* value.c (show_convenience): Tweak comment.
[binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2000, 2002-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45
46 /* Prototypes for exported functions. */
47
48 void _initialize_values (void);
49
50 /* Definition of a user function. */
51 struct internal_function
52 {
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63 };
64
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67 struct range
68 {
69 /* Lowest offset in the range. */
70 int offset;
71
72 /* Length of the range. */
73 int length;
74 };
75
76 typedef struct range range_s;
77
78 DEF_VEC_O(range_s);
79
80 /* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
82
83 static int
84 ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
86 {
87 ULONGEST h, l;
88
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
91 return (l < h);
92 }
93
94 /* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
98
99 static int
100 range_lessthan (const range_s *r1, const range_s *r2)
101 {
102 return r1->offset < r2->offset;
103 }
104
105 /* Returns true if RANGES contains any range that overlaps [OFFSET,
106 OFFSET+LENGTH). */
107
108 static int
109 ranges_contain (VEC(range_s) *ranges, int offset, int length)
110 {
111 range_s what;
112 int i;
113
114 what.offset = offset;
115 what.length = length;
116
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
124
125 R
126 |---|
127 |---| |---| |------| ... |--|
128 0 1 2 N
129
130 I=1
131
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
135 overlaps with R.
136
137 Then we need to check if the I range overlaps the I range itself.
138 E.g.,
139
140 R
141 |---|
142 |---| |---| |-------| ... |--|
143 0 1 2 N
144
145 I=1
146 */
147
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149
150 if (i > 0)
151 {
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
153
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 return 1;
156 }
157
158 if (i < VEC_length (range_s, ranges))
159 {
160 struct range *r = VEC_index (range_s, ranges, i);
161
162 if (ranges_overlap (r->offset, r->length, offset, length))
163 return 1;
164 }
165
166 return 0;
167 }
168
169 static struct cmd_list_element *functionlist;
170
171 /* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
174 struct value
175 {
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
178 enum lval_type lval;
179
180 /* Is it modifiable? Only relevant if lval != not_lval. */
181 unsigned int modifiable : 1;
182
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
187
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
198
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
202
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
205
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
209
210 /* If the value has been released. */
211 unsigned int released : 1;
212
213 /* Location of value (if lval). */
214 union
215 {
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
219 CORE_ADDR address;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
234 } computed;
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
250 int bitpos;
251
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
319 struct value *next;
320
321 /* Register number if the value is from a register. */
322 short regnum;
323
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
326 gdb_byte *contents;
327
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
332 };
333
334 int
335 value_bytes_available (const struct value *value, int offset, int length)
336 {
337 gdb_assert (!value->lazy);
338
339 return !ranges_contain (value->unavailable, offset, length);
340 }
341
342 int
343 value_entirely_available (struct value *value)
344 {
345 /* We can only tell whether the whole value is available when we try
346 to read it. */
347 if (value->lazy)
348 value_fetch_lazy (value);
349
350 if (VEC_empty (range_s, value->unavailable))
351 return 1;
352 return 0;
353 }
354
355 void
356 mark_value_bytes_unavailable (struct value *value, int offset, int length)
357 {
358 range_s newr;
359 int i;
360
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
363
364 newr.offset = offset;
365 newr.length = length;
366
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
372
373 #1 - overlaps with previous
374
375 R
376 |-...-|
377 |---| |---| |------| ... |--|
378 0 1 2 N
379
380 I=1
381
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
386
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
389
390 #2 - contiguous with previous
391
392 R
393 |-...-|
394 |--| |---| |------| ... |--|
395 0 1 2 N
396
397 I=1
398
399 If there's no overlap with the previous range, as in:
400
401 #3 - not overlapping and not contiguous
402
403 R
404 |-...-|
405 |--| |---| |------| ... |--|
406 0 1 2 N
407
408 I=1
409
410 or if I is 0:
411
412 #4 - R is the range with lowest offset
413
414 R
415 |-...-|
416 |--| |---| |------| ... |--|
417 0 1 2 N
418
419 I=0
420
421 ... we just push the new range to I.
422
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
426
427 #5 - overlapping following ranges
428
429 R
430 |------------------------|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=0
435
436 or:
437
438 R
439 |-------|
440 |--| |---| |------| ... |--|
441 0 1 2 N
442
443 I=1
444
445 */
446
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
448 if (i > 0)
449 {
450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
451
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
453 {
454 /* #1 */
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
457
458 bef->offset = l;
459 bef->length = h - l;
460 i--;
461 }
462 else if (offset == bef->offset + bef->length)
463 {
464 /* #2 */
465 bef->length += length;
466 i--;
467 }
468 else
469 {
470 /* #3 */
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
472 }
473 }
474 else
475 {
476 /* #4 */
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 }
479
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
483 {
484 struct range *t;
485 struct range *r;
486 int removed = 0;
487 int next = i + 1;
488
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
491 removed = 0;
492
493 i = next;
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
496 {
497 ULONGEST l, h;
498
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
501
502 t->offset = l;
503 t->length = h - l;
504
505 removed++;
506 }
507 else
508 {
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
512 break;
513 }
514
515 if (removed != 0)
516 VEC_block_remove (range_s, value->unavailable, next, removed);
517 }
518 }
519
520 /* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
524
525 static int
526 find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
528 {
529 range_s *r;
530 int i;
531
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
534 return i;
535
536 return -1;
537 }
538
539 int
540 value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
542 int length)
543 {
544 int idx1 = 0, idx2 = 0;
545
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1->lazy && !val2->lazy);
550
551 while (length > 0)
552 {
553 range_s *r1, *r2;
554 ULONGEST l1, h1;
555 ULONGEST l2, h2;
556
557 idx1 = find_first_range_overlap (val1->unavailable, idx1,
558 offset1, length);
559 idx2 = find_first_range_overlap (val2->unavailable, idx2,
560 offset2, length);
561
562 /* The usual case is for both values to be completely available. */
563 if (idx1 == -1 && idx2 == -1)
564 return (memcmp (val1->contents + offset1,
565 val2->contents + offset2,
566 length) == 0);
567 /* The contents only match equal if the available set matches as
568 well. */
569 else if (idx1 == -1 || idx2 == -1)
570 return 0;
571
572 gdb_assert (idx1 != -1 && idx2 != -1);
573
574 r1 = VEC_index (range_s, val1->unavailable, idx1);
575 r2 = VEC_index (range_s, val2->unavailable, idx2);
576
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1 = max (offset1, r1->offset);
581 h1 = min (offset1 + length, r1->offset + r1->length);
582
583 l2 = max (offset2, r2->offset);
584 h2 = min (offset2 + length, r2->offset + r2->length);
585
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
588 l1 -= offset1;
589 h1 -= offset1;
590
591 l2 -= offset2;
592 h2 -= offset2;
593
594 /* Different availability, no match. */
595 if (l1 != l2 || h1 != h2)
596 return 0;
597
598 /* Compare the _available_ contents. */
599 if (memcmp (val1->contents + offset1,
600 val2->contents + offset2,
601 l1) != 0)
602 return 0;
603
604 length -= h1;
605 offset1 += h1;
606 offset2 += h1;
607 }
608
609 return 1;
610 }
611
612 /* Prototypes for local functions. */
613
614 static void show_values (char *, int);
615
616 static void show_convenience (char *, int);
617
618
619 /* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
624
625 #define VALUE_HISTORY_CHUNK 60
626
627 struct value_history_chunk
628 {
629 struct value_history_chunk *next;
630 struct value *values[VALUE_HISTORY_CHUNK];
631 };
632
633 /* Chain of chunks now in use. */
634
635 static struct value_history_chunk *value_history_chain;
636
637 static int value_history_count; /* Abs number of last entry stored. */
638
639 \f
640 /* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
643
644 static struct value *all_values;
645
646 /* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
649
650 struct value *
651 allocate_value_lazy (struct type *type)
652 {
653 struct value *val;
654
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type);
662
663 val = (struct value *) xzalloc (sizeof (struct value));
664 val->contents = NULL;
665 val->next = all_values;
666 all_values = val;
667 val->type = type;
668 val->enclosing_type = type;
669 VALUE_LVAL (val) = not_lval;
670 val->location.address = 0;
671 VALUE_FRAME_ID (val) = null_frame_id;
672 val->offset = 0;
673 val->bitpos = 0;
674 val->bitsize = 0;
675 VALUE_REGNUM (val) = -1;
676 val->lazy = 1;
677 val->optimized_out = 0;
678 val->embedded_offset = 0;
679 val->pointed_to_offset = 0;
680 val->modifiable = 1;
681 val->initialized = 1; /* Default to initialized. */
682
683 /* Values start out on the all_values chain. */
684 val->reference_count = 1;
685
686 return val;
687 }
688
689 /* Allocate the contents of VAL if it has not been allocated yet. */
690
691 void
692 allocate_value_contents (struct value *val)
693 {
694 if (!val->contents)
695 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
696 }
697
698 /* Allocate a value and its contents for type TYPE. */
699
700 struct value *
701 allocate_value (struct type *type)
702 {
703 struct value *val = allocate_value_lazy (type);
704
705 allocate_value_contents (val);
706 val->lazy = 0;
707 return val;
708 }
709
710 /* Allocate a value that has the correct length
711 for COUNT repetitions of type TYPE. */
712
713 struct value *
714 allocate_repeat_value (struct type *type, int count)
715 {
716 int low_bound = current_language->string_lower_bound; /* ??? */
717 /* FIXME-type-allocation: need a way to free this type when we are
718 done with it. */
719 struct type *array_type
720 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
721
722 return allocate_value (array_type);
723 }
724
725 struct value *
726 allocate_computed_value (struct type *type,
727 const struct lval_funcs *funcs,
728 void *closure)
729 {
730 struct value *v = allocate_value_lazy (type);
731
732 VALUE_LVAL (v) = lval_computed;
733 v->location.computed.funcs = funcs;
734 v->location.computed.closure = closure;
735
736 return v;
737 }
738
739 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
740
741 struct value *
742 allocate_optimized_out_value (struct type *type)
743 {
744 struct value *retval = allocate_value_lazy (type);
745
746 set_value_optimized_out (retval, 1);
747
748 return retval;
749 }
750
751 /* Accessor methods. */
752
753 struct value *
754 value_next (struct value *value)
755 {
756 return value->next;
757 }
758
759 struct type *
760 value_type (const struct value *value)
761 {
762 return value->type;
763 }
764 void
765 deprecated_set_value_type (struct value *value, struct type *type)
766 {
767 value->type = type;
768 }
769
770 int
771 value_offset (const struct value *value)
772 {
773 return value->offset;
774 }
775 void
776 set_value_offset (struct value *value, int offset)
777 {
778 value->offset = offset;
779 }
780
781 int
782 value_bitpos (const struct value *value)
783 {
784 return value->bitpos;
785 }
786 void
787 set_value_bitpos (struct value *value, int bit)
788 {
789 value->bitpos = bit;
790 }
791
792 int
793 value_bitsize (const struct value *value)
794 {
795 return value->bitsize;
796 }
797 void
798 set_value_bitsize (struct value *value, int bit)
799 {
800 value->bitsize = bit;
801 }
802
803 struct value *
804 value_parent (struct value *value)
805 {
806 return value->parent;
807 }
808
809 /* See value.h. */
810
811 void
812 set_value_parent (struct value *value, struct value *parent)
813 {
814 value->parent = parent;
815 }
816
817 gdb_byte *
818 value_contents_raw (struct value *value)
819 {
820 allocate_value_contents (value);
821 return value->contents + value->embedded_offset;
822 }
823
824 gdb_byte *
825 value_contents_all_raw (struct value *value)
826 {
827 allocate_value_contents (value);
828 return value->contents;
829 }
830
831 struct type *
832 value_enclosing_type (struct value *value)
833 {
834 return value->enclosing_type;
835 }
836
837 /* Look at value.h for description. */
838
839 struct type *
840 value_actual_type (struct value *value, int resolve_simple_types,
841 int *real_type_found)
842 {
843 struct value_print_options opts;
844 struct type *result;
845
846 get_user_print_options (&opts);
847
848 if (real_type_found)
849 *real_type_found = 0;
850 result = value_type (value);
851 if (opts.objectprint)
852 {
853 if (TYPE_CODE (result) == TYPE_CODE_PTR
854 || TYPE_CODE (result) == TYPE_CODE_REF)
855 {
856 struct type *real_type;
857
858 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
859 if (real_type)
860 {
861 if (real_type_found)
862 *real_type_found = 1;
863 result = real_type;
864 }
865 }
866 else if (resolve_simple_types)
867 {
868 if (real_type_found)
869 *real_type_found = 1;
870 result = value_enclosing_type (value);
871 }
872 }
873
874 return result;
875 }
876
877 static void
878 require_not_optimized_out (const struct value *value)
879 {
880 if (value->optimized_out)
881 error (_("value has been optimized out"));
882 }
883
884 static void
885 require_available (const struct value *value)
886 {
887 if (!VEC_empty (range_s, value->unavailable))
888 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
889 }
890
891 const gdb_byte *
892 value_contents_for_printing (struct value *value)
893 {
894 if (value->lazy)
895 value_fetch_lazy (value);
896 return value->contents;
897 }
898
899 const gdb_byte *
900 value_contents_for_printing_const (const struct value *value)
901 {
902 gdb_assert (!value->lazy);
903 return value->contents;
904 }
905
906 const gdb_byte *
907 value_contents_all (struct value *value)
908 {
909 const gdb_byte *result = value_contents_for_printing (value);
910 require_not_optimized_out (value);
911 require_available (value);
912 return result;
913 }
914
915 /* Copy LENGTH bytes of SRC value's (all) contents
916 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
917 contents, starting at DST_OFFSET. If unavailable contents are
918 being copied from SRC, the corresponding DST contents are marked
919 unavailable accordingly. Neither DST nor SRC may be lazy
920 values.
921
922 It is assumed the contents of DST in the [DST_OFFSET,
923 DST_OFFSET+LENGTH) range are wholly available. */
924
925 void
926 value_contents_copy_raw (struct value *dst, int dst_offset,
927 struct value *src, int src_offset, int length)
928 {
929 range_s *r;
930 int i;
931
932 /* A lazy DST would make that this copy operation useless, since as
933 soon as DST's contents were un-lazied (by a later value_contents
934 call, say), the contents would be overwritten. A lazy SRC would
935 mean we'd be copying garbage. */
936 gdb_assert (!dst->lazy && !src->lazy);
937
938 /* The overwritten DST range gets unavailability ORed in, not
939 replaced. Make sure to remember to implement replacing if it
940 turns out actually necessary. */
941 gdb_assert (value_bytes_available (dst, dst_offset, length));
942
943 /* Copy the data. */
944 memcpy (value_contents_all_raw (dst) + dst_offset,
945 value_contents_all_raw (src) + src_offset,
946 length);
947
948 /* Copy the meta-data, adjusted. */
949 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
950 {
951 ULONGEST h, l;
952
953 l = max (r->offset, src_offset);
954 h = min (r->offset + r->length, src_offset + length);
955
956 if (l < h)
957 mark_value_bytes_unavailable (dst,
958 dst_offset + (l - src_offset),
959 h - l);
960 }
961 }
962
963 /* Copy LENGTH bytes of SRC value's (all) contents
964 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
965 (all) contents, starting at DST_OFFSET. If unavailable contents
966 are being copied from SRC, the corresponding DST contents are
967 marked unavailable accordingly. DST must not be lazy. If SRC is
968 lazy, it will be fetched now. If SRC is not valid (is optimized
969 out), an error is thrown.
970
971 It is assumed the contents of DST in the [DST_OFFSET,
972 DST_OFFSET+LENGTH) range are wholly available. */
973
974 void
975 value_contents_copy (struct value *dst, int dst_offset,
976 struct value *src, int src_offset, int length)
977 {
978 require_not_optimized_out (src);
979
980 if (src->lazy)
981 value_fetch_lazy (src);
982
983 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
984 }
985
986 int
987 value_lazy (struct value *value)
988 {
989 return value->lazy;
990 }
991
992 void
993 set_value_lazy (struct value *value, int val)
994 {
995 value->lazy = val;
996 }
997
998 int
999 value_stack (struct value *value)
1000 {
1001 return value->stack;
1002 }
1003
1004 void
1005 set_value_stack (struct value *value, int val)
1006 {
1007 value->stack = val;
1008 }
1009
1010 const gdb_byte *
1011 value_contents (struct value *value)
1012 {
1013 const gdb_byte *result = value_contents_writeable (value);
1014 require_not_optimized_out (value);
1015 require_available (value);
1016 return result;
1017 }
1018
1019 gdb_byte *
1020 value_contents_writeable (struct value *value)
1021 {
1022 if (value->lazy)
1023 value_fetch_lazy (value);
1024 return value_contents_raw (value);
1025 }
1026
1027 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1028 this function is different from value_equal; in C the operator ==
1029 can return 0 even if the two values being compared are equal. */
1030
1031 int
1032 value_contents_equal (struct value *val1, struct value *val2)
1033 {
1034 struct type *type1;
1035 struct type *type2;
1036 int len;
1037
1038 type1 = check_typedef (value_type (val1));
1039 type2 = check_typedef (value_type (val2));
1040 len = TYPE_LENGTH (type1);
1041 if (len != TYPE_LENGTH (type2))
1042 return 0;
1043
1044 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
1045 }
1046
1047 int
1048 value_optimized_out (struct value *value)
1049 {
1050 return value->optimized_out;
1051 }
1052
1053 void
1054 set_value_optimized_out (struct value *value, int val)
1055 {
1056 value->optimized_out = val;
1057 }
1058
1059 int
1060 value_entirely_optimized_out (const struct value *value)
1061 {
1062 if (!value->optimized_out)
1063 return 0;
1064 if (value->lval != lval_computed
1065 || !value->location.computed.funcs->check_any_valid)
1066 return 1;
1067 return !value->location.computed.funcs->check_any_valid (value);
1068 }
1069
1070 int
1071 value_bits_valid (const struct value *value, int offset, int length)
1072 {
1073 if (!value->optimized_out)
1074 return 1;
1075 if (value->lval != lval_computed
1076 || !value->location.computed.funcs->check_validity)
1077 return 0;
1078 return value->location.computed.funcs->check_validity (value, offset,
1079 length);
1080 }
1081
1082 int
1083 value_bits_synthetic_pointer (const struct value *value,
1084 int offset, int length)
1085 {
1086 if (value->lval != lval_computed
1087 || !value->location.computed.funcs->check_synthetic_pointer)
1088 return 0;
1089 return value->location.computed.funcs->check_synthetic_pointer (value,
1090 offset,
1091 length);
1092 }
1093
1094 int
1095 value_embedded_offset (struct value *value)
1096 {
1097 return value->embedded_offset;
1098 }
1099
1100 void
1101 set_value_embedded_offset (struct value *value, int val)
1102 {
1103 value->embedded_offset = val;
1104 }
1105
1106 int
1107 value_pointed_to_offset (struct value *value)
1108 {
1109 return value->pointed_to_offset;
1110 }
1111
1112 void
1113 set_value_pointed_to_offset (struct value *value, int val)
1114 {
1115 value->pointed_to_offset = val;
1116 }
1117
1118 const struct lval_funcs *
1119 value_computed_funcs (const struct value *v)
1120 {
1121 gdb_assert (value_lval_const (v) == lval_computed);
1122
1123 return v->location.computed.funcs;
1124 }
1125
1126 void *
1127 value_computed_closure (const struct value *v)
1128 {
1129 gdb_assert (v->lval == lval_computed);
1130
1131 return v->location.computed.closure;
1132 }
1133
1134 enum lval_type *
1135 deprecated_value_lval_hack (struct value *value)
1136 {
1137 return &value->lval;
1138 }
1139
1140 enum lval_type
1141 value_lval_const (const struct value *value)
1142 {
1143 return value->lval;
1144 }
1145
1146 CORE_ADDR
1147 value_address (const struct value *value)
1148 {
1149 if (value->lval == lval_internalvar
1150 || value->lval == lval_internalvar_component)
1151 return 0;
1152 if (value->parent != NULL)
1153 return value_address (value->parent) + value->offset;
1154 else
1155 return value->location.address + value->offset;
1156 }
1157
1158 CORE_ADDR
1159 value_raw_address (struct value *value)
1160 {
1161 if (value->lval == lval_internalvar
1162 || value->lval == lval_internalvar_component)
1163 return 0;
1164 return value->location.address;
1165 }
1166
1167 void
1168 set_value_address (struct value *value, CORE_ADDR addr)
1169 {
1170 gdb_assert (value->lval != lval_internalvar
1171 && value->lval != lval_internalvar_component);
1172 value->location.address = addr;
1173 }
1174
1175 struct internalvar **
1176 deprecated_value_internalvar_hack (struct value *value)
1177 {
1178 return &value->location.internalvar;
1179 }
1180
1181 struct frame_id *
1182 deprecated_value_frame_id_hack (struct value *value)
1183 {
1184 return &value->frame_id;
1185 }
1186
1187 short *
1188 deprecated_value_regnum_hack (struct value *value)
1189 {
1190 return &value->regnum;
1191 }
1192
1193 int
1194 deprecated_value_modifiable (struct value *value)
1195 {
1196 return value->modifiable;
1197 }
1198 void
1199 deprecated_set_value_modifiable (struct value *value, int modifiable)
1200 {
1201 value->modifiable = modifiable;
1202 }
1203 \f
1204 /* Return a mark in the value chain. All values allocated after the
1205 mark is obtained (except for those released) are subject to being freed
1206 if a subsequent value_free_to_mark is passed the mark. */
1207 struct value *
1208 value_mark (void)
1209 {
1210 return all_values;
1211 }
1212
1213 /* Take a reference to VAL. VAL will not be deallocated until all
1214 references are released. */
1215
1216 void
1217 value_incref (struct value *val)
1218 {
1219 val->reference_count++;
1220 }
1221
1222 /* Release a reference to VAL, which was acquired with value_incref.
1223 This function is also called to deallocate values from the value
1224 chain. */
1225
1226 void
1227 value_free (struct value *val)
1228 {
1229 if (val)
1230 {
1231 gdb_assert (val->reference_count > 0);
1232 val->reference_count--;
1233 if (val->reference_count > 0)
1234 return;
1235
1236 /* If there's an associated parent value, drop our reference to
1237 it. */
1238 if (val->parent != NULL)
1239 value_free (val->parent);
1240
1241 if (VALUE_LVAL (val) == lval_computed)
1242 {
1243 const struct lval_funcs *funcs = val->location.computed.funcs;
1244
1245 if (funcs->free_closure)
1246 funcs->free_closure (val);
1247 }
1248
1249 xfree (val->contents);
1250 VEC_free (range_s, val->unavailable);
1251 }
1252 xfree (val);
1253 }
1254
1255 /* Free all values allocated since MARK was obtained by value_mark
1256 (except for those released). */
1257 void
1258 value_free_to_mark (struct value *mark)
1259 {
1260 struct value *val;
1261 struct value *next;
1262
1263 for (val = all_values; val && val != mark; val = next)
1264 {
1265 next = val->next;
1266 val->released = 1;
1267 value_free (val);
1268 }
1269 all_values = val;
1270 }
1271
1272 /* Free all the values that have been allocated (except for those released).
1273 Call after each command, successful or not.
1274 In practice this is called before each command, which is sufficient. */
1275
1276 void
1277 free_all_values (void)
1278 {
1279 struct value *val;
1280 struct value *next;
1281
1282 for (val = all_values; val; val = next)
1283 {
1284 next = val->next;
1285 val->released = 1;
1286 value_free (val);
1287 }
1288
1289 all_values = 0;
1290 }
1291
1292 /* Frees all the elements in a chain of values. */
1293
1294 void
1295 free_value_chain (struct value *v)
1296 {
1297 struct value *next;
1298
1299 for (; v; v = next)
1300 {
1301 next = value_next (v);
1302 value_free (v);
1303 }
1304 }
1305
1306 /* Remove VAL from the chain all_values
1307 so it will not be freed automatically. */
1308
1309 void
1310 release_value (struct value *val)
1311 {
1312 struct value *v;
1313
1314 if (all_values == val)
1315 {
1316 all_values = val->next;
1317 val->next = NULL;
1318 val->released = 1;
1319 return;
1320 }
1321
1322 for (v = all_values; v; v = v->next)
1323 {
1324 if (v->next == val)
1325 {
1326 v->next = val->next;
1327 val->next = NULL;
1328 val->released = 1;
1329 break;
1330 }
1331 }
1332 }
1333
1334 /* If the value is not already released, release it.
1335 If the value is already released, increment its reference count.
1336 That is, this function ensures that the value is released from the
1337 value chain and that the caller owns a reference to it. */
1338
1339 void
1340 release_value_or_incref (struct value *val)
1341 {
1342 if (val->released)
1343 value_incref (val);
1344 else
1345 release_value (val);
1346 }
1347
1348 /* Release all values up to mark */
1349 struct value *
1350 value_release_to_mark (struct value *mark)
1351 {
1352 struct value *val;
1353 struct value *next;
1354
1355 for (val = next = all_values; next; next = next->next)
1356 {
1357 if (next->next == mark)
1358 {
1359 all_values = next->next;
1360 next->next = NULL;
1361 return val;
1362 }
1363 next->released = 1;
1364 }
1365 all_values = 0;
1366 return val;
1367 }
1368
1369 /* Return a copy of the value ARG.
1370 It contains the same contents, for same memory address,
1371 but it's a different block of storage. */
1372
1373 struct value *
1374 value_copy (struct value *arg)
1375 {
1376 struct type *encl_type = value_enclosing_type (arg);
1377 struct value *val;
1378
1379 if (value_lazy (arg))
1380 val = allocate_value_lazy (encl_type);
1381 else
1382 val = allocate_value (encl_type);
1383 val->type = arg->type;
1384 VALUE_LVAL (val) = VALUE_LVAL (arg);
1385 val->location = arg->location;
1386 val->offset = arg->offset;
1387 val->bitpos = arg->bitpos;
1388 val->bitsize = arg->bitsize;
1389 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1390 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1391 val->lazy = arg->lazy;
1392 val->optimized_out = arg->optimized_out;
1393 val->embedded_offset = value_embedded_offset (arg);
1394 val->pointed_to_offset = arg->pointed_to_offset;
1395 val->modifiable = arg->modifiable;
1396 if (!value_lazy (val))
1397 {
1398 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1399 TYPE_LENGTH (value_enclosing_type (arg)));
1400
1401 }
1402 val->unavailable = VEC_copy (range_s, arg->unavailable);
1403 val->parent = arg->parent;
1404 if (val->parent)
1405 value_incref (val->parent);
1406 if (VALUE_LVAL (val) == lval_computed)
1407 {
1408 const struct lval_funcs *funcs = val->location.computed.funcs;
1409
1410 if (funcs->copy_closure)
1411 val->location.computed.closure = funcs->copy_closure (val);
1412 }
1413 return val;
1414 }
1415
1416 /* Return a version of ARG that is non-lvalue. */
1417
1418 struct value *
1419 value_non_lval (struct value *arg)
1420 {
1421 if (VALUE_LVAL (arg) != not_lval)
1422 {
1423 struct type *enc_type = value_enclosing_type (arg);
1424 struct value *val = allocate_value (enc_type);
1425
1426 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1427 TYPE_LENGTH (enc_type));
1428 val->type = arg->type;
1429 set_value_embedded_offset (val, value_embedded_offset (arg));
1430 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1431 return val;
1432 }
1433 return arg;
1434 }
1435
1436 void
1437 set_value_component_location (struct value *component,
1438 const struct value *whole)
1439 {
1440 if (whole->lval == lval_internalvar)
1441 VALUE_LVAL (component) = lval_internalvar_component;
1442 else
1443 VALUE_LVAL (component) = whole->lval;
1444
1445 component->location = whole->location;
1446 if (whole->lval == lval_computed)
1447 {
1448 const struct lval_funcs *funcs = whole->location.computed.funcs;
1449
1450 if (funcs->copy_closure)
1451 component->location.computed.closure = funcs->copy_closure (whole);
1452 }
1453 }
1454
1455 \f
1456 /* Access to the value history. */
1457
1458 /* Record a new value in the value history.
1459 Returns the absolute history index of the entry.
1460 Result of -1 indicates the value was not saved; otherwise it is the
1461 value history index of this new item. */
1462
1463 int
1464 record_latest_value (struct value *val)
1465 {
1466 int i;
1467
1468 /* We don't want this value to have anything to do with the inferior anymore.
1469 In particular, "set $1 = 50" should not affect the variable from which
1470 the value was taken, and fast watchpoints should be able to assume that
1471 a value on the value history never changes. */
1472 if (value_lazy (val))
1473 value_fetch_lazy (val);
1474 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1475 from. This is a bit dubious, because then *&$1 does not just return $1
1476 but the current contents of that location. c'est la vie... */
1477 val->modifiable = 0;
1478 release_value (val);
1479
1480 /* Here we treat value_history_count as origin-zero
1481 and applying to the value being stored now. */
1482
1483 i = value_history_count % VALUE_HISTORY_CHUNK;
1484 if (i == 0)
1485 {
1486 struct value_history_chunk *new
1487 = (struct value_history_chunk *)
1488
1489 xmalloc (sizeof (struct value_history_chunk));
1490 memset (new->values, 0, sizeof new->values);
1491 new->next = value_history_chain;
1492 value_history_chain = new;
1493 }
1494
1495 value_history_chain->values[i] = val;
1496
1497 /* Now we regard value_history_count as origin-one
1498 and applying to the value just stored. */
1499
1500 return ++value_history_count;
1501 }
1502
1503 /* Return a copy of the value in the history with sequence number NUM. */
1504
1505 struct value *
1506 access_value_history (int num)
1507 {
1508 struct value_history_chunk *chunk;
1509 int i;
1510 int absnum = num;
1511
1512 if (absnum <= 0)
1513 absnum += value_history_count;
1514
1515 if (absnum <= 0)
1516 {
1517 if (num == 0)
1518 error (_("The history is empty."));
1519 else if (num == 1)
1520 error (_("There is only one value in the history."));
1521 else
1522 error (_("History does not go back to $$%d."), -num);
1523 }
1524 if (absnum > value_history_count)
1525 error (_("History has not yet reached $%d."), absnum);
1526
1527 absnum--;
1528
1529 /* Now absnum is always absolute and origin zero. */
1530
1531 chunk = value_history_chain;
1532 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1533 - absnum / VALUE_HISTORY_CHUNK;
1534 i > 0; i--)
1535 chunk = chunk->next;
1536
1537 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1538 }
1539
1540 static void
1541 show_values (char *num_exp, int from_tty)
1542 {
1543 int i;
1544 struct value *val;
1545 static int num = 1;
1546
1547 if (num_exp)
1548 {
1549 /* "show values +" should print from the stored position.
1550 "show values <exp>" should print around value number <exp>. */
1551 if (num_exp[0] != '+' || num_exp[1] != '\0')
1552 num = parse_and_eval_long (num_exp) - 5;
1553 }
1554 else
1555 {
1556 /* "show values" means print the last 10 values. */
1557 num = value_history_count - 9;
1558 }
1559
1560 if (num <= 0)
1561 num = 1;
1562
1563 for (i = num; i < num + 10 && i <= value_history_count; i++)
1564 {
1565 struct value_print_options opts;
1566
1567 val = access_value_history (i);
1568 printf_filtered (("$%d = "), i);
1569 get_user_print_options (&opts);
1570 value_print (val, gdb_stdout, &opts);
1571 printf_filtered (("\n"));
1572 }
1573
1574 /* The next "show values +" should start after what we just printed. */
1575 num += 10;
1576
1577 /* Hitting just return after this command should do the same thing as
1578 "show values +". If num_exp is null, this is unnecessary, since
1579 "show values +" is not useful after "show values". */
1580 if (from_tty && num_exp)
1581 {
1582 num_exp[0] = '+';
1583 num_exp[1] = '\0';
1584 }
1585 }
1586 \f
1587 /* Internal variables. These are variables within the debugger
1588 that hold values assigned by debugger commands.
1589 The user refers to them with a '$' prefix
1590 that does not appear in the variable names stored internally. */
1591
1592 struct internalvar
1593 {
1594 struct internalvar *next;
1595 char *name;
1596
1597 /* We support various different kinds of content of an internal variable.
1598 enum internalvar_kind specifies the kind, and union internalvar_data
1599 provides the data associated with this particular kind. */
1600
1601 enum internalvar_kind
1602 {
1603 /* The internal variable is empty. */
1604 INTERNALVAR_VOID,
1605
1606 /* The value of the internal variable is provided directly as
1607 a GDB value object. */
1608 INTERNALVAR_VALUE,
1609
1610 /* A fresh value is computed via a call-back routine on every
1611 access to the internal variable. */
1612 INTERNALVAR_MAKE_VALUE,
1613
1614 /* The internal variable holds a GDB internal convenience function. */
1615 INTERNALVAR_FUNCTION,
1616
1617 /* The variable holds an integer value. */
1618 INTERNALVAR_INTEGER,
1619
1620 /* The variable holds a GDB-provided string. */
1621 INTERNALVAR_STRING,
1622
1623 } kind;
1624
1625 union internalvar_data
1626 {
1627 /* A value object used with INTERNALVAR_VALUE. */
1628 struct value *value;
1629
1630 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1631 struct
1632 {
1633 /* The functions to call. */
1634 const struct internalvar_funcs *functions;
1635
1636 /* The function's user-data. */
1637 void *data;
1638 } make_value;
1639
1640 /* The internal function used with INTERNALVAR_FUNCTION. */
1641 struct
1642 {
1643 struct internal_function *function;
1644 /* True if this is the canonical name for the function. */
1645 int canonical;
1646 } fn;
1647
1648 /* An integer value used with INTERNALVAR_INTEGER. */
1649 struct
1650 {
1651 /* If type is non-NULL, it will be used as the type to generate
1652 a value for this internal variable. If type is NULL, a default
1653 integer type for the architecture is used. */
1654 struct type *type;
1655 LONGEST val;
1656 } integer;
1657
1658 /* A string value used with INTERNALVAR_STRING. */
1659 char *string;
1660 } u;
1661 };
1662
1663 static struct internalvar *internalvars;
1664
1665 /* If the variable does not already exist create it and give it the
1666 value given. If no value is given then the default is zero. */
1667 static void
1668 init_if_undefined_command (char* args, int from_tty)
1669 {
1670 struct internalvar* intvar;
1671
1672 /* Parse the expression - this is taken from set_command(). */
1673 struct expression *expr = parse_expression (args);
1674 register struct cleanup *old_chain =
1675 make_cleanup (free_current_contents, &expr);
1676
1677 /* Validate the expression.
1678 Was the expression an assignment?
1679 Or even an expression at all? */
1680 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1681 error (_("Init-if-undefined requires an assignment expression."));
1682
1683 /* Extract the variable from the parsed expression.
1684 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1685 if (expr->elts[1].opcode != OP_INTERNALVAR)
1686 error (_("The first parameter to init-if-undefined "
1687 "should be a GDB variable."));
1688 intvar = expr->elts[2].internalvar;
1689
1690 /* Only evaluate the expression if the lvalue is void.
1691 This may still fail if the expresssion is invalid. */
1692 if (intvar->kind == INTERNALVAR_VOID)
1693 evaluate_expression (expr);
1694
1695 do_cleanups (old_chain);
1696 }
1697
1698
1699 /* Look up an internal variable with name NAME. NAME should not
1700 normally include a dollar sign.
1701
1702 If the specified internal variable does not exist,
1703 the return value is NULL. */
1704
1705 struct internalvar *
1706 lookup_only_internalvar (const char *name)
1707 {
1708 struct internalvar *var;
1709
1710 for (var = internalvars; var; var = var->next)
1711 if (strcmp (var->name, name) == 0)
1712 return var;
1713
1714 return NULL;
1715 }
1716
1717 /* Complete NAME by comparing it to the names of internal variables.
1718 Returns a vector of newly allocated strings, or NULL if no matches
1719 were found. */
1720
1721 VEC (char_ptr) *
1722 complete_internalvar (const char *name)
1723 {
1724 VEC (char_ptr) *result = NULL;
1725 struct internalvar *var;
1726 int len;
1727
1728 len = strlen (name);
1729
1730 for (var = internalvars; var; var = var->next)
1731 if (strncmp (var->name, name, len) == 0)
1732 {
1733 char *r = xstrdup (var->name);
1734
1735 VEC_safe_push (char_ptr, result, r);
1736 }
1737
1738 return result;
1739 }
1740
1741 /* Create an internal variable with name NAME and with a void value.
1742 NAME should not normally include a dollar sign. */
1743
1744 struct internalvar *
1745 create_internalvar (const char *name)
1746 {
1747 struct internalvar *var;
1748
1749 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1750 var->name = concat (name, (char *)NULL);
1751 var->kind = INTERNALVAR_VOID;
1752 var->next = internalvars;
1753 internalvars = var;
1754 return var;
1755 }
1756
1757 /* Create an internal variable with name NAME and register FUN as the
1758 function that value_of_internalvar uses to create a value whenever
1759 this variable is referenced. NAME should not normally include a
1760 dollar sign. DATA is passed uninterpreted to FUN when it is
1761 called. CLEANUP, if not NULL, is called when the internal variable
1762 is destroyed. It is passed DATA as its only argument. */
1763
1764 struct internalvar *
1765 create_internalvar_type_lazy (const char *name,
1766 const struct internalvar_funcs *funcs,
1767 void *data)
1768 {
1769 struct internalvar *var = create_internalvar (name);
1770
1771 var->kind = INTERNALVAR_MAKE_VALUE;
1772 var->u.make_value.functions = funcs;
1773 var->u.make_value.data = data;
1774 return var;
1775 }
1776
1777 /* See documentation in value.h. */
1778
1779 int
1780 compile_internalvar_to_ax (struct internalvar *var,
1781 struct agent_expr *expr,
1782 struct axs_value *value)
1783 {
1784 if (var->kind != INTERNALVAR_MAKE_VALUE
1785 || var->u.make_value.functions->compile_to_ax == NULL)
1786 return 0;
1787
1788 var->u.make_value.functions->compile_to_ax (var, expr, value,
1789 var->u.make_value.data);
1790 return 1;
1791 }
1792
1793 /* Look up an internal variable with name NAME. NAME should not
1794 normally include a dollar sign.
1795
1796 If the specified internal variable does not exist,
1797 one is created, with a void value. */
1798
1799 struct internalvar *
1800 lookup_internalvar (const char *name)
1801 {
1802 struct internalvar *var;
1803
1804 var = lookup_only_internalvar (name);
1805 if (var)
1806 return var;
1807
1808 return create_internalvar (name);
1809 }
1810
1811 /* Return current value of internal variable VAR. For variables that
1812 are not inherently typed, use a value type appropriate for GDBARCH. */
1813
1814 struct value *
1815 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1816 {
1817 struct value *val;
1818 struct trace_state_variable *tsv;
1819
1820 /* If there is a trace state variable of the same name, assume that
1821 is what we really want to see. */
1822 tsv = find_trace_state_variable (var->name);
1823 if (tsv)
1824 {
1825 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1826 &(tsv->value));
1827 if (tsv->value_known)
1828 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1829 tsv->value);
1830 else
1831 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1832 return val;
1833 }
1834
1835 switch (var->kind)
1836 {
1837 case INTERNALVAR_VOID:
1838 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1839 break;
1840
1841 case INTERNALVAR_FUNCTION:
1842 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1843 break;
1844
1845 case INTERNALVAR_INTEGER:
1846 if (!var->u.integer.type)
1847 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1848 var->u.integer.val);
1849 else
1850 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1851 break;
1852
1853 case INTERNALVAR_STRING:
1854 val = value_cstring (var->u.string, strlen (var->u.string),
1855 builtin_type (gdbarch)->builtin_char);
1856 break;
1857
1858 case INTERNALVAR_VALUE:
1859 val = value_copy (var->u.value);
1860 if (value_lazy (val))
1861 value_fetch_lazy (val);
1862 break;
1863
1864 case INTERNALVAR_MAKE_VALUE:
1865 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1866 var->u.make_value.data);
1867 break;
1868
1869 default:
1870 internal_error (__FILE__, __LINE__, _("bad kind"));
1871 }
1872
1873 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1874 on this value go back to affect the original internal variable.
1875
1876 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1877 no underlying modifyable state in the internal variable.
1878
1879 Likewise, if the variable's value is a computed lvalue, we want
1880 references to it to produce another computed lvalue, where
1881 references and assignments actually operate through the
1882 computed value's functions.
1883
1884 This means that internal variables with computed values
1885 behave a little differently from other internal variables:
1886 assignments to them don't just replace the previous value
1887 altogether. At the moment, this seems like the behavior we
1888 want. */
1889
1890 if (var->kind != INTERNALVAR_MAKE_VALUE
1891 && val->lval != lval_computed)
1892 {
1893 VALUE_LVAL (val) = lval_internalvar;
1894 VALUE_INTERNALVAR (val) = var;
1895 }
1896
1897 return val;
1898 }
1899
1900 int
1901 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1902 {
1903 if (var->kind == INTERNALVAR_INTEGER)
1904 {
1905 *result = var->u.integer.val;
1906 return 1;
1907 }
1908
1909 if (var->kind == INTERNALVAR_VALUE)
1910 {
1911 struct type *type = check_typedef (value_type (var->u.value));
1912
1913 if (TYPE_CODE (type) == TYPE_CODE_INT)
1914 {
1915 *result = value_as_long (var->u.value);
1916 return 1;
1917 }
1918 }
1919
1920 return 0;
1921 }
1922
1923 static int
1924 get_internalvar_function (struct internalvar *var,
1925 struct internal_function **result)
1926 {
1927 switch (var->kind)
1928 {
1929 case INTERNALVAR_FUNCTION:
1930 *result = var->u.fn.function;
1931 return 1;
1932
1933 default:
1934 return 0;
1935 }
1936 }
1937
1938 void
1939 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1940 int bitsize, struct value *newval)
1941 {
1942 gdb_byte *addr;
1943
1944 switch (var->kind)
1945 {
1946 case INTERNALVAR_VALUE:
1947 addr = value_contents_writeable (var->u.value);
1948
1949 if (bitsize)
1950 modify_field (value_type (var->u.value), addr + offset,
1951 value_as_long (newval), bitpos, bitsize);
1952 else
1953 memcpy (addr + offset, value_contents (newval),
1954 TYPE_LENGTH (value_type (newval)));
1955 break;
1956
1957 default:
1958 /* We can never get a component of any other kind. */
1959 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1960 }
1961 }
1962
1963 void
1964 set_internalvar (struct internalvar *var, struct value *val)
1965 {
1966 enum internalvar_kind new_kind;
1967 union internalvar_data new_data = { 0 };
1968
1969 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1970 error (_("Cannot overwrite convenience function %s"), var->name);
1971
1972 /* Prepare new contents. */
1973 switch (TYPE_CODE (check_typedef (value_type (val))))
1974 {
1975 case TYPE_CODE_VOID:
1976 new_kind = INTERNALVAR_VOID;
1977 break;
1978
1979 case TYPE_CODE_INTERNAL_FUNCTION:
1980 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1981 new_kind = INTERNALVAR_FUNCTION;
1982 get_internalvar_function (VALUE_INTERNALVAR (val),
1983 &new_data.fn.function);
1984 /* Copies created here are never canonical. */
1985 break;
1986
1987 default:
1988 new_kind = INTERNALVAR_VALUE;
1989 new_data.value = value_copy (val);
1990 new_data.value->modifiable = 1;
1991
1992 /* Force the value to be fetched from the target now, to avoid problems
1993 later when this internalvar is referenced and the target is gone or
1994 has changed. */
1995 if (value_lazy (new_data.value))
1996 value_fetch_lazy (new_data.value);
1997
1998 /* Release the value from the value chain to prevent it from being
1999 deleted by free_all_values. From here on this function should not
2000 call error () until new_data is installed into the var->u to avoid
2001 leaking memory. */
2002 release_value (new_data.value);
2003 break;
2004 }
2005
2006 /* Clean up old contents. */
2007 clear_internalvar (var);
2008
2009 /* Switch over. */
2010 var->kind = new_kind;
2011 var->u = new_data;
2012 /* End code which must not call error(). */
2013 }
2014
2015 void
2016 set_internalvar_integer (struct internalvar *var, LONGEST l)
2017 {
2018 /* Clean up old contents. */
2019 clear_internalvar (var);
2020
2021 var->kind = INTERNALVAR_INTEGER;
2022 var->u.integer.type = NULL;
2023 var->u.integer.val = l;
2024 }
2025
2026 void
2027 set_internalvar_string (struct internalvar *var, const char *string)
2028 {
2029 /* Clean up old contents. */
2030 clear_internalvar (var);
2031
2032 var->kind = INTERNALVAR_STRING;
2033 var->u.string = xstrdup (string);
2034 }
2035
2036 static void
2037 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2038 {
2039 /* Clean up old contents. */
2040 clear_internalvar (var);
2041
2042 var->kind = INTERNALVAR_FUNCTION;
2043 var->u.fn.function = f;
2044 var->u.fn.canonical = 1;
2045 /* Variables installed here are always the canonical version. */
2046 }
2047
2048 void
2049 clear_internalvar (struct internalvar *var)
2050 {
2051 /* Clean up old contents. */
2052 switch (var->kind)
2053 {
2054 case INTERNALVAR_VALUE:
2055 value_free (var->u.value);
2056 break;
2057
2058 case INTERNALVAR_STRING:
2059 xfree (var->u.string);
2060 break;
2061
2062 case INTERNALVAR_MAKE_VALUE:
2063 if (var->u.make_value.functions->destroy != NULL)
2064 var->u.make_value.functions->destroy (var->u.make_value.data);
2065 break;
2066
2067 default:
2068 break;
2069 }
2070
2071 /* Reset to void kind. */
2072 var->kind = INTERNALVAR_VOID;
2073 }
2074
2075 char *
2076 internalvar_name (struct internalvar *var)
2077 {
2078 return var->name;
2079 }
2080
2081 static struct internal_function *
2082 create_internal_function (const char *name,
2083 internal_function_fn handler, void *cookie)
2084 {
2085 struct internal_function *ifn = XNEW (struct internal_function);
2086
2087 ifn->name = xstrdup (name);
2088 ifn->handler = handler;
2089 ifn->cookie = cookie;
2090 return ifn;
2091 }
2092
2093 char *
2094 value_internal_function_name (struct value *val)
2095 {
2096 struct internal_function *ifn;
2097 int result;
2098
2099 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2100 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2101 gdb_assert (result);
2102
2103 return ifn->name;
2104 }
2105
2106 struct value *
2107 call_internal_function (struct gdbarch *gdbarch,
2108 const struct language_defn *language,
2109 struct value *func, int argc, struct value **argv)
2110 {
2111 struct internal_function *ifn;
2112 int result;
2113
2114 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2115 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2116 gdb_assert (result);
2117
2118 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2119 }
2120
2121 /* The 'function' command. This does nothing -- it is just a
2122 placeholder to let "help function NAME" work. This is also used as
2123 the implementation of the sub-command that is created when
2124 registering an internal function. */
2125 static void
2126 function_command (char *command, int from_tty)
2127 {
2128 /* Do nothing. */
2129 }
2130
2131 /* Clean up if an internal function's command is destroyed. */
2132 static void
2133 function_destroyer (struct cmd_list_element *self, void *ignore)
2134 {
2135 xfree (self->name);
2136 xfree (self->doc);
2137 }
2138
2139 /* Add a new internal function. NAME is the name of the function; DOC
2140 is a documentation string describing the function. HANDLER is
2141 called when the function is invoked. COOKIE is an arbitrary
2142 pointer which is passed to HANDLER and is intended for "user
2143 data". */
2144 void
2145 add_internal_function (const char *name, const char *doc,
2146 internal_function_fn handler, void *cookie)
2147 {
2148 struct cmd_list_element *cmd;
2149 struct internal_function *ifn;
2150 struct internalvar *var = lookup_internalvar (name);
2151
2152 ifn = create_internal_function (name, handler, cookie);
2153 set_internalvar_function (var, ifn);
2154
2155 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2156 &functionlist);
2157 cmd->destroyer = function_destroyer;
2158 }
2159
2160 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2161 prevent cycles / duplicates. */
2162
2163 void
2164 preserve_one_value (struct value *value, struct objfile *objfile,
2165 htab_t copied_types)
2166 {
2167 if (TYPE_OBJFILE (value->type) == objfile)
2168 value->type = copy_type_recursive (objfile, value->type, copied_types);
2169
2170 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2171 value->enclosing_type = copy_type_recursive (objfile,
2172 value->enclosing_type,
2173 copied_types);
2174 }
2175
2176 /* Likewise for internal variable VAR. */
2177
2178 static void
2179 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2180 htab_t copied_types)
2181 {
2182 switch (var->kind)
2183 {
2184 case INTERNALVAR_INTEGER:
2185 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2186 var->u.integer.type
2187 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2188 break;
2189
2190 case INTERNALVAR_VALUE:
2191 preserve_one_value (var->u.value, objfile, copied_types);
2192 break;
2193 }
2194 }
2195
2196 /* Update the internal variables and value history when OBJFILE is
2197 discarded; we must copy the types out of the objfile. New global types
2198 will be created for every convenience variable which currently points to
2199 this objfile's types, and the convenience variables will be adjusted to
2200 use the new global types. */
2201
2202 void
2203 preserve_values (struct objfile *objfile)
2204 {
2205 htab_t copied_types;
2206 struct value_history_chunk *cur;
2207 struct internalvar *var;
2208 int i;
2209
2210 /* Create the hash table. We allocate on the objfile's obstack, since
2211 it is soon to be deleted. */
2212 copied_types = create_copied_types_hash (objfile);
2213
2214 for (cur = value_history_chain; cur; cur = cur->next)
2215 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2216 if (cur->values[i])
2217 preserve_one_value (cur->values[i], objfile, copied_types);
2218
2219 for (var = internalvars; var; var = var->next)
2220 preserve_one_internalvar (var, objfile, copied_types);
2221
2222 preserve_python_values (objfile, copied_types);
2223
2224 htab_delete (copied_types);
2225 }
2226
2227 static void
2228 show_convenience (char *ignore, int from_tty)
2229 {
2230 struct gdbarch *gdbarch = get_current_arch ();
2231 struct internalvar *var;
2232 int varseen = 0;
2233 struct value_print_options opts;
2234
2235 get_user_print_options (&opts);
2236 for (var = internalvars; var; var = var->next)
2237 {
2238 volatile struct gdb_exception ex;
2239
2240 if (!varseen)
2241 {
2242 varseen = 1;
2243 }
2244 printf_filtered (("$%s = "), var->name);
2245
2246 TRY_CATCH (ex, RETURN_MASK_ERROR)
2247 {
2248 struct value *val;
2249
2250 val = value_of_internalvar (gdbarch, var);
2251 value_print (val, gdb_stdout, &opts);
2252 }
2253 if (ex.reason < 0)
2254 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2255 printf_filtered (("\n"));
2256 }
2257 if (!varseen)
2258 {
2259 /* This text does not mention convenience functions on purpose.
2260 The user can't create them except via Python, and if Python support
2261 is installed this message will never be printed ($_streq will
2262 exist). */
2263 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2264 "Convenience variables have "
2265 "names starting with \"$\";\n"
2266 "use \"set\" as in \"set "
2267 "$foo = 5\" to define them.\n"));
2268 }
2269 }
2270 \f
2271 /* Extract a value as a C number (either long or double).
2272 Knows how to convert fixed values to double, or
2273 floating values to long.
2274 Does not deallocate the value. */
2275
2276 LONGEST
2277 value_as_long (struct value *val)
2278 {
2279 /* This coerces arrays and functions, which is necessary (e.g.
2280 in disassemble_command). It also dereferences references, which
2281 I suspect is the most logical thing to do. */
2282 val = coerce_array (val);
2283 return unpack_long (value_type (val), value_contents (val));
2284 }
2285
2286 DOUBLEST
2287 value_as_double (struct value *val)
2288 {
2289 DOUBLEST foo;
2290 int inv;
2291
2292 foo = unpack_double (value_type (val), value_contents (val), &inv);
2293 if (inv)
2294 error (_("Invalid floating value found in program."));
2295 return foo;
2296 }
2297
2298 /* Extract a value as a C pointer. Does not deallocate the value.
2299 Note that val's type may not actually be a pointer; value_as_long
2300 handles all the cases. */
2301 CORE_ADDR
2302 value_as_address (struct value *val)
2303 {
2304 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2305
2306 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2307 whether we want this to be true eventually. */
2308 #if 0
2309 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2310 non-address (e.g. argument to "signal", "info break", etc.), or
2311 for pointers to char, in which the low bits *are* significant. */
2312 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2313 #else
2314
2315 /* There are several targets (IA-64, PowerPC, and others) which
2316 don't represent pointers to functions as simply the address of
2317 the function's entry point. For example, on the IA-64, a
2318 function pointer points to a two-word descriptor, generated by
2319 the linker, which contains the function's entry point, and the
2320 value the IA-64 "global pointer" register should have --- to
2321 support position-independent code. The linker generates
2322 descriptors only for those functions whose addresses are taken.
2323
2324 On such targets, it's difficult for GDB to convert an arbitrary
2325 function address into a function pointer; it has to either find
2326 an existing descriptor for that function, or call malloc and
2327 build its own. On some targets, it is impossible for GDB to
2328 build a descriptor at all: the descriptor must contain a jump
2329 instruction; data memory cannot be executed; and code memory
2330 cannot be modified.
2331
2332 Upon entry to this function, if VAL is a value of type `function'
2333 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2334 value_address (val) is the address of the function. This is what
2335 you'll get if you evaluate an expression like `main'. The call
2336 to COERCE_ARRAY below actually does all the usual unary
2337 conversions, which includes converting values of type `function'
2338 to `pointer to function'. This is the challenging conversion
2339 discussed above. Then, `unpack_long' will convert that pointer
2340 back into an address.
2341
2342 So, suppose the user types `disassemble foo' on an architecture
2343 with a strange function pointer representation, on which GDB
2344 cannot build its own descriptors, and suppose further that `foo'
2345 has no linker-built descriptor. The address->pointer conversion
2346 will signal an error and prevent the command from running, even
2347 though the next step would have been to convert the pointer
2348 directly back into the same address.
2349
2350 The following shortcut avoids this whole mess. If VAL is a
2351 function, just return its address directly. */
2352 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2353 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2354 return value_address (val);
2355
2356 val = coerce_array (val);
2357
2358 /* Some architectures (e.g. Harvard), map instruction and data
2359 addresses onto a single large unified address space. For
2360 instance: An architecture may consider a large integer in the
2361 range 0x10000000 .. 0x1000ffff to already represent a data
2362 addresses (hence not need a pointer to address conversion) while
2363 a small integer would still need to be converted integer to
2364 pointer to address. Just assume such architectures handle all
2365 integer conversions in a single function. */
2366
2367 /* JimB writes:
2368
2369 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2370 must admonish GDB hackers to make sure its behavior matches the
2371 compiler's, whenever possible.
2372
2373 In general, I think GDB should evaluate expressions the same way
2374 the compiler does. When the user copies an expression out of
2375 their source code and hands it to a `print' command, they should
2376 get the same value the compiler would have computed. Any
2377 deviation from this rule can cause major confusion and annoyance,
2378 and needs to be justified carefully. In other words, GDB doesn't
2379 really have the freedom to do these conversions in clever and
2380 useful ways.
2381
2382 AndrewC pointed out that users aren't complaining about how GDB
2383 casts integers to pointers; they are complaining that they can't
2384 take an address from a disassembly listing and give it to `x/i'.
2385 This is certainly important.
2386
2387 Adding an architecture method like integer_to_address() certainly
2388 makes it possible for GDB to "get it right" in all circumstances
2389 --- the target has complete control over how things get done, so
2390 people can Do The Right Thing for their target without breaking
2391 anyone else. The standard doesn't specify how integers get
2392 converted to pointers; usually, the ABI doesn't either, but
2393 ABI-specific code is a more reasonable place to handle it. */
2394
2395 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2396 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2397 && gdbarch_integer_to_address_p (gdbarch))
2398 return gdbarch_integer_to_address (gdbarch, value_type (val),
2399 value_contents (val));
2400
2401 return unpack_long (value_type (val), value_contents (val));
2402 #endif
2403 }
2404 \f
2405 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2406 as a long, or as a double, assuming the raw data is described
2407 by type TYPE. Knows how to convert different sizes of values
2408 and can convert between fixed and floating point. We don't assume
2409 any alignment for the raw data. Return value is in host byte order.
2410
2411 If you want functions and arrays to be coerced to pointers, and
2412 references to be dereferenced, call value_as_long() instead.
2413
2414 C++: It is assumed that the front-end has taken care of
2415 all matters concerning pointers to members. A pointer
2416 to member which reaches here is considered to be equivalent
2417 to an INT (or some size). After all, it is only an offset. */
2418
2419 LONGEST
2420 unpack_long (struct type *type, const gdb_byte *valaddr)
2421 {
2422 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2423 enum type_code code = TYPE_CODE (type);
2424 int len = TYPE_LENGTH (type);
2425 int nosign = TYPE_UNSIGNED (type);
2426
2427 switch (code)
2428 {
2429 case TYPE_CODE_TYPEDEF:
2430 return unpack_long (check_typedef (type), valaddr);
2431 case TYPE_CODE_ENUM:
2432 case TYPE_CODE_FLAGS:
2433 case TYPE_CODE_BOOL:
2434 case TYPE_CODE_INT:
2435 case TYPE_CODE_CHAR:
2436 case TYPE_CODE_RANGE:
2437 case TYPE_CODE_MEMBERPTR:
2438 if (nosign)
2439 return extract_unsigned_integer (valaddr, len, byte_order);
2440 else
2441 return extract_signed_integer (valaddr, len, byte_order);
2442
2443 case TYPE_CODE_FLT:
2444 return extract_typed_floating (valaddr, type);
2445
2446 case TYPE_CODE_DECFLOAT:
2447 /* libdecnumber has a function to convert from decimal to integer, but
2448 it doesn't work when the decimal number has a fractional part. */
2449 return decimal_to_doublest (valaddr, len, byte_order);
2450
2451 case TYPE_CODE_PTR:
2452 case TYPE_CODE_REF:
2453 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2454 whether we want this to be true eventually. */
2455 return extract_typed_address (valaddr, type);
2456
2457 default:
2458 error (_("Value can't be converted to integer."));
2459 }
2460 return 0; /* Placate lint. */
2461 }
2462
2463 /* Return a double value from the specified type and address.
2464 INVP points to an int which is set to 0 for valid value,
2465 1 for invalid value (bad float format). In either case,
2466 the returned double is OK to use. Argument is in target
2467 format, result is in host format. */
2468
2469 DOUBLEST
2470 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2471 {
2472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2473 enum type_code code;
2474 int len;
2475 int nosign;
2476
2477 *invp = 0; /* Assume valid. */
2478 CHECK_TYPEDEF (type);
2479 code = TYPE_CODE (type);
2480 len = TYPE_LENGTH (type);
2481 nosign = TYPE_UNSIGNED (type);
2482 if (code == TYPE_CODE_FLT)
2483 {
2484 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2485 floating-point value was valid (using the macro
2486 INVALID_FLOAT). That test/macro have been removed.
2487
2488 It turns out that only the VAX defined this macro and then
2489 only in a non-portable way. Fixing the portability problem
2490 wouldn't help since the VAX floating-point code is also badly
2491 bit-rotten. The target needs to add definitions for the
2492 methods gdbarch_float_format and gdbarch_double_format - these
2493 exactly describe the target floating-point format. The
2494 problem here is that the corresponding floatformat_vax_f and
2495 floatformat_vax_d values these methods should be set to are
2496 also not defined either. Oops!
2497
2498 Hopefully someone will add both the missing floatformat
2499 definitions and the new cases for floatformat_is_valid (). */
2500
2501 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2502 {
2503 *invp = 1;
2504 return 0.0;
2505 }
2506
2507 return extract_typed_floating (valaddr, type);
2508 }
2509 else if (code == TYPE_CODE_DECFLOAT)
2510 return decimal_to_doublest (valaddr, len, byte_order);
2511 else if (nosign)
2512 {
2513 /* Unsigned -- be sure we compensate for signed LONGEST. */
2514 return (ULONGEST) unpack_long (type, valaddr);
2515 }
2516 else
2517 {
2518 /* Signed -- we are OK with unpack_long. */
2519 return unpack_long (type, valaddr);
2520 }
2521 }
2522
2523 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2524 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2525 We don't assume any alignment for the raw data. Return value is in
2526 host byte order.
2527
2528 If you want functions and arrays to be coerced to pointers, and
2529 references to be dereferenced, call value_as_address() instead.
2530
2531 C++: It is assumed that the front-end has taken care of
2532 all matters concerning pointers to members. A pointer
2533 to member which reaches here is considered to be equivalent
2534 to an INT (or some size). After all, it is only an offset. */
2535
2536 CORE_ADDR
2537 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2538 {
2539 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2540 whether we want this to be true eventually. */
2541 return unpack_long (type, valaddr);
2542 }
2543
2544 \f
2545 /* Get the value of the FIELDNO'th field (which must be static) of
2546 TYPE. Return NULL if the field doesn't exist or has been
2547 optimized out. */
2548
2549 struct value *
2550 value_static_field (struct type *type, int fieldno)
2551 {
2552 struct value *retval;
2553
2554 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2555 {
2556 case FIELD_LOC_KIND_PHYSADDR:
2557 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2558 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2559 break;
2560 case FIELD_LOC_KIND_PHYSNAME:
2561 {
2562 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2563 /* TYPE_FIELD_NAME (type, fieldno); */
2564 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2565
2566 if (sym == NULL)
2567 {
2568 /* With some compilers, e.g. HP aCC, static data members are
2569 reported as non-debuggable symbols. */
2570 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2571 NULL, NULL);
2572
2573 if (!msym)
2574 return NULL;
2575 else
2576 {
2577 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2578 SYMBOL_VALUE_ADDRESS (msym));
2579 }
2580 }
2581 else
2582 retval = value_of_variable (sym, NULL);
2583 break;
2584 }
2585 default:
2586 gdb_assert_not_reached ("unexpected field location kind");
2587 }
2588
2589 return retval;
2590 }
2591
2592 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2593 You have to be careful here, since the size of the data area for the value
2594 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2595 than the old enclosing type, you have to allocate more space for the
2596 data. */
2597
2598 void
2599 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2600 {
2601 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2602 val->contents =
2603 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2604
2605 val->enclosing_type = new_encl_type;
2606 }
2607
2608 /* Given a value ARG1 (offset by OFFSET bytes)
2609 of a struct or union type ARG_TYPE,
2610 extract and return the value of one of its (non-static) fields.
2611 FIELDNO says which field. */
2612
2613 struct value *
2614 value_primitive_field (struct value *arg1, int offset,
2615 int fieldno, struct type *arg_type)
2616 {
2617 struct value *v;
2618 struct type *type;
2619
2620 CHECK_TYPEDEF (arg_type);
2621 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2622
2623 /* Call check_typedef on our type to make sure that, if TYPE
2624 is a TYPE_CODE_TYPEDEF, its length is set to the length
2625 of the target type instead of zero. However, we do not
2626 replace the typedef type by the target type, because we want
2627 to keep the typedef in order to be able to print the type
2628 description correctly. */
2629 check_typedef (type);
2630
2631 if (value_optimized_out (arg1))
2632 v = allocate_optimized_out_value (type);
2633 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2634 {
2635 /* Handle packed fields.
2636
2637 Create a new value for the bitfield, with bitpos and bitsize
2638 set. If possible, arrange offset and bitpos so that we can
2639 do a single aligned read of the size of the containing type.
2640 Otherwise, adjust offset to the byte containing the first
2641 bit. Assume that the address, offset, and embedded offset
2642 are sufficiently aligned. */
2643
2644 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2645 int container_bitsize = TYPE_LENGTH (type) * 8;
2646
2647 v = allocate_value_lazy (type);
2648 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2649 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2650 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2651 v->bitpos = bitpos % container_bitsize;
2652 else
2653 v->bitpos = bitpos % 8;
2654 v->offset = (value_embedded_offset (arg1)
2655 + offset
2656 + (bitpos - v->bitpos) / 8);
2657 v->parent = arg1;
2658 value_incref (v->parent);
2659 if (!value_lazy (arg1))
2660 value_fetch_lazy (v);
2661 }
2662 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2663 {
2664 /* This field is actually a base subobject, so preserve the
2665 entire object's contents for later references to virtual
2666 bases, etc. */
2667 int boffset;
2668
2669 /* Lazy register values with offsets are not supported. */
2670 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2671 value_fetch_lazy (arg1);
2672
2673 /* We special case virtual inheritance here because this
2674 requires access to the contents, which we would rather avoid
2675 for references to ordinary fields of unavailable values. */
2676 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2677 boffset = baseclass_offset (arg_type, fieldno,
2678 value_contents (arg1),
2679 value_embedded_offset (arg1),
2680 value_address (arg1),
2681 arg1);
2682 else
2683 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2684
2685 if (value_lazy (arg1))
2686 v = allocate_value_lazy (value_enclosing_type (arg1));
2687 else
2688 {
2689 v = allocate_value (value_enclosing_type (arg1));
2690 value_contents_copy_raw (v, 0, arg1, 0,
2691 TYPE_LENGTH (value_enclosing_type (arg1)));
2692 }
2693 v->type = type;
2694 v->offset = value_offset (arg1);
2695 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2696 }
2697 else
2698 {
2699 /* Plain old data member */
2700 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2701
2702 /* Lazy register values with offsets are not supported. */
2703 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2704 value_fetch_lazy (arg1);
2705
2706 if (value_lazy (arg1))
2707 v = allocate_value_lazy (type);
2708 else
2709 {
2710 v = allocate_value (type);
2711 value_contents_copy_raw (v, value_embedded_offset (v),
2712 arg1, value_embedded_offset (arg1) + offset,
2713 TYPE_LENGTH (type));
2714 }
2715 v->offset = (value_offset (arg1) + offset
2716 + value_embedded_offset (arg1));
2717 }
2718 set_value_component_location (v, arg1);
2719 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2720 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2721 return v;
2722 }
2723
2724 /* Given a value ARG1 of a struct or union type,
2725 extract and return the value of one of its (non-static) fields.
2726 FIELDNO says which field. */
2727
2728 struct value *
2729 value_field (struct value *arg1, int fieldno)
2730 {
2731 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2732 }
2733
2734 /* Return a non-virtual function as a value.
2735 F is the list of member functions which contains the desired method.
2736 J is an index into F which provides the desired method.
2737
2738 We only use the symbol for its address, so be happy with either a
2739 full symbol or a minimal symbol. */
2740
2741 struct value *
2742 value_fn_field (struct value **arg1p, struct fn_field *f,
2743 int j, struct type *type,
2744 int offset)
2745 {
2746 struct value *v;
2747 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2748 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2749 struct symbol *sym;
2750 struct minimal_symbol *msym;
2751
2752 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2753 if (sym != NULL)
2754 {
2755 msym = NULL;
2756 }
2757 else
2758 {
2759 gdb_assert (sym == NULL);
2760 msym = lookup_minimal_symbol (physname, NULL, NULL);
2761 if (msym == NULL)
2762 return NULL;
2763 }
2764
2765 v = allocate_value (ftype);
2766 if (sym)
2767 {
2768 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2769 }
2770 else
2771 {
2772 /* The minimal symbol might point to a function descriptor;
2773 resolve it to the actual code address instead. */
2774 struct objfile *objfile = msymbol_objfile (msym);
2775 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2776
2777 set_value_address (v,
2778 gdbarch_convert_from_func_ptr_addr
2779 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2780 }
2781
2782 if (arg1p)
2783 {
2784 if (type != value_type (*arg1p))
2785 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2786 value_addr (*arg1p)));
2787
2788 /* Move the `this' pointer according to the offset.
2789 VALUE_OFFSET (*arg1p) += offset; */
2790 }
2791
2792 return v;
2793 }
2794
2795 \f
2796
2797 /* Helper function for both unpack_value_bits_as_long and
2798 unpack_bits_as_long. See those functions for more details on the
2799 interface; the only difference is that this function accepts either
2800 a NULL or a non-NULL ORIGINAL_VALUE. */
2801
2802 static int
2803 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2804 int embedded_offset, int bitpos, int bitsize,
2805 const struct value *original_value,
2806 LONGEST *result)
2807 {
2808 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2809 ULONGEST val;
2810 ULONGEST valmask;
2811 int lsbcount;
2812 int bytes_read;
2813 int read_offset;
2814
2815 /* Read the minimum number of bytes required; there may not be
2816 enough bytes to read an entire ULONGEST. */
2817 CHECK_TYPEDEF (field_type);
2818 if (bitsize)
2819 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2820 else
2821 bytes_read = TYPE_LENGTH (field_type);
2822
2823 read_offset = bitpos / 8;
2824
2825 if (original_value != NULL
2826 && !value_bytes_available (original_value, embedded_offset + read_offset,
2827 bytes_read))
2828 return 0;
2829
2830 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2831 bytes_read, byte_order);
2832
2833 /* Extract bits. See comment above. */
2834
2835 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2836 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2837 else
2838 lsbcount = (bitpos % 8);
2839 val >>= lsbcount;
2840
2841 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2842 If the field is signed, and is negative, then sign extend. */
2843
2844 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2845 {
2846 valmask = (((ULONGEST) 1) << bitsize) - 1;
2847 val &= valmask;
2848 if (!TYPE_UNSIGNED (field_type))
2849 {
2850 if (val & (valmask ^ (valmask >> 1)))
2851 {
2852 val |= ~valmask;
2853 }
2854 }
2855 }
2856
2857 *result = val;
2858 return 1;
2859 }
2860
2861 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2862 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2863 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2864 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2865 bits.
2866
2867 Returns false if the value contents are unavailable, otherwise
2868 returns true, indicating a valid value has been stored in *RESULT.
2869
2870 Extracting bits depends on endianness of the machine. Compute the
2871 number of least significant bits to discard. For big endian machines,
2872 we compute the total number of bits in the anonymous object, subtract
2873 off the bit count from the MSB of the object to the MSB of the
2874 bitfield, then the size of the bitfield, which leaves the LSB discard
2875 count. For little endian machines, the discard count is simply the
2876 number of bits from the LSB of the anonymous object to the LSB of the
2877 bitfield.
2878
2879 If the field is signed, we also do sign extension. */
2880
2881 int
2882 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2883 int embedded_offset, int bitpos, int bitsize,
2884 const struct value *original_value,
2885 LONGEST *result)
2886 {
2887 gdb_assert (original_value != NULL);
2888
2889 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2890 bitpos, bitsize, original_value, result);
2891
2892 }
2893
2894 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2895 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2896 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2897 details. */
2898
2899 static int
2900 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2901 int embedded_offset, int fieldno,
2902 const struct value *val, LONGEST *result)
2903 {
2904 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2905 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2906 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2907
2908 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2909 bitpos, bitsize, val,
2910 result);
2911 }
2912
2913 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2914 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2915 ORIGINAL_VALUE, which must not be NULL. See
2916 unpack_value_bits_as_long for more details. */
2917
2918 int
2919 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2920 int embedded_offset, int fieldno,
2921 const struct value *val, LONGEST *result)
2922 {
2923 gdb_assert (val != NULL);
2924
2925 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2926 fieldno, val, result);
2927 }
2928
2929 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2930 object at VALADDR. See unpack_value_bits_as_long for more details.
2931 This function differs from unpack_value_field_as_long in that it
2932 operates without a struct value object. */
2933
2934 LONGEST
2935 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2936 {
2937 LONGEST result;
2938
2939 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2940 return result;
2941 }
2942
2943 /* Return a new value with type TYPE, which is FIELDNO field of the
2944 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2945 of VAL. If the VAL's contents required to extract the bitfield
2946 from are unavailable, the new value is correspondingly marked as
2947 unavailable. */
2948
2949 struct value *
2950 value_field_bitfield (struct type *type, int fieldno,
2951 const gdb_byte *valaddr,
2952 int embedded_offset, const struct value *val)
2953 {
2954 LONGEST l;
2955
2956 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2957 val, &l))
2958 {
2959 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2960 struct value *retval = allocate_value (field_type);
2961 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2962 return retval;
2963 }
2964 else
2965 {
2966 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2967 }
2968 }
2969
2970 /* Modify the value of a bitfield. ADDR points to a block of memory in
2971 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2972 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2973 indicate which bits (in target bit order) comprise the bitfield.
2974 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2975 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2976
2977 void
2978 modify_field (struct type *type, gdb_byte *addr,
2979 LONGEST fieldval, int bitpos, int bitsize)
2980 {
2981 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2982 ULONGEST oword;
2983 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2984 int bytesize;
2985
2986 /* Normalize BITPOS. */
2987 addr += bitpos / 8;
2988 bitpos %= 8;
2989
2990 /* If a negative fieldval fits in the field in question, chop
2991 off the sign extension bits. */
2992 if ((~fieldval & ~(mask >> 1)) == 0)
2993 fieldval &= mask;
2994
2995 /* Warn if value is too big to fit in the field in question. */
2996 if (0 != (fieldval & ~mask))
2997 {
2998 /* FIXME: would like to include fieldval in the message, but
2999 we don't have a sprintf_longest. */
3000 warning (_("Value does not fit in %d bits."), bitsize);
3001
3002 /* Truncate it, otherwise adjoining fields may be corrupted. */
3003 fieldval &= mask;
3004 }
3005
3006 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3007 false valgrind reports. */
3008
3009 bytesize = (bitpos + bitsize + 7) / 8;
3010 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3011
3012 /* Shifting for bit field depends on endianness of the target machine. */
3013 if (gdbarch_bits_big_endian (get_type_arch (type)))
3014 bitpos = bytesize * 8 - bitpos - bitsize;
3015
3016 oword &= ~(mask << bitpos);
3017 oword |= fieldval << bitpos;
3018
3019 store_unsigned_integer (addr, bytesize, byte_order, oword);
3020 }
3021 \f
3022 /* Pack NUM into BUF using a target format of TYPE. */
3023
3024 void
3025 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3026 {
3027 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3028 int len;
3029
3030 type = check_typedef (type);
3031 len = TYPE_LENGTH (type);
3032
3033 switch (TYPE_CODE (type))
3034 {
3035 case TYPE_CODE_INT:
3036 case TYPE_CODE_CHAR:
3037 case TYPE_CODE_ENUM:
3038 case TYPE_CODE_FLAGS:
3039 case TYPE_CODE_BOOL:
3040 case TYPE_CODE_RANGE:
3041 case TYPE_CODE_MEMBERPTR:
3042 store_signed_integer (buf, len, byte_order, num);
3043 break;
3044
3045 case TYPE_CODE_REF:
3046 case TYPE_CODE_PTR:
3047 store_typed_address (buf, type, (CORE_ADDR) num);
3048 break;
3049
3050 default:
3051 error (_("Unexpected type (%d) encountered for integer constant."),
3052 TYPE_CODE (type));
3053 }
3054 }
3055
3056
3057 /* Pack NUM into BUF using a target format of TYPE. */
3058
3059 static void
3060 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3061 {
3062 int len;
3063 enum bfd_endian byte_order;
3064
3065 type = check_typedef (type);
3066 len = TYPE_LENGTH (type);
3067 byte_order = gdbarch_byte_order (get_type_arch (type));
3068
3069 switch (TYPE_CODE (type))
3070 {
3071 case TYPE_CODE_INT:
3072 case TYPE_CODE_CHAR:
3073 case TYPE_CODE_ENUM:
3074 case TYPE_CODE_FLAGS:
3075 case TYPE_CODE_BOOL:
3076 case TYPE_CODE_RANGE:
3077 case TYPE_CODE_MEMBERPTR:
3078 store_unsigned_integer (buf, len, byte_order, num);
3079 break;
3080
3081 case TYPE_CODE_REF:
3082 case TYPE_CODE_PTR:
3083 store_typed_address (buf, type, (CORE_ADDR) num);
3084 break;
3085
3086 default:
3087 error (_("Unexpected type (%d) encountered "
3088 "for unsigned integer constant."),
3089 TYPE_CODE (type));
3090 }
3091 }
3092
3093
3094 /* Convert C numbers into newly allocated values. */
3095
3096 struct value *
3097 value_from_longest (struct type *type, LONGEST num)
3098 {
3099 struct value *val = allocate_value (type);
3100
3101 pack_long (value_contents_raw (val), type, num);
3102 return val;
3103 }
3104
3105
3106 /* Convert C unsigned numbers into newly allocated values. */
3107
3108 struct value *
3109 value_from_ulongest (struct type *type, ULONGEST num)
3110 {
3111 struct value *val = allocate_value (type);
3112
3113 pack_unsigned_long (value_contents_raw (val), type, num);
3114
3115 return val;
3116 }
3117
3118
3119 /* Create a value representing a pointer of type TYPE to the address
3120 ADDR. */
3121 struct value *
3122 value_from_pointer (struct type *type, CORE_ADDR addr)
3123 {
3124 struct value *val = allocate_value (type);
3125
3126 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3127 return val;
3128 }
3129
3130
3131 /* Create a value of type TYPE whose contents come from VALADDR, if it
3132 is non-null, and whose memory address (in the inferior) is
3133 ADDRESS. */
3134
3135 struct value *
3136 value_from_contents_and_address (struct type *type,
3137 const gdb_byte *valaddr,
3138 CORE_ADDR address)
3139 {
3140 struct value *v;
3141
3142 if (valaddr == NULL)
3143 v = allocate_value_lazy (type);
3144 else
3145 {
3146 v = allocate_value (type);
3147 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3148 }
3149 set_value_address (v, address);
3150 VALUE_LVAL (v) = lval_memory;
3151 return v;
3152 }
3153
3154 /* Create a value of type TYPE holding the contents CONTENTS.
3155 The new value is `not_lval'. */
3156
3157 struct value *
3158 value_from_contents (struct type *type, const gdb_byte *contents)
3159 {
3160 struct value *result;
3161
3162 result = allocate_value (type);
3163 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3164 return result;
3165 }
3166
3167 struct value *
3168 value_from_double (struct type *type, DOUBLEST num)
3169 {
3170 struct value *val = allocate_value (type);
3171 struct type *base_type = check_typedef (type);
3172 enum type_code code = TYPE_CODE (base_type);
3173
3174 if (code == TYPE_CODE_FLT)
3175 {
3176 store_typed_floating (value_contents_raw (val), base_type, num);
3177 }
3178 else
3179 error (_("Unexpected type encountered for floating constant."));
3180
3181 return val;
3182 }
3183
3184 struct value *
3185 value_from_decfloat (struct type *type, const gdb_byte *dec)
3186 {
3187 struct value *val = allocate_value (type);
3188
3189 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3190 return val;
3191 }
3192
3193 /* Extract a value from the history file. Input will be of the form
3194 $digits or $$digits. See block comment above 'write_dollar_variable'
3195 for details. */
3196
3197 struct value *
3198 value_from_history_ref (char *h, char **endp)
3199 {
3200 int index, len;
3201
3202 if (h[0] == '$')
3203 len = 1;
3204 else
3205 return NULL;
3206
3207 if (h[1] == '$')
3208 len = 2;
3209
3210 /* Find length of numeral string. */
3211 for (; isdigit (h[len]); len++)
3212 ;
3213
3214 /* Make sure numeral string is not part of an identifier. */
3215 if (h[len] == '_' || isalpha (h[len]))
3216 return NULL;
3217
3218 /* Now collect the index value. */
3219 if (h[1] == '$')
3220 {
3221 if (len == 2)
3222 {
3223 /* For some bizarre reason, "$$" is equivalent to "$$1",
3224 rather than to "$$0" as it ought to be! */
3225 index = -1;
3226 *endp += len;
3227 }
3228 else
3229 index = -strtol (&h[2], endp, 10);
3230 }
3231 else
3232 {
3233 if (len == 1)
3234 {
3235 /* "$" is equivalent to "$0". */
3236 index = 0;
3237 *endp += len;
3238 }
3239 else
3240 index = strtol (&h[1], endp, 10);
3241 }
3242
3243 return access_value_history (index);
3244 }
3245
3246 struct value *
3247 coerce_ref_if_computed (const struct value *arg)
3248 {
3249 const struct lval_funcs *funcs;
3250
3251 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3252 return NULL;
3253
3254 if (value_lval_const (arg) != lval_computed)
3255 return NULL;
3256
3257 funcs = value_computed_funcs (arg);
3258 if (funcs->coerce_ref == NULL)
3259 return NULL;
3260
3261 return funcs->coerce_ref (arg);
3262 }
3263
3264 /* Look at value.h for description. */
3265
3266 struct value *
3267 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3268 struct type *original_type,
3269 struct value *original_value)
3270 {
3271 /* Re-adjust type. */
3272 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3273
3274 /* Add embedding info. */
3275 set_value_enclosing_type (value, enc_type);
3276 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3277
3278 /* We may be pointing to an object of some derived type. */
3279 return value_full_object (value, NULL, 0, 0, 0);
3280 }
3281
3282 struct value *
3283 coerce_ref (struct value *arg)
3284 {
3285 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3286 struct value *retval;
3287 struct type *enc_type;
3288
3289 retval = coerce_ref_if_computed (arg);
3290 if (retval)
3291 return retval;
3292
3293 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3294 return arg;
3295
3296 enc_type = check_typedef (value_enclosing_type (arg));
3297 enc_type = TYPE_TARGET_TYPE (enc_type);
3298
3299 retval = value_at_lazy (enc_type,
3300 unpack_pointer (value_type (arg),
3301 value_contents (arg)));
3302 return readjust_indirect_value_type (retval, enc_type,
3303 value_type_arg_tmp, arg);
3304 }
3305
3306 struct value *
3307 coerce_array (struct value *arg)
3308 {
3309 struct type *type;
3310
3311 arg = coerce_ref (arg);
3312 type = check_typedef (value_type (arg));
3313
3314 switch (TYPE_CODE (type))
3315 {
3316 case TYPE_CODE_ARRAY:
3317 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3318 arg = value_coerce_array (arg);
3319 break;
3320 case TYPE_CODE_FUNC:
3321 arg = value_coerce_function (arg);
3322 break;
3323 }
3324 return arg;
3325 }
3326 \f
3327
3328 /* Return true if the function returning the specified type is using
3329 the convention of returning structures in memory (passing in the
3330 address as a hidden first parameter). */
3331
3332 int
3333 using_struct_return (struct gdbarch *gdbarch,
3334 struct value *function, struct type *value_type)
3335 {
3336 enum type_code code = TYPE_CODE (value_type);
3337
3338 if (code == TYPE_CODE_ERROR)
3339 error (_("Function return type unknown."));
3340
3341 if (code == TYPE_CODE_VOID)
3342 /* A void return value is never in memory. See also corresponding
3343 code in "print_return_value". */
3344 return 0;
3345
3346 /* Probe the architecture for the return-value convention. */
3347 return (gdbarch_return_value (gdbarch, function, value_type,
3348 NULL, NULL, NULL)
3349 != RETURN_VALUE_REGISTER_CONVENTION);
3350 }
3351
3352 /* Set the initialized field in a value struct. */
3353
3354 void
3355 set_value_initialized (struct value *val, int status)
3356 {
3357 val->initialized = status;
3358 }
3359
3360 /* Return the initialized field in a value struct. */
3361
3362 int
3363 value_initialized (struct value *val)
3364 {
3365 return val->initialized;
3366 }
3367
3368 void
3369 _initialize_values (void)
3370 {
3371 add_cmd ("convenience", no_class, show_convenience, _("\
3372 Debugger convenience (\"$foo\") variables and functions.\n\
3373 Convenience variables are created when you assign them values;\n\
3374 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3375 \n\
3376 A few convenience variables are given values automatically:\n\
3377 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3378 \"$__\" holds the contents of the last address examined with \"x\"."
3379 #ifdef HAVE_PYTHON
3380 "\n\n\
3381 Convenience functions are defined via the Python API."
3382 #endif
3383 ), &showlist);
3384
3385 add_cmd ("values", no_set_class, show_values, _("\
3386 Elements of value history around item number IDX (or last ten)."),
3387 &showlist);
3388
3389 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3390 Initialize a convenience variable if necessary.\n\
3391 init-if-undefined VARIABLE = EXPRESSION\n\
3392 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3393 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3394 VARIABLE is already initialized."));
3395
3396 add_prefix_cmd ("function", no_class, function_command, _("\
3397 Placeholder command for showing help on convenience functions."),
3398 &functionlist, "function ", 0, &cmdlist);
3399 }