluate an expression like `main'. The call
2340 to COERCE_ARRAY below actually does all the usual unary
2341 conversions, which includes converting values of type `function'
2342 to `pointer to function'. This is the challenging conversion
2343 discussed above. Then, `unpack_long' will convert that pointer
2344 back into an address.
2345
2346 So, suppose the user types `disassemble foo' on an architecture
2347 with a strange function pointer representation, on which GDB
2348 cannot build its own descriptors, and suppose further that `foo'
2349 has no linker-built descriptor. The address->pointer conversion
2350 will signal an error and prevent the command from running, even
2351 though the next step would have been to convert the pointer
2352 directly back into the same address.
2353
2354 The following shortcut avoids this whole mess. If VAL is a
2355 function, just return its address directly. */
2356 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2357 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2358 return value_address (val);
2359
2360 val = coerce_array (val);
2361
2362 /* Some architectures (e.g. Harvard), map instruction and data
2363 addresses onto a single large unified address space. For
2364 instance: An architecture may consider a large integer in the
2365 range 0x10000000 .. 0x1000ffff to already represent a data
2366 addresses (hence not need a pointer to address conversion) while
2367 a small integer would still need to be converted integer to
2368 pointer to address. Just assume such architectures handle all
2369 integer conversions in a single function. */
2370
2371 /* JimB writes:
2372
2373 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2374 must admonish GDB hackers to make sure its behavior matches the
2375 compiler's, whenever possible.
2376
2377 In general, I think GDB should evaluate expressions the same way
2378 the compiler does. When the user copies an expression out of
2379 their source code and hands it to a `print' command, they should
2380 get the same value the compiler would have computed. Any
2381 deviation from this rule can cause major confusion and annoyance,
2382 and needs to be justified carefully. In other words, GDB doesn't
2383 really have the freedom to do these conversions in clever and
2384 useful ways.
2385
2386 AndrewC pointed out that users aren't complaining about how GDB
2387 casts integers to pointers; they are complaining that they can't
2388 take an address from a disassembly listing and give it to `x/i'.
2389 This is certainly important.
2390
2391 Adding an architecture method like integer_to_address() certainly
2392 makes it possible for GDB to "get it right" in all circumstances
2393 --- the target has complete control over how things get done, so
2394 people can Do The Right Thing for their target without breaking
2395 anyone else. The standard doesn't specify how integers get
2396 converted to pointers; usually, the ABI doesn't either, but
2397 ABI-specific code is a more reasonable place to handle it. */
2398
2399 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2400 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2401 && gdbarch_integer_to_address_p (gdbarch))
2402 return gdbarch_integer_to_address (gdbarch, value_type (val),
2403 value_contents (val));
2404
2405 return unpack_long (value_type (val), value_contents (val));
2406 #endif
2407 }
2408 \f
2409 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2410 as a long, or as a double, assuming the raw data is described
2411 by type TYPE. Knows how to convert different sizes of values
2412 and can convert between fixed and floating point. We don't assume
2413 any alignment for the raw data. Return value is in host byte order.
2414
2415 If you want functions and arrays to be coerced to pointers, and
2416 references to be dereferenced, call value_as_long() instead.
2417
2418 C++: It is assumed that the front-end has taken care of
2419 all matters concerning pointers to members. A pointer
2420 to member which reaches here is considered to be equivalent
2421 to an INT (or some size). After all, it is only an offset. */
2422
2423 LONGEST
2424 unpack_long (struct type *type, const gdb_byte *valaddr)
2425 {
2426 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2427 enum type_code code = TYPE_CODE (type);
2428 int len = TYPE_LENGTH (type);
2429 int nosign = TYPE_UNSIGNED (type);
2430
2431 switch (code)
2432 {
2433 case TYPE_CODE_TYPEDEF:
2434 return unpack_long (check_typedef (type), valaddr);
2435 case TYPE_CODE_ENUM:
2436 case TYPE_CODE_FLAGS:
2437 case TYPE_CODE_BOOL:
2438 case TYPE_CODE_INT:
2439 case TYPE_CODE_CHAR:
2440 case TYPE_CODE_RANGE:
2441 case TYPE_CODE_MEMBERPTR:
2442 if (nosign)
2443 return extract_unsigned_integer (valaddr, len, byte_order);
2444 else
2445 return extract_signed_integer (valaddr, len, byte_order);
2446
2447 case TYPE_CODE_FLT:
2448 return extract_typed_floating (valaddr, type);
2449
2450 case TYPE_CODE_DECFLOAT:
2451 /* libdecnumber has a function to convert from decimal to integer, but
2452 it doesn't work when the decimal number has a fractional part. */
2453 return decimal_to_doublest (valaddr, len, byte_order);
2454
2455 case TYPE_CODE_PTR:
2456 case TYPE_CODE_REF:
2457 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2458 whether we want this to be true eventually. */
2459 return extract_typed_address (valaddr, type);
2460
2461 default:
2462 error (_("Value can't be converted to integer."));
2463 }
2464 return 0; /* Placate lint. */
2465 }
2466
2467 /* Return a double value from the specified type and address.
2468 INVP points to an int which is set to 0 for valid value,
2469 1 for invalid value (bad float format). In either case,
2470 the returned double is OK to use. Argument is in target
2471 format, result is in host format. */
2472
2473 DOUBLEST
2474 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2475 {
2476 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2477 enum type_code code;
2478 int len;
2479 int nosign;
2480
2481 *invp = 0; /* Assume valid. */
2482 CHECK_TYPEDEF (type);
2483 code = TYPE_CODE (type);
2484 len = TYPE_LENGTH (type);
2485 nosign = TYPE_UNSIGNED (type);
2486 if (code == TYPE_CODE_FLT)
2487 {
2488 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2489 floating-point value was valid (using the macro
2490 INVALID_FLOAT). That test/macro have been removed.
2491
2492 It turns out that only the VAX defined this macro and then
2493 only in a non-portable way. Fixing the portability problem
2494 wouldn't help since the VAX floating-point code is also badly
2495 bit-rotten. The target needs to add definitions for the
2496 methods gdbarch_float_format and gdbarch_double_format - these
2497 exactly describe the target floating-point format. The
2498 problem here is that the corresponding floatformat_vax_f and
2499 floatformat_vax_d values these methods should be set to are
2500 also not defined either. Oops!
2501
2502 Hopefully someone will add both the missing floatformat
2503 definitions and the new cases for floatformat_is_valid (). */
2504
2505 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2506 {
2507 *invp = 1;
2508 return 0.0;
2509 }
2510
2511 return extract_typed_floating (valaddr, type);
2512 }
2513 else if (code == TYPE_CODE_DECFLOAT)
2514 return decimal_to_doublest (valaddr, len, byte_order);
2515 else if (nosign)
2516 {
2517 /* Unsigned -- be sure we compensate for signed LONGEST. */
2518 return (ULONGEST) unpack_long (type, valaddr);
2519 }
2520 else
2521 {
2522 /* Signed -- we are OK with unpack_long. */
2523 return unpack_long (type, valaddr);
2524 }
2525 }
2526
2527 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2528 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2529 We don't assume any alignment for the raw data. Return value is in
2530 host byte order.
2531
2532 If you want functions and arrays to be coerced to pointers, and
2533 references to be dereferenced, call value_as_address() instead.
2534
2535 C++: It is assumed that the front-end has taken care of
2536 all matters concerning pointers to members. A pointer
2537 to member which reaches here is considered to be equivalent
2538 to an INT (or some size). After all, it is only an offset. */
2539
2540 CORE_ADDR
2541 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2542 {
2543 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2544 whether we want this to be true eventually. */
2545 return unpack_long (type, valaddr);
2546 }
2547
2548 \f
2549 /* Get the value of the FIELDNO'th field (which must be static) of
2550 TYPE. Return NULL if the field doesn't exist or has been
2551 optimized out. */
2552
2553 struct value *
2554 value_static_field (struct type *type, int fieldno)
2555 {
2556 struct value *retval;
2557
2558 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2559 {
2560 case FIELD_LOC_KIND_PHYSADDR:
2561 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2562 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2563 break;
2564 case FIELD_LOC_KIND_PHYSNAME:
2565 {
2566 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2567 /* TYPE_FIELD_NAME (type, fieldno); */
2568 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2569
2570 if (sym == NULL)
2571 {
2572 /* With some compilers, e.g. HP aCC, static data members are
2573 reported as non-debuggable symbols. */
2574 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2575 NULL, NULL);
2576
2577 if (!msym)
2578 return NULL;
2579 else
2580 {
2581 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2582 SYMBOL_VALUE_ADDRESS (msym));
2583 }
2584 }
2585 else
2586 retval = value_of_variable (sym, NULL);
2587 break;
2588 }
2589 default:
2590 gdb_assert_not_reached ("unexpected field location kind");
2591 }
2592
2593 return retval;
2594 }
2595
2596 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2597 You have to be careful here, since the size of the data area for the value
2598 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2599 than the old enclosing type, you have to allocate more space for the
2600 data. */
2601
2602 void
2603 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2604 {
2605 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2606 val->contents =
2607 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2608
2609 val->enclosing_type = new_encl_type;
2610 }
2611
2612 /* Given a value ARG1 (offset by OFFSET bytes)
2613 of a struct or union type ARG_TYPE,
2614 extract and return the value of one of its (non-static) fields.
2615 FIELDNO says which field. */
2616
2617 struct value *
2618 value_primitive_field (struct value *arg1, int offset,
2619 int fieldno, struct type *arg_type)
2620 {
2621 struct value *v;
2622 struct type *type;
2623
2624 CHECK_TYPEDEF (arg_type);
2625 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2626
2627 /* Call check_typedef on our type to make sure that, if TYPE
2628 is a TYPE_CODE_TYPEDEF, its length is set to the length
2629 of the target type instead of zero. However, we do not
2630 replace the typedef type by the target type, because we want
2631 to keep the typedef in order to be able to print the type
2632 description correctly. */
2633 check_typedef (type);
2634
2635 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2636 {
2637 /* Handle packed fields.
2638
2639 Create a new value for the bitfield, with bitpos and bitsize
2640 set. If possible, arrange offset and bitpos so that we can
2641 do a single aligned read of the size of the containing type.
2642 Otherwise, adjust offset to the byte containing the first
2643 bit. Assume that the address, offset, and embedded offset
2644 are sufficiently aligned. */
2645
2646 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2647 int container_bitsize = TYPE_LENGTH (type) * 8;
2648
2649 if (arg1->optimized_out)
2650 v = allocate_optimized_out_value (type);
2651 else
2652 {
2653 v = allocate_value_lazy (type);
2654 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2655 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2656 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2657 v->bitpos = bitpos % container_bitsize;
2658 else
2659 v->bitpos = bitpos % 8;
2660 v->offset = (value_embedded_offset (arg1)
2661 + offset
2662 + (bitpos - v->bitpos) / 8);
2663 set_value_parent (v, arg1);
2664 if (!value_lazy (arg1))
2665 value_fetch_lazy (v);
2666 }
2667 }
2668 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2669 {
2670 /* This field is actually a base subobject, so preserve the
2671 entire object's contents for later references to virtual
2672 bases, etc. */
2673 int boffset;
2674
2675 /* Lazy register values with offsets are not supported. */
2676 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2677 value_fetch_lazy (arg1);
2678
2679 /* The optimized_out flag is only set correctly once a lazy value is
2680 loaded, having just loaded some lazy values we should check the
2681 optimized out case now. */
2682 if (arg1->optimized_out)
2683 v = allocate_optimized_out_value (type);
2684 else
2685 {
2686 /* We special case virtual inheritance here because this
2687 requires access to the contents, which we would rather avoid
2688 for references to ordinary fields of unavailable values. */
2689 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2690 boffset = baseclass_offset (arg_type, fieldno,
2691 value_contents (arg1),
2692 value_embedded_offset (arg1),
2693 value_address (arg1),
2694 arg1);
2695 else
2696 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2697
2698 if (value_lazy (arg1))
2699 v = allocate_value_lazy (value_enclosing_type (arg1));
2700 else
2701 {
2702 v = allocate_value (value_enclosing_type (arg1));
2703 value_contents_copy_raw (v, 0, arg1, 0,
2704 TYPE_LENGTH (value_enclosing_type (arg1)));
2705 }
2706 v->type = type;
2707 v->offset = value_offset (arg1);
2708 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2709 }
2710 }
2711 else
2712 {
2713 /* Plain old data member */
2714 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2715
2716 /* Lazy register values with offsets are not supported. */
2717 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2718 value_fetch_lazy (arg1);
2719
2720 /* The optimized_out flag is only set correctly once a lazy value is
2721 loaded, having just loaded some lazy values we should check for
2722 the optimized out case now. */
2723 if (arg1->optimized_out)
2724 v = allocate_optimized_out_value (type);
2725 else if (value_lazy (arg1))
2726 v = allocate_value_lazy (type);
2727 else
2728 {
2729 v = allocate_value (type);
2730 value_contents_copy_raw (v, value_embedded_offset (v),
2731 arg1, value_embedded_offset (arg1) + offset,
2732 TYPE_LENGTH (type));
2733 }
2734 v->offset = (value_offset (arg1) + offset
2735 + value_embedded_offset (arg1));
2736 }
2737 set_value_component_location (v, arg1);
2738 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2739 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2740 return v;
2741 }
2742
2743 /* Given a value ARG1 of a struct or union type,
2744 extract and return the value of one of its (non-static) fields.
2745 FIELDNO says which field. */
2746
2747 struct value *
2748 value_field (struct value *arg1, int fieldno)
2749 {
2750 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2751 }
2752
2753 /* Return a non-virtual function as a value.
2754 F is the list of member functions which contains the desired method.
2755 J is an index into F which provides the desired method.
2756
2757 We only use the symbol for its address, so be happy with either a
2758 full symbol or a minimal symbol. */
2759
2760 struct value *
2761 value_fn_field (struct value **arg1p, struct fn_field *f,
2762 int j, struct type *type,
2763 int offset)
2764 {
2765 struct value *v;
2766 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2767 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2768 struct symbol *sym;
2769 struct minimal_symbol *msym;
2770
2771 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2772 if (sym != NULL)
2773 {
2774 msym = NULL;
2775 }
2776 else
2777 {
2778 gdb_assert (sym == NULL);
2779 msym = lookup_minimal_symbol (physname, NULL, NULL);
2780 if (msym == NULL)
2781 return NULL;
2782 }
2783
2784 v = allocate_value (ftype);
2785 if (sym)
2786 {
2787 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2788 }
2789 else
2790 {
2791 /* The minimal symbol might point to a function descriptor;
2792 resolve it to the actual code address instead. */
2793 struct objfile *objfile = msymbol_objfile (msym);
2794 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2795
2796 set_value_address (v,
2797 gdbarch_convert_from_func_ptr_addr
2798 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2799 }
2800
2801 if (arg1p)
2802 {
2803 if (type != value_type (*arg1p))
2804 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2805 value_addr (*arg1p)));
2806
2807 /* Move the `this' pointer according to the offset.
2808 VALUE_OFFSET (*arg1p) += offset; */
2809 }
2810
2811 return v;
2812 }
2813
2814 \f
2815
2816 /* Helper function for both unpack_value_bits_as_long and
2817 unpack_bits_as_long. See those functions for more details on the
2818 interface; the only difference is that this function accepts either
2819 a NULL or a non-NULL ORIGINAL_VALUE. */
2820
2821 static int
2822 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2823 int embedded_offset, int bitpos, int bitsize,
2824 const struct value *original_value,
2825 LONGEST *result)
2826 {
2827 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2828 ULONGEST val;
2829 ULONGEST valmask;
2830 int lsbcount;
2831 int bytes_read;
2832 int read_offset;
2833
2834 /* Read the minimum number of bytes required; there may not be
2835 enough bytes to read an entire ULONGEST. */
2836 CHECK_TYPEDEF (field_type);
2837 if (bitsize)
2838 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2839 else
2840 bytes_read = TYPE_LENGTH (field_type);
2841
2842 read_offset = bitpos / 8;
2843
2844 if (original_value != NULL
2845 && !value_bytes_available (original_value, embedded_offset + read_offset,
2846 bytes_read))
2847 return 0;
2848
2849 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2850 bytes_read, byte_order);
2851
2852 /* Extract bits. See comment above. */
2853
2854 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2855 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2856 else
2857 lsbcount = (bitpos % 8);
2858 val >>= lsbcount;
2859
2860 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2861 If the field is signed, and is negative, then sign extend. */
2862
2863 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2864 {
2865 valmask = (((ULONGEST) 1) << bitsize) - 1;
2866 val &= valmask;
2867 if (!TYPE_UNSIGNED (field_type))
2868 {
2869 if (val & (valmask ^ (valmask >> 1)))
2870 {
2871 val |= ~valmask;
2872 }
2873 }
2874 }
2875
2876 *result = val;
2877 return 1;
2878 }
2879
2880 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2881 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2882 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2883 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2884 bits.
2885
2886 Returns false if the value contents are unavailable, otherwise
2887 returns true, indicating a valid value has been stored in *RESULT.
2888
2889 Extracting bits depends on endianness of the machine. Compute the
2890 number of least significant bits to discard. For big endian machines,
2891 we compute the total number of bits in the anonymous object, subtract
2892 off the bit count from the MSB of the object to the MSB of the
2893 bitfield, then the size of the bitfield, which leaves the LSB discard
2894 count. For little endian machines, the discard count is simply the
2895 number of bits from the LSB of the anonymous object to the LSB of the
2896 bitfield.
2897
2898 If the field is signed, we also do sign extension. */
2899
2900 int
2901 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2902 int embedded_offset, int bitpos, int bitsize,
2903 const struct value *original_value,
2904 LONGEST *result)
2905 {
2906 gdb_assert (original_value != NULL);
2907
2908 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2909 bitpos, bitsize, original_value, result);
2910
2911 }
2912
2913 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2914 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2915 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2916 details. */
2917
2918 static int
2919 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2920 int embedded_offset, int fieldno,
2921 const struct value *val, LONGEST *result)
2922 {
2923 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2924 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2925 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2926
2927 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2928 bitpos, bitsize, val,
2929 result);
2930 }
2931
2932 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2933 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2934 ORIGINAL_VALUE, which must not be NULL. See
2935 unpack_value_bits_as_long for more details. */
2936
2937 int
2938 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2939 int embedded_offset, int fieldno,
2940 const struct value *val, LONGEST *result)
2941 {
2942 gdb_assert (val != NULL);
2943
2944 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2945 fieldno, val, result);
2946 }
2947
2948 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2949 object at VALADDR. See unpack_value_bits_as_long for more details.
2950 This function differs from unpack_value_field_as_long in that it
2951 operates without a struct value object. */
2952
2953 LONGEST
2954 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2955 {
2956 LONGEST result;
2957
2958 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2959 return result;
2960 }
2961
2962 /* Return a new value with type TYPE, which is FIELDNO field of the
2963 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2964 of VAL. If the VAL's contents required to extract the bitfield
2965 from are unavailable, the new value is correspondingly marked as
2966 unavailable. */
2967
2968 struct value *
2969 value_field_bitfield (struct type *type, int fieldno,
2970 const gdb_byte *valaddr,
2971 int embedded_offset, const struct value *val)
2972 {
2973 LONGEST l;
2974
2975 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2976 val, &l))
2977 {
2978 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2979 struct value *retval = allocate_value (field_type);
2980 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2981 return retval;
2982 }
2983 else
2984 {
2985 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2986 }
2987 }
2988
2989 /* Modify the value of a bitfield. ADDR points to a block of memory in
2990 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2991 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2992 indicate which bits (in target bit order) comprise the bitfield.
2993 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2994 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2995
2996 void
2997 modify_field (struct type *type, gdb_byte *addr,
2998 LONGEST fieldval, int bitpos, int bitsize)
2999 {
3000 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3001 ULONGEST oword;
3002 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3003 int bytesize;
3004
3005 /* Normalize BITPOS. */
3006 addr += bitpos / 8;
3007 bitpos %= 8;
3008
3009 /* If a negative fieldval fits in the field in question, chop
3010 off the sign extension bits. */
3011 if ((~fieldval & ~(mask >> 1)) == 0)
3012 fieldval &= mask;
3013
3014 /* Warn if value is too big to fit in the field in question. */
3015 if (0 != (fieldval & ~mask))
3016 {
3017 /* FIXME: would like to include fieldval in the message, but
3018 we don't have a sprintf_longest. */
3019 warning (_("Value does not fit in %d bits."), bitsize);
3020
3021 /* Truncate it, otherwise adjoining fields may be corrupted. */
3022 fieldval &= mask;
3023 }
3024
3025 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3026 false valgrind reports. */
3027
3028 bytesize = (bitpos + bitsize + 7) / 8;
3029 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3030
3031 /* Shifting for bit field depends on endianness of the target machine. */
3032 if (gdbarch_bits_big_endian (get_type_arch (type)))
3033 bitpos = bytesize * 8 - bitpos - bitsize;
3034
3035 oword &= ~(mask << bitpos);
3036 oword |= fieldval << bitpos;
3037
3038 store_unsigned_integer (addr, bytesize, byte_order, oword);
3039 }
3040 \f
3041 /* Pack NUM into BUF using a target format of TYPE. */
3042
3043 void
3044 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3045 {
3046 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3047 int len;
3048
3049 type = check_typedef (type);
3050 len = TYPE_LENGTH (type);
3051
3052 switch (TYPE_CODE (type))
3053 {
3054 case TYPE_CODE_INT:
3055 case TYPE_CODE_CHAR:
3056 case TYPE_CODE_ENUM:
3057 case TYPE_CODE_FLAGS:
3058 case TYPE_CODE_BOOL:
3059 case TYPE_CODE_RANGE:
3060 case TYPE_CODE_MEMBERPTR:
3061 store_signed_integer (buf, len, byte_order, num);
3062 break;
3063
3064 case TYPE_CODE_REF:
3065 case TYPE_CODE_PTR:
3066 store_typed_address (buf, type, (CORE_ADDR) num);
3067 break;
3068
3069 default:
3070 error (_("Unexpected type (%d) encountered for integer constant."),
3071 TYPE_CODE (type));
3072 }
3073 }
3074
3075
3076 /* Pack NUM into BUF using a target format of TYPE. */
3077
3078 static void
3079 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3080 {
3081 int len;
3082 enum bfd_endian byte_order;
3083
3084 type = check_typedef (type);
3085 len = TYPE_LENGTH (type);
3086 byte_order = gdbarch_byte_order (get_type_arch (type));
3087
3088 switch (TYPE_CODE (type))
3089 {
3090 case TYPE_CODE_INT:
3091 case TYPE_CODE_CHAR:
3092 case TYPE_CODE_ENUM:
3093 case TYPE_CODE_FLAGS:
3094 case TYPE_CODE_BOOL:
3095 case TYPE_CODE_RANGE:
3096 case TYPE_CODE_MEMBERPTR:
3097 store_unsigned_integer (buf, len, byte_order, num);
3098 break;
3099
3100 case TYPE_CODE_REF:
3101 case TYPE_CODE_PTR:
3102 store_typed_address (buf, type, (CORE_ADDR) num);
3103 break;
3104
3105 default:
3106 error (_("Unexpected type (%d) encountered "
3107 "for unsigned integer constant."),
3108 TYPE_CODE (type));
3109 }
3110 }
3111
3112
3113 /* Convert C numbers into newly allocated values. */
3114
3115 struct value *
3116 value_from_longest (struct type *type, LONGEST num)
3117 {
3118 struct value *val = allocate_value (type);
3119
3120 pack_long (value_contents_raw (val), type, num);
3121 return val;
3122 }
3123
3124
3125 /* Convert C unsigned numbers into newly allocated values. */
3126
3127 struct value *
3128 value_from_ulongest (struct type *type, ULONGEST num)
3129 {
3130 struct value *val = allocate_value (type);
3131
3132 pack_unsigned_long (value_contents_raw (val), type, num);
3133
3134 return val;
3135 }
3136
3137
3138 /* Create a value representing a pointer of type TYPE to the address
3139 ADDR. */
3140 struct value *
3141 value_from_pointer (struct type *type, CORE_ADDR addr)
3142 {
3143 struct value *val = allocate_value (type);
3144
3145 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3146 return val;
3147 }
3148
3149
3150 /* Create a value of type TYPE whose contents come from VALADDR, if it
3151 is non-null, and whose memory address (in the inferior) is
3152 ADDRESS. */
3153
3154 struct value *
3155 value_from_contents_and_address (struct type *type,
3156 const gdb_byte *valaddr,
3157 CORE_ADDR address)
3158 {
3159 struct value *v;
3160
3161 if (valaddr == NULL)
3162 v = allocate_value_lazy (type);
3163 else
3164 {
3165 v = allocate_value (type);
3166 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3167 }
3168 set_value_address (v, address);
3169 VALUE_LVAL (v) = lval_memory;
3170 return v;
3171 }
3172
3173 /* Create a value of type TYPE holding the contents CONTENTS.
3174 The new value is `not_lval'. */
3175
3176 struct value *
3177 value_from_contents (struct type *type, const gdb_byte *contents)
3178 {
3179 struct value *result;
3180
3181 result = allocate_value (type);
3182 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3183 return result;
3184 }
3185
3186 struct value *
3187 value_from_double (struct type *type, DOUBLEST num)
3188 {
3189 struct value *val = allocate_value (type);
3190 struct type *base_type = check_typedef (type);
3191 enum type_code code = TYPE_CODE (base_type);
3192
3193 if (code == TYPE_CODE_FLT)
3194 {
3195 store_typed_floating (value_contents_raw (val), base_type, num);
3196 }
3197 else
3198 error (_("Unexpected type encountered for floating constant."));
3199
3200 return val;
3201 }
3202
3203 struct value *
3204 value_from_decfloat (struct type *type, const gdb_byte *dec)
3205 {
3206 struct value *val = allocate_value (type);
3207
3208 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3209 return val;
3210 }
3211
3212 /* Extract a value from the history file. Input will be of the form
3213 $digits or $$digits. See block comment above 'write_dollar_variable'
3214 for details. */
3215
3216 struct value *
3217 value_from_history_ref (char *h, char **endp)
3218 {
3219 int index, len;
3220
3221 if (h[0] == '$')
3222 len = 1;
3223 else
3224 return NULL;
3225
3226 if (h[1] == '$')
3227 len = 2;
3228
3229 /* Find length of numeral string. */
3230 for (; isdigit (h[len]); len++)
3231 ;
3232
3233 /* Make sure numeral string is not part of an identifier. */
3234 if (h[len] == '_' || isalpha (h[len]))
3235 return NULL;
3236
3237 /* Now collect the index value. */
3238 if (h[1] == '$')
3239 {
3240 if (len == 2)
3241 {
3242 /* For some bizarre reason, "$$" is equivalent to "$$1",
3243 rather than to "$$0" as it ought to be! */
3244 index = -1;
3245 *endp += len;
3246 }
3247 else
3248 index = -strtol (&h[2], endp, 10);
3249 }
3250 else
3251 {
3252 if (len == 1)
3253 {
3254 /* "$" is equivalent to "$0". */
3255 index = 0;
3256 *endp += len;
3257 }
3258 else
3259 index = strtol (&h[1], endp, 10);
3260 }
3261
3262 return access_value_history (index);
3263 }
3264
3265 struct value *
3266 coerce_ref_if_computed (const struct value *arg)
3267 {
3268 const struct lval_funcs *funcs;
3269
3270 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3271 return NULL;
3272
3273 if (value_lval_const (arg) != lval_computed)
3274 return NULL;
3275
3276 funcs = value_computed_funcs (arg);
3277 if (funcs->coerce_ref == NULL)
3278 return NULL;
3279
3280 return funcs->coerce_ref (arg);
3281 }
3282
3283 /* Look at value.h for description. */
3284
3285 struct value *
3286 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3287 struct type *original_type,
3288 struct value *original_value)
3289 {
3290 /* Re-adjust type. */
3291 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3292
3293 /* Add embedding info. */
3294 set_value_enclosing_type (value, enc_type);
3295 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3296
3297 /* We may be pointing to an object of some derived type. */
3298 return value_full_object (value, NULL, 0, 0, 0);
3299 }
3300
3301 struct value *
3302 coerce_ref (struct value *arg)
3303 {
3304 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3305 struct value *retval;
3306 struct type *enc_type;
3307
3308 retval = coerce_ref_if_computed (arg);
3309 if (retval)
3310 return retval;
3311
3312 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3313 return arg;
3314
3315 enc_type = check_typedef (value_enclosing_type (arg));
3316 enc_type = TYPE_TARGET_TYPE (enc_type);
3317
3318 retval = value_at_lazy (enc_type,
3319 unpack_pointer (value_type (arg),
3320 value_contents (arg)));
3321 return readjust_indirect_value_type (retval, enc_type,
3322 value_type_arg_tmp, arg);
3323 }
3324
3325 struct value *
3326 coerce_array (struct value *arg)
3327 {
3328 struct type *type;
3329
3330 arg = coerce_ref (arg);
3331 type = check_typedef (value_type (arg));
3332
3333 switch (TYPE_CODE (type))
3334 {
3335 case TYPE_CODE_ARRAY:
3336 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3337 arg = value_coerce_array (arg);
3338 break;
3339 case TYPE_CODE_FUNC:
3340 arg = value_coerce_function (arg);
3341 break;
3342 }
3343 return arg;
3344 }
3345 \f
3346
3347 /* Return the return value convention that will be used for the
3348 specified type. */
3349
3350 enum return_value_convention
3351 struct_return_convention (struct gdbarch *gdbarch,
3352 struct value *function, struct type *value_type)
3353 {
3354 enum type_code code = TYPE_CODE (value_type);
3355
3356 if (code == TYPE_CODE_ERROR)
3357 error (_("Function return type unknown."));
3358
3359 /* Probe the architecture for the return-value convention. */
3360 return gdbarch_return_value (gdbarch, function, value_type,
3361 NULL, NULL, NULL);
3362 }
3363
3364 /* Return true if the function returning the specified type is using
3365 the convention of returning structures in memory (passing in the
3366 address as a hidden first parameter). */
3367
3368 int
3369 using_struct_return (struct gdbarch *gdbarch,
3370 struct value *function, struct type *value_type)
3371 {
3372 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3373 /* A void return value is never in memory. See also corresponding
3374 code in "print_return_value". */
3375 return 0;
3376
3377 return (struct_return_convention (gdbarch, function, value_type)
3378 != RETURN_VALUE_REGISTER_CONVENTION);
3379 }
3380
3381 /* Set the initialized field in a value struct. */
3382
3383 void
3384 set_value_initialized (struct value *val, int status)
3385 {
3386 val->initialized = status;
3387 }
3388
3389 /* Return the initialized field in a value struct. */
3390
3391 int
3392 value_initialized (struct value *val)
3393 {
3394 return val->initialized;
3395 }
3396
3397 /* Called only from the value_contents and value_contents_all()
3398 macros, if the current data for a variable needs to be loaded into
3399 value_contents(VAL). Fetches the data from the user's process, and
3400 clears the lazy flag to indicate that the data in the buffer is
3401 valid.
3402
3403 If the value is zero-length, we avoid calling read_memory, which
3404 would abort. We mark the value as fetched anyway -- all 0 bytes of
3405 it.
3406
3407 This function returns a value because it is used in the
3408 value_contents macro as part of an expression, where a void would
3409 not work. The value is ignored. */
3410
3411 int
3412 value_fetch_lazy (struct value *val)
3413 {
3414 gdb_assert (value_lazy (val));
3415 allocate_value_contents (val);
3416 if (value_bitsize (val))
3417 {
3418 /* To read a lazy bitfield, read the entire enclosing value. This
3419 prevents reading the same block of (possibly volatile) memory once
3420 per bitfield. It would be even better to read only the containing
3421 word, but we have no way to record that just specific bits of a
3422 value have been fetched. */
3423 struct type *type = check_typedef (value_type (val));
3424 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3425 struct value *parent = value_parent (val);
3426 LONGEST offset = value_offset (val);
3427 LONGEST num;
3428
3429 if (!value_bits_valid (val,
3430 TARGET_CHAR_BIT * offset + value_bitpos (val),
3431 value_bitsize (val)))
3432 error (_("value has been optimized out"));
3433
3434 if (!unpack_value_bits_as_long (value_type (val),
3435 value_contents_for_printing (parent),
3436 offset,
3437 value_bitpos (val),
3438 value_bitsize (val), parent, &num))
3439 mark_value_bytes_unavailable (val,
3440 value_embedded_offset (val),
3441 TYPE_LENGTH (type));
3442 else
3443 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3444 byte_order, num);
3445 }
3446 else if (VALUE_LVAL (val) == lval_memory)
3447 {
3448 CORE_ADDR addr = value_address (val);
3449 struct type *type = check_typedef (value_enclosing_type (val));
3450
3451 if (TYPE_LENGTH (type))
3452 read_value_memory (val, 0, value_stack (val),
3453 addr, value_contents_all_raw (val),
3454 TYPE_LENGTH (type));
3455 }
3456 else if (VALUE_LVAL (val) == lval_register)
3457 {
3458 struct frame_info *frame;
3459 int regnum;
3460 struct type *type = check_typedef (value_type (val));
3461 struct value *new_val = val, *mark = value_mark ();
3462
3463 /* Offsets are not supported here; lazy register values must
3464 refer to the entire register. */
3465 gdb_assert (value_offset (val) == 0);
3466
3467 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3468 {
3469 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
3470 regnum = VALUE_REGNUM (new_val);
3471
3472 gdb_assert (frame != NULL);
3473
3474 /* Convertible register routines are used for multi-register
3475 values and for interpretation in different types
3476 (e.g. float or int from a double register). Lazy
3477 register values should have the register's natural type,
3478 so they do not apply. */
3479 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3480 regnum, type));
3481
3482 new_val = get_frame_register_value (frame, regnum);
3483 }
3484
3485 /* If it's still lazy (for instance, a saved register on the
3486 stack), fetch it. */
3487 if (value_lazy (new_val))
3488 value_fetch_lazy (new_val);
3489
3490 /* If the register was not saved, mark it optimized out. */
3491 if (value_optimized_out (new_val))
3492 set_value_optimized_out (val, 1);
3493 else
3494 {
3495 set_value_lazy (val, 0);
3496 value_contents_copy (val, value_embedded_offset (val),
3497 new_val, value_embedded_offset (new_val),
3498 TYPE_LENGTH (type));
3499 }
3500
3501 if (frame_debug)
3502 {
3503 struct gdbarch *gdbarch;
3504 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3505 regnum = VALUE_REGNUM (val);
3506 gdbarch = get_frame_arch (frame);
3507
3508 fprintf_unfiltered (gdb_stdlog,
3509 "{ value_fetch_lazy "
3510 "(frame=%d,regnum=%d(%s),...) ",
3511 frame_relative_level (frame), regnum,
3512 user_reg_map_regnum_to_name (gdbarch, regnum));
3513
3514 fprintf_unfiltered (gdb_stdlog, "->");
3515 if (value_optimized_out (new_val))
3516 fprintf_unfiltered (gdb_stdlog, " optimized out");
3517 else
3518 {
3519 int i;
3520 const gdb_byte *buf = value_contents (new_val);
3521
3522 if (VALUE_LVAL (new_val) == lval_register)
3523 fprintf_unfiltered (gdb_stdlog, " register=%d",
3524 VALUE_REGNUM (new_val));
3525 else if (VALUE_LVAL (new_val) == lval_memory)
3526 fprintf_unfiltered (gdb_stdlog, " address=%s",
3527 paddress (gdbarch,
3528 value_address (new_val)));
3529 else
3530 fprintf_unfiltered (gdb_stdlog, " computed");
3531
3532 fprintf_unfiltered (gdb_stdlog, " bytes=");
3533 fprintf_unfiltered (gdb_stdlog, "[");
3534 for (i = 0; i < register_size (gdbarch, regnum); i++)
3535 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3536 fprintf_unfiltered (gdb_stdlog, "]");
3537 }
3538
3539 fprintf_unfiltered (gdb_stdlog, " }\n");
3540 }
3541
3542 /* Dispose of the intermediate values. This prevents
3543 watchpoints from trying to watch the saved frame pointer. */
3544 value_free_to_mark (mark);
3545 }
3546 else if (VALUE_LVAL (val) == lval_computed
3547 && value_computed_funcs (val)->read != NULL)
3548 value_computed_funcs (val)->read (val);
3549 /* Don't call value_optimized_out on val, doing so would result in a
3550 recursive call back to value_fetch_lazy, instead check the
3551 optimized_out flag directly. */
3552 else if (val->optimized_out)
3553 /* Keep it optimized out. */;
3554 else
3555 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3556
3557 set_value_lazy (val, 0);
3558 return 0;
3559 }
3560
3561 void
3562 _initialize_values (void)
3563 {
3564 add_cmd ("convenience", no_class, show_convenience, _("\
3565 Debugger convenience (\"$foo\") variables and functions.\n\
3566 Convenience variables are created when you assign them values;\n\
3567 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3568 \n\
3569 A few convenience variables are given values automatically:\n\
3570 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3571 \"$__\" holds the contents of the last address examined with \"x\"."
3572 #ifdef HAVE_PYTHON
3573 "\n\n\
3574 Convenience functions are defined via the Python API."
3575 #endif
3576 ), &showlist);
3577 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3578
3579 add_cmd ("values", no_set_class, show_values, _("\
3580 Elements of value history around item number IDX (or last ten)."),
3581 &showlist);
3582
3583 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3584 Initialize a convenience variable if necessary.\n\
3585 init-if-undefined VARIABLE = EXPRESSION\n\
3586 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3587 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3588 VARIABLE is already initialized."));
3589
3590 add_prefix_cmd ("function", no_class, function_command, _("\
3591 Placeholder command for showing help on convenience functions."),
3592 &functionlist, "function ", 0, &cmdlist);
3593 }