Turn value_enclosing_type into method
[binutils-gdb.git] / gdb / value.h
1 /* Definitions for values of C expressions, for GDB.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
22
23 #include "frame.h" /* For struct frame_id. */
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26 #include "gmp-utils.h"
27
28 struct block;
29 struct expression;
30 struct regcache;
31 struct symbol;
32 struct type;
33 struct ui_file;
34 struct language_defn;
35 struct value_print_options;
36
37 /* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
40
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
46
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
49
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
54
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
58
59 - Any other similar scenario.
60
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
65
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
70
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
75
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
79
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
83 */
84
85 extern bool overload_resolution;
86
87 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
88
89 struct range
90 {
91 /* Lowest offset in the range. */
92 LONGEST offset;
93
94 /* Length of the range. */
95 ULONGEST length;
96
97 /* Returns true if THIS is strictly less than OTHER, useful for
98 searching. We keep ranges sorted by offset and coalesce
99 overlapping and contiguous ranges, so this just compares the
100 starting offset. */
101
102 bool operator< (const range &other) const
103 {
104 return offset < other.offset;
105 }
106
107 /* Returns true if THIS is equal to OTHER. */
108 bool operator== (const range &other) const
109 {
110 return offset == other.offset && length == other.length;
111 }
112 };
113
114 /* Increase VAL's reference count. */
115
116 extern void value_incref (struct value *val);
117
118 /* Decrease VAL's reference count. When the reference count drops to
119 0, VAL will be freed. */
120
121 extern void value_decref (struct value *val);
122
123 /* A policy class to interface gdb::ref_ptr with struct value. */
124
125 struct value_ref_policy
126 {
127 static void incref (struct value *ptr)
128 {
129 value_incref (ptr);
130 }
131
132 static void decref (struct value *ptr)
133 {
134 value_decref (ptr);
135 }
136 };
137
138 /* A gdb:;ref_ptr pointer to a struct value. */
139
140 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
141
142 /* Note that the fields in this structure are arranged to save a bit
143 of memory. */
144
145 struct value
146 {
147 explicit value (struct type *type_)
148 : m_modifiable (1),
149 m_lazy (1),
150 m_initialized (1),
151 m_stack (0),
152 m_is_zero (false),
153 m_in_history (false),
154 m_type (type_),
155 m_enclosing_type (type_)
156 {
157 }
158
159 ~value ();
160
161 DISABLE_COPY_AND_ASSIGN (value);
162
163 /* Type of the value. */
164 struct type *type () const
165 { return m_type; }
166
167 /* This is being used to change the type of an existing value, that
168 code should instead be creating a new value with the changed type
169 (but possibly shared content). */
170 void deprecated_set_type (struct type *type)
171 { m_type = type; }
172
173 /* Return the gdbarch associated with the value. */
174 struct gdbarch *arch () const;
175
176 /* Only used for bitfields; number of bits contained in them. */
177 LONGEST bitsize () const
178 { return m_bitsize; }
179
180 void set_bitsize (LONGEST bit)
181 { m_bitsize = bit; }
182
183 /* Only used for bitfields; position of start of field. For
184 little-endian targets, it is the position of the LSB. For
185 big-endian targets, it is the position of the MSB. */
186 LONGEST bitpos () const
187 { return m_bitpos; }
188
189 void set_bitpos (LONGEST bit)
190 { m_bitpos = bit; }
191
192 /* Only used for bitfields; the containing value. This allows a
193 single read from the target when displaying multiple
194 bitfields. */
195 value *parent () const
196 { return m_parent.get (); }
197
198 void set_parent (struct value *parent)
199 { m_parent = value_ref_ptr::new_reference (parent); }
200
201 /* Describes offset of a value within lval of a structure in bytes.
202 If lval == lval_memory, this is an offset to the address. If
203 lval == lval_register, this is a further offset from
204 location.address within the registers structure. Note also the
205 member embedded_offset below. */
206 LONGEST offset () const
207 { return m_offset; }
208
209 void set_offset (LONGEST offset)
210 { m_offset = offset; }
211
212 /* The comment from "struct value" reads: ``Is it modifiable? Only
213 relevant if lval != not_lval.''. Shouldn't the value instead be
214 not_lval and be done with it? */
215 int deprecated_modifiable () const
216 { return m_modifiable; }
217
218 /* If a value represents a C++ object, then the `type' field gives the
219 object's compile-time type. If the object actually belongs to some
220 class derived from `type', perhaps with other base classes and
221 additional members, then `type' is just a subobject of the real
222 thing, and the full object is probably larger than `type' would
223 suggest.
224
225 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
226 actually determine the object's run-time type by looking at the
227 run-time type information in the vtable. When this information is
228 available, we may elect to read in the entire object, for several
229 reasons:
230
231 - When printing the value, the user would probably rather see the
232 full object, not just the limited portion apparent from the
233 compile-time type.
234
235 - If `type' has virtual base classes, then even printing `type'
236 alone may require reaching outside the `type' portion of the
237 object to wherever the virtual base class has been stored.
238
239 When we store the entire object, `enclosing_type' is the run-time
240 type -- the complete object -- and `embedded_offset' is the offset
241 of `type' within that larger type, in bytes. The value_contents()
242 macro takes `embedded_offset' into account, so most GDB code
243 continues to see the `type' portion of the value, just as the
244 inferior would.
245
246 If `type' is a pointer to an object, then `enclosing_type' is a
247 pointer to the object's run-time type, and `pointed_to_offset' is
248 the offset in bytes from the full object to the pointed-to object
249 -- that is, the value `embedded_offset' would have if we followed
250 the pointer and fetched the complete object. (I don't really see
251 the point. Why not just determine the run-time type when you
252 indirect, and avoid the special case? The contents don't matter
253 until you indirect anyway.)
254
255 If we're not doing anything fancy, `enclosing_type' is equal to
256 `type', and `embedded_offset' is zero, so everything works
257 normally. */
258
259 struct type *enclosing_type () const
260 { return m_enclosing_type; }
261
262 void set_enclosing_type (struct type *new_type);
263
264
265 /* Type of value; either not an lval, or one of the various
266 different possible kinds of lval. */
267 enum lval_type m_lval = not_lval;
268
269 /* Is it modifiable? Only relevant if lval != not_lval. */
270 unsigned int m_modifiable : 1;
271
272 /* If zero, contents of this value are in the contents field. If
273 nonzero, contents are in inferior. If the lval field is lval_memory,
274 the contents are in inferior memory at location.address plus offset.
275 The lval field may also be lval_register.
276
277 WARNING: This field is used by the code which handles watchpoints
278 (see breakpoint.c) to decide whether a particular value can be
279 watched by hardware watchpoints. If the lazy flag is set for
280 some member of a value chain, it is assumed that this member of
281 the chain doesn't need to be watched as part of watching the
282 value itself. This is how GDB avoids watching the entire struct
283 or array when the user wants to watch a single struct member or
284 array element. If you ever change the way lazy flag is set and
285 reset, be sure to consider this use as well! */
286 unsigned int m_lazy : 1;
287
288 /* If value is a variable, is it initialized or not. */
289 unsigned int m_initialized : 1;
290
291 /* If value is from the stack. If this is set, read_stack will be
292 used instead of read_memory to enable extra caching. */
293 unsigned int m_stack : 1;
294
295 /* True if this is a zero value, created by 'value_zero'; false
296 otherwise. */
297 bool m_is_zero : 1;
298
299 /* True if this a value recorded in value history; false otherwise. */
300 bool m_in_history : 1;
301
302 /* Location of value (if lval). */
303 union
304 {
305 /* If lval == lval_memory, this is the address in the inferior */
306 CORE_ADDR address;
307
308 /*If lval == lval_register, the value is from a register. */
309 struct
310 {
311 /* Register number. */
312 int regnum;
313 /* Frame ID of "next" frame to which a register value is relative.
314 If the register value is found relative to frame F, then the
315 frame id of F->next will be stored in next_frame_id. */
316 struct frame_id next_frame_id;
317 } reg;
318
319 /* Pointer to internal variable. */
320 struct internalvar *internalvar;
321
322 /* Pointer to xmethod worker. */
323 struct xmethod_worker *xm_worker;
324
325 /* If lval == lval_computed, this is a set of function pointers
326 to use to access and describe the value, and a closure pointer
327 for them to use. */
328 struct
329 {
330 /* Functions to call. */
331 const struct lval_funcs *funcs;
332
333 /* Closure for those functions to use. */
334 void *closure;
335 } computed;
336 } m_location {};
337
338 /* Describes offset of a value within lval of a structure in target
339 addressable memory units. Note also the member embedded_offset
340 below. */
341 LONGEST m_offset = 0;
342
343 /* Only used for bitfields; number of bits contained in them. */
344 LONGEST m_bitsize = 0;
345
346 /* Only used for bitfields; position of start of field. For
347 little-endian targets, it is the position of the LSB. For
348 big-endian targets, it is the position of the MSB. */
349 LONGEST m_bitpos = 0;
350
351 /* The number of references to this value. When a value is created,
352 the value chain holds a reference, so REFERENCE_COUNT is 1. If
353 release_value is called, this value is removed from the chain but
354 the caller of release_value now has a reference to this value.
355 The caller must arrange for a call to value_free later. */
356 int m_reference_count = 1;
357
358 /* Only used for bitfields; the containing value. This allows a
359 single read from the target when displaying multiple
360 bitfields. */
361 value_ref_ptr m_parent;
362
363 /* Type of the value. */
364 struct type *m_type;
365
366 /* If a value represents a C++ object, then the `type' field gives
367 the object's compile-time type. If the object actually belongs
368 to some class derived from `type', perhaps with other base
369 classes and additional members, then `type' is just a subobject
370 of the real thing, and the full object is probably larger than
371 `type' would suggest.
372
373 If `type' is a dynamic class (i.e. one with a vtable), then GDB
374 can actually determine the object's run-time type by looking at
375 the run-time type information in the vtable. When this
376 information is available, we may elect to read in the entire
377 object, for several reasons:
378
379 - When printing the value, the user would probably rather see the
380 full object, not just the limited portion apparent from the
381 compile-time type.
382
383 - If `type' has virtual base classes, then even printing `type'
384 alone may require reaching outside the `type' portion of the
385 object to wherever the virtual base class has been stored.
386
387 When we store the entire object, `enclosing_type' is the run-time
388 type -- the complete object -- and `embedded_offset' is the
389 offset of `type' within that larger type, in target addressable memory
390 units. The value_contents() macro takes `embedded_offset' into account,
391 so most GDB code continues to see the `type' portion of the value, just
392 as the inferior would.
393
394 If `type' is a pointer to an object, then `enclosing_type' is a
395 pointer to the object's run-time type, and `pointed_to_offset' is
396 the offset in target addressable memory units from the full object
397 to the pointed-to object -- that is, the value `embedded_offset' would
398 have if we followed the pointer and fetched the complete object.
399 (I don't really see the point. Why not just determine the
400 run-time type when you indirect, and avoid the special case? The
401 contents don't matter until you indirect anyway.)
402
403 If we're not doing anything fancy, `enclosing_type' is equal to
404 `type', and `embedded_offset' is zero, so everything works
405 normally. */
406 struct type *m_enclosing_type;
407 LONGEST m_embedded_offset = 0;
408 LONGEST m_pointed_to_offset = 0;
409
410 /* Actual contents of the value. Target byte-order.
411
412 May be nullptr if the value is lazy or is entirely optimized out.
413 Guaranteed to be non-nullptr otherwise. */
414 gdb::unique_xmalloc_ptr<gdb_byte> m_contents;
415
416 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
417 rather than available, since the common and default case is for a
418 value to be available. This is filled in at value read time.
419 The unavailable ranges are tracked in bits. Note that a contents
420 bit that has been optimized out doesn't really exist in the
421 program, so it can't be marked unavailable either. */
422 std::vector<range> m_unavailable;
423
424 /* Likewise, but for optimized out contents (a chunk of the value of
425 a variable that does not actually exist in the program). If LVAL
426 is lval_register, this is a register ($pc, $sp, etc., never a
427 program variable) that has not been saved in the frame. Not
428 saved registers and optimized-out program variables values are
429 treated pretty much the same, except not-saved registers have a
430 different string representation and related error strings. */
431 std::vector<range> m_optimized_out;
432
433 /* This is only non-zero for values of TYPE_CODE_ARRAY and if the size of
434 the array in inferior memory is greater than max_value_size. If these
435 conditions are met then, when the value is loaded from the inferior
436 GDB will only load a portion of the array into memory, and
437 limited_length will be set to indicate the length in octets that were
438 loaded from the inferior. */
439 ULONGEST m_limited_length = 0;
440 };
441
442 /* Returns value_type or value_enclosing_type depending on
443 value_print_options.objectprint.
444
445 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
446 only for pointers and references, else it will be returned
447 for all the types (e.g. structures). This option is useful
448 to prevent retrieving enclosing type for the base classes fields.
449
450 REAL_TYPE_FOUND is used to inform whether the real type was found
451 (or just static type was used). The NULL may be passed if it is not
452 necessary. */
453
454 extern struct type *value_actual_type (struct value *value,
455 int resolve_simple_types,
456 int *real_type_found);
457
458 extern LONGEST value_pointed_to_offset (const struct value *value);
459 extern void set_value_pointed_to_offset (struct value *value, LONGEST val);
460 extern LONGEST value_embedded_offset (const struct value *value);
461 extern void set_value_embedded_offset (struct value *value, LONGEST val);
462
463 /* For lval_computed values, this structure holds functions used to
464 retrieve and set the value (or portions of the value).
465
466 For each function, 'V' is the 'this' pointer: an lval_funcs
467 function F may always assume that the V it receives is an
468 lval_computed value, and has F in the appropriate slot of its
469 lval_funcs structure. */
470
471 struct lval_funcs
472 {
473 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
474 a problem arises in obtaining VALUE's bits, this function should
475 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
476 non-optimized-out value is an internal error. */
477 void (*read) (struct value *v);
478
479 /* Handle an assignment TOVAL = FROMVAL by writing the value of
480 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
481 been updated. If a problem arises in doing so, this function
482 should call 'error'. If it is NULL such TOVAL assignment is an error as
483 TOVAL is not considered as an lvalue. */
484 void (*write) (struct value *toval, struct value *fromval);
485
486 /* Return true if any part of V is optimized out, false otherwise.
487 This will only be called for lazy values -- if the value has been
488 fetched, then the value's optimized-out bits are consulted
489 instead. */
490 bool (*is_optimized_out) (struct value *v);
491
492 /* If non-NULL, this is used to implement pointer indirection for
493 this value. This method may return NULL, in which case value_ind
494 will fall back to ordinary indirection. */
495 struct value *(*indirect) (struct value *value);
496
497 /* If non-NULL, this is used to implement reference resolving for
498 this value. This method may return NULL, in which case coerce_ref
499 will fall back to ordinary references resolving. */
500 struct value *(*coerce_ref) (const struct value *value);
501
502 /* If non-NULL, this is used to determine whether the indicated bits
503 of VALUE are a synthetic pointer. */
504 int (*check_synthetic_pointer) (const struct value *value,
505 LONGEST offset, int length);
506
507 /* Return a duplicate of VALUE's closure, for use in a new value.
508 This may simply return the same closure, if VALUE's is
509 reference-counted or statically allocated.
510
511 This may be NULL, in which case VALUE's closure is re-used in the
512 new value. */
513 void *(*copy_closure) (const struct value *v);
514
515 /* Drop VALUE's reference to its closure. Maybe this frees the
516 closure; maybe this decrements a reference count; maybe the
517 closure is statically allocated and this does nothing.
518
519 This may be NULL, in which case no action is taken to free
520 VALUE's closure. */
521 void (*free_closure) (struct value *v);
522 };
523
524 /* Create a computed lvalue, with type TYPE, function pointers FUNCS,
525 and closure CLOSURE. */
526
527 extern struct value *allocate_computed_value (struct type *type,
528 const struct lval_funcs *funcs,
529 void *closure);
530
531 extern struct value *allocate_optimized_out_value (struct type *type);
532
533 /* If VALUE is lval_computed, return its lval_funcs structure. */
534
535 extern const struct lval_funcs *value_computed_funcs (const struct value *);
536
537 /* If VALUE is lval_computed, return its closure. The meaning of the
538 returned value depends on the functions VALUE uses. */
539
540 extern void *value_computed_closure (const struct value *value);
541
542 /* If zero, contents of this value are in the contents field. If
543 nonzero, contents are in inferior. If the lval field is lval_memory,
544 the contents are in inferior memory at location.address plus offset.
545 The lval field may also be lval_register.
546
547 WARNING: This field is used by the code which handles watchpoints
548 (see breakpoint.c) to decide whether a particular value can be
549 watched by hardware watchpoints. If the lazy flag is set for some
550 member of a value chain, it is assumed that this member of the
551 chain doesn't need to be watched as part of watching the value
552 itself. This is how GDB avoids watching the entire struct or array
553 when the user wants to watch a single struct member or array
554 element. If you ever change the way lazy flag is set and reset, be
555 sure to consider this use as well! */
556
557 extern int value_lazy (const struct value *);
558 extern void set_value_lazy (struct value *value, int val);
559
560 extern int value_stack (const struct value *);
561 extern void set_value_stack (struct value *value, int val);
562
563 /* Throw an error complaining that the value has been optimized
564 out. */
565
566 extern void error_value_optimized_out (void);
567
568 /* value_contents() and value_contents_raw() both return the address
569 of the gdb buffer used to hold a copy of the contents of the lval.
570 value_contents() is used when the contents of the buffer are needed
571 -- it uses value_fetch_lazy() to load the buffer from the process
572 being debugged if it hasn't already been loaded
573 (value_contents_writeable() is used when a writeable but fetched
574 buffer is required).. value_contents_raw() is used when data is
575 being stored into the buffer, or when it is certain that the
576 contents of the buffer are valid.
577
578 Note: The contents pointer is adjusted by the offset required to
579 get to the real subobject, if the value happens to represent
580 something embedded in a larger run-time object. */
581
582 extern gdb::array_view<gdb_byte> value_contents_raw (struct value *);
583
584 /* Actual contents of the value. For use of this value; setting it
585 uses the stuff above. Not valid if lazy is nonzero. Target
586 byte-order. We force it to be aligned properly for any possible
587 value. Note that a value therefore extends beyond what is
588 declared here. */
589
590 extern gdb::array_view<const gdb_byte> value_contents (struct value *);
591 extern gdb::array_view<gdb_byte> value_contents_writeable (struct value *);
592
593 /* The ALL variants of the above two macros do not adjust the returned
594 pointer by the embedded_offset value. */
595
596 extern gdb::array_view<gdb_byte> value_contents_all_raw (struct value *);
597 extern gdb::array_view<const gdb_byte> value_contents_all (struct value *);
598
599 /* Like value_contents_all, but does not require that the returned
600 bits be valid. This should only be used in situations where you
601 plan to check the validity manually. */
602 extern gdb::array_view<const gdb_byte> value_contents_for_printing (struct value *value);
603
604 /* Like value_contents_for_printing, but accepts a constant value
605 pointer. Unlike value_contents_for_printing however, the pointed
606 value must _not_ be lazy. */
607 extern gdb::array_view<const gdb_byte>
608 value_contents_for_printing_const (const struct value *value);
609
610 extern void value_fetch_lazy (struct value *val);
611
612 /* If nonzero, this is the value of a variable which does not actually
613 exist in the program, at least partially. If the value is lazy,
614 this may fetch it now. */
615 extern int value_optimized_out (struct value *value);
616
617 /* Given a value, return true if any of the contents bits starting at
618 OFFSET and extending for LENGTH bits is optimized out, false
619 otherwise. */
620
621 extern int value_bits_any_optimized_out (const struct value *value,
622 int bit_offset, int bit_length);
623
624 /* Like value_optimized_out, but return true iff the whole value is
625 optimized out. */
626 extern int value_entirely_optimized_out (struct value *value);
627
628 /* Mark VALUE's content bytes starting at OFFSET and extending for
629 LENGTH bytes as optimized out. */
630
631 extern void mark_value_bytes_optimized_out (struct value *value,
632 int offset, int length);
633
634 /* Mark VALUE's content bits starting at OFFSET and extending for
635 LENGTH bits as optimized out. */
636
637 extern void mark_value_bits_optimized_out (struct value *value,
638 LONGEST offset, LONGEST length);
639
640 /* Set or return field indicating whether a variable is initialized or
641 not, based on debugging information supplied by the compiler.
642 1 = initialized; 0 = uninitialized. */
643 extern int value_initialized (const struct value *);
644 extern void set_value_initialized (struct value *, int);
645
646 /* Set COMPONENT's location as appropriate for a component of WHOLE
647 --- regardless of what kind of lvalue WHOLE is. */
648 extern void set_value_component_location (struct value *component,
649 const struct value *whole);
650
651 /* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
652 single value might have multiple LVALs), this hacked interface is
653 limited to just the first PIECE. Expect further change. */
654 /* Type of value; either not an lval, or one of the various different
655 possible kinds of lval. */
656 extern enum lval_type *deprecated_value_lval_hack (struct value *);
657 #define VALUE_LVAL(val) (*deprecated_value_lval_hack (val))
658
659 /* Like VALUE_LVAL, except the parameter can be const. */
660 extern enum lval_type value_lval_const (const struct value *value);
661
662 /* If lval == lval_memory, return the address in the inferior. If
663 lval == lval_register, return the byte offset into the registers
664 structure. Otherwise, return 0. The returned address
665 includes the offset, if any. */
666 extern CORE_ADDR value_address (const struct value *);
667
668 /* Like value_address, except the result does not include value's
669 offset. */
670 extern CORE_ADDR value_raw_address (const struct value *);
671
672 /* Set the address of a value. */
673 extern void set_value_address (struct value *, CORE_ADDR);
674
675 /* Pointer to internal variable. */
676 extern struct internalvar **deprecated_value_internalvar_hack (struct value *);
677 #define VALUE_INTERNALVAR(val) (*deprecated_value_internalvar_hack (val))
678
679 /* Frame ID of "next" frame to which a register value is relative. A
680 register value is indicated by VALUE_LVAL being set to lval_register.
681 So, if the register value is found relative to frame F, then the
682 frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
683 extern struct frame_id *deprecated_value_next_frame_id_hack (struct value *);
684 #define VALUE_NEXT_FRAME_ID(val) (*deprecated_value_next_frame_id_hack (val))
685
686 /* Register number if the value is from a register. */
687 extern int *deprecated_value_regnum_hack (struct value *);
688 #define VALUE_REGNUM(val) (*deprecated_value_regnum_hack (val))
689
690 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
691 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
692
693 extern struct value *coerce_ref_if_computed (const struct value *arg);
694
695 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
696 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
697 ORIGINAL_VAL are the type and value of the original reference or
698 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
699 the address that was dereferenced.
700
701 Note, that VALUE is modified by this function.
702
703 It is a common implementation for coerce_ref and value_ind. */
704
705 extern struct value * readjust_indirect_value_type (struct value *value,
706 struct type *enc_type,
707 const struct type *original_type,
708 struct value *original_val,
709 CORE_ADDR original_value_address);
710
711 /* Convert a REF to the object referenced. */
712
713 extern struct value *coerce_ref (struct value *value);
714
715 /* If ARG is an array, convert it to a pointer.
716 If ARG is a function, convert it to a function pointer.
717
718 References are dereferenced. */
719
720 extern struct value *coerce_array (struct value *value);
721
722 /* Given a value, determine whether the bits starting at OFFSET and
723 extending for LENGTH bits are a synthetic pointer. */
724
725 extern int value_bits_synthetic_pointer (const struct value *value,
726 LONGEST offset, LONGEST length);
727
728 /* Given a value, determine whether the contents bytes starting at
729 OFFSET and extending for LENGTH bytes are available. This returns
730 nonzero if all bytes in the given range are available, zero if any
731 byte is unavailable. */
732
733 extern int value_bytes_available (const struct value *value,
734 LONGEST offset, ULONGEST length);
735
736 /* Given a value, determine whether the contents bits starting at
737 OFFSET and extending for LENGTH bits are available. This returns
738 nonzero if all bits in the given range are available, zero if any
739 bit is unavailable. */
740
741 extern int value_bits_available (const struct value *value,
742 LONGEST offset, ULONGEST length);
743
744 /* Like value_bytes_available, but return false if any byte in the
745 whole object is unavailable. */
746 extern int value_entirely_available (struct value *value);
747
748 /* Like value_entirely_available, but return false if any byte in the
749 whole object is available. */
750 extern int value_entirely_unavailable (struct value *value);
751
752 /* Mark VALUE's content bytes starting at OFFSET and extending for
753 LENGTH bytes as unavailable. */
754
755 extern void mark_value_bytes_unavailable (struct value *value,
756 LONGEST offset, ULONGEST length);
757
758 /* Mark VALUE's content bits starting at OFFSET and extending for
759 LENGTH bits as unavailable. */
760
761 extern void mark_value_bits_unavailable (struct value *value,
762 LONGEST offset, ULONGEST length);
763
764 /* Compare LENGTH bytes of VAL1's contents starting at OFFSET1 with
765 LENGTH bytes of VAL2's contents starting at OFFSET2.
766
767 Note that "contents" refers to the whole value's contents
768 (value_contents_all), without any embedded offset adjustment. For
769 example, to compare a complete object value with itself, including
770 its enclosing type chunk, you'd do:
771
772 int len = check_typedef (val->enclosing_type ())->length ();
773 value_contents_eq (val, 0, val, 0, len);
774
775 Returns true iff the set of available/valid contents match.
776
777 Optimized-out contents are equal to optimized-out contents, and are
778 not equal to non-optimized-out contents.
779
780 Unavailable contents are equal to unavailable contents, and are not
781 equal to non-unavailable contents.
782
783 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
784 represent different available/valid bytes, in a value with length
785 16:
786
787 offset: 0 4 8 12 16
788 contents: xxxxVVVVxxxxVVZZ
789
790 then:
791
792 value_contents_eq(val, 0, val, 8, 6) => true
793 value_contents_eq(val, 0, val, 4, 4) => false
794 value_contents_eq(val, 0, val, 8, 8) => false
795 value_contents_eq(val, 4, val, 12, 2) => true
796 value_contents_eq(val, 4, val, 12, 4) => true
797 value_contents_eq(val, 3, val, 4, 4) => true
798
799 If 'x's represent an unavailable byte, 'o' represents an optimized
800 out byte, in a value with length 8:
801
802 offset: 0 4 8
803 contents: xxxxoooo
804
805 then:
806
807 value_contents_eq(val, 0, val, 2, 2) => true
808 value_contents_eq(val, 4, val, 6, 2) => true
809 value_contents_eq(val, 0, val, 4, 4) => true
810
811 We only know whether a value chunk is unavailable or optimized out
812 if we've tried to read it. As this routine is used by printing
813 routines, which may be printing values in the value history, long
814 after the inferior is gone, it works with const values. Therefore,
815 this routine must not be called with lazy values. */
816
817 extern bool value_contents_eq (const struct value *val1, LONGEST offset1,
818 const struct value *val2, LONGEST offset2,
819 LONGEST length);
820
821 /* An overload of value_contents_eq that compares the entirety of both
822 values. */
823
824 extern bool value_contents_eq (const struct value *val1,
825 const struct value *val2);
826
827 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
828 which is (or will be copied to) VAL's contents buffer offset by
829 BIT_OFFSET bits. Marks value contents ranges as unavailable if
830 the corresponding memory is likewise unavailable. STACK indicates
831 whether the memory is known to be stack memory. */
832
833 extern void read_value_memory (struct value *val, LONGEST bit_offset,
834 int stack, CORE_ADDR memaddr,
835 gdb_byte *buffer, size_t length);
836
837 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
838 into each element of a new vector value with VECTOR_TYPE. */
839
840 struct value *value_vector_widen (struct value *scalar_value,
841 struct type *vector_type);
842
843 \f
844
845 #include "symtab.h"
846 #include "gdbtypes.h"
847 #include "expression.h"
848
849 class frame_info_ptr;
850 struct fn_field;
851
852 extern int print_address_demangle (const struct value_print_options *,
853 struct gdbarch *, CORE_ADDR,
854 struct ui_file *, int);
855
856 /* Returns true if VAL is of floating-point type. In addition,
857 throws an error if the value is an invalid floating-point value. */
858 extern bool is_floating_value (struct value *val);
859
860 extern LONGEST value_as_long (struct value *val);
861 extern CORE_ADDR value_as_address (struct value *val);
862
863 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
864 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
865
866 extern LONGEST unpack_field_as_long (struct type *type,
867 const gdb_byte *valaddr,
868 int fieldno);
869
870 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
871 VALADDR, and store the result in *RESULT.
872 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
873 BITSIZE is zero, then the length is taken from FIELD_TYPE.
874
875 Extracting bits depends on endianness of the machine. Compute the
876 number of least significant bits to discard. For big endian machines,
877 we compute the total number of bits in the anonymous object, subtract
878 off the bit count from the MSB of the object to the MSB of the
879 bitfield, then the size of the bitfield, which leaves the LSB discard
880 count. For little endian machines, the discard count is simply the
881 number of bits from the LSB of the anonymous object to the LSB of the
882 bitfield.
883
884 If the field is signed, we also do sign extension. */
885
886 extern LONGEST unpack_bits_as_long (struct type *field_type,
887 const gdb_byte *valaddr,
888 LONGEST bitpos, LONGEST bitsize);
889
890 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
891 LONGEST embedded_offset, int fieldno,
892 const struct value *val, LONGEST *result);
893
894 extern void unpack_value_bitfield (struct value *dest_val,
895 LONGEST bitpos, LONGEST bitsize,
896 const gdb_byte *valaddr,
897 LONGEST embedded_offset,
898 const struct value *val);
899
900 extern struct value *value_field_bitfield (struct type *type, int fieldno,
901 const gdb_byte *valaddr,
902 LONGEST embedded_offset,
903 const struct value *val);
904
905 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
906
907 extern struct value *value_from_longest (struct type *type, LONGEST num);
908 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
909 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
910 extern struct value *value_from_host_double (struct type *type, double d);
911 extern struct value *value_from_history_ref (const char *, const char **);
912 extern struct value *value_from_component (struct value *, struct type *,
913 LONGEST);
914
915
916 /* Create a new value by extracting it from WHOLE. TYPE is the type
917 of the new value. BIT_OFFSET and BIT_LENGTH describe the offset
918 and field width of the value to extract from WHOLE -- BIT_LENGTH
919 may differ from TYPE's length in the case where WHOLE's type is
920 packed.
921
922 When the value does come from a non-byte-aligned offset or field
923 width, it will be marked non_lval. */
924
925 extern struct value *value_from_component_bitsize (struct value *whole,
926 struct type *type,
927 LONGEST bit_offset,
928 LONGEST bit_length);
929
930 extern struct value *value_at (struct type *type, CORE_ADDR addr);
931 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
932
933 /* Like value_at, but ensures that the result is marked not_lval.
934 This can be important if the memory is "volatile". */
935 extern struct value *value_at_non_lval (struct type *type, CORE_ADDR addr);
936
937 extern struct value *value_from_contents_and_address_unresolved
938 (struct type *, const gdb_byte *, CORE_ADDR);
939 extern struct value *value_from_contents_and_address (struct type *,
940 const gdb_byte *,
941 CORE_ADDR);
942 extern struct value *value_from_contents (struct type *, const gdb_byte *);
943
944 extern struct value *default_value_from_register (struct gdbarch *gdbarch,
945 struct type *type,
946 int regnum,
947 struct frame_id frame_id);
948
949 extern void read_frame_register_value (struct value *value,
950 frame_info_ptr frame);
951
952 extern struct value *value_from_register (struct type *type, int regnum,
953 frame_info_ptr frame);
954
955 extern CORE_ADDR address_from_register (int regnum,
956 frame_info_ptr frame);
957
958 extern struct value *value_of_variable (struct symbol *var,
959 const struct block *b);
960
961 extern struct value *address_of_variable (struct symbol *var,
962 const struct block *b);
963
964 extern struct value *value_of_register (int regnum, frame_info_ptr frame);
965
966 struct value *value_of_register_lazy (frame_info_ptr frame, int regnum);
967
968 /* Return the symbol's reading requirement. */
969
970 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
971
972 /* Return true if the symbol needs a frame. This is a wrapper for
973 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
974
975 extern int symbol_read_needs_frame (struct symbol *);
976
977 extern struct value *read_var_value (struct symbol *var,
978 const struct block *var_block,
979 frame_info_ptr frame);
980
981 extern struct value *allocate_value (struct type *type);
982 extern struct value *allocate_value_lazy (struct type *type);
983 extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
984 struct value *src, LONGEST src_offset,
985 LONGEST length);
986
987 extern struct value *allocate_repeat_value (struct type *type, int count);
988
989 extern struct value *value_mark (void);
990
991 extern void value_free_to_mark (const struct value *mark);
992
993 /* A helper class that uses value_mark at construction time and calls
994 value_free_to_mark in the destructor. This is used to clear out
995 temporary values created during the lifetime of this object. */
996 class scoped_value_mark
997 {
998 public:
999
1000 scoped_value_mark ()
1001 : m_value (value_mark ())
1002 {
1003 }
1004
1005 ~scoped_value_mark ()
1006 {
1007 free_to_mark ();
1008 }
1009
1010 scoped_value_mark (scoped_value_mark &&other) = default;
1011
1012 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
1013
1014 /* Free the values currently on the value stack. */
1015 void free_to_mark ()
1016 {
1017 if (m_value != NULL)
1018 {
1019 value_free_to_mark (m_value);
1020 m_value = NULL;
1021 }
1022 }
1023
1024 private:
1025
1026 const struct value *m_value;
1027 };
1028
1029 extern struct value *value_cstring (const char *ptr, ssize_t len,
1030 struct type *char_type);
1031 extern struct value *value_string (const char *ptr, ssize_t len,
1032 struct type *char_type);
1033
1034 extern struct value *value_array (int lowbound, int highbound,
1035 struct value **elemvec);
1036
1037 extern struct value *value_concat (struct value *arg1, struct value *arg2);
1038
1039 extern struct value *value_binop (struct value *arg1, struct value *arg2,
1040 enum exp_opcode op);
1041
1042 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
1043
1044 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
1045
1046 /* Return true if VAL does not live in target memory, but should in order
1047 to operate on it. Otherwise return false. */
1048
1049 extern bool value_must_coerce_to_target (struct value *arg1);
1050
1051 extern struct value *value_coerce_to_target (struct value *arg1);
1052
1053 extern struct value *value_coerce_array (struct value *arg1);
1054
1055 extern struct value *value_coerce_function (struct value *arg1);
1056
1057 extern struct value *value_ind (struct value *arg1);
1058
1059 extern struct value *value_addr (struct value *arg1);
1060
1061 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
1062
1063 extern struct value *value_assign (struct value *toval,
1064 struct value *fromval);
1065
1066 extern struct value *value_pos (struct value *arg1);
1067
1068 extern struct value *value_neg (struct value *arg1);
1069
1070 extern struct value *value_complement (struct value *arg1);
1071
1072 extern struct value *value_struct_elt (struct value **argp,
1073 gdb::optional<gdb::array_view <value *>> args,
1074 const char *name, int *static_memfuncp,
1075 const char *err);
1076
1077 extern struct value *value_struct_elt_bitpos (struct value **argp,
1078 int bitpos,
1079 struct type *field_type,
1080 const char *err);
1081
1082 extern struct value *value_aggregate_elt (struct type *curtype,
1083 const char *name,
1084 struct type *expect_type,
1085 int want_address,
1086 enum noside noside);
1087
1088 extern struct value *value_static_field (struct type *type, int fieldno);
1089
1090 enum oload_search_type { NON_METHOD, METHOD, BOTH };
1091
1092 extern int find_overload_match (gdb::array_view<value *> args,
1093 const char *name,
1094 enum oload_search_type method,
1095 struct value **objp, struct symbol *fsym,
1096 struct value **valp, struct symbol **symp,
1097 int *staticp, const int no_adl,
1098 enum noside noside);
1099
1100 extern struct value *value_field (struct value *arg1, int fieldno);
1101
1102 extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
1103 int fieldno,
1104 struct type *arg_type);
1105
1106
1107 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
1108 int *);
1109
1110 extern struct value *value_full_object (struct value *, struct type *, int,
1111 int, int);
1112
1113 extern struct value *value_cast_pointers (struct type *, struct value *, int);
1114
1115 extern struct value *value_cast (struct type *type, struct value *arg2);
1116
1117 extern struct value *value_reinterpret_cast (struct type *type,
1118 struct value *arg);
1119
1120 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
1121
1122 extern struct value *value_zero (struct type *type, enum lval_type lv);
1123
1124 extern struct value *value_one (struct type *type);
1125
1126 extern struct value *value_repeat (struct value *arg1, int count);
1127
1128 extern struct value *value_subscript (struct value *array, LONGEST index);
1129
1130 extern struct value *value_bitstring_subscript (struct type *type,
1131 struct value *bitstring,
1132 LONGEST index);
1133
1134 extern struct value *register_value_being_returned (struct type *valtype,
1135 struct regcache *retbuf);
1136
1137 extern int value_in (struct value *element, struct value *set);
1138
1139 extern int value_bit_index (struct type *type, const gdb_byte *addr,
1140 int index);
1141
1142 extern enum return_value_convention
1143 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
1144 struct type *value_type);
1145
1146 extern int using_struct_return (struct gdbarch *gdbarch,
1147 struct value *function,
1148 struct type *value_type);
1149
1150 /* Evaluate the expression EXP. If set, EXPECT_TYPE is passed to the
1151 outermost operation's evaluation. This is ignored by most
1152 operations, but may be used, e.g., to determine the type of an
1153 otherwise untyped symbol. The caller should not assume that the
1154 returned value has this type. */
1155
1156 extern struct value *evaluate_expression (struct expression *exp,
1157 struct type *expect_type = nullptr);
1158
1159 extern struct value *evaluate_type (struct expression *exp);
1160
1161 extern value *evaluate_var_value (enum noside noside, const block *blk,
1162 symbol *var);
1163
1164 extern value *evaluate_var_msym_value (enum noside noside,
1165 struct objfile *objfile,
1166 minimal_symbol *msymbol);
1167
1168 namespace expr { class operation; };
1169 extern void fetch_subexp_value (struct expression *exp,
1170 expr::operation *op,
1171 struct value **valp, struct value **resultp,
1172 std::vector<value_ref_ptr> *val_chain,
1173 bool preserve_errors);
1174
1175 extern struct value *parse_and_eval (const char *exp);
1176
1177 extern struct value *parse_to_comma_and_eval (const char **expp);
1178
1179 extern struct type *parse_and_eval_type (const char *p, int length);
1180
1181 extern CORE_ADDR parse_and_eval_address (const char *exp);
1182
1183 extern LONGEST parse_and_eval_long (const char *exp);
1184
1185 extern void unop_promote (const struct language_defn *language,
1186 struct gdbarch *gdbarch,
1187 struct value **arg1);
1188
1189 extern void binop_promote (const struct language_defn *language,
1190 struct gdbarch *gdbarch,
1191 struct value **arg1, struct value **arg2);
1192
1193 extern struct value *access_value_history (int num);
1194
1195 /* Return the number of items in the value history. */
1196
1197 extern ULONGEST value_history_count ();
1198
1199 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
1200 struct internalvar *var);
1201
1202 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
1203
1204 extern void set_internalvar (struct internalvar *var, struct value *val);
1205
1206 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
1207
1208 extern void set_internalvar_string (struct internalvar *var,
1209 const char *string);
1210
1211 extern void clear_internalvar (struct internalvar *var);
1212
1213 extern void set_internalvar_component (struct internalvar *var,
1214 LONGEST offset,
1215 LONGEST bitpos, LONGEST bitsize,
1216 struct value *newvalue);
1217
1218 extern struct internalvar *lookup_only_internalvar (const char *name);
1219
1220 extern struct internalvar *create_internalvar (const char *name);
1221
1222 extern void complete_internalvar (completion_tracker &tracker,
1223 const char *name);
1224
1225 /* An internalvar can be dynamically computed by supplying a vector of
1226 function pointers to perform various operations. */
1227
1228 struct internalvar_funcs
1229 {
1230 /* Compute the value of the variable. The DATA argument passed to
1231 the function is the same argument that was passed to
1232 `create_internalvar_type_lazy'. */
1233
1234 struct value *(*make_value) (struct gdbarch *arch,
1235 struct internalvar *var,
1236 void *data);
1237
1238 /* Update the agent expression EXPR with bytecode to compute the
1239 value. VALUE is the agent value we are updating. The DATA
1240 argument passed to this function is the same argument that was
1241 passed to `create_internalvar_type_lazy'. If this pointer is
1242 NULL, then the internalvar cannot be compiled to an agent
1243 expression. */
1244
1245 void (*compile_to_ax) (struct internalvar *var,
1246 struct agent_expr *expr,
1247 struct axs_value *value,
1248 void *data);
1249 };
1250
1251 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1252 const struct internalvar_funcs *funcs,
1253 void *data);
1254
1255 /* Compile an internal variable to an agent expression. VAR is the
1256 variable to compile; EXPR and VALUE are the agent expression we are
1257 updating. This will return 0 if there is no known way to compile
1258 VAR, and 1 if VAR was successfully compiled. It may also throw an
1259 exception on error. */
1260
1261 extern int compile_internalvar_to_ax (struct internalvar *var,
1262 struct agent_expr *expr,
1263 struct axs_value *value);
1264
1265 extern struct internalvar *lookup_internalvar (const char *name);
1266
1267 extern int value_equal (struct value *arg1, struct value *arg2);
1268
1269 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1270
1271 extern int value_less (struct value *arg1, struct value *arg2);
1272
1273 /* Simulate the C operator ! -- return true if ARG1 contains zero. */
1274 extern bool value_logical_not (struct value *arg1);
1275
1276 /* Returns true if the value VAL represents a true value. */
1277 static inline bool
1278 value_true (struct value *val)
1279 {
1280 return !value_logical_not (val);
1281 }
1282
1283 /* C++ */
1284
1285 extern struct value *value_of_this (const struct language_defn *lang);
1286
1287 extern struct value *value_of_this_silent (const struct language_defn *lang);
1288
1289 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1290 enum exp_opcode op,
1291 enum exp_opcode otherop,
1292 enum noside noside);
1293
1294 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1295 enum noside noside);
1296
1297 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1298 int j, struct type *type, LONGEST offset);
1299
1300 extern int binop_types_user_defined_p (enum exp_opcode op,
1301 struct type *type1,
1302 struct type *type2);
1303
1304 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1305 struct value *arg2);
1306
1307 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1308
1309 extern int destructor_name_p (const char *name, struct type *type);
1310
1311 extern value_ref_ptr release_value (struct value *val);
1312
1313 extern int record_latest_value (struct value *val);
1314
1315 extern void modify_field (struct type *type, gdb_byte *addr,
1316 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1317
1318 extern void type_print (struct type *type, const char *varstring,
1319 struct ui_file *stream, int show);
1320
1321 extern std::string type_to_string (struct type *type);
1322
1323 extern gdb_byte *baseclass_addr (struct type *type, int index,
1324 gdb_byte *valaddr,
1325 struct value **valuep, int *errp);
1326
1327 extern void print_longest (struct ui_file *stream, int format,
1328 int use_local, LONGEST val);
1329
1330 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1331 struct ui_file *stream);
1332
1333 extern void value_print (struct value *val, struct ui_file *stream,
1334 const struct value_print_options *options);
1335
1336 /* Release values from the value chain and return them. Values
1337 created after MARK are released. If MARK is nullptr, or if MARK is
1338 not found on the value chain, then all values are released. Values
1339 are returned in reverse order of creation; that is, newest
1340 first. */
1341
1342 extern std::vector<value_ref_ptr> value_release_to_mark
1343 (const struct value *mark);
1344
1345 extern void common_val_print (struct value *val,
1346 struct ui_file *stream, int recurse,
1347 const struct value_print_options *options,
1348 const struct language_defn *language);
1349
1350 extern int val_print_string (struct type *elttype, const char *encoding,
1351 CORE_ADDR addr, int len,
1352 struct ui_file *stream,
1353 const struct value_print_options *options);
1354
1355 extern void print_variable_and_value (const char *name,
1356 struct symbol *var,
1357 frame_info_ptr frame,
1358 struct ui_file *stream,
1359 int indent);
1360
1361 extern void typedef_print (struct type *type, struct symbol *news,
1362 struct ui_file *stream);
1363
1364 extern const char *internalvar_name (const struct internalvar *var);
1365
1366 extern void preserve_values (struct objfile *);
1367
1368 /* From values.c */
1369
1370 extern struct value *value_copy (const value *);
1371
1372 extern struct value *value_non_lval (struct value *);
1373
1374 extern void value_force_lval (struct value *, CORE_ADDR);
1375
1376 extern struct value *make_cv_value (int, int, struct value *);
1377
1378 extern void preserve_one_value (struct value *, struct objfile *, htab_t);
1379
1380 /* From valops.c */
1381
1382 extern struct value *varying_to_slice (struct value *);
1383
1384 extern struct value *value_slice (struct value *, int, int);
1385
1386 /* Create a complex number. The type is the complex type; the values
1387 are cast to the underlying scalar type before the complex number is
1388 created. */
1389
1390 extern struct value *value_literal_complex (struct value *, struct value *,
1391 struct type *);
1392
1393 /* Return the real part of a complex value. */
1394
1395 extern struct value *value_real_part (struct value *value);
1396
1397 /* Return the imaginary part of a complex value. */
1398
1399 extern struct value *value_imaginary_part (struct value *value);
1400
1401 extern struct value *find_function_in_inferior (const char *,
1402 struct objfile **);
1403
1404 extern struct value *value_allocate_space_in_inferior (int);
1405
1406 /* User function handler. */
1407
1408 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1409 const struct language_defn *language,
1410 void *cookie,
1411 int argc,
1412 struct value **argv);
1413
1414 /* Add a new internal function. NAME is the name of the function; DOC
1415 is a documentation string describing the function. HANDLER is
1416 called when the function is invoked. COOKIE is an arbitrary
1417 pointer which is passed to HANDLER and is intended for "user
1418 data". */
1419
1420 extern void add_internal_function (const char *name, const char *doc,
1421 internal_function_fn handler,
1422 void *cookie);
1423
1424 /* This overload takes an allocated documentation string. */
1425
1426 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1427 gdb::unique_xmalloc_ptr<char> &&doc,
1428 internal_function_fn handler,
1429 void *cookie);
1430
1431 struct value *call_internal_function (struct gdbarch *gdbarch,
1432 const struct language_defn *language,
1433 struct value *function,
1434 int argc, struct value **argv);
1435
1436 const char *value_internal_function_name (struct value *);
1437
1438 /* Build a value wrapping and representing WORKER. The value takes ownership
1439 of the xmethod_worker object. */
1440
1441 extern struct value *value_from_xmethod (xmethod_worker_up &&worker);
1442
1443 extern struct type *result_type_of_xmethod (struct value *method,
1444 gdb::array_view<value *> argv);
1445
1446 extern struct value *call_xmethod (struct value *method,
1447 gdb::array_view<value *> argv);
1448
1449 /* Destroy the values currently allocated. This is called when GDB is
1450 exiting (e.g., on quit_force). */
1451 extern void finalize_values ();
1452
1453 /* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1454 of floating-point, fixed-point, or integer type. */
1455 extern gdb_mpq value_to_gdb_mpq (struct value *value);
1456
1457 /* While an instance of this class is live, and array values that are
1458 created, that are larger than max_value_size, will be restricted in size
1459 to a particular number of elements. */
1460
1461 struct scoped_array_length_limiting
1462 {
1463 /* Limit any large array values to only contain ELEMENTS elements. */
1464 scoped_array_length_limiting (int elements);
1465
1466 /* Restore the previous array value limit. */
1467 ~scoped_array_length_limiting ();
1468
1469 private:
1470 /* Used to hold the previous array value element limit. */
1471 gdb::optional<int> m_old_value;
1472 };
1473
1474 #endif /* !defined (VALUE_H) */