* values.c, value.h (modify_field), callers: Make fieldval a LONGEST.
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value
35 value_headof PARAMS ((value, struct type *, struct type *));
36
37 static void
38 show_values PARAMS ((char *, int));
39
40 static void
41 show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value
72 allocate_value (type)
73 struct type *type;
74 {
75 register value val;
76
77 check_stub_type (type);
78
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value val;
106
107 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value mark;
139 {
140 value val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value val;
173 {
174 register value v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value
197 value_copy (arg)
198 value arg;
199 {
200 register value val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 if (!VALUE_LAZY (val))
214 {
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
218 }
219 return val;
220 }
221 \f
222 /* Access to the value history. */
223
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
228
229 int
230 record_latest_value (val)
231 value val;
232 {
233 int i;
234
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
238 {
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
241 }
242
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
245
246 i = value_history_count % VALUE_HISTORY_CHUNK;
247 if (i == 0)
248 {
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
255 }
256
257 value_history_chain->values[i] = val;
258 release_value (val);
259
260 /* Now we regard value_history_count as origin-one
261 and applying to the value just stored. */
262
263 return ++value_history_count;
264 }
265
266 /* Return a copy of the value in the history with sequence number NUM. */
267
268 value
269 access_value_history (num)
270 int num;
271 {
272 register struct value_history_chunk *chunk;
273 register int i;
274 register int absnum = num;
275
276 if (absnum <= 0)
277 absnum += value_history_count;
278
279 if (absnum <= 0)
280 {
281 if (num == 0)
282 error ("The history is empty.");
283 else if (num == 1)
284 error ("There is only one value in the history.");
285 else
286 error ("History does not go back to $$%d.", -num);
287 }
288 if (absnum > value_history_count)
289 error ("History has not yet reached $%d.", absnum);
290
291 absnum--;
292
293 /* Now absnum is always absolute and origin zero. */
294
295 chunk = value_history_chain;
296 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
297 i > 0; i--)
298 chunk = chunk->next;
299
300 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
301 }
302
303 /* Clear the value history entirely.
304 Must be done when new symbol tables are loaded,
305 because the type pointers become invalid. */
306
307 void
308 clear_value_history ()
309 {
310 register struct value_history_chunk *next;
311 register int i;
312 register value val;
313
314 while (value_history_chain)
315 {
316 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
317 if ((val = value_history_chain->values[i]) != NULL)
318 free ((PTR)val);
319 next = value_history_chain->next;
320 free ((PTR)value_history_chain);
321 value_history_chain = next;
322 }
323 value_history_count = 0;
324 }
325
326 static void
327 show_values (num_exp, from_tty)
328 char *num_exp;
329 int from_tty;
330 {
331 register int i;
332 register value val;
333 static int num = 1;
334
335 if (num_exp)
336 {
337 if (num_exp[0] == '+' && num_exp[1] == '\0')
338 /* "info history +" should print from the stored position. */
339 ;
340 else
341 /* "info history <exp>" should print around value number <exp>. */
342 num = parse_and_eval_address (num_exp) - 5;
343 }
344 else
345 {
346 /* "info history" means print the last 10 values. */
347 num = value_history_count - 9;
348 }
349
350 if (num <= 0)
351 num = 1;
352
353 for (i = num; i < num + 10 && i <= value_history_count; i++)
354 {
355 val = access_value_history (i);
356 printf_filtered ("$%d = ", i);
357 value_print (val, stdout, 0, Val_pretty_default);
358 printf_filtered ("\n");
359 }
360
361 /* The next "info history +" should start after what we just printed. */
362 num += 10;
363
364 /* Hitting just return after this command should do the same thing as
365 "info history +". If num_exp is null, this is unnecessary, since
366 "info history +" is not useful after "info history". */
367 if (from_tty && num_exp)
368 {
369 num_exp[0] = '+';
370 num_exp[1] = '\0';
371 }
372 }
373 \f
374 /* Internal variables. These are variables within the debugger
375 that hold values assigned by debugger commands.
376 The user refers to them with a '$' prefix
377 that does not appear in the variable names stored internally. */
378
379 static struct internalvar *internalvars;
380
381 /* Look up an internal variable with name NAME. NAME should not
382 normally include a dollar sign.
383
384 If the specified internal variable does not exist,
385 one is created, with a void value. */
386
387 struct internalvar *
388 lookup_internalvar (name)
389 char *name;
390 {
391 register struct internalvar *var;
392
393 for (var = internalvars; var; var = var->next)
394 if (STREQ (var->name, name))
395 return var;
396
397 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
398 var->name = concat (name, NULL);
399 var->value = allocate_value (builtin_type_void);
400 release_value (var->value);
401 var->next = internalvars;
402 internalvars = var;
403 return var;
404 }
405
406 value
407 value_of_internalvar (var)
408 struct internalvar *var;
409 {
410 register value val;
411
412 #ifdef IS_TRAPPED_INTERNALVAR
413 if (IS_TRAPPED_INTERNALVAR (var->name))
414 return VALUE_OF_TRAPPED_INTERNALVAR (var);
415 #endif
416
417 val = value_copy (var->value);
418 if (VALUE_LAZY (val))
419 value_fetch_lazy (val);
420 VALUE_LVAL (val) = lval_internalvar;
421 VALUE_INTERNALVAR (val) = var;
422 return val;
423 }
424
425 void
426 set_internalvar_component (var, offset, bitpos, bitsize, newval)
427 struct internalvar *var;
428 int offset, bitpos, bitsize;
429 value newval;
430 {
431 register char *addr = VALUE_CONTENTS (var->value) + offset;
432
433 #ifdef IS_TRAPPED_INTERNALVAR
434 if (IS_TRAPPED_INTERNALVAR (var->name))
435 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
436 #endif
437
438 if (bitsize)
439 modify_field (addr, value_as_long (newval),
440 bitpos, bitsize);
441 else
442 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
443 }
444
445 void
446 set_internalvar (var, val)
447 struct internalvar *var;
448 value val;
449 {
450 #ifdef IS_TRAPPED_INTERNALVAR
451 if (IS_TRAPPED_INTERNALVAR (var->name))
452 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
453 #endif
454
455 free ((PTR)var->value);
456 var->value = value_copy (val);
457 /* Force the value to be fetched from the target now, to avoid problems
458 later when this internalvar is referenced and the target is gone or
459 has changed. */
460 if (VALUE_LAZY (var->value))
461 value_fetch_lazy (var->value);
462 release_value (var->value);
463 }
464
465 char *
466 internalvar_name (var)
467 struct internalvar *var;
468 {
469 return var->name;
470 }
471
472 /* Free all internalvars. Done when new symtabs are loaded,
473 because that makes the values invalid. */
474
475 void
476 clear_internalvars ()
477 {
478 register struct internalvar *var;
479
480 while (internalvars)
481 {
482 var = internalvars;
483 internalvars = var->next;
484 free ((PTR)var->name);
485 free ((PTR)var->value);
486 free ((PTR)var);
487 }
488 }
489
490 static void
491 show_convenience (ignore, from_tty)
492 char *ignore;
493 int from_tty;
494 {
495 register struct internalvar *var;
496 int varseen = 0;
497
498 for (var = internalvars; var; var = var->next)
499 {
500 #ifdef IS_TRAPPED_INTERNALVAR
501 if (IS_TRAPPED_INTERNALVAR (var->name))
502 continue;
503 #endif
504 if (!varseen)
505 {
506 varseen = 1;
507 }
508 printf_filtered ("$%s = ", var->name);
509 value_print (var->value, stdout, 0, Val_pretty_default);
510 printf_filtered ("\n");
511 }
512 if (!varseen)
513 printf ("No debugger convenience variables now defined.\n\
514 Convenience variables have names starting with \"$\";\n\
515 use \"set\" as in \"set $foo = 5\" to define them.\n");
516 }
517 \f
518 /* Extract a value as a C number (either long or double).
519 Knows how to convert fixed values to double, or
520 floating values to long.
521 Does not deallocate the value. */
522
523 LONGEST
524 value_as_long (val)
525 register value val;
526 {
527 /* This coerces arrays and functions, which is necessary (e.g.
528 in disassemble_command). It also dereferences references, which
529 I suspect is the most logical thing to do. */
530 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
531 COERCE_ARRAY (val);
532 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
533 }
534
535 double
536 value_as_double (val)
537 register value val;
538 {
539 double foo;
540 int inv;
541
542 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
543 if (inv)
544 error ("Invalid floating value found in program.");
545 return foo;
546 }
547 /* Extract a value as a C pointer.
548 Does not deallocate the value. */
549 CORE_ADDR
550 value_as_pointer (val)
551 value val;
552 {
553 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
554 whether we want this to be true eventually. */
555 return ADDR_BITS_REMOVE(value_as_long (val));
556 }
557 \f
558 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
559 as a long, or as a double, assuming the raw data is described
560 by type TYPE. Knows how to convert different sizes of values
561 and can convert between fixed and floating point. We don't assume
562 any alignment for the raw data. Return value is in host byte order.
563
564 If you want functions and arrays to be coerced to pointers, and
565 references to be dereferenced, call value_as_long() instead.
566
567 C++: It is assumed that the front-end has taken care of
568 all matters concerning pointers to members. A pointer
569 to member which reaches here is considered to be equivalent
570 to an INT (or some size). After all, it is only an offset. */
571
572 /* FIXME: This should be rewritten as a switch statement for speed and
573 ease of comprehension. */
574
575 LONGEST
576 unpack_long (type, valaddr)
577 struct type *type;
578 char *valaddr;
579 {
580 register enum type_code code = TYPE_CODE (type);
581 register int len = TYPE_LENGTH (type);
582 register int nosign = TYPE_UNSIGNED (type);
583
584 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
585 code = TYPE_CODE_INT;
586 if (code == TYPE_CODE_FLT)
587 {
588 if (len == sizeof (float))
589 {
590 float retval;
591 memcpy (&retval, valaddr, sizeof (retval));
592 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
593 return retval;
594 }
595
596 if (len == sizeof (double))
597 {
598 double retval;
599 memcpy (&retval, valaddr, sizeof (retval));
600 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
601 return retval;
602 }
603 else
604 {
605 error ("Unexpected type of floating point number.");
606 }
607 }
608 else if ((code == TYPE_CODE_INT || code == TYPE_CODE_CHAR) && nosign)
609 {
610 return extract_unsigned_integer (valaddr, len);
611 }
612 else if (code == TYPE_CODE_INT || code == TYPE_CODE_CHAR)
613 {
614 return extract_signed_integer (valaddr, len);
615 }
616 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
617 whether we want this to be true eventually. */
618 else if (code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
619 {
620 return extract_address (valaddr, len);
621 }
622 else if (code == TYPE_CODE_MEMBER)
623 error ("not implemented: member types in unpack_long");
624
625 error ("Value not integer or pointer.");
626 return 0; /* For lint -- never reached */
627 }
628
629 /* Return a double value from the specified type and address.
630 INVP points to an int which is set to 0 for valid value,
631 1 for invalid value (bad float format). In either case,
632 the returned double is OK to use. Argument is in target
633 format, result is in host format. */
634
635 double
636 unpack_double (type, valaddr, invp)
637 struct type *type;
638 char *valaddr;
639 int *invp;
640 {
641 register enum type_code code = TYPE_CODE (type);
642 register int len = TYPE_LENGTH (type);
643 register int nosign = TYPE_UNSIGNED (type);
644
645 *invp = 0; /* Assume valid. */
646 if (code == TYPE_CODE_FLT)
647 {
648 if (INVALID_FLOAT (valaddr, len))
649 {
650 *invp = 1;
651 return 1.234567891011121314;
652 }
653
654 if (len == sizeof (float))
655 {
656 float retval;
657 memcpy (&retval, valaddr, sizeof (retval));
658 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
659 return retval;
660 }
661
662 if (len == sizeof (double))
663 {
664 double retval;
665 memcpy (&retval, valaddr, sizeof (retval));
666 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
667 return retval;
668 }
669 else
670 {
671 error ("Unexpected type of floating point number.");
672 return 0; /* Placate lint. */
673 }
674 }
675 else if (nosign) {
676 /* Unsigned -- be sure we compensate for signed LONGEST. */
677 return (unsigned LONGEST) unpack_long (type, valaddr);
678 } else {
679 /* Signed -- we are OK with unpack_long. */
680 return unpack_long (type, valaddr);
681 }
682 }
683
684 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
685 as a CORE_ADDR, assuming the raw data is described by type TYPE.
686 We don't assume any alignment for the raw data. Return value is in
687 host byte order.
688
689 If you want functions and arrays to be coerced to pointers, and
690 references to be dereferenced, call value_as_pointer() instead.
691
692 C++: It is assumed that the front-end has taken care of
693 all matters concerning pointers to members. A pointer
694 to member which reaches here is considered to be equivalent
695 to an INT (or some size). After all, it is only an offset. */
696
697 CORE_ADDR
698 unpack_pointer (type, valaddr)
699 struct type *type;
700 char *valaddr;
701 {
702 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
703 whether we want this to be true eventually. */
704 return unpack_long (type, valaddr);
705 }
706 \f
707 /* Given a value ARG1 (offset by OFFSET bytes)
708 of a struct or union type ARG_TYPE,
709 extract and return the value of one of its fields.
710 FIELDNO says which field.
711
712 For C++, must also be able to return values from static fields */
713
714 value
715 value_primitive_field (arg1, offset, fieldno, arg_type)
716 register value arg1;
717 int offset;
718 register int fieldno;
719 register struct type *arg_type;
720 {
721 register value v;
722 register struct type *type;
723
724 check_stub_type (arg_type);
725 type = TYPE_FIELD_TYPE (arg_type, fieldno);
726
727 /* Handle packed fields */
728
729 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
730 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
731 {
732 v = value_from_longest (type,
733 unpack_field_as_long (arg_type,
734 VALUE_CONTENTS (arg1),
735 fieldno));
736 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
737 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
738 }
739 else
740 {
741 v = allocate_value (type);
742 if (VALUE_LAZY (arg1))
743 VALUE_LAZY (v) = 1;
744 else
745 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
746 TYPE_LENGTH (type));
747 }
748 VALUE_LVAL (v) = VALUE_LVAL (arg1);
749 if (VALUE_LVAL (arg1) == lval_internalvar)
750 VALUE_LVAL (v) = lval_internalvar_component;
751 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
752 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
753 return v;
754 }
755
756 /* Given a value ARG1 of a struct or union type,
757 extract and return the value of one of its fields.
758 FIELDNO says which field.
759
760 For C++, must also be able to return values from static fields */
761
762 value
763 value_field (arg1, fieldno)
764 register value arg1;
765 register int fieldno;
766 {
767 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
768 }
769
770 /* Return a non-virtual function as a value.
771 F is the list of member functions which contains the desired method.
772 J is an index into F which provides the desired method. */
773
774 value
775 value_fn_field (arg1p, f, j, type, offset)
776 value *arg1p;
777 struct fn_field *f;
778 int j;
779 struct type *type;
780 int offset;
781 {
782 register value v;
783 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
784 struct symbol *sym;
785
786 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
787 0, VAR_NAMESPACE, 0, NULL);
788 if (! sym) error ("Internal error: could not find physical method named %s",
789 TYPE_FN_FIELD_PHYSNAME (f, j));
790
791 v = allocate_value (ftype);
792 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
793 VALUE_TYPE (v) = ftype;
794
795 if (arg1p)
796 {
797 if (type != VALUE_TYPE (*arg1p))
798 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
799 value_addr (*arg1p)));
800
801 /* Move the `this' pointer according to the offset. */
802 VALUE_OFFSET (*arg1p) += offset;
803 }
804
805 return v;
806 }
807
808 /* Return a virtual function as a value.
809 ARG1 is the object which provides the virtual function
810 table pointer. *ARG1P is side-effected in calling this function.
811 F is the list of member functions which contains the desired virtual
812 function.
813 J is an index into F which provides the desired virtual function.
814
815 TYPE is the type in which F is located. */
816 value
817 value_virtual_fn_field (arg1p, f, j, type, offset)
818 value *arg1p;
819 struct fn_field *f;
820 int j;
821 struct type *type;
822 int offset;
823 {
824 value arg1 = *arg1p;
825 /* First, get the virtual function table pointer. That comes
826 with a strange type, so cast it to type `pointer to long' (which
827 should serve just fine as a function type). Then, index into
828 the table, and convert final value to appropriate function type. */
829 value entry, vfn, vtbl;
830 value vi = value_from_longest (builtin_type_int,
831 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
832 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
833 struct type *context;
834 if (fcontext == NULL)
835 /* We don't have an fcontext (e.g. the program was compiled with
836 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
837 This won't work right for multiple inheritance, but at least we
838 should do as well as GDB 3.x did. */
839 fcontext = TYPE_VPTR_BASETYPE (type);
840 context = lookup_pointer_type (fcontext);
841 /* Now context is a pointer to the basetype containing the vtbl. */
842 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
843 arg1 = value_ind (value_cast (context, value_addr (arg1)));
844
845 context = VALUE_TYPE (arg1);
846 /* Now context is the basetype containing the vtbl. */
847
848 /* This type may have been defined before its virtual function table
849 was. If so, fill in the virtual function table entry for the
850 type now. */
851 if (TYPE_VPTR_FIELDNO (context) < 0)
852 fill_in_vptr_fieldno (context);
853
854 /* The virtual function table is now an array of structures
855 which have the form { int16 offset, delta; void *pfn; }. */
856 vtbl = value_ind (value_primitive_field (arg1, 0,
857 TYPE_VPTR_FIELDNO (context),
858 TYPE_VPTR_BASETYPE (context)));
859
860 /* Index into the virtual function table. This is hard-coded because
861 looking up a field is not cheap, and it may be important to save
862 time, e.g. if the user has set a conditional breakpoint calling
863 a virtual function. */
864 entry = value_subscript (vtbl, vi);
865
866 /* Move the `this' pointer according to the virtual function table. */
867 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)) + offset;
868 if (! VALUE_LAZY (arg1))
869 {
870 VALUE_LAZY (arg1) = 1;
871 value_fetch_lazy (arg1);
872 }
873
874 vfn = value_field (entry, 2);
875 /* Reinstantiate the function pointer with the correct type. */
876 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
877
878 *arg1p = arg1;
879 return vfn;
880 }
881
882 /* ARG is a pointer to an object we know to be at least
883 a DTYPE. BTYPE is the most derived basetype that has
884 already been searched (and need not be searched again).
885 After looking at the vtables between BTYPE and DTYPE,
886 return the most derived type we find. The caller must
887 be satisfied when the return value == DTYPE.
888
889 FIXME-tiemann: should work with dossier entries as well. */
890
891 static value
892 value_headof (in_arg, btype, dtype)
893 value in_arg;
894 struct type *btype, *dtype;
895 {
896 /* First collect the vtables we must look at for this object. */
897 /* FIXME-tiemann: right now, just look at top-most vtable. */
898 value arg, vtbl, entry, best_entry = 0;
899 int i, nelems;
900 int offset, best_offset = 0;
901 struct symbol *sym;
902 CORE_ADDR pc_for_sym;
903 char *demangled_name;
904 struct minimal_symbol *msymbol;
905
906 btype = TYPE_VPTR_BASETYPE (dtype);
907 check_stub_type (btype);
908 arg = in_arg;
909 if (btype != dtype)
910 arg = value_cast (lookup_pointer_type (btype), arg);
911 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
912
913 /* Check that VTBL looks like it points to a virtual function table. */
914 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
915 if (msymbol == NULL
916 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
917 {
918 /* If we expected to find a vtable, but did not, let the user
919 know that we aren't happy, but don't throw an error.
920 FIXME: there has to be a better way to do this. */
921 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
922 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
923 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
924 VALUE_TYPE (in_arg) = error_type;
925 return in_arg;
926 }
927
928 /* Now search through the virtual function table. */
929 entry = value_ind (vtbl);
930 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
931 for (i = 1; i <= nelems; i++)
932 {
933 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
934 (LONGEST) i));
935 offset = longest_to_int (value_as_long (value_field (entry, 0)));
936 /* If we use '<=' we can handle single inheritance
937 * where all offsets are zero - just use the first entry found. */
938 if (offset <= best_offset)
939 {
940 best_offset = offset;
941 best_entry = entry;
942 }
943 }
944 /* Move the pointer according to BEST_ENTRY's offset, and figure
945 out what type we should return as the new pointer. */
946 if (best_entry == 0)
947 {
948 /* An alternative method (which should no longer be necessary).
949 * But we leave it in for future use, when we will hopefully
950 * have optimizes the vtable to use thunks instead of offsets. */
951 /* Use the name of vtable itself to extract a base type. */
952 demangled_name += 4; /* Skip _vt$ prefix. */
953 }
954 else
955 {
956 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
957 sym = find_pc_function (pc_for_sym);
958 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
959 *(strchr (demangled_name, ':')) = '\0';
960 }
961 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
962 if (sym == NULL)
963 error ("could not find type declaration for `%s'", demangled_name);
964 if (best_entry)
965 {
966 free (demangled_name);
967 arg = value_add (value_cast (builtin_type_int, arg),
968 value_field (best_entry, 0));
969 }
970 else arg = in_arg;
971 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
972 return arg;
973 }
974
975 /* ARG is a pointer object of type TYPE. If TYPE has virtual
976 function tables, probe ARG's tables (including the vtables
977 of its baseclasses) to figure out the most derived type that ARG
978 could actually be a pointer to. */
979
980 value
981 value_from_vtable_info (arg, type)
982 value arg;
983 struct type *type;
984 {
985 /* Take care of preliminaries. */
986 if (TYPE_VPTR_FIELDNO (type) < 0)
987 fill_in_vptr_fieldno (type);
988 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
989 return 0;
990
991 return value_headof (arg, 0, type);
992 }
993
994 /* Compute the offset of the baseclass which is
995 the INDEXth baseclass of class TYPE, for a value ARG,
996 wih extra offset of OFFSET.
997 The result is the offste of the baseclass value relative
998 to (the address of)(ARG) + OFFSET.
999
1000 -1 is returned on error. */
1001
1002 int
1003 baseclass_offset (type, index, arg, offset)
1004 struct type *type;
1005 int index;
1006 value arg;
1007 int offset;
1008 {
1009 struct type *basetype = TYPE_BASECLASS (type, index);
1010
1011 if (BASETYPE_VIA_VIRTUAL (type, index))
1012 {
1013 /* Must hunt for the pointer to this virtual baseclass. */
1014 register int i, len = TYPE_NFIELDS (type);
1015 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1016 char *vbase_name, *type_name = type_name_no_tag (basetype);
1017
1018 vbase_name = (char *)alloca (strlen (type_name) + 8);
1019 sprintf (vbase_name, "_vb%c%s", CPLUS_MARKER, type_name);
1020 /* First look for the virtual baseclass pointer
1021 in the fields. */
1022 for (i = n_baseclasses; i < len; i++)
1023 {
1024 if (STREQ (vbase_name, TYPE_FIELD_NAME (type, i)))
1025 {
1026 CORE_ADDR addr
1027 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1028 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1029 + offset
1030 + (TYPE_FIELD_BITPOS (type, i) / 8));
1031
1032 if (VALUE_LVAL (arg) != lval_memory)
1033 return -1;
1034
1035 return addr -
1036 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1037 }
1038 }
1039 /* Not in the fields, so try looking through the baseclasses. */
1040 for (i = index+1; i < n_baseclasses; i++)
1041 {
1042 int boffset =
1043 baseclass_offset (type, i, arg, offset);
1044 if (boffset)
1045 return boffset;
1046 }
1047 /* Not found. */
1048 return -1;
1049 }
1050
1051 /* Baseclass is easily computed. */
1052 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1053 }
1054
1055 /* Compute the address of the baseclass which is
1056 the INDEXth baseclass of class TYPE. The TYPE base
1057 of the object is at VALADDR.
1058
1059 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1060 or 0 if no error. In that case the return value is not the address
1061 of the baseclasss, but the address which could not be read
1062 successfully. */
1063
1064 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1065
1066 char *
1067 baseclass_addr (type, index, valaddr, valuep, errp)
1068 struct type *type;
1069 int index;
1070 char *valaddr;
1071 value *valuep;
1072 int *errp;
1073 {
1074 struct type *basetype = TYPE_BASECLASS (type, index);
1075
1076 if (errp)
1077 *errp = 0;
1078
1079 if (BASETYPE_VIA_VIRTUAL (type, index))
1080 {
1081 /* Must hunt for the pointer to this virtual baseclass. */
1082 register int i, len = TYPE_NFIELDS (type);
1083 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1084 char *vbase_name, *type_name = type_name_no_tag (basetype);
1085
1086 vbase_name = (char *)alloca (strlen (type_name) + 8);
1087 sprintf (vbase_name, "_vb%c%s", CPLUS_MARKER, type_name);
1088 /* First look for the virtual baseclass pointer
1089 in the fields. */
1090 for (i = n_baseclasses; i < len; i++)
1091 {
1092 if (STREQ (vbase_name, TYPE_FIELD_NAME (type, i)))
1093 {
1094 value val = allocate_value (basetype);
1095 CORE_ADDR addr;
1096 int status;
1097
1098 addr
1099 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1100 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1101
1102 status = target_read_memory (addr,
1103 VALUE_CONTENTS_RAW (val),
1104 TYPE_LENGTH (basetype));
1105 VALUE_LVAL (val) = lval_memory;
1106 VALUE_ADDRESS (val) = addr;
1107
1108 if (status != 0)
1109 {
1110 if (valuep)
1111 *valuep = NULL;
1112 release_value (val);
1113 value_free (val);
1114 if (errp)
1115 *errp = status;
1116 return (char *)addr;
1117 }
1118 else
1119 {
1120 if (valuep)
1121 *valuep = val;
1122 return (char *) VALUE_CONTENTS (val);
1123 }
1124 }
1125 }
1126 /* Not in the fields, so try looking through the baseclasses. */
1127 for (i = index+1; i < n_baseclasses; i++)
1128 {
1129 char *baddr;
1130
1131 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1132 if (baddr)
1133 return baddr;
1134 }
1135 /* Not found. */
1136 if (valuep)
1137 *valuep = 0;
1138 return 0;
1139 }
1140
1141 /* Baseclass is easily computed. */
1142 if (valuep)
1143 *valuep = 0;
1144 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1145 }
1146 \f
1147 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1148 VALADDR.
1149
1150 Extracting bits depends on endianness of the machine. Compute the
1151 number of least significant bits to discard. For big endian machines,
1152 we compute the total number of bits in the anonymous object, subtract
1153 off the bit count from the MSB of the object to the MSB of the
1154 bitfield, then the size of the bitfield, which leaves the LSB discard
1155 count. For little endian machines, the discard count is simply the
1156 number of bits from the LSB of the anonymous object to the LSB of the
1157 bitfield.
1158
1159 If the field is signed, we also do sign extension. */
1160
1161 LONGEST
1162 unpack_field_as_long (type, valaddr, fieldno)
1163 struct type *type;
1164 char *valaddr;
1165 int fieldno;
1166 {
1167 unsigned LONGEST val;
1168 unsigned LONGEST valmask;
1169 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1170 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1171 int lsbcount;
1172
1173 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1174
1175 /* Extract bits. See comment above. */
1176
1177 #if BITS_BIG_ENDIAN
1178 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1179 #else
1180 lsbcount = (bitpos % 8);
1181 #endif
1182 val >>= lsbcount;
1183
1184 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1185 If the field is signed, and is negative, then sign extend. */
1186
1187 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1188 {
1189 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1190 val &= valmask;
1191 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1192 {
1193 if (val & (valmask ^ (valmask >> 1)))
1194 {
1195 val |= ~valmask;
1196 }
1197 }
1198 }
1199 return (val);
1200 }
1201
1202 /* Modify the value of a bitfield. ADDR points to a block of memory in
1203 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1204 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1205 indicate which bits (in target bit order) comprise the bitfield. */
1206
1207 void
1208 modify_field (addr, fieldval, bitpos, bitsize)
1209 char *addr;
1210 LONGEST fieldval;
1211 int bitpos, bitsize;
1212 {
1213 LONGEST oword;
1214
1215 /* Reject values too big to fit in the field in question,
1216 otherwise adjoining fields may be corrupted. */
1217 if (bitsize < (8 * sizeof (fieldval))
1218 && 0 != (fieldval & ~((1<<bitsize)-1)))
1219 {
1220 /* FIXME: would like to include fieldval in the message, but
1221 we don't have a sprintf_longest. */
1222 error ("Value does not fit in %d bits.", bitsize);
1223 }
1224
1225 oword = extract_signed_integer (addr, sizeof oword);
1226
1227 /* Shifting for bit field depends on endianness of the target machine. */
1228 #if BITS_BIG_ENDIAN
1229 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1230 #endif
1231
1232 /* Mask out old value, while avoiding shifts >= size of oword */
1233 if (bitsize < 8 * sizeof (oword))
1234 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1235 else
1236 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1237 oword |= fieldval << bitpos;
1238
1239 store_signed_integer (addr, sizeof oword, oword);
1240 }
1241 \f
1242 /* Convert C numbers into newly allocated values */
1243
1244 value
1245 value_from_longest (type, num)
1246 struct type *type;
1247 register LONGEST num;
1248 {
1249 register value val = allocate_value (type);
1250 register enum type_code code = TYPE_CODE (type);
1251 register int len = TYPE_LENGTH (type);
1252
1253 switch (code)
1254 {
1255 case TYPE_CODE_INT:
1256 case TYPE_CODE_CHAR:
1257 case TYPE_CODE_ENUM:
1258 case TYPE_CODE_BOOL:
1259 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1260 break;
1261
1262 case TYPE_CODE_REF:
1263 case TYPE_CODE_PTR:
1264 /* This assumes that all pointers of a given length
1265 have the same form. */
1266 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1267 break;
1268
1269 default:
1270 error ("Unexpected type encountered for integer constant.");
1271 }
1272 return val;
1273 }
1274
1275 value
1276 value_from_double (type, num)
1277 struct type *type;
1278 double num;
1279 {
1280 register value val = allocate_value (type);
1281 register enum type_code code = TYPE_CODE (type);
1282 register int len = TYPE_LENGTH (type);
1283
1284 if (code == TYPE_CODE_FLT)
1285 {
1286 if (len == sizeof (float))
1287 * (float *) VALUE_CONTENTS_RAW (val) = num;
1288 else if (len == sizeof (double))
1289 * (double *) VALUE_CONTENTS_RAW (val) = num;
1290 else
1291 error ("Floating type encountered with unexpected data length.");
1292 }
1293 else
1294 error ("Unexpected type encountered for floating constant.");
1295
1296 /* num was in host byte order. So now put the value's contents
1297 into target byte order. */
1298 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1299
1300 return val;
1301 }
1302 \f
1303 /* Deal with the value that is "about to be returned". */
1304
1305 /* Return the value that a function returning now
1306 would be returning to its caller, assuming its type is VALTYPE.
1307 RETBUF is where we look for what ought to be the contents
1308 of the registers (in raw form). This is because it is often
1309 desirable to restore old values to those registers
1310 after saving the contents of interest, and then call
1311 this function using the saved values.
1312 struct_return is non-zero when the function in question is
1313 using the structure return conventions on the machine in question;
1314 0 when it is using the value returning conventions (this often
1315 means returning pointer to where structure is vs. returning value). */
1316
1317 value
1318 value_being_returned (valtype, retbuf, struct_return)
1319 register struct type *valtype;
1320 char retbuf[REGISTER_BYTES];
1321 int struct_return;
1322 /*ARGSUSED*/
1323 {
1324 register value val;
1325 CORE_ADDR addr;
1326
1327 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1328 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1329 if (struct_return) {
1330 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1331 if (!addr)
1332 error ("Function return value unknown");
1333 return value_at (valtype, addr);
1334 }
1335 #endif
1336
1337 val = allocate_value (valtype);
1338 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1339
1340 return val;
1341 }
1342
1343 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1344 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1345 and TYPE is the type (which is known to be struct, union or array).
1346
1347 On most machines, the struct convention is used unless we are
1348 using gcc and the type is of a special size. */
1349 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1350 native compiler. GCC 2.3.3 was the last release that did it the
1351 old way. Since gcc2_compiled was not changed, we have no
1352 way to correctly win in all cases, so we just do the right thing
1353 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1354 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1355 would cause more chaos than dealing with some struct returns being
1356 handled wrong. */
1357 #if !defined (USE_STRUCT_CONVENTION)
1358 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1359 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1360 || TYPE_LENGTH (value_type) == 2 \
1361 || TYPE_LENGTH (value_type) == 4 \
1362 || TYPE_LENGTH (value_type) == 8 \
1363 ) \
1364 ))
1365 #endif
1366
1367 /* Return true if the function specified is using the structure returning
1368 convention on this machine to return arguments, or 0 if it is using
1369 the value returning convention. FUNCTION is the value representing
1370 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1371 is the type returned by the function. GCC_P is nonzero if compiled
1372 with GCC. */
1373
1374 int
1375 using_struct_return (function, funcaddr, value_type, gcc_p)
1376 value function;
1377 CORE_ADDR funcaddr;
1378 struct type *value_type;
1379 int gcc_p;
1380 /*ARGSUSED*/
1381 {
1382 register enum type_code code = TYPE_CODE (value_type);
1383
1384 if (code == TYPE_CODE_ERROR)
1385 error ("Function return type unknown.");
1386
1387 if (code == TYPE_CODE_STRUCT ||
1388 code == TYPE_CODE_UNION ||
1389 code == TYPE_CODE_ARRAY)
1390 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1391
1392 return 0;
1393 }
1394
1395 /* Store VAL so it will be returned if a function returns now.
1396 Does not verify that VAL's type matches what the current
1397 function wants to return. */
1398
1399 void
1400 set_return_value (val)
1401 value val;
1402 {
1403 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1404 double dbuf;
1405 LONGEST lbuf;
1406
1407 if (code == TYPE_CODE_ERROR)
1408 error ("Function return type unknown.");
1409
1410 if ( code == TYPE_CODE_STRUCT
1411 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1412 error ("GDB does not support specifying a struct or union return value.");
1413
1414 /* FIXME, this is bogus. We don't know what the return conventions
1415 are, or how values should be promoted.... */
1416 if (code == TYPE_CODE_FLT)
1417 {
1418 dbuf = value_as_double (val);
1419
1420 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1421 }
1422 else
1423 {
1424 lbuf = value_as_long (val);
1425 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1426 }
1427 }
1428 \f
1429 void
1430 _initialize_values ()
1431 {
1432 add_cmd ("convenience", no_class, show_convenience,
1433 "Debugger convenience (\"$foo\") variables.\n\
1434 These variables are created when you assign them values;\n\
1435 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1436 A few convenience variables are given values automatically:\n\
1437 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1438 \"$__\" holds the contents of the last address examined with \"x\".",
1439 &showlist);
1440
1441 add_cmd ("values", no_class, show_values,
1442 "Elements of value history around item number IDX (or last ten).",
1443 &showlist);
1444 }