* symfile.c (reread_symbols): When re-reading symbols, do all the
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value
35 value_headof PARAMS ((value, struct type *, struct type *));
36
37 static void
38 show_values PARAMS ((char *, int));
39
40 static void
41 show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value
72 allocate_value (type)
73 struct type *type;
74 {
75 register value val;
76
77 check_stub_type (type);
78
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value val;
106
107 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value mark;
139 {
140 value val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value val;
173 {
174 register value v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value
197 value_copy (arg)
198 value arg;
199 {
200 register value val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 if (!VALUE_LAZY (val))
214 {
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
218 }
219 return val;
220 }
221 \f
222 /* Access to the value history. */
223
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
228
229 int
230 record_latest_value (val)
231 value val;
232 {
233 int i;
234
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
238 {
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
241 }
242
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
245
246 i = value_history_count % VALUE_HISTORY_CHUNK;
247 if (i == 0)
248 {
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
255 }
256
257 value_history_chain->values[i] = val;
258
259 /* We don't want this value to have anything to do with the inferior anymore.
260 In particular, "set $1 = 50" should not affect the variable from which
261 the value was taken, and fast watchpoints should be able to assume that
262 a value on the value history never changes. */
263 if (VALUE_LAZY (val))
264 value_fetch_lazy (val);
265 VALUE_LVAL (val) = not_lval;
266 release_value (val);
267
268 /* Now we regard value_history_count as origin-one
269 and applying to the value just stored. */
270
271 return ++value_history_count;
272 }
273
274 /* Return a copy of the value in the history with sequence number NUM. */
275
276 value
277 access_value_history (num)
278 int num;
279 {
280 register struct value_history_chunk *chunk;
281 register int i;
282 register int absnum = num;
283
284 if (absnum <= 0)
285 absnum += value_history_count;
286
287 if (absnum <= 0)
288 {
289 if (num == 0)
290 error ("The history is empty.");
291 else if (num == 1)
292 error ("There is only one value in the history.");
293 else
294 error ("History does not go back to $$%d.", -num);
295 }
296 if (absnum > value_history_count)
297 error ("History has not yet reached $%d.", absnum);
298
299 absnum--;
300
301 /* Now absnum is always absolute and origin zero. */
302
303 chunk = value_history_chain;
304 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
305 i > 0; i--)
306 chunk = chunk->next;
307
308 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
309 }
310
311 /* Clear the value history entirely.
312 Must be done when new symbol tables are loaded,
313 because the type pointers become invalid. */
314
315 void
316 clear_value_history ()
317 {
318 register struct value_history_chunk *next;
319 register int i;
320 register value val;
321
322 while (value_history_chain)
323 {
324 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
325 if ((val = value_history_chain->values[i]) != NULL)
326 free ((PTR)val);
327 next = value_history_chain->next;
328 free ((PTR)value_history_chain);
329 value_history_chain = next;
330 }
331 value_history_count = 0;
332 }
333
334 static void
335 show_values (num_exp, from_tty)
336 char *num_exp;
337 int from_tty;
338 {
339 register int i;
340 register value val;
341 static int num = 1;
342
343 if (num_exp)
344 {
345 /* "info history +" should print from the stored position.
346 "info history <exp>" should print around value number <exp>. */
347 if (num_exp[0] != '+' || num_exp[1] != '\0')
348 num = parse_and_eval_address (num_exp) - 5;
349 }
350 else
351 {
352 /* "info history" means print the last 10 values. */
353 num = value_history_count - 9;
354 }
355
356 if (num <= 0)
357 num = 1;
358
359 for (i = num; i < num + 10 && i <= value_history_count; i++)
360 {
361 val = access_value_history (i);
362 printf_filtered ("$%d = ", i);
363 value_print (val, stdout, 0, Val_pretty_default);
364 printf_filtered ("\n");
365 }
366
367 /* The next "info history +" should start after what we just printed. */
368 num += 10;
369
370 /* Hitting just return after this command should do the same thing as
371 "info history +". If num_exp is null, this is unnecessary, since
372 "info history +" is not useful after "info history". */
373 if (from_tty && num_exp)
374 {
375 num_exp[0] = '+';
376 num_exp[1] = '\0';
377 }
378 }
379 \f
380 /* Internal variables. These are variables within the debugger
381 that hold values assigned by debugger commands.
382 The user refers to them with a '$' prefix
383 that does not appear in the variable names stored internally. */
384
385 static struct internalvar *internalvars;
386
387 /* Look up an internal variable with name NAME. NAME should not
388 normally include a dollar sign.
389
390 If the specified internal variable does not exist,
391 one is created, with a void value. */
392
393 struct internalvar *
394 lookup_internalvar (name)
395 char *name;
396 {
397 register struct internalvar *var;
398
399 for (var = internalvars; var; var = var->next)
400 if (STREQ (var->name, name))
401 return var;
402
403 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
404 var->name = concat (name, NULL);
405 var->value = allocate_value (builtin_type_void);
406 release_value (var->value);
407 var->next = internalvars;
408 internalvars = var;
409 return var;
410 }
411
412 value
413 value_of_internalvar (var)
414 struct internalvar *var;
415 {
416 register value val;
417
418 #ifdef IS_TRAPPED_INTERNALVAR
419 if (IS_TRAPPED_INTERNALVAR (var->name))
420 return VALUE_OF_TRAPPED_INTERNALVAR (var);
421 #endif
422
423 val = value_copy (var->value);
424 if (VALUE_LAZY (val))
425 value_fetch_lazy (val);
426 VALUE_LVAL (val) = lval_internalvar;
427 VALUE_INTERNALVAR (val) = var;
428 return val;
429 }
430
431 void
432 set_internalvar_component (var, offset, bitpos, bitsize, newval)
433 struct internalvar *var;
434 int offset, bitpos, bitsize;
435 value newval;
436 {
437 register char *addr = VALUE_CONTENTS (var->value) + offset;
438
439 #ifdef IS_TRAPPED_INTERNALVAR
440 if (IS_TRAPPED_INTERNALVAR (var->name))
441 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
442 #endif
443
444 if (bitsize)
445 modify_field (addr, value_as_long (newval),
446 bitpos, bitsize);
447 else
448 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
449 }
450
451 void
452 set_internalvar (var, val)
453 struct internalvar *var;
454 value val;
455 {
456 #ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var->name))
458 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
459 #endif
460
461 free ((PTR)var->value);
462 var->value = value_copy (val);
463 /* Force the value to be fetched from the target now, to avoid problems
464 later when this internalvar is referenced and the target is gone or
465 has changed. */
466 if (VALUE_LAZY (var->value))
467 value_fetch_lazy (var->value);
468 release_value (var->value);
469 }
470
471 char *
472 internalvar_name (var)
473 struct internalvar *var;
474 {
475 return var->name;
476 }
477
478 /* Free all internalvars. Done when new symtabs are loaded,
479 because that makes the values invalid. */
480
481 void
482 clear_internalvars ()
483 {
484 register struct internalvar *var;
485
486 while (internalvars)
487 {
488 var = internalvars;
489 internalvars = var->next;
490 free ((PTR)var->name);
491 free ((PTR)var->value);
492 free ((PTR)var);
493 }
494 }
495
496 static void
497 show_convenience (ignore, from_tty)
498 char *ignore;
499 int from_tty;
500 {
501 register struct internalvar *var;
502 int varseen = 0;
503
504 for (var = internalvars; var; var = var->next)
505 {
506 #ifdef IS_TRAPPED_INTERNALVAR
507 if (IS_TRAPPED_INTERNALVAR (var->name))
508 continue;
509 #endif
510 if (!varseen)
511 {
512 varseen = 1;
513 }
514 printf_filtered ("$%s = ", var->name);
515 value_print (var->value, stdout, 0, Val_pretty_default);
516 printf_filtered ("\n");
517 }
518 if (!varseen)
519 printf ("No debugger convenience variables now defined.\n\
520 Convenience variables have names starting with \"$\";\n\
521 use \"set\" as in \"set $foo = 5\" to define them.\n");
522 }
523 \f
524 /* Extract a value as a C number (either long or double).
525 Knows how to convert fixed values to double, or
526 floating values to long.
527 Does not deallocate the value. */
528
529 LONGEST
530 value_as_long (val)
531 register value val;
532 {
533 /* This coerces arrays and functions, which is necessary (e.g.
534 in disassemble_command). It also dereferences references, which
535 I suspect is the most logical thing to do. */
536 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
537 COERCE_ARRAY (val);
538 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
539 }
540
541 double
542 value_as_double (val)
543 register value val;
544 {
545 double foo;
546 int inv;
547
548 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
549 if (inv)
550 error ("Invalid floating value found in program.");
551 return foo;
552 }
553 /* Extract a value as a C pointer.
554 Does not deallocate the value. */
555 CORE_ADDR
556 value_as_pointer (val)
557 value val;
558 {
559 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
560 whether we want this to be true eventually. */
561 #if 0
562 /* ADDR_BITS_REMOVE is wrong if we are being called for a
563 non-address (e.g. argument to "signal", "info break", etc.), or
564 for pointers to char, in which the low bits *are* significant. */
565 return ADDR_BITS_REMOVE(value_as_long (val));
566 #else
567 return value_as_long (val);
568 #endif
569 }
570 \f
571 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
572 as a long, or as a double, assuming the raw data is described
573 by type TYPE. Knows how to convert different sizes of values
574 and can convert between fixed and floating point. We don't assume
575 any alignment for the raw data. Return value is in host byte order.
576
577 If you want functions and arrays to be coerced to pointers, and
578 references to be dereferenced, call value_as_long() instead.
579
580 C++: It is assumed that the front-end has taken care of
581 all matters concerning pointers to members. A pointer
582 to member which reaches here is considered to be equivalent
583 to an INT (or some size). After all, it is only an offset. */
584
585 /* FIXME: This should be rewritten as a switch statement for speed and
586 ease of comprehension. */
587
588 LONGEST
589 unpack_long (type, valaddr)
590 struct type *type;
591 char *valaddr;
592 {
593 register enum type_code code = TYPE_CODE (type);
594 register int len = TYPE_LENGTH (type);
595 register int nosign = TYPE_UNSIGNED (type);
596
597 switch (code)
598 {
599 case TYPE_CODE_ENUM:
600 case TYPE_CODE_BOOL:
601 case TYPE_CODE_INT:
602 case TYPE_CODE_CHAR:
603 if (nosign)
604 return extract_unsigned_integer (valaddr, len);
605 else
606 return extract_signed_integer (valaddr, len);
607
608 case TYPE_CODE_FLT:
609 return extract_floating (valaddr, len);
610
611 case TYPE_CODE_PTR:
612 case TYPE_CODE_REF:
613 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
614 whether we want this to be true eventually. */
615 return extract_address (valaddr, len);
616
617 case TYPE_CODE_MEMBER:
618 error ("not implemented: member types in unpack_long");
619
620 default:
621 error ("Value can't be converted to intenot integer or pointer.");
622 }
623 return 0; /* Placate lint. */
624 }
625
626 /* Return a double value from the specified type and address.
627 INVP points to an int which is set to 0 for valid value,
628 1 for invalid value (bad float format). In either case,
629 the returned double is OK to use. Argument is in target
630 format, result is in host format. */
631
632 double
633 unpack_double (type, valaddr, invp)
634 struct type *type;
635 char *valaddr;
636 int *invp;
637 {
638 register enum type_code code = TYPE_CODE (type);
639 register int len = TYPE_LENGTH (type);
640 register int nosign = TYPE_UNSIGNED (type);
641
642 *invp = 0; /* Assume valid. */
643 if (code == TYPE_CODE_FLT)
644 {
645 if (INVALID_FLOAT (valaddr, len))
646 {
647 *invp = 1;
648 return 1.234567891011121314;
649 }
650 return extract_floating (valaddr, TYPE_LENGTH (type));
651 }
652 else if (nosign) {
653 /* Unsigned -- be sure we compensate for signed LONGEST. */
654 return (unsigned LONGEST) unpack_long (type, valaddr);
655 } else {
656 /* Signed -- we are OK with unpack_long. */
657 return unpack_long (type, valaddr);
658 }
659 }
660
661 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
662 as a CORE_ADDR, assuming the raw data is described by type TYPE.
663 We don't assume any alignment for the raw data. Return value is in
664 host byte order.
665
666 If you want functions and arrays to be coerced to pointers, and
667 references to be dereferenced, call value_as_pointer() instead.
668
669 C++: It is assumed that the front-end has taken care of
670 all matters concerning pointers to members. A pointer
671 to member which reaches here is considered to be equivalent
672 to an INT (or some size). After all, it is only an offset. */
673
674 CORE_ADDR
675 unpack_pointer (type, valaddr)
676 struct type *type;
677 char *valaddr;
678 {
679 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
680 whether we want this to be true eventually. */
681 return unpack_long (type, valaddr);
682 }
683 \f
684 /* Given a value ARG1 (offset by OFFSET bytes)
685 of a struct or union type ARG_TYPE,
686 extract and return the value of one of its fields.
687 FIELDNO says which field.
688
689 For C++, must also be able to return values from static fields */
690
691 value
692 value_primitive_field (arg1, offset, fieldno, arg_type)
693 register value arg1;
694 int offset;
695 register int fieldno;
696 register struct type *arg_type;
697 {
698 register value v;
699 register struct type *type;
700
701 check_stub_type (arg_type);
702 type = TYPE_FIELD_TYPE (arg_type, fieldno);
703
704 /* Handle packed fields */
705
706 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
707 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
708 {
709 v = value_from_longest (type,
710 unpack_field_as_long (arg_type,
711 VALUE_CONTENTS (arg1),
712 fieldno));
713 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
714 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
715 }
716 else
717 {
718 v = allocate_value (type);
719 if (VALUE_LAZY (arg1))
720 VALUE_LAZY (v) = 1;
721 else
722 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
723 TYPE_LENGTH (type));
724 }
725 VALUE_LVAL (v) = VALUE_LVAL (arg1);
726 if (VALUE_LVAL (arg1) == lval_internalvar)
727 VALUE_LVAL (v) = lval_internalvar_component;
728 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
729 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
730 return v;
731 }
732
733 /* Given a value ARG1 of a struct or union type,
734 extract and return the value of one of its fields.
735 FIELDNO says which field.
736
737 For C++, must also be able to return values from static fields */
738
739 value
740 value_field (arg1, fieldno)
741 register value arg1;
742 register int fieldno;
743 {
744 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
745 }
746
747 /* Return a non-virtual function as a value.
748 F is the list of member functions which contains the desired method.
749 J is an index into F which provides the desired method. */
750
751 value
752 value_fn_field (arg1p, f, j, type, offset)
753 value *arg1p;
754 struct fn_field *f;
755 int j;
756 struct type *type;
757 int offset;
758 {
759 register value v;
760 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
761 struct symbol *sym;
762
763 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
764 0, VAR_NAMESPACE, 0, NULL);
765 if (! sym) error ("Internal error: could not find physical method named %s",
766 TYPE_FN_FIELD_PHYSNAME (f, j));
767
768 v = allocate_value (ftype);
769 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
770 VALUE_TYPE (v) = ftype;
771
772 if (arg1p)
773 {
774 if (type != VALUE_TYPE (*arg1p))
775 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
776 value_addr (*arg1p)));
777
778 /* Move the `this' pointer according to the offset.
779 VALUE_OFFSET (*arg1p) += offset;
780 */
781 }
782
783 return v;
784 }
785
786 /* Return a virtual function as a value.
787 ARG1 is the object which provides the virtual function
788 table pointer. *ARG1P is side-effected in calling this function.
789 F is the list of member functions which contains the desired virtual
790 function.
791 J is an index into F which provides the desired virtual function.
792
793 TYPE is the type in which F is located. */
794 value
795 value_virtual_fn_field (arg1p, f, j, type, offset)
796 value *arg1p;
797 struct fn_field *f;
798 int j;
799 struct type *type;
800 int offset;
801 {
802 value arg1 = *arg1p;
803 /* First, get the virtual function table pointer. That comes
804 with a strange type, so cast it to type `pointer to long' (which
805 should serve just fine as a function type). Then, index into
806 the table, and convert final value to appropriate function type. */
807 value entry, vfn, vtbl;
808 value vi = value_from_longest (builtin_type_int,
809 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
810 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
811 struct type *context;
812 if (fcontext == NULL)
813 /* We don't have an fcontext (e.g. the program was compiled with
814 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
815 This won't work right for multiple inheritance, but at least we
816 should do as well as GDB 3.x did. */
817 fcontext = TYPE_VPTR_BASETYPE (type);
818 context = lookup_pointer_type (fcontext);
819 /* Now context is a pointer to the basetype containing the vtbl. */
820 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
821 arg1 = value_ind (value_cast (context, value_addr (arg1)));
822
823 context = VALUE_TYPE (arg1);
824 /* Now context is the basetype containing the vtbl. */
825
826 /* This type may have been defined before its virtual function table
827 was. If so, fill in the virtual function table entry for the
828 type now. */
829 if (TYPE_VPTR_FIELDNO (context) < 0)
830 fill_in_vptr_fieldno (context);
831
832 /* The virtual function table is now an array of structures
833 which have the form { int16 offset, delta; void *pfn; }. */
834 vtbl = value_ind (value_primitive_field (arg1, 0,
835 TYPE_VPTR_FIELDNO (context),
836 TYPE_VPTR_BASETYPE (context)));
837
838 /* Index into the virtual function table. This is hard-coded because
839 looking up a field is not cheap, and it may be important to save
840 time, e.g. if the user has set a conditional breakpoint calling
841 a virtual function. */
842 entry = value_subscript (vtbl, vi);
843
844 /* Move the `this' pointer according to the virtual function table. */
845 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
846
847 if (! VALUE_LAZY (arg1))
848 {
849 VALUE_LAZY (arg1) = 1;
850 value_fetch_lazy (arg1);
851 }
852
853 vfn = value_field (entry, 2);
854 /* Reinstantiate the function pointer with the correct type. */
855 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
856
857 *arg1p = arg1;
858 return vfn;
859 }
860
861 /* ARG is a pointer to an object we know to be at least
862 a DTYPE. BTYPE is the most derived basetype that has
863 already been searched (and need not be searched again).
864 After looking at the vtables between BTYPE and DTYPE,
865 return the most derived type we find. The caller must
866 be satisfied when the return value == DTYPE.
867
868 FIXME-tiemann: should work with dossier entries as well. */
869
870 static value
871 value_headof (in_arg, btype, dtype)
872 value in_arg;
873 struct type *btype, *dtype;
874 {
875 /* First collect the vtables we must look at for this object. */
876 /* FIXME-tiemann: right now, just look at top-most vtable. */
877 value arg, vtbl, entry, best_entry = 0;
878 int i, nelems;
879 int offset, best_offset = 0;
880 struct symbol *sym;
881 CORE_ADDR pc_for_sym;
882 char *demangled_name;
883 struct minimal_symbol *msymbol;
884
885 btype = TYPE_VPTR_BASETYPE (dtype);
886 check_stub_type (btype);
887 arg = in_arg;
888 if (btype != dtype)
889 arg = value_cast (lookup_pointer_type (btype), arg);
890 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
891
892 /* Check that VTBL looks like it points to a virtual function table. */
893 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
894 if (msymbol == NULL
895 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
896 {
897 /* If we expected to find a vtable, but did not, let the user
898 know that we aren't happy, but don't throw an error.
899 FIXME: there has to be a better way to do this. */
900 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
901 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
902 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
903 VALUE_TYPE (in_arg) = error_type;
904 return in_arg;
905 }
906
907 /* Now search through the virtual function table. */
908 entry = value_ind (vtbl);
909 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
910 for (i = 1; i <= nelems; i++)
911 {
912 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
913 (LONGEST) i));
914 offset = longest_to_int (value_as_long (value_field (entry, 0)));
915 /* If we use '<=' we can handle single inheritance
916 * where all offsets are zero - just use the first entry found. */
917 if (offset <= best_offset)
918 {
919 best_offset = offset;
920 best_entry = entry;
921 }
922 }
923 /* Move the pointer according to BEST_ENTRY's offset, and figure
924 out what type we should return as the new pointer. */
925 if (best_entry == 0)
926 {
927 /* An alternative method (which should no longer be necessary).
928 * But we leave it in for future use, when we will hopefully
929 * have optimizes the vtable to use thunks instead of offsets. */
930 /* Use the name of vtable itself to extract a base type. */
931 demangled_name += 4; /* Skip \7fvt$ prefix. */
932 }
933 else
934 {
935 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
936 sym = find_pc_function (pc_for_sym);
937 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
938 *(strchr (demangled_name, ':')) = '\0';
939 }
940 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
941 if (sym == NULL)
942 error ("could not find type declaration for `%s'", demangled_name);
943 if (best_entry)
944 {
945 free (demangled_name);
946 arg = value_add (value_cast (builtin_type_int, arg),
947 value_field (best_entry, 0));
948 }
949 else arg = in_arg;
950 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
951 return arg;
952 }
953
954 /* ARG is a pointer object of type TYPE. If TYPE has virtual
955 function tables, probe ARG's tables (including the vtables
956 of its baseclasses) to figure out the most derived type that ARG
957 could actually be a pointer to. */
958
959 value
960 value_from_vtable_info (arg, type)
961 value arg;
962 struct type *type;
963 {
964 /* Take care of preliminaries. */
965 if (TYPE_VPTR_FIELDNO (type) < 0)
966 fill_in_vptr_fieldno (type);
967 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
968 return 0;
969
970 return value_headof (arg, 0, type);
971 }
972
973 /* Return true if the INDEXth field of TYPE is a virtual baseclass
974 pointer which is for the base class whose type is BASECLASS. */
975
976 static int
977 vb_match (type, index, basetype)
978 struct type *type;
979 int index;
980 struct type *basetype;
981 {
982 struct type *fieldtype;
983 char *name = TYPE_FIELD_NAME (type, index);
984 char *field_class_name = NULL;
985
986 if (*name != '_')
987 return 0;
988 /* gcc 2.4 uses \7fvb$. */
989 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
990 field_class_name = name + 4;
991 /* gcc 2.5 will use \7f_vb_. */
992 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
993 field_class_name = name + 5;
994
995 if (field_class_name == NULL)
996 /* This field is not a virtual base class pointer. */
997 return 0;
998
999 /* It's a virtual baseclass pointer, now we just need to find out whether
1000 it is for this baseclass. */
1001 fieldtype = TYPE_FIELD_TYPE (type, index);
1002 if (fieldtype == NULL
1003 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1004 /* "Can't happen". */
1005 return 0;
1006
1007 /* What we check for is that either the types are equal (needed for
1008 nameless types) or have the same name. This is ugly, and a more
1009 elegant solution should be devised (which would probably just push
1010 the ugliness into symbol reading unless we change the stabs format). */
1011 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1012 return 1;
1013
1014 if (TYPE_NAME (basetype) != NULL
1015 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1016 && STREQ (TYPE_NAME (basetype),
1017 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1018 return 1;
1019 return 0;
1020 }
1021
1022 /* Compute the offset of the baseclass which is
1023 the INDEXth baseclass of class TYPE, for a value ARG,
1024 wih extra offset of OFFSET.
1025 The result is the offste of the baseclass value relative
1026 to (the address of)(ARG) + OFFSET.
1027
1028 -1 is returned on error. */
1029
1030 int
1031 baseclass_offset (type, index, arg, offset)
1032 struct type *type;
1033 int index;
1034 value arg;
1035 int offset;
1036 {
1037 struct type *basetype = TYPE_BASECLASS (type, index);
1038
1039 if (BASETYPE_VIA_VIRTUAL (type, index))
1040 {
1041 /* Must hunt for the pointer to this virtual baseclass. */
1042 register int i, len = TYPE_NFIELDS (type);
1043 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1044
1045 /* First look for the virtual baseclass pointer
1046 in the fields. */
1047 for (i = n_baseclasses; i < len; i++)
1048 {
1049 if (vb_match (type, i, basetype))
1050 {
1051 CORE_ADDR addr
1052 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1053 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1054 + offset
1055 + (TYPE_FIELD_BITPOS (type, i) / 8));
1056
1057 if (VALUE_LVAL (arg) != lval_memory)
1058 return -1;
1059
1060 return addr -
1061 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1062 }
1063 }
1064 /* Not in the fields, so try looking through the baseclasses. */
1065 for (i = index+1; i < n_baseclasses; i++)
1066 {
1067 int boffset =
1068 baseclass_offset (type, i, arg, offset);
1069 if (boffset)
1070 return boffset;
1071 }
1072 /* Not found. */
1073 return -1;
1074 }
1075
1076 /* Baseclass is easily computed. */
1077 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1078 }
1079
1080 /* Compute the address of the baseclass which is
1081 the INDEXth baseclass of class TYPE. The TYPE base
1082 of the object is at VALADDR.
1083
1084 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1085 or 0 if no error. In that case the return value is not the address
1086 of the baseclasss, but the address which could not be read
1087 successfully. */
1088
1089 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1090
1091 char *
1092 baseclass_addr (type, index, valaddr, valuep, errp)
1093 struct type *type;
1094 int index;
1095 char *valaddr;
1096 value *valuep;
1097 int *errp;
1098 {
1099 struct type *basetype = TYPE_BASECLASS (type, index);
1100
1101 if (errp)
1102 *errp = 0;
1103
1104 if (BASETYPE_VIA_VIRTUAL (type, index))
1105 {
1106 /* Must hunt for the pointer to this virtual baseclass. */
1107 register int i, len = TYPE_NFIELDS (type);
1108 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1109
1110 /* First look for the virtual baseclass pointer
1111 in the fields. */
1112 for (i = n_baseclasses; i < len; i++)
1113 {
1114 if (vb_match (type, i, basetype))
1115 {
1116 value val = allocate_value (basetype);
1117 CORE_ADDR addr;
1118 int status;
1119
1120 addr
1121 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1122 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1123
1124 status = target_read_memory (addr,
1125 VALUE_CONTENTS_RAW (val),
1126 TYPE_LENGTH (basetype));
1127 VALUE_LVAL (val) = lval_memory;
1128 VALUE_ADDRESS (val) = addr;
1129
1130 if (status != 0)
1131 {
1132 if (valuep)
1133 *valuep = NULL;
1134 release_value (val);
1135 value_free (val);
1136 if (errp)
1137 *errp = status;
1138 return (char *)addr;
1139 }
1140 else
1141 {
1142 if (valuep)
1143 *valuep = val;
1144 return (char *) VALUE_CONTENTS (val);
1145 }
1146 }
1147 }
1148 /* Not in the fields, so try looking through the baseclasses. */
1149 for (i = index+1; i < n_baseclasses; i++)
1150 {
1151 char *baddr;
1152
1153 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1154 if (baddr)
1155 return baddr;
1156 }
1157 /* Not found. */
1158 if (valuep)
1159 *valuep = 0;
1160 return 0;
1161 }
1162
1163 /* Baseclass is easily computed. */
1164 if (valuep)
1165 *valuep = 0;
1166 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1167 }
1168 \f
1169 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1170 VALADDR.
1171
1172 Extracting bits depends on endianness of the machine. Compute the
1173 number of least significant bits to discard. For big endian machines,
1174 we compute the total number of bits in the anonymous object, subtract
1175 off the bit count from the MSB of the object to the MSB of the
1176 bitfield, then the size of the bitfield, which leaves the LSB discard
1177 count. For little endian machines, the discard count is simply the
1178 number of bits from the LSB of the anonymous object to the LSB of the
1179 bitfield.
1180
1181 If the field is signed, we also do sign extension. */
1182
1183 LONGEST
1184 unpack_field_as_long (type, valaddr, fieldno)
1185 struct type *type;
1186 char *valaddr;
1187 int fieldno;
1188 {
1189 unsigned LONGEST val;
1190 unsigned LONGEST valmask;
1191 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1192 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1193 int lsbcount;
1194
1195 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1196
1197 /* Extract bits. See comment above. */
1198
1199 #if BITS_BIG_ENDIAN
1200 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1201 #else
1202 lsbcount = (bitpos % 8);
1203 #endif
1204 val >>= lsbcount;
1205
1206 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1207 If the field is signed, and is negative, then sign extend. */
1208
1209 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1210 {
1211 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1212 val &= valmask;
1213 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1214 {
1215 if (val & (valmask ^ (valmask >> 1)))
1216 {
1217 val |= ~valmask;
1218 }
1219 }
1220 }
1221 return (val);
1222 }
1223
1224 /* Modify the value of a bitfield. ADDR points to a block of memory in
1225 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1226 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1227 indicate which bits (in target bit order) comprise the bitfield. */
1228
1229 void
1230 modify_field (addr, fieldval, bitpos, bitsize)
1231 char *addr;
1232 LONGEST fieldval;
1233 int bitpos, bitsize;
1234 {
1235 LONGEST oword;
1236
1237 /* Reject values too big to fit in the field in question,
1238 otherwise adjoining fields may be corrupted. */
1239 if (bitsize < (8 * sizeof (fieldval))
1240 && 0 != (fieldval & ~((1<<bitsize)-1)))
1241 {
1242 /* FIXME: would like to include fieldval in the message, but
1243 we don't have a sprintf_longest. */
1244 error ("Value does not fit in %d bits.", bitsize);
1245 }
1246
1247 oword = extract_signed_integer (addr, sizeof oword);
1248
1249 /* Shifting for bit field depends on endianness of the target machine. */
1250 #if BITS_BIG_ENDIAN
1251 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1252 #endif
1253
1254 /* Mask out old value, while avoiding shifts >= size of oword */
1255 if (bitsize < 8 * sizeof (oword))
1256 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1257 else
1258 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1259 oword |= fieldval << bitpos;
1260
1261 store_signed_integer (addr, sizeof oword, oword);
1262 }
1263 \f
1264 /* Convert C numbers into newly allocated values */
1265
1266 value
1267 value_from_longest (type, num)
1268 struct type *type;
1269 register LONGEST num;
1270 {
1271 register value val = allocate_value (type);
1272 register enum type_code code = TYPE_CODE (type);
1273 register int len = TYPE_LENGTH (type);
1274
1275 switch (code)
1276 {
1277 case TYPE_CODE_INT:
1278 case TYPE_CODE_CHAR:
1279 case TYPE_CODE_ENUM:
1280 case TYPE_CODE_BOOL:
1281 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1282 break;
1283
1284 case TYPE_CODE_REF:
1285 case TYPE_CODE_PTR:
1286 /* This assumes that all pointers of a given length
1287 have the same form. */
1288 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1289 break;
1290
1291 default:
1292 error ("Unexpected type encountered for integer constant.");
1293 }
1294 return val;
1295 }
1296
1297 value
1298 value_from_double (type, num)
1299 struct type *type;
1300 double num;
1301 {
1302 register value val = allocate_value (type);
1303 register enum type_code code = TYPE_CODE (type);
1304 register int len = TYPE_LENGTH (type);
1305
1306 if (code == TYPE_CODE_FLT)
1307 {
1308 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1309 }
1310 else
1311 error ("Unexpected type encountered for floating constant.");
1312
1313 return val;
1314 }
1315 \f
1316 /* Deal with the value that is "about to be returned". */
1317
1318 /* Return the value that a function returning now
1319 would be returning to its caller, assuming its type is VALTYPE.
1320 RETBUF is where we look for what ought to be the contents
1321 of the registers (in raw form). This is because it is often
1322 desirable to restore old values to those registers
1323 after saving the contents of interest, and then call
1324 this function using the saved values.
1325 struct_return is non-zero when the function in question is
1326 using the structure return conventions on the machine in question;
1327 0 when it is using the value returning conventions (this often
1328 means returning pointer to where structure is vs. returning value). */
1329
1330 value
1331 value_being_returned (valtype, retbuf, struct_return)
1332 register struct type *valtype;
1333 char retbuf[REGISTER_BYTES];
1334 int struct_return;
1335 /*ARGSUSED*/
1336 {
1337 register value val;
1338 CORE_ADDR addr;
1339
1340 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1341 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1342 if (struct_return) {
1343 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1344 if (!addr)
1345 error ("Function return value unknown");
1346 return value_at (valtype, addr);
1347 }
1348 #endif
1349
1350 val = allocate_value (valtype);
1351 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1352
1353 return val;
1354 }
1355
1356 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1357 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1358 and TYPE is the type (which is known to be struct, union or array).
1359
1360 On most machines, the struct convention is used unless we are
1361 using gcc and the type is of a special size. */
1362 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1363 native compiler. GCC 2.3.3 was the last release that did it the
1364 old way. Since gcc2_compiled was not changed, we have no
1365 way to correctly win in all cases, so we just do the right thing
1366 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1367 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1368 would cause more chaos than dealing with some struct returns being
1369 handled wrong. */
1370 #if !defined (USE_STRUCT_CONVENTION)
1371 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1372 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1373 || TYPE_LENGTH (value_type) == 2 \
1374 || TYPE_LENGTH (value_type) == 4 \
1375 || TYPE_LENGTH (value_type) == 8 \
1376 ) \
1377 ))
1378 #endif
1379
1380 /* Return true if the function specified is using the structure returning
1381 convention on this machine to return arguments, or 0 if it is using
1382 the value returning convention. FUNCTION is the value representing
1383 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1384 is the type returned by the function. GCC_P is nonzero if compiled
1385 with GCC. */
1386
1387 int
1388 using_struct_return (function, funcaddr, value_type, gcc_p)
1389 value function;
1390 CORE_ADDR funcaddr;
1391 struct type *value_type;
1392 int gcc_p;
1393 /*ARGSUSED*/
1394 {
1395 register enum type_code code = TYPE_CODE (value_type);
1396
1397 if (code == TYPE_CODE_ERROR)
1398 error ("Function return type unknown.");
1399
1400 if (code == TYPE_CODE_STRUCT ||
1401 code == TYPE_CODE_UNION ||
1402 code == TYPE_CODE_ARRAY)
1403 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1404
1405 return 0;
1406 }
1407
1408 /* Store VAL so it will be returned if a function returns now.
1409 Does not verify that VAL's type matches what the current
1410 function wants to return. */
1411
1412 void
1413 set_return_value (val)
1414 value val;
1415 {
1416 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1417 double dbuf;
1418 LONGEST lbuf;
1419
1420 if (code == TYPE_CODE_ERROR)
1421 error ("Function return type unknown.");
1422
1423 if ( code == TYPE_CODE_STRUCT
1424 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1425 error ("GDB does not support specifying a struct or union return value.");
1426
1427 /* FIXME, this is bogus. We don't know what the return conventions
1428 are, or how values should be promoted.... */
1429 if (code == TYPE_CODE_FLT)
1430 {
1431 dbuf = value_as_double (val);
1432
1433 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1434 }
1435 else
1436 {
1437 lbuf = value_as_long (val);
1438 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1439 }
1440 }
1441 \f
1442 void
1443 _initialize_values ()
1444 {
1445 add_cmd ("convenience", no_class, show_convenience,
1446 "Debugger convenience (\"$foo\") variables.\n\
1447 These variables are created when you assign them values;\n\
1448 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1449 A few convenience variables are given values automatically:\n\
1450 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1451 \"$__\" holds the contents of the last address examined with \"x\".",
1452 &showlist);
1453
1454 add_cmd ("values", no_class, show_values,
1455 "Elements of value history around item number IDX (or last ten).",
1456 &showlist);
1457 }