* breakpoint.c, buildsym.c, c-exp.y, coffread.c, command.c,
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30
31 /* Local function prototypes. */
32
33 static value
34 value_headof PARAMS ((value, struct type *, struct type *));
35
36 static void
37 show_values PARAMS ((char *, int));
38
39 static void
40 show_convenience PARAMS ((char *, int));
41
42 /* The value-history records all the values printed
43 by print commands during this session. Each chunk
44 records 60 consecutive values. The first chunk on
45 the chain records the most recent values.
46 The total number of values is in value_history_count. */
47
48 #define VALUE_HISTORY_CHUNK 60
49
50 struct value_history_chunk
51 {
52 struct value_history_chunk *next;
53 value values[VALUE_HISTORY_CHUNK];
54 };
55
56 /* Chain of chunks now in use. */
57
58 static struct value_history_chunk *value_history_chain;
59
60 static int value_history_count; /* Abs number of last entry stored */
61 \f
62 /* List of all value objects currently allocated
63 (except for those released by calls to release_value)
64 This is so they can be freed after each command. */
65
66 static value all_values;
67
68 /* Allocate a value that has the correct length for type TYPE. */
69
70 value
71 allocate_value (type)
72 struct type *type;
73 {
74 register value val;
75
76 check_stub_type (type);
77
78 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
79 VALUE_NEXT (val) = all_values;
80 all_values = val;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REPEATED (val) = 0;
89 VALUE_REPETITIONS (val) = 0;
90 VALUE_REGNO (val) = -1;
91 VALUE_LAZY (val) = 0;
92 VALUE_OPTIMIZED_OUT (val) = 0;
93 return val;
94 }
95
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
99 value
100 allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103 {
104 register value val;
105
106 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
107 VALUE_NEXT (val) = all_values;
108 all_values = val;
109 VALUE_TYPE (val) = type;
110 VALUE_LVAL (val) = not_lval;
111 VALUE_ADDRESS (val) = 0;
112 VALUE_FRAME (val) = 0;
113 VALUE_OFFSET (val) = 0;
114 VALUE_BITPOS (val) = 0;
115 VALUE_BITSIZE (val) = 0;
116 VALUE_REPEATED (val) = 1;
117 VALUE_REPETITIONS (val) = count;
118 VALUE_REGNO (val) = -1;
119 VALUE_LAZY (val) = 0;
120 VALUE_OPTIMIZED_OUT (val) = 0;
121 return val;
122 }
123
124 /* Return a mark in the value chain. All values allocated after the
125 mark is obtained (except for those released) are subject to being freed
126 if a subsequent value_free_to_mark is passed the mark. */
127 value
128 value_mark ()
129 {
130 return all_values;
131 }
132
133 /* Free all values allocated since MARK was obtained by value_mark
134 (except for those released). */
135 void
136 value_free_to_mark (mark)
137 value mark;
138 {
139 value val, next;
140
141 for (val = all_values; val && val != mark; val = next)
142 {
143 next = VALUE_NEXT (val);
144 value_free (val);
145 }
146 all_values = val;
147 }
148
149 /* Free all the values that have been allocated (except for those released).
150 Called after each command, successful or not. */
151
152 void
153 free_all_values ()
154 {
155 register value val, next;
156
157 for (val = all_values; val; val = next)
158 {
159 next = VALUE_NEXT (val);
160 value_free (val);
161 }
162
163 all_values = 0;
164 }
165
166 /* Remove VAL from the chain all_values
167 so it will not be freed automatically. */
168
169 void
170 release_value (val)
171 register value val;
172 {
173 register value v;
174
175 if (all_values == val)
176 {
177 all_values = val->next;
178 return;
179 }
180
181 for (v = all_values; v; v = v->next)
182 {
183 if (v->next == val)
184 {
185 v->next = val->next;
186 break;
187 }
188 }
189 }
190
191 /* Return a copy of the value ARG.
192 It contains the same contents, for same memory address,
193 but it's a different block of storage. */
194
195 value
196 value_copy (arg)
197 value arg;
198 {
199 register value val;
200 register struct type *type = VALUE_TYPE (arg);
201 if (VALUE_REPEATED (arg))
202 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
203 else
204 val = allocate_value (type);
205 VALUE_LVAL (val) = VALUE_LVAL (arg);
206 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
207 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
208 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
209 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
210 VALUE_REGNO (val) = VALUE_REGNO (arg);
211 VALUE_LAZY (val) = VALUE_LAZY (arg);
212 if (!VALUE_LAZY (val))
213 {
214 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
215 TYPE_LENGTH (VALUE_TYPE (arg))
216 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
217 }
218 return val;
219 }
220 \f
221 /* Access to the value history. */
222
223 /* Record a new value in the value history.
224 Returns the absolute history index of the entry.
225 Result of -1 indicates the value was not saved; otherwise it is the
226 value history index of this new item. */
227
228 int
229 record_latest_value (val)
230 value val;
231 {
232 int i;
233
234 /* Check error now if about to store an invalid float. We return -1
235 to the caller, but allow them to continue, e.g. to print it as "Nan". */
236 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
237 {
238 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
239 if (i) return -1; /* Indicate value not saved in history */
240 }
241
242 /* Here we treat value_history_count as origin-zero
243 and applying to the value being stored now. */
244
245 i = value_history_count % VALUE_HISTORY_CHUNK;
246 if (i == 0)
247 {
248 register struct value_history_chunk *new
249 = (struct value_history_chunk *)
250 xmalloc (sizeof (struct value_history_chunk));
251 memset (new->values, 0, sizeof new->values);
252 new->next = value_history_chain;
253 value_history_chain = new;
254 }
255
256 value_history_chain->values[i] = val;
257 release_value (val);
258
259 /* Now we regard value_history_count as origin-one
260 and applying to the value just stored. */
261
262 return ++value_history_count;
263 }
264
265 /* Return a copy of the value in the history with sequence number NUM. */
266
267 value
268 access_value_history (num)
269 int num;
270 {
271 register struct value_history_chunk *chunk;
272 register int i;
273 register int absnum = num;
274
275 if (absnum <= 0)
276 absnum += value_history_count;
277
278 if (absnum <= 0)
279 {
280 if (num == 0)
281 error ("The history is empty.");
282 else if (num == 1)
283 error ("There is only one value in the history.");
284 else
285 error ("History does not go back to $$%d.", -num);
286 }
287 if (absnum > value_history_count)
288 error ("History has not yet reached $%d.", absnum);
289
290 absnum--;
291
292 /* Now absnum is always absolute and origin zero. */
293
294 chunk = value_history_chain;
295 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
296 i > 0; i--)
297 chunk = chunk->next;
298
299 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
300 }
301
302 /* Clear the value history entirely.
303 Must be done when new symbol tables are loaded,
304 because the type pointers become invalid. */
305
306 void
307 clear_value_history ()
308 {
309 register struct value_history_chunk *next;
310 register int i;
311 register value val;
312
313 while (value_history_chain)
314 {
315 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
316 if (val = value_history_chain->values[i])
317 free ((PTR)val);
318 next = value_history_chain->next;
319 free ((PTR)value_history_chain);
320 value_history_chain = next;
321 }
322 value_history_count = 0;
323 }
324
325 static void
326 show_values (num_exp, from_tty)
327 char *num_exp;
328 int from_tty;
329 {
330 register int i;
331 register value val;
332 static int num = 1;
333
334 if (num_exp)
335 {
336 if (num_exp[0] == '+' && num_exp[1] == '\0')
337 /* "info history +" should print from the stored position. */
338 ;
339 else
340 /* "info history <exp>" should print around value number <exp>. */
341 num = parse_and_eval_address (num_exp) - 5;
342 }
343 else
344 {
345 /* "info history" means print the last 10 values. */
346 num = value_history_count - 9;
347 }
348
349 if (num <= 0)
350 num = 1;
351
352 for (i = num; i < num + 10 && i <= value_history_count; i++)
353 {
354 val = access_value_history (i);
355 printf_filtered ("$%d = ", i);
356 value_print (val, stdout, 0, Val_pretty_default);
357 printf_filtered ("\n");
358 }
359
360 /* The next "info history +" should start after what we just printed. */
361 num += 10;
362
363 /* Hitting just return after this command should do the same thing as
364 "info history +". If num_exp is null, this is unnecessary, since
365 "info history +" is not useful after "info history". */
366 if (from_tty && num_exp)
367 {
368 num_exp[0] = '+';
369 num_exp[1] = '\0';
370 }
371 }
372 \f
373 /* Internal variables. These are variables within the debugger
374 that hold values assigned by debugger commands.
375 The user refers to them with a '$' prefix
376 that does not appear in the variable names stored internally. */
377
378 static struct internalvar *internalvars;
379
380 /* Look up an internal variable with name NAME. NAME should not
381 normally include a dollar sign.
382
383 If the specified internal variable does not exist,
384 one is created, with a void value. */
385
386 struct internalvar *
387 lookup_internalvar (name)
388 char *name;
389 {
390 register struct internalvar *var;
391
392 for (var = internalvars; var; var = var->next)
393 if (!strcmp (var->name, name))
394 return var;
395
396 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
397 var->name = concat (name, NULL);
398 var->value = allocate_value (builtin_type_void);
399 release_value (var->value);
400 var->next = internalvars;
401 internalvars = var;
402 return var;
403 }
404
405 value
406 value_of_internalvar (var)
407 struct internalvar *var;
408 {
409 register value val;
410
411 #ifdef IS_TRAPPED_INTERNALVAR
412 if (IS_TRAPPED_INTERNALVAR (var->name))
413 return VALUE_OF_TRAPPED_INTERNALVAR (var);
414 #endif
415
416 val = value_copy (var->value);
417 if (VALUE_LAZY (val))
418 value_fetch_lazy (val);
419 VALUE_LVAL (val) = lval_internalvar;
420 VALUE_INTERNALVAR (val) = var;
421 return val;
422 }
423
424 void
425 set_internalvar_component (var, offset, bitpos, bitsize, newval)
426 struct internalvar *var;
427 int offset, bitpos, bitsize;
428 value newval;
429 {
430 register char *addr = VALUE_CONTENTS (var->value) + offset;
431
432 #ifdef IS_TRAPPED_INTERNALVAR
433 if (IS_TRAPPED_INTERNALVAR (var->name))
434 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
435 #endif
436
437 if (bitsize)
438 modify_field (addr, (int) value_as_long (newval),
439 bitpos, bitsize);
440 else
441 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
442 }
443
444 void
445 set_internalvar (var, val)
446 struct internalvar *var;
447 value val;
448 {
449 #ifdef IS_TRAPPED_INTERNALVAR
450 if (IS_TRAPPED_INTERNALVAR (var->name))
451 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
452 #endif
453
454 free ((PTR)var->value);
455 var->value = value_copy (val);
456 /* Force the value to be fetched from the target now, to avoid problems
457 later when this internalvar is referenced and the target is gone or
458 has changed. */
459 if (VALUE_LAZY (var->value))
460 value_fetch_lazy (var->value);
461 release_value (var->value);
462 }
463
464 char *
465 internalvar_name (var)
466 struct internalvar *var;
467 {
468 return var->name;
469 }
470
471 /* Free all internalvars. Done when new symtabs are loaded,
472 because that makes the values invalid. */
473
474 void
475 clear_internalvars ()
476 {
477 register struct internalvar *var;
478
479 while (internalvars)
480 {
481 var = internalvars;
482 internalvars = var->next;
483 free ((PTR)var->name);
484 free ((PTR)var->value);
485 free ((PTR)var);
486 }
487 }
488
489 static void
490 show_convenience (ignore, from_tty)
491 char *ignore;
492 int from_tty;
493 {
494 register struct internalvar *var;
495 int varseen = 0;
496
497 for (var = internalvars; var; var = var->next)
498 {
499 #ifdef IS_TRAPPED_INTERNALVAR
500 if (IS_TRAPPED_INTERNALVAR (var->name))
501 continue;
502 #endif
503 if (!varseen)
504 {
505 varseen = 1;
506 }
507 printf_filtered ("$%s = ", var->name);
508 value_print (var->value, stdout, 0, Val_pretty_default);
509 printf_filtered ("\n");
510 }
511 if (!varseen)
512 printf ("No debugger convenience variables now defined.\n\
513 Convenience variables have names starting with \"$\";\n\
514 use \"set\" as in \"set $foo = 5\" to define them.\n");
515 }
516 \f
517 /* Extract a value as a C number (either long or double).
518 Knows how to convert fixed values to double, or
519 floating values to long.
520 Does not deallocate the value. */
521
522 LONGEST
523 value_as_long (val)
524 register value val;
525 {
526 /* This coerces arrays and functions, which is necessary (e.g.
527 in disassemble_command). It also dereferences references, which
528 I suspect is the most logical thing to do. */
529 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
530 COERCE_ARRAY (val);
531 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
532 }
533
534 double
535 value_as_double (val)
536 register value val;
537 {
538 double foo;
539 int inv;
540
541 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
542 if (inv)
543 error ("Invalid floating value found in program.");
544 return foo;
545 }
546 /* Extract a value as a C pointer.
547 Does not deallocate the value. */
548 CORE_ADDR
549 value_as_pointer (val)
550 value val;
551 {
552 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
553 whether we want this to be true eventually. */
554 return ADDR_BITS_REMOVE(value_as_long (val));
555 }
556 \f
557 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
558 as a long, or as a double, assuming the raw data is described
559 by type TYPE. Knows how to convert different sizes of values
560 and can convert between fixed and floating point. We don't assume
561 any alignment for the raw data. Return value is in host byte order.
562
563 If you want functions and arrays to be coerced to pointers, and
564 references to be dereferenced, call value_as_long() instead.
565
566 C++: It is assumed that the front-end has taken care of
567 all matters concerning pointers to members. A pointer
568 to member which reaches here is considered to be equivalent
569 to an INT (or some size). After all, it is only an offset. */
570
571 /* FIXME: This should be rewritten as a switch statement for speed and
572 ease of comprehension. */
573
574 LONGEST
575 unpack_long (type, valaddr)
576 struct type *type;
577 char *valaddr;
578 {
579 register enum type_code code = TYPE_CODE (type);
580 register int len = TYPE_LENGTH (type);
581 register int nosign = TYPE_UNSIGNED (type);
582
583 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
584 code = TYPE_CODE_INT;
585 if (code == TYPE_CODE_FLT)
586 {
587 if (len == sizeof (float))
588 {
589 float retval;
590 memcpy (&retval, valaddr, sizeof (retval));
591 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
592 return retval;
593 }
594
595 if (len == sizeof (double))
596 {
597 double retval;
598 memcpy (&retval, valaddr, sizeof (retval));
599 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
600 return retval;
601 }
602 else
603 {
604 error ("Unexpected type of floating point number.");
605 }
606 }
607 else if (code == TYPE_CODE_INT && nosign)
608 {
609 if (len == sizeof (char))
610 {
611 unsigned char retval = * (unsigned char *) valaddr;
612 /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */
613 return retval;
614 }
615
616 if (len == sizeof (short))
617 {
618 unsigned short retval;
619 memcpy (&retval, valaddr, sizeof (retval));
620 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
621 return retval;
622 }
623
624 if (len == sizeof (int))
625 {
626 unsigned int retval;
627 memcpy (&retval, valaddr, sizeof (retval));
628 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
629 return retval;
630 }
631
632 if (len == sizeof (long))
633 {
634 unsigned long retval;
635 memcpy (&retval, valaddr, sizeof (retval));
636 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
637 return retval;
638 }
639 #ifdef LONG_LONG
640 if (len == sizeof (long long))
641 {
642 unsigned long long retval;
643 memcpy (&retval, valaddr, sizeof (retval));
644 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
645 return retval;
646 }
647 #endif
648 else
649 {
650 error ("That operation is not possible on an integer of that size.");
651 }
652 }
653 else if (code == TYPE_CODE_INT)
654 {
655 if (len == sizeof (char))
656 {
657 SIGNED char retval; /* plain chars might be unsigned on host */
658 memcpy (&retval, valaddr, sizeof (retval));
659 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
660 return retval;
661 }
662
663 if (len == sizeof (short))
664 {
665 short retval;
666 memcpy (&retval, valaddr, sizeof (retval));
667 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
668 return retval;
669 }
670
671 if (len == sizeof (int))
672 {
673 int retval;
674 memcpy (&retval, valaddr, sizeof (retval));
675 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
676 return retval;
677 }
678
679 if (len == sizeof (long))
680 {
681 long retval;
682 memcpy (&retval, valaddr, sizeof (retval));
683 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
684 return retval;
685 }
686
687 #ifdef LONG_LONG
688 if (len == sizeof (long long))
689 {
690 long long retval;
691 memcpy (&retval, valaddr, sizeof (retval));
692 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
693 return retval;
694 }
695 #endif
696 else
697 {
698 error ("That operation is not possible on an integer of that size.");
699 }
700 }
701 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
702 whether we want this to be true eventually. */
703 else if (code == TYPE_CODE_PTR
704 || code == TYPE_CODE_REF)
705 {
706 if (len == sizeof(long))
707 {
708 unsigned long retval;
709 memcpy (&retval, valaddr, sizeof(retval));
710 SWAP_TARGET_AND_HOST (&retval, sizeof(retval));
711 return retval;
712 }
713 else if (len == sizeof(short))
714 {
715 unsigned short retval;
716 memcpy (&retval, valaddr, len);
717 SWAP_TARGET_AND_HOST (&retval, len);
718 return retval;
719 }
720 }
721 else if (code == TYPE_CODE_MEMBER)
722 error ("not implemented: member types in unpack_long");
723 else if (code == TYPE_CODE_CHAR)
724 return *(unsigned char *)valaddr;
725
726 error ("Value not integer or pointer.");
727 return 0; /* For lint -- never reached */
728 }
729
730 /* Return a double value from the specified type and address.
731 INVP points to an int which is set to 0 for valid value,
732 1 for invalid value (bad float format). In either case,
733 the returned double is OK to use. Argument is in target
734 format, result is in host format. */
735
736 double
737 unpack_double (type, valaddr, invp)
738 struct type *type;
739 char *valaddr;
740 int *invp;
741 {
742 register enum type_code code = TYPE_CODE (type);
743 register int len = TYPE_LENGTH (type);
744 register int nosign = TYPE_UNSIGNED (type);
745
746 *invp = 0; /* Assume valid. */
747 if (code == TYPE_CODE_FLT)
748 {
749 if (INVALID_FLOAT (valaddr, len))
750 {
751 *invp = 1;
752 return 1.234567891011121314;
753 }
754
755 if (len == sizeof (float))
756 {
757 float retval;
758 memcpy (&retval, valaddr, sizeof (retval));
759 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
760 return retval;
761 }
762
763 if (len == sizeof (double))
764 {
765 double retval;
766 memcpy (&retval, valaddr, sizeof (retval));
767 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
768 return retval;
769 }
770 else
771 {
772 error ("Unexpected type of floating point number.");
773 return 0; /* Placate lint. */
774 }
775 }
776 else if (nosign) {
777 /* Unsigned -- be sure we compensate for signed LONGEST. */
778 #ifdef LONG_LONG
779 return (unsigned long long) unpack_long (type, valaddr);
780 #else
781 return (unsigned long ) unpack_long (type, valaddr);
782 #endif
783 } else {
784 /* Signed -- we are OK with unpack_long. */
785 return unpack_long (type, valaddr);
786 }
787 }
788
789 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
790 as a CORE_ADDR, assuming the raw data is described by type TYPE.
791 We don't assume any alignment for the raw data. Return value is in
792 host byte order.
793
794 If you want functions and arrays to be coerced to pointers, and
795 references to be dereferenced, call value_as_pointer() instead.
796
797 C++: It is assumed that the front-end has taken care of
798 all matters concerning pointers to members. A pointer
799 to member which reaches here is considered to be equivalent
800 to an INT (or some size). After all, it is only an offset. */
801
802 CORE_ADDR
803 unpack_pointer (type, valaddr)
804 struct type *type;
805 char *valaddr;
806 {
807 #if 0
808 /* The user should be able to use an int (e.g. 0x7892) in contexts
809 where a pointer is expected. So this doesn't do enough. */
810 register enum type_code code = TYPE_CODE (type);
811 register int len = TYPE_LENGTH (type);
812
813 if (code == TYPE_CODE_PTR
814 || code == TYPE_CODE_REF)
815 {
816 if (len == sizeof (CORE_ADDR))
817 {
818 CORE_ADDR retval;
819 memcpy (&retval, valaddr, sizeof (retval));
820 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
821 return retval;
822 }
823 error ("Unrecognized pointer size.");
824 }
825 else if (code == TYPE_CODE_MEMBER)
826 error ("not implemented: member types in unpack_pointer");
827
828 error ("Value is not a pointer.");
829 return 0; /* For lint -- never reached */
830 #else
831 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
832 whether we want this to be true eventually. */
833 return unpack_long (type, valaddr);
834 #endif
835 }
836 \f
837 /* Given a value ARG1 (offset by OFFSET bytes)
838 of a struct or union type ARG_TYPE,
839 extract and return the value of one of its fields.
840 FIELDNO says which field.
841
842 For C++, must also be able to return values from static fields */
843
844 value
845 value_primitive_field (arg1, offset, fieldno, arg_type)
846 register value arg1;
847 int offset;
848 register int fieldno;
849 register struct type *arg_type;
850 {
851 register value v;
852 register struct type *type;
853
854 check_stub_type (arg_type);
855 type = TYPE_FIELD_TYPE (arg_type, fieldno);
856
857 /* Handle packed fields */
858
859 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
860 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
861 {
862 v = value_from_longest (type,
863 unpack_field_as_long (arg_type,
864 VALUE_CONTENTS (arg1),
865 fieldno));
866 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
867 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
868 }
869 else
870 {
871 v = allocate_value (type);
872 if (VALUE_LAZY (arg1))
873 VALUE_LAZY (v) = 1;
874 else
875 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
876 TYPE_LENGTH (type));
877 }
878 VALUE_LVAL (v) = VALUE_LVAL (arg1);
879 if (VALUE_LVAL (arg1) == lval_internalvar)
880 VALUE_LVAL (v) = lval_internalvar_component;
881 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
882 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
883 return v;
884 }
885
886 /* Given a value ARG1 of a struct or union type,
887 extract and return the value of one of its fields.
888 FIELDNO says which field.
889
890 For C++, must also be able to return values from static fields */
891
892 value
893 value_field (arg1, fieldno)
894 register value arg1;
895 register int fieldno;
896 {
897 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
898 }
899
900 /* Return a non-virtual function as a value.
901 F is the list of member functions which contains the desired method.
902 J is an index into F which provides the desired method. */
903
904 value
905 value_fn_field (f, j)
906 struct fn_field *f;
907 int j;
908 {
909 register value v;
910 register struct type *type = TYPE_FN_FIELD_TYPE (f, j);
911 struct symbol *sym;
912
913 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
914 0, VAR_NAMESPACE, 0, NULL);
915 if (! sym) error ("Internal error: could not find physical method named %s",
916 TYPE_FN_FIELD_PHYSNAME (f, j));
917
918 v = allocate_value (type);
919 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
920 VALUE_TYPE (v) = type;
921 return v;
922 }
923
924 /* Return a virtual function as a value.
925 ARG1 is the object which provides the virtual function
926 table pointer. ARG1 is side-effected in calling this function.
927 F is the list of member functions which contains the desired virtual
928 function.
929 J is an index into F which provides the desired virtual function.
930
931 TYPE is the type in which F is located. */
932 value
933 value_virtual_fn_field (arg1, f, j, type)
934 value arg1;
935 struct fn_field *f;
936 int j;
937 struct type *type;
938 {
939 /* First, get the virtual function table pointer. That comes
940 with a strange type, so cast it to type `pointer to long' (which
941 should serve just fine as a function type). Then, index into
942 the table, and convert final value to appropriate function type. */
943 value entry, vfn, vtbl;
944 value vi = value_from_longest (builtin_type_int,
945 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
946 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
947 struct type *context;
948 if (fcontext == NULL)
949 /* We don't have an fcontext (e.g. the program was compiled with
950 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
951 This won't work right for multiple inheritance, but at least we
952 should do as well as GDB 3.x did. */
953 fcontext = TYPE_VPTR_BASETYPE (type);
954 context = lookup_pointer_type (fcontext);
955 /* Now context is a pointer to the basetype containing the vtbl. */
956 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
957 arg1 = value_ind (value_cast (context, value_addr (arg1)));
958
959 context = VALUE_TYPE (arg1);
960 /* Now context is the basetype containing the vtbl. */
961
962 /* This type may have been defined before its virtual function table
963 was. If so, fill in the virtual function table entry for the
964 type now. */
965 if (TYPE_VPTR_FIELDNO (context) < 0)
966 fill_in_vptr_fieldno (context);
967
968 /* The virtual function table is now an array of structures
969 which have the form { int16 offset, delta; void *pfn; }. */
970 vtbl = value_ind (value_field (arg1, TYPE_VPTR_FIELDNO (context)));
971
972 /* Index into the virtual function table. This is hard-coded because
973 looking up a field is not cheap, and it may be important to save
974 time, e.g. if the user has set a conditional breakpoint calling
975 a virtual function. */
976 entry = value_subscript (vtbl, vi);
977
978 /* Move the `this' pointer according to the virtual function table. */
979 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
980 if (! VALUE_LAZY (arg1))
981 {
982 VALUE_LAZY (arg1) = 1;
983 value_fetch_lazy (arg1);
984 }
985
986 vfn = value_field (entry, 2);
987 /* Reinstantiate the function pointer with the correct type. */
988 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
989
990 return vfn;
991 }
992
993 /* ARG is a pointer to an object we know to be at least
994 a DTYPE. BTYPE is the most derived basetype that has
995 already been searched (and need not be searched again).
996 After looking at the vtables between BTYPE and DTYPE,
997 return the most derived type we find. The caller must
998 be satisfied when the return value == DTYPE.
999
1000 FIXME-tiemann: should work with dossier entries as well. */
1001
1002 static value
1003 value_headof (arg, btype, dtype)
1004 value arg;
1005 struct type *btype, *dtype;
1006 {
1007 /* First collect the vtables we must look at for this object. */
1008 /* FIXME-tiemann: right now, just look at top-most vtable. */
1009 value vtbl, entry, best_entry = 0;
1010 int i, nelems;
1011 int offset, best_offset = 0;
1012 struct symbol *sym;
1013 CORE_ADDR pc_for_sym;
1014 char *demangled_name;
1015 struct minimal_symbol *msymbol;
1016
1017 btype = TYPE_VPTR_BASETYPE (dtype);
1018 check_stub_type (btype);
1019 if (btype != dtype)
1020 vtbl = value_cast (lookup_pointer_type (btype), arg);
1021 else
1022 vtbl = arg;
1023 vtbl = value_ind (value_field (value_ind (vtbl), TYPE_VPTR_FIELDNO (btype)));
1024
1025 /* Check that VTBL looks like it points to a virtual function table. */
1026 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1027 if (msymbol == NULL
1028 || !VTBL_PREFIX_P (demangled_name = msymbol -> name))
1029 {
1030 /* If we expected to find a vtable, but did not, let the user
1031 know that we aren't happy, but don't throw an error.
1032 FIXME: there has to be a better way to do this. */
1033 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1034 memcpy (error_type, VALUE_TYPE (arg), sizeof (struct type));
1035 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1036 VALUE_TYPE (arg) = error_type;
1037 return arg;
1038 }
1039
1040 /* Now search through the virtual function table. */
1041 entry = value_ind (vtbl);
1042 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1043 for (i = 1; i <= nelems; i++)
1044 {
1045 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1046 (LONGEST) i));
1047 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1048 /* If we use '<=' we can handle single inheritance
1049 * where all offsets are zero - just use the first entry found. */
1050 if (offset <= best_offset)
1051 {
1052 best_offset = offset;
1053 best_entry = entry;
1054 }
1055 }
1056 /* Move the pointer according to BEST_ENTRY's offset, and figure
1057 out what type we should return as the new pointer. */
1058 if (best_entry == 0)
1059 {
1060 /* An alternative method (which should no longer be necessary).
1061 * But we leave it in for future use, when we will hopefully
1062 * have optimizes the vtable to use thunks instead of offsets. */
1063 /* Use the name of vtable itself to extract a base type. */
1064 demangled_name += 4; /* Skip _vt$ prefix. */
1065 }
1066 else
1067 {
1068 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1069 sym = find_pc_function (pc_for_sym);
1070 demangled_name = cplus_demangle (SYMBOL_NAME (sym), 0);
1071 *(strchr (demangled_name, ':')) = '\0';
1072 }
1073 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1074 if (sym == 0)
1075 error ("could not find type declaration for `%s'", SYMBOL_NAME (sym));
1076 if (best_entry)
1077 {
1078 free (demangled_name);
1079 arg = value_add (value_cast (builtin_type_int, arg),
1080 value_field (best_entry, 0));
1081 }
1082 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1083 return arg;
1084 }
1085
1086 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1087 function tables, probe ARG's tables (including the vtables
1088 of its baseclasses) to figure out the most derived type that ARG
1089 could actually be a pointer to. */
1090
1091 value
1092 value_from_vtable_info (arg, type)
1093 value arg;
1094 struct type *type;
1095 {
1096 /* Take care of preliminaries. */
1097 if (TYPE_VPTR_FIELDNO (type) < 0)
1098 fill_in_vptr_fieldno (type);
1099 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1100 return 0;
1101
1102 return value_headof (arg, 0, type);
1103 }
1104
1105 /* Compute the address of the baseclass which is
1106 the INDEXth baseclass of class TYPE. The TYPE base
1107 of the object is at VALADDR.
1108
1109 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1110 or 0 if no error. In that case the return value is not the address
1111 of the baseclasss, but the address which could not be read
1112 successfully. */
1113
1114 char *
1115 baseclass_addr (type, index, valaddr, valuep, errp)
1116 struct type *type;
1117 int index;
1118 char *valaddr;
1119 value *valuep;
1120 int *errp;
1121 {
1122 struct type *basetype = TYPE_BASECLASS (type, index);
1123
1124 if (errp)
1125 *errp = 0;
1126
1127 if (BASETYPE_VIA_VIRTUAL (type, index))
1128 {
1129 /* Must hunt for the pointer to this virtual baseclass. */
1130 register int i, len = TYPE_NFIELDS (type);
1131 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1132 char *vbase_name, *type_name = type_name_no_tag (basetype);
1133
1134 vbase_name = (char *)alloca (strlen (type_name) + 8);
1135 sprintf (vbase_name, "_vb$%s", type_name);
1136 /* First look for the virtual baseclass pointer
1137 in the fields. */
1138 for (i = n_baseclasses; i < len; i++)
1139 {
1140 if (! strcmp (vbase_name, TYPE_FIELD_NAME (type, i)))
1141 {
1142 value val = allocate_value (basetype);
1143 CORE_ADDR addr;
1144 int status;
1145
1146 addr
1147 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1148 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1149
1150 status = target_read_memory (addr,
1151 VALUE_CONTENTS_RAW (val),
1152 TYPE_LENGTH (basetype));
1153 VALUE_LVAL (val) = lval_memory;
1154 VALUE_ADDRESS (val) = addr;
1155
1156 if (status != 0)
1157 {
1158 if (valuep)
1159 *valuep = NULL;
1160 release_value (val);
1161 value_free (val);
1162 if (errp)
1163 *errp = status;
1164 return (char *)addr;
1165 }
1166 else
1167 {
1168 if (valuep)
1169 *valuep = val;
1170 return (char *) VALUE_CONTENTS (val);
1171 }
1172 }
1173 }
1174 /* Not in the fields, so try looking through the baseclasses. */
1175 for (i = index+1; i < n_baseclasses; i++)
1176 {
1177 char *baddr;
1178
1179 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1180 if (baddr)
1181 return baddr;
1182 }
1183 /* Not found. */
1184 if (valuep)
1185 *valuep = 0;
1186 return 0;
1187 }
1188
1189 /* Baseclass is easily computed. */
1190 if (valuep)
1191 *valuep = 0;
1192 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1193 }
1194 \f
1195 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1196 VALADDR.
1197
1198 Extracting bits depends on endianness of the machine. Compute the
1199 number of least significant bits to discard. For big endian machines,
1200 we compute the total number of bits in the anonymous object, subtract
1201 off the bit count from the MSB of the object to the MSB of the
1202 bitfield, then the size of the bitfield, which leaves the LSB discard
1203 count. For little endian machines, the discard count is simply the
1204 number of bits from the LSB of the anonymous object to the LSB of the
1205 bitfield.
1206
1207 If the field is signed, we also do sign extension. */
1208
1209 LONGEST
1210 unpack_field_as_long (type, valaddr, fieldno)
1211 struct type *type;
1212 char *valaddr;
1213 int fieldno;
1214 {
1215 unsigned LONGEST val;
1216 unsigned LONGEST valmask;
1217 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1218 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1219 int lsbcount;
1220
1221 memcpy (&val, valaddr + bitpos / 8, sizeof (val));
1222 SWAP_TARGET_AND_HOST (&val, sizeof (val));
1223
1224 /* Extract bits. See comment above. */
1225
1226 #if BITS_BIG_ENDIAN
1227 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1228 #else
1229 lsbcount = (bitpos % 8);
1230 #endif
1231 val >>= lsbcount;
1232
1233 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1234 If the field is signed, and is negative, then sign extend. */
1235
1236 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1237 {
1238 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1239 val &= valmask;
1240 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1241 {
1242 if (val & (valmask ^ (valmask >> 1)))
1243 {
1244 val |= ~valmask;
1245 }
1246 }
1247 }
1248 return (val);
1249 }
1250
1251 /* Modify the value of a bitfield. ADDR points to a block of memory in
1252 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1253 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1254 indicate which bits (in target bit order) comprise the bitfield. */
1255
1256 void
1257 modify_field (addr, fieldval, bitpos, bitsize)
1258 char *addr;
1259 int fieldval;
1260 int bitpos, bitsize;
1261 {
1262 long oword;
1263
1264 /* Reject values too big to fit in the field in question,
1265 otherwise adjoining fields may be corrupted. */
1266 if (bitsize < (8 * sizeof (fieldval))
1267 && 0 != (fieldval & ~((1<<bitsize)-1)))
1268 error ("Value %d does not fit in %d bits.", fieldval, bitsize);
1269
1270 memcpy (&oword, addr, sizeof oword);
1271 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */
1272
1273 /* Shifting for bit field depends on endianness of the target machine. */
1274 #if BITS_BIG_ENDIAN
1275 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1276 #endif
1277
1278 /* Mask out old value, while avoiding shifts >= longword size */
1279 if (bitsize < 8 * sizeof (oword))
1280 oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos);
1281 else
1282 oword &= ~((-1) << bitpos);
1283 oword |= fieldval << bitpos;
1284
1285 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */
1286 memcpy (addr, &oword, sizeof oword);
1287 }
1288 \f
1289 /* Convert C numbers into newly allocated values */
1290
1291 value
1292 value_from_longest (type, num)
1293 struct type *type;
1294 register LONGEST num;
1295 {
1296 register value val = allocate_value (type);
1297 register enum type_code code = TYPE_CODE (type);
1298 register int len = TYPE_LENGTH (type);
1299
1300 /* FIXME, we assume that pointers have the same form and byte order as
1301 integers, and that all pointers have the same form. */
1302 if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM ||
1303 code == TYPE_CODE_CHAR || code == TYPE_CODE_PTR ||
1304 code == TYPE_CODE_REF)
1305 {
1306 if (len == sizeof (char))
1307 * (char *) VALUE_CONTENTS_RAW (val) = num;
1308 else if (len == sizeof (short))
1309 * (short *) VALUE_CONTENTS_RAW (val) = num;
1310 else if (len == sizeof (int))
1311 * (int *) VALUE_CONTENTS_RAW (val) = num;
1312 else if (len == sizeof (long))
1313 * (long *) VALUE_CONTENTS_RAW (val) = num;
1314 #ifdef LONG_LONG
1315 else if (len == sizeof (long long))
1316 * (long long *) VALUE_CONTENTS_RAW (val) = num;
1317 #endif
1318 else
1319 error ("Integer type encountered with unexpected data length.");
1320 }
1321 else
1322 error ("Unexpected type encountered for integer constant.");
1323
1324 /* num was in host byte order. So now put the value's contents
1325 into target byte order. */
1326 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1327
1328 return val;
1329 }
1330
1331 value
1332 value_from_double (type, num)
1333 struct type *type;
1334 double num;
1335 {
1336 register value val = allocate_value (type);
1337 register enum type_code code = TYPE_CODE (type);
1338 register int len = TYPE_LENGTH (type);
1339
1340 if (code == TYPE_CODE_FLT)
1341 {
1342 if (len == sizeof (float))
1343 * (float *) VALUE_CONTENTS_RAW (val) = num;
1344 else if (len == sizeof (double))
1345 * (double *) VALUE_CONTENTS_RAW (val) = num;
1346 else
1347 error ("Floating type encountered with unexpected data length.");
1348 }
1349 else
1350 error ("Unexpected type encountered for floating constant.");
1351
1352 /* num was in host byte order. So now put the value's contents
1353 into target byte order. */
1354 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1355
1356 return val;
1357 }
1358 \f
1359 /* Deal with the value that is "about to be returned". */
1360
1361 /* Return the value that a function returning now
1362 would be returning to its caller, assuming its type is VALTYPE.
1363 RETBUF is where we look for what ought to be the contents
1364 of the registers (in raw form). This is because it is often
1365 desirable to restore old values to those registers
1366 after saving the contents of interest, and then call
1367 this function using the saved values.
1368 struct_return is non-zero when the function in question is
1369 using the structure return conventions on the machine in question;
1370 0 when it is using the value returning conventions (this often
1371 means returning pointer to where structure is vs. returning value). */
1372
1373 value
1374 value_being_returned (valtype, retbuf, struct_return)
1375 register struct type *valtype;
1376 char retbuf[REGISTER_BYTES];
1377 int struct_return;
1378 /*ARGSUSED*/
1379 {
1380 register value val;
1381 CORE_ADDR addr;
1382
1383 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1384 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1385 if (struct_return) {
1386 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1387 if (!addr)
1388 error ("Function return value unknown");
1389 return value_at (valtype, addr);
1390 }
1391 #endif
1392
1393 val = allocate_value (valtype);
1394 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1395
1396 return val;
1397 }
1398
1399 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1400 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1401 and TYPE is the type (which is known to be struct, union or array).
1402
1403 On most machines, the struct convention is used unless we are
1404 using gcc and the type is of a special size. */
1405 #if !defined (USE_STRUCT_CONVENTION)
1406 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1407 (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \
1408 || TYPE_LENGTH (value_type) == 2 \
1409 || TYPE_LENGTH (value_type) == 4 \
1410 || TYPE_LENGTH (value_type) == 8 \
1411 ) \
1412 ))
1413 #endif
1414
1415 /* Return true if the function specified is using the structure returning
1416 convention on this machine to return arguments, or 0 if it is using
1417 the value returning convention. FUNCTION is the value representing
1418 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1419 is the type returned by the function. GCC_P is nonzero if compiled
1420 with GCC. */
1421
1422 int
1423 using_struct_return (function, funcaddr, value_type, gcc_p)
1424 value function;
1425 CORE_ADDR funcaddr;
1426 struct type *value_type;
1427 int gcc_p;
1428 /*ARGSUSED*/
1429 {
1430 register enum type_code code = TYPE_CODE (value_type);
1431
1432 if (code == TYPE_CODE_ERROR)
1433 error ("Function return type unknown.");
1434
1435 if (code == TYPE_CODE_STRUCT ||
1436 code == TYPE_CODE_UNION ||
1437 code == TYPE_CODE_ARRAY)
1438 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1439
1440 return 0;
1441 }
1442
1443 /* Store VAL so it will be returned if a function returns now.
1444 Does not verify that VAL's type matches what the current
1445 function wants to return. */
1446
1447 void
1448 set_return_value (val)
1449 value val;
1450 {
1451 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1452 double dbuf;
1453 LONGEST lbuf;
1454
1455 if (code == TYPE_CODE_ERROR)
1456 error ("Function return type unknown.");
1457
1458 if ( code == TYPE_CODE_STRUCT
1459 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1460 error ("GDB does not support specifying a struct or union return value.");
1461
1462 /* FIXME, this is bogus. We don't know what the return conventions
1463 are, or how values should be promoted.... */
1464 if (code == TYPE_CODE_FLT)
1465 {
1466 dbuf = value_as_double (val);
1467
1468 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1469 }
1470 else
1471 {
1472 lbuf = value_as_long (val);
1473 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1474 }
1475 }
1476 \f
1477 void
1478 _initialize_values ()
1479 {
1480 add_cmd ("convenience", no_class, show_convenience,
1481 "Debugger convenience (\"$foo\") variables.\n\
1482 These variables are created when you assign them values;\n\
1483 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1484 A few convenience variables are given values automatically:\n\
1485 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1486 \"$__\" holds the contents of the last address examined with \"x\".",
1487 &showlist);
1488
1489 add_cmd ("values", no_class, show_values,
1490 "Elements of value history around item number IDX (or last ten).",
1491 &showlist);
1492 }