e076f5b4377eba05e60a7363b851778890ad2e21
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33
34 /* Local function prototypes. */
35
36 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
38
39 static void show_values PARAMS ((char *, int));
40
41 static void show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value_ptr values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value_ptr all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value_ptr
72 allocate_value (type)
73 struct type *type;
74 {
75 register value_ptr val;
76
77 check_stub_type (type);
78
79 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REGNO (val) = -1;
90 VALUE_LAZY (val) = 0;
91 VALUE_OPTIMIZED_OUT (val) = 0;
92 val->modifiable = 1;
93 return val;
94 }
95
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
99 value_ptr
100 allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103 {
104 struct type *element_type = type;
105 int low_bound = current_language->string_lower_bound; /* ??? */
106 /* FIXME-type-allocation: need a way to free this type when we are
107 done with it. */
108 struct type *range_type
109 = create_range_type ((struct type *) NULL, builtin_type_int,
110 low_bound, count + low_bound - 1);
111 /* FIXME-type-allocation: need a way to free this type when we are
112 done with it. */
113 return allocate_value (create_array_type ((struct type *) NULL,
114 type, range_type));
115 }
116
117 /* Return a mark in the value chain. All values allocated after the
118 mark is obtained (except for those released) are subject to being freed
119 if a subsequent value_free_to_mark is passed the mark. */
120 value_ptr
121 value_mark ()
122 {
123 return all_values;
124 }
125
126 /* Free all values allocated since MARK was obtained by value_mark
127 (except for those released). */
128 void
129 value_free_to_mark (mark)
130 value_ptr mark;
131 {
132 value_ptr val, next;
133
134 for (val = all_values; val && val != mark; val = next)
135 {
136 next = VALUE_NEXT (val);
137 value_free (val);
138 }
139 all_values = val;
140 }
141
142 /* Free all the values that have been allocated (except for those released).
143 Called after each command, successful or not. */
144
145 void
146 free_all_values ()
147 {
148 register value_ptr val, next;
149
150 for (val = all_values; val; val = next)
151 {
152 next = VALUE_NEXT (val);
153 value_free (val);
154 }
155
156 all_values = 0;
157 }
158
159 /* Remove VAL from the chain all_values
160 so it will not be freed automatically. */
161
162 void
163 release_value (val)
164 register value_ptr val;
165 {
166 register value_ptr v;
167
168 if (all_values == val)
169 {
170 all_values = val->next;
171 return;
172 }
173
174 for (v = all_values; v; v = v->next)
175 {
176 if (v->next == val)
177 {
178 v->next = val->next;
179 break;
180 }
181 }
182 }
183
184 /* Release all values up to mark */
185 value_ptr
186 value_release_to_mark (mark)
187 value_ptr mark;
188 {
189 value_ptr val, next;
190
191 for (val = next = all_values; next; next = VALUE_NEXT (next))
192 if (VALUE_NEXT (next) == mark)
193 {
194 all_values = VALUE_NEXT (next);
195 VALUE_NEXT (next) = 0;
196 return val;
197 }
198 all_values = 0;
199 return val;
200 }
201
202 /* Return a copy of the value ARG.
203 It contains the same contents, for same memory address,
204 but it's a different block of storage. */
205
206 value_ptr
207 value_copy (arg)
208 value_ptr arg;
209 {
210 register struct type *type = VALUE_TYPE (arg);
211 register value_ptr val = allocate_value (type);
212 VALUE_LVAL (val) = VALUE_LVAL (arg);
213 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
214 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
215 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
216 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
217 VALUE_FRAME (val) = VALUE_FRAME (arg);
218 VALUE_REGNO (val) = VALUE_REGNO (arg);
219 VALUE_LAZY (val) = VALUE_LAZY (arg);
220 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
221 val->modifiable = arg->modifiable;
222 if (!VALUE_LAZY (val))
223 {
224 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
225 TYPE_LENGTH (VALUE_TYPE (arg)));
226 }
227 return val;
228 }
229 \f
230 /* Access to the value history. */
231
232 /* Record a new value in the value history.
233 Returns the absolute history index of the entry.
234 Result of -1 indicates the value was not saved; otherwise it is the
235 value history index of this new item. */
236
237 int
238 record_latest_value (val)
239 value_ptr val;
240 {
241 int i;
242
243 /* Check error now if about to store an invalid float. We return -1
244 to the caller, but allow them to continue, e.g. to print it as "Nan". */
245 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
246 {
247 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
248 if (i) return -1; /* Indicate value not saved in history */
249 }
250
251 /* We don't want this value to have anything to do with the inferior anymore.
252 In particular, "set $1 = 50" should not affect the variable from which
253 the value was taken, and fast watchpoints should be able to assume that
254 a value on the value history never changes. */
255 if (VALUE_LAZY (val))
256 value_fetch_lazy (val);
257 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
258 from. This is a bit dubious, because then *&$1 does not just return $1
259 but the current contents of that location. c'est la vie... */
260 val->modifiable = 0;
261 release_value (val);
262
263 /* Here we treat value_history_count as origin-zero
264 and applying to the value being stored now. */
265
266 i = value_history_count % VALUE_HISTORY_CHUNK;
267 if (i == 0)
268 {
269 register struct value_history_chunk *new
270 = (struct value_history_chunk *)
271 xmalloc (sizeof (struct value_history_chunk));
272 memset (new->values, 0, sizeof new->values);
273 new->next = value_history_chain;
274 value_history_chain = new;
275 }
276
277 value_history_chain->values[i] = val;
278
279 /* Now we regard value_history_count as origin-one
280 and applying to the value just stored. */
281
282 return ++value_history_count;
283 }
284
285 /* Return a copy of the value in the history with sequence number NUM. */
286
287 value_ptr
288 access_value_history (num)
289 int num;
290 {
291 register struct value_history_chunk *chunk;
292 register int i;
293 register int absnum = num;
294
295 if (absnum <= 0)
296 absnum += value_history_count;
297
298 if (absnum <= 0)
299 {
300 if (num == 0)
301 error ("The history is empty.");
302 else if (num == 1)
303 error ("There is only one value in the history.");
304 else
305 error ("History does not go back to $$%d.", -num);
306 }
307 if (absnum > value_history_count)
308 error ("History has not yet reached $%d.", absnum);
309
310 absnum--;
311
312 /* Now absnum is always absolute and origin zero. */
313
314 chunk = value_history_chain;
315 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
316 i > 0; i--)
317 chunk = chunk->next;
318
319 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
320 }
321
322 /* Clear the value history entirely.
323 Must be done when new symbol tables are loaded,
324 because the type pointers become invalid. */
325
326 void
327 clear_value_history ()
328 {
329 register struct value_history_chunk *next;
330 register int i;
331 register value_ptr val;
332
333 while (value_history_chain)
334 {
335 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
336 if ((val = value_history_chain->values[i]) != NULL)
337 free ((PTR)val);
338 next = value_history_chain->next;
339 free ((PTR)value_history_chain);
340 value_history_chain = next;
341 }
342 value_history_count = 0;
343 }
344
345 static void
346 show_values (num_exp, from_tty)
347 char *num_exp;
348 int from_tty;
349 {
350 register int i;
351 register value_ptr val;
352 static int num = 1;
353
354 if (num_exp)
355 {
356 /* "info history +" should print from the stored position.
357 "info history <exp>" should print around value number <exp>. */
358 if (num_exp[0] != '+' || num_exp[1] != '\0')
359 num = parse_and_eval_address (num_exp) - 5;
360 }
361 else
362 {
363 /* "info history" means print the last 10 values. */
364 num = value_history_count - 9;
365 }
366
367 if (num <= 0)
368 num = 1;
369
370 for (i = num; i < num + 10 && i <= value_history_count; i++)
371 {
372 val = access_value_history (i);
373 printf_filtered ("$%d = ", i);
374 value_print (val, gdb_stdout, 0, Val_pretty_default);
375 printf_filtered ("\n");
376 }
377
378 /* The next "info history +" should start after what we just printed. */
379 num += 10;
380
381 /* Hitting just return after this command should do the same thing as
382 "info history +". If num_exp is null, this is unnecessary, since
383 "info history +" is not useful after "info history". */
384 if (from_tty && num_exp)
385 {
386 num_exp[0] = '+';
387 num_exp[1] = '\0';
388 }
389 }
390 \f
391 /* Internal variables. These are variables within the debugger
392 that hold values assigned by debugger commands.
393 The user refers to them with a '$' prefix
394 that does not appear in the variable names stored internally. */
395
396 static struct internalvar *internalvars;
397
398 /* Look up an internal variable with name NAME. NAME should not
399 normally include a dollar sign.
400
401 If the specified internal variable does not exist,
402 one is created, with a void value. */
403
404 struct internalvar *
405 lookup_internalvar (name)
406 char *name;
407 {
408 register struct internalvar *var;
409
410 for (var = internalvars; var; var = var->next)
411 if (STREQ (var->name, name))
412 return var;
413
414 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
415 var->name = concat (name, NULL);
416 var->value = allocate_value (builtin_type_void);
417 release_value (var->value);
418 var->next = internalvars;
419 internalvars = var;
420 return var;
421 }
422
423 value_ptr
424 value_of_internalvar (var)
425 struct internalvar *var;
426 {
427 register value_ptr val;
428
429 #ifdef IS_TRAPPED_INTERNALVAR
430 if (IS_TRAPPED_INTERNALVAR (var->name))
431 return VALUE_OF_TRAPPED_INTERNALVAR (var);
432 #endif
433
434 val = value_copy (var->value);
435 if (VALUE_LAZY (val))
436 value_fetch_lazy (val);
437 VALUE_LVAL (val) = lval_internalvar;
438 VALUE_INTERNALVAR (val) = var;
439 return val;
440 }
441
442 void
443 set_internalvar_component (var, offset, bitpos, bitsize, newval)
444 struct internalvar *var;
445 int offset, bitpos, bitsize;
446 value_ptr newval;
447 {
448 register char *addr = VALUE_CONTENTS (var->value) + offset;
449
450 #ifdef IS_TRAPPED_INTERNALVAR
451 if (IS_TRAPPED_INTERNALVAR (var->name))
452 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
453 #endif
454
455 if (bitsize)
456 modify_field (addr, value_as_long (newval),
457 bitpos, bitsize);
458 else
459 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
460 }
461
462 void
463 set_internalvar (var, val)
464 struct internalvar *var;
465 value_ptr val;
466 {
467 value_ptr newval;
468
469 #ifdef IS_TRAPPED_INTERNALVAR
470 if (IS_TRAPPED_INTERNALVAR (var->name))
471 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
472 #endif
473
474 newval = value_copy (val);
475 newval->modifiable = 1;
476
477 /* Force the value to be fetched from the target now, to avoid problems
478 later when this internalvar is referenced and the target is gone or
479 has changed. */
480 if (VALUE_LAZY (newval))
481 value_fetch_lazy (newval);
482
483 /* Begin code which must not call error(). If var->value points to
484 something free'd, an error() obviously leaves a dangling pointer.
485 But we also get a danling pointer if var->value points to
486 something in the value chain (i.e., before release_value is
487 called), because after the error free_all_values will get called before
488 long. */
489 free ((PTR)var->value);
490 var->value = newval;
491 release_value (newval);
492 /* End code which must not call error(). */
493 }
494
495 char *
496 internalvar_name (var)
497 struct internalvar *var;
498 {
499 return var->name;
500 }
501
502 /* Free all internalvars. Done when new symtabs are loaded,
503 because that makes the values invalid. */
504
505 void
506 clear_internalvars ()
507 {
508 register struct internalvar *var;
509
510 while (internalvars)
511 {
512 var = internalvars;
513 internalvars = var->next;
514 free ((PTR)var->name);
515 free ((PTR)var->value);
516 free ((PTR)var);
517 }
518 }
519
520 static void
521 show_convenience (ignore, from_tty)
522 char *ignore;
523 int from_tty;
524 {
525 register struct internalvar *var;
526 int varseen = 0;
527
528 for (var = internalvars; var; var = var->next)
529 {
530 #ifdef IS_TRAPPED_INTERNALVAR
531 if (IS_TRAPPED_INTERNALVAR (var->name))
532 continue;
533 #endif
534 if (!varseen)
535 {
536 varseen = 1;
537 }
538 printf_filtered ("$%s = ", var->name);
539 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
540 printf_filtered ("\n");
541 }
542 if (!varseen)
543 printf_unfiltered ("No debugger convenience variables now defined.\n\
544 Convenience variables have names starting with \"$\";\n\
545 use \"set\" as in \"set $foo = 5\" to define them.\n");
546 }
547 \f
548 /* Extract a value as a C number (either long or double).
549 Knows how to convert fixed values to double, or
550 floating values to long.
551 Does not deallocate the value. */
552
553 LONGEST
554 value_as_long (val)
555 register value_ptr val;
556 {
557 /* This coerces arrays and functions, which is necessary (e.g.
558 in disassemble_command). It also dereferences references, which
559 I suspect is the most logical thing to do. */
560 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
561 COERCE_ARRAY (val);
562 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
563 }
564
565 double
566 value_as_double (val)
567 register value_ptr val;
568 {
569 double foo;
570 int inv;
571
572 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
573 if (inv)
574 error ("Invalid floating value found in program.");
575 return foo;
576 }
577 /* Extract a value as a C pointer.
578 Does not deallocate the value. */
579 CORE_ADDR
580 value_as_pointer (val)
581 value_ptr val;
582 {
583 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
584 whether we want this to be true eventually. */
585 #if 0
586 /* ADDR_BITS_REMOVE is wrong if we are being called for a
587 non-address (e.g. argument to "signal", "info break", etc.), or
588 for pointers to char, in which the low bits *are* significant. */
589 return ADDR_BITS_REMOVE(value_as_long (val));
590 #else
591 return value_as_long (val);
592 #endif
593 }
594 \f
595 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
596 as a long, or as a double, assuming the raw data is described
597 by type TYPE. Knows how to convert different sizes of values
598 and can convert between fixed and floating point. We don't assume
599 any alignment for the raw data. Return value is in host byte order.
600
601 If you want functions and arrays to be coerced to pointers, and
602 references to be dereferenced, call value_as_long() instead.
603
604 C++: It is assumed that the front-end has taken care of
605 all matters concerning pointers to members. A pointer
606 to member which reaches here is considered to be equivalent
607 to an INT (or some size). After all, it is only an offset. */
608
609 LONGEST
610 unpack_long (type, valaddr)
611 struct type *type;
612 char *valaddr;
613 {
614 register enum type_code code = TYPE_CODE (type);
615 register int len = TYPE_LENGTH (type);
616 register int nosign = TYPE_UNSIGNED (type);
617
618 if (current_language->la_language == language_scm
619 && is_scmvalue_type (type))
620 return scm_unpack (type, valaddr, TYPE_CODE_INT);
621
622 switch (code)
623 {
624 case TYPE_CODE_ENUM:
625 case TYPE_CODE_BOOL:
626 case TYPE_CODE_INT:
627 case TYPE_CODE_CHAR:
628 case TYPE_CODE_RANGE:
629 if (nosign)
630 return extract_unsigned_integer (valaddr, len);
631 else
632 return extract_signed_integer (valaddr, len);
633
634 case TYPE_CODE_FLT:
635 return extract_floating (valaddr, len);
636
637 case TYPE_CODE_PTR:
638 case TYPE_CODE_REF:
639 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
640 whether we want this to be true eventually. */
641 return extract_address (valaddr, len);
642
643 case TYPE_CODE_MEMBER:
644 error ("not implemented: member types in unpack_long");
645
646 default:
647 error ("Value can't be converted to integer.");
648 }
649 return 0; /* Placate lint. */
650 }
651
652 /* Return a double value from the specified type and address.
653 INVP points to an int which is set to 0 for valid value,
654 1 for invalid value (bad float format). In either case,
655 the returned double is OK to use. Argument is in target
656 format, result is in host format. */
657
658 double
659 unpack_double (type, valaddr, invp)
660 struct type *type;
661 char *valaddr;
662 int *invp;
663 {
664 register enum type_code code = TYPE_CODE (type);
665 register int len = TYPE_LENGTH (type);
666 register int nosign = TYPE_UNSIGNED (type);
667
668 *invp = 0; /* Assume valid. */
669 if (code == TYPE_CODE_FLT)
670 {
671 #ifdef INVALID_FLOAT
672 if (INVALID_FLOAT (valaddr, len))
673 {
674 *invp = 1;
675 return 1.234567891011121314;
676 }
677 #endif
678 return extract_floating (valaddr, len);
679 }
680 else if (nosign)
681 {
682 /* Unsigned -- be sure we compensate for signed LONGEST. */
683 return (unsigned LONGEST) unpack_long (type, valaddr);
684 }
685 else
686 {
687 /* Signed -- we are OK with unpack_long. */
688 return unpack_long (type, valaddr);
689 }
690 }
691
692 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
693 as a CORE_ADDR, assuming the raw data is described by type TYPE.
694 We don't assume any alignment for the raw data. Return value is in
695 host byte order.
696
697 If you want functions and arrays to be coerced to pointers, and
698 references to be dereferenced, call value_as_pointer() instead.
699
700 C++: It is assumed that the front-end has taken care of
701 all matters concerning pointers to members. A pointer
702 to member which reaches here is considered to be equivalent
703 to an INT (or some size). After all, it is only an offset. */
704
705 CORE_ADDR
706 unpack_pointer (type, valaddr)
707 struct type *type;
708 char *valaddr;
709 {
710 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
711 whether we want this to be true eventually. */
712 return unpack_long (type, valaddr);
713 }
714 \f
715 /* Given a value ARG1 (offset by OFFSET bytes)
716 of a struct or union type ARG_TYPE,
717 extract and return the value of one of its fields.
718 FIELDNO says which field.
719
720 For C++, must also be able to return values from static fields */
721
722 value_ptr
723 value_primitive_field (arg1, offset, fieldno, arg_type)
724 register value_ptr arg1;
725 int offset;
726 register int fieldno;
727 register struct type *arg_type;
728 {
729 register value_ptr v;
730 register struct type *type;
731
732 check_stub_type (arg_type);
733 type = TYPE_FIELD_TYPE (arg_type, fieldno);
734
735 /* Handle packed fields */
736
737 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
738 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
739 {
740 v = value_from_longest (type,
741 unpack_field_as_long (arg_type,
742 VALUE_CONTENTS (arg1),
743 fieldno));
744 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
745 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
746 }
747 else
748 {
749 v = allocate_value (type);
750 if (VALUE_LAZY (arg1))
751 VALUE_LAZY (v) = 1;
752 else
753 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
754 TYPE_LENGTH (type));
755 }
756 VALUE_LVAL (v) = VALUE_LVAL (arg1);
757 if (VALUE_LVAL (arg1) == lval_internalvar)
758 VALUE_LVAL (v) = lval_internalvar_component;
759 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
760 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
761 return v;
762 }
763
764 /* Given a value ARG1 of a struct or union type,
765 extract and return the value of one of its fields.
766 FIELDNO says which field.
767
768 For C++, must also be able to return values from static fields */
769
770 value_ptr
771 value_field (arg1, fieldno)
772 register value_ptr arg1;
773 register int fieldno;
774 {
775 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
776 }
777
778 /* Return a non-virtual function as a value.
779 F is the list of member functions which contains the desired method.
780 J is an index into F which provides the desired method. */
781
782 value_ptr
783 value_fn_field (arg1p, f, j, type, offset)
784 value_ptr *arg1p;
785 struct fn_field *f;
786 int j;
787 struct type *type;
788 int offset;
789 {
790 register value_ptr v;
791 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
792 struct symbol *sym;
793
794 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
795 0, VAR_NAMESPACE, 0, NULL);
796 if (! sym)
797 return NULL;
798 /*
799 error ("Internal error: could not find physical method named %s",
800 TYPE_FN_FIELD_PHYSNAME (f, j));
801 */
802
803 v = allocate_value (ftype);
804 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
805 VALUE_TYPE (v) = ftype;
806
807 if (arg1p)
808 {
809 if (type != VALUE_TYPE (*arg1p))
810 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
811 value_addr (*arg1p)));
812
813 /* Move the `this' pointer according to the offset.
814 VALUE_OFFSET (*arg1p) += offset;
815 */
816 }
817
818 return v;
819 }
820
821 /* Return a virtual function as a value.
822 ARG1 is the object which provides the virtual function
823 table pointer. *ARG1P is side-effected in calling this function.
824 F is the list of member functions which contains the desired virtual
825 function.
826 J is an index into F which provides the desired virtual function.
827
828 TYPE is the type in which F is located. */
829 value_ptr
830 value_virtual_fn_field (arg1p, f, j, type, offset)
831 value_ptr *arg1p;
832 struct fn_field *f;
833 int j;
834 struct type *type;
835 int offset;
836 {
837 value_ptr arg1 = *arg1p;
838 /* First, get the virtual function table pointer. That comes
839 with a strange type, so cast it to type `pointer to long' (which
840 should serve just fine as a function type). Then, index into
841 the table, and convert final value to appropriate function type. */
842 value_ptr entry, vfn, vtbl;
843 value_ptr vi = value_from_longest (builtin_type_int,
844 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
845 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
846 struct type *context;
847 if (fcontext == NULL)
848 /* We don't have an fcontext (e.g. the program was compiled with
849 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
850 This won't work right for multiple inheritance, but at least we
851 should do as well as GDB 3.x did. */
852 fcontext = TYPE_VPTR_BASETYPE (type);
853 context = lookup_pointer_type (fcontext);
854 /* Now context is a pointer to the basetype containing the vtbl. */
855 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
856 arg1 = value_ind (value_cast (context, value_addr (arg1)));
857
858 context = VALUE_TYPE (arg1);
859 /* Now context is the basetype containing the vtbl. */
860
861 /* This type may have been defined before its virtual function table
862 was. If so, fill in the virtual function table entry for the
863 type now. */
864 if (TYPE_VPTR_FIELDNO (context) < 0)
865 fill_in_vptr_fieldno (context);
866
867 /* The virtual function table is now an array of structures
868 which have the form { int16 offset, delta; void *pfn; }. */
869 vtbl = value_ind (value_primitive_field (arg1, 0,
870 TYPE_VPTR_FIELDNO (context),
871 TYPE_VPTR_BASETYPE (context)));
872
873 /* Index into the virtual function table. This is hard-coded because
874 looking up a field is not cheap, and it may be important to save
875 time, e.g. if the user has set a conditional breakpoint calling
876 a virtual function. */
877 entry = value_subscript (vtbl, vi);
878
879 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
880 {
881 /* Move the `this' pointer according to the virtual function table. */
882 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
883
884 if (! VALUE_LAZY (arg1))
885 {
886 VALUE_LAZY (arg1) = 1;
887 value_fetch_lazy (arg1);
888 }
889
890 vfn = value_field (entry, 2);
891 }
892 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
893 vfn = entry;
894 else
895 error ("I'm confused: virtual function table has bad type");
896 /* Reinstantiate the function pointer with the correct type. */
897 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
898
899 *arg1p = arg1;
900 return vfn;
901 }
902
903 /* ARG is a pointer to an object we know to be at least
904 a DTYPE. BTYPE is the most derived basetype that has
905 already been searched (and need not be searched again).
906 After looking at the vtables between BTYPE and DTYPE,
907 return the most derived type we find. The caller must
908 be satisfied when the return value == DTYPE.
909
910 FIXME-tiemann: should work with dossier entries as well. */
911
912 static value_ptr
913 value_headof (in_arg, btype, dtype)
914 value_ptr in_arg;
915 struct type *btype, *dtype;
916 {
917 /* First collect the vtables we must look at for this object. */
918 /* FIXME-tiemann: right now, just look at top-most vtable. */
919 value_ptr arg, vtbl, entry, best_entry = 0;
920 int i, nelems;
921 int offset, best_offset = 0;
922 struct symbol *sym;
923 CORE_ADDR pc_for_sym;
924 char *demangled_name;
925 struct minimal_symbol *msymbol;
926
927 btype = TYPE_VPTR_BASETYPE (dtype);
928 check_stub_type (btype);
929 arg = in_arg;
930 if (btype != dtype)
931 arg = value_cast (lookup_pointer_type (btype), arg);
932 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
933
934 /* Check that VTBL looks like it points to a virtual function table. */
935 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
936 if (msymbol == NULL
937 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
938 || !VTBL_PREFIX_P (demangled_name))
939 {
940 /* If we expected to find a vtable, but did not, let the user
941 know that we aren't happy, but don't throw an error.
942 FIXME: there has to be a better way to do this. */
943 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
944 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
945 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
946 VALUE_TYPE (in_arg) = error_type;
947 return in_arg;
948 }
949
950 /* Now search through the virtual function table. */
951 entry = value_ind (vtbl);
952 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
953 for (i = 1; i <= nelems; i++)
954 {
955 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
956 (LONGEST) i));
957 /* This won't work if we're using thunks. */
958 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
959 break;
960 offset = longest_to_int (value_as_long (value_field (entry, 0)));
961 /* If we use '<=' we can handle single inheritance
962 * where all offsets are zero - just use the first entry found. */
963 if (offset <= best_offset)
964 {
965 best_offset = offset;
966 best_entry = entry;
967 }
968 }
969 /* Move the pointer according to BEST_ENTRY's offset, and figure
970 out what type we should return as the new pointer. */
971 if (best_entry == 0)
972 {
973 /* An alternative method (which should no longer be necessary).
974 * But we leave it in for future use, when we will hopefully
975 * have optimizes the vtable to use thunks instead of offsets. */
976 /* Use the name of vtable itself to extract a base type. */
977 demangled_name += 4; /* Skip _vt$ prefix. */
978 }
979 else
980 {
981 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
982 sym = find_pc_function (pc_for_sym);
983 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
984 *(strchr (demangled_name, ':')) = '\0';
985 }
986 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
987 if (sym == NULL)
988 error ("could not find type declaration for `%s'", demangled_name);
989 if (best_entry)
990 {
991 free (demangled_name);
992 arg = value_add (value_cast (builtin_type_int, arg),
993 value_field (best_entry, 0));
994 }
995 else arg = in_arg;
996 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
997 return arg;
998 }
999
1000 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1001 function tables, probe ARG's tables (including the vtables
1002 of its baseclasses) to figure out the most derived type that ARG
1003 could actually be a pointer to. */
1004
1005 value_ptr
1006 value_from_vtable_info (arg, type)
1007 value_ptr arg;
1008 struct type *type;
1009 {
1010 /* Take care of preliminaries. */
1011 if (TYPE_VPTR_FIELDNO (type) < 0)
1012 fill_in_vptr_fieldno (type);
1013 if (TYPE_VPTR_FIELDNO (type) < 0)
1014 return 0;
1015
1016 return value_headof (arg, 0, type);
1017 }
1018
1019 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1020 pointer which is for the base class whose type is BASECLASS. */
1021
1022 static int
1023 vb_match (type, index, basetype)
1024 struct type *type;
1025 int index;
1026 struct type *basetype;
1027 {
1028 struct type *fieldtype;
1029 char *name = TYPE_FIELD_NAME (type, index);
1030 char *field_class_name = NULL;
1031
1032 if (*name != '_')
1033 return 0;
1034 /* gcc 2.4 uses _vb$. */
1035 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1036 field_class_name = name + 4;
1037 /* gcc 2.5 will use __vb_. */
1038 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1039 field_class_name = name + 5;
1040
1041 if (field_class_name == NULL)
1042 /* This field is not a virtual base class pointer. */
1043 return 0;
1044
1045 /* It's a virtual baseclass pointer, now we just need to find out whether
1046 it is for this baseclass. */
1047 fieldtype = TYPE_FIELD_TYPE (type, index);
1048 if (fieldtype == NULL
1049 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1050 /* "Can't happen". */
1051 return 0;
1052
1053 /* What we check for is that either the types are equal (needed for
1054 nameless types) or have the same name. This is ugly, and a more
1055 elegant solution should be devised (which would probably just push
1056 the ugliness into symbol reading unless we change the stabs format). */
1057 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1058 return 1;
1059
1060 if (TYPE_NAME (basetype) != NULL
1061 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1062 && STREQ (TYPE_NAME (basetype),
1063 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1064 return 1;
1065 return 0;
1066 }
1067
1068 /* Compute the offset of the baseclass which is
1069 the INDEXth baseclass of class TYPE, for a value ARG,
1070 wih extra offset of OFFSET.
1071 The result is the offste of the baseclass value relative
1072 to (the address of)(ARG) + OFFSET.
1073
1074 -1 is returned on error. */
1075
1076 int
1077 baseclass_offset (type, index, arg, offset)
1078 struct type *type;
1079 int index;
1080 value_ptr arg;
1081 int offset;
1082 {
1083 struct type *basetype = TYPE_BASECLASS (type, index);
1084
1085 if (BASETYPE_VIA_VIRTUAL (type, index))
1086 {
1087 /* Must hunt for the pointer to this virtual baseclass. */
1088 register int i, len = TYPE_NFIELDS (type);
1089 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1090
1091 /* First look for the virtual baseclass pointer
1092 in the fields. */
1093 for (i = n_baseclasses; i < len; i++)
1094 {
1095 if (vb_match (type, i, basetype))
1096 {
1097 CORE_ADDR addr
1098 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1099 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1100 + offset
1101 + (TYPE_FIELD_BITPOS (type, i) / 8));
1102
1103 if (VALUE_LVAL (arg) != lval_memory)
1104 return -1;
1105
1106 return addr -
1107 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1108 }
1109 }
1110 /* Not in the fields, so try looking through the baseclasses. */
1111 for (i = index+1; i < n_baseclasses; i++)
1112 {
1113 int boffset =
1114 baseclass_offset (type, i, arg, offset);
1115 if (boffset)
1116 return boffset;
1117 }
1118 /* Not found. */
1119 return -1;
1120 }
1121
1122 /* Baseclass is easily computed. */
1123 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1124 }
1125
1126 /* Compute the address of the baseclass which is
1127 the INDEXth baseclass of class TYPE. The TYPE base
1128 of the object is at VALADDR.
1129
1130 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1131 or 0 if no error. In that case the return value is not the address
1132 of the baseclasss, but the address which could not be read
1133 successfully. */
1134
1135 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1136
1137 char *
1138 baseclass_addr (type, index, valaddr, valuep, errp)
1139 struct type *type;
1140 int index;
1141 char *valaddr;
1142 value_ptr *valuep;
1143 int *errp;
1144 {
1145 struct type *basetype = TYPE_BASECLASS (type, index);
1146
1147 if (errp)
1148 *errp = 0;
1149
1150 if (BASETYPE_VIA_VIRTUAL (type, index))
1151 {
1152 /* Must hunt for the pointer to this virtual baseclass. */
1153 register int i, len = TYPE_NFIELDS (type);
1154 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1155
1156 /* First look for the virtual baseclass pointer
1157 in the fields. */
1158 for (i = n_baseclasses; i < len; i++)
1159 {
1160 if (vb_match (type, i, basetype))
1161 {
1162 value_ptr val = allocate_value (basetype);
1163 CORE_ADDR addr;
1164 int status;
1165
1166 addr
1167 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1168 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1169
1170 status = target_read_memory (addr,
1171 VALUE_CONTENTS_RAW (val),
1172 TYPE_LENGTH (basetype));
1173 VALUE_LVAL (val) = lval_memory;
1174 VALUE_ADDRESS (val) = addr;
1175
1176 if (status != 0)
1177 {
1178 if (valuep)
1179 *valuep = NULL;
1180 release_value (val);
1181 value_free (val);
1182 if (errp)
1183 *errp = status;
1184 return (char *)addr;
1185 }
1186 else
1187 {
1188 if (valuep)
1189 *valuep = val;
1190 return (char *) VALUE_CONTENTS (val);
1191 }
1192 }
1193 }
1194 /* Not in the fields, so try looking through the baseclasses. */
1195 for (i = index+1; i < n_baseclasses; i++)
1196 {
1197 char *baddr;
1198
1199 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1200 if (baddr)
1201 return baddr;
1202 }
1203 /* Not found. */
1204 if (valuep)
1205 *valuep = 0;
1206 return 0;
1207 }
1208
1209 /* Baseclass is easily computed. */
1210 if (valuep)
1211 *valuep = 0;
1212 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1213 }
1214 \f
1215 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1216 VALADDR.
1217
1218 Extracting bits depends on endianness of the machine. Compute the
1219 number of least significant bits to discard. For big endian machines,
1220 we compute the total number of bits in the anonymous object, subtract
1221 off the bit count from the MSB of the object to the MSB of the
1222 bitfield, then the size of the bitfield, which leaves the LSB discard
1223 count. For little endian machines, the discard count is simply the
1224 number of bits from the LSB of the anonymous object to the LSB of the
1225 bitfield.
1226
1227 If the field is signed, we also do sign extension. */
1228
1229 LONGEST
1230 unpack_field_as_long (type, valaddr, fieldno)
1231 struct type *type;
1232 char *valaddr;
1233 int fieldno;
1234 {
1235 unsigned LONGEST val;
1236 unsigned LONGEST valmask;
1237 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1238 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1239 int lsbcount;
1240
1241 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1242
1243 /* Extract bits. See comment above. */
1244
1245 if (BITS_BIG_ENDIAN)
1246 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1247 else
1248 lsbcount = (bitpos % 8);
1249 val >>= lsbcount;
1250
1251 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1252 If the field is signed, and is negative, then sign extend. */
1253
1254 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1255 {
1256 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1257 val &= valmask;
1258 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1259 {
1260 if (val & (valmask ^ (valmask >> 1)))
1261 {
1262 val |= ~valmask;
1263 }
1264 }
1265 }
1266 return (val);
1267 }
1268
1269 /* Modify the value of a bitfield. ADDR points to a block of memory in
1270 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1271 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1272 indicate which bits (in target bit order) comprise the bitfield. */
1273
1274 void
1275 modify_field (addr, fieldval, bitpos, bitsize)
1276 char *addr;
1277 LONGEST fieldval;
1278 int bitpos, bitsize;
1279 {
1280 LONGEST oword;
1281
1282 /* If a negative fieldval fits in the field in question, chop
1283 off the sign extension bits. */
1284 if (bitsize < (8 * sizeof (fieldval))
1285 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1286 fieldval = fieldval & ((1 << bitsize) - 1);
1287
1288 /* Warn if value is too big to fit in the field in question. */
1289 if (bitsize < (8 * sizeof (fieldval))
1290 && 0 != (fieldval & ~((1<<bitsize)-1)))
1291 {
1292 /* FIXME: would like to include fieldval in the message, but
1293 we don't have a sprintf_longest. */
1294 warning ("Value does not fit in %d bits.", bitsize);
1295
1296 /* Truncate it, otherwise adjoining fields may be corrupted. */
1297 fieldval = fieldval & ((1 << bitsize) - 1);
1298 }
1299
1300 oword = extract_signed_integer (addr, sizeof oword);
1301
1302 /* Shifting for bit field depends on endianness of the target machine. */
1303 if (BITS_BIG_ENDIAN)
1304 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1305
1306 /* Mask out old value, while avoiding shifts >= size of oword */
1307 if (bitsize < 8 * sizeof (oword))
1308 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1309 else
1310 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1311 oword |= fieldval << bitpos;
1312
1313 store_signed_integer (addr, sizeof oword, oword);
1314 }
1315 \f
1316 /* Convert C numbers into newly allocated values */
1317
1318 value_ptr
1319 value_from_longest (type, num)
1320 struct type *type;
1321 register LONGEST num;
1322 {
1323 register value_ptr val = allocate_value (type);
1324 register enum type_code code = TYPE_CODE (type);
1325 register int len = TYPE_LENGTH (type);
1326
1327 switch (code)
1328 {
1329 case TYPE_CODE_INT:
1330 case TYPE_CODE_CHAR:
1331 case TYPE_CODE_ENUM:
1332 case TYPE_CODE_BOOL:
1333 case TYPE_CODE_RANGE:
1334 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1335 break;
1336
1337 case TYPE_CODE_REF:
1338 case TYPE_CODE_PTR:
1339 /* This assumes that all pointers of a given length
1340 have the same form. */
1341 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1342 break;
1343
1344 default:
1345 error ("Unexpected type encountered for integer constant.");
1346 }
1347 return val;
1348 }
1349
1350 value_ptr
1351 value_from_double (type, num)
1352 struct type *type;
1353 double num;
1354 {
1355 register value_ptr val = allocate_value (type);
1356 register enum type_code code = TYPE_CODE (type);
1357 register int len = TYPE_LENGTH (type);
1358
1359 if (code == TYPE_CODE_FLT)
1360 {
1361 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1362 }
1363 else
1364 error ("Unexpected type encountered for floating constant.");
1365
1366 return val;
1367 }
1368 \f
1369 /* Deal with the value that is "about to be returned". */
1370
1371 /* Return the value that a function returning now
1372 would be returning to its caller, assuming its type is VALTYPE.
1373 RETBUF is where we look for what ought to be the contents
1374 of the registers (in raw form). This is because it is often
1375 desirable to restore old values to those registers
1376 after saving the contents of interest, and then call
1377 this function using the saved values.
1378 struct_return is non-zero when the function in question is
1379 using the structure return conventions on the machine in question;
1380 0 when it is using the value returning conventions (this often
1381 means returning pointer to where structure is vs. returning value). */
1382
1383 value_ptr
1384 value_being_returned (valtype, retbuf, struct_return)
1385 register struct type *valtype;
1386 char retbuf[REGISTER_BYTES];
1387 int struct_return;
1388 /*ARGSUSED*/
1389 {
1390 register value_ptr val;
1391 CORE_ADDR addr;
1392
1393 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1394 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1395 if (struct_return) {
1396 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1397 if (!addr)
1398 error ("Function return value unknown");
1399 return value_at (valtype, addr);
1400 }
1401 #endif
1402
1403 val = allocate_value (valtype);
1404 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1405
1406 return val;
1407 }
1408
1409 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1410 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1411 and TYPE is the type (which is known to be struct, union or array).
1412
1413 On most machines, the struct convention is used unless we are
1414 using gcc and the type is of a special size. */
1415 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1416 native compiler. GCC 2.3.3 was the last release that did it the
1417 old way. Since gcc2_compiled was not changed, we have no
1418 way to correctly win in all cases, so we just do the right thing
1419 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1420 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1421 would cause more chaos than dealing with some struct returns being
1422 handled wrong. */
1423 #if !defined (USE_STRUCT_CONVENTION)
1424 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1425 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1426 || TYPE_LENGTH (value_type) == 2 \
1427 || TYPE_LENGTH (value_type) == 4 \
1428 || TYPE_LENGTH (value_type) == 8 \
1429 ) \
1430 ))
1431 #endif
1432
1433 /* Return true if the function specified is using the structure returning
1434 convention on this machine to return arguments, or 0 if it is using
1435 the value returning convention. FUNCTION is the value representing
1436 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1437 is the type returned by the function. GCC_P is nonzero if compiled
1438 with GCC. */
1439
1440 int
1441 using_struct_return (function, funcaddr, value_type, gcc_p)
1442 value_ptr function;
1443 CORE_ADDR funcaddr;
1444 struct type *value_type;
1445 int gcc_p;
1446 /*ARGSUSED*/
1447 {
1448 register enum type_code code = TYPE_CODE (value_type);
1449
1450 if (code == TYPE_CODE_ERROR)
1451 error ("Function return type unknown.");
1452
1453 if (code == TYPE_CODE_STRUCT ||
1454 code == TYPE_CODE_UNION ||
1455 code == TYPE_CODE_ARRAY)
1456 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1457
1458 return 0;
1459 }
1460
1461 /* Store VAL so it will be returned if a function returns now.
1462 Does not verify that VAL's type matches what the current
1463 function wants to return. */
1464
1465 void
1466 set_return_value (val)
1467 value_ptr val;
1468 {
1469 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1470
1471 if (code == TYPE_CODE_ERROR)
1472 error ("Function return type unknown.");
1473
1474 if ( code == TYPE_CODE_STRUCT
1475 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1476 error ("GDB does not support specifying a struct or union return value.");
1477
1478 STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val));
1479 }
1480 \f
1481 void
1482 _initialize_values ()
1483 {
1484 add_cmd ("convenience", no_class, show_convenience,
1485 "Debugger convenience (\"$foo\") variables.\n\
1486 These variables are created when you assign them values;\n\
1487 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1488 A few convenience variables are given values automatically:\n\
1489 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1490 \"$__\" holds the contents of the last address examined with \"x\".",
1491 &showlist);
1492
1493 add_cmd ("values", no_class, show_values,
1494 "Elements of value history around item number IDX (or last ten).",
1495 &showlist);
1496 }