* value.h (struct value): Add modifiable field.
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value
35 value_headof PARAMS ((value, struct type *, struct type *));
36
37 static void
38 show_values PARAMS ((char *, int));
39
40 static void
41 show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value
72 allocate_value (type)
73 struct type *type;
74 {
75 register value val;
76
77 check_stub_type (type);
78
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 val->modifiable = 1;
95 return val;
96 }
97
98 /* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
100
101 value
102 allocate_repeat_value (type, count)
103 struct type *type;
104 int count;
105 {
106 register value val;
107
108 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
109 VALUE_NEXT (val) = all_values;
110 all_values = val;
111 VALUE_TYPE (val) = type;
112 VALUE_LVAL (val) = not_lval;
113 VALUE_ADDRESS (val) = 0;
114 VALUE_FRAME (val) = 0;
115 VALUE_OFFSET (val) = 0;
116 VALUE_BITPOS (val) = 0;
117 VALUE_BITSIZE (val) = 0;
118 VALUE_REPEATED (val) = 1;
119 VALUE_REPETITIONS (val) = count;
120 VALUE_REGNO (val) = -1;
121 VALUE_LAZY (val) = 0;
122 VALUE_OPTIMIZED_OUT (val) = 0;
123 return val;
124 }
125
126 /* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
129 value
130 value_mark ()
131 {
132 return all_values;
133 }
134
135 /* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
137 void
138 value_free_to_mark (mark)
139 value mark;
140 {
141 value val, next;
142
143 for (val = all_values; val && val != mark; val = next)
144 {
145 next = VALUE_NEXT (val);
146 value_free (val);
147 }
148 all_values = val;
149 }
150
151 /* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
153
154 void
155 free_all_values ()
156 {
157 register value val, next;
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166 }
167
168 /* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171 void
172 release_value (val)
173 register value val;
174 {
175 register value v;
176
177 if (all_values == val)
178 {
179 all_values = val->next;
180 return;
181 }
182
183 for (v = all_values; v; v = v->next)
184 {
185 if (v->next == val)
186 {
187 v->next = val->next;
188 break;
189 }
190 }
191 }
192
193 /* Return a copy of the value ARG.
194 It contains the same contents, for same memory address,
195 but it's a different block of storage. */
196
197 value
198 value_copy (arg)
199 value arg;
200 {
201 register value val;
202 register struct type *type = VALUE_TYPE (arg);
203 if (VALUE_REPEATED (arg))
204 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
205 else
206 val = allocate_value (type);
207 VALUE_LVAL (val) = VALUE_LVAL (arg);
208 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
209 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
210 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
211 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
212 VALUE_REGNO (val) = VALUE_REGNO (arg);
213 VALUE_LAZY (val) = VALUE_LAZY (arg);
214 val->modifiable = arg->modifiable;
215 if (!VALUE_LAZY (val))
216 {
217 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
218 TYPE_LENGTH (VALUE_TYPE (arg))
219 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
220 }
221 return val;
222 }
223 \f
224 /* Access to the value history. */
225
226 /* Record a new value in the value history.
227 Returns the absolute history index of the entry.
228 Result of -1 indicates the value was not saved; otherwise it is the
229 value history index of this new item. */
230
231 int
232 record_latest_value (val)
233 value val;
234 {
235 int i;
236
237 /* Check error now if about to store an invalid float. We return -1
238 to the caller, but allow them to continue, e.g. to print it as "Nan". */
239 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
240 {
241 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
242 if (i) return -1; /* Indicate value not saved in history */
243 }
244
245 /* Here we treat value_history_count as origin-zero
246 and applying to the value being stored now. */
247
248 i = value_history_count % VALUE_HISTORY_CHUNK;
249 if (i == 0)
250 {
251 register struct value_history_chunk *new
252 = (struct value_history_chunk *)
253 xmalloc (sizeof (struct value_history_chunk));
254 memset (new->values, 0, sizeof new->values);
255 new->next = value_history_chain;
256 value_history_chain = new;
257 }
258
259 value_history_chain->values[i] = val;
260
261 /* We don't want this value to have anything to do with the inferior anymore.
262 In particular, "set $1 = 50" should not affect the variable from which
263 the value was taken, and fast watchpoints should be able to assume that
264 a value on the value history never changes. */
265 if (VALUE_LAZY (val))
266 value_fetch_lazy (val);
267 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
268 from. This is a bit dubious, because then *&$1 does not just return $1
269 but the current contents of that location. c'est la vie... */
270 val->modifiable = 0;
271 release_value (val);
272
273 /* Now we regard value_history_count as origin-one
274 and applying to the value just stored. */
275
276 return ++value_history_count;
277 }
278
279 /* Return a copy of the value in the history with sequence number NUM. */
280
281 value
282 access_value_history (num)
283 int num;
284 {
285 register struct value_history_chunk *chunk;
286 register int i;
287 register int absnum = num;
288
289 if (absnum <= 0)
290 absnum += value_history_count;
291
292 if (absnum <= 0)
293 {
294 if (num == 0)
295 error ("The history is empty.");
296 else if (num == 1)
297 error ("There is only one value in the history.");
298 else
299 error ("History does not go back to $$%d.", -num);
300 }
301 if (absnum > value_history_count)
302 error ("History has not yet reached $%d.", absnum);
303
304 absnum--;
305
306 /* Now absnum is always absolute and origin zero. */
307
308 chunk = value_history_chain;
309 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
310 i > 0; i--)
311 chunk = chunk->next;
312
313 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
314 }
315
316 /* Clear the value history entirely.
317 Must be done when new symbol tables are loaded,
318 because the type pointers become invalid. */
319
320 void
321 clear_value_history ()
322 {
323 register struct value_history_chunk *next;
324 register int i;
325 register value val;
326
327 while (value_history_chain)
328 {
329 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
330 if ((val = value_history_chain->values[i]) != NULL)
331 free ((PTR)val);
332 next = value_history_chain->next;
333 free ((PTR)value_history_chain);
334 value_history_chain = next;
335 }
336 value_history_count = 0;
337 }
338
339 static void
340 show_values (num_exp, from_tty)
341 char *num_exp;
342 int from_tty;
343 {
344 register int i;
345 register value val;
346 static int num = 1;
347
348 if (num_exp)
349 {
350 /* "info history +" should print from the stored position.
351 "info history <exp>" should print around value number <exp>. */
352 if (num_exp[0] != '+' || num_exp[1] != '\0')
353 num = parse_and_eval_address (num_exp) - 5;
354 }
355 else
356 {
357 /* "info history" means print the last 10 values. */
358 num = value_history_count - 9;
359 }
360
361 if (num <= 0)
362 num = 1;
363
364 for (i = num; i < num + 10 && i <= value_history_count; i++)
365 {
366 val = access_value_history (i);
367 printf_filtered ("$%d = ", i);
368 value_print (val, gdb_stdout, 0, Val_pretty_default);
369 printf_filtered ("\n");
370 }
371
372 /* The next "info history +" should start after what we just printed. */
373 num += 10;
374
375 /* Hitting just return after this command should do the same thing as
376 "info history +". If num_exp is null, this is unnecessary, since
377 "info history +" is not useful after "info history". */
378 if (from_tty && num_exp)
379 {
380 num_exp[0] = '+';
381 num_exp[1] = '\0';
382 }
383 }
384 \f
385 /* Internal variables. These are variables within the debugger
386 that hold values assigned by debugger commands.
387 The user refers to them with a '$' prefix
388 that does not appear in the variable names stored internally. */
389
390 static struct internalvar *internalvars;
391
392 /* Look up an internal variable with name NAME. NAME should not
393 normally include a dollar sign.
394
395 If the specified internal variable does not exist,
396 one is created, with a void value. */
397
398 struct internalvar *
399 lookup_internalvar (name)
400 char *name;
401 {
402 register struct internalvar *var;
403
404 for (var = internalvars; var; var = var->next)
405 if (STREQ (var->name, name))
406 return var;
407
408 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
409 var->name = concat (name, NULL);
410 var->value = allocate_value (builtin_type_void);
411 release_value (var->value);
412 var->next = internalvars;
413 internalvars = var;
414 return var;
415 }
416
417 value
418 value_of_internalvar (var)
419 struct internalvar *var;
420 {
421 register value val;
422
423 #ifdef IS_TRAPPED_INTERNALVAR
424 if (IS_TRAPPED_INTERNALVAR (var->name))
425 return VALUE_OF_TRAPPED_INTERNALVAR (var);
426 #endif
427
428 val = value_copy (var->value);
429 if (VALUE_LAZY (val))
430 value_fetch_lazy (val);
431 VALUE_LVAL (val) = lval_internalvar;
432 VALUE_INTERNALVAR (val) = var;
433 return val;
434 }
435
436 void
437 set_internalvar_component (var, offset, bitpos, bitsize, newval)
438 struct internalvar *var;
439 int offset, bitpos, bitsize;
440 value newval;
441 {
442 register char *addr = VALUE_CONTENTS (var->value) + offset;
443
444 #ifdef IS_TRAPPED_INTERNALVAR
445 if (IS_TRAPPED_INTERNALVAR (var->name))
446 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
447 #endif
448
449 if (bitsize)
450 modify_field (addr, value_as_long (newval),
451 bitpos, bitsize);
452 else
453 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
454 }
455
456 void
457 set_internalvar (var, val)
458 struct internalvar *var;
459 value val;
460 {
461 #ifdef IS_TRAPPED_INTERNALVAR
462 if (IS_TRAPPED_INTERNALVAR (var->name))
463 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
464 #endif
465
466 free ((PTR)var->value);
467 var->value = value_copy (val);
468 /* Force the value to be fetched from the target now, to avoid problems
469 later when this internalvar is referenced and the target is gone or
470 has changed. */
471 if (VALUE_LAZY (var->value))
472 value_fetch_lazy (var->value);
473 release_value (var->value);
474 }
475
476 char *
477 internalvar_name (var)
478 struct internalvar *var;
479 {
480 return var->name;
481 }
482
483 /* Free all internalvars. Done when new symtabs are loaded,
484 because that makes the values invalid. */
485
486 void
487 clear_internalvars ()
488 {
489 register struct internalvar *var;
490
491 while (internalvars)
492 {
493 var = internalvars;
494 internalvars = var->next;
495 free ((PTR)var->name);
496 free ((PTR)var->value);
497 free ((PTR)var);
498 }
499 }
500
501 static void
502 show_convenience (ignore, from_tty)
503 char *ignore;
504 int from_tty;
505 {
506 register struct internalvar *var;
507 int varseen = 0;
508
509 for (var = internalvars; var; var = var->next)
510 {
511 #ifdef IS_TRAPPED_INTERNALVAR
512 if (IS_TRAPPED_INTERNALVAR (var->name))
513 continue;
514 #endif
515 if (!varseen)
516 {
517 varseen = 1;
518 }
519 printf_filtered ("$%s = ", var->name);
520 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
521 printf_filtered ("\n");
522 }
523 if (!varseen)
524 printf_unfiltered ("No debugger convenience variables now defined.\n\
525 Convenience variables have names starting with \"$\";\n\
526 use \"set\" as in \"set $foo = 5\" to define them.\n");
527 }
528 \f
529 /* Extract a value as a C number (either long or double).
530 Knows how to convert fixed values to double, or
531 floating values to long.
532 Does not deallocate the value. */
533
534 LONGEST
535 value_as_long (val)
536 register value val;
537 {
538 /* This coerces arrays and functions, which is necessary (e.g.
539 in disassemble_command). It also dereferences references, which
540 I suspect is the most logical thing to do. */
541 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
542 COERCE_ARRAY (val);
543 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
544 }
545
546 double
547 value_as_double (val)
548 register value val;
549 {
550 double foo;
551 int inv;
552
553 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
554 if (inv)
555 error ("Invalid floating value found in program.");
556 return foo;
557 }
558 /* Extract a value as a C pointer.
559 Does not deallocate the value. */
560 CORE_ADDR
561 value_as_pointer (val)
562 value val;
563 {
564 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
565 whether we want this to be true eventually. */
566 #if 0
567 /* ADDR_BITS_REMOVE is wrong if we are being called for a
568 non-address (e.g. argument to "signal", "info break", etc.), or
569 for pointers to char, in which the low bits *are* significant. */
570 return ADDR_BITS_REMOVE(value_as_long (val));
571 #else
572 return value_as_long (val);
573 #endif
574 }
575 \f
576 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
577 as a long, or as a double, assuming the raw data is described
578 by type TYPE. Knows how to convert different sizes of values
579 and can convert between fixed and floating point. We don't assume
580 any alignment for the raw data. Return value is in host byte order.
581
582 If you want functions and arrays to be coerced to pointers, and
583 references to be dereferenced, call value_as_long() instead.
584
585 C++: It is assumed that the front-end has taken care of
586 all matters concerning pointers to members. A pointer
587 to member which reaches here is considered to be equivalent
588 to an INT (or some size). After all, it is only an offset. */
589
590 /* FIXME: This should be rewritten as a switch statement for speed and
591 ease of comprehension. */
592
593 LONGEST
594 unpack_long (type, valaddr)
595 struct type *type;
596 char *valaddr;
597 {
598 register enum type_code code = TYPE_CODE (type);
599 register int len = TYPE_LENGTH (type);
600 register int nosign = TYPE_UNSIGNED (type);
601
602 switch (code)
603 {
604 case TYPE_CODE_ENUM:
605 case TYPE_CODE_BOOL:
606 case TYPE_CODE_INT:
607 case TYPE_CODE_CHAR:
608 if (nosign)
609 return extract_unsigned_integer (valaddr, len);
610 else
611 return extract_signed_integer (valaddr, len);
612
613 case TYPE_CODE_FLT:
614 return extract_floating (valaddr, len);
615
616 case TYPE_CODE_PTR:
617 case TYPE_CODE_REF:
618 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
619 whether we want this to be true eventually. */
620 return extract_address (valaddr, len);
621
622 case TYPE_CODE_MEMBER:
623 error ("not implemented: member types in unpack_long");
624
625 default:
626 error ("Value can't be converted to integer.");
627 }
628 return 0; /* Placate lint. */
629 }
630
631 /* Return a double value from the specified type and address.
632 INVP points to an int which is set to 0 for valid value,
633 1 for invalid value (bad float format). In either case,
634 the returned double is OK to use. Argument is in target
635 format, result is in host format. */
636
637 double
638 unpack_double (type, valaddr, invp)
639 struct type *type;
640 char *valaddr;
641 int *invp;
642 {
643 register enum type_code code = TYPE_CODE (type);
644 register int len = TYPE_LENGTH (type);
645 register int nosign = TYPE_UNSIGNED (type);
646
647 *invp = 0; /* Assume valid. */
648 if (code == TYPE_CODE_FLT)
649 {
650 if (INVALID_FLOAT (valaddr, len))
651 {
652 *invp = 1;
653 return 1.234567891011121314;
654 }
655 return extract_floating (valaddr, len);
656 }
657 else if (nosign)
658 {
659 /* Unsigned -- be sure we compensate for signed LONGEST. */
660 return (unsigned LONGEST) unpack_long (type, valaddr);
661 }
662 else
663 {
664 /* Signed -- we are OK with unpack_long. */
665 return unpack_long (type, valaddr);
666 }
667 }
668
669 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
670 as a CORE_ADDR, assuming the raw data is described by type TYPE.
671 We don't assume any alignment for the raw data. Return value is in
672 host byte order.
673
674 If you want functions and arrays to be coerced to pointers, and
675 references to be dereferenced, call value_as_pointer() instead.
676
677 C++: It is assumed that the front-end has taken care of
678 all matters concerning pointers to members. A pointer
679 to member which reaches here is considered to be equivalent
680 to an INT (or some size). After all, it is only an offset. */
681
682 CORE_ADDR
683 unpack_pointer (type, valaddr)
684 struct type *type;
685 char *valaddr;
686 {
687 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
688 whether we want this to be true eventually. */
689 return unpack_long (type, valaddr);
690 }
691 \f
692 /* Given a value ARG1 (offset by OFFSET bytes)
693 of a struct or union type ARG_TYPE,
694 extract and return the value of one of its fields.
695 FIELDNO says which field.
696
697 For C++, must also be able to return values from static fields */
698
699 value
700 value_primitive_field (arg1, offset, fieldno, arg_type)
701 register value arg1;
702 int offset;
703 register int fieldno;
704 register struct type *arg_type;
705 {
706 register value v;
707 register struct type *type;
708
709 check_stub_type (arg_type);
710 type = TYPE_FIELD_TYPE (arg_type, fieldno);
711
712 /* Handle packed fields */
713
714 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
715 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
716 {
717 v = value_from_longest (type,
718 unpack_field_as_long (arg_type,
719 VALUE_CONTENTS (arg1),
720 fieldno));
721 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
722 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
723 }
724 else
725 {
726 v = allocate_value (type);
727 if (VALUE_LAZY (arg1))
728 VALUE_LAZY (v) = 1;
729 else
730 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
731 TYPE_LENGTH (type));
732 }
733 VALUE_LVAL (v) = VALUE_LVAL (arg1);
734 if (VALUE_LVAL (arg1) == lval_internalvar)
735 VALUE_LVAL (v) = lval_internalvar_component;
736 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
737 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
738 return v;
739 }
740
741 /* Given a value ARG1 of a struct or union type,
742 extract and return the value of one of its fields.
743 FIELDNO says which field.
744
745 For C++, must also be able to return values from static fields */
746
747 value
748 value_field (arg1, fieldno)
749 register value arg1;
750 register int fieldno;
751 {
752 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
753 }
754
755 /* Return a non-virtual function as a value.
756 F is the list of member functions which contains the desired method.
757 J is an index into F which provides the desired method. */
758
759 value
760 value_fn_field (arg1p, f, j, type, offset)
761 value *arg1p;
762 struct fn_field *f;
763 int j;
764 struct type *type;
765 int offset;
766 {
767 register value v;
768 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
769 struct symbol *sym;
770
771 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
772 0, VAR_NAMESPACE, 0, NULL);
773 if (! sym)
774 return (value)NULL;
775 /*
776 error ("Internal error: could not find physical method named %s",
777 TYPE_FN_FIELD_PHYSNAME (f, j));
778 */
779
780 v = allocate_value (ftype);
781 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
782 VALUE_TYPE (v) = ftype;
783
784 if (arg1p)
785 {
786 if (type != VALUE_TYPE (*arg1p))
787 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
788 value_addr (*arg1p)));
789
790 /* Move the `this' pointer according to the offset.
791 VALUE_OFFSET (*arg1p) += offset;
792 */
793 }
794
795 return v;
796 }
797
798 /* Return a virtual function as a value.
799 ARG1 is the object which provides the virtual function
800 table pointer. *ARG1P is side-effected in calling this function.
801 F is the list of member functions which contains the desired virtual
802 function.
803 J is an index into F which provides the desired virtual function.
804
805 TYPE is the type in which F is located. */
806 value
807 value_virtual_fn_field (arg1p, f, j, type, offset)
808 value *arg1p;
809 struct fn_field *f;
810 int j;
811 struct type *type;
812 int offset;
813 {
814 value arg1 = *arg1p;
815 /* First, get the virtual function table pointer. That comes
816 with a strange type, so cast it to type `pointer to long' (which
817 should serve just fine as a function type). Then, index into
818 the table, and convert final value to appropriate function type. */
819 value entry, vfn, vtbl;
820 value vi = value_from_longest (builtin_type_int,
821 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
822 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
823 struct type *context;
824 if (fcontext == NULL)
825 /* We don't have an fcontext (e.g. the program was compiled with
826 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
827 This won't work right for multiple inheritance, but at least we
828 should do as well as GDB 3.x did. */
829 fcontext = TYPE_VPTR_BASETYPE (type);
830 context = lookup_pointer_type (fcontext);
831 /* Now context is a pointer to the basetype containing the vtbl. */
832 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
833 arg1 = value_ind (value_cast (context, value_addr (arg1)));
834
835 context = VALUE_TYPE (arg1);
836 /* Now context is the basetype containing the vtbl. */
837
838 /* This type may have been defined before its virtual function table
839 was. If so, fill in the virtual function table entry for the
840 type now. */
841 if (TYPE_VPTR_FIELDNO (context) < 0)
842 fill_in_vptr_fieldno (context);
843
844 /* The virtual function table is now an array of structures
845 which have the form { int16 offset, delta; void *pfn; }. */
846 vtbl = value_ind (value_primitive_field (arg1, 0,
847 TYPE_VPTR_FIELDNO (context),
848 TYPE_VPTR_BASETYPE (context)));
849
850 /* Index into the virtual function table. This is hard-coded because
851 looking up a field is not cheap, and it may be important to save
852 time, e.g. if the user has set a conditional breakpoint calling
853 a virtual function. */
854 entry = value_subscript (vtbl, vi);
855
856 /* Move the `this' pointer according to the virtual function table. */
857 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
858
859 if (! VALUE_LAZY (arg1))
860 {
861 VALUE_LAZY (arg1) = 1;
862 value_fetch_lazy (arg1);
863 }
864
865 vfn = value_field (entry, 2);
866 /* Reinstantiate the function pointer with the correct type. */
867 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
868
869 *arg1p = arg1;
870 return vfn;
871 }
872
873 /* ARG is a pointer to an object we know to be at least
874 a DTYPE. BTYPE is the most derived basetype that has
875 already been searched (and need not be searched again).
876 After looking at the vtables between BTYPE and DTYPE,
877 return the most derived type we find. The caller must
878 be satisfied when the return value == DTYPE.
879
880 FIXME-tiemann: should work with dossier entries as well. */
881
882 static value
883 value_headof (in_arg, btype, dtype)
884 value in_arg;
885 struct type *btype, *dtype;
886 {
887 /* First collect the vtables we must look at for this object. */
888 /* FIXME-tiemann: right now, just look at top-most vtable. */
889 value arg, vtbl, entry, best_entry = 0;
890 int i, nelems;
891 int offset, best_offset = 0;
892 struct symbol *sym;
893 CORE_ADDR pc_for_sym;
894 char *demangled_name;
895 struct minimal_symbol *msymbol;
896
897 btype = TYPE_VPTR_BASETYPE (dtype);
898 check_stub_type (btype);
899 arg = in_arg;
900 if (btype != dtype)
901 arg = value_cast (lookup_pointer_type (btype), arg);
902 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
903
904 /* Check that VTBL looks like it points to a virtual function table. */
905 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
906 if (msymbol == NULL
907 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
908 {
909 /* If we expected to find a vtable, but did not, let the user
910 know that we aren't happy, but don't throw an error.
911 FIXME: there has to be a better way to do this. */
912 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
913 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
914 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
915 VALUE_TYPE (in_arg) = error_type;
916 return in_arg;
917 }
918
919 /* Now search through the virtual function table. */
920 entry = value_ind (vtbl);
921 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
922 for (i = 1; i <= nelems; i++)
923 {
924 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
925 (LONGEST) i));
926 offset = longest_to_int (value_as_long (value_field (entry, 0)));
927 /* If we use '<=' we can handle single inheritance
928 * where all offsets are zero - just use the first entry found. */
929 if (offset <= best_offset)
930 {
931 best_offset = offset;
932 best_entry = entry;
933 }
934 }
935 /* Move the pointer according to BEST_ENTRY's offset, and figure
936 out what type we should return as the new pointer. */
937 if (best_entry == 0)
938 {
939 /* An alternative method (which should no longer be necessary).
940 * But we leave it in for future use, when we will hopefully
941 * have optimizes the vtable to use thunks instead of offsets. */
942 /* Use the name of vtable itself to extract a base type. */
943 demangled_name += 4; /* Skip _vt$ prefix. */
944 }
945 else
946 {
947 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
948 sym = find_pc_function (pc_for_sym);
949 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
950 *(strchr (demangled_name, ':')) = '\0';
951 }
952 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
953 if (sym == NULL)
954 error ("could not find type declaration for `%s'", demangled_name);
955 if (best_entry)
956 {
957 free (demangled_name);
958 arg = value_add (value_cast (builtin_type_int, arg),
959 value_field (best_entry, 0));
960 }
961 else arg = in_arg;
962 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
963 return arg;
964 }
965
966 /* ARG is a pointer object of type TYPE. If TYPE has virtual
967 function tables, probe ARG's tables (including the vtables
968 of its baseclasses) to figure out the most derived type that ARG
969 could actually be a pointer to. */
970
971 value
972 value_from_vtable_info (arg, type)
973 value arg;
974 struct type *type;
975 {
976 /* Take care of preliminaries. */
977 if (TYPE_VPTR_FIELDNO (type) < 0)
978 fill_in_vptr_fieldno (type);
979 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
980 return 0;
981
982 return value_headof (arg, 0, type);
983 }
984
985 /* Return true if the INDEXth field of TYPE is a virtual baseclass
986 pointer which is for the base class whose type is BASECLASS. */
987
988 static int
989 vb_match (type, index, basetype)
990 struct type *type;
991 int index;
992 struct type *basetype;
993 {
994 struct type *fieldtype;
995 char *name = TYPE_FIELD_NAME (type, index);
996 char *field_class_name = NULL;
997
998 if (*name != '_')
999 return 0;
1000 /* gcc 2.4 uses _vb$. */
1001 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1002 field_class_name = name + 4;
1003 /* gcc 2.5 will use __vb_. */
1004 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1005 field_class_name = name + 5;
1006
1007 if (field_class_name == NULL)
1008 /* This field is not a virtual base class pointer. */
1009 return 0;
1010
1011 /* It's a virtual baseclass pointer, now we just need to find out whether
1012 it is for this baseclass. */
1013 fieldtype = TYPE_FIELD_TYPE (type, index);
1014 if (fieldtype == NULL
1015 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1016 /* "Can't happen". */
1017 return 0;
1018
1019 /* What we check for is that either the types are equal (needed for
1020 nameless types) or have the same name. This is ugly, and a more
1021 elegant solution should be devised (which would probably just push
1022 the ugliness into symbol reading unless we change the stabs format). */
1023 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1024 return 1;
1025
1026 if (TYPE_NAME (basetype) != NULL
1027 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1028 && STREQ (TYPE_NAME (basetype),
1029 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1030 return 1;
1031 return 0;
1032 }
1033
1034 /* Compute the offset of the baseclass which is
1035 the INDEXth baseclass of class TYPE, for a value ARG,
1036 wih extra offset of OFFSET.
1037 The result is the offste of the baseclass value relative
1038 to (the address of)(ARG) + OFFSET.
1039
1040 -1 is returned on error. */
1041
1042 int
1043 baseclass_offset (type, index, arg, offset)
1044 struct type *type;
1045 int index;
1046 value arg;
1047 int offset;
1048 {
1049 struct type *basetype = TYPE_BASECLASS (type, index);
1050
1051 if (BASETYPE_VIA_VIRTUAL (type, index))
1052 {
1053 /* Must hunt for the pointer to this virtual baseclass. */
1054 register int i, len = TYPE_NFIELDS (type);
1055 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1056
1057 /* First look for the virtual baseclass pointer
1058 in the fields. */
1059 for (i = n_baseclasses; i < len; i++)
1060 {
1061 if (vb_match (type, i, basetype))
1062 {
1063 CORE_ADDR addr
1064 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1065 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1066 + offset
1067 + (TYPE_FIELD_BITPOS (type, i) / 8));
1068
1069 if (VALUE_LVAL (arg) != lval_memory)
1070 return -1;
1071
1072 return addr -
1073 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1074 }
1075 }
1076 /* Not in the fields, so try looking through the baseclasses. */
1077 for (i = index+1; i < n_baseclasses; i++)
1078 {
1079 int boffset =
1080 baseclass_offset (type, i, arg, offset);
1081 if (boffset)
1082 return boffset;
1083 }
1084 /* Not found. */
1085 return -1;
1086 }
1087
1088 /* Baseclass is easily computed. */
1089 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1090 }
1091
1092 /* Compute the address of the baseclass which is
1093 the INDEXth baseclass of class TYPE. The TYPE base
1094 of the object is at VALADDR.
1095
1096 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1097 or 0 if no error. In that case the return value is not the address
1098 of the baseclasss, but the address which could not be read
1099 successfully. */
1100
1101 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1102
1103 char *
1104 baseclass_addr (type, index, valaddr, valuep, errp)
1105 struct type *type;
1106 int index;
1107 char *valaddr;
1108 value *valuep;
1109 int *errp;
1110 {
1111 struct type *basetype = TYPE_BASECLASS (type, index);
1112
1113 if (errp)
1114 *errp = 0;
1115
1116 if (BASETYPE_VIA_VIRTUAL (type, index))
1117 {
1118 /* Must hunt for the pointer to this virtual baseclass. */
1119 register int i, len = TYPE_NFIELDS (type);
1120 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1121
1122 /* First look for the virtual baseclass pointer
1123 in the fields. */
1124 for (i = n_baseclasses; i < len; i++)
1125 {
1126 if (vb_match (type, i, basetype))
1127 {
1128 value val = allocate_value (basetype);
1129 CORE_ADDR addr;
1130 int status;
1131
1132 addr
1133 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1134 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1135
1136 status = target_read_memory (addr,
1137 VALUE_CONTENTS_RAW (val),
1138 TYPE_LENGTH (basetype));
1139 VALUE_LVAL (val) = lval_memory;
1140 VALUE_ADDRESS (val) = addr;
1141
1142 if (status != 0)
1143 {
1144 if (valuep)
1145 *valuep = NULL;
1146 release_value (val);
1147 value_free (val);
1148 if (errp)
1149 *errp = status;
1150 return (char *)addr;
1151 }
1152 else
1153 {
1154 if (valuep)
1155 *valuep = val;
1156 return (char *) VALUE_CONTENTS (val);
1157 }
1158 }
1159 }
1160 /* Not in the fields, so try looking through the baseclasses. */
1161 for (i = index+1; i < n_baseclasses; i++)
1162 {
1163 char *baddr;
1164
1165 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1166 if (baddr)
1167 return baddr;
1168 }
1169 /* Not found. */
1170 if (valuep)
1171 *valuep = 0;
1172 return 0;
1173 }
1174
1175 /* Baseclass is easily computed. */
1176 if (valuep)
1177 *valuep = 0;
1178 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1179 }
1180 \f
1181 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1182 VALADDR.
1183
1184 Extracting bits depends on endianness of the machine. Compute the
1185 number of least significant bits to discard. For big endian machines,
1186 we compute the total number of bits in the anonymous object, subtract
1187 off the bit count from the MSB of the object to the MSB of the
1188 bitfield, then the size of the bitfield, which leaves the LSB discard
1189 count. For little endian machines, the discard count is simply the
1190 number of bits from the LSB of the anonymous object to the LSB of the
1191 bitfield.
1192
1193 If the field is signed, we also do sign extension. */
1194
1195 LONGEST
1196 unpack_field_as_long (type, valaddr, fieldno)
1197 struct type *type;
1198 char *valaddr;
1199 int fieldno;
1200 {
1201 unsigned LONGEST val;
1202 unsigned LONGEST valmask;
1203 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1204 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1205 int lsbcount;
1206
1207 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1208
1209 /* Extract bits. See comment above. */
1210
1211 #if BITS_BIG_ENDIAN
1212 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1213 #else
1214 lsbcount = (bitpos % 8);
1215 #endif
1216 val >>= lsbcount;
1217
1218 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1219 If the field is signed, and is negative, then sign extend. */
1220
1221 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1222 {
1223 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1224 val &= valmask;
1225 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1226 {
1227 if (val & (valmask ^ (valmask >> 1)))
1228 {
1229 val |= ~valmask;
1230 }
1231 }
1232 }
1233 return (val);
1234 }
1235
1236 /* Modify the value of a bitfield. ADDR points to a block of memory in
1237 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1238 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1239 indicate which bits (in target bit order) comprise the bitfield. */
1240
1241 void
1242 modify_field (addr, fieldval, bitpos, bitsize)
1243 char *addr;
1244 LONGEST fieldval;
1245 int bitpos, bitsize;
1246 {
1247 LONGEST oword;
1248
1249 /* Reject values too big to fit in the field in question,
1250 otherwise adjoining fields may be corrupted. */
1251 if (bitsize < (8 * sizeof (fieldval))
1252 && 0 != (fieldval & ~((1<<bitsize)-1)))
1253 {
1254 /* FIXME: would like to include fieldval in the message, but
1255 we don't have a sprintf_longest. */
1256 error ("Value does not fit in %d bits.", bitsize);
1257 }
1258
1259 oword = extract_signed_integer (addr, sizeof oword);
1260
1261 /* Shifting for bit field depends on endianness of the target machine. */
1262 #if BITS_BIG_ENDIAN
1263 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1264 #endif
1265
1266 /* Mask out old value, while avoiding shifts >= size of oword */
1267 if (bitsize < 8 * sizeof (oword))
1268 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1269 else
1270 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1271 oword |= fieldval << bitpos;
1272
1273 store_signed_integer (addr, sizeof oword, oword);
1274 }
1275 \f
1276 /* Convert C numbers into newly allocated values */
1277
1278 value
1279 value_from_longest (type, num)
1280 struct type *type;
1281 register LONGEST num;
1282 {
1283 register value val = allocate_value (type);
1284 register enum type_code code = TYPE_CODE (type);
1285 register int len = TYPE_LENGTH (type);
1286
1287 switch (code)
1288 {
1289 case TYPE_CODE_INT:
1290 case TYPE_CODE_CHAR:
1291 case TYPE_CODE_ENUM:
1292 case TYPE_CODE_BOOL:
1293 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1294 break;
1295
1296 case TYPE_CODE_REF:
1297 case TYPE_CODE_PTR:
1298 /* This assumes that all pointers of a given length
1299 have the same form. */
1300 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1301 break;
1302
1303 default:
1304 error ("Unexpected type encountered for integer constant.");
1305 }
1306 return val;
1307 }
1308
1309 value
1310 value_from_double (type, num)
1311 struct type *type;
1312 double num;
1313 {
1314 register value val = allocate_value (type);
1315 register enum type_code code = TYPE_CODE (type);
1316 register int len = TYPE_LENGTH (type);
1317
1318 if (code == TYPE_CODE_FLT)
1319 {
1320 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1321 }
1322 else
1323 error ("Unexpected type encountered for floating constant.");
1324
1325 return val;
1326 }
1327 \f
1328 /* Deal with the value that is "about to be returned". */
1329
1330 /* Return the value that a function returning now
1331 would be returning to its caller, assuming its type is VALTYPE.
1332 RETBUF is where we look for what ought to be the contents
1333 of the registers (in raw form). This is because it is often
1334 desirable to restore old values to those registers
1335 after saving the contents of interest, and then call
1336 this function using the saved values.
1337 struct_return is non-zero when the function in question is
1338 using the structure return conventions on the machine in question;
1339 0 when it is using the value returning conventions (this often
1340 means returning pointer to where structure is vs. returning value). */
1341
1342 value
1343 value_being_returned (valtype, retbuf, struct_return)
1344 register struct type *valtype;
1345 char retbuf[REGISTER_BYTES];
1346 int struct_return;
1347 /*ARGSUSED*/
1348 {
1349 register value val;
1350 CORE_ADDR addr;
1351
1352 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1353 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1354 if (struct_return) {
1355 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1356 if (!addr)
1357 error ("Function return value unknown");
1358 return value_at (valtype, addr);
1359 }
1360 #endif
1361
1362 val = allocate_value (valtype);
1363 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1364
1365 return val;
1366 }
1367
1368 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1369 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1370 and TYPE is the type (which is known to be struct, union or array).
1371
1372 On most machines, the struct convention is used unless we are
1373 using gcc and the type is of a special size. */
1374 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1375 native compiler. GCC 2.3.3 was the last release that did it the
1376 old way. Since gcc2_compiled was not changed, we have no
1377 way to correctly win in all cases, so we just do the right thing
1378 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1379 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1380 would cause more chaos than dealing with some struct returns being
1381 handled wrong. */
1382 #if !defined (USE_STRUCT_CONVENTION)
1383 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1384 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1385 || TYPE_LENGTH (value_type) == 2 \
1386 || TYPE_LENGTH (value_type) == 4 \
1387 || TYPE_LENGTH (value_type) == 8 \
1388 ) \
1389 ))
1390 #endif
1391
1392 /* Return true if the function specified is using the structure returning
1393 convention on this machine to return arguments, or 0 if it is using
1394 the value returning convention. FUNCTION is the value representing
1395 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1396 is the type returned by the function. GCC_P is nonzero if compiled
1397 with GCC. */
1398
1399 int
1400 using_struct_return (function, funcaddr, value_type, gcc_p)
1401 value function;
1402 CORE_ADDR funcaddr;
1403 struct type *value_type;
1404 int gcc_p;
1405 /*ARGSUSED*/
1406 {
1407 register enum type_code code = TYPE_CODE (value_type);
1408
1409 if (code == TYPE_CODE_ERROR)
1410 error ("Function return type unknown.");
1411
1412 if (code == TYPE_CODE_STRUCT ||
1413 code == TYPE_CODE_UNION ||
1414 code == TYPE_CODE_ARRAY)
1415 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1416
1417 return 0;
1418 }
1419
1420 /* Store VAL so it will be returned if a function returns now.
1421 Does not verify that VAL's type matches what the current
1422 function wants to return. */
1423
1424 void
1425 set_return_value (val)
1426 value val;
1427 {
1428 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1429 double dbuf;
1430 LONGEST lbuf;
1431
1432 if (code == TYPE_CODE_ERROR)
1433 error ("Function return type unknown.");
1434
1435 if ( code == TYPE_CODE_STRUCT
1436 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1437 error ("GDB does not support specifying a struct or union return value.");
1438
1439 /* FIXME, this is bogus. We don't know what the return conventions
1440 are, or how values should be promoted.... */
1441 if (code == TYPE_CODE_FLT)
1442 {
1443 dbuf = value_as_double (val);
1444
1445 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1446 }
1447 else
1448 {
1449 lbuf = value_as_long (val);
1450 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1451 }
1452 }
1453 \f
1454 void
1455 _initialize_values ()
1456 {
1457 add_cmd ("convenience", no_class, show_convenience,
1458 "Debugger convenience (\"$foo\") variables.\n\
1459 These variables are created when you assign them values;\n\
1460 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1461 A few convenience variables are given values automatically:\n\
1462 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1463 \"$__\" holds the contents of the last address examined with \"x\".",
1464 &showlist);
1465
1466 add_cmd ("values", no_class, show_values,
1467 "Elements of value history around item number IDX (or last ten).",
1468 &showlist);
1469 }