Turn set_value_component_location into method
[binutils-gdb.git] / gdb / value.h
1 /* Definitions for values of C expressions, for GDB.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
22
23 #include "frame.h" /* For struct frame_id. */
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26 #include "gmp-utils.h"
27
28 struct block;
29 struct expression;
30 struct regcache;
31 struct symbol;
32 struct type;
33 struct ui_file;
34 struct language_defn;
35 struct value_print_options;
36
37 /* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
40
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
46
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
49
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
54
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
58
59 - Any other similar scenario.
60
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
65
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
70
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
75
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
79
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
83 */
84
85 extern bool overload_resolution;
86
87 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
88
89 struct range
90 {
91 /* Lowest offset in the range. */
92 LONGEST offset;
93
94 /* Length of the range. */
95 ULONGEST length;
96
97 /* Returns true if THIS is strictly less than OTHER, useful for
98 searching. We keep ranges sorted by offset and coalesce
99 overlapping and contiguous ranges, so this just compares the
100 starting offset. */
101
102 bool operator< (const range &other) const
103 {
104 return offset < other.offset;
105 }
106
107 /* Returns true if THIS is equal to OTHER. */
108 bool operator== (const range &other) const
109 {
110 return offset == other.offset && length == other.length;
111 }
112 };
113
114 /* A policy class to interface gdb::ref_ptr with struct value. */
115
116 struct value_ref_policy
117 {
118 static void incref (struct value *ptr);
119 static void decref (struct value *ptr);
120 };
121
122 /* A gdb:;ref_ptr pointer to a struct value. */
123
124 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
125
126 /* Note that the fields in this structure are arranged to save a bit
127 of memory. */
128
129 struct value
130 {
131 private:
132
133 /* Values can only be created via "static constructors". */
134 explicit value (struct type *type_)
135 : m_modifiable (1),
136 m_lazy (1),
137 m_initialized (1),
138 m_stack (0),
139 m_is_zero (false),
140 m_in_history (false),
141 m_type (type_),
142 m_enclosing_type (type_)
143 {
144 }
145
146 public:
147
148 /* Allocate a lazy value for type TYPE. Its actual content is
149 "lazily" allocated too: the content field of the return value is
150 NULL; it will be allocated when it is fetched from the target. */
151 static struct value *allocate_lazy (struct type *type);
152
153 /* Allocate a value and its contents for type TYPE. */
154 static struct value *allocate (struct type *type);
155
156 /* Create a computed lvalue, with type TYPE, function pointers
157 FUNCS, and closure CLOSURE. */
158 static struct value *allocate_computed (struct type *type,
159 const struct lval_funcs *funcs,
160 void *closure);
161
162 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
163 static struct value *allocate_optimized_out (struct type *type);
164
165 /* Create a value of type TYPE that is zero, and return it. */
166 static struct value *zero (struct type *type, enum lval_type lv);
167
168 /* Return a copy of the value. It contains the same contents, for
169 the same memory address, but it's a different block of
170 storage. */
171 struct value *copy () const;
172
173 ~value ();
174
175 DISABLE_COPY_AND_ASSIGN (value);
176
177 /* Type of the value. */
178 struct type *type () const
179 { return m_type; }
180
181 /* This is being used to change the type of an existing value, that
182 code should instead be creating a new value with the changed type
183 (but possibly shared content). */
184 void deprecated_set_type (struct type *type)
185 { m_type = type; }
186
187 /* Return the gdbarch associated with the value. */
188 struct gdbarch *arch () const;
189
190 /* Only used for bitfields; number of bits contained in them. */
191 LONGEST bitsize () const
192 { return m_bitsize; }
193
194 void set_bitsize (LONGEST bit)
195 { m_bitsize = bit; }
196
197 /* Only used for bitfields; position of start of field. For
198 little-endian targets, it is the position of the LSB. For
199 big-endian targets, it is the position of the MSB. */
200 LONGEST bitpos () const
201 { return m_bitpos; }
202
203 void set_bitpos (LONGEST bit)
204 { m_bitpos = bit; }
205
206 /* Only used for bitfields; the containing value. This allows a
207 single read from the target when displaying multiple
208 bitfields. */
209 value *parent () const
210 { return m_parent.get (); }
211
212 void set_parent (struct value *parent)
213 { m_parent = value_ref_ptr::new_reference (parent); }
214
215 /* Describes offset of a value within lval of a structure in bytes.
216 If lval == lval_memory, this is an offset to the address. If
217 lval == lval_register, this is a further offset from
218 location.address within the registers structure. Note also the
219 member embedded_offset below. */
220 LONGEST offset () const
221 { return m_offset; }
222
223 void set_offset (LONGEST offset)
224 { m_offset = offset; }
225
226 /* The comment from "struct value" reads: ``Is it modifiable? Only
227 relevant if lval != not_lval.''. Shouldn't the value instead be
228 not_lval and be done with it? */
229 int deprecated_modifiable () const
230 { return m_modifiable; }
231
232 LONGEST pointed_to_offset () const
233 { return m_pointed_to_offset; }
234
235 void set_pointed_to_offset (LONGEST val)
236 { m_pointed_to_offset = val; }
237
238 LONGEST embedded_offset () const
239 { return m_embedded_offset; }
240
241 void set_embedded_offset (LONGEST val)
242 { m_embedded_offset = val; }
243
244 /* If zero, contents of this value are in the contents field. If
245 nonzero, contents are in inferior. If the lval field is lval_memory,
246 the contents are in inferior memory at location.address plus offset.
247 The lval field may also be lval_register.
248
249 WARNING: This field is used by the code which handles watchpoints
250 (see breakpoint.c) to decide whether a particular value can be
251 watched by hardware watchpoints. If the lazy flag is set for some
252 member of a value chain, it is assumed that this member of the
253 chain doesn't need to be watched as part of watching the value
254 itself. This is how GDB avoids watching the entire struct or array
255 when the user wants to watch a single struct member or array
256 element. If you ever change the way lazy flag is set and reset, be
257 sure to consider this use as well! */
258
259 int lazy () const
260 { return m_lazy; }
261
262 void set_lazy (int val)
263 { m_lazy = val; }
264
265 /* If a value represents a C++ object, then the `type' field gives the
266 object's compile-time type. If the object actually belongs to some
267 class derived from `type', perhaps with other base classes and
268 additional members, then `type' is just a subobject of the real
269 thing, and the full object is probably larger than `type' would
270 suggest.
271
272 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
273 actually determine the object's run-time type by looking at the
274 run-time type information in the vtable. When this information is
275 available, we may elect to read in the entire object, for several
276 reasons:
277
278 - When printing the value, the user would probably rather see the
279 full object, not just the limited portion apparent from the
280 compile-time type.
281
282 - If `type' has virtual base classes, then even printing `type'
283 alone may require reaching outside the `type' portion of the
284 object to wherever the virtual base class has been stored.
285
286 When we store the entire object, `enclosing_type' is the run-time
287 type -- the complete object -- and `embedded_offset' is the offset
288 of `type' within that larger type, in bytes. The contents()
289 method takes `embedded_offset' into account, so most GDB code
290 continues to see the `type' portion of the value, just as the
291 inferior would.
292
293 If `type' is a pointer to an object, then `enclosing_type' is a
294 pointer to the object's run-time type, and `pointed_to_offset' is
295 the offset in bytes from the full object to the pointed-to object
296 -- that is, the value `embedded_offset' would have if we followed
297 the pointer and fetched the complete object. (I don't really see
298 the point. Why not just determine the run-time type when you
299 indirect, and avoid the special case? The contents don't matter
300 until you indirect anyway.)
301
302 If we're not doing anything fancy, `enclosing_type' is equal to
303 `type', and `embedded_offset' is zero, so everything works
304 normally. */
305
306 struct type *enclosing_type () const
307 { return m_enclosing_type; }
308
309 void set_enclosing_type (struct type *new_type);
310
311 int stack () const
312 { return m_stack; }
313
314 void set_stack (int val)
315 { m_stack = val; }
316
317 /* If this value is lval_computed, return its lval_funcs
318 structure. */
319 const struct lval_funcs *computed_funcs () const;
320
321 /* If this value is lval_computed, return its closure. The meaning
322 of the returned value depends on the functions this value
323 uses. */
324 void *computed_closure () const;
325
326 enum lval_type *deprecated_lval_hack ()
327 { return &m_lval; }
328
329 enum lval_type lval () const
330 { return m_lval; }
331
332 /* Set or return field indicating whether a variable is initialized or
333 not, based on debugging information supplied by the compiler.
334 1 = initialized; 0 = uninitialized. */
335 int initialized () const
336 { return m_initialized; }
337
338 void set_initialized (int value)
339 { m_initialized = value; }
340
341 /* If lval == lval_memory, return the address in the inferior. If
342 lval == lval_register, return the byte offset into the registers
343 structure. Otherwise, return 0. The returned address
344 includes the offset, if any. */
345 CORE_ADDR address () const;
346
347 /* Like address, except the result does not include value's
348 offset. */
349 CORE_ADDR raw_address () const;
350
351 /* Set the address of a value. */
352 void set_address (CORE_ADDR);
353
354 struct internalvar **deprecated_internalvar_hack ()
355 { return &m_location.internalvar; }
356
357 struct frame_id *deprecated_next_frame_id_hack ();
358
359 int *deprecated_regnum_hack ();
360
361 /* contents() and contents_raw() both return the address of the gdb
362 buffer used to hold a copy of the contents of the lval.
363 contents() is used when the contents of the buffer are needed --
364 it uses fetch_lazy() to load the buffer from the process being
365 debugged if it hasn't already been loaded (contents_writeable()
366 is used when a writeable but fetched buffer is required)..
367 contents_raw() is used when data is being stored into the buffer,
368 or when it is certain that the contents of the buffer are valid.
369
370 Note: The contents pointer is adjusted by the offset required to
371 get to the real subobject, if the value happens to represent
372 something embedded in a larger run-time object. */
373 gdb::array_view<gdb_byte> contents_raw ();
374
375 /* Actual contents of the value. For use of this value; setting it
376 uses the stuff above. Not valid if lazy is nonzero. Target
377 byte-order. We force it to be aligned properly for any possible
378 value. Note that a value therefore extends beyond what is
379 declared here. */
380 gdb::array_view<const gdb_byte> contents ();
381
382 /* The ALL variants of the above two methods do not adjust the
383 returned pointer by the embedded_offset value. */
384 gdb::array_view<const gdb_byte> contents_all ();
385 gdb::array_view<gdb_byte> contents_all_raw ();
386
387 gdb::array_view<gdb_byte> contents_writeable ();
388
389 /* Like contents_all, but does not require that the returned bits be
390 valid. This should only be used in situations where you plan to
391 check the validity manually. */
392 gdb::array_view<const gdb_byte> contents_for_printing ();
393
394 /* Like contents_for_printing, but accepts a constant value pointer.
395 Unlike contents_for_printing however, the pointed value must
396 _not_ be lazy. */
397 gdb::array_view<const gdb_byte> contents_for_printing () const;
398
399 /* Load the actual content of a lazy value. Fetch the data from the
400 user's process and clear the lazy flag to indicate that the data in
401 the buffer is valid.
402
403 If the value is zero-length, we avoid calling read_memory, which
404 would abort. We mark the value as fetched anyway -- all 0 bytes of
405 it. */
406 void fetch_lazy ();
407
408 /* Compare LENGTH bytes of this value's contents starting at OFFSET1
409 with LENGTH bytes of VAL2's contents starting at OFFSET2.
410
411 Note that "contents" refers to the whole value's contents
412 (value_contents_all), without any embedded offset adjustment. For
413 example, to compare a complete object value with itself, including
414 its enclosing type chunk, you'd do:
415
416 int len = check_typedef (val->enclosing_type ())->length ();
417 val->contents_eq (0, val, 0, len);
418
419 Returns true iff the set of available/valid contents match.
420
421 Optimized-out contents are equal to optimized-out contents, and are
422 not equal to non-optimized-out contents.
423
424 Unavailable contents are equal to unavailable contents, and are not
425 equal to non-unavailable contents.
426
427 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
428 represent different available/valid bytes, in a value with length
429 16:
430
431 offset: 0 4 8 12 16
432 contents: xxxxVVVVxxxxVVZZ
433
434 then:
435
436 val->contents_eq(0, val, 8, 6) => true
437 val->contents_eq(0, val, 4, 4) => false
438 val->contents_eq(0, val, 8, 8) => false
439 val->contents_eq(4, val, 12, 2) => true
440 val->contents_eq(4, val, 12, 4) => true
441 val->contents_eq(3, val, 4, 4) => true
442
443 If 'x's represent an unavailable byte, 'o' represents an optimized
444 out byte, in a value with length 8:
445
446 offset: 0 4 8
447 contents: xxxxoooo
448
449 then:
450
451 val->contents_eq(0, val, 2, 2) => true
452 val->contents_eq(4, val, 6, 2) => true
453 val->contents_eq(0, val, 4, 4) => true
454
455 We only know whether a value chunk is unavailable or optimized out
456 if we've tried to read it. As this routine is used by printing
457 routines, which may be printing values in the value history, long
458 after the inferior is gone, it works with const values. Therefore,
459 this routine must not be called with lazy values. */
460
461 bool contents_eq (LONGEST offset1, const struct value *val2, LONGEST offset2,
462 LONGEST length) const;
463
464 /* An overload of contents_eq that compares the entirety of both
465 values. */
466 bool contents_eq (const struct value *val2) const;
467
468 /* Given a value, determine whether the bits starting at OFFSET and
469 extending for LENGTH bits are a synthetic pointer. */
470
471 int bits_synthetic_pointer (LONGEST offset, LONGEST length) const;
472
473 /* Increase this value's reference count. */
474 void incref ()
475 { ++m_reference_count; }
476
477 /* Decrease this value's reference count. When the reference count
478 drops to 0, it will be freed. */
479 void decref ();
480
481 /* Given a value, determine whether the contents bytes starting at
482 OFFSET and extending for LENGTH bytes are available. This returns
483 nonzero if all bytes in the given range are available, zero if any
484 byte is unavailable. */
485 int bytes_available (LONGEST offset, ULONGEST length) const;
486
487 /* Given a value, determine whether the contents bits starting at
488 OFFSET and extending for LENGTH bits are available. This returns
489 nonzero if all bits in the given range are available, zero if any
490 bit is unavailable. */
491 int bits_available (LONGEST offset, ULONGEST length) const;
492
493 /* Like bytes_available, but return false if any byte in the
494 whole object is unavailable. */
495 int entirely_available ();
496
497 /* Like entirely_available, but return false if any byte in the
498 whole object is available. */
499 int entirely_unavailable ()
500 { return entirely_covered_by_range_vector (m_unavailable); }
501
502 /* Mark this value's content bytes starting at OFFSET and extending
503 for LENGTH bytes as unavailable. */
504 void mark_bytes_unavailable (LONGEST offset, ULONGEST length);
505
506 /* Mark this value's content bits starting at OFFSET and extending
507 for LENGTH bits as unavailable. */
508 void mark_bits_unavailable (LONGEST offset, ULONGEST length);
509
510 /* If nonzero, this is the value of a variable which does not actually
511 exist in the program, at least partially. If the value is lazy,
512 this may fetch it now. */
513 int optimized_out ();
514
515 /* Given a value, return true if any of the contents bits starting at
516 OFFSET and extending for LENGTH bits is optimized out, false
517 otherwise. */
518 int bits_any_optimized_out (int bit_offset, int bit_length) const;
519
520 /* Like optimized_out, but return true iff the whole value is
521 optimized out. */
522 int entirely_optimized_out ()
523 {
524 return entirely_covered_by_range_vector (m_optimized_out);
525 }
526
527 /* Mark this value's content bytes starting at OFFSET and extending
528 for LENGTH bytes as optimized out. */
529 void mark_bytes_optimized_out (int offset, int length);
530
531 /* Mark this value's content bits starting at OFFSET and extending
532 for LENGTH bits as optimized out. */
533 void mark_bits_optimized_out (LONGEST offset, LONGEST length);
534
535 /* Return a version of this that is non-lvalue. */
536 struct value *non_lval ();
537
538 /* Write contents of this value at ADDR and set its lval type to be
539 LVAL_MEMORY. */
540 void force_lval (CORE_ADDR);
541
542 /* Set this values's location as appropriate for a component of
543 WHOLE --- regardless of what kind of lvalue WHOLE is. */
544 void set_component_location (const struct value *whole);
545
546
547 /* Type of value; either not an lval, or one of the various
548 different possible kinds of lval. */
549 enum lval_type m_lval = not_lval;
550
551 /* Is it modifiable? Only relevant if lval != not_lval. */
552 unsigned int m_modifiable : 1;
553
554 /* If zero, contents of this value are in the contents field. If
555 nonzero, contents are in inferior. If the lval field is lval_memory,
556 the contents are in inferior memory at location.address plus offset.
557 The lval field may also be lval_register.
558
559 WARNING: This field is used by the code which handles watchpoints
560 (see breakpoint.c) to decide whether a particular value can be
561 watched by hardware watchpoints. If the lazy flag is set for
562 some member of a value chain, it is assumed that this member of
563 the chain doesn't need to be watched as part of watching the
564 value itself. This is how GDB avoids watching the entire struct
565 or array when the user wants to watch a single struct member or
566 array element. If you ever change the way lazy flag is set and
567 reset, be sure to consider this use as well! */
568 unsigned int m_lazy : 1;
569
570 /* If value is a variable, is it initialized or not. */
571 unsigned int m_initialized : 1;
572
573 /* If value is from the stack. If this is set, read_stack will be
574 used instead of read_memory to enable extra caching. */
575 unsigned int m_stack : 1;
576
577 /* True if this is a zero value, created by 'value::zero'; false
578 otherwise. */
579 bool m_is_zero : 1;
580
581 /* True if this a value recorded in value history; false otherwise. */
582 bool m_in_history : 1;
583
584 /* Location of value (if lval). */
585 union
586 {
587 /* If lval == lval_memory, this is the address in the inferior */
588 CORE_ADDR address;
589
590 /*If lval == lval_register, the value is from a register. */
591 struct
592 {
593 /* Register number. */
594 int regnum;
595 /* Frame ID of "next" frame to which a register value is relative.
596 If the register value is found relative to frame F, then the
597 frame id of F->next will be stored in next_frame_id. */
598 struct frame_id next_frame_id;
599 } reg;
600
601 /* Pointer to internal variable. */
602 struct internalvar *internalvar;
603
604 /* Pointer to xmethod worker. */
605 struct xmethod_worker *xm_worker;
606
607 /* If lval == lval_computed, this is a set of function pointers
608 to use to access and describe the value, and a closure pointer
609 for them to use. */
610 struct
611 {
612 /* Functions to call. */
613 const struct lval_funcs *funcs;
614
615 /* Closure for those functions to use. */
616 void *closure;
617 } computed;
618 } m_location {};
619
620 /* Describes offset of a value within lval of a structure in target
621 addressable memory units. Note also the member embedded_offset
622 below. */
623 LONGEST m_offset = 0;
624
625 /* Only used for bitfields; number of bits contained in them. */
626 LONGEST m_bitsize = 0;
627
628 /* Only used for bitfields; position of start of field. For
629 little-endian targets, it is the position of the LSB. For
630 big-endian targets, it is the position of the MSB. */
631 LONGEST m_bitpos = 0;
632
633 /* The number of references to this value. When a value is created,
634 the value chain holds a reference, so REFERENCE_COUNT is 1. If
635 release_value is called, this value is removed from the chain but
636 the caller of release_value now has a reference to this value.
637 The caller must arrange for a call to value_free later. */
638 int m_reference_count = 1;
639
640 /* Only used for bitfields; the containing value. This allows a
641 single read from the target when displaying multiple
642 bitfields. */
643 value_ref_ptr m_parent;
644
645 /* Type of the value. */
646 struct type *m_type;
647
648 /* If a value represents a C++ object, then the `type' field gives
649 the object's compile-time type. If the object actually belongs
650 to some class derived from `type', perhaps with other base
651 classes and additional members, then `type' is just a subobject
652 of the real thing, and the full object is probably larger than
653 `type' would suggest.
654
655 If `type' is a dynamic class (i.e. one with a vtable), then GDB
656 can actually determine the object's run-time type by looking at
657 the run-time type information in the vtable. When this
658 information is available, we may elect to read in the entire
659 object, for several reasons:
660
661 - When printing the value, the user would probably rather see the
662 full object, not just the limited portion apparent from the
663 compile-time type.
664
665 - If `type' has virtual base classes, then even printing `type'
666 alone may require reaching outside the `type' portion of the
667 object to wherever the virtual base class has been stored.
668
669 When we store the entire object, `enclosing_type' is the run-time
670 type -- the complete object -- and `embedded_offset' is the
671 offset of `type' within that larger type, in target addressable memory
672 units. The contents() method takes `embedded_offset' into account,
673 so most GDB code continues to see the `type' portion of the value, just
674 as the inferior would.
675
676 If `type' is a pointer to an object, then `enclosing_type' is a
677 pointer to the object's run-time type, and `pointed_to_offset' is
678 the offset in target addressable memory units from the full object
679 to the pointed-to object -- that is, the value `embedded_offset' would
680 have if we followed the pointer and fetched the complete object.
681 (I don't really see the point. Why not just determine the
682 run-time type when you indirect, and avoid the special case? The
683 contents don't matter until you indirect anyway.)
684
685 If we're not doing anything fancy, `enclosing_type' is equal to
686 `type', and `embedded_offset' is zero, so everything works
687 normally. */
688 struct type *m_enclosing_type;
689 LONGEST m_embedded_offset = 0;
690 LONGEST m_pointed_to_offset = 0;
691
692 /* Actual contents of the value. Target byte-order.
693
694 May be nullptr if the value is lazy or is entirely optimized out.
695 Guaranteed to be non-nullptr otherwise. */
696 gdb::unique_xmalloc_ptr<gdb_byte> m_contents;
697
698 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
699 rather than available, since the common and default case is for a
700 value to be available. This is filled in at value read time.
701 The unavailable ranges are tracked in bits. Note that a contents
702 bit that has been optimized out doesn't really exist in the
703 program, so it can't be marked unavailable either. */
704 std::vector<range> m_unavailable;
705
706 /* Likewise, but for optimized out contents (a chunk of the value of
707 a variable that does not actually exist in the program). If LVAL
708 is lval_register, this is a register ($pc, $sp, etc., never a
709 program variable) that has not been saved in the frame. Not
710 saved registers and optimized-out program variables values are
711 treated pretty much the same, except not-saved registers have a
712 different string representation and related error strings. */
713 std::vector<range> m_optimized_out;
714
715 /* This is only non-zero for values of TYPE_CODE_ARRAY and if the size of
716 the array in inferior memory is greater than max_value_size. If these
717 conditions are met then, when the value is loaded from the inferior
718 GDB will only load a portion of the array into memory, and
719 limited_length will be set to indicate the length in octets that were
720 loaded from the inferior. */
721 ULONGEST m_limited_length = 0;
722
723 private:
724
725 /* Allocate a value and its contents for type TYPE. If CHECK_SIZE
726 is true, then apply the usual max-value-size checks. */
727 static struct value *allocate (struct type *type, bool check_size);
728
729 /* Helper for fetch_lazy when the value is a bitfield. */
730 void fetch_lazy_bitfield ();
731
732 /* Helper for fetch_lazy when the value is in memory. */
733 void fetch_lazy_memory ();
734
735 /* Helper for fetch_lazy when the value is in a register. */
736 void fetch_lazy_register ();
737
738 /* Try to limit ourselves to only fetching the limited number of
739 elements. However, if this limited number of elements still
740 puts us over max_value_size, then we still refuse it and
741 return failure here, which will ultimately throw an error. */
742 bool set_limited_array_length ();
743
744 public: /* Temporary */
745
746 /* Allocate the contents of this value if it has not been allocated
747 yet. If CHECK_SIZE is true, then apply the usual max-value-size
748 checks. */
749 void allocate_contents (bool check_size);
750
751 private:
752
753 /* Helper function for value_contents_eq. The only difference is that
754 this function is bit rather than byte based.
755
756 Compare LENGTH bits of this value's contents starting at OFFSET1
757 bits with LENGTH bits of VAL2's contents starting at OFFSET2
758 bits. Return true if the available bits match. */
759 bool contents_bits_eq (int offset1, const struct value *val2, int offset2,
760 int length) const;
761
762 void require_not_optimized_out () const;
763 void require_available () const;
764
765 /* Returns true if this value is entirely covered by RANGES. If the
766 value is lazy, it'll be read now. Note that RANGE is a pointer
767 to pointer because reading the value might change *RANGE. */
768 int entirely_covered_by_range_vector (const std::vector<range> &ranges);
769 };
770
771 inline void
772 value_ref_policy::incref (struct value *ptr)
773 {
774 ptr->incref ();
775 }
776
777 inline void
778 value_ref_policy::decref (struct value *ptr)
779 {
780 ptr->decref ();
781 }
782
783 /* Returns value_type or value_enclosing_type depending on
784 value_print_options.objectprint.
785
786 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
787 only for pointers and references, else it will be returned
788 for all the types (e.g. structures). This option is useful
789 to prevent retrieving enclosing type for the base classes fields.
790
791 REAL_TYPE_FOUND is used to inform whether the real type was found
792 (or just static type was used). The NULL may be passed if it is not
793 necessary. */
794
795 extern struct type *value_actual_type (struct value *value,
796 int resolve_simple_types,
797 int *real_type_found);
798
799 /* For lval_computed values, this structure holds functions used to
800 retrieve and set the value (or portions of the value).
801
802 For each function, 'V' is the 'this' pointer: an lval_funcs
803 function F may always assume that the V it receives is an
804 lval_computed value, and has F in the appropriate slot of its
805 lval_funcs structure. */
806
807 struct lval_funcs
808 {
809 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
810 a problem arises in obtaining VALUE's bits, this function should
811 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
812 non-optimized-out value is an internal error. */
813 void (*read) (struct value *v);
814
815 /* Handle an assignment TOVAL = FROMVAL by writing the value of
816 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
817 been updated. If a problem arises in doing so, this function
818 should call 'error'. If it is NULL such TOVAL assignment is an error as
819 TOVAL is not considered as an lvalue. */
820 void (*write) (struct value *toval, struct value *fromval);
821
822 /* Return true if any part of V is optimized out, false otherwise.
823 This will only be called for lazy values -- if the value has been
824 fetched, then the value's optimized-out bits are consulted
825 instead. */
826 bool (*is_optimized_out) (struct value *v);
827
828 /* If non-NULL, this is used to implement pointer indirection for
829 this value. This method may return NULL, in which case value_ind
830 will fall back to ordinary indirection. */
831 struct value *(*indirect) (struct value *value);
832
833 /* If non-NULL, this is used to implement reference resolving for
834 this value. This method may return NULL, in which case coerce_ref
835 will fall back to ordinary references resolving. */
836 struct value *(*coerce_ref) (const struct value *value);
837
838 /* If non-NULL, this is used to determine whether the indicated bits
839 of VALUE are a synthetic pointer. */
840 int (*check_synthetic_pointer) (const struct value *value,
841 LONGEST offset, int length);
842
843 /* Return a duplicate of VALUE's closure, for use in a new value.
844 This may simply return the same closure, if VALUE's is
845 reference-counted or statically allocated.
846
847 This may be NULL, in which case VALUE's closure is re-used in the
848 new value. */
849 void *(*copy_closure) (const struct value *v);
850
851 /* Drop VALUE's reference to its closure. Maybe this frees the
852 closure; maybe this decrements a reference count; maybe the
853 closure is statically allocated and this does nothing.
854
855 This may be NULL, in which case no action is taken to free
856 VALUE's closure. */
857 void (*free_closure) (struct value *v);
858 };
859
860 /* Throw an error complaining that the value has been optimized
861 out. */
862
863 extern void error_value_optimized_out (void);
864
865 /* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
866 single value might have multiple LVALs), this hacked interface is
867 limited to just the first PIECE. Expect further change. */
868 /* Type of value; either not an lval, or one of the various different
869 possible kinds of lval. */
870 #define VALUE_LVAL(val) (*((val)->deprecated_lval_hack ()))
871
872 /* Pointer to internal variable. */
873 #define VALUE_INTERNALVAR(val) (*((val)->deprecated_internalvar_hack ()))
874
875 /* Frame ID of "next" frame to which a register value is relative. A
876 register value is indicated by VALUE_LVAL being set to lval_register.
877 So, if the register value is found relative to frame F, then the
878 frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
879 #define VALUE_NEXT_FRAME_ID(val) (*((val)->deprecated_next_frame_id_hack ()))
880
881 /* Register number if the value is from a register. */
882 #define VALUE_REGNUM(val) (*((val)->deprecated_regnum_hack ()))
883
884 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
885 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
886
887 extern struct value *coerce_ref_if_computed (const struct value *arg);
888
889 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
890 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
891 ORIGINAL_VAL are the type and value of the original reference or
892 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
893 the address that was dereferenced.
894
895 Note, that VALUE is modified by this function.
896
897 It is a common implementation for coerce_ref and value_ind. */
898
899 extern struct value * readjust_indirect_value_type (struct value *value,
900 struct type *enc_type,
901 const struct type *original_type,
902 struct value *original_val,
903 CORE_ADDR original_value_address);
904
905 /* Convert a REF to the object referenced. */
906
907 extern struct value *coerce_ref (struct value *value);
908
909 /* If ARG is an array, convert it to a pointer.
910 If ARG is a function, convert it to a function pointer.
911
912 References are dereferenced. */
913
914 extern struct value *coerce_array (struct value *value);
915
916 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
917 which is (or will be copied to) VAL's contents buffer offset by
918 BIT_OFFSET bits. Marks value contents ranges as unavailable if
919 the corresponding memory is likewise unavailable. STACK indicates
920 whether the memory is known to be stack memory. */
921
922 extern void read_value_memory (struct value *val, LONGEST bit_offset,
923 int stack, CORE_ADDR memaddr,
924 gdb_byte *buffer, size_t length);
925
926 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
927 into each element of a new vector value with VECTOR_TYPE. */
928
929 struct value *value_vector_widen (struct value *scalar_value,
930 struct type *vector_type);
931
932 \f
933
934 #include "symtab.h"
935 #include "gdbtypes.h"
936 #include "expression.h"
937
938 class frame_info_ptr;
939 struct fn_field;
940
941 extern int print_address_demangle (const struct value_print_options *,
942 struct gdbarch *, CORE_ADDR,
943 struct ui_file *, int);
944
945 /* Returns true if VAL is of floating-point type. In addition,
946 throws an error if the value is an invalid floating-point value. */
947 extern bool is_floating_value (struct value *val);
948
949 extern LONGEST value_as_long (struct value *val);
950 extern CORE_ADDR value_as_address (struct value *val);
951
952 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
953 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
954
955 extern LONGEST unpack_field_as_long (struct type *type,
956 const gdb_byte *valaddr,
957 int fieldno);
958
959 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
960 VALADDR, and store the result in *RESULT.
961 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
962 BITSIZE is zero, then the length is taken from FIELD_TYPE.
963
964 Extracting bits depends on endianness of the machine. Compute the
965 number of least significant bits to discard. For big endian machines,
966 we compute the total number of bits in the anonymous object, subtract
967 off the bit count from the MSB of the object to the MSB of the
968 bitfield, then the size of the bitfield, which leaves the LSB discard
969 count. For little endian machines, the discard count is simply the
970 number of bits from the LSB of the anonymous object to the LSB of the
971 bitfield.
972
973 If the field is signed, we also do sign extension. */
974
975 extern LONGEST unpack_bits_as_long (struct type *field_type,
976 const gdb_byte *valaddr,
977 LONGEST bitpos, LONGEST bitsize);
978
979 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
980 LONGEST embedded_offset, int fieldno,
981 const struct value *val, LONGEST *result);
982
983 extern void unpack_value_bitfield (struct value *dest_val,
984 LONGEST bitpos, LONGEST bitsize,
985 const gdb_byte *valaddr,
986 LONGEST embedded_offset,
987 const struct value *val);
988
989 extern struct value *value_field_bitfield (struct type *type, int fieldno,
990 const gdb_byte *valaddr,
991 LONGEST embedded_offset,
992 const struct value *val);
993
994 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
995
996 extern struct value *value_from_longest (struct type *type, LONGEST num);
997 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
998 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
999 extern struct value *value_from_host_double (struct type *type, double d);
1000 extern struct value *value_from_history_ref (const char *, const char **);
1001 extern struct value *value_from_component (struct value *, struct type *,
1002 LONGEST);
1003
1004
1005 /* Create a new value by extracting it from WHOLE. TYPE is the type
1006 of the new value. BIT_OFFSET and BIT_LENGTH describe the offset
1007 and field width of the value to extract from WHOLE -- BIT_LENGTH
1008 may differ from TYPE's length in the case where WHOLE's type is
1009 packed.
1010
1011 When the value does come from a non-byte-aligned offset or field
1012 width, it will be marked non_lval. */
1013
1014 extern struct value *value_from_component_bitsize (struct value *whole,
1015 struct type *type,
1016 LONGEST bit_offset,
1017 LONGEST bit_length);
1018
1019 extern struct value *value_at (struct type *type, CORE_ADDR addr);
1020 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
1021
1022 /* Like value_at, but ensures that the result is marked not_lval.
1023 This can be important if the memory is "volatile". */
1024 extern struct value *value_at_non_lval (struct type *type, CORE_ADDR addr);
1025
1026 extern struct value *value_from_contents_and_address_unresolved
1027 (struct type *, const gdb_byte *, CORE_ADDR);
1028 extern struct value *value_from_contents_and_address (struct type *,
1029 const gdb_byte *,
1030 CORE_ADDR);
1031 extern struct value *value_from_contents (struct type *, const gdb_byte *);
1032
1033 extern struct value *default_value_from_register (struct gdbarch *gdbarch,
1034 struct type *type,
1035 int regnum,
1036 struct frame_id frame_id);
1037
1038 extern void read_frame_register_value (struct value *value,
1039 frame_info_ptr frame);
1040
1041 extern struct value *value_from_register (struct type *type, int regnum,
1042 frame_info_ptr frame);
1043
1044 extern CORE_ADDR address_from_register (int regnum,
1045 frame_info_ptr frame);
1046
1047 extern struct value *value_of_variable (struct symbol *var,
1048 const struct block *b);
1049
1050 extern struct value *address_of_variable (struct symbol *var,
1051 const struct block *b);
1052
1053 extern struct value *value_of_register (int regnum, frame_info_ptr frame);
1054
1055 struct value *value_of_register_lazy (frame_info_ptr frame, int regnum);
1056
1057 /* Return the symbol's reading requirement. */
1058
1059 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
1060
1061 /* Return true if the symbol needs a frame. This is a wrapper for
1062 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
1063
1064 extern int symbol_read_needs_frame (struct symbol *);
1065
1066 extern struct value *read_var_value (struct symbol *var,
1067 const struct block *var_block,
1068 frame_info_ptr frame);
1069
1070 extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
1071 struct value *src, LONGEST src_offset,
1072 LONGEST length);
1073
1074 extern struct value *allocate_repeat_value (struct type *type, int count);
1075
1076 extern struct value *value_mark (void);
1077
1078 extern void value_free_to_mark (const struct value *mark);
1079
1080 /* A helper class that uses value_mark at construction time and calls
1081 value_free_to_mark in the destructor. This is used to clear out
1082 temporary values created during the lifetime of this object. */
1083 class scoped_value_mark
1084 {
1085 public:
1086
1087 scoped_value_mark ()
1088 : m_value (value_mark ())
1089 {
1090 }
1091
1092 ~scoped_value_mark ()
1093 {
1094 free_to_mark ();
1095 }
1096
1097 scoped_value_mark (scoped_value_mark &&other) = default;
1098
1099 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
1100
1101 /* Free the values currently on the value stack. */
1102 void free_to_mark ()
1103 {
1104 if (m_value != NULL)
1105 {
1106 value_free_to_mark (m_value);
1107 m_value = NULL;
1108 }
1109 }
1110
1111 private:
1112
1113 const struct value *m_value;
1114 };
1115
1116 extern struct value *value_cstring (const char *ptr, ssize_t len,
1117 struct type *char_type);
1118 extern struct value *value_string (const char *ptr, ssize_t len,
1119 struct type *char_type);
1120
1121 extern struct value *value_array (int lowbound, int highbound,
1122 struct value **elemvec);
1123
1124 extern struct value *value_concat (struct value *arg1, struct value *arg2);
1125
1126 extern struct value *value_binop (struct value *arg1, struct value *arg2,
1127 enum exp_opcode op);
1128
1129 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
1130
1131 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
1132
1133 /* Return true if VAL does not live in target memory, but should in order
1134 to operate on it. Otherwise return false. */
1135
1136 extern bool value_must_coerce_to_target (struct value *arg1);
1137
1138 extern struct value *value_coerce_to_target (struct value *arg1);
1139
1140 extern struct value *value_coerce_array (struct value *arg1);
1141
1142 extern struct value *value_coerce_function (struct value *arg1);
1143
1144 extern struct value *value_ind (struct value *arg1);
1145
1146 extern struct value *value_addr (struct value *arg1);
1147
1148 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
1149
1150 extern struct value *value_assign (struct value *toval,
1151 struct value *fromval);
1152
1153 extern struct value *value_pos (struct value *arg1);
1154
1155 extern struct value *value_neg (struct value *arg1);
1156
1157 extern struct value *value_complement (struct value *arg1);
1158
1159 extern struct value *value_struct_elt (struct value **argp,
1160 gdb::optional<gdb::array_view <value *>> args,
1161 const char *name, int *static_memfuncp,
1162 const char *err);
1163
1164 extern struct value *value_struct_elt_bitpos (struct value **argp,
1165 int bitpos,
1166 struct type *field_type,
1167 const char *err);
1168
1169 extern struct value *value_aggregate_elt (struct type *curtype,
1170 const char *name,
1171 struct type *expect_type,
1172 int want_address,
1173 enum noside noside);
1174
1175 extern struct value *value_static_field (struct type *type, int fieldno);
1176
1177 enum oload_search_type { NON_METHOD, METHOD, BOTH };
1178
1179 extern int find_overload_match (gdb::array_view<value *> args,
1180 const char *name,
1181 enum oload_search_type method,
1182 struct value **objp, struct symbol *fsym,
1183 struct value **valp, struct symbol **symp,
1184 int *staticp, const int no_adl,
1185 enum noside noside);
1186
1187 extern struct value *value_field (struct value *arg1, int fieldno);
1188
1189 extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
1190 int fieldno,
1191 struct type *arg_type);
1192
1193
1194 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
1195 int *);
1196
1197 extern struct value *value_full_object (struct value *, struct type *, int,
1198 int, int);
1199
1200 extern struct value *value_cast_pointers (struct type *, struct value *, int);
1201
1202 extern struct value *value_cast (struct type *type, struct value *arg2);
1203
1204 extern struct value *value_reinterpret_cast (struct type *type,
1205 struct value *arg);
1206
1207 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
1208
1209 extern struct value *value_one (struct type *type);
1210
1211 extern struct value *value_repeat (struct value *arg1, int count);
1212
1213 extern struct value *value_subscript (struct value *array, LONGEST index);
1214
1215 extern struct value *value_bitstring_subscript (struct type *type,
1216 struct value *bitstring,
1217 LONGEST index);
1218
1219 extern struct value *register_value_being_returned (struct type *valtype,
1220 struct regcache *retbuf);
1221
1222 extern int value_in (struct value *element, struct value *set);
1223
1224 extern int value_bit_index (struct type *type, const gdb_byte *addr,
1225 int index);
1226
1227 extern enum return_value_convention
1228 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
1229 struct type *value_type);
1230
1231 extern int using_struct_return (struct gdbarch *gdbarch,
1232 struct value *function,
1233 struct type *value_type);
1234
1235 /* Evaluate the expression EXP. If set, EXPECT_TYPE is passed to the
1236 outermost operation's evaluation. This is ignored by most
1237 operations, but may be used, e.g., to determine the type of an
1238 otherwise untyped symbol. The caller should not assume that the
1239 returned value has this type. */
1240
1241 extern struct value *evaluate_expression (struct expression *exp,
1242 struct type *expect_type = nullptr);
1243
1244 extern struct value *evaluate_type (struct expression *exp);
1245
1246 extern value *evaluate_var_value (enum noside noside, const block *blk,
1247 symbol *var);
1248
1249 extern value *evaluate_var_msym_value (enum noside noside,
1250 struct objfile *objfile,
1251 minimal_symbol *msymbol);
1252
1253 namespace expr { class operation; };
1254 extern void fetch_subexp_value (struct expression *exp,
1255 expr::operation *op,
1256 struct value **valp, struct value **resultp,
1257 std::vector<value_ref_ptr> *val_chain,
1258 bool preserve_errors);
1259
1260 extern struct value *parse_and_eval (const char *exp);
1261
1262 extern struct value *parse_to_comma_and_eval (const char **expp);
1263
1264 extern struct type *parse_and_eval_type (const char *p, int length);
1265
1266 extern CORE_ADDR parse_and_eval_address (const char *exp);
1267
1268 extern LONGEST parse_and_eval_long (const char *exp);
1269
1270 extern void unop_promote (const struct language_defn *language,
1271 struct gdbarch *gdbarch,
1272 struct value **arg1);
1273
1274 extern void binop_promote (const struct language_defn *language,
1275 struct gdbarch *gdbarch,
1276 struct value **arg1, struct value **arg2);
1277
1278 extern struct value *access_value_history (int num);
1279
1280 /* Return the number of items in the value history. */
1281
1282 extern ULONGEST value_history_count ();
1283
1284 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
1285 struct internalvar *var);
1286
1287 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
1288
1289 extern void set_internalvar (struct internalvar *var, struct value *val);
1290
1291 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
1292
1293 extern void set_internalvar_string (struct internalvar *var,
1294 const char *string);
1295
1296 extern void clear_internalvar (struct internalvar *var);
1297
1298 extern void set_internalvar_component (struct internalvar *var,
1299 LONGEST offset,
1300 LONGEST bitpos, LONGEST bitsize,
1301 struct value *newvalue);
1302
1303 extern struct internalvar *lookup_only_internalvar (const char *name);
1304
1305 extern struct internalvar *create_internalvar (const char *name);
1306
1307 extern void complete_internalvar (completion_tracker &tracker,
1308 const char *name);
1309
1310 /* An internalvar can be dynamically computed by supplying a vector of
1311 function pointers to perform various operations. */
1312
1313 struct internalvar_funcs
1314 {
1315 /* Compute the value of the variable. The DATA argument passed to
1316 the function is the same argument that was passed to
1317 `create_internalvar_type_lazy'. */
1318
1319 struct value *(*make_value) (struct gdbarch *arch,
1320 struct internalvar *var,
1321 void *data);
1322
1323 /* Update the agent expression EXPR with bytecode to compute the
1324 value. VALUE is the agent value we are updating. The DATA
1325 argument passed to this function is the same argument that was
1326 passed to `create_internalvar_type_lazy'. If this pointer is
1327 NULL, then the internalvar cannot be compiled to an agent
1328 expression. */
1329
1330 void (*compile_to_ax) (struct internalvar *var,
1331 struct agent_expr *expr,
1332 struct axs_value *value,
1333 void *data);
1334 };
1335
1336 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1337 const struct internalvar_funcs *funcs,
1338 void *data);
1339
1340 /* Compile an internal variable to an agent expression. VAR is the
1341 variable to compile; EXPR and VALUE are the agent expression we are
1342 updating. This will return 0 if there is no known way to compile
1343 VAR, and 1 if VAR was successfully compiled. It may also throw an
1344 exception on error. */
1345
1346 extern int compile_internalvar_to_ax (struct internalvar *var,
1347 struct agent_expr *expr,
1348 struct axs_value *value);
1349
1350 extern struct internalvar *lookup_internalvar (const char *name);
1351
1352 extern int value_equal (struct value *arg1, struct value *arg2);
1353
1354 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1355
1356 extern int value_less (struct value *arg1, struct value *arg2);
1357
1358 /* Simulate the C operator ! -- return true if ARG1 contains zero. */
1359 extern bool value_logical_not (struct value *arg1);
1360
1361 /* Returns true if the value VAL represents a true value. */
1362 static inline bool
1363 value_true (struct value *val)
1364 {
1365 return !value_logical_not (val);
1366 }
1367
1368 /* C++ */
1369
1370 extern struct value *value_of_this (const struct language_defn *lang);
1371
1372 extern struct value *value_of_this_silent (const struct language_defn *lang);
1373
1374 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1375 enum exp_opcode op,
1376 enum exp_opcode otherop,
1377 enum noside noside);
1378
1379 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1380 enum noside noside);
1381
1382 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1383 int j, struct type *type, LONGEST offset);
1384
1385 extern int binop_types_user_defined_p (enum exp_opcode op,
1386 struct type *type1,
1387 struct type *type2);
1388
1389 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1390 struct value *arg2);
1391
1392 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1393
1394 extern int destructor_name_p (const char *name, struct type *type);
1395
1396 extern value_ref_ptr release_value (struct value *val);
1397
1398 extern int record_latest_value (struct value *val);
1399
1400 extern void modify_field (struct type *type, gdb_byte *addr,
1401 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1402
1403 extern void type_print (struct type *type, const char *varstring,
1404 struct ui_file *stream, int show);
1405
1406 extern std::string type_to_string (struct type *type);
1407
1408 extern gdb_byte *baseclass_addr (struct type *type, int index,
1409 gdb_byte *valaddr,
1410 struct value **valuep, int *errp);
1411
1412 extern void print_longest (struct ui_file *stream, int format,
1413 int use_local, LONGEST val);
1414
1415 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1416 struct ui_file *stream);
1417
1418 extern void value_print (struct value *val, struct ui_file *stream,
1419 const struct value_print_options *options);
1420
1421 /* Release values from the value chain and return them. Values
1422 created after MARK are released. If MARK is nullptr, or if MARK is
1423 not found on the value chain, then all values are released. Values
1424 are returned in reverse order of creation; that is, newest
1425 first. */
1426
1427 extern std::vector<value_ref_ptr> value_release_to_mark
1428 (const struct value *mark);
1429
1430 extern void common_val_print (struct value *val,
1431 struct ui_file *stream, int recurse,
1432 const struct value_print_options *options,
1433 const struct language_defn *language);
1434
1435 extern int val_print_string (struct type *elttype, const char *encoding,
1436 CORE_ADDR addr, int len,
1437 struct ui_file *stream,
1438 const struct value_print_options *options);
1439
1440 extern void print_variable_and_value (const char *name,
1441 struct symbol *var,
1442 frame_info_ptr frame,
1443 struct ui_file *stream,
1444 int indent);
1445
1446 extern void typedef_print (struct type *type, struct symbol *news,
1447 struct ui_file *stream);
1448
1449 extern const char *internalvar_name (const struct internalvar *var);
1450
1451 extern void preserve_values (struct objfile *);
1452
1453 /* From values.c */
1454
1455 extern struct value *make_cv_value (int, int, struct value *);
1456
1457 extern void preserve_one_value (struct value *, struct objfile *, htab_t);
1458
1459 /* From valops.c */
1460
1461 extern struct value *varying_to_slice (struct value *);
1462
1463 extern struct value *value_slice (struct value *, int, int);
1464
1465 /* Create a complex number. The type is the complex type; the values
1466 are cast to the underlying scalar type before the complex number is
1467 created. */
1468
1469 extern struct value *value_literal_complex (struct value *, struct value *,
1470 struct type *);
1471
1472 /* Return the real part of a complex value. */
1473
1474 extern struct value *value_real_part (struct value *value);
1475
1476 /* Return the imaginary part of a complex value. */
1477
1478 extern struct value *value_imaginary_part (struct value *value);
1479
1480 extern struct value *find_function_in_inferior (const char *,
1481 struct objfile **);
1482
1483 extern struct value *value_allocate_space_in_inferior (int);
1484
1485 /* User function handler. */
1486
1487 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1488 const struct language_defn *language,
1489 void *cookie,
1490 int argc,
1491 struct value **argv);
1492
1493 /* Add a new internal function. NAME is the name of the function; DOC
1494 is a documentation string describing the function. HANDLER is
1495 called when the function is invoked. COOKIE is an arbitrary
1496 pointer which is passed to HANDLER and is intended for "user
1497 data". */
1498
1499 extern void add_internal_function (const char *name, const char *doc,
1500 internal_function_fn handler,
1501 void *cookie);
1502
1503 /* This overload takes an allocated documentation string. */
1504
1505 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1506 gdb::unique_xmalloc_ptr<char> &&doc,
1507 internal_function_fn handler,
1508 void *cookie);
1509
1510 struct value *call_internal_function (struct gdbarch *gdbarch,
1511 const struct language_defn *language,
1512 struct value *function,
1513 int argc, struct value **argv);
1514
1515 const char *value_internal_function_name (struct value *);
1516
1517 /* Build a value wrapping and representing WORKER. The value takes ownership
1518 of the xmethod_worker object. */
1519
1520 extern struct value *value_from_xmethod (xmethod_worker_up &&worker);
1521
1522 extern struct type *result_type_of_xmethod (struct value *method,
1523 gdb::array_view<value *> argv);
1524
1525 extern struct value *call_xmethod (struct value *method,
1526 gdb::array_view<value *> argv);
1527
1528 /* Destroy the values currently allocated. This is called when GDB is
1529 exiting (e.g., on quit_force). */
1530 extern void finalize_values ();
1531
1532 /* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1533 of floating-point, fixed-point, or integer type. */
1534 extern gdb_mpq value_to_gdb_mpq (struct value *value);
1535
1536 /* While an instance of this class is live, and array values that are
1537 created, that are larger than max_value_size, will be restricted in size
1538 to a particular number of elements. */
1539
1540 struct scoped_array_length_limiting
1541 {
1542 /* Limit any large array values to only contain ELEMENTS elements. */
1543 scoped_array_length_limiting (int elements);
1544
1545 /* Restore the previous array value limit. */
1546 ~scoped_array_length_limiting ();
1547
1548 private:
1549 /* Used to hold the previous array value element limit. */
1550 gdb::optional<int> m_old_value;
1551 };
1552
1553 #endif /* !defined (VALUE_H) */