* Makefile.in (VERSION): Bump to 4.5.2.
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30
31 /* Local function prototypes. */
32
33 static value
34 value_headof PARAMS ((value, struct type *, struct type *));
35
36 static void
37 show_values PARAMS ((char *, int));
38
39 static void
40 show_convenience PARAMS ((char *, int));
41
42 /* The value-history records all the values printed
43 by print commands during this session. Each chunk
44 records 60 consecutive values. The first chunk on
45 the chain records the most recent values.
46 The total number of values is in value_history_count. */
47
48 #define VALUE_HISTORY_CHUNK 60
49
50 struct value_history_chunk
51 {
52 struct value_history_chunk *next;
53 value values[VALUE_HISTORY_CHUNK];
54 };
55
56 /* Chain of chunks now in use. */
57
58 static struct value_history_chunk *value_history_chain;
59
60 static int value_history_count; /* Abs number of last entry stored */
61 \f
62 /* List of all value objects currently allocated
63 (except for those released by calls to release_value)
64 This is so they can be freed after each command. */
65
66 static value all_values;
67
68 /* Allocate a value that has the correct length for type TYPE. */
69
70 value
71 allocate_value (type)
72 struct type *type;
73 {
74 register value val;
75
76 check_stub_type (type);
77
78 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
79 VALUE_NEXT (val) = all_values;
80 all_values = val;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REPEATED (val) = 0;
89 VALUE_REPETITIONS (val) = 0;
90 VALUE_REGNO (val) = -1;
91 VALUE_LAZY (val) = 0;
92 VALUE_OPTIMIZED_OUT (val) = 0;
93 return val;
94 }
95
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
99 value
100 allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103 {
104 register value val;
105
106 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
107 VALUE_NEXT (val) = all_values;
108 all_values = val;
109 VALUE_TYPE (val) = type;
110 VALUE_LVAL (val) = not_lval;
111 VALUE_ADDRESS (val) = 0;
112 VALUE_FRAME (val) = 0;
113 VALUE_OFFSET (val) = 0;
114 VALUE_BITPOS (val) = 0;
115 VALUE_BITSIZE (val) = 0;
116 VALUE_REPEATED (val) = 1;
117 VALUE_REPETITIONS (val) = count;
118 VALUE_REGNO (val) = -1;
119 VALUE_LAZY (val) = 0;
120 VALUE_OPTIMIZED_OUT (val) = 0;
121 return val;
122 }
123
124 /* Return a mark in the value chain. All values allocated after the
125 mark is obtained (except for those released) are subject to being freed
126 if a subsequent value_free_to_mark is passed the mark. */
127 value
128 value_mark ()
129 {
130 return all_values;
131 }
132
133 /* Free all values allocated since MARK was obtained by value_mark
134 (except for those released). */
135 void
136 value_free_to_mark (mark)
137 value mark;
138 {
139 value val, next;
140
141 for (val = all_values; val && val != mark; val = next)
142 {
143 next = VALUE_NEXT (val);
144 value_free (val);
145 }
146 all_values = val;
147 }
148
149 /* Free all the values that have been allocated (except for those released).
150 Called after each command, successful or not. */
151
152 void
153 free_all_values ()
154 {
155 register value val, next;
156
157 for (val = all_values; val; val = next)
158 {
159 next = VALUE_NEXT (val);
160 value_free (val);
161 }
162
163 all_values = 0;
164 }
165
166 /* Remove VAL from the chain all_values
167 so it will not be freed automatically. */
168
169 void
170 release_value (val)
171 register value val;
172 {
173 register value v;
174
175 if (all_values == val)
176 {
177 all_values = val->next;
178 return;
179 }
180
181 for (v = all_values; v; v = v->next)
182 {
183 if (v->next == val)
184 {
185 v->next = val->next;
186 break;
187 }
188 }
189 }
190
191 /* Return a copy of the value ARG.
192 It contains the same contents, for same memory address,
193 but it's a different block of storage. */
194
195 value
196 value_copy (arg)
197 value arg;
198 {
199 register value val;
200 register struct type *type = VALUE_TYPE (arg);
201 if (VALUE_REPEATED (arg))
202 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
203 else
204 val = allocate_value (type);
205 VALUE_LVAL (val) = VALUE_LVAL (arg);
206 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
207 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
208 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
209 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
210 VALUE_REGNO (val) = VALUE_REGNO (arg);
211 VALUE_LAZY (val) = VALUE_LAZY (arg);
212 if (!VALUE_LAZY (val))
213 {
214 bcopy (VALUE_CONTENTS_RAW (arg), VALUE_CONTENTS_RAW (val),
215 TYPE_LENGTH (VALUE_TYPE (arg))
216 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
217 }
218 return val;
219 }
220 \f
221 /* Access to the value history. */
222
223 /* Record a new value in the value history.
224 Returns the absolute history index of the entry.
225 Result of -1 indicates the value was not saved; otherwise it is the
226 value history index of this new item. */
227
228 int
229 record_latest_value (val)
230 value val;
231 {
232 int i;
233
234 /* Check error now if about to store an invalid float. We return -1
235 to the caller, but allow them to continue, e.g. to print it as "Nan". */
236 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) {
237 (void) unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
238 if (i) return -1; /* Indicate value not saved in history */
239 }
240
241 /* Here we treat value_history_count as origin-zero
242 and applying to the value being stored now. */
243
244 i = value_history_count % VALUE_HISTORY_CHUNK;
245 if (i == 0)
246 {
247 register struct value_history_chunk *new
248 = (struct value_history_chunk *)
249 xmalloc (sizeof (struct value_history_chunk));
250 bzero (new->values, sizeof new->values);
251 new->next = value_history_chain;
252 value_history_chain = new;
253 }
254
255 value_history_chain->values[i] = val;
256 release_value (val);
257
258 /* Now we regard value_history_count as origin-one
259 and applying to the value just stored. */
260
261 return ++value_history_count;
262 }
263
264 /* Return a copy of the value in the history with sequence number NUM. */
265
266 value
267 access_value_history (num)
268 int num;
269 {
270 register struct value_history_chunk *chunk;
271 register int i;
272 register int absnum = num;
273
274 if (absnum <= 0)
275 absnum += value_history_count;
276
277 if (absnum <= 0)
278 {
279 if (num == 0)
280 error ("The history is empty.");
281 else if (num == 1)
282 error ("There is only one value in the history.");
283 else
284 error ("History does not go back to $$%d.", -num);
285 }
286 if (absnum > value_history_count)
287 error ("History has not yet reached $%d.", absnum);
288
289 absnum--;
290
291 /* Now absnum is always absolute and origin zero. */
292
293 chunk = value_history_chain;
294 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
295 i > 0; i--)
296 chunk = chunk->next;
297
298 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
299 }
300
301 /* Clear the value history entirely.
302 Must be done when new symbol tables are loaded,
303 because the type pointers become invalid. */
304
305 void
306 clear_value_history ()
307 {
308 register struct value_history_chunk *next;
309 register int i;
310 register value val;
311
312 while (value_history_chain)
313 {
314 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
315 if (val = value_history_chain->values[i])
316 free ((PTR)val);
317 next = value_history_chain->next;
318 free ((PTR)value_history_chain);
319 value_history_chain = next;
320 }
321 value_history_count = 0;
322 }
323
324 static void
325 show_values (num_exp, from_tty)
326 char *num_exp;
327 int from_tty;
328 {
329 register int i;
330 register value val;
331 static int num = 1;
332
333 if (num_exp)
334 {
335 if (num_exp[0] == '+' && num_exp[1] == '\0')
336 /* "info history +" should print from the stored position. */
337 ;
338 else
339 /* "info history <exp>" should print around value number <exp>. */
340 num = parse_and_eval_address (num_exp) - 5;
341 }
342 else
343 {
344 /* "info history" means print the last 10 values. */
345 num = value_history_count - 9;
346 }
347
348 if (num <= 0)
349 num = 1;
350
351 for (i = num; i < num + 10 && i <= value_history_count; i++)
352 {
353 val = access_value_history (i);
354 printf_filtered ("$%d = ", i);
355 value_print (val, stdout, 0, Val_pretty_default);
356 printf_filtered ("\n");
357 }
358
359 /* The next "info history +" should start after what we just printed. */
360 num += 10;
361
362 /* Hitting just return after this command should do the same thing as
363 "info history +". If num_exp is null, this is unnecessary, since
364 "info history +" is not useful after "info history". */
365 if (from_tty && num_exp)
366 {
367 num_exp[0] = '+';
368 num_exp[1] = '\0';
369 }
370 }
371 \f
372 /* Internal variables. These are variables within the debugger
373 that hold values assigned by debugger commands.
374 The user refers to them with a '$' prefix
375 that does not appear in the variable names stored internally. */
376
377 static struct internalvar *internalvars;
378
379 /* Look up an internal variable with name NAME. NAME should not
380 normally include a dollar sign.
381
382 If the specified internal variable does not exist,
383 one is created, with a void value. */
384
385 struct internalvar *
386 lookup_internalvar (name)
387 char *name;
388 {
389 register struct internalvar *var;
390
391 for (var = internalvars; var; var = var->next)
392 if (!strcmp (var->name, name))
393 return var;
394
395 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
396 var->name = concat (name, NULL);
397 var->value = allocate_value (builtin_type_void);
398 release_value (var->value);
399 var->next = internalvars;
400 internalvars = var;
401 return var;
402 }
403
404 value
405 value_of_internalvar (var)
406 struct internalvar *var;
407 {
408 register value val;
409
410 #ifdef IS_TRAPPED_INTERNALVAR
411 if (IS_TRAPPED_INTERNALVAR (var->name))
412 return VALUE_OF_TRAPPED_INTERNALVAR (var);
413 #endif
414
415 val = value_copy (var->value);
416 if (VALUE_LAZY (val))
417 value_fetch_lazy (val);
418 VALUE_LVAL (val) = lval_internalvar;
419 VALUE_INTERNALVAR (val) = var;
420 return val;
421 }
422
423 void
424 set_internalvar_component (var, offset, bitpos, bitsize, newval)
425 struct internalvar *var;
426 int offset, bitpos, bitsize;
427 value newval;
428 {
429 register char *addr = VALUE_CONTENTS (var->value) + offset;
430
431 #ifdef IS_TRAPPED_INTERNALVAR
432 if (IS_TRAPPED_INTERNALVAR (var->name))
433 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
434 #endif
435
436 if (bitsize)
437 modify_field (addr, (int) value_as_long (newval),
438 bitpos, bitsize);
439 else
440 bcopy (VALUE_CONTENTS (newval), addr,
441 TYPE_LENGTH (VALUE_TYPE (newval)));
442 }
443
444 void
445 set_internalvar (var, val)
446 struct internalvar *var;
447 value val;
448 {
449 #ifdef IS_TRAPPED_INTERNALVAR
450 if (IS_TRAPPED_INTERNALVAR (var->name))
451 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
452 #endif
453
454 free ((PTR)var->value);
455 var->value = value_copy (val);
456 release_value (var->value);
457 }
458
459 char *
460 internalvar_name (var)
461 struct internalvar *var;
462 {
463 return var->name;
464 }
465
466 /* Free all internalvars. Done when new symtabs are loaded,
467 because that makes the values invalid. */
468
469 void
470 clear_internalvars ()
471 {
472 register struct internalvar *var;
473
474 while (internalvars)
475 {
476 var = internalvars;
477 internalvars = var->next;
478 free ((PTR)var->name);
479 free ((PTR)var->value);
480 free ((PTR)var);
481 }
482 }
483
484 static void
485 show_convenience (ignore, from_tty)
486 char *ignore;
487 int from_tty;
488 {
489 register struct internalvar *var;
490 int varseen = 0;
491
492 for (var = internalvars; var; var = var->next)
493 {
494 #ifdef IS_TRAPPED_INTERNALVAR
495 if (IS_TRAPPED_INTERNALVAR (var->name))
496 continue;
497 #endif
498 if (!varseen)
499 {
500 varseen = 1;
501 }
502 printf_filtered ("$%s = ", var->name);
503 value_print (var->value, stdout, 0, Val_pretty_default);
504 printf_filtered ("\n");
505 }
506 if (!varseen)
507 printf ("No debugger convenience variables now defined.\n\
508 Convenience variables have names starting with \"$\";\n\
509 use \"set\" as in \"set $foo = 5\" to define them.\n");
510 }
511 \f
512 /* Extract a value as a C number (either long or double).
513 Knows how to convert fixed values to double, or
514 floating values to long.
515 Does not deallocate the value. */
516
517 LONGEST
518 value_as_long (val)
519 register value val;
520 {
521 /* This coerces arrays and functions, which is necessary (e.g.
522 in disassemble_command). It also dereferences references, which
523 I suspect is the most logical thing to do. */
524 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
525 COERCE_ARRAY (val);
526 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
527 }
528
529 double
530 value_as_double (val)
531 register value val;
532 {
533 double foo;
534 int inv;
535
536 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
537 if (inv)
538 error ("Invalid floating value found in program.");
539 return foo;
540 }
541 /* Extract a value as a C pointer.
542 Does not deallocate the value. */
543 CORE_ADDR
544 value_as_pointer (val)
545 value val;
546 {
547 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
548 whether we want this to be true eventually. */
549 return value_as_long (val);
550 }
551 \f
552 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
553 as a long, or as a double, assuming the raw data is described
554 by type TYPE. Knows how to convert different sizes of values
555 and can convert between fixed and floating point. We don't assume
556 any alignment for the raw data. Return value is in host byte order.
557
558 If you want functions and arrays to be coerced to pointers, and
559 references to be dereferenced, call value_as_long() instead.
560
561 C++: It is assumed that the front-end has taken care of
562 all matters concerning pointers to members. A pointer
563 to member which reaches here is considered to be equivalent
564 to an INT (or some size). After all, it is only an offset. */
565
566 /* FIXME: This should be rewritten as a switch statement for speed and
567 ease of comprehension. */
568
569 LONGEST
570 unpack_long (type, valaddr)
571 struct type *type;
572 char *valaddr;
573 {
574 register enum type_code code = TYPE_CODE (type);
575 register int len = TYPE_LENGTH (type);
576 register int nosign = TYPE_UNSIGNED (type);
577
578 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
579 code = TYPE_CODE_INT;
580 if (code == TYPE_CODE_FLT)
581 {
582 if (len == sizeof (float))
583 {
584 float retval;
585 bcopy (valaddr, &retval, sizeof (retval));
586 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
587 return retval;
588 }
589
590 if (len == sizeof (double))
591 {
592 double retval;
593 bcopy (valaddr, &retval, sizeof (retval));
594 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
595 return retval;
596 }
597 else
598 {
599 error ("Unexpected type of floating point number.");
600 }
601 }
602 else if (code == TYPE_CODE_INT && nosign)
603 {
604 if (len == sizeof (char))
605 {
606 unsigned char retval = * (unsigned char *) valaddr;
607 /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */
608 return retval;
609 }
610
611 if (len == sizeof (short))
612 {
613 unsigned short retval;
614 bcopy (valaddr, &retval, sizeof (retval));
615 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
616 return retval;
617 }
618
619 if (len == sizeof (int))
620 {
621 unsigned int retval;
622 bcopy (valaddr, &retval, sizeof (retval));
623 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
624 return retval;
625 }
626
627 if (len == sizeof (long))
628 {
629 unsigned long retval;
630 bcopy (valaddr, &retval, sizeof (retval));
631 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
632 return retval;
633 }
634 #ifdef LONG_LONG
635 if (len == sizeof (long long))
636 {
637 unsigned long long retval;
638 bcopy (valaddr, &retval, sizeof (retval));
639 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
640 return retval;
641 }
642 #endif
643 else
644 {
645 error ("That operation is not possible on an integer of that size.");
646 }
647 }
648 else if (code == TYPE_CODE_INT)
649 {
650 if (len == sizeof (char))
651 {
652 SIGNED char retval; /* plain chars might be unsigned on host */
653 bcopy (valaddr, &retval, sizeof (retval));
654 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
655 return retval;
656 }
657
658 if (len == sizeof (short))
659 {
660 short retval;
661 bcopy (valaddr, &retval, sizeof (retval));
662 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
663 return retval;
664 }
665
666 if (len == sizeof (int))
667 {
668 int retval;
669 bcopy (valaddr, &retval, sizeof (retval));
670 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
671 return retval;
672 }
673
674 if (len == sizeof (long))
675 {
676 long retval;
677 bcopy (valaddr, &retval, sizeof (retval));
678 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
679 return retval;
680 }
681
682 #ifdef LONG_LONG
683 if (len == sizeof (long long))
684 {
685 long long retval;
686 bcopy (valaddr, &retval, sizeof (retval));
687 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
688 return retval;
689 }
690 #endif
691 else
692 {
693 error ("That operation is not possible on an integer of that size.");
694 }
695 }
696 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
697 whether we want this to be true eventually. */
698 else if (code == TYPE_CODE_PTR
699 || code == TYPE_CODE_REF)
700 {
701 if (len == sizeof(long))
702 {
703 long retval;
704 bcopy (valaddr, &retval, sizeof(retval));
705 SWAP_TARGET_AND_HOST (&retval, sizeof(retval));
706 return retval;
707 }
708 else if (len == sizeof(short))
709 {
710 short retval;
711 bcopy (valaddr, &retval, len);
712 SWAP_TARGET_AND_HOST (&retval, len);
713 return retval;
714 }
715 }
716 else if (code == TYPE_CODE_MEMBER)
717 error ("not implemented: member types in unpack_long");
718 else if (code == TYPE_CODE_CHAR)
719 return *(unsigned char *)valaddr;
720
721 error ("Value not integer or pointer.");
722 return 0; /* For lint -- never reached */
723 }
724
725 /* Return a double value from the specified type and address.
726 INVP points to an int which is set to 0 for valid value,
727 1 for invalid value (bad float format). In either case,
728 the returned double is OK to use. Argument is in target
729 format, result is in host format. */
730
731 double
732 unpack_double (type, valaddr, invp)
733 struct type *type;
734 char *valaddr;
735 int *invp;
736 {
737 register enum type_code code = TYPE_CODE (type);
738 register int len = TYPE_LENGTH (type);
739 register int nosign = TYPE_UNSIGNED (type);
740
741 *invp = 0; /* Assume valid. */
742 if (code == TYPE_CODE_FLT)
743 {
744 if (INVALID_FLOAT (valaddr, len))
745 {
746 *invp = 1;
747 return 1.234567891011121314;
748 }
749
750 if (len == sizeof (float))
751 {
752 float retval;
753 bcopy (valaddr, &retval, sizeof (retval));
754 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
755 return retval;
756 }
757
758 if (len == sizeof (double))
759 {
760 double retval;
761 bcopy (valaddr, &retval, sizeof (retval));
762 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
763 return retval;
764 }
765 else
766 {
767 error ("Unexpected type of floating point number.");
768 return 0; /* Placate lint. */
769 }
770 }
771 else if (nosign) {
772 /* Unsigned -- be sure we compensate for signed LONGEST. */
773 #ifdef LONG_LONG
774 return (unsigned long long) unpack_long (type, valaddr);
775 #else
776 return (unsigned long ) unpack_long (type, valaddr);
777 #endif
778 } else {
779 /* Signed -- we are OK with unpack_long. */
780 return unpack_long (type, valaddr);
781 }
782 }
783
784 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
785 as a CORE_ADDR, assuming the raw data is described by type TYPE.
786 We don't assume any alignment for the raw data. Return value is in
787 host byte order.
788
789 If you want functions and arrays to be coerced to pointers, and
790 references to be dereferenced, call value_as_pointer() instead.
791
792 C++: It is assumed that the front-end has taken care of
793 all matters concerning pointers to members. A pointer
794 to member which reaches here is considered to be equivalent
795 to an INT (or some size). After all, it is only an offset. */
796
797 CORE_ADDR
798 unpack_pointer (type, valaddr)
799 struct type *type;
800 char *valaddr;
801 {
802 #if 0
803 /* The user should be able to use an int (e.g. 0x7892) in contexts
804 where a pointer is expected. So this doesn't do enough. */
805 register enum type_code code = TYPE_CODE (type);
806 register int len = TYPE_LENGTH (type);
807
808 if (code == TYPE_CODE_PTR
809 || code == TYPE_CODE_REF)
810 {
811 if (len == sizeof (CORE_ADDR))
812 {
813 CORE_ADDR retval;
814 bcopy (valaddr, &retval, sizeof (retval));
815 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
816 return retval;
817 }
818 error ("Unrecognized pointer size.");
819 }
820 else if (code == TYPE_CODE_MEMBER)
821 error ("not implemented: member types in unpack_pointer");
822
823 error ("Value is not a pointer.");
824 return 0; /* For lint -- never reached */
825 #else
826 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
827 whether we want this to be true eventually. */
828 return unpack_long (type, valaddr);
829 #endif
830 }
831 \f
832 /* Given a value ARG1 (offset by OFFSET bytes)
833 of a struct or union type ARG_TYPE,
834 extract and return the value of one of its fields.
835 FIELDNO says which field.
836
837 For C++, must also be able to return values from static fields */
838
839 value
840 value_primitive_field (arg1, offset, fieldno, arg_type)
841 register value arg1;
842 int offset;
843 register int fieldno;
844 register struct type *arg_type;
845 {
846 register value v;
847 register struct type *type;
848
849 check_stub_type (arg_type);
850 type = TYPE_FIELD_TYPE (arg_type, fieldno);
851
852 /* Handle packed fields */
853
854 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
855 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
856 {
857 v = value_from_longest (type,
858 unpack_field_as_long (arg_type,
859 VALUE_CONTENTS (arg1),
860 fieldno));
861 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
862 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
863 }
864 else
865 {
866 v = allocate_value (type);
867 if (VALUE_LAZY (arg1))
868 VALUE_LAZY (v) = 1;
869 else
870 bcopy (VALUE_CONTENTS_RAW (arg1) + offset,
871 VALUE_CONTENTS_RAW (v),
872 TYPE_LENGTH (type));
873 }
874 VALUE_LVAL (v) = VALUE_LVAL (arg1);
875 if (VALUE_LVAL (arg1) == lval_internalvar)
876 VALUE_LVAL (v) = lval_internalvar_component;
877 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
878 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
879 return v;
880 }
881
882 /* Given a value ARG1 of a struct or union type,
883 extract and return the value of one of its fields.
884 FIELDNO says which field.
885
886 For C++, must also be able to return values from static fields */
887
888 value
889 value_field (arg1, fieldno)
890 register value arg1;
891 register int fieldno;
892 {
893 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
894 }
895
896 /* Return a non-virtual function as a value.
897 F is the list of member functions which contains the desired method.
898 J is an index into F which provides the desired method. */
899
900 value
901 value_fn_field (f, j)
902 struct fn_field *f;
903 int j;
904 {
905 register value v;
906 register struct type *type = TYPE_FN_FIELD_TYPE (f, j);
907 struct symbol *sym;
908
909 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
910 0, VAR_NAMESPACE, 0, NULL);
911 if (! sym) error ("Internal error: could not find physical method named %s",
912 TYPE_FN_FIELD_PHYSNAME (f, j));
913
914 v = allocate_value (type);
915 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
916 VALUE_TYPE (v) = type;
917 return v;
918 }
919
920 /* Return a virtual function as a value.
921 ARG1 is the object which provides the virtual function
922 table pointer. ARG1 is side-effected in calling this function.
923 F is the list of member functions which contains the desired virtual
924 function.
925 J is an index into F which provides the desired virtual function.
926
927 TYPE is the type in which F is located. */
928 value
929 value_virtual_fn_field (arg1, f, j, type)
930 value arg1;
931 struct fn_field *f;
932 int j;
933 struct type *type;
934 {
935 /* First, get the virtual function table pointer. That comes
936 with a strange type, so cast it to type `pointer to long' (which
937 should serve just fine as a function type). Then, index into
938 the table, and convert final value to appropriate function type. */
939 value entry, vfn, vtbl;
940 value vi = value_from_longest (builtin_type_int,
941 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
942 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
943 struct type *context;
944 if (fcontext == NULL)
945 /* We don't have an fcontext (e.g. the program was compiled with
946 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
947 This won't work right for multiple inheritance, but at least we
948 should do as well as GDB 3.x did. */
949 fcontext = TYPE_VPTR_BASETYPE (type);
950 context = lookup_pointer_type (fcontext);
951 /* Now context is a pointer to the basetype containing the vtbl. */
952 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
953 arg1 = value_ind (value_cast (context, value_addr (arg1)));
954
955 context = VALUE_TYPE (arg1);
956 /* Now context is the basetype containing the vtbl. */
957
958 /* This type may have been defined before its virtual function table
959 was. If so, fill in the virtual function table entry for the
960 type now. */
961 if (TYPE_VPTR_FIELDNO (context) < 0)
962 fill_in_vptr_fieldno (context);
963
964 /* The virtual function table is now an array of structures
965 which have the form { int16 offset, delta; void *pfn; }. */
966 vtbl = value_ind (value_field (arg1, TYPE_VPTR_FIELDNO (context)));
967
968 /* Index into the virtual function table. This is hard-coded because
969 looking up a field is not cheap, and it may be important to save
970 time, e.g. if the user has set a conditional breakpoint calling
971 a virtual function. */
972 entry = value_subscript (vtbl, vi);
973
974 /* Move the `this' pointer according to the virtual function table. */
975 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
976 if (! VALUE_LAZY (arg1))
977 {
978 VALUE_LAZY (arg1) = 1;
979 value_fetch_lazy (arg1);
980 }
981
982 vfn = value_field (entry, 2);
983 /* Reinstantiate the function pointer with the correct type. */
984 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
985
986 return vfn;
987 }
988
989 /* ARG is a pointer to an object we know to be at least
990 a DTYPE. BTYPE is the most derived basetype that has
991 already been searched (and need not be searched again).
992 After looking at the vtables between BTYPE and DTYPE,
993 return the most derived type we find. The caller must
994 be satisfied when the return value == DTYPE.
995
996 FIXME-tiemann: should work with dossier entries as well. */
997
998 static value
999 value_headof (arg, btype, dtype)
1000 value arg;
1001 struct type *btype, *dtype;
1002 {
1003 /* First collect the vtables we must look at for this object. */
1004 /* FIXME-tiemann: right now, just look at top-most vtable. */
1005 value vtbl, entry, best_entry = 0;
1006 /* FIXME: entry_type is never used. */
1007 struct type *entry_type;
1008 int i, nelems;
1009 int offset, best_offset = 0;
1010 struct symbol *sym;
1011 CORE_ADDR pc_for_sym;
1012 char *demangled_name;
1013 struct minimal_symbol *msymbol;
1014
1015 btype = TYPE_VPTR_BASETYPE (dtype);
1016 check_stub_type (btype);
1017 if (btype != dtype)
1018 vtbl = value_cast (lookup_pointer_type (btype), arg);
1019 else
1020 vtbl = arg;
1021 vtbl = value_ind (value_field (value_ind (vtbl), TYPE_VPTR_FIELDNO (btype)));
1022
1023 /* Check that VTBL looks like it points to a virtual function table. */
1024 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1025 if (msymbol == NULL
1026 || !VTBL_PREFIX_P (demangled_name = msymbol -> name))
1027 {
1028 /* If we expected to find a vtable, but did not, let the user
1029 know that we aren't happy, but don't throw an error.
1030 FIXME: there has to be a better way to do this. */
1031 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1032 bcopy (VALUE_TYPE (arg), error_type, sizeof (struct type));
1033 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1034 VALUE_TYPE (arg) = error_type;
1035 return arg;
1036 }
1037
1038 /* Now search through the virtual function table. */
1039 entry = value_ind (vtbl);
1040 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1041 for (i = 1; i <= nelems; i++)
1042 {
1043 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1044 (LONGEST) i));
1045 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1046 /* If we use '<=' we can handle single inheritance
1047 * where all offsets are zero - just use the first entry found. */
1048 if (offset <= best_offset)
1049 {
1050 best_offset = offset;
1051 best_entry = entry;
1052 }
1053 }
1054 /* Move the pointer according to BEST_ENTRY's offset, and figure
1055 out what type we should return as the new pointer. */
1056 if (best_entry == 0)
1057 {
1058 /* An alternative method (which should no longer be necessary).
1059 * But we leave it in for future use, when we will hopefully
1060 * have optimizes the vtable to use thunks instead of offsets. */
1061 /* Use the name of vtable itself to extract a base type. */
1062 demangled_name += 4; /* Skip _vt$ prefix. */
1063 }
1064 else
1065 {
1066 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1067 sym = find_pc_function (pc_for_sym);
1068 demangled_name = cplus_demangle (SYMBOL_NAME (sym), -1);
1069 *(strchr (demangled_name, ':')) = '\0';
1070 }
1071 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1072 if (sym == 0)
1073 error ("could not find type declaration for `%s'", SYMBOL_NAME (sym));
1074 if (best_entry)
1075 {
1076 free (demangled_name);
1077 arg = value_add (value_cast (builtin_type_int, arg),
1078 value_field (best_entry, 0));
1079 }
1080 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1081 return arg;
1082 }
1083
1084 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1085 function tables, probe ARG's tables (including the vtables
1086 of its baseclasses) to figure out the most derived type that ARG
1087 could actually be a pointer to. */
1088
1089 value
1090 value_from_vtable_info (arg, type)
1091 value arg;
1092 struct type *type;
1093 {
1094 /* Take care of preliminaries. */
1095 if (TYPE_VPTR_FIELDNO (type) < 0)
1096 fill_in_vptr_fieldno (type);
1097 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1098 return 0;
1099
1100 return value_headof (arg, 0, type);
1101 }
1102
1103 /* Compute the address of the baseclass which is
1104 the INDEXth baseclass of class TYPE. The TYPE base
1105 of the object is at VALADDR.
1106
1107 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1108 or 0 if no error. In that case the return value is not the address
1109 of the baseclasss, but the address which could not be read
1110 successfully. */
1111
1112 char *
1113 baseclass_addr (type, index, valaddr, valuep, errp)
1114 struct type *type;
1115 int index;
1116 char *valaddr;
1117 value *valuep;
1118 int *errp;
1119 {
1120 struct type *basetype = TYPE_BASECLASS (type, index);
1121
1122 if (errp)
1123 *errp = 0;
1124
1125 if (BASETYPE_VIA_VIRTUAL (type, index))
1126 {
1127 /* Must hunt for the pointer to this virtual baseclass. */
1128 register int i, len = TYPE_NFIELDS (type);
1129 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1130 char *vbase_name, *type_name = type_name_no_tag (basetype);
1131
1132 vbase_name = (char *)alloca (strlen (type_name) + 8);
1133 sprintf (vbase_name, "_vb$%s", type_name);
1134 /* First look for the virtual baseclass pointer
1135 in the fields. */
1136 for (i = n_baseclasses; i < len; i++)
1137 {
1138 if (! strcmp (vbase_name, TYPE_FIELD_NAME (type, i)))
1139 {
1140 value val = allocate_value (basetype);
1141 CORE_ADDR addr;
1142 int status;
1143
1144 addr
1145 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1146 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1147
1148 status = target_read_memory (addr,
1149 VALUE_CONTENTS_RAW (val),
1150 TYPE_LENGTH (basetype));
1151 VALUE_LVAL (val) = lval_memory;
1152 VALUE_ADDRESS (val) = addr;
1153
1154 if (status != 0)
1155 {
1156 if (valuep)
1157 *valuep = NULL;
1158 release_value (val);
1159 value_free (val);
1160 if (errp)
1161 *errp = status;
1162 return (char *)addr;
1163 }
1164 else
1165 {
1166 if (valuep)
1167 *valuep = val;
1168 return (char *) VALUE_CONTENTS (val);
1169 }
1170 }
1171 }
1172 /* Not in the fields, so try looking through the baseclasses. */
1173 for (i = index+1; i < n_baseclasses; i++)
1174 {
1175 char *baddr;
1176
1177 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1178 if (baddr)
1179 return baddr;
1180 }
1181 /* Not found. */
1182 if (valuep)
1183 *valuep = 0;
1184 return 0;
1185 }
1186
1187 /* Baseclass is easily computed. */
1188 if (valuep)
1189 *valuep = 0;
1190 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1191 }
1192 \f
1193 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1194 VALADDR.
1195
1196 Extracting bits depends on endianness of the machine. Compute the
1197 number of least significant bits to discard. For big endian machines,
1198 we compute the total number of bits in the anonymous object, subtract
1199 off the bit count from the MSB of the object to the MSB of the
1200 bitfield, then the size of the bitfield, which leaves the LSB discard
1201 count. For little endian machines, the discard count is simply the
1202 number of bits from the LSB of the anonymous object to the LSB of the
1203 bitfield.
1204
1205 If the field is signed, we also do sign extension. */
1206
1207 LONGEST
1208 unpack_field_as_long (type, valaddr, fieldno)
1209 struct type *type;
1210 char *valaddr;
1211 int fieldno;
1212 {
1213 unsigned LONGEST val;
1214 unsigned LONGEST valmask;
1215 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1216 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1217 int lsbcount;
1218
1219 bcopy (valaddr + bitpos / 8, &val, sizeof (val));
1220 SWAP_TARGET_AND_HOST (&val, sizeof (val));
1221
1222 /* Extract bits. See comment above. */
1223
1224 #if BITS_BIG_ENDIAN
1225 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1226 #else
1227 lsbcount = (bitpos % 8);
1228 #endif
1229 val >>= lsbcount;
1230
1231 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1232 If the field is signed, and is negative, then sign extend. */
1233
1234 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1235 {
1236 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1237 val &= valmask;
1238 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1239 {
1240 if (val & (valmask ^ (valmask >> 1)))
1241 {
1242 val |= ~valmask;
1243 }
1244 }
1245 }
1246 return (val);
1247 }
1248
1249 /* Modify the value of a bitfield. ADDR points to a block of memory in
1250 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1251 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1252 indicate which bits (in target bit order) comprise the bitfield. */
1253
1254 void
1255 modify_field (addr, fieldval, bitpos, bitsize)
1256 char *addr;
1257 int fieldval;
1258 int bitpos, bitsize;
1259 {
1260 long oword;
1261
1262 /* Reject values too big to fit in the field in question,
1263 otherwise adjoining fields may be corrupted. */
1264 if (bitsize < (8 * sizeof (fieldval))
1265 && 0 != (fieldval & ~((1<<bitsize)-1)))
1266 error ("Value %d does not fit in %d bits.", fieldval, bitsize);
1267
1268 bcopy (addr, &oword, sizeof oword);
1269 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */
1270
1271 /* Shifting for bit field depends on endianness of the target machine. */
1272 #if BITS_BIG_ENDIAN
1273 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1274 #endif
1275
1276 /* Mask out old value, while avoiding shifts >= longword size */
1277 if (bitsize < 8 * sizeof (oword))
1278 oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos);
1279 else
1280 oword &= ~((-1) << bitpos);
1281 oword |= fieldval << bitpos;
1282
1283 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */
1284 bcopy (&oword, addr, sizeof oword);
1285 }
1286 \f
1287 /* Convert C numbers into newly allocated values */
1288
1289 value
1290 value_from_longest (type, num)
1291 struct type *type;
1292 register LONGEST num;
1293 {
1294 register value val = allocate_value (type);
1295 register enum type_code code = TYPE_CODE (type);
1296 register int len = TYPE_LENGTH (type);
1297
1298 /* FIXME, we assume that pointers have the same form and byte order as
1299 integers, and that all pointers have the same form. */
1300 if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM ||
1301 code == TYPE_CODE_CHAR || code == TYPE_CODE_PTR ||
1302 code == TYPE_CODE_REF)
1303 {
1304 if (len == sizeof (char))
1305 * (char *) VALUE_CONTENTS_RAW (val) = num;
1306 else if (len == sizeof (short))
1307 * (short *) VALUE_CONTENTS_RAW (val) = num;
1308 else if (len == sizeof (int))
1309 * (int *) VALUE_CONTENTS_RAW (val) = num;
1310 else if (len == sizeof (long))
1311 * (long *) VALUE_CONTENTS_RAW (val) = num;
1312 #ifdef LONG_LONG
1313 else if (len == sizeof (long long))
1314 * (long long *) VALUE_CONTENTS_RAW (val) = num;
1315 #endif
1316 else
1317 error ("Integer type encountered with unexpected data length.");
1318 }
1319 else
1320 error ("Unexpected type encountered for integer constant.");
1321
1322 /* num was in host byte order. So now put the value's contents
1323 into target byte order. */
1324 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1325
1326 return val;
1327 }
1328
1329 value
1330 value_from_double (type, num)
1331 struct type *type;
1332 double num;
1333 {
1334 register value val = allocate_value (type);
1335 register enum type_code code = TYPE_CODE (type);
1336 register int len = TYPE_LENGTH (type);
1337
1338 if (code == TYPE_CODE_FLT)
1339 {
1340 if (len == sizeof (float))
1341 * (float *) VALUE_CONTENTS_RAW (val) = num;
1342 else if (len == sizeof (double))
1343 * (double *) VALUE_CONTENTS_RAW (val) = num;
1344 else
1345 error ("Floating type encountered with unexpected data length.");
1346 }
1347 else
1348 error ("Unexpected type encountered for floating constant.");
1349
1350 /* num was in host byte order. So now put the value's contents
1351 into target byte order. */
1352 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1353
1354 return val;
1355 }
1356 \f
1357 /* Deal with the value that is "about to be returned". */
1358
1359 /* Return the value that a function returning now
1360 would be returning to its caller, assuming its type is VALTYPE.
1361 RETBUF is where we look for what ought to be the contents
1362 of the registers (in raw form). This is because it is often
1363 desirable to restore old values to those registers
1364 after saving the contents of interest, and then call
1365 this function using the saved values.
1366 struct_return is non-zero when the function in question is
1367 using the structure return conventions on the machine in question;
1368 0 when it is using the value returning conventions (this often
1369 means returning pointer to where structure is vs. returning value). */
1370
1371 value
1372 value_being_returned (valtype, retbuf, struct_return)
1373 register struct type *valtype;
1374 char retbuf[REGISTER_BYTES];
1375 int struct_return;
1376 /*ARGSUSED*/
1377 {
1378 register value val;
1379 CORE_ADDR addr;
1380
1381 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1382 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1383 if (struct_return) {
1384 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1385 if (!addr)
1386 error ("Function return value unknown");
1387 return value_at (valtype, addr);
1388 }
1389 #endif
1390
1391 val = allocate_value (valtype);
1392 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1393
1394 return val;
1395 }
1396
1397 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1398 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1399 and TYPE is the type (which is known to be struct, union or array).
1400
1401 On most machines, the struct convention is used unless we are
1402 using gcc and the type is of a special size. */
1403 #if !defined (USE_STRUCT_CONVENTION)
1404 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1405 (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \
1406 || TYPE_LENGTH (value_type) == 2 \
1407 || TYPE_LENGTH (value_type) == 4 \
1408 || TYPE_LENGTH (value_type) == 8 \
1409 ) \
1410 ))
1411 #endif
1412
1413 /* Return true if the function specified is using the structure returning
1414 convention on this machine to return arguments, or 0 if it is using
1415 the value returning convention. FUNCTION is the value representing
1416 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1417 is the type returned by the function. GCC_P is nonzero if compiled
1418 with GCC. */
1419
1420 int
1421 using_struct_return (function, funcaddr, value_type, gcc_p)
1422 value function;
1423 CORE_ADDR funcaddr;
1424 struct type *value_type;
1425 int gcc_p;
1426 /*ARGSUSED*/
1427 {
1428 register enum type_code code = TYPE_CODE (value_type);
1429
1430 if (code == TYPE_CODE_ERROR)
1431 error ("Function return type unknown.");
1432
1433 if (code == TYPE_CODE_STRUCT ||
1434 code == TYPE_CODE_UNION ||
1435 code == TYPE_CODE_ARRAY)
1436 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1437
1438 return 0;
1439 }
1440
1441 /* Store VAL so it will be returned if a function returns now.
1442 Does not verify that VAL's type matches what the current
1443 function wants to return. */
1444
1445 void
1446 set_return_value (val)
1447 value val;
1448 {
1449 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1450 double dbuf;
1451 LONGEST lbuf;
1452
1453 if (code == TYPE_CODE_ERROR)
1454 error ("Function return type unknown.");
1455
1456 if ( code == TYPE_CODE_STRUCT
1457 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1458 error ("GDB does not support specifying a struct or union return value.");
1459
1460 /* FIXME, this is bogus. We don't know what the return conventions
1461 are, or how values should be promoted.... */
1462 if (code == TYPE_CODE_FLT)
1463 {
1464 dbuf = value_as_double (val);
1465
1466 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1467 }
1468 else
1469 {
1470 lbuf = value_as_long (val);
1471 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1472 }
1473 }
1474 \f
1475 void
1476 _initialize_values ()
1477 {
1478 add_cmd ("convenience", no_class, show_convenience,
1479 "Debugger convenience (\"$foo\") variables.\n\
1480 These variables are created when you assign them values;\n\
1481 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1482 A few convenience variables are given values automatically:\n\
1483 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1484 \"$__\" holds the contents of the last address examined with \"x\".",
1485 &showlist);
1486
1487 add_cmd ("values", no_class, show_values,
1488 "Elements of value history around item number IDX (or last ten).",
1489 &showlist);
1490 }