Turn some xmethod functions into methods
[binutils-gdb.git] / gdb / value.h
1 /* Definitions for values of C expressions, for GDB.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
22
23 #include "frame.h" /* For struct frame_id. */
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26 #include "gmp-utils.h"
27
28 struct block;
29 struct expression;
30 struct regcache;
31 struct symbol;
32 struct type;
33 struct ui_file;
34 struct language_defn;
35 struct value_print_options;
36
37 /* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
40
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
46
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
49
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
54
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
58
59 - Any other similar scenario.
60
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
65
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
70
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
75
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
79
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
83 */
84
85 extern bool overload_resolution;
86
87 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
88
89 struct range
90 {
91 /* Lowest offset in the range. */
92 LONGEST offset;
93
94 /* Length of the range. */
95 ULONGEST length;
96
97 /* Returns true if THIS is strictly less than OTHER, useful for
98 searching. We keep ranges sorted by offset and coalesce
99 overlapping and contiguous ranges, so this just compares the
100 starting offset. */
101
102 bool operator< (const range &other) const
103 {
104 return offset < other.offset;
105 }
106
107 /* Returns true if THIS is equal to OTHER. */
108 bool operator== (const range &other) const
109 {
110 return offset == other.offset && length == other.length;
111 }
112 };
113
114 /* A policy class to interface gdb::ref_ptr with struct value. */
115
116 struct value_ref_policy
117 {
118 static void incref (struct value *ptr);
119 static void decref (struct value *ptr);
120 };
121
122 /* A gdb:;ref_ptr pointer to a struct value. */
123
124 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
125
126 /* Note that the fields in this structure are arranged to save a bit
127 of memory. */
128
129 struct value
130 {
131 private:
132
133 /* Values can only be created via "static constructors". */
134 explicit value (struct type *type_)
135 : m_modifiable (1),
136 m_lazy (1),
137 m_initialized (1),
138 m_stack (0),
139 m_is_zero (false),
140 m_in_history (false),
141 m_type (type_),
142 m_enclosing_type (type_)
143 {
144 }
145
146 public:
147
148 /* Allocate a lazy value for type TYPE. Its actual content is
149 "lazily" allocated too: the content field of the return value is
150 NULL; it will be allocated when it is fetched from the target. */
151 static struct value *allocate_lazy (struct type *type);
152
153 /* Allocate a value and its contents for type TYPE. */
154 static struct value *allocate (struct type *type);
155
156 /* Create a computed lvalue, with type TYPE, function pointers
157 FUNCS, and closure CLOSURE. */
158 static struct value *allocate_computed (struct type *type,
159 const struct lval_funcs *funcs,
160 void *closure);
161
162 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
163 static struct value *allocate_optimized_out (struct type *type);
164
165 /* Create a value of type TYPE that is zero, and return it. */
166 static struct value *zero (struct type *type, enum lval_type lv);
167
168 /* Return a copy of the value. It contains the same contents, for
169 the same memory address, but it's a different block of
170 storage. */
171 struct value *copy () const;
172
173 ~value ();
174
175 DISABLE_COPY_AND_ASSIGN (value);
176
177 /* Type of the value. */
178 struct type *type () const
179 { return m_type; }
180
181 /* This is being used to change the type of an existing value, that
182 code should instead be creating a new value with the changed type
183 (but possibly shared content). */
184 void deprecated_set_type (struct type *type)
185 { m_type = type; }
186
187 /* Return the gdbarch associated with the value. */
188 struct gdbarch *arch () const;
189
190 /* Only used for bitfields; number of bits contained in them. */
191 LONGEST bitsize () const
192 { return m_bitsize; }
193
194 void set_bitsize (LONGEST bit)
195 { m_bitsize = bit; }
196
197 /* Only used for bitfields; position of start of field. For
198 little-endian targets, it is the position of the LSB. For
199 big-endian targets, it is the position of the MSB. */
200 LONGEST bitpos () const
201 { return m_bitpos; }
202
203 void set_bitpos (LONGEST bit)
204 { m_bitpos = bit; }
205
206 /* Only used for bitfields; the containing value. This allows a
207 single read from the target when displaying multiple
208 bitfields. */
209 value *parent () const
210 { return m_parent.get (); }
211
212 void set_parent (struct value *parent)
213 { m_parent = value_ref_ptr::new_reference (parent); }
214
215 /* Describes offset of a value within lval of a structure in bytes.
216 If lval == lval_memory, this is an offset to the address. If
217 lval == lval_register, this is a further offset from
218 location.address within the registers structure. Note also the
219 member embedded_offset below. */
220 LONGEST offset () const
221 { return m_offset; }
222
223 void set_offset (LONGEST offset)
224 { m_offset = offset; }
225
226 /* The comment from "struct value" reads: ``Is it modifiable? Only
227 relevant if lval != not_lval.''. Shouldn't the value instead be
228 not_lval and be done with it? */
229 int deprecated_modifiable () const
230 { return m_modifiable; }
231
232 LONGEST pointed_to_offset () const
233 { return m_pointed_to_offset; }
234
235 void set_pointed_to_offset (LONGEST val)
236 { m_pointed_to_offset = val; }
237
238 LONGEST embedded_offset () const
239 { return m_embedded_offset; }
240
241 void set_embedded_offset (LONGEST val)
242 { m_embedded_offset = val; }
243
244 /* If zero, contents of this value are in the contents field. If
245 nonzero, contents are in inferior. If the lval field is lval_memory,
246 the contents are in inferior memory at location.address plus offset.
247 The lval field may also be lval_register.
248
249 WARNING: This field is used by the code which handles watchpoints
250 (see breakpoint.c) to decide whether a particular value can be
251 watched by hardware watchpoints. If the lazy flag is set for some
252 member of a value chain, it is assumed that this member of the
253 chain doesn't need to be watched as part of watching the value
254 itself. This is how GDB avoids watching the entire struct or array
255 when the user wants to watch a single struct member or array
256 element. If you ever change the way lazy flag is set and reset, be
257 sure to consider this use as well! */
258
259 int lazy () const
260 { return m_lazy; }
261
262 void set_lazy (int val)
263 { m_lazy = val; }
264
265 /* If a value represents a C++ object, then the `type' field gives the
266 object's compile-time type. If the object actually belongs to some
267 class derived from `type', perhaps with other base classes and
268 additional members, then `type' is just a subobject of the real
269 thing, and the full object is probably larger than `type' would
270 suggest.
271
272 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
273 actually determine the object's run-time type by looking at the
274 run-time type information in the vtable. When this information is
275 available, we may elect to read in the entire object, for several
276 reasons:
277
278 - When printing the value, the user would probably rather see the
279 full object, not just the limited portion apparent from the
280 compile-time type.
281
282 - If `type' has virtual base classes, then even printing `type'
283 alone may require reaching outside the `type' portion of the
284 object to wherever the virtual base class has been stored.
285
286 When we store the entire object, `enclosing_type' is the run-time
287 type -- the complete object -- and `embedded_offset' is the offset
288 of `type' within that larger type, in bytes. The contents()
289 method takes `embedded_offset' into account, so most GDB code
290 continues to see the `type' portion of the value, just as the
291 inferior would.
292
293 If `type' is a pointer to an object, then `enclosing_type' is a
294 pointer to the object's run-time type, and `pointed_to_offset' is
295 the offset in bytes from the full object to the pointed-to object
296 -- that is, the value `embedded_offset' would have if we followed
297 the pointer and fetched the complete object. (I don't really see
298 the point. Why not just determine the run-time type when you
299 indirect, and avoid the special case? The contents don't matter
300 until you indirect anyway.)
301
302 If we're not doing anything fancy, `enclosing_type' is equal to
303 `type', and `embedded_offset' is zero, so everything works
304 normally. */
305
306 struct type *enclosing_type () const
307 { return m_enclosing_type; }
308
309 void set_enclosing_type (struct type *new_type);
310
311 int stack () const
312 { return m_stack; }
313
314 void set_stack (int val)
315 { m_stack = val; }
316
317 /* If this value is lval_computed, return its lval_funcs
318 structure. */
319 const struct lval_funcs *computed_funcs () const;
320
321 /* If this value is lval_computed, return its closure. The meaning
322 of the returned value depends on the functions this value
323 uses. */
324 void *computed_closure () const;
325
326 enum lval_type *deprecated_lval_hack ()
327 { return &m_lval; }
328
329 enum lval_type lval () const
330 { return m_lval; }
331
332 /* Set or return field indicating whether a variable is initialized or
333 not, based on debugging information supplied by the compiler.
334 1 = initialized; 0 = uninitialized. */
335 int initialized () const
336 { return m_initialized; }
337
338 void set_initialized (int value)
339 { m_initialized = value; }
340
341 /* If lval == lval_memory, return the address in the inferior. If
342 lval == lval_register, return the byte offset into the registers
343 structure. Otherwise, return 0. The returned address
344 includes the offset, if any. */
345 CORE_ADDR address () const;
346
347 /* Like address, except the result does not include value's
348 offset. */
349 CORE_ADDR raw_address () const;
350
351 /* Set the address of a value. */
352 void set_address (CORE_ADDR);
353
354 struct internalvar **deprecated_internalvar_hack ()
355 { return &m_location.internalvar; }
356
357 struct frame_id *deprecated_next_frame_id_hack ();
358
359 int *deprecated_regnum_hack ();
360
361 /* contents() and contents_raw() both return the address of the gdb
362 buffer used to hold a copy of the contents of the lval.
363 contents() is used when the contents of the buffer are needed --
364 it uses fetch_lazy() to load the buffer from the process being
365 debugged if it hasn't already been loaded (contents_writeable()
366 is used when a writeable but fetched buffer is required)..
367 contents_raw() is used when data is being stored into the buffer,
368 or when it is certain that the contents of the buffer are valid.
369
370 Note: The contents pointer is adjusted by the offset required to
371 get to the real subobject, if the value happens to represent
372 something embedded in a larger run-time object. */
373 gdb::array_view<gdb_byte> contents_raw ();
374
375 /* Actual contents of the value. For use of this value; setting it
376 uses the stuff above. Not valid if lazy is nonzero. Target
377 byte-order. We force it to be aligned properly for any possible
378 value. Note that a value therefore extends beyond what is
379 declared here. */
380 gdb::array_view<const gdb_byte> contents ();
381
382 /* The ALL variants of the above two methods do not adjust the
383 returned pointer by the embedded_offset value. */
384 gdb::array_view<const gdb_byte> contents_all ();
385 gdb::array_view<gdb_byte> contents_all_raw ();
386
387 gdb::array_view<gdb_byte> contents_writeable ();
388
389 /* Like contents_all, but does not require that the returned bits be
390 valid. This should only be used in situations where you plan to
391 check the validity manually. */
392 gdb::array_view<const gdb_byte> contents_for_printing ();
393
394 /* Like contents_for_printing, but accepts a constant value pointer.
395 Unlike contents_for_printing however, the pointed value must
396 _not_ be lazy. */
397 gdb::array_view<const gdb_byte> contents_for_printing () const;
398
399 /* Load the actual content of a lazy value. Fetch the data from the
400 user's process and clear the lazy flag to indicate that the data in
401 the buffer is valid.
402
403 If the value is zero-length, we avoid calling read_memory, which
404 would abort. We mark the value as fetched anyway -- all 0 bytes of
405 it. */
406 void fetch_lazy ();
407
408 /* Compare LENGTH bytes of this value's contents starting at OFFSET1
409 with LENGTH bytes of VAL2's contents starting at OFFSET2.
410
411 Note that "contents" refers to the whole value's contents
412 (value_contents_all), without any embedded offset adjustment. For
413 example, to compare a complete object value with itself, including
414 its enclosing type chunk, you'd do:
415
416 int len = check_typedef (val->enclosing_type ())->length ();
417 val->contents_eq (0, val, 0, len);
418
419 Returns true iff the set of available/valid contents match.
420
421 Optimized-out contents are equal to optimized-out contents, and are
422 not equal to non-optimized-out contents.
423
424 Unavailable contents are equal to unavailable contents, and are not
425 equal to non-unavailable contents.
426
427 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
428 represent different available/valid bytes, in a value with length
429 16:
430
431 offset: 0 4 8 12 16
432 contents: xxxxVVVVxxxxVVZZ
433
434 then:
435
436 val->contents_eq(0, val, 8, 6) => true
437 val->contents_eq(0, val, 4, 4) => false
438 val->contents_eq(0, val, 8, 8) => false
439 val->contents_eq(4, val, 12, 2) => true
440 val->contents_eq(4, val, 12, 4) => true
441 val->contents_eq(3, val, 4, 4) => true
442
443 If 'x's represent an unavailable byte, 'o' represents an optimized
444 out byte, in a value with length 8:
445
446 offset: 0 4 8
447 contents: xxxxoooo
448
449 then:
450
451 val->contents_eq(0, val, 2, 2) => true
452 val->contents_eq(4, val, 6, 2) => true
453 val->contents_eq(0, val, 4, 4) => true
454
455 We only know whether a value chunk is unavailable or optimized out
456 if we've tried to read it. As this routine is used by printing
457 routines, which may be printing values in the value history, long
458 after the inferior is gone, it works with const values. Therefore,
459 this routine must not be called with lazy values. */
460
461 bool contents_eq (LONGEST offset1, const struct value *val2, LONGEST offset2,
462 LONGEST length) const;
463
464 /* An overload of contents_eq that compares the entirety of both
465 values. */
466 bool contents_eq (const struct value *val2) const;
467
468 /* Given a value, determine whether the bits starting at OFFSET and
469 extending for LENGTH bits are a synthetic pointer. */
470
471 int bits_synthetic_pointer (LONGEST offset, LONGEST length) const;
472
473 /* Increase this value's reference count. */
474 void incref ()
475 { ++m_reference_count; }
476
477 /* Decrease this value's reference count. When the reference count
478 drops to 0, it will be freed. */
479 void decref ();
480
481 /* Given a value, determine whether the contents bytes starting at
482 OFFSET and extending for LENGTH bytes are available. This returns
483 nonzero if all bytes in the given range are available, zero if any
484 byte is unavailable. */
485 int bytes_available (LONGEST offset, ULONGEST length) const;
486
487 /* Given a value, determine whether the contents bits starting at
488 OFFSET and extending for LENGTH bits are available. This returns
489 nonzero if all bits in the given range are available, zero if any
490 bit is unavailable. */
491 int bits_available (LONGEST offset, ULONGEST length) const;
492
493 /* Like bytes_available, but return false if any byte in the
494 whole object is unavailable. */
495 int entirely_available ();
496
497 /* Like entirely_available, but return false if any byte in the
498 whole object is available. */
499 int entirely_unavailable ()
500 { return entirely_covered_by_range_vector (m_unavailable); }
501
502 /* Mark this value's content bytes starting at OFFSET and extending
503 for LENGTH bytes as unavailable. */
504 void mark_bytes_unavailable (LONGEST offset, ULONGEST length);
505
506 /* Mark this value's content bits starting at OFFSET and extending
507 for LENGTH bits as unavailable. */
508 void mark_bits_unavailable (LONGEST offset, ULONGEST length);
509
510 /* If nonzero, this is the value of a variable which does not actually
511 exist in the program, at least partially. If the value is lazy,
512 this may fetch it now. */
513 int optimized_out ();
514
515 /* Given a value, return true if any of the contents bits starting at
516 OFFSET and extending for LENGTH bits is optimized out, false
517 otherwise. */
518 int bits_any_optimized_out (int bit_offset, int bit_length) const;
519
520 /* Like optimized_out, but return true iff the whole value is
521 optimized out. */
522 int entirely_optimized_out ()
523 {
524 return entirely_covered_by_range_vector (m_optimized_out);
525 }
526
527 /* Mark this value's content bytes starting at OFFSET and extending
528 for LENGTH bytes as optimized out. */
529 void mark_bytes_optimized_out (int offset, int length);
530
531 /* Mark this value's content bits starting at OFFSET and extending
532 for LENGTH bits as optimized out. */
533 void mark_bits_optimized_out (LONGEST offset, LONGEST length);
534
535 /* Return a version of this that is non-lvalue. */
536 struct value *non_lval ();
537
538 /* Write contents of this value at ADDR and set its lval type to be
539 LVAL_MEMORY. */
540 void force_lval (CORE_ADDR);
541
542 /* Set this values's location as appropriate for a component of
543 WHOLE --- regardless of what kind of lvalue WHOLE is. */
544 void set_component_location (const struct value *whole);
545
546 /* Build a value wrapping and representing WORKER. The value takes
547 ownership of the xmethod_worker object. */
548 static struct value *from_xmethod (xmethod_worker_up &&worker);
549
550 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
551 struct type *result_type_of_xmethod (gdb::array_view<value *> argv);
552
553 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value
554 METHOD. */
555 struct value *call_xmethod (gdb::array_view<value *> argv);
556
557
558 /* Type of value; either not an lval, or one of the various
559 different possible kinds of lval. */
560 enum lval_type m_lval = not_lval;
561
562 /* Is it modifiable? Only relevant if lval != not_lval. */
563 unsigned int m_modifiable : 1;
564
565 /* If zero, contents of this value are in the contents field. If
566 nonzero, contents are in inferior. If the lval field is lval_memory,
567 the contents are in inferior memory at location.address plus offset.
568 The lval field may also be lval_register.
569
570 WARNING: This field is used by the code which handles watchpoints
571 (see breakpoint.c) to decide whether a particular value can be
572 watched by hardware watchpoints. If the lazy flag is set for
573 some member of a value chain, it is assumed that this member of
574 the chain doesn't need to be watched as part of watching the
575 value itself. This is how GDB avoids watching the entire struct
576 or array when the user wants to watch a single struct member or
577 array element. If you ever change the way lazy flag is set and
578 reset, be sure to consider this use as well! */
579 unsigned int m_lazy : 1;
580
581 /* If value is a variable, is it initialized or not. */
582 unsigned int m_initialized : 1;
583
584 /* If value is from the stack. If this is set, read_stack will be
585 used instead of read_memory to enable extra caching. */
586 unsigned int m_stack : 1;
587
588 /* True if this is a zero value, created by 'value::zero'; false
589 otherwise. */
590 bool m_is_zero : 1;
591
592 /* True if this a value recorded in value history; false otherwise. */
593 bool m_in_history : 1;
594
595 /* Location of value (if lval). */
596 union
597 {
598 /* If lval == lval_memory, this is the address in the inferior */
599 CORE_ADDR address;
600
601 /*If lval == lval_register, the value is from a register. */
602 struct
603 {
604 /* Register number. */
605 int regnum;
606 /* Frame ID of "next" frame to which a register value is relative.
607 If the register value is found relative to frame F, then the
608 frame id of F->next will be stored in next_frame_id. */
609 struct frame_id next_frame_id;
610 } reg;
611
612 /* Pointer to internal variable. */
613 struct internalvar *internalvar;
614
615 /* Pointer to xmethod worker. */
616 struct xmethod_worker *xm_worker;
617
618 /* If lval == lval_computed, this is a set of function pointers
619 to use to access and describe the value, and a closure pointer
620 for them to use. */
621 struct
622 {
623 /* Functions to call. */
624 const struct lval_funcs *funcs;
625
626 /* Closure for those functions to use. */
627 void *closure;
628 } computed;
629 } m_location {};
630
631 /* Describes offset of a value within lval of a structure in target
632 addressable memory units. Note also the member embedded_offset
633 below. */
634 LONGEST m_offset = 0;
635
636 /* Only used for bitfields; number of bits contained in them. */
637 LONGEST m_bitsize = 0;
638
639 /* Only used for bitfields; position of start of field. For
640 little-endian targets, it is the position of the LSB. For
641 big-endian targets, it is the position of the MSB. */
642 LONGEST m_bitpos = 0;
643
644 /* The number of references to this value. When a value is created,
645 the value chain holds a reference, so REFERENCE_COUNT is 1. If
646 release_value is called, this value is removed from the chain but
647 the caller of release_value now has a reference to this value.
648 The caller must arrange for a call to value_free later. */
649 int m_reference_count = 1;
650
651 /* Only used for bitfields; the containing value. This allows a
652 single read from the target when displaying multiple
653 bitfields. */
654 value_ref_ptr m_parent;
655
656 /* Type of the value. */
657 struct type *m_type;
658
659 /* If a value represents a C++ object, then the `type' field gives
660 the object's compile-time type. If the object actually belongs
661 to some class derived from `type', perhaps with other base
662 classes and additional members, then `type' is just a subobject
663 of the real thing, and the full object is probably larger than
664 `type' would suggest.
665
666 If `type' is a dynamic class (i.e. one with a vtable), then GDB
667 can actually determine the object's run-time type by looking at
668 the run-time type information in the vtable. When this
669 information is available, we may elect to read in the entire
670 object, for several reasons:
671
672 - When printing the value, the user would probably rather see the
673 full object, not just the limited portion apparent from the
674 compile-time type.
675
676 - If `type' has virtual base classes, then even printing `type'
677 alone may require reaching outside the `type' portion of the
678 object to wherever the virtual base class has been stored.
679
680 When we store the entire object, `enclosing_type' is the run-time
681 type -- the complete object -- and `embedded_offset' is the
682 offset of `type' within that larger type, in target addressable memory
683 units. The contents() method takes `embedded_offset' into account,
684 so most GDB code continues to see the `type' portion of the value, just
685 as the inferior would.
686
687 If `type' is a pointer to an object, then `enclosing_type' is a
688 pointer to the object's run-time type, and `pointed_to_offset' is
689 the offset in target addressable memory units from the full object
690 to the pointed-to object -- that is, the value `embedded_offset' would
691 have if we followed the pointer and fetched the complete object.
692 (I don't really see the point. Why not just determine the
693 run-time type when you indirect, and avoid the special case? The
694 contents don't matter until you indirect anyway.)
695
696 If we're not doing anything fancy, `enclosing_type' is equal to
697 `type', and `embedded_offset' is zero, so everything works
698 normally. */
699 struct type *m_enclosing_type;
700 LONGEST m_embedded_offset = 0;
701 LONGEST m_pointed_to_offset = 0;
702
703 /* Actual contents of the value. Target byte-order.
704
705 May be nullptr if the value is lazy or is entirely optimized out.
706 Guaranteed to be non-nullptr otherwise. */
707 gdb::unique_xmalloc_ptr<gdb_byte> m_contents;
708
709 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
710 rather than available, since the common and default case is for a
711 value to be available. This is filled in at value read time.
712 The unavailable ranges are tracked in bits. Note that a contents
713 bit that has been optimized out doesn't really exist in the
714 program, so it can't be marked unavailable either. */
715 std::vector<range> m_unavailable;
716
717 /* Likewise, but for optimized out contents (a chunk of the value of
718 a variable that does not actually exist in the program). If LVAL
719 is lval_register, this is a register ($pc, $sp, etc., never a
720 program variable) that has not been saved in the frame. Not
721 saved registers and optimized-out program variables values are
722 treated pretty much the same, except not-saved registers have a
723 different string representation and related error strings. */
724 std::vector<range> m_optimized_out;
725
726 /* This is only non-zero for values of TYPE_CODE_ARRAY and if the size of
727 the array in inferior memory is greater than max_value_size. If these
728 conditions are met then, when the value is loaded from the inferior
729 GDB will only load a portion of the array into memory, and
730 limited_length will be set to indicate the length in octets that were
731 loaded from the inferior. */
732 ULONGEST m_limited_length = 0;
733
734 private:
735
736 /* Allocate a value and its contents for type TYPE. If CHECK_SIZE
737 is true, then apply the usual max-value-size checks. */
738 static struct value *allocate (struct type *type, bool check_size);
739
740 /* Helper for fetch_lazy when the value is a bitfield. */
741 void fetch_lazy_bitfield ();
742
743 /* Helper for fetch_lazy when the value is in memory. */
744 void fetch_lazy_memory ();
745
746 /* Helper for fetch_lazy when the value is in a register. */
747 void fetch_lazy_register ();
748
749 /* Try to limit ourselves to only fetching the limited number of
750 elements. However, if this limited number of elements still
751 puts us over max_value_size, then we still refuse it and
752 return failure here, which will ultimately throw an error. */
753 bool set_limited_array_length ();
754
755 public: /* Temporary */
756
757 /* Allocate the contents of this value if it has not been allocated
758 yet. If CHECK_SIZE is true, then apply the usual max-value-size
759 checks. */
760 void allocate_contents (bool check_size);
761
762 private:
763
764 /* Helper function for value_contents_eq. The only difference is that
765 this function is bit rather than byte based.
766
767 Compare LENGTH bits of this value's contents starting at OFFSET1
768 bits with LENGTH bits of VAL2's contents starting at OFFSET2
769 bits. Return true if the available bits match. */
770 bool contents_bits_eq (int offset1, const struct value *val2, int offset2,
771 int length) const;
772
773 void require_not_optimized_out () const;
774 void require_available () const;
775
776 /* Returns true if this value is entirely covered by RANGES. If the
777 value is lazy, it'll be read now. Note that RANGE is a pointer
778 to pointer because reading the value might change *RANGE. */
779 int entirely_covered_by_range_vector (const std::vector<range> &ranges);
780 };
781
782 inline void
783 value_ref_policy::incref (struct value *ptr)
784 {
785 ptr->incref ();
786 }
787
788 inline void
789 value_ref_policy::decref (struct value *ptr)
790 {
791 ptr->decref ();
792 }
793
794 /* Returns value_type or value_enclosing_type depending on
795 value_print_options.objectprint.
796
797 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
798 only for pointers and references, else it will be returned
799 for all the types (e.g. structures). This option is useful
800 to prevent retrieving enclosing type for the base classes fields.
801
802 REAL_TYPE_FOUND is used to inform whether the real type was found
803 (or just static type was used). The NULL may be passed if it is not
804 necessary. */
805
806 extern struct type *value_actual_type (struct value *value,
807 int resolve_simple_types,
808 int *real_type_found);
809
810 /* For lval_computed values, this structure holds functions used to
811 retrieve and set the value (or portions of the value).
812
813 For each function, 'V' is the 'this' pointer: an lval_funcs
814 function F may always assume that the V it receives is an
815 lval_computed value, and has F in the appropriate slot of its
816 lval_funcs structure. */
817
818 struct lval_funcs
819 {
820 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
821 a problem arises in obtaining VALUE's bits, this function should
822 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
823 non-optimized-out value is an internal error. */
824 void (*read) (struct value *v);
825
826 /* Handle an assignment TOVAL = FROMVAL by writing the value of
827 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
828 been updated. If a problem arises in doing so, this function
829 should call 'error'. If it is NULL such TOVAL assignment is an error as
830 TOVAL is not considered as an lvalue. */
831 void (*write) (struct value *toval, struct value *fromval);
832
833 /* Return true if any part of V is optimized out, false otherwise.
834 This will only be called for lazy values -- if the value has been
835 fetched, then the value's optimized-out bits are consulted
836 instead. */
837 bool (*is_optimized_out) (struct value *v);
838
839 /* If non-NULL, this is used to implement pointer indirection for
840 this value. This method may return NULL, in which case value_ind
841 will fall back to ordinary indirection. */
842 struct value *(*indirect) (struct value *value);
843
844 /* If non-NULL, this is used to implement reference resolving for
845 this value. This method may return NULL, in which case coerce_ref
846 will fall back to ordinary references resolving. */
847 struct value *(*coerce_ref) (const struct value *value);
848
849 /* If non-NULL, this is used to determine whether the indicated bits
850 of VALUE are a synthetic pointer. */
851 int (*check_synthetic_pointer) (const struct value *value,
852 LONGEST offset, int length);
853
854 /* Return a duplicate of VALUE's closure, for use in a new value.
855 This may simply return the same closure, if VALUE's is
856 reference-counted or statically allocated.
857
858 This may be NULL, in which case VALUE's closure is re-used in the
859 new value. */
860 void *(*copy_closure) (const struct value *v);
861
862 /* Drop VALUE's reference to its closure. Maybe this frees the
863 closure; maybe this decrements a reference count; maybe the
864 closure is statically allocated and this does nothing.
865
866 This may be NULL, in which case no action is taken to free
867 VALUE's closure. */
868 void (*free_closure) (struct value *v);
869 };
870
871 /* Throw an error complaining that the value has been optimized
872 out. */
873
874 extern void error_value_optimized_out (void);
875
876 /* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
877 single value might have multiple LVALs), this hacked interface is
878 limited to just the first PIECE. Expect further change. */
879 /* Type of value; either not an lval, or one of the various different
880 possible kinds of lval. */
881 #define VALUE_LVAL(val) (*((val)->deprecated_lval_hack ()))
882
883 /* Pointer to internal variable. */
884 #define VALUE_INTERNALVAR(val) (*((val)->deprecated_internalvar_hack ()))
885
886 /* Frame ID of "next" frame to which a register value is relative. A
887 register value is indicated by VALUE_LVAL being set to lval_register.
888 So, if the register value is found relative to frame F, then the
889 frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
890 #define VALUE_NEXT_FRAME_ID(val) (*((val)->deprecated_next_frame_id_hack ()))
891
892 /* Register number if the value is from a register. */
893 #define VALUE_REGNUM(val) (*((val)->deprecated_regnum_hack ()))
894
895 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
896 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
897
898 extern struct value *coerce_ref_if_computed (const struct value *arg);
899
900 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
901 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
902 ORIGINAL_VAL are the type and value of the original reference or
903 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
904 the address that was dereferenced.
905
906 Note, that VALUE is modified by this function.
907
908 It is a common implementation for coerce_ref and value_ind. */
909
910 extern struct value * readjust_indirect_value_type (struct value *value,
911 struct type *enc_type,
912 const struct type *original_type,
913 struct value *original_val,
914 CORE_ADDR original_value_address);
915
916 /* Convert a REF to the object referenced. */
917
918 extern struct value *coerce_ref (struct value *value);
919
920 /* If ARG is an array, convert it to a pointer.
921 If ARG is a function, convert it to a function pointer.
922
923 References are dereferenced. */
924
925 extern struct value *coerce_array (struct value *value);
926
927 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
928 which is (or will be copied to) VAL's contents buffer offset by
929 BIT_OFFSET bits. Marks value contents ranges as unavailable if
930 the corresponding memory is likewise unavailable. STACK indicates
931 whether the memory is known to be stack memory. */
932
933 extern void read_value_memory (struct value *val, LONGEST bit_offset,
934 int stack, CORE_ADDR memaddr,
935 gdb_byte *buffer, size_t length);
936
937 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
938 into each element of a new vector value with VECTOR_TYPE. */
939
940 struct value *value_vector_widen (struct value *scalar_value,
941 struct type *vector_type);
942
943 \f
944
945 #include "symtab.h"
946 #include "gdbtypes.h"
947 #include "expression.h"
948
949 class frame_info_ptr;
950 struct fn_field;
951
952 extern int print_address_demangle (const struct value_print_options *,
953 struct gdbarch *, CORE_ADDR,
954 struct ui_file *, int);
955
956 /* Returns true if VAL is of floating-point type. In addition,
957 throws an error if the value is an invalid floating-point value. */
958 extern bool is_floating_value (struct value *val);
959
960 extern LONGEST value_as_long (struct value *val);
961 extern CORE_ADDR value_as_address (struct value *val);
962
963 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
964 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
965
966 extern LONGEST unpack_field_as_long (struct type *type,
967 const gdb_byte *valaddr,
968 int fieldno);
969
970 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
971 VALADDR, and store the result in *RESULT.
972 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
973 BITSIZE is zero, then the length is taken from FIELD_TYPE.
974
975 Extracting bits depends on endianness of the machine. Compute the
976 number of least significant bits to discard. For big endian machines,
977 we compute the total number of bits in the anonymous object, subtract
978 off the bit count from the MSB of the object to the MSB of the
979 bitfield, then the size of the bitfield, which leaves the LSB discard
980 count. For little endian machines, the discard count is simply the
981 number of bits from the LSB of the anonymous object to the LSB of the
982 bitfield.
983
984 If the field is signed, we also do sign extension. */
985
986 extern LONGEST unpack_bits_as_long (struct type *field_type,
987 const gdb_byte *valaddr,
988 LONGEST bitpos, LONGEST bitsize);
989
990 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
991 LONGEST embedded_offset, int fieldno,
992 const struct value *val, LONGEST *result);
993
994 extern void unpack_value_bitfield (struct value *dest_val,
995 LONGEST bitpos, LONGEST bitsize,
996 const gdb_byte *valaddr,
997 LONGEST embedded_offset,
998 const struct value *val);
999
1000 extern struct value *value_field_bitfield (struct type *type, int fieldno,
1001 const gdb_byte *valaddr,
1002 LONGEST embedded_offset,
1003 const struct value *val);
1004
1005 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
1006
1007 extern struct value *value_from_longest (struct type *type, LONGEST num);
1008 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
1009 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
1010 extern struct value *value_from_host_double (struct type *type, double d);
1011 extern struct value *value_from_history_ref (const char *, const char **);
1012 extern struct value *value_from_component (struct value *, struct type *,
1013 LONGEST);
1014
1015
1016 /* Create a new value by extracting it from WHOLE. TYPE is the type
1017 of the new value. BIT_OFFSET and BIT_LENGTH describe the offset
1018 and field width of the value to extract from WHOLE -- BIT_LENGTH
1019 may differ from TYPE's length in the case where WHOLE's type is
1020 packed.
1021
1022 When the value does come from a non-byte-aligned offset or field
1023 width, it will be marked non_lval. */
1024
1025 extern struct value *value_from_component_bitsize (struct value *whole,
1026 struct type *type,
1027 LONGEST bit_offset,
1028 LONGEST bit_length);
1029
1030 extern struct value *value_at (struct type *type, CORE_ADDR addr);
1031 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
1032
1033 /* Like value_at, but ensures that the result is marked not_lval.
1034 This can be important if the memory is "volatile". */
1035 extern struct value *value_at_non_lval (struct type *type, CORE_ADDR addr);
1036
1037 extern struct value *value_from_contents_and_address_unresolved
1038 (struct type *, const gdb_byte *, CORE_ADDR);
1039 extern struct value *value_from_contents_and_address (struct type *,
1040 const gdb_byte *,
1041 CORE_ADDR);
1042 extern struct value *value_from_contents (struct type *, const gdb_byte *);
1043
1044 extern struct value *default_value_from_register (struct gdbarch *gdbarch,
1045 struct type *type,
1046 int regnum,
1047 struct frame_id frame_id);
1048
1049 extern void read_frame_register_value (struct value *value,
1050 frame_info_ptr frame);
1051
1052 extern struct value *value_from_register (struct type *type, int regnum,
1053 frame_info_ptr frame);
1054
1055 extern CORE_ADDR address_from_register (int regnum,
1056 frame_info_ptr frame);
1057
1058 extern struct value *value_of_variable (struct symbol *var,
1059 const struct block *b);
1060
1061 extern struct value *address_of_variable (struct symbol *var,
1062 const struct block *b);
1063
1064 extern struct value *value_of_register (int regnum, frame_info_ptr frame);
1065
1066 struct value *value_of_register_lazy (frame_info_ptr frame, int regnum);
1067
1068 /* Return the symbol's reading requirement. */
1069
1070 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
1071
1072 /* Return true if the symbol needs a frame. This is a wrapper for
1073 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
1074
1075 extern int symbol_read_needs_frame (struct symbol *);
1076
1077 extern struct value *read_var_value (struct symbol *var,
1078 const struct block *var_block,
1079 frame_info_ptr frame);
1080
1081 extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
1082 struct value *src, LONGEST src_offset,
1083 LONGEST length);
1084
1085 extern struct value *allocate_repeat_value (struct type *type, int count);
1086
1087 extern struct value *value_mark (void);
1088
1089 extern void value_free_to_mark (const struct value *mark);
1090
1091 /* A helper class that uses value_mark at construction time and calls
1092 value_free_to_mark in the destructor. This is used to clear out
1093 temporary values created during the lifetime of this object. */
1094 class scoped_value_mark
1095 {
1096 public:
1097
1098 scoped_value_mark ()
1099 : m_value (value_mark ())
1100 {
1101 }
1102
1103 ~scoped_value_mark ()
1104 {
1105 free_to_mark ();
1106 }
1107
1108 scoped_value_mark (scoped_value_mark &&other) = default;
1109
1110 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
1111
1112 /* Free the values currently on the value stack. */
1113 void free_to_mark ()
1114 {
1115 if (m_value != NULL)
1116 {
1117 value_free_to_mark (m_value);
1118 m_value = NULL;
1119 }
1120 }
1121
1122 private:
1123
1124 const struct value *m_value;
1125 };
1126
1127 extern struct value *value_cstring (const char *ptr, ssize_t len,
1128 struct type *char_type);
1129 extern struct value *value_string (const char *ptr, ssize_t len,
1130 struct type *char_type);
1131
1132 extern struct value *value_array (int lowbound, int highbound,
1133 struct value **elemvec);
1134
1135 extern struct value *value_concat (struct value *arg1, struct value *arg2);
1136
1137 extern struct value *value_binop (struct value *arg1, struct value *arg2,
1138 enum exp_opcode op);
1139
1140 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
1141
1142 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
1143
1144 /* Return true if VAL does not live in target memory, but should in order
1145 to operate on it. Otherwise return false. */
1146
1147 extern bool value_must_coerce_to_target (struct value *arg1);
1148
1149 extern struct value *value_coerce_to_target (struct value *arg1);
1150
1151 extern struct value *value_coerce_array (struct value *arg1);
1152
1153 extern struct value *value_coerce_function (struct value *arg1);
1154
1155 extern struct value *value_ind (struct value *arg1);
1156
1157 extern struct value *value_addr (struct value *arg1);
1158
1159 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
1160
1161 extern struct value *value_assign (struct value *toval,
1162 struct value *fromval);
1163
1164 extern struct value *value_pos (struct value *arg1);
1165
1166 extern struct value *value_neg (struct value *arg1);
1167
1168 extern struct value *value_complement (struct value *arg1);
1169
1170 extern struct value *value_struct_elt (struct value **argp,
1171 gdb::optional<gdb::array_view <value *>> args,
1172 const char *name, int *static_memfuncp,
1173 const char *err);
1174
1175 extern struct value *value_struct_elt_bitpos (struct value **argp,
1176 int bitpos,
1177 struct type *field_type,
1178 const char *err);
1179
1180 extern struct value *value_aggregate_elt (struct type *curtype,
1181 const char *name,
1182 struct type *expect_type,
1183 int want_address,
1184 enum noside noside);
1185
1186 extern struct value *value_static_field (struct type *type, int fieldno);
1187
1188 enum oload_search_type { NON_METHOD, METHOD, BOTH };
1189
1190 extern int find_overload_match (gdb::array_view<value *> args,
1191 const char *name,
1192 enum oload_search_type method,
1193 struct value **objp, struct symbol *fsym,
1194 struct value **valp, struct symbol **symp,
1195 int *staticp, const int no_adl,
1196 enum noside noside);
1197
1198 extern struct value *value_field (struct value *arg1, int fieldno);
1199
1200 extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
1201 int fieldno,
1202 struct type *arg_type);
1203
1204
1205 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
1206 int *);
1207
1208 extern struct value *value_full_object (struct value *, struct type *, int,
1209 int, int);
1210
1211 extern struct value *value_cast_pointers (struct type *, struct value *, int);
1212
1213 extern struct value *value_cast (struct type *type, struct value *arg2);
1214
1215 extern struct value *value_reinterpret_cast (struct type *type,
1216 struct value *arg);
1217
1218 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
1219
1220 extern struct value *value_one (struct type *type);
1221
1222 extern struct value *value_repeat (struct value *arg1, int count);
1223
1224 extern struct value *value_subscript (struct value *array, LONGEST index);
1225
1226 extern struct value *value_bitstring_subscript (struct type *type,
1227 struct value *bitstring,
1228 LONGEST index);
1229
1230 extern struct value *register_value_being_returned (struct type *valtype,
1231 struct regcache *retbuf);
1232
1233 extern int value_in (struct value *element, struct value *set);
1234
1235 extern int value_bit_index (struct type *type, const gdb_byte *addr,
1236 int index);
1237
1238 extern enum return_value_convention
1239 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
1240 struct type *value_type);
1241
1242 extern int using_struct_return (struct gdbarch *gdbarch,
1243 struct value *function,
1244 struct type *value_type);
1245
1246 /* Evaluate the expression EXP. If set, EXPECT_TYPE is passed to the
1247 outermost operation's evaluation. This is ignored by most
1248 operations, but may be used, e.g., to determine the type of an
1249 otherwise untyped symbol. The caller should not assume that the
1250 returned value has this type. */
1251
1252 extern struct value *evaluate_expression (struct expression *exp,
1253 struct type *expect_type = nullptr);
1254
1255 extern struct value *evaluate_type (struct expression *exp);
1256
1257 extern value *evaluate_var_value (enum noside noside, const block *blk,
1258 symbol *var);
1259
1260 extern value *evaluate_var_msym_value (enum noside noside,
1261 struct objfile *objfile,
1262 minimal_symbol *msymbol);
1263
1264 namespace expr { class operation; };
1265 extern void fetch_subexp_value (struct expression *exp,
1266 expr::operation *op,
1267 struct value **valp, struct value **resultp,
1268 std::vector<value_ref_ptr> *val_chain,
1269 bool preserve_errors);
1270
1271 extern struct value *parse_and_eval (const char *exp);
1272
1273 extern struct value *parse_to_comma_and_eval (const char **expp);
1274
1275 extern struct type *parse_and_eval_type (const char *p, int length);
1276
1277 extern CORE_ADDR parse_and_eval_address (const char *exp);
1278
1279 extern LONGEST parse_and_eval_long (const char *exp);
1280
1281 extern void unop_promote (const struct language_defn *language,
1282 struct gdbarch *gdbarch,
1283 struct value **arg1);
1284
1285 extern void binop_promote (const struct language_defn *language,
1286 struct gdbarch *gdbarch,
1287 struct value **arg1, struct value **arg2);
1288
1289 extern struct value *access_value_history (int num);
1290
1291 /* Return the number of items in the value history. */
1292
1293 extern ULONGEST value_history_count ();
1294
1295 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
1296 struct internalvar *var);
1297
1298 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
1299
1300 extern void set_internalvar (struct internalvar *var, struct value *val);
1301
1302 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
1303
1304 extern void set_internalvar_string (struct internalvar *var,
1305 const char *string);
1306
1307 extern void clear_internalvar (struct internalvar *var);
1308
1309 extern void set_internalvar_component (struct internalvar *var,
1310 LONGEST offset,
1311 LONGEST bitpos, LONGEST bitsize,
1312 struct value *newvalue);
1313
1314 extern struct internalvar *lookup_only_internalvar (const char *name);
1315
1316 extern struct internalvar *create_internalvar (const char *name);
1317
1318 extern void complete_internalvar (completion_tracker &tracker,
1319 const char *name);
1320
1321 /* An internalvar can be dynamically computed by supplying a vector of
1322 function pointers to perform various operations. */
1323
1324 struct internalvar_funcs
1325 {
1326 /* Compute the value of the variable. The DATA argument passed to
1327 the function is the same argument that was passed to
1328 `create_internalvar_type_lazy'. */
1329
1330 struct value *(*make_value) (struct gdbarch *arch,
1331 struct internalvar *var,
1332 void *data);
1333
1334 /* Update the agent expression EXPR with bytecode to compute the
1335 value. VALUE is the agent value we are updating. The DATA
1336 argument passed to this function is the same argument that was
1337 passed to `create_internalvar_type_lazy'. If this pointer is
1338 NULL, then the internalvar cannot be compiled to an agent
1339 expression. */
1340
1341 void (*compile_to_ax) (struct internalvar *var,
1342 struct agent_expr *expr,
1343 struct axs_value *value,
1344 void *data);
1345 };
1346
1347 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1348 const struct internalvar_funcs *funcs,
1349 void *data);
1350
1351 /* Compile an internal variable to an agent expression. VAR is the
1352 variable to compile; EXPR and VALUE are the agent expression we are
1353 updating. This will return 0 if there is no known way to compile
1354 VAR, and 1 if VAR was successfully compiled. It may also throw an
1355 exception on error. */
1356
1357 extern int compile_internalvar_to_ax (struct internalvar *var,
1358 struct agent_expr *expr,
1359 struct axs_value *value);
1360
1361 extern struct internalvar *lookup_internalvar (const char *name);
1362
1363 extern int value_equal (struct value *arg1, struct value *arg2);
1364
1365 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1366
1367 extern int value_less (struct value *arg1, struct value *arg2);
1368
1369 /* Simulate the C operator ! -- return true if ARG1 contains zero. */
1370 extern bool value_logical_not (struct value *arg1);
1371
1372 /* Returns true if the value VAL represents a true value. */
1373 static inline bool
1374 value_true (struct value *val)
1375 {
1376 return !value_logical_not (val);
1377 }
1378
1379 /* C++ */
1380
1381 extern struct value *value_of_this (const struct language_defn *lang);
1382
1383 extern struct value *value_of_this_silent (const struct language_defn *lang);
1384
1385 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1386 enum exp_opcode op,
1387 enum exp_opcode otherop,
1388 enum noside noside);
1389
1390 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1391 enum noside noside);
1392
1393 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1394 int j, struct type *type, LONGEST offset);
1395
1396 extern int binop_types_user_defined_p (enum exp_opcode op,
1397 struct type *type1,
1398 struct type *type2);
1399
1400 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1401 struct value *arg2);
1402
1403 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1404
1405 extern int destructor_name_p (const char *name, struct type *type);
1406
1407 extern value_ref_ptr release_value (struct value *val);
1408
1409 extern int record_latest_value (struct value *val);
1410
1411 extern void modify_field (struct type *type, gdb_byte *addr,
1412 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1413
1414 extern void type_print (struct type *type, const char *varstring,
1415 struct ui_file *stream, int show);
1416
1417 extern std::string type_to_string (struct type *type);
1418
1419 extern gdb_byte *baseclass_addr (struct type *type, int index,
1420 gdb_byte *valaddr,
1421 struct value **valuep, int *errp);
1422
1423 extern void print_longest (struct ui_file *stream, int format,
1424 int use_local, LONGEST val);
1425
1426 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1427 struct ui_file *stream);
1428
1429 extern void value_print (struct value *val, struct ui_file *stream,
1430 const struct value_print_options *options);
1431
1432 /* Release values from the value chain and return them. Values
1433 created after MARK are released. If MARK is nullptr, or if MARK is
1434 not found on the value chain, then all values are released. Values
1435 are returned in reverse order of creation; that is, newest
1436 first. */
1437
1438 extern std::vector<value_ref_ptr> value_release_to_mark
1439 (const struct value *mark);
1440
1441 extern void common_val_print (struct value *val,
1442 struct ui_file *stream, int recurse,
1443 const struct value_print_options *options,
1444 const struct language_defn *language);
1445
1446 extern int val_print_string (struct type *elttype, const char *encoding,
1447 CORE_ADDR addr, int len,
1448 struct ui_file *stream,
1449 const struct value_print_options *options);
1450
1451 extern void print_variable_and_value (const char *name,
1452 struct symbol *var,
1453 frame_info_ptr frame,
1454 struct ui_file *stream,
1455 int indent);
1456
1457 extern void typedef_print (struct type *type, struct symbol *news,
1458 struct ui_file *stream);
1459
1460 extern const char *internalvar_name (const struct internalvar *var);
1461
1462 extern void preserve_values (struct objfile *);
1463
1464 /* From values.c */
1465
1466 extern struct value *make_cv_value (int, int, struct value *);
1467
1468 extern void preserve_one_value (struct value *, struct objfile *, htab_t);
1469
1470 /* From valops.c */
1471
1472 extern struct value *varying_to_slice (struct value *);
1473
1474 extern struct value *value_slice (struct value *, int, int);
1475
1476 /* Create a complex number. The type is the complex type; the values
1477 are cast to the underlying scalar type before the complex number is
1478 created. */
1479
1480 extern struct value *value_literal_complex (struct value *, struct value *,
1481 struct type *);
1482
1483 /* Return the real part of a complex value. */
1484
1485 extern struct value *value_real_part (struct value *value);
1486
1487 /* Return the imaginary part of a complex value. */
1488
1489 extern struct value *value_imaginary_part (struct value *value);
1490
1491 extern struct value *find_function_in_inferior (const char *,
1492 struct objfile **);
1493
1494 extern struct value *value_allocate_space_in_inferior (int);
1495
1496 /* User function handler. */
1497
1498 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1499 const struct language_defn *language,
1500 void *cookie,
1501 int argc,
1502 struct value **argv);
1503
1504 /* Add a new internal function. NAME is the name of the function; DOC
1505 is a documentation string describing the function. HANDLER is
1506 called when the function is invoked. COOKIE is an arbitrary
1507 pointer which is passed to HANDLER and is intended for "user
1508 data". */
1509
1510 extern void add_internal_function (const char *name, const char *doc,
1511 internal_function_fn handler,
1512 void *cookie);
1513
1514 /* This overload takes an allocated documentation string. */
1515
1516 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1517 gdb::unique_xmalloc_ptr<char> &&doc,
1518 internal_function_fn handler,
1519 void *cookie);
1520
1521 struct value *call_internal_function (struct gdbarch *gdbarch,
1522 const struct language_defn *language,
1523 struct value *function,
1524 int argc, struct value **argv);
1525
1526 const char *value_internal_function_name (struct value *);
1527
1528 /* Destroy the values currently allocated. This is called when GDB is
1529 exiting (e.g., on quit_force). */
1530 extern void finalize_values ();
1531
1532 /* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1533 of floating-point, fixed-point, or integer type. */
1534 extern gdb_mpq value_to_gdb_mpq (struct value *value);
1535
1536 /* While an instance of this class is live, and array values that are
1537 created, that are larger than max_value_size, will be restricted in size
1538 to a particular number of elements. */
1539
1540 struct scoped_array_length_limiting
1541 {
1542 /* Limit any large array values to only contain ELEMENTS elements. */
1543 scoped_array_length_limiting (int elements);
1544
1545 /* Restore the previous array value limit. */
1546 ~scoped_array_length_limiting ();
1547
1548 private:
1549 /* Used to hold the previous array value element limit. */
1550 gdb::optional<int> m_old_value;
1551 };
1552
1553 #endif /* !defined (VALUE_H) */