Turn value_computed_closure and value_computed_funcs functions into methods
[binutils-gdb.git] / gdb / value.h
1 /* Definitions for values of C expressions, for GDB.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
22
23 #include "frame.h" /* For struct frame_id. */
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26 #include "gmp-utils.h"
27
28 struct block;
29 struct expression;
30 struct regcache;
31 struct symbol;
32 struct type;
33 struct ui_file;
34 struct language_defn;
35 struct value_print_options;
36
37 /* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
40
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
46
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
49
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
54
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
58
59 - Any other similar scenario.
60
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
65
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
70
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
75
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
79
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
83 */
84
85 extern bool overload_resolution;
86
87 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
88
89 struct range
90 {
91 /* Lowest offset in the range. */
92 LONGEST offset;
93
94 /* Length of the range. */
95 ULONGEST length;
96
97 /* Returns true if THIS is strictly less than OTHER, useful for
98 searching. We keep ranges sorted by offset and coalesce
99 overlapping and contiguous ranges, so this just compares the
100 starting offset. */
101
102 bool operator< (const range &other) const
103 {
104 return offset < other.offset;
105 }
106
107 /* Returns true if THIS is equal to OTHER. */
108 bool operator== (const range &other) const
109 {
110 return offset == other.offset && length == other.length;
111 }
112 };
113
114 /* Increase VAL's reference count. */
115
116 extern void value_incref (struct value *val);
117
118 /* Decrease VAL's reference count. When the reference count drops to
119 0, VAL will be freed. */
120
121 extern void value_decref (struct value *val);
122
123 /* A policy class to interface gdb::ref_ptr with struct value. */
124
125 struct value_ref_policy
126 {
127 static void incref (struct value *ptr)
128 {
129 value_incref (ptr);
130 }
131
132 static void decref (struct value *ptr)
133 {
134 value_decref (ptr);
135 }
136 };
137
138 /* A gdb:;ref_ptr pointer to a struct value. */
139
140 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
141
142 /* Note that the fields in this structure are arranged to save a bit
143 of memory. */
144
145 struct value
146 {
147 explicit value (struct type *type_)
148 : m_modifiable (1),
149 m_lazy (1),
150 m_initialized (1),
151 m_stack (0),
152 m_is_zero (false),
153 m_in_history (false),
154 m_type (type_),
155 m_enclosing_type (type_)
156 {
157 }
158
159 ~value ();
160
161 DISABLE_COPY_AND_ASSIGN (value);
162
163 /* Type of the value. */
164 struct type *type () const
165 { return m_type; }
166
167 /* This is being used to change the type of an existing value, that
168 code should instead be creating a new value with the changed type
169 (but possibly shared content). */
170 void deprecated_set_type (struct type *type)
171 { m_type = type; }
172
173 /* Return the gdbarch associated with the value. */
174 struct gdbarch *arch () const;
175
176 /* Only used for bitfields; number of bits contained in them. */
177 LONGEST bitsize () const
178 { return m_bitsize; }
179
180 void set_bitsize (LONGEST bit)
181 { m_bitsize = bit; }
182
183 /* Only used for bitfields; position of start of field. For
184 little-endian targets, it is the position of the LSB. For
185 big-endian targets, it is the position of the MSB. */
186 LONGEST bitpos () const
187 { return m_bitpos; }
188
189 void set_bitpos (LONGEST bit)
190 { m_bitpos = bit; }
191
192 /* Only used for bitfields; the containing value. This allows a
193 single read from the target when displaying multiple
194 bitfields. */
195 value *parent () const
196 { return m_parent.get (); }
197
198 void set_parent (struct value *parent)
199 { m_parent = value_ref_ptr::new_reference (parent); }
200
201 /* Describes offset of a value within lval of a structure in bytes.
202 If lval == lval_memory, this is an offset to the address. If
203 lval == lval_register, this is a further offset from
204 location.address within the registers structure. Note also the
205 member embedded_offset below. */
206 LONGEST offset () const
207 { return m_offset; }
208
209 void set_offset (LONGEST offset)
210 { m_offset = offset; }
211
212 /* The comment from "struct value" reads: ``Is it modifiable? Only
213 relevant if lval != not_lval.''. Shouldn't the value instead be
214 not_lval and be done with it? */
215 int deprecated_modifiable () const
216 { return m_modifiable; }
217
218 LONGEST pointed_to_offset () const
219 { return m_pointed_to_offset; }
220
221 void set_pointed_to_offset (LONGEST val)
222 { m_pointed_to_offset = val; }
223
224 LONGEST embedded_offset () const
225 { return m_embedded_offset; }
226
227 void set_embedded_offset (LONGEST val)
228 { m_embedded_offset = val; }
229
230 /* If zero, contents of this value are in the contents field. If
231 nonzero, contents are in inferior. If the lval field is lval_memory,
232 the contents are in inferior memory at location.address plus offset.
233 The lval field may also be lval_register.
234
235 WARNING: This field is used by the code which handles watchpoints
236 (see breakpoint.c) to decide whether a particular value can be
237 watched by hardware watchpoints. If the lazy flag is set for some
238 member of a value chain, it is assumed that this member of the
239 chain doesn't need to be watched as part of watching the value
240 itself. This is how GDB avoids watching the entire struct or array
241 when the user wants to watch a single struct member or array
242 element. If you ever change the way lazy flag is set and reset, be
243 sure to consider this use as well! */
244
245 int lazy () const
246 { return m_lazy; }
247
248 void set_lazy (int val)
249 { m_lazy = val; }
250
251
252 /* If a value represents a C++ object, then the `type' field gives the
253 object's compile-time type. If the object actually belongs to some
254 class derived from `type', perhaps with other base classes and
255 additional members, then `type' is just a subobject of the real
256 thing, and the full object is probably larger than `type' would
257 suggest.
258
259 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
260 actually determine the object's run-time type by looking at the
261 run-time type information in the vtable. When this information is
262 available, we may elect to read in the entire object, for several
263 reasons:
264
265 - When printing the value, the user would probably rather see the
266 full object, not just the limited portion apparent from the
267 compile-time type.
268
269 - If `type' has virtual base classes, then even printing `type'
270 alone may require reaching outside the `type' portion of the
271 object to wherever the virtual base class has been stored.
272
273 When we store the entire object, `enclosing_type' is the run-time
274 type -- the complete object -- and `embedded_offset' is the offset
275 of `type' within that larger type, in bytes. The value_contents()
276 macro takes `embedded_offset' into account, so most GDB code
277 continues to see the `type' portion of the value, just as the
278 inferior would.
279
280 If `type' is a pointer to an object, then `enclosing_type' is a
281 pointer to the object's run-time type, and `pointed_to_offset' is
282 the offset in bytes from the full object to the pointed-to object
283 -- that is, the value `embedded_offset' would have if we followed
284 the pointer and fetched the complete object. (I don't really see
285 the point. Why not just determine the run-time type when you
286 indirect, and avoid the special case? The contents don't matter
287 until you indirect anyway.)
288
289 If we're not doing anything fancy, `enclosing_type' is equal to
290 `type', and `embedded_offset' is zero, so everything works
291 normally. */
292
293 struct type *enclosing_type () const
294 { return m_enclosing_type; }
295
296 void set_enclosing_type (struct type *new_type);
297
298 int stack () const
299 { return m_stack; }
300
301 void set_stack (int val)
302 { m_stack = val; }
303
304 /* If this value is lval_computed, return its lval_funcs
305 structure. */
306 const struct lval_funcs *computed_funcs () const;
307
308 /* If this value is lval_computed, return its closure. The meaning
309 of the returned value depends on the functions this value
310 uses. */
311 void *computed_closure () const;
312
313
314 /* Type of value; either not an lval, or one of the various
315 different possible kinds of lval. */
316 enum lval_type m_lval = not_lval;
317
318 /* Is it modifiable? Only relevant if lval != not_lval. */
319 unsigned int m_modifiable : 1;
320
321 /* If zero, contents of this value are in the contents field. If
322 nonzero, contents are in inferior. If the lval field is lval_memory,
323 the contents are in inferior memory at location.address plus offset.
324 The lval field may also be lval_register.
325
326 WARNING: This field is used by the code which handles watchpoints
327 (see breakpoint.c) to decide whether a particular value can be
328 watched by hardware watchpoints. If the lazy flag is set for
329 some member of a value chain, it is assumed that this member of
330 the chain doesn't need to be watched as part of watching the
331 value itself. This is how GDB avoids watching the entire struct
332 or array when the user wants to watch a single struct member or
333 array element. If you ever change the way lazy flag is set and
334 reset, be sure to consider this use as well! */
335 unsigned int m_lazy : 1;
336
337 /* If value is a variable, is it initialized or not. */
338 unsigned int m_initialized : 1;
339
340 /* If value is from the stack. If this is set, read_stack will be
341 used instead of read_memory to enable extra caching. */
342 unsigned int m_stack : 1;
343
344 /* True if this is a zero value, created by 'value_zero'; false
345 otherwise. */
346 bool m_is_zero : 1;
347
348 /* True if this a value recorded in value history; false otherwise. */
349 bool m_in_history : 1;
350
351 /* Location of value (if lval). */
352 union
353 {
354 /* If lval == lval_memory, this is the address in the inferior */
355 CORE_ADDR address;
356
357 /*If lval == lval_register, the value is from a register. */
358 struct
359 {
360 /* Register number. */
361 int regnum;
362 /* Frame ID of "next" frame to which a register value is relative.
363 If the register value is found relative to frame F, then the
364 frame id of F->next will be stored in next_frame_id. */
365 struct frame_id next_frame_id;
366 } reg;
367
368 /* Pointer to internal variable. */
369 struct internalvar *internalvar;
370
371 /* Pointer to xmethod worker. */
372 struct xmethod_worker *xm_worker;
373
374 /* If lval == lval_computed, this is a set of function pointers
375 to use to access and describe the value, and a closure pointer
376 for them to use. */
377 struct
378 {
379 /* Functions to call. */
380 const struct lval_funcs *funcs;
381
382 /* Closure for those functions to use. */
383 void *closure;
384 } computed;
385 } m_location {};
386
387 /* Describes offset of a value within lval of a structure in target
388 addressable memory units. Note also the member embedded_offset
389 below. */
390 LONGEST m_offset = 0;
391
392 /* Only used for bitfields; number of bits contained in them. */
393 LONGEST m_bitsize = 0;
394
395 /* Only used for bitfields; position of start of field. For
396 little-endian targets, it is the position of the LSB. For
397 big-endian targets, it is the position of the MSB. */
398 LONGEST m_bitpos = 0;
399
400 /* The number of references to this value. When a value is created,
401 the value chain holds a reference, so REFERENCE_COUNT is 1. If
402 release_value is called, this value is removed from the chain but
403 the caller of release_value now has a reference to this value.
404 The caller must arrange for a call to value_free later. */
405 int m_reference_count = 1;
406
407 /* Only used for bitfields; the containing value. This allows a
408 single read from the target when displaying multiple
409 bitfields. */
410 value_ref_ptr m_parent;
411
412 /* Type of the value. */
413 struct type *m_type;
414
415 /* If a value represents a C++ object, then the `type' field gives
416 the object's compile-time type. If the object actually belongs
417 to some class derived from `type', perhaps with other base
418 classes and additional members, then `type' is just a subobject
419 of the real thing, and the full object is probably larger than
420 `type' would suggest.
421
422 If `type' is a dynamic class (i.e. one with a vtable), then GDB
423 can actually determine the object's run-time type by looking at
424 the run-time type information in the vtable. When this
425 information is available, we may elect to read in the entire
426 object, for several reasons:
427
428 - When printing the value, the user would probably rather see the
429 full object, not just the limited portion apparent from the
430 compile-time type.
431
432 - If `type' has virtual base classes, then even printing `type'
433 alone may require reaching outside the `type' portion of the
434 object to wherever the virtual base class has been stored.
435
436 When we store the entire object, `enclosing_type' is the run-time
437 type -- the complete object -- and `embedded_offset' is the
438 offset of `type' within that larger type, in target addressable memory
439 units. The value_contents() macro takes `embedded_offset' into account,
440 so most GDB code continues to see the `type' portion of the value, just
441 as the inferior would.
442
443 If `type' is a pointer to an object, then `enclosing_type' is a
444 pointer to the object's run-time type, and `pointed_to_offset' is
445 the offset in target addressable memory units from the full object
446 to the pointed-to object -- that is, the value `embedded_offset' would
447 have if we followed the pointer and fetched the complete object.
448 (I don't really see the point. Why not just determine the
449 run-time type when you indirect, and avoid the special case? The
450 contents don't matter until you indirect anyway.)
451
452 If we're not doing anything fancy, `enclosing_type' is equal to
453 `type', and `embedded_offset' is zero, so everything works
454 normally. */
455 struct type *m_enclosing_type;
456 LONGEST m_embedded_offset = 0;
457 LONGEST m_pointed_to_offset = 0;
458
459 /* Actual contents of the value. Target byte-order.
460
461 May be nullptr if the value is lazy or is entirely optimized out.
462 Guaranteed to be non-nullptr otherwise. */
463 gdb::unique_xmalloc_ptr<gdb_byte> m_contents;
464
465 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
466 rather than available, since the common and default case is for a
467 value to be available. This is filled in at value read time.
468 The unavailable ranges are tracked in bits. Note that a contents
469 bit that has been optimized out doesn't really exist in the
470 program, so it can't be marked unavailable either. */
471 std::vector<range> m_unavailable;
472
473 /* Likewise, but for optimized out contents (a chunk of the value of
474 a variable that does not actually exist in the program). If LVAL
475 is lval_register, this is a register ($pc, $sp, etc., never a
476 program variable) that has not been saved in the frame. Not
477 saved registers and optimized-out program variables values are
478 treated pretty much the same, except not-saved registers have a
479 different string representation and related error strings. */
480 std::vector<range> m_optimized_out;
481
482 /* This is only non-zero for values of TYPE_CODE_ARRAY and if the size of
483 the array in inferior memory is greater than max_value_size. If these
484 conditions are met then, when the value is loaded from the inferior
485 GDB will only load a portion of the array into memory, and
486 limited_length will be set to indicate the length in octets that were
487 loaded from the inferior. */
488 ULONGEST m_limited_length = 0;
489 };
490
491 /* Returns value_type or value_enclosing_type depending on
492 value_print_options.objectprint.
493
494 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
495 only for pointers and references, else it will be returned
496 for all the types (e.g. structures). This option is useful
497 to prevent retrieving enclosing type for the base classes fields.
498
499 REAL_TYPE_FOUND is used to inform whether the real type was found
500 (or just static type was used). The NULL may be passed if it is not
501 necessary. */
502
503 extern struct type *value_actual_type (struct value *value,
504 int resolve_simple_types,
505 int *real_type_found);
506
507 /* For lval_computed values, this structure holds functions used to
508 retrieve and set the value (or portions of the value).
509
510 For each function, 'V' is the 'this' pointer: an lval_funcs
511 function F may always assume that the V it receives is an
512 lval_computed value, and has F in the appropriate slot of its
513 lval_funcs structure. */
514
515 struct lval_funcs
516 {
517 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
518 a problem arises in obtaining VALUE's bits, this function should
519 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
520 non-optimized-out value is an internal error. */
521 void (*read) (struct value *v);
522
523 /* Handle an assignment TOVAL = FROMVAL by writing the value of
524 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
525 been updated. If a problem arises in doing so, this function
526 should call 'error'. If it is NULL such TOVAL assignment is an error as
527 TOVAL is not considered as an lvalue. */
528 void (*write) (struct value *toval, struct value *fromval);
529
530 /* Return true if any part of V is optimized out, false otherwise.
531 This will only be called for lazy values -- if the value has been
532 fetched, then the value's optimized-out bits are consulted
533 instead. */
534 bool (*is_optimized_out) (struct value *v);
535
536 /* If non-NULL, this is used to implement pointer indirection for
537 this value. This method may return NULL, in which case value_ind
538 will fall back to ordinary indirection. */
539 struct value *(*indirect) (struct value *value);
540
541 /* If non-NULL, this is used to implement reference resolving for
542 this value. This method may return NULL, in which case coerce_ref
543 will fall back to ordinary references resolving. */
544 struct value *(*coerce_ref) (const struct value *value);
545
546 /* If non-NULL, this is used to determine whether the indicated bits
547 of VALUE are a synthetic pointer. */
548 int (*check_synthetic_pointer) (const struct value *value,
549 LONGEST offset, int length);
550
551 /* Return a duplicate of VALUE's closure, for use in a new value.
552 This may simply return the same closure, if VALUE's is
553 reference-counted or statically allocated.
554
555 This may be NULL, in which case VALUE's closure is re-used in the
556 new value. */
557 void *(*copy_closure) (const struct value *v);
558
559 /* Drop VALUE's reference to its closure. Maybe this frees the
560 closure; maybe this decrements a reference count; maybe the
561 closure is statically allocated and this does nothing.
562
563 This may be NULL, in which case no action is taken to free
564 VALUE's closure. */
565 void (*free_closure) (struct value *v);
566 };
567
568 /* Create a computed lvalue, with type TYPE, function pointers FUNCS,
569 and closure CLOSURE. */
570
571 extern struct value *allocate_computed_value (struct type *type,
572 const struct lval_funcs *funcs,
573 void *closure);
574
575 extern struct value *allocate_optimized_out_value (struct type *type);
576
577 /* Throw an error complaining that the value has been optimized
578 out. */
579
580 extern void error_value_optimized_out (void);
581
582 /* value_contents() and value_contents_raw() both return the address
583 of the gdb buffer used to hold a copy of the contents of the lval.
584 value_contents() is used when the contents of the buffer are needed
585 -- it uses value_fetch_lazy() to load the buffer from the process
586 being debugged if it hasn't already been loaded
587 (value_contents_writeable() is used when a writeable but fetched
588 buffer is required).. value_contents_raw() is used when data is
589 being stored into the buffer, or when it is certain that the
590 contents of the buffer are valid.
591
592 Note: The contents pointer is adjusted by the offset required to
593 get to the real subobject, if the value happens to represent
594 something embedded in a larger run-time object. */
595
596 extern gdb::array_view<gdb_byte> value_contents_raw (struct value *);
597
598 /* Actual contents of the value. For use of this value; setting it
599 uses the stuff above. Not valid if lazy is nonzero. Target
600 byte-order. We force it to be aligned properly for any possible
601 value. Note that a value therefore extends beyond what is
602 declared here. */
603
604 extern gdb::array_view<const gdb_byte> value_contents (struct value *);
605 extern gdb::array_view<gdb_byte> value_contents_writeable (struct value *);
606
607 /* The ALL variants of the above two macros do not adjust the returned
608 pointer by the embedded_offset value. */
609
610 extern gdb::array_view<gdb_byte> value_contents_all_raw (struct value *);
611 extern gdb::array_view<const gdb_byte> value_contents_all (struct value *);
612
613 /* Like value_contents_all, but does not require that the returned
614 bits be valid. This should only be used in situations where you
615 plan to check the validity manually. */
616 extern gdb::array_view<const gdb_byte> value_contents_for_printing (struct value *value);
617
618 /* Like value_contents_for_printing, but accepts a constant value
619 pointer. Unlike value_contents_for_printing however, the pointed
620 value must _not_ be lazy. */
621 extern gdb::array_view<const gdb_byte>
622 value_contents_for_printing_const (const struct value *value);
623
624 extern void value_fetch_lazy (struct value *val);
625
626 /* If nonzero, this is the value of a variable which does not actually
627 exist in the program, at least partially. If the value is lazy,
628 this may fetch it now. */
629 extern int value_optimized_out (struct value *value);
630
631 /* Given a value, return true if any of the contents bits starting at
632 OFFSET and extending for LENGTH bits is optimized out, false
633 otherwise. */
634
635 extern int value_bits_any_optimized_out (const struct value *value,
636 int bit_offset, int bit_length);
637
638 /* Like value_optimized_out, but return true iff the whole value is
639 optimized out. */
640 extern int value_entirely_optimized_out (struct value *value);
641
642 /* Mark VALUE's content bytes starting at OFFSET and extending for
643 LENGTH bytes as optimized out. */
644
645 extern void mark_value_bytes_optimized_out (struct value *value,
646 int offset, int length);
647
648 /* Mark VALUE's content bits starting at OFFSET and extending for
649 LENGTH bits as optimized out. */
650
651 extern void mark_value_bits_optimized_out (struct value *value,
652 LONGEST offset, LONGEST length);
653
654 /* Set or return field indicating whether a variable is initialized or
655 not, based on debugging information supplied by the compiler.
656 1 = initialized; 0 = uninitialized. */
657 extern int value_initialized (const struct value *);
658 extern void set_value_initialized (struct value *, int);
659
660 /* Set COMPONENT's location as appropriate for a component of WHOLE
661 --- regardless of what kind of lvalue WHOLE is. */
662 extern void set_value_component_location (struct value *component,
663 const struct value *whole);
664
665 /* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
666 single value might have multiple LVALs), this hacked interface is
667 limited to just the first PIECE. Expect further change. */
668 /* Type of value; either not an lval, or one of the various different
669 possible kinds of lval. */
670 extern enum lval_type *deprecated_value_lval_hack (struct value *);
671 #define VALUE_LVAL(val) (*deprecated_value_lval_hack (val))
672
673 /* Like VALUE_LVAL, except the parameter can be const. */
674 extern enum lval_type value_lval_const (const struct value *value);
675
676 /* If lval == lval_memory, return the address in the inferior. If
677 lval == lval_register, return the byte offset into the registers
678 structure. Otherwise, return 0. The returned address
679 includes the offset, if any. */
680 extern CORE_ADDR value_address (const struct value *);
681
682 /* Like value_address, except the result does not include value's
683 offset. */
684 extern CORE_ADDR value_raw_address (const struct value *);
685
686 /* Set the address of a value. */
687 extern void set_value_address (struct value *, CORE_ADDR);
688
689 /* Pointer to internal variable. */
690 extern struct internalvar **deprecated_value_internalvar_hack (struct value *);
691 #define VALUE_INTERNALVAR(val) (*deprecated_value_internalvar_hack (val))
692
693 /* Frame ID of "next" frame to which a register value is relative. A
694 register value is indicated by VALUE_LVAL being set to lval_register.
695 So, if the register value is found relative to frame F, then the
696 frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
697 extern struct frame_id *deprecated_value_next_frame_id_hack (struct value *);
698 #define VALUE_NEXT_FRAME_ID(val) (*deprecated_value_next_frame_id_hack (val))
699
700 /* Register number if the value is from a register. */
701 extern int *deprecated_value_regnum_hack (struct value *);
702 #define VALUE_REGNUM(val) (*deprecated_value_regnum_hack (val))
703
704 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
705 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
706
707 extern struct value *coerce_ref_if_computed (const struct value *arg);
708
709 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
710 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
711 ORIGINAL_VAL are the type and value of the original reference or
712 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
713 the address that was dereferenced.
714
715 Note, that VALUE is modified by this function.
716
717 It is a common implementation for coerce_ref and value_ind. */
718
719 extern struct value * readjust_indirect_value_type (struct value *value,
720 struct type *enc_type,
721 const struct type *original_type,
722 struct value *original_val,
723 CORE_ADDR original_value_address);
724
725 /* Convert a REF to the object referenced. */
726
727 extern struct value *coerce_ref (struct value *value);
728
729 /* If ARG is an array, convert it to a pointer.
730 If ARG is a function, convert it to a function pointer.
731
732 References are dereferenced. */
733
734 extern struct value *coerce_array (struct value *value);
735
736 /* Given a value, determine whether the bits starting at OFFSET and
737 extending for LENGTH bits are a synthetic pointer. */
738
739 extern int value_bits_synthetic_pointer (const struct value *value,
740 LONGEST offset, LONGEST length);
741
742 /* Given a value, determine whether the contents bytes starting at
743 OFFSET and extending for LENGTH bytes are available. This returns
744 nonzero if all bytes in the given range are available, zero if any
745 byte is unavailable. */
746
747 extern int value_bytes_available (const struct value *value,
748 LONGEST offset, ULONGEST length);
749
750 /* Given a value, determine whether the contents bits starting at
751 OFFSET and extending for LENGTH bits are available. This returns
752 nonzero if all bits in the given range are available, zero if any
753 bit is unavailable. */
754
755 extern int value_bits_available (const struct value *value,
756 LONGEST offset, ULONGEST length);
757
758 /* Like value_bytes_available, but return false if any byte in the
759 whole object is unavailable. */
760 extern int value_entirely_available (struct value *value);
761
762 /* Like value_entirely_available, but return false if any byte in the
763 whole object is available. */
764 extern int value_entirely_unavailable (struct value *value);
765
766 /* Mark VALUE's content bytes starting at OFFSET and extending for
767 LENGTH bytes as unavailable. */
768
769 extern void mark_value_bytes_unavailable (struct value *value,
770 LONGEST offset, ULONGEST length);
771
772 /* Mark VALUE's content bits starting at OFFSET and extending for
773 LENGTH bits as unavailable. */
774
775 extern void mark_value_bits_unavailable (struct value *value,
776 LONGEST offset, ULONGEST length);
777
778 /* Compare LENGTH bytes of VAL1's contents starting at OFFSET1 with
779 LENGTH bytes of VAL2's contents starting at OFFSET2.
780
781 Note that "contents" refers to the whole value's contents
782 (value_contents_all), without any embedded offset adjustment. For
783 example, to compare a complete object value with itself, including
784 its enclosing type chunk, you'd do:
785
786 int len = check_typedef (val->enclosing_type ())->length ();
787 value_contents_eq (val, 0, val, 0, len);
788
789 Returns true iff the set of available/valid contents match.
790
791 Optimized-out contents are equal to optimized-out contents, and are
792 not equal to non-optimized-out contents.
793
794 Unavailable contents are equal to unavailable contents, and are not
795 equal to non-unavailable contents.
796
797 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
798 represent different available/valid bytes, in a value with length
799 16:
800
801 offset: 0 4 8 12 16
802 contents: xxxxVVVVxxxxVVZZ
803
804 then:
805
806 value_contents_eq(val, 0, val, 8, 6) => true
807 value_contents_eq(val, 0, val, 4, 4) => false
808 value_contents_eq(val, 0, val, 8, 8) => false
809 value_contents_eq(val, 4, val, 12, 2) => true
810 value_contents_eq(val, 4, val, 12, 4) => true
811 value_contents_eq(val, 3, val, 4, 4) => true
812
813 If 'x's represent an unavailable byte, 'o' represents an optimized
814 out byte, in a value with length 8:
815
816 offset: 0 4 8
817 contents: xxxxoooo
818
819 then:
820
821 value_contents_eq(val, 0, val, 2, 2) => true
822 value_contents_eq(val, 4, val, 6, 2) => true
823 value_contents_eq(val, 0, val, 4, 4) => true
824
825 We only know whether a value chunk is unavailable or optimized out
826 if we've tried to read it. As this routine is used by printing
827 routines, which may be printing values in the value history, long
828 after the inferior is gone, it works with const values. Therefore,
829 this routine must not be called with lazy values. */
830
831 extern bool value_contents_eq (const struct value *val1, LONGEST offset1,
832 const struct value *val2, LONGEST offset2,
833 LONGEST length);
834
835 /* An overload of value_contents_eq that compares the entirety of both
836 values. */
837
838 extern bool value_contents_eq (const struct value *val1,
839 const struct value *val2);
840
841 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
842 which is (or will be copied to) VAL's contents buffer offset by
843 BIT_OFFSET bits. Marks value contents ranges as unavailable if
844 the corresponding memory is likewise unavailable. STACK indicates
845 whether the memory is known to be stack memory. */
846
847 extern void read_value_memory (struct value *val, LONGEST bit_offset,
848 int stack, CORE_ADDR memaddr,
849 gdb_byte *buffer, size_t length);
850
851 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
852 into each element of a new vector value with VECTOR_TYPE. */
853
854 struct value *value_vector_widen (struct value *scalar_value,
855 struct type *vector_type);
856
857 \f
858
859 #include "symtab.h"
860 #include "gdbtypes.h"
861 #include "expression.h"
862
863 class frame_info_ptr;
864 struct fn_field;
865
866 extern int print_address_demangle (const struct value_print_options *,
867 struct gdbarch *, CORE_ADDR,
868 struct ui_file *, int);
869
870 /* Returns true if VAL is of floating-point type. In addition,
871 throws an error if the value is an invalid floating-point value. */
872 extern bool is_floating_value (struct value *val);
873
874 extern LONGEST value_as_long (struct value *val);
875 extern CORE_ADDR value_as_address (struct value *val);
876
877 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
878 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
879
880 extern LONGEST unpack_field_as_long (struct type *type,
881 const gdb_byte *valaddr,
882 int fieldno);
883
884 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
885 VALADDR, and store the result in *RESULT.
886 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
887 BITSIZE is zero, then the length is taken from FIELD_TYPE.
888
889 Extracting bits depends on endianness of the machine. Compute the
890 number of least significant bits to discard. For big endian machines,
891 we compute the total number of bits in the anonymous object, subtract
892 off the bit count from the MSB of the object to the MSB of the
893 bitfield, then the size of the bitfield, which leaves the LSB discard
894 count. For little endian machines, the discard count is simply the
895 number of bits from the LSB of the anonymous object to the LSB of the
896 bitfield.
897
898 If the field is signed, we also do sign extension. */
899
900 extern LONGEST unpack_bits_as_long (struct type *field_type,
901 const gdb_byte *valaddr,
902 LONGEST bitpos, LONGEST bitsize);
903
904 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
905 LONGEST embedded_offset, int fieldno,
906 const struct value *val, LONGEST *result);
907
908 extern void unpack_value_bitfield (struct value *dest_val,
909 LONGEST bitpos, LONGEST bitsize,
910 const gdb_byte *valaddr,
911 LONGEST embedded_offset,
912 const struct value *val);
913
914 extern struct value *value_field_bitfield (struct type *type, int fieldno,
915 const gdb_byte *valaddr,
916 LONGEST embedded_offset,
917 const struct value *val);
918
919 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
920
921 extern struct value *value_from_longest (struct type *type, LONGEST num);
922 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
923 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
924 extern struct value *value_from_host_double (struct type *type, double d);
925 extern struct value *value_from_history_ref (const char *, const char **);
926 extern struct value *value_from_component (struct value *, struct type *,
927 LONGEST);
928
929
930 /* Create a new value by extracting it from WHOLE. TYPE is the type
931 of the new value. BIT_OFFSET and BIT_LENGTH describe the offset
932 and field width of the value to extract from WHOLE -- BIT_LENGTH
933 may differ from TYPE's length in the case where WHOLE's type is
934 packed.
935
936 When the value does come from a non-byte-aligned offset or field
937 width, it will be marked non_lval. */
938
939 extern struct value *value_from_component_bitsize (struct value *whole,
940 struct type *type,
941 LONGEST bit_offset,
942 LONGEST bit_length);
943
944 extern struct value *value_at (struct type *type, CORE_ADDR addr);
945 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
946
947 /* Like value_at, but ensures that the result is marked not_lval.
948 This can be important if the memory is "volatile". */
949 extern struct value *value_at_non_lval (struct type *type, CORE_ADDR addr);
950
951 extern struct value *value_from_contents_and_address_unresolved
952 (struct type *, const gdb_byte *, CORE_ADDR);
953 extern struct value *value_from_contents_and_address (struct type *,
954 const gdb_byte *,
955 CORE_ADDR);
956 extern struct value *value_from_contents (struct type *, const gdb_byte *);
957
958 extern struct value *default_value_from_register (struct gdbarch *gdbarch,
959 struct type *type,
960 int regnum,
961 struct frame_id frame_id);
962
963 extern void read_frame_register_value (struct value *value,
964 frame_info_ptr frame);
965
966 extern struct value *value_from_register (struct type *type, int regnum,
967 frame_info_ptr frame);
968
969 extern CORE_ADDR address_from_register (int regnum,
970 frame_info_ptr frame);
971
972 extern struct value *value_of_variable (struct symbol *var,
973 const struct block *b);
974
975 extern struct value *address_of_variable (struct symbol *var,
976 const struct block *b);
977
978 extern struct value *value_of_register (int regnum, frame_info_ptr frame);
979
980 struct value *value_of_register_lazy (frame_info_ptr frame, int regnum);
981
982 /* Return the symbol's reading requirement. */
983
984 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
985
986 /* Return true if the symbol needs a frame. This is a wrapper for
987 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
988
989 extern int symbol_read_needs_frame (struct symbol *);
990
991 extern struct value *read_var_value (struct symbol *var,
992 const struct block *var_block,
993 frame_info_ptr frame);
994
995 extern struct value *allocate_value (struct type *type);
996 extern struct value *allocate_value_lazy (struct type *type);
997 extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
998 struct value *src, LONGEST src_offset,
999 LONGEST length);
1000
1001 extern struct value *allocate_repeat_value (struct type *type, int count);
1002
1003 extern struct value *value_mark (void);
1004
1005 extern void value_free_to_mark (const struct value *mark);
1006
1007 /* A helper class that uses value_mark at construction time and calls
1008 value_free_to_mark in the destructor. This is used to clear out
1009 temporary values created during the lifetime of this object. */
1010 class scoped_value_mark
1011 {
1012 public:
1013
1014 scoped_value_mark ()
1015 : m_value (value_mark ())
1016 {
1017 }
1018
1019 ~scoped_value_mark ()
1020 {
1021 free_to_mark ();
1022 }
1023
1024 scoped_value_mark (scoped_value_mark &&other) = default;
1025
1026 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
1027
1028 /* Free the values currently on the value stack. */
1029 void free_to_mark ()
1030 {
1031 if (m_value != NULL)
1032 {
1033 value_free_to_mark (m_value);
1034 m_value = NULL;
1035 }
1036 }
1037
1038 private:
1039
1040 const struct value *m_value;
1041 };
1042
1043 extern struct value *value_cstring (const char *ptr, ssize_t len,
1044 struct type *char_type);
1045 extern struct value *value_string (const char *ptr, ssize_t len,
1046 struct type *char_type);
1047
1048 extern struct value *value_array (int lowbound, int highbound,
1049 struct value **elemvec);
1050
1051 extern struct value *value_concat (struct value *arg1, struct value *arg2);
1052
1053 extern struct value *value_binop (struct value *arg1, struct value *arg2,
1054 enum exp_opcode op);
1055
1056 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
1057
1058 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
1059
1060 /* Return true if VAL does not live in target memory, but should in order
1061 to operate on it. Otherwise return false. */
1062
1063 extern bool value_must_coerce_to_target (struct value *arg1);
1064
1065 extern struct value *value_coerce_to_target (struct value *arg1);
1066
1067 extern struct value *value_coerce_array (struct value *arg1);
1068
1069 extern struct value *value_coerce_function (struct value *arg1);
1070
1071 extern struct value *value_ind (struct value *arg1);
1072
1073 extern struct value *value_addr (struct value *arg1);
1074
1075 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
1076
1077 extern struct value *value_assign (struct value *toval,
1078 struct value *fromval);
1079
1080 extern struct value *value_pos (struct value *arg1);
1081
1082 extern struct value *value_neg (struct value *arg1);
1083
1084 extern struct value *value_complement (struct value *arg1);
1085
1086 extern struct value *value_struct_elt (struct value **argp,
1087 gdb::optional<gdb::array_view <value *>> args,
1088 const char *name, int *static_memfuncp,
1089 const char *err);
1090
1091 extern struct value *value_struct_elt_bitpos (struct value **argp,
1092 int bitpos,
1093 struct type *field_type,
1094 const char *err);
1095
1096 extern struct value *value_aggregate_elt (struct type *curtype,
1097 const char *name,
1098 struct type *expect_type,
1099 int want_address,
1100 enum noside noside);
1101
1102 extern struct value *value_static_field (struct type *type, int fieldno);
1103
1104 enum oload_search_type { NON_METHOD, METHOD, BOTH };
1105
1106 extern int find_overload_match (gdb::array_view<value *> args,
1107 const char *name,
1108 enum oload_search_type method,
1109 struct value **objp, struct symbol *fsym,
1110 struct value **valp, struct symbol **symp,
1111 int *staticp, const int no_adl,
1112 enum noside noside);
1113
1114 extern struct value *value_field (struct value *arg1, int fieldno);
1115
1116 extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
1117 int fieldno,
1118 struct type *arg_type);
1119
1120
1121 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
1122 int *);
1123
1124 extern struct value *value_full_object (struct value *, struct type *, int,
1125 int, int);
1126
1127 extern struct value *value_cast_pointers (struct type *, struct value *, int);
1128
1129 extern struct value *value_cast (struct type *type, struct value *arg2);
1130
1131 extern struct value *value_reinterpret_cast (struct type *type,
1132 struct value *arg);
1133
1134 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
1135
1136 extern struct value *value_zero (struct type *type, enum lval_type lv);
1137
1138 extern struct value *value_one (struct type *type);
1139
1140 extern struct value *value_repeat (struct value *arg1, int count);
1141
1142 extern struct value *value_subscript (struct value *array, LONGEST index);
1143
1144 extern struct value *value_bitstring_subscript (struct type *type,
1145 struct value *bitstring,
1146 LONGEST index);
1147
1148 extern struct value *register_value_being_returned (struct type *valtype,
1149 struct regcache *retbuf);
1150
1151 extern int value_in (struct value *element, struct value *set);
1152
1153 extern int value_bit_index (struct type *type, const gdb_byte *addr,
1154 int index);
1155
1156 extern enum return_value_convention
1157 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
1158 struct type *value_type);
1159
1160 extern int using_struct_return (struct gdbarch *gdbarch,
1161 struct value *function,
1162 struct type *value_type);
1163
1164 /* Evaluate the expression EXP. If set, EXPECT_TYPE is passed to the
1165 outermost operation's evaluation. This is ignored by most
1166 operations, but may be used, e.g., to determine the type of an
1167 otherwise untyped symbol. The caller should not assume that the
1168 returned value has this type. */
1169
1170 extern struct value *evaluate_expression (struct expression *exp,
1171 struct type *expect_type = nullptr);
1172
1173 extern struct value *evaluate_type (struct expression *exp);
1174
1175 extern value *evaluate_var_value (enum noside noside, const block *blk,
1176 symbol *var);
1177
1178 extern value *evaluate_var_msym_value (enum noside noside,
1179 struct objfile *objfile,
1180 minimal_symbol *msymbol);
1181
1182 namespace expr { class operation; };
1183 extern void fetch_subexp_value (struct expression *exp,
1184 expr::operation *op,
1185 struct value **valp, struct value **resultp,
1186 std::vector<value_ref_ptr> *val_chain,
1187 bool preserve_errors);
1188
1189 extern struct value *parse_and_eval (const char *exp);
1190
1191 extern struct value *parse_to_comma_and_eval (const char **expp);
1192
1193 extern struct type *parse_and_eval_type (const char *p, int length);
1194
1195 extern CORE_ADDR parse_and_eval_address (const char *exp);
1196
1197 extern LONGEST parse_and_eval_long (const char *exp);
1198
1199 extern void unop_promote (const struct language_defn *language,
1200 struct gdbarch *gdbarch,
1201 struct value **arg1);
1202
1203 extern void binop_promote (const struct language_defn *language,
1204 struct gdbarch *gdbarch,
1205 struct value **arg1, struct value **arg2);
1206
1207 extern struct value *access_value_history (int num);
1208
1209 /* Return the number of items in the value history. */
1210
1211 extern ULONGEST value_history_count ();
1212
1213 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
1214 struct internalvar *var);
1215
1216 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
1217
1218 extern void set_internalvar (struct internalvar *var, struct value *val);
1219
1220 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
1221
1222 extern void set_internalvar_string (struct internalvar *var,
1223 const char *string);
1224
1225 extern void clear_internalvar (struct internalvar *var);
1226
1227 extern void set_internalvar_component (struct internalvar *var,
1228 LONGEST offset,
1229 LONGEST bitpos, LONGEST bitsize,
1230 struct value *newvalue);
1231
1232 extern struct internalvar *lookup_only_internalvar (const char *name);
1233
1234 extern struct internalvar *create_internalvar (const char *name);
1235
1236 extern void complete_internalvar (completion_tracker &tracker,
1237 const char *name);
1238
1239 /* An internalvar can be dynamically computed by supplying a vector of
1240 function pointers to perform various operations. */
1241
1242 struct internalvar_funcs
1243 {
1244 /* Compute the value of the variable. The DATA argument passed to
1245 the function is the same argument that was passed to
1246 `create_internalvar_type_lazy'. */
1247
1248 struct value *(*make_value) (struct gdbarch *arch,
1249 struct internalvar *var,
1250 void *data);
1251
1252 /* Update the agent expression EXPR with bytecode to compute the
1253 value. VALUE is the agent value we are updating. The DATA
1254 argument passed to this function is the same argument that was
1255 passed to `create_internalvar_type_lazy'. If this pointer is
1256 NULL, then the internalvar cannot be compiled to an agent
1257 expression. */
1258
1259 void (*compile_to_ax) (struct internalvar *var,
1260 struct agent_expr *expr,
1261 struct axs_value *value,
1262 void *data);
1263 };
1264
1265 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1266 const struct internalvar_funcs *funcs,
1267 void *data);
1268
1269 /* Compile an internal variable to an agent expression. VAR is the
1270 variable to compile; EXPR and VALUE are the agent expression we are
1271 updating. This will return 0 if there is no known way to compile
1272 VAR, and 1 if VAR was successfully compiled. It may also throw an
1273 exception on error. */
1274
1275 extern int compile_internalvar_to_ax (struct internalvar *var,
1276 struct agent_expr *expr,
1277 struct axs_value *value);
1278
1279 extern struct internalvar *lookup_internalvar (const char *name);
1280
1281 extern int value_equal (struct value *arg1, struct value *arg2);
1282
1283 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1284
1285 extern int value_less (struct value *arg1, struct value *arg2);
1286
1287 /* Simulate the C operator ! -- return true if ARG1 contains zero. */
1288 extern bool value_logical_not (struct value *arg1);
1289
1290 /* Returns true if the value VAL represents a true value. */
1291 static inline bool
1292 value_true (struct value *val)
1293 {
1294 return !value_logical_not (val);
1295 }
1296
1297 /* C++ */
1298
1299 extern struct value *value_of_this (const struct language_defn *lang);
1300
1301 extern struct value *value_of_this_silent (const struct language_defn *lang);
1302
1303 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1304 enum exp_opcode op,
1305 enum exp_opcode otherop,
1306 enum noside noside);
1307
1308 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1309 enum noside noside);
1310
1311 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1312 int j, struct type *type, LONGEST offset);
1313
1314 extern int binop_types_user_defined_p (enum exp_opcode op,
1315 struct type *type1,
1316 struct type *type2);
1317
1318 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1319 struct value *arg2);
1320
1321 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1322
1323 extern int destructor_name_p (const char *name, struct type *type);
1324
1325 extern value_ref_ptr release_value (struct value *val);
1326
1327 extern int record_latest_value (struct value *val);
1328
1329 extern void modify_field (struct type *type, gdb_byte *addr,
1330 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1331
1332 extern void type_print (struct type *type, const char *varstring,
1333 struct ui_file *stream, int show);
1334
1335 extern std::string type_to_string (struct type *type);
1336
1337 extern gdb_byte *baseclass_addr (struct type *type, int index,
1338 gdb_byte *valaddr,
1339 struct value **valuep, int *errp);
1340
1341 extern void print_longest (struct ui_file *stream, int format,
1342 int use_local, LONGEST val);
1343
1344 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1345 struct ui_file *stream);
1346
1347 extern void value_print (struct value *val, struct ui_file *stream,
1348 const struct value_print_options *options);
1349
1350 /* Release values from the value chain and return them. Values
1351 created after MARK are released. If MARK is nullptr, or if MARK is
1352 not found on the value chain, then all values are released. Values
1353 are returned in reverse order of creation; that is, newest
1354 first. */
1355
1356 extern std::vector<value_ref_ptr> value_release_to_mark
1357 (const struct value *mark);
1358
1359 extern void common_val_print (struct value *val,
1360 struct ui_file *stream, int recurse,
1361 const struct value_print_options *options,
1362 const struct language_defn *language);
1363
1364 extern int val_print_string (struct type *elttype, const char *encoding,
1365 CORE_ADDR addr, int len,
1366 struct ui_file *stream,
1367 const struct value_print_options *options);
1368
1369 extern void print_variable_and_value (const char *name,
1370 struct symbol *var,
1371 frame_info_ptr frame,
1372 struct ui_file *stream,
1373 int indent);
1374
1375 extern void typedef_print (struct type *type, struct symbol *news,
1376 struct ui_file *stream);
1377
1378 extern const char *internalvar_name (const struct internalvar *var);
1379
1380 extern void preserve_values (struct objfile *);
1381
1382 /* From values.c */
1383
1384 extern struct value *value_copy (const value *);
1385
1386 extern struct value *value_non_lval (struct value *);
1387
1388 extern void value_force_lval (struct value *, CORE_ADDR);
1389
1390 extern struct value *make_cv_value (int, int, struct value *);
1391
1392 extern void preserve_one_value (struct value *, struct objfile *, htab_t);
1393
1394 /* From valops.c */
1395
1396 extern struct value *varying_to_slice (struct value *);
1397
1398 extern struct value *value_slice (struct value *, int, int);
1399
1400 /* Create a complex number. The type is the complex type; the values
1401 are cast to the underlying scalar type before the complex number is
1402 created. */
1403
1404 extern struct value *value_literal_complex (struct value *, struct value *,
1405 struct type *);
1406
1407 /* Return the real part of a complex value. */
1408
1409 extern struct value *value_real_part (struct value *value);
1410
1411 /* Return the imaginary part of a complex value. */
1412
1413 extern struct value *value_imaginary_part (struct value *value);
1414
1415 extern struct value *find_function_in_inferior (const char *,
1416 struct objfile **);
1417
1418 extern struct value *value_allocate_space_in_inferior (int);
1419
1420 /* User function handler. */
1421
1422 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1423 const struct language_defn *language,
1424 void *cookie,
1425 int argc,
1426 struct value **argv);
1427
1428 /* Add a new internal function. NAME is the name of the function; DOC
1429 is a documentation string describing the function. HANDLER is
1430 called when the function is invoked. COOKIE is an arbitrary
1431 pointer which is passed to HANDLER and is intended for "user
1432 data". */
1433
1434 extern void add_internal_function (const char *name, const char *doc,
1435 internal_function_fn handler,
1436 void *cookie);
1437
1438 /* This overload takes an allocated documentation string. */
1439
1440 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1441 gdb::unique_xmalloc_ptr<char> &&doc,
1442 internal_function_fn handler,
1443 void *cookie);
1444
1445 struct value *call_internal_function (struct gdbarch *gdbarch,
1446 const struct language_defn *language,
1447 struct value *function,
1448 int argc, struct value **argv);
1449
1450 const char *value_internal_function_name (struct value *);
1451
1452 /* Build a value wrapping and representing WORKER. The value takes ownership
1453 of the xmethod_worker object. */
1454
1455 extern struct value *value_from_xmethod (xmethod_worker_up &&worker);
1456
1457 extern struct type *result_type_of_xmethod (struct value *method,
1458 gdb::array_view<value *> argv);
1459
1460 extern struct value *call_xmethod (struct value *method,
1461 gdb::array_view<value *> argv);
1462
1463 /* Destroy the values currently allocated. This is called when GDB is
1464 exiting (e.g., on quit_force). */
1465 extern void finalize_values ();
1466
1467 /* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1468 of floating-point, fixed-point, or integer type. */
1469 extern gdb_mpq value_to_gdb_mpq (struct value *value);
1470
1471 /* While an instance of this class is live, and array values that are
1472 created, that are larger than max_value_size, will be restricted in size
1473 to a particular number of elements. */
1474
1475 struct scoped_array_length_limiting
1476 {
1477 /* Limit any large array values to only contain ELEMENTS elements. */
1478 scoped_array_length_limiting (int elements);
1479
1480 /* Restore the previous array value limit. */
1481 ~scoped_array_length_limiting ();
1482
1483 private:
1484 /* Used to hold the previous array value element limit. */
1485 gdb::optional<int> m_old_value;
1486 };
1487
1488 #endif /* !defined (VALUE_H) */