Convert value_lval_const and deprecated_lval_hack to methods
[binutils-gdb.git] / gdb / value.h
1 /* Definitions for values of C expressions, for GDB.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
22
23 #include "frame.h" /* For struct frame_id. */
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26 #include "gmp-utils.h"
27
28 struct block;
29 struct expression;
30 struct regcache;
31 struct symbol;
32 struct type;
33 struct ui_file;
34 struct language_defn;
35 struct value_print_options;
36
37 /* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
40
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
46
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
49
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
54
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
58
59 - Any other similar scenario.
60
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
65
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
70
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
75
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
79
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
83 */
84
85 extern bool overload_resolution;
86
87 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
88
89 struct range
90 {
91 /* Lowest offset in the range. */
92 LONGEST offset;
93
94 /* Length of the range. */
95 ULONGEST length;
96
97 /* Returns true if THIS is strictly less than OTHER, useful for
98 searching. We keep ranges sorted by offset and coalesce
99 overlapping and contiguous ranges, so this just compares the
100 starting offset. */
101
102 bool operator< (const range &other) const
103 {
104 return offset < other.offset;
105 }
106
107 /* Returns true if THIS is equal to OTHER. */
108 bool operator== (const range &other) const
109 {
110 return offset == other.offset && length == other.length;
111 }
112 };
113
114 /* Increase VAL's reference count. */
115
116 extern void value_incref (struct value *val);
117
118 /* Decrease VAL's reference count. When the reference count drops to
119 0, VAL will be freed. */
120
121 extern void value_decref (struct value *val);
122
123 /* A policy class to interface gdb::ref_ptr with struct value. */
124
125 struct value_ref_policy
126 {
127 static void incref (struct value *ptr)
128 {
129 value_incref (ptr);
130 }
131
132 static void decref (struct value *ptr)
133 {
134 value_decref (ptr);
135 }
136 };
137
138 /* A gdb:;ref_ptr pointer to a struct value. */
139
140 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
141
142 /* Note that the fields in this structure are arranged to save a bit
143 of memory. */
144
145 struct value
146 {
147 explicit value (struct type *type_)
148 : m_modifiable (1),
149 m_lazy (1),
150 m_initialized (1),
151 m_stack (0),
152 m_is_zero (false),
153 m_in_history (false),
154 m_type (type_),
155 m_enclosing_type (type_)
156 {
157 }
158
159 ~value ();
160
161 DISABLE_COPY_AND_ASSIGN (value);
162
163 /* Type of the value. */
164 struct type *type () const
165 { return m_type; }
166
167 /* This is being used to change the type of an existing value, that
168 code should instead be creating a new value with the changed type
169 (but possibly shared content). */
170 void deprecated_set_type (struct type *type)
171 { m_type = type; }
172
173 /* Return the gdbarch associated with the value. */
174 struct gdbarch *arch () const;
175
176 /* Only used for bitfields; number of bits contained in them. */
177 LONGEST bitsize () const
178 { return m_bitsize; }
179
180 void set_bitsize (LONGEST bit)
181 { m_bitsize = bit; }
182
183 /* Only used for bitfields; position of start of field. For
184 little-endian targets, it is the position of the LSB. For
185 big-endian targets, it is the position of the MSB. */
186 LONGEST bitpos () const
187 { return m_bitpos; }
188
189 void set_bitpos (LONGEST bit)
190 { m_bitpos = bit; }
191
192 /* Only used for bitfields; the containing value. This allows a
193 single read from the target when displaying multiple
194 bitfields. */
195 value *parent () const
196 { return m_parent.get (); }
197
198 void set_parent (struct value *parent)
199 { m_parent = value_ref_ptr::new_reference (parent); }
200
201 /* Describes offset of a value within lval of a structure in bytes.
202 If lval == lval_memory, this is an offset to the address. If
203 lval == lval_register, this is a further offset from
204 location.address within the registers structure. Note also the
205 member embedded_offset below. */
206 LONGEST offset () const
207 { return m_offset; }
208
209 void set_offset (LONGEST offset)
210 { m_offset = offset; }
211
212 /* The comment from "struct value" reads: ``Is it modifiable? Only
213 relevant if lval != not_lval.''. Shouldn't the value instead be
214 not_lval and be done with it? */
215 int deprecated_modifiable () const
216 { return m_modifiable; }
217
218 LONGEST pointed_to_offset () const
219 { return m_pointed_to_offset; }
220
221 void set_pointed_to_offset (LONGEST val)
222 { m_pointed_to_offset = val; }
223
224 LONGEST embedded_offset () const
225 { return m_embedded_offset; }
226
227 void set_embedded_offset (LONGEST val)
228 { m_embedded_offset = val; }
229
230 /* If zero, contents of this value are in the contents field. If
231 nonzero, contents are in inferior. If the lval field is lval_memory,
232 the contents are in inferior memory at location.address plus offset.
233 The lval field may also be lval_register.
234
235 WARNING: This field is used by the code which handles watchpoints
236 (see breakpoint.c) to decide whether a particular value can be
237 watched by hardware watchpoints. If the lazy flag is set for some
238 member of a value chain, it is assumed that this member of the
239 chain doesn't need to be watched as part of watching the value
240 itself. This is how GDB avoids watching the entire struct or array
241 when the user wants to watch a single struct member or array
242 element. If you ever change the way lazy flag is set and reset, be
243 sure to consider this use as well! */
244
245 int lazy () const
246 { return m_lazy; }
247
248 void set_lazy (int val)
249 { m_lazy = val; }
250
251
252 /* If a value represents a C++ object, then the `type' field gives the
253 object's compile-time type. If the object actually belongs to some
254 class derived from `type', perhaps with other base classes and
255 additional members, then `type' is just a subobject of the real
256 thing, and the full object is probably larger than `type' would
257 suggest.
258
259 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
260 actually determine the object's run-time type by looking at the
261 run-time type information in the vtable. When this information is
262 available, we may elect to read in the entire object, for several
263 reasons:
264
265 - When printing the value, the user would probably rather see the
266 full object, not just the limited portion apparent from the
267 compile-time type.
268
269 - If `type' has virtual base classes, then even printing `type'
270 alone may require reaching outside the `type' portion of the
271 object to wherever the virtual base class has been stored.
272
273 When we store the entire object, `enclosing_type' is the run-time
274 type -- the complete object -- and `embedded_offset' is the offset
275 of `type' within that larger type, in bytes. The value_contents()
276 macro takes `embedded_offset' into account, so most GDB code
277 continues to see the `type' portion of the value, just as the
278 inferior would.
279
280 If `type' is a pointer to an object, then `enclosing_type' is a
281 pointer to the object's run-time type, and `pointed_to_offset' is
282 the offset in bytes from the full object to the pointed-to object
283 -- that is, the value `embedded_offset' would have if we followed
284 the pointer and fetched the complete object. (I don't really see
285 the point. Why not just determine the run-time type when you
286 indirect, and avoid the special case? The contents don't matter
287 until you indirect anyway.)
288
289 If we're not doing anything fancy, `enclosing_type' is equal to
290 `type', and `embedded_offset' is zero, so everything works
291 normally. */
292
293 struct type *enclosing_type () const
294 { return m_enclosing_type; }
295
296 void set_enclosing_type (struct type *new_type);
297
298 int stack () const
299 { return m_stack; }
300
301 void set_stack (int val)
302 { m_stack = val; }
303
304 /* If this value is lval_computed, return its lval_funcs
305 structure. */
306 const struct lval_funcs *computed_funcs () const;
307
308 /* If this value is lval_computed, return its closure. The meaning
309 of the returned value depends on the functions this value
310 uses. */
311 void *computed_closure () const;
312
313 enum lval_type *deprecated_lval_hack ()
314 { return &m_lval; }
315
316 enum lval_type lval () const
317 { return m_lval; }
318
319
320 /* Type of value; either not an lval, or one of the various
321 different possible kinds of lval. */
322 enum lval_type m_lval = not_lval;
323
324 /* Is it modifiable? Only relevant if lval != not_lval. */
325 unsigned int m_modifiable : 1;
326
327 /* If zero, contents of this value are in the contents field. If
328 nonzero, contents are in inferior. If the lval field is lval_memory,
329 the contents are in inferior memory at location.address plus offset.
330 The lval field may also be lval_register.
331
332 WARNING: This field is used by the code which handles watchpoints
333 (see breakpoint.c) to decide whether a particular value can be
334 watched by hardware watchpoints. If the lazy flag is set for
335 some member of a value chain, it is assumed that this member of
336 the chain doesn't need to be watched as part of watching the
337 value itself. This is how GDB avoids watching the entire struct
338 or array when the user wants to watch a single struct member or
339 array element. If you ever change the way lazy flag is set and
340 reset, be sure to consider this use as well! */
341 unsigned int m_lazy : 1;
342
343 /* If value is a variable, is it initialized or not. */
344 unsigned int m_initialized : 1;
345
346 /* If value is from the stack. If this is set, read_stack will be
347 used instead of read_memory to enable extra caching. */
348 unsigned int m_stack : 1;
349
350 /* True if this is a zero value, created by 'value_zero'; false
351 otherwise. */
352 bool m_is_zero : 1;
353
354 /* True if this a value recorded in value history; false otherwise. */
355 bool m_in_history : 1;
356
357 /* Location of value (if lval). */
358 union
359 {
360 /* If lval == lval_memory, this is the address in the inferior */
361 CORE_ADDR address;
362
363 /*If lval == lval_register, the value is from a register. */
364 struct
365 {
366 /* Register number. */
367 int regnum;
368 /* Frame ID of "next" frame to which a register value is relative.
369 If the register value is found relative to frame F, then the
370 frame id of F->next will be stored in next_frame_id. */
371 struct frame_id next_frame_id;
372 } reg;
373
374 /* Pointer to internal variable. */
375 struct internalvar *internalvar;
376
377 /* Pointer to xmethod worker. */
378 struct xmethod_worker *xm_worker;
379
380 /* If lval == lval_computed, this is a set of function pointers
381 to use to access and describe the value, and a closure pointer
382 for them to use. */
383 struct
384 {
385 /* Functions to call. */
386 const struct lval_funcs *funcs;
387
388 /* Closure for those functions to use. */
389 void *closure;
390 } computed;
391 } m_location {};
392
393 /* Describes offset of a value within lval of a structure in target
394 addressable memory units. Note also the member embedded_offset
395 below. */
396 LONGEST m_offset = 0;
397
398 /* Only used for bitfields; number of bits contained in them. */
399 LONGEST m_bitsize = 0;
400
401 /* Only used for bitfields; position of start of field. For
402 little-endian targets, it is the position of the LSB. For
403 big-endian targets, it is the position of the MSB. */
404 LONGEST m_bitpos = 0;
405
406 /* The number of references to this value. When a value is created,
407 the value chain holds a reference, so REFERENCE_COUNT is 1. If
408 release_value is called, this value is removed from the chain but
409 the caller of release_value now has a reference to this value.
410 The caller must arrange for a call to value_free later. */
411 int m_reference_count = 1;
412
413 /* Only used for bitfields; the containing value. This allows a
414 single read from the target when displaying multiple
415 bitfields. */
416 value_ref_ptr m_parent;
417
418 /* Type of the value. */
419 struct type *m_type;
420
421 /* If a value represents a C++ object, then the `type' field gives
422 the object's compile-time type. If the object actually belongs
423 to some class derived from `type', perhaps with other base
424 classes and additional members, then `type' is just a subobject
425 of the real thing, and the full object is probably larger than
426 `type' would suggest.
427
428 If `type' is a dynamic class (i.e. one with a vtable), then GDB
429 can actually determine the object's run-time type by looking at
430 the run-time type information in the vtable. When this
431 information is available, we may elect to read in the entire
432 object, for several reasons:
433
434 - When printing the value, the user would probably rather see the
435 full object, not just the limited portion apparent from the
436 compile-time type.
437
438 - If `type' has virtual base classes, then even printing `type'
439 alone may require reaching outside the `type' portion of the
440 object to wherever the virtual base class has been stored.
441
442 When we store the entire object, `enclosing_type' is the run-time
443 type -- the complete object -- and `embedded_offset' is the
444 offset of `type' within that larger type, in target addressable memory
445 units. The value_contents() macro takes `embedded_offset' into account,
446 so most GDB code continues to see the `type' portion of the value, just
447 as the inferior would.
448
449 If `type' is a pointer to an object, then `enclosing_type' is a
450 pointer to the object's run-time type, and `pointed_to_offset' is
451 the offset in target addressable memory units from the full object
452 to the pointed-to object -- that is, the value `embedded_offset' would
453 have if we followed the pointer and fetched the complete object.
454 (I don't really see the point. Why not just determine the
455 run-time type when you indirect, and avoid the special case? The
456 contents don't matter until you indirect anyway.)
457
458 If we're not doing anything fancy, `enclosing_type' is equal to
459 `type', and `embedded_offset' is zero, so everything works
460 normally. */
461 struct type *m_enclosing_type;
462 LONGEST m_embedded_offset = 0;
463 LONGEST m_pointed_to_offset = 0;
464
465 /* Actual contents of the value. Target byte-order.
466
467 May be nullptr if the value is lazy or is entirely optimized out.
468 Guaranteed to be non-nullptr otherwise. */
469 gdb::unique_xmalloc_ptr<gdb_byte> m_contents;
470
471 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
472 rather than available, since the common and default case is for a
473 value to be available. This is filled in at value read time.
474 The unavailable ranges are tracked in bits. Note that a contents
475 bit that has been optimized out doesn't really exist in the
476 program, so it can't be marked unavailable either. */
477 std::vector<range> m_unavailable;
478
479 /* Likewise, but for optimized out contents (a chunk of the value of
480 a variable that does not actually exist in the program). If LVAL
481 is lval_register, this is a register ($pc, $sp, etc., never a
482 program variable) that has not been saved in the frame. Not
483 saved registers and optimized-out program variables values are
484 treated pretty much the same, except not-saved registers have a
485 different string representation and related error strings. */
486 std::vector<range> m_optimized_out;
487
488 /* This is only non-zero for values of TYPE_CODE_ARRAY and if the size of
489 the array in inferior memory is greater than max_value_size. If these
490 conditions are met then, when the value is loaded from the inferior
491 GDB will only load a portion of the array into memory, and
492 limited_length will be set to indicate the length in octets that were
493 loaded from the inferior. */
494 ULONGEST m_limited_length = 0;
495 };
496
497 /* Returns value_type or value_enclosing_type depending on
498 value_print_options.objectprint.
499
500 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
501 only for pointers and references, else it will be returned
502 for all the types (e.g. structures). This option is useful
503 to prevent retrieving enclosing type for the base classes fields.
504
505 REAL_TYPE_FOUND is used to inform whether the real type was found
506 (or just static type was used). The NULL may be passed if it is not
507 necessary. */
508
509 extern struct type *value_actual_type (struct value *value,
510 int resolve_simple_types,
511 int *real_type_found);
512
513 /* For lval_computed values, this structure holds functions used to
514 retrieve and set the value (or portions of the value).
515
516 For each function, 'V' is the 'this' pointer: an lval_funcs
517 function F may always assume that the V it receives is an
518 lval_computed value, and has F in the appropriate slot of its
519 lval_funcs structure. */
520
521 struct lval_funcs
522 {
523 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
524 a problem arises in obtaining VALUE's bits, this function should
525 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
526 non-optimized-out value is an internal error. */
527 void (*read) (struct value *v);
528
529 /* Handle an assignment TOVAL = FROMVAL by writing the value of
530 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
531 been updated. If a problem arises in doing so, this function
532 should call 'error'. If it is NULL such TOVAL assignment is an error as
533 TOVAL is not considered as an lvalue. */
534 void (*write) (struct value *toval, struct value *fromval);
535
536 /* Return true if any part of V is optimized out, false otherwise.
537 This will only be called for lazy values -- if the value has been
538 fetched, then the value's optimized-out bits are consulted
539 instead. */
540 bool (*is_optimized_out) (struct value *v);
541
542 /* If non-NULL, this is used to implement pointer indirection for
543 this value. This method may return NULL, in which case value_ind
544 will fall back to ordinary indirection. */
545 struct value *(*indirect) (struct value *value);
546
547 /* If non-NULL, this is used to implement reference resolving for
548 this value. This method may return NULL, in which case coerce_ref
549 will fall back to ordinary references resolving. */
550 struct value *(*coerce_ref) (const struct value *value);
551
552 /* If non-NULL, this is used to determine whether the indicated bits
553 of VALUE are a synthetic pointer. */
554 int (*check_synthetic_pointer) (const struct value *value,
555 LONGEST offset, int length);
556
557 /* Return a duplicate of VALUE's closure, for use in a new value.
558 This may simply return the same closure, if VALUE's is
559 reference-counted or statically allocated.
560
561 This may be NULL, in which case VALUE's closure is re-used in the
562 new value. */
563 void *(*copy_closure) (const struct value *v);
564
565 /* Drop VALUE's reference to its closure. Maybe this frees the
566 closure; maybe this decrements a reference count; maybe the
567 closure is statically allocated and this does nothing.
568
569 This may be NULL, in which case no action is taken to free
570 VALUE's closure. */
571 void (*free_closure) (struct value *v);
572 };
573
574 /* Create a computed lvalue, with type TYPE, function pointers FUNCS,
575 and closure CLOSURE. */
576
577 extern struct value *allocate_computed_value (struct type *type,
578 const struct lval_funcs *funcs,
579 void *closure);
580
581 extern struct value *allocate_optimized_out_value (struct type *type);
582
583 /* Throw an error complaining that the value has been optimized
584 out. */
585
586 extern void error_value_optimized_out (void);
587
588 /* value_contents() and value_contents_raw() both return the address
589 of the gdb buffer used to hold a copy of the contents of the lval.
590 value_contents() is used when the contents of the buffer are needed
591 -- it uses value_fetch_lazy() to load the buffer from the process
592 being debugged if it hasn't already been loaded
593 (value_contents_writeable() is used when a writeable but fetched
594 buffer is required).. value_contents_raw() is used when data is
595 being stored into the buffer, or when it is certain that the
596 contents of the buffer are valid.
597
598 Note: The contents pointer is adjusted by the offset required to
599 get to the real subobject, if the value happens to represent
600 something embedded in a larger run-time object. */
601
602 extern gdb::array_view<gdb_byte> value_contents_raw (struct value *);
603
604 /* Actual contents of the value. For use of this value; setting it
605 uses the stuff above. Not valid if lazy is nonzero. Target
606 byte-order. We force it to be aligned properly for any possible
607 value. Note that a value therefore extends beyond what is
608 declared here. */
609
610 extern gdb::array_view<const gdb_byte> value_contents (struct value *);
611 extern gdb::array_view<gdb_byte> value_contents_writeable (struct value *);
612
613 /* The ALL variants of the above two macros do not adjust the returned
614 pointer by the embedded_offset value. */
615
616 extern gdb::array_view<gdb_byte> value_contents_all_raw (struct value *);
617 extern gdb::array_view<const gdb_byte> value_contents_all (struct value *);
618
619 /* Like value_contents_all, but does not require that the returned
620 bits be valid. This should only be used in situations where you
621 plan to check the validity manually. */
622 extern gdb::array_view<const gdb_byte> value_contents_for_printing (struct value *value);
623
624 /* Like value_contents_for_printing, but accepts a constant value
625 pointer. Unlike value_contents_for_printing however, the pointed
626 value must _not_ be lazy. */
627 extern gdb::array_view<const gdb_byte>
628 value_contents_for_printing_const (const struct value *value);
629
630 extern void value_fetch_lazy (struct value *val);
631
632 /* If nonzero, this is the value of a variable which does not actually
633 exist in the program, at least partially. If the value is lazy,
634 this may fetch it now. */
635 extern int value_optimized_out (struct value *value);
636
637 /* Given a value, return true if any of the contents bits starting at
638 OFFSET and extending for LENGTH bits is optimized out, false
639 otherwise. */
640
641 extern int value_bits_any_optimized_out (const struct value *value,
642 int bit_offset, int bit_length);
643
644 /* Like value_optimized_out, but return true iff the whole value is
645 optimized out. */
646 extern int value_entirely_optimized_out (struct value *value);
647
648 /* Mark VALUE's content bytes starting at OFFSET and extending for
649 LENGTH bytes as optimized out. */
650
651 extern void mark_value_bytes_optimized_out (struct value *value,
652 int offset, int length);
653
654 /* Mark VALUE's content bits starting at OFFSET and extending for
655 LENGTH bits as optimized out. */
656
657 extern void mark_value_bits_optimized_out (struct value *value,
658 LONGEST offset, LONGEST length);
659
660 /* Set or return field indicating whether a variable is initialized or
661 not, based on debugging information supplied by the compiler.
662 1 = initialized; 0 = uninitialized. */
663 extern int value_initialized (const struct value *);
664 extern void set_value_initialized (struct value *, int);
665
666 /* Set COMPONENT's location as appropriate for a component of WHOLE
667 --- regardless of what kind of lvalue WHOLE is. */
668 extern void set_value_component_location (struct value *component,
669 const struct value *whole);
670
671 /* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
672 single value might have multiple LVALs), this hacked interface is
673 limited to just the first PIECE. Expect further change. */
674 /* Type of value; either not an lval, or one of the various different
675 possible kinds of lval. */
676 #define VALUE_LVAL(val) (*((val)->deprecated_lval_hack ()))
677
678 /* If lval == lval_memory, return the address in the inferior. If
679 lval == lval_register, return the byte offset into the registers
680 structure. Otherwise, return 0. The returned address
681 includes the offset, if any. */
682 extern CORE_ADDR value_address (const struct value *);
683
684 /* Like value_address, except the result does not include value's
685 offset. */
686 extern CORE_ADDR value_raw_address (const struct value *);
687
688 /* Set the address of a value. */
689 extern void set_value_address (struct value *, CORE_ADDR);
690
691 /* Pointer to internal variable. */
692 extern struct internalvar **deprecated_value_internalvar_hack (struct value *);
693 #define VALUE_INTERNALVAR(val) (*deprecated_value_internalvar_hack (val))
694
695 /* Frame ID of "next" frame to which a register value is relative. A
696 register value is indicated by VALUE_LVAL being set to lval_register.
697 So, if the register value is found relative to frame F, then the
698 frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
699 extern struct frame_id *deprecated_value_next_frame_id_hack (struct value *);
700 #define VALUE_NEXT_FRAME_ID(val) (*deprecated_value_next_frame_id_hack (val))
701
702 /* Register number if the value is from a register. */
703 extern int *deprecated_value_regnum_hack (struct value *);
704 #define VALUE_REGNUM(val) (*deprecated_value_regnum_hack (val))
705
706 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
707 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
708
709 extern struct value *coerce_ref_if_computed (const struct value *arg);
710
711 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
712 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
713 ORIGINAL_VAL are the type and value of the original reference or
714 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
715 the address that was dereferenced.
716
717 Note, that VALUE is modified by this function.
718
719 It is a common implementation for coerce_ref and value_ind. */
720
721 extern struct value * readjust_indirect_value_type (struct value *value,
722 struct type *enc_type,
723 const struct type *original_type,
724 struct value *original_val,
725 CORE_ADDR original_value_address);
726
727 /* Convert a REF to the object referenced. */
728
729 extern struct value *coerce_ref (struct value *value);
730
731 /* If ARG is an array, convert it to a pointer.
732 If ARG is a function, convert it to a function pointer.
733
734 References are dereferenced. */
735
736 extern struct value *coerce_array (struct value *value);
737
738 /* Given a value, determine whether the bits starting at OFFSET and
739 extending for LENGTH bits are a synthetic pointer. */
740
741 extern int value_bits_synthetic_pointer (const struct value *value,
742 LONGEST offset, LONGEST length);
743
744 /* Given a value, determine whether the contents bytes starting at
745 OFFSET and extending for LENGTH bytes are available. This returns
746 nonzero if all bytes in the given range are available, zero if any
747 byte is unavailable. */
748
749 extern int value_bytes_available (const struct value *value,
750 LONGEST offset, ULONGEST length);
751
752 /* Given a value, determine whether the contents bits starting at
753 OFFSET and extending for LENGTH bits are available. This returns
754 nonzero if all bits in the given range are available, zero if any
755 bit is unavailable. */
756
757 extern int value_bits_available (const struct value *value,
758 LONGEST offset, ULONGEST length);
759
760 /* Like value_bytes_available, but return false if any byte in the
761 whole object is unavailable. */
762 extern int value_entirely_available (struct value *value);
763
764 /* Like value_entirely_available, but return false if any byte in the
765 whole object is available. */
766 extern int value_entirely_unavailable (struct value *value);
767
768 /* Mark VALUE's content bytes starting at OFFSET and extending for
769 LENGTH bytes as unavailable. */
770
771 extern void mark_value_bytes_unavailable (struct value *value,
772 LONGEST offset, ULONGEST length);
773
774 /* Mark VALUE's content bits starting at OFFSET and extending for
775 LENGTH bits as unavailable. */
776
777 extern void mark_value_bits_unavailable (struct value *value,
778 LONGEST offset, ULONGEST length);
779
780 /* Compare LENGTH bytes of VAL1's contents starting at OFFSET1 with
781 LENGTH bytes of VAL2's contents starting at OFFSET2.
782
783 Note that "contents" refers to the whole value's contents
784 (value_contents_all), without any embedded offset adjustment. For
785 example, to compare a complete object value with itself, including
786 its enclosing type chunk, you'd do:
787
788 int len = check_typedef (val->enclosing_type ())->length ();
789 value_contents_eq (val, 0, val, 0, len);
790
791 Returns true iff the set of available/valid contents match.
792
793 Optimized-out contents are equal to optimized-out contents, and are
794 not equal to non-optimized-out contents.
795
796 Unavailable contents are equal to unavailable contents, and are not
797 equal to non-unavailable contents.
798
799 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
800 represent different available/valid bytes, in a value with length
801 16:
802
803 offset: 0 4 8 12 16
804 contents: xxxxVVVVxxxxVVZZ
805
806 then:
807
808 value_contents_eq(val, 0, val, 8, 6) => true
809 value_contents_eq(val, 0, val, 4, 4) => false
810 value_contents_eq(val, 0, val, 8, 8) => false
811 value_contents_eq(val, 4, val, 12, 2) => true
812 value_contents_eq(val, 4, val, 12, 4) => true
813 value_contents_eq(val, 3, val, 4, 4) => true
814
815 If 'x's represent an unavailable byte, 'o' represents an optimized
816 out byte, in a value with length 8:
817
818 offset: 0 4 8
819 contents: xxxxoooo
820
821 then:
822
823 value_contents_eq(val, 0, val, 2, 2) => true
824 value_contents_eq(val, 4, val, 6, 2) => true
825 value_contents_eq(val, 0, val, 4, 4) => true
826
827 We only know whether a value chunk is unavailable or optimized out
828 if we've tried to read it. As this routine is used by printing
829 routines, which may be printing values in the value history, long
830 after the inferior is gone, it works with const values. Therefore,
831 this routine must not be called with lazy values. */
832
833 extern bool value_contents_eq (const struct value *val1, LONGEST offset1,
834 const struct value *val2, LONGEST offset2,
835 LONGEST length);
836
837 /* An overload of value_contents_eq that compares the entirety of both
838 values. */
839
840 extern bool value_contents_eq (const struct value *val1,
841 const struct value *val2);
842
843 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
844 which is (or will be copied to) VAL's contents buffer offset by
845 BIT_OFFSET bits. Marks value contents ranges as unavailable if
846 the corresponding memory is likewise unavailable. STACK indicates
847 whether the memory is known to be stack memory. */
848
849 extern void read_value_memory (struct value *val, LONGEST bit_offset,
850 int stack, CORE_ADDR memaddr,
851 gdb_byte *buffer, size_t length);
852
853 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
854 into each element of a new vector value with VECTOR_TYPE. */
855
856 struct value *value_vector_widen (struct value *scalar_value,
857 struct type *vector_type);
858
859 \f
860
861 #include "symtab.h"
862 #include "gdbtypes.h"
863 #include "expression.h"
864
865 class frame_info_ptr;
866 struct fn_field;
867
868 extern int print_address_demangle (const struct value_print_options *,
869 struct gdbarch *, CORE_ADDR,
870 struct ui_file *, int);
871
872 /* Returns true if VAL is of floating-point type. In addition,
873 throws an error if the value is an invalid floating-point value. */
874 extern bool is_floating_value (struct value *val);
875
876 extern LONGEST value_as_long (struct value *val);
877 extern CORE_ADDR value_as_address (struct value *val);
878
879 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
880 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
881
882 extern LONGEST unpack_field_as_long (struct type *type,
883 const gdb_byte *valaddr,
884 int fieldno);
885
886 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
887 VALADDR, and store the result in *RESULT.
888 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
889 BITSIZE is zero, then the length is taken from FIELD_TYPE.
890
891 Extracting bits depends on endianness of the machine. Compute the
892 number of least significant bits to discard. For big endian machines,
893 we compute the total number of bits in the anonymous object, subtract
894 off the bit count from the MSB of the object to the MSB of the
895 bitfield, then the size of the bitfield, which leaves the LSB discard
896 count. For little endian machines, the discard count is simply the
897 number of bits from the LSB of the anonymous object to the LSB of the
898 bitfield.
899
900 If the field is signed, we also do sign extension. */
901
902 extern LONGEST unpack_bits_as_long (struct type *field_type,
903 const gdb_byte *valaddr,
904 LONGEST bitpos, LONGEST bitsize);
905
906 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
907 LONGEST embedded_offset, int fieldno,
908 const struct value *val, LONGEST *result);
909
910 extern void unpack_value_bitfield (struct value *dest_val,
911 LONGEST bitpos, LONGEST bitsize,
912 const gdb_byte *valaddr,
913 LONGEST embedded_offset,
914 const struct value *val);
915
916 extern struct value *value_field_bitfield (struct type *type, int fieldno,
917 const gdb_byte *valaddr,
918 LONGEST embedded_offset,
919 const struct value *val);
920
921 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
922
923 extern struct value *value_from_longest (struct type *type, LONGEST num);
924 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
925 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
926 extern struct value *value_from_host_double (struct type *type, double d);
927 extern struct value *value_from_history_ref (const char *, const char **);
928 extern struct value *value_from_component (struct value *, struct type *,
929 LONGEST);
930
931
932 /* Create a new value by extracting it from WHOLE. TYPE is the type
933 of the new value. BIT_OFFSET and BIT_LENGTH describe the offset
934 and field width of the value to extract from WHOLE -- BIT_LENGTH
935 may differ from TYPE's length in the case where WHOLE's type is
936 packed.
937
938 When the value does come from a non-byte-aligned offset or field
939 width, it will be marked non_lval. */
940
941 extern struct value *value_from_component_bitsize (struct value *whole,
942 struct type *type,
943 LONGEST bit_offset,
944 LONGEST bit_length);
945
946 extern struct value *value_at (struct type *type, CORE_ADDR addr);
947 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
948
949 /* Like value_at, but ensures that the result is marked not_lval.
950 This can be important if the memory is "volatile". */
951 extern struct value *value_at_non_lval (struct type *type, CORE_ADDR addr);
952
953 extern struct value *value_from_contents_and_address_unresolved
954 (struct type *, const gdb_byte *, CORE_ADDR);
955 extern struct value *value_from_contents_and_address (struct type *,
956 const gdb_byte *,
957 CORE_ADDR);
958 extern struct value *value_from_contents (struct type *, const gdb_byte *);
959
960 extern struct value *default_value_from_register (struct gdbarch *gdbarch,
961 struct type *type,
962 int regnum,
963 struct frame_id frame_id);
964
965 extern void read_frame_register_value (struct value *value,
966 frame_info_ptr frame);
967
968 extern struct value *value_from_register (struct type *type, int regnum,
969 frame_info_ptr frame);
970
971 extern CORE_ADDR address_from_register (int regnum,
972 frame_info_ptr frame);
973
974 extern struct value *value_of_variable (struct symbol *var,
975 const struct block *b);
976
977 extern struct value *address_of_variable (struct symbol *var,
978 const struct block *b);
979
980 extern struct value *value_of_register (int regnum, frame_info_ptr frame);
981
982 struct value *value_of_register_lazy (frame_info_ptr frame, int regnum);
983
984 /* Return the symbol's reading requirement. */
985
986 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
987
988 /* Return true if the symbol needs a frame. This is a wrapper for
989 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
990
991 extern int symbol_read_needs_frame (struct symbol *);
992
993 extern struct value *read_var_value (struct symbol *var,
994 const struct block *var_block,
995 frame_info_ptr frame);
996
997 extern struct value *allocate_value (struct type *type);
998 extern struct value *allocate_value_lazy (struct type *type);
999 extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
1000 struct value *src, LONGEST src_offset,
1001 LONGEST length);
1002
1003 extern struct value *allocate_repeat_value (struct type *type, int count);
1004
1005 extern struct value *value_mark (void);
1006
1007 extern void value_free_to_mark (const struct value *mark);
1008
1009 /* A helper class that uses value_mark at construction time and calls
1010 value_free_to_mark in the destructor. This is used to clear out
1011 temporary values created during the lifetime of this object. */
1012 class scoped_value_mark
1013 {
1014 public:
1015
1016 scoped_value_mark ()
1017 : m_value (value_mark ())
1018 {
1019 }
1020
1021 ~scoped_value_mark ()
1022 {
1023 free_to_mark ();
1024 }
1025
1026 scoped_value_mark (scoped_value_mark &&other) = default;
1027
1028 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
1029
1030 /* Free the values currently on the value stack. */
1031 void free_to_mark ()
1032 {
1033 if (m_value != NULL)
1034 {
1035 value_free_to_mark (m_value);
1036 m_value = NULL;
1037 }
1038 }
1039
1040 private:
1041
1042 const struct value *m_value;
1043 };
1044
1045 extern struct value *value_cstring (const char *ptr, ssize_t len,
1046 struct type *char_type);
1047 extern struct value *value_string (const char *ptr, ssize_t len,
1048 struct type *char_type);
1049
1050 extern struct value *value_array (int lowbound, int highbound,
1051 struct value **elemvec);
1052
1053 extern struct value *value_concat (struct value *arg1, struct value *arg2);
1054
1055 extern struct value *value_binop (struct value *arg1, struct value *arg2,
1056 enum exp_opcode op);
1057
1058 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
1059
1060 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
1061
1062 /* Return true if VAL does not live in target memory, but should in order
1063 to operate on it. Otherwise return false. */
1064
1065 extern bool value_must_coerce_to_target (struct value *arg1);
1066
1067 extern struct value *value_coerce_to_target (struct value *arg1);
1068
1069 extern struct value *value_coerce_array (struct value *arg1);
1070
1071 extern struct value *value_coerce_function (struct value *arg1);
1072
1073 extern struct value *value_ind (struct value *arg1);
1074
1075 extern struct value *value_addr (struct value *arg1);
1076
1077 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
1078
1079 extern struct value *value_assign (struct value *toval,
1080 struct value *fromval);
1081
1082 extern struct value *value_pos (struct value *arg1);
1083
1084 extern struct value *value_neg (struct value *arg1);
1085
1086 extern struct value *value_complement (struct value *arg1);
1087
1088 extern struct value *value_struct_elt (struct value **argp,
1089 gdb::optional<gdb::array_view <value *>> args,
1090 const char *name, int *static_memfuncp,
1091 const char *err);
1092
1093 extern struct value *value_struct_elt_bitpos (struct value **argp,
1094 int bitpos,
1095 struct type *field_type,
1096 const char *err);
1097
1098 extern struct value *value_aggregate_elt (struct type *curtype,
1099 const char *name,
1100 struct type *expect_type,
1101 int want_address,
1102 enum noside noside);
1103
1104 extern struct value *value_static_field (struct type *type, int fieldno);
1105
1106 enum oload_search_type { NON_METHOD, METHOD, BOTH };
1107
1108 extern int find_overload_match (gdb::array_view<value *> args,
1109 const char *name,
1110 enum oload_search_type method,
1111 struct value **objp, struct symbol *fsym,
1112 struct value **valp, struct symbol **symp,
1113 int *staticp, const int no_adl,
1114 enum noside noside);
1115
1116 extern struct value *value_field (struct value *arg1, int fieldno);
1117
1118 extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
1119 int fieldno,
1120 struct type *arg_type);
1121
1122
1123 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
1124 int *);
1125
1126 extern struct value *value_full_object (struct value *, struct type *, int,
1127 int, int);
1128
1129 extern struct value *value_cast_pointers (struct type *, struct value *, int);
1130
1131 extern struct value *value_cast (struct type *type, struct value *arg2);
1132
1133 extern struct value *value_reinterpret_cast (struct type *type,
1134 struct value *arg);
1135
1136 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
1137
1138 extern struct value *value_zero (struct type *type, enum lval_type lv);
1139
1140 extern struct value *value_one (struct type *type);
1141
1142 extern struct value *value_repeat (struct value *arg1, int count);
1143
1144 extern struct value *value_subscript (struct value *array, LONGEST index);
1145
1146 extern struct value *value_bitstring_subscript (struct type *type,
1147 struct value *bitstring,
1148 LONGEST index);
1149
1150 extern struct value *register_value_being_returned (struct type *valtype,
1151 struct regcache *retbuf);
1152
1153 extern int value_in (struct value *element, struct value *set);
1154
1155 extern int value_bit_index (struct type *type, const gdb_byte *addr,
1156 int index);
1157
1158 extern enum return_value_convention
1159 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
1160 struct type *value_type);
1161
1162 extern int using_struct_return (struct gdbarch *gdbarch,
1163 struct value *function,
1164 struct type *value_type);
1165
1166 /* Evaluate the expression EXP. If set, EXPECT_TYPE is passed to the
1167 outermost operation's evaluation. This is ignored by most
1168 operations, but may be used, e.g., to determine the type of an
1169 otherwise untyped symbol. The caller should not assume that the
1170 returned value has this type. */
1171
1172 extern struct value *evaluate_expression (struct expression *exp,
1173 struct type *expect_type = nullptr);
1174
1175 extern struct value *evaluate_type (struct expression *exp);
1176
1177 extern value *evaluate_var_value (enum noside noside, const block *blk,
1178 symbol *var);
1179
1180 extern value *evaluate_var_msym_value (enum noside noside,
1181 struct objfile *objfile,
1182 minimal_symbol *msymbol);
1183
1184 namespace expr { class operation; };
1185 extern void fetch_subexp_value (struct expression *exp,
1186 expr::operation *op,
1187 struct value **valp, struct value **resultp,
1188 std::vector<value_ref_ptr> *val_chain,
1189 bool preserve_errors);
1190
1191 extern struct value *parse_and_eval (const char *exp);
1192
1193 extern struct value *parse_to_comma_and_eval (const char **expp);
1194
1195 extern struct type *parse_and_eval_type (const char *p, int length);
1196
1197 extern CORE_ADDR parse_and_eval_address (const char *exp);
1198
1199 extern LONGEST parse_and_eval_long (const char *exp);
1200
1201 extern void unop_promote (const struct language_defn *language,
1202 struct gdbarch *gdbarch,
1203 struct value **arg1);
1204
1205 extern void binop_promote (const struct language_defn *language,
1206 struct gdbarch *gdbarch,
1207 struct value **arg1, struct value **arg2);
1208
1209 extern struct value *access_value_history (int num);
1210
1211 /* Return the number of items in the value history. */
1212
1213 extern ULONGEST value_history_count ();
1214
1215 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
1216 struct internalvar *var);
1217
1218 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
1219
1220 extern void set_internalvar (struct internalvar *var, struct value *val);
1221
1222 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
1223
1224 extern void set_internalvar_string (struct internalvar *var,
1225 const char *string);
1226
1227 extern void clear_internalvar (struct internalvar *var);
1228
1229 extern void set_internalvar_component (struct internalvar *var,
1230 LONGEST offset,
1231 LONGEST bitpos, LONGEST bitsize,
1232 struct value *newvalue);
1233
1234 extern struct internalvar *lookup_only_internalvar (const char *name);
1235
1236 extern struct internalvar *create_internalvar (const char *name);
1237
1238 extern void complete_internalvar (completion_tracker &tracker,
1239 const char *name);
1240
1241 /* An internalvar can be dynamically computed by supplying a vector of
1242 function pointers to perform various operations. */
1243
1244 struct internalvar_funcs
1245 {
1246 /* Compute the value of the variable. The DATA argument passed to
1247 the function is the same argument that was passed to
1248 `create_internalvar_type_lazy'. */
1249
1250 struct value *(*make_value) (struct gdbarch *arch,
1251 struct internalvar *var,
1252 void *data);
1253
1254 /* Update the agent expression EXPR with bytecode to compute the
1255 value. VALUE is the agent value we are updating. The DATA
1256 argument passed to this function is the same argument that was
1257 passed to `create_internalvar_type_lazy'. If this pointer is
1258 NULL, then the internalvar cannot be compiled to an agent
1259 expression. */
1260
1261 void (*compile_to_ax) (struct internalvar *var,
1262 struct agent_expr *expr,
1263 struct axs_value *value,
1264 void *data);
1265 };
1266
1267 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1268 const struct internalvar_funcs *funcs,
1269 void *data);
1270
1271 /* Compile an internal variable to an agent expression. VAR is the
1272 variable to compile; EXPR and VALUE are the agent expression we are
1273 updating. This will return 0 if there is no known way to compile
1274 VAR, and 1 if VAR was successfully compiled. It may also throw an
1275 exception on error. */
1276
1277 extern int compile_internalvar_to_ax (struct internalvar *var,
1278 struct agent_expr *expr,
1279 struct axs_value *value);
1280
1281 extern struct internalvar *lookup_internalvar (const char *name);
1282
1283 extern int value_equal (struct value *arg1, struct value *arg2);
1284
1285 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1286
1287 extern int value_less (struct value *arg1, struct value *arg2);
1288
1289 /* Simulate the C operator ! -- return true if ARG1 contains zero. */
1290 extern bool value_logical_not (struct value *arg1);
1291
1292 /* Returns true if the value VAL represents a true value. */
1293 static inline bool
1294 value_true (struct value *val)
1295 {
1296 return !value_logical_not (val);
1297 }
1298
1299 /* C++ */
1300
1301 extern struct value *value_of_this (const struct language_defn *lang);
1302
1303 extern struct value *value_of_this_silent (const struct language_defn *lang);
1304
1305 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1306 enum exp_opcode op,
1307 enum exp_opcode otherop,
1308 enum noside noside);
1309
1310 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1311 enum noside noside);
1312
1313 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1314 int j, struct type *type, LONGEST offset);
1315
1316 extern int binop_types_user_defined_p (enum exp_opcode op,
1317 struct type *type1,
1318 struct type *type2);
1319
1320 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1321 struct value *arg2);
1322
1323 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1324
1325 extern int destructor_name_p (const char *name, struct type *type);
1326
1327 extern value_ref_ptr release_value (struct value *val);
1328
1329 extern int record_latest_value (struct value *val);
1330
1331 extern void modify_field (struct type *type, gdb_byte *addr,
1332 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1333
1334 extern void type_print (struct type *type, const char *varstring,
1335 struct ui_file *stream, int show);
1336
1337 extern std::string type_to_string (struct type *type);
1338
1339 extern gdb_byte *baseclass_addr (struct type *type, int index,
1340 gdb_byte *valaddr,
1341 struct value **valuep, int *errp);
1342
1343 extern void print_longest (struct ui_file *stream, int format,
1344 int use_local, LONGEST val);
1345
1346 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1347 struct ui_file *stream);
1348
1349 extern void value_print (struct value *val, struct ui_file *stream,
1350 const struct value_print_options *options);
1351
1352 /* Release values from the value chain and return them. Values
1353 created after MARK are released. If MARK is nullptr, or if MARK is
1354 not found on the value chain, then all values are released. Values
1355 are returned in reverse order of creation; that is, newest
1356 first. */
1357
1358 extern std::vector<value_ref_ptr> value_release_to_mark
1359 (const struct value *mark);
1360
1361 extern void common_val_print (struct value *val,
1362 struct ui_file *stream, int recurse,
1363 const struct value_print_options *options,
1364 const struct language_defn *language);
1365
1366 extern int val_print_string (struct type *elttype, const char *encoding,
1367 CORE_ADDR addr, int len,
1368 struct ui_file *stream,
1369 const struct value_print_options *options);
1370
1371 extern void print_variable_and_value (const char *name,
1372 struct symbol *var,
1373 frame_info_ptr frame,
1374 struct ui_file *stream,
1375 int indent);
1376
1377 extern void typedef_print (struct type *type, struct symbol *news,
1378 struct ui_file *stream);
1379
1380 extern const char *internalvar_name (const struct internalvar *var);
1381
1382 extern void preserve_values (struct objfile *);
1383
1384 /* From values.c */
1385
1386 extern struct value *value_copy (const value *);
1387
1388 extern struct value *value_non_lval (struct value *);
1389
1390 extern void value_force_lval (struct value *, CORE_ADDR);
1391
1392 extern struct value *make_cv_value (int, int, struct value *);
1393
1394 extern void preserve_one_value (struct value *, struct objfile *, htab_t);
1395
1396 /* From valops.c */
1397
1398 extern struct value *varying_to_slice (struct value *);
1399
1400 extern struct value *value_slice (struct value *, int, int);
1401
1402 /* Create a complex number. The type is the complex type; the values
1403 are cast to the underlying scalar type before the complex number is
1404 created. */
1405
1406 extern struct value *value_literal_complex (struct value *, struct value *,
1407 struct type *);
1408
1409 /* Return the real part of a complex value. */
1410
1411 extern struct value *value_real_part (struct value *value);
1412
1413 /* Return the imaginary part of a complex value. */
1414
1415 extern struct value *value_imaginary_part (struct value *value);
1416
1417 extern struct value *find_function_in_inferior (const char *,
1418 struct objfile **);
1419
1420 extern struct value *value_allocate_space_in_inferior (int);
1421
1422 /* User function handler. */
1423
1424 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1425 const struct language_defn *language,
1426 void *cookie,
1427 int argc,
1428 struct value **argv);
1429
1430 /* Add a new internal function. NAME is the name of the function; DOC
1431 is a documentation string describing the function. HANDLER is
1432 called when the function is invoked. COOKIE is an arbitrary
1433 pointer which is passed to HANDLER and is intended for "user
1434 data". */
1435
1436 extern void add_internal_function (const char *name, const char *doc,
1437 internal_function_fn handler,
1438 void *cookie);
1439
1440 /* This overload takes an allocated documentation string. */
1441
1442 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1443 gdb::unique_xmalloc_ptr<char> &&doc,
1444 internal_function_fn handler,
1445 void *cookie);
1446
1447 struct value *call_internal_function (struct gdbarch *gdbarch,
1448 const struct language_defn *language,
1449 struct value *function,
1450 int argc, struct value **argv);
1451
1452 const char *value_internal_function_name (struct value *);
1453
1454 /* Build a value wrapping and representing WORKER. The value takes ownership
1455 of the xmethod_worker object. */
1456
1457 extern struct value *value_from_xmethod (xmethod_worker_up &&worker);
1458
1459 extern struct type *result_type_of_xmethod (struct value *method,
1460 gdb::array_view<value *> argv);
1461
1462 extern struct value *call_xmethod (struct value *method,
1463 gdb::array_view<value *> argv);
1464
1465 /* Destroy the values currently allocated. This is called when GDB is
1466 exiting (e.g., on quit_force). */
1467 extern void finalize_values ();
1468
1469 /* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1470 of floating-point, fixed-point, or integer type. */
1471 extern gdb_mpq value_to_gdb_mpq (struct value *value);
1472
1473 /* While an instance of this class is live, and array values that are
1474 created, that are larger than max_value_size, will be restricted in size
1475 to a particular number of elements. */
1476
1477 struct scoped_array_length_limiting
1478 {
1479 /* Limit any large array values to only contain ELEMENTS elements. */
1480 scoped_array_length_limiting (int elements);
1481
1482 /* Restore the previous array value limit. */
1483 ~scoped_array_length_limiting ();
1484
1485 private:
1486 /* Used to hold the previous array value element limit. */
1487 gdb::optional<int> m_old_value;
1488 };
1489
1490 #endif /* !defined (VALUE_H) */