* breakpoint.c, breakpoint.h, c-valprint.c, ch-valprint.c,
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value_ptr value_headof PARAMS ((value, struct type *, struct type *));
35
36 static void show_values PARAMS ((char *, int));
37
38 static void show_convenience PARAMS ((char *, int));
39
40 /* The value-history records all the values printed
41 by print commands during this session. Each chunk
42 records 60 consecutive values. The first chunk on
43 the chain records the most recent values.
44 The total number of values is in value_history_count. */
45
46 #define VALUE_HISTORY_CHUNK 60
47
48 struct value_history_chunk
49 {
50 struct value_history_chunk *next;
51 value_ptr values[VALUE_HISTORY_CHUNK];
52 };
53
54 /* Chain of chunks now in use. */
55
56 static struct value_history_chunk *value_history_chain;
57
58 static int value_history_count; /* Abs number of last entry stored */
59 \f
60 /* List of all value objects currently allocated
61 (except for those released by calls to release_value)
62 This is so they can be freed after each command. */
63
64 static value_ptr all_values;
65
66 /* Allocate a value that has the correct length for type TYPE. */
67
68 value_ptr
69 allocate_value (type)
70 struct type *type;
71 {
72 register value_ptr val;
73
74 check_stub_type (type);
75
76 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
77 VALUE_NEXT (val) = all_values;
78 all_values = val;
79 VALUE_TYPE (val) = type;
80 VALUE_LVAL (val) = not_lval;
81 VALUE_ADDRESS (val) = 0;
82 VALUE_FRAME (val) = 0;
83 VALUE_OFFSET (val) = 0;
84 VALUE_BITPOS (val) = 0;
85 VALUE_BITSIZE (val) = 0;
86 VALUE_REPEATED (val) = 0;
87 VALUE_REPETITIONS (val) = 0;
88 VALUE_REGNO (val) = -1;
89 VALUE_LAZY (val) = 0;
90 VALUE_OPTIMIZED_OUT (val) = 0;
91 val->modifiable = 1;
92 return val;
93 }
94
95 /* Allocate a value that has the correct length
96 for COUNT repetitions type TYPE. */
97
98 value_ptr
99 allocate_repeat_value (type, count)
100 struct type *type;
101 int count;
102 {
103 register value_ptr val;
104
105 val =
106 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
107 VALUE_NEXT (val) = all_values;
108 all_values = val;
109 VALUE_TYPE (val) = type;
110 VALUE_LVAL (val) = not_lval;
111 VALUE_ADDRESS (val) = 0;
112 VALUE_FRAME (val) = 0;
113 VALUE_OFFSET (val) = 0;
114 VALUE_BITPOS (val) = 0;
115 VALUE_BITSIZE (val) = 0;
116 VALUE_REPEATED (val) = 1;
117 VALUE_REPETITIONS (val) = count;
118 VALUE_REGNO (val) = -1;
119 VALUE_LAZY (val) = 0;
120 VALUE_OPTIMIZED_OUT (val) = 0;
121 return val;
122 }
123
124 /* Return a mark in the value chain. All values allocated after the
125 mark is obtained (except for those released) are subject to being freed
126 if a subsequent value_free_to_mark is passed the mark. */
127 value_ptr
128 value_mark ()
129 {
130 return all_values;
131 }
132
133 /* Free all values allocated since MARK was obtained by value_mark
134 (except for those released). */
135 void
136 value_free_to_mark (mark)
137 value_ptr mark;
138 {
139 value_ptr val, next;
140
141 for (val = all_values; val && val != mark; val = next)
142 {
143 next = VALUE_NEXT (val);
144 value_free (val);
145 }
146 all_values = val;
147 }
148
149 /* Free all the values that have been allocated (except for those released).
150 Called after each command, successful or not. */
151
152 void
153 free_all_values ()
154 {
155 register value_ptr val, next;
156
157 for (val = all_values; val; val = next)
158 {
159 next = VALUE_NEXT (val);
160 value_free (val);
161 }
162
163 all_values = 0;
164 }
165
166 /* Remove VAL from the chain all_values
167 so it will not be freed automatically. */
168
169 void
170 release_value (val)
171 register value_ptr val;
172 {
173 register value_ptr v;
174
175 if (all_values == val)
176 {
177 all_values = val->next;
178 return;
179 }
180
181 for (v = all_values; v; v = v->next)
182 {
183 if (v->next == val)
184 {
185 v->next = val->next;
186 break;
187 }
188 }
189 }
190
191 /* Return a copy of the value ARG.
192 It contains the same contents, for same memory address,
193 but it's a different block of storage. */
194
195 value_ptr
196 value_copy (arg)
197 value_ptr arg;
198 {
199 register value_ptr val;
200 register struct type *type = VALUE_TYPE (arg);
201 if (VALUE_REPEATED (arg))
202 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
203 else
204 val = allocate_value (type);
205 VALUE_LVAL (val) = VALUE_LVAL (arg);
206 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
207 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
208 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
209 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
210 VALUE_REGNO (val) = VALUE_REGNO (arg);
211 VALUE_LAZY (val) = VALUE_LAZY (arg);
212 val->modifiable = arg->modifiable;
213 if (!VALUE_LAZY (val))
214 {
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
218 }
219 return val;
220 }
221 \f
222 /* Access to the value history. */
223
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
228
229 int
230 record_latest_value (val)
231 value_ptr val;
232 {
233 int i;
234
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
238 {
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
241 }
242
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
245
246 i = value_history_count % VALUE_HISTORY_CHUNK;
247 if (i == 0)
248 {
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
255 }
256
257 value_history_chain->values[i] = val;
258
259 /* We don't want this value to have anything to do with the inferior anymore.
260 In particular, "set $1 = 50" should not affect the variable from which
261 the value was taken, and fast watchpoints should be able to assume that
262 a value on the value history never changes. */
263 if (VALUE_LAZY (val))
264 value_fetch_lazy (val);
265 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
266 from. This is a bit dubious, because then *&$1 does not just return $1
267 but the current contents of that location. c'est la vie... */
268 val->modifiable = 0;
269 release_value (val);
270
271 /* Now we regard value_history_count as origin-one
272 and applying to the value just stored. */
273
274 return ++value_history_count;
275 }
276
277 /* Return a copy of the value in the history with sequence number NUM. */
278
279 value_ptr
280 access_value_history (num)
281 int num;
282 {
283 register struct value_history_chunk *chunk;
284 register int i;
285 register int absnum = num;
286
287 if (absnum <= 0)
288 absnum += value_history_count;
289
290 if (absnum <= 0)
291 {
292 if (num == 0)
293 error ("The history is empty.");
294 else if (num == 1)
295 error ("There is only one value in the history.");
296 else
297 error ("History does not go back to $$%d.", -num);
298 }
299 if (absnum > value_history_count)
300 error ("History has not yet reached $%d.", absnum);
301
302 absnum--;
303
304 /* Now absnum is always absolute and origin zero. */
305
306 chunk = value_history_chain;
307 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
308 i > 0; i--)
309 chunk = chunk->next;
310
311 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
312 }
313
314 /* Clear the value history entirely.
315 Must be done when new symbol tables are loaded,
316 because the type pointers become invalid. */
317
318 void
319 clear_value_history ()
320 {
321 register struct value_history_chunk *next;
322 register int i;
323 register value_ptr val;
324
325 while (value_history_chain)
326 {
327 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
328 if ((val = value_history_chain->values[i]) != NULL)
329 free ((PTR)val);
330 next = value_history_chain->next;
331 free ((PTR)value_history_chain);
332 value_history_chain = next;
333 }
334 value_history_count = 0;
335 }
336
337 static void
338 show_values (num_exp, from_tty)
339 char *num_exp;
340 int from_tty;
341 {
342 register int i;
343 register value_ptr val;
344 static int num = 1;
345
346 if (num_exp)
347 {
348 /* "info history +" should print from the stored position.
349 "info history <exp>" should print around value number <exp>. */
350 if (num_exp[0] != '+' || num_exp[1] != '\0')
351 num = parse_and_eval_address (num_exp) - 5;
352 }
353 else
354 {
355 /* "info history" means print the last 10 values. */
356 num = value_history_count - 9;
357 }
358
359 if (num <= 0)
360 num = 1;
361
362 for (i = num; i < num + 10 && i <= value_history_count; i++)
363 {
364 val = access_value_history (i);
365 printf_filtered ("$%d = ", i);
366 value_print (val, gdb_stdout, 0, Val_pretty_default);
367 printf_filtered ("\n");
368 }
369
370 /* The next "info history +" should start after what we just printed. */
371 num += 10;
372
373 /* Hitting just return after this command should do the same thing as
374 "info history +". If num_exp is null, this is unnecessary, since
375 "info history +" is not useful after "info history". */
376 if (from_tty && num_exp)
377 {
378 num_exp[0] = '+';
379 num_exp[1] = '\0';
380 }
381 }
382 \f
383 /* Internal variables. These are variables within the debugger
384 that hold values assigned by debugger commands.
385 The user refers to them with a '$' prefix
386 that does not appear in the variable names stored internally. */
387
388 static struct internalvar *internalvars;
389
390 /* Look up an internal variable with name NAME. NAME should not
391 normally include a dollar sign.
392
393 If the specified internal variable does not exist,
394 one is created, with a void value. */
395
396 struct internalvar *
397 lookup_internalvar (name)
398 char *name;
399 {
400 register struct internalvar *var;
401
402 for (var = internalvars; var; var = var->next)
403 if (STREQ (var->name, name))
404 return var;
405
406 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
407 var->name = concat (name, NULL);
408 var->value = allocate_value (builtin_type_void);
409 release_value (var->value);
410 var->next = internalvars;
411 internalvars = var;
412 return var;
413 }
414
415 value_ptr
416 value_of_internalvar (var)
417 struct internalvar *var;
418 {
419 register value_ptr val;
420
421 #ifdef IS_TRAPPED_INTERNALVAR
422 if (IS_TRAPPED_INTERNALVAR (var->name))
423 return VALUE_OF_TRAPPED_INTERNALVAR (var);
424 #endif
425
426 val = value_copy (var->value);
427 if (VALUE_LAZY (val))
428 value_fetch_lazy (val);
429 VALUE_LVAL (val) = lval_internalvar;
430 VALUE_INTERNALVAR (val) = var;
431 return val;
432 }
433
434 void
435 set_internalvar_component (var, offset, bitpos, bitsize, newval)
436 struct internalvar *var;
437 int offset, bitpos, bitsize;
438 value_ptr newval;
439 {
440 register char *addr = VALUE_CONTENTS (var->value) + offset;
441
442 #ifdef IS_TRAPPED_INTERNALVAR
443 if (IS_TRAPPED_INTERNALVAR (var->name))
444 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
445 #endif
446
447 if (bitsize)
448 modify_field (addr, value_as_long (newval),
449 bitpos, bitsize);
450 else
451 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
452 }
453
454 void
455 set_internalvar (var, val)
456 struct internalvar *var;
457 value_ptr val;
458 {
459 #ifdef IS_TRAPPED_INTERNALVAR
460 if (IS_TRAPPED_INTERNALVAR (var->name))
461 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
462 #endif
463
464 free ((PTR)var->value);
465 var->value = value_copy (val);
466 /* Force the value to be fetched from the target now, to avoid problems
467 later when this internalvar is referenced and the target is gone or
468 has changed. */
469 if (VALUE_LAZY (var->value))
470 value_fetch_lazy (var->value);
471 release_value (var->value);
472 }
473
474 char *
475 internalvar_name (var)
476 struct internalvar *var;
477 {
478 return var->name;
479 }
480
481 /* Free all internalvars. Done when new symtabs are loaded,
482 because that makes the values invalid. */
483
484 void
485 clear_internalvars ()
486 {
487 register struct internalvar *var;
488
489 while (internalvars)
490 {
491 var = internalvars;
492 internalvars = var->next;
493 free ((PTR)var->name);
494 free ((PTR)var->value);
495 free ((PTR)var);
496 }
497 }
498
499 static void
500 show_convenience (ignore, from_tty)
501 char *ignore;
502 int from_tty;
503 {
504 register struct internalvar *var;
505 int varseen = 0;
506
507 for (var = internalvars; var; var = var->next)
508 {
509 #ifdef IS_TRAPPED_INTERNALVAR
510 if (IS_TRAPPED_INTERNALVAR (var->name))
511 continue;
512 #endif
513 if (!varseen)
514 {
515 varseen = 1;
516 }
517 printf_filtered ("$%s = ", var->name);
518 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
519 printf_filtered ("\n");
520 }
521 if (!varseen)
522 printf_unfiltered ("No debugger convenience variables now defined.\n\
523 Convenience variables have names starting with \"$\";\n\
524 use \"set\" as in \"set $foo = 5\" to define them.\n");
525 }
526 \f
527 /* Extract a value as a C number (either long or double).
528 Knows how to convert fixed values to double, or
529 floating values to long.
530 Does not deallocate the value. */
531
532 LONGEST
533 value_as_long (val)
534 register value_ptr val;
535 {
536 /* This coerces arrays and functions, which is necessary (e.g.
537 in disassemble_command). It also dereferences references, which
538 I suspect is the most logical thing to do. */
539 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
540 COERCE_ARRAY (val);
541 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
542 }
543
544 double
545 value_as_double (val)
546 register value_ptr val;
547 {
548 double foo;
549 int inv;
550
551 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
552 if (inv)
553 error ("Invalid floating value found in program.");
554 return foo;
555 }
556 /* Extract a value as a C pointer.
557 Does not deallocate the value. */
558 CORE_ADDR
559 value_as_pointer (val)
560 value_ptr val;
561 {
562 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
563 whether we want this to be true eventually. */
564 #if 0
565 /* ADDR_BITS_REMOVE is wrong if we are being called for a
566 non-address (e.g. argument to "signal", "info break", etc.), or
567 for pointers to char, in which the low bits *are* significant. */
568 return ADDR_BITS_REMOVE(value_as_long (val));
569 #else
570 return value_as_long (val);
571 #endif
572 }
573 \f
574 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
575 as a long, or as a double, assuming the raw data is described
576 by type TYPE. Knows how to convert different sizes of values
577 and can convert between fixed and floating point. We don't assume
578 any alignment for the raw data. Return value is in host byte order.
579
580 If you want functions and arrays to be coerced to pointers, and
581 references to be dereferenced, call value_as_long() instead.
582
583 C++: It is assumed that the front-end has taken care of
584 all matters concerning pointers to members. A pointer
585 to member which reaches here is considered to be equivalent
586 to an INT (or some size). After all, it is only an offset. */
587
588 /* FIXME: This should be rewritten as a switch statement for speed and
589 ease of comprehension. */
590
591 LONGEST
592 unpack_long (type, valaddr)
593 struct type *type;
594 char *valaddr;
595 {
596 register enum type_code code = TYPE_CODE (type);
597 register int len = TYPE_LENGTH (type);
598 register int nosign = TYPE_UNSIGNED (type);
599
600 switch (code)
601 {
602 case TYPE_CODE_ENUM:
603 case TYPE_CODE_BOOL:
604 case TYPE_CODE_INT:
605 case TYPE_CODE_CHAR:
606 if (nosign)
607 return extract_unsigned_integer (valaddr, len);
608 else
609 return extract_signed_integer (valaddr, len);
610
611 case TYPE_CODE_FLT:
612 return extract_floating (valaddr, len);
613
614 case TYPE_CODE_PTR:
615 case TYPE_CODE_REF:
616 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
617 whether we want this to be true eventually. */
618 return extract_address (valaddr, len);
619
620 case TYPE_CODE_MEMBER:
621 error ("not implemented: member types in unpack_long");
622
623 default:
624 error ("Value can't be converted to integer.");
625 }
626 return 0; /* Placate lint. */
627 }
628
629 /* Return a double value from the specified type and address.
630 INVP points to an int which is set to 0 for valid value,
631 1 for invalid value (bad float format). In either case,
632 the returned double is OK to use. Argument is in target
633 format, result is in host format. */
634
635 double
636 unpack_double (type, valaddr, invp)
637 struct type *type;
638 char *valaddr;
639 int *invp;
640 {
641 register enum type_code code = TYPE_CODE (type);
642 register int len = TYPE_LENGTH (type);
643 register int nosign = TYPE_UNSIGNED (type);
644
645 *invp = 0; /* Assume valid. */
646 if (code == TYPE_CODE_FLT)
647 {
648 if (INVALID_FLOAT (valaddr, len))
649 {
650 *invp = 1;
651 return 1.234567891011121314;
652 }
653 return extract_floating (valaddr, len);
654 }
655 else if (nosign)
656 {
657 /* Unsigned -- be sure we compensate for signed LONGEST. */
658 return (unsigned LONGEST) unpack_long (type, valaddr);
659 }
660 else
661 {
662 /* Signed -- we are OK with unpack_long. */
663 return unpack_long (type, valaddr);
664 }
665 }
666
667 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
668 as a CORE_ADDR, assuming the raw data is described by type TYPE.
669 We don't assume any alignment for the raw data. Return value is in
670 host byte order.
671
672 If you want functions and arrays to be coerced to pointers, and
673 references to be dereferenced, call value_as_pointer() instead.
674
675 C++: It is assumed that the front-end has taken care of
676 all matters concerning pointers to members. A pointer
677 to member which reaches here is considered to be equivalent
678 to an INT (or some size). After all, it is only an offset. */
679
680 CORE_ADDR
681 unpack_pointer (type, valaddr)
682 struct type *type;
683 char *valaddr;
684 {
685 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
686 whether we want this to be true eventually. */
687 return unpack_long (type, valaddr);
688 }
689 \f
690 /* Given a value ARG1 (offset by OFFSET bytes)
691 of a struct or union type ARG_TYPE,
692 extract and return the value of one of its fields.
693 FIELDNO says which field.
694
695 For C++, must also be able to return values from static fields */
696
697 value_ptr
698 value_primitive_field (arg1, offset, fieldno, arg_type)
699 register value_ptr arg1;
700 int offset;
701 register int fieldno;
702 register struct type *arg_type;
703 {
704 register value_ptr v;
705 register struct type *type;
706
707 check_stub_type (arg_type);
708 type = TYPE_FIELD_TYPE (arg_type, fieldno);
709
710 /* Handle packed fields */
711
712 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
713 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
714 {
715 v = value_from_longest (type,
716 unpack_field_as_long (arg_type,
717 VALUE_CONTENTS (arg1),
718 fieldno));
719 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
720 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
721 }
722 else
723 {
724 v = allocate_value (type);
725 if (VALUE_LAZY (arg1))
726 VALUE_LAZY (v) = 1;
727 else
728 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
729 TYPE_LENGTH (type));
730 }
731 VALUE_LVAL (v) = VALUE_LVAL (arg1);
732 if (VALUE_LVAL (arg1) == lval_internalvar)
733 VALUE_LVAL (v) = lval_internalvar_component;
734 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
735 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
736 return v;
737 }
738
739 /* Given a value ARG1 of a struct or union type,
740 extract and return the value of one of its fields.
741 FIELDNO says which field.
742
743 For C++, must also be able to return values from static fields */
744
745 value_ptr
746 value_field (arg1, fieldno)
747 register value_ptr arg1;
748 register int fieldno;
749 {
750 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
751 }
752
753 /* Return a non-virtual function as a value.
754 F is the list of member functions which contains the desired method.
755 J is an index into F which provides the desired method. */
756
757 value_ptr
758 value_fn_field (arg1p, f, j, type, offset)
759 value_ptr *arg1p;
760 struct fn_field *f;
761 int j;
762 struct type *type;
763 int offset;
764 {
765 register value_ptr v;
766 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
767 struct symbol *sym;
768
769 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
770 0, VAR_NAMESPACE, 0, NULL);
771 if (! sym)
772 return NULL;
773 /*
774 error ("Internal error: could not find physical method named %s",
775 TYPE_FN_FIELD_PHYSNAME (f, j));
776 */
777
778 v = allocate_value (ftype);
779 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
780 VALUE_TYPE (v) = ftype;
781
782 if (arg1p)
783 {
784 if (type != VALUE_TYPE (*arg1p))
785 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
786 value_addr (*arg1p)));
787
788 /* Move the `this' pointer according to the offset.
789 VALUE_OFFSET (*arg1p) += offset;
790 */
791 }
792
793 return v;
794 }
795
796 /* Return a virtual function as a value.
797 ARG1 is the object which provides the virtual function
798 table pointer. *ARG1P is side-effected in calling this function.
799 F is the list of member functions which contains the desired virtual
800 function.
801 J is an index into F which provides the desired virtual function.
802
803 TYPE is the type in which F is located. */
804 value_ptr
805 value_virtual_fn_field (arg1p, f, j, type, offset)
806 value_ptr *arg1p;
807 struct fn_field *f;
808 int j;
809 struct type *type;
810 int offset;
811 {
812 value_ptr arg1 = *arg1p;
813 /* First, get the virtual function table pointer. That comes
814 with a strange type, so cast it to type `pointer to long' (which
815 should serve just fine as a function type). Then, index into
816 the table, and convert final value to appropriate function type. */
817 value_ptr entry, vfn, vtbl;
818 value_ptr vi = value_from_longest (builtin_type_int,
819 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
820 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
821 struct type *context;
822 if (fcontext == NULL)
823 /* We don't have an fcontext (e.g. the program was compiled with
824 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
825 This won't work right for multiple inheritance, but at least we
826 should do as well as GDB 3.x did. */
827 fcontext = TYPE_VPTR_BASETYPE (type);
828 context = lookup_pointer_type (fcontext);
829 /* Now context is a pointer to the basetype containing the vtbl. */
830 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
831 arg1 = value_ind (value_cast (context, value_addr (arg1)));
832
833 context = VALUE_TYPE (arg1);
834 /* Now context is the basetype containing the vtbl. */
835
836 /* This type may have been defined before its virtual function table
837 was. If so, fill in the virtual function table entry for the
838 type now. */
839 if (TYPE_VPTR_FIELDNO (context) < 0)
840 fill_in_vptr_fieldno (context);
841
842 /* The virtual function table is now an array of structures
843 which have the form { int16 offset, delta; void *pfn; }. */
844 vtbl = value_ind (value_primitive_field (arg1, 0,
845 TYPE_VPTR_FIELDNO (context),
846 TYPE_VPTR_BASETYPE (context)));
847
848 /* Index into the virtual function table. This is hard-coded because
849 looking up a field is not cheap, and it may be important to save
850 time, e.g. if the user has set a conditional breakpoint calling
851 a virtual function. */
852 entry = value_subscript (vtbl, vi);
853
854 /* Move the `this' pointer according to the virtual function table. */
855 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
856
857 if (! VALUE_LAZY (arg1))
858 {
859 VALUE_LAZY (arg1) = 1;
860 value_fetch_lazy (arg1);
861 }
862
863 vfn = value_field (entry, 2);
864 /* Reinstantiate the function pointer with the correct type. */
865 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
866
867 *arg1p = arg1;
868 return vfn;
869 }
870
871 /* ARG is a pointer to an object we know to be at least
872 a DTYPE. BTYPE is the most derived basetype that has
873 already been searched (and need not be searched again).
874 After looking at the vtables between BTYPE and DTYPE,
875 return the most derived type we find. The caller must
876 be satisfied when the return value == DTYPE.
877
878 FIXME-tiemann: should work with dossier entries as well. */
879
880 static value_ptr
881 value_headof (in_arg, btype, dtype)
882 value_ptr in_arg;
883 struct type *btype, *dtype;
884 {
885 /* First collect the vtables we must look at for this object. */
886 /* FIXME-tiemann: right now, just look at top-most vtable. */
887 value_ptr arg, vtbl, entry, best_entry = 0;
888 int i, nelems;
889 int offset, best_offset = 0;
890 struct symbol *sym;
891 CORE_ADDR pc_for_sym;
892 char *demangled_name;
893 struct minimal_symbol *msymbol;
894
895 btype = TYPE_VPTR_BASETYPE (dtype);
896 check_stub_type (btype);
897 arg = in_arg;
898 if (btype != dtype)
899 arg = value_cast (lookup_pointer_type (btype), arg);
900 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
901
902 /* Check that VTBL looks like it points to a virtual function table. */
903 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
904 if (msymbol == NULL
905 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
906 {
907 /* If we expected to find a vtable, but did not, let the user
908 know that we aren't happy, but don't throw an error.
909 FIXME: there has to be a better way to do this. */
910 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
911 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
912 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
913 VALUE_TYPE (in_arg) = error_type;
914 return in_arg;
915 }
916
917 /* Now search through the virtual function table. */
918 entry = value_ind (vtbl);
919 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
920 for (i = 1; i <= nelems; i++)
921 {
922 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
923 (LONGEST) i));
924 offset = longest_to_int (value_as_long (value_field (entry, 0)));
925 /* If we use '<=' we can handle single inheritance
926 * where all offsets are zero - just use the first entry found. */
927 if (offset <= best_offset)
928 {
929 best_offset = offset;
930 best_entry = entry;
931 }
932 }
933 /* Move the pointer according to BEST_ENTRY's offset, and figure
934 out what type we should return as the new pointer. */
935 if (best_entry == 0)
936 {
937 /* An alternative method (which should no longer be necessary).
938 * But we leave it in for future use, when we will hopefully
939 * have optimizes the vtable to use thunks instead of offsets. */
940 /* Use the name of vtable itself to extract a base type. */
941 demangled_name += 4; /* Skip _vt$ prefix. */
942 }
943 else
944 {
945 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
946 sym = find_pc_function (pc_for_sym);
947 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
948 *(strchr (demangled_name, ':')) = '\0';
949 }
950 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
951 if (sym == NULL)
952 error ("could not find type declaration for `%s'", demangled_name);
953 if (best_entry)
954 {
955 free (demangled_name);
956 arg = value_add (value_cast (builtin_type_int, arg),
957 value_field (best_entry, 0));
958 }
959 else arg = in_arg;
960 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
961 return arg;
962 }
963
964 /* ARG is a pointer object of type TYPE. If TYPE has virtual
965 function tables, probe ARG's tables (including the vtables
966 of its baseclasses) to figure out the most derived type that ARG
967 could actually be a pointer to. */
968
969 value_ptr
970 value_from_vtable_info (arg, type)
971 value_ptr arg;
972 struct type *type;
973 {
974 /* Take care of preliminaries. */
975 if (TYPE_VPTR_FIELDNO (type) < 0)
976 fill_in_vptr_fieldno (type);
977 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
978 return 0;
979
980 return value_headof (arg, 0, type);
981 }
982
983 /* Return true if the INDEXth field of TYPE is a virtual baseclass
984 pointer which is for the base class whose type is BASECLASS. */
985
986 static int
987 vb_match (type, index, basetype)
988 struct type *type;
989 int index;
990 struct type *basetype;
991 {
992 struct type *fieldtype;
993 char *name = TYPE_FIELD_NAME (type, index);
994 char *field_class_name = NULL;
995
996 if (*name != '_')
997 return 0;
998 /* gcc 2.4 uses _vb$. */
999 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1000 field_class_name = name + 4;
1001 /* gcc 2.5 will use __vb_. */
1002 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1003 field_class_name = name + 5;
1004
1005 if (field_class_name == NULL)
1006 /* This field is not a virtual base class pointer. */
1007 return 0;
1008
1009 /* It's a virtual baseclass pointer, now we just need to find out whether
1010 it is for this baseclass. */
1011 fieldtype = TYPE_FIELD_TYPE (type, index);
1012 if (fieldtype == NULL
1013 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1014 /* "Can't happen". */
1015 return 0;
1016
1017 /* What we check for is that either the types are equal (needed for
1018 nameless types) or have the same name. This is ugly, and a more
1019 elegant solution should be devised (which would probably just push
1020 the ugliness into symbol reading unless we change the stabs format). */
1021 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1022 return 1;
1023
1024 if (TYPE_NAME (basetype) != NULL
1025 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1026 && STREQ (TYPE_NAME (basetype),
1027 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1028 return 1;
1029 return 0;
1030 }
1031
1032 /* Compute the offset of the baseclass which is
1033 the INDEXth baseclass of class TYPE, for a value ARG,
1034 wih extra offset of OFFSET.
1035 The result is the offste of the baseclass value relative
1036 to (the address of)(ARG) + OFFSET.
1037
1038 -1 is returned on error. */
1039
1040 int
1041 baseclass_offset (type, index, arg, offset)
1042 struct type *type;
1043 int index;
1044 value_ptr arg;
1045 int offset;
1046 {
1047 struct type *basetype = TYPE_BASECLASS (type, index);
1048
1049 if (BASETYPE_VIA_VIRTUAL (type, index))
1050 {
1051 /* Must hunt for the pointer to this virtual baseclass. */
1052 register int i, len = TYPE_NFIELDS (type);
1053 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1054
1055 /* First look for the virtual baseclass pointer
1056 in the fields. */
1057 for (i = n_baseclasses; i < len; i++)
1058 {
1059 if (vb_match (type, i, basetype))
1060 {
1061 CORE_ADDR addr
1062 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1063 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1064 + offset
1065 + (TYPE_FIELD_BITPOS (type, i) / 8));
1066
1067 if (VALUE_LVAL (arg) != lval_memory)
1068 return -1;
1069
1070 return addr -
1071 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1072 }
1073 }
1074 /* Not in the fields, so try looking through the baseclasses. */
1075 for (i = index+1; i < n_baseclasses; i++)
1076 {
1077 int boffset =
1078 baseclass_offset (type, i, arg, offset);
1079 if (boffset)
1080 return boffset;
1081 }
1082 /* Not found. */
1083 return -1;
1084 }
1085
1086 /* Baseclass is easily computed. */
1087 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1088 }
1089
1090 /* Compute the address of the baseclass which is
1091 the INDEXth baseclass of class TYPE. The TYPE base
1092 of the object is at VALADDR.
1093
1094 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1095 or 0 if no error. In that case the return value is not the address
1096 of the baseclasss, but the address which could not be read
1097 successfully. */
1098
1099 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1100
1101 char *
1102 baseclass_addr (type, index, valaddr, valuep, errp)
1103 struct type *type;
1104 int index;
1105 char *valaddr;
1106 value_ptr *valuep;
1107 int *errp;
1108 {
1109 struct type *basetype = TYPE_BASECLASS (type, index);
1110
1111 if (errp)
1112 *errp = 0;
1113
1114 if (BASETYPE_VIA_VIRTUAL (type, index))
1115 {
1116 /* Must hunt for the pointer to this virtual baseclass. */
1117 register int i, len = TYPE_NFIELDS (type);
1118 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1119
1120 /* First look for the virtual baseclass pointer
1121 in the fields. */
1122 for (i = n_baseclasses; i < len; i++)
1123 {
1124 if (vb_match (type, i, basetype))
1125 {
1126 value_ptr val = allocate_value (basetype);
1127 CORE_ADDR addr;
1128 int status;
1129
1130 addr
1131 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1132 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1133
1134 status = target_read_memory (addr,
1135 VALUE_CONTENTS_RAW (val),
1136 TYPE_LENGTH (basetype));
1137 VALUE_LVAL (val) = lval_memory;
1138 VALUE_ADDRESS (val) = addr;
1139
1140 if (status != 0)
1141 {
1142 if (valuep)
1143 *valuep = NULL;
1144 release_value (val);
1145 value_free (val);
1146 if (errp)
1147 *errp = status;
1148 return (char *)addr;
1149 }
1150 else
1151 {
1152 if (valuep)
1153 *valuep = val;
1154 return (char *) VALUE_CONTENTS (val);
1155 }
1156 }
1157 }
1158 /* Not in the fields, so try looking through the baseclasses. */
1159 for (i = index+1; i < n_baseclasses; i++)
1160 {
1161 char *baddr;
1162
1163 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1164 if (baddr)
1165 return baddr;
1166 }
1167 /* Not found. */
1168 if (valuep)
1169 *valuep = 0;
1170 return 0;
1171 }
1172
1173 /* Baseclass is easily computed. */
1174 if (valuep)
1175 *valuep = 0;
1176 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1177 }
1178 \f
1179 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1180 VALADDR.
1181
1182 Extracting bits depends on endianness of the machine. Compute the
1183 number of least significant bits to discard. For big endian machines,
1184 we compute the total number of bits in the anonymous object, subtract
1185 off the bit count from the MSB of the object to the MSB of the
1186 bitfield, then the size of the bitfield, which leaves the LSB discard
1187 count. For little endian machines, the discard count is simply the
1188 number of bits from the LSB of the anonymous object to the LSB of the
1189 bitfield.
1190
1191 If the field is signed, we also do sign extension. */
1192
1193 LONGEST
1194 unpack_field_as_long (type, valaddr, fieldno)
1195 struct type *type;
1196 char *valaddr;
1197 int fieldno;
1198 {
1199 unsigned LONGEST val;
1200 unsigned LONGEST valmask;
1201 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1202 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1203 int lsbcount;
1204
1205 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1206
1207 /* Extract bits. See comment above. */
1208
1209 #if BITS_BIG_ENDIAN
1210 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1211 #else
1212 lsbcount = (bitpos % 8);
1213 #endif
1214 val >>= lsbcount;
1215
1216 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1217 If the field is signed, and is negative, then sign extend. */
1218
1219 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1220 {
1221 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1222 val &= valmask;
1223 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1224 {
1225 if (val & (valmask ^ (valmask >> 1)))
1226 {
1227 val |= ~valmask;
1228 }
1229 }
1230 }
1231 return (val);
1232 }
1233
1234 /* Modify the value of a bitfield. ADDR points to a block of memory in
1235 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1236 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1237 indicate which bits (in target bit order) comprise the bitfield. */
1238
1239 void
1240 modify_field (addr, fieldval, bitpos, bitsize)
1241 char *addr;
1242 LONGEST fieldval;
1243 int bitpos, bitsize;
1244 {
1245 LONGEST oword;
1246
1247 /* Reject values too big to fit in the field in question,
1248 otherwise adjoining fields may be corrupted. */
1249 if (bitsize < (8 * sizeof (fieldval))
1250 && 0 != (fieldval & ~((1<<bitsize)-1)))
1251 {
1252 /* FIXME: would like to include fieldval in the message, but
1253 we don't have a sprintf_longest. */
1254 error ("Value does not fit in %d bits.", bitsize);
1255 }
1256
1257 oword = extract_signed_integer (addr, sizeof oword);
1258
1259 /* Shifting for bit field depends on endianness of the target machine. */
1260 #if BITS_BIG_ENDIAN
1261 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1262 #endif
1263
1264 /* Mask out old value, while avoiding shifts >= size of oword */
1265 if (bitsize < 8 * sizeof (oword))
1266 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1267 else
1268 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1269 oword |= fieldval << bitpos;
1270
1271 store_signed_integer (addr, sizeof oword, oword);
1272 }
1273 \f
1274 /* Convert C numbers into newly allocated values */
1275
1276 value_ptr
1277 value_from_longest (type, num)
1278 struct type *type;
1279 register LONGEST num;
1280 {
1281 register value_ptr val = allocate_value (type);
1282 register enum type_code code = TYPE_CODE (type);
1283 register int len = TYPE_LENGTH (type);
1284
1285 switch (code)
1286 {
1287 case TYPE_CODE_INT:
1288 case TYPE_CODE_CHAR:
1289 case TYPE_CODE_ENUM:
1290 case TYPE_CODE_BOOL:
1291 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1292 break;
1293
1294 case TYPE_CODE_REF:
1295 case TYPE_CODE_PTR:
1296 /* This assumes that all pointers of a given length
1297 have the same form. */
1298 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1299 break;
1300
1301 default:
1302 error ("Unexpected type encountered for integer constant.");
1303 }
1304 return val;
1305 }
1306
1307 value_ptr
1308 value_from_double (type, num)
1309 struct type *type;
1310 double num;
1311 {
1312 register value_ptr val = allocate_value (type);
1313 register enum type_code code = TYPE_CODE (type);
1314 register int len = TYPE_LENGTH (type);
1315
1316 if (code == TYPE_CODE_FLT)
1317 {
1318 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1319 }
1320 else
1321 error ("Unexpected type encountered for floating constant.");
1322
1323 return val;
1324 }
1325 \f
1326 /* Deal with the value that is "about to be returned". */
1327
1328 /* Return the value that a function returning now
1329 would be returning to its caller, assuming its type is VALTYPE.
1330 RETBUF is where we look for what ought to be the contents
1331 of the registers (in raw form). This is because it is often
1332 desirable to restore old values to those registers
1333 after saving the contents of interest, and then call
1334 this function using the saved values.
1335 struct_return is non-zero when the function in question is
1336 using the structure return conventions on the machine in question;
1337 0 when it is using the value returning conventions (this often
1338 means returning pointer to where structure is vs. returning value). */
1339
1340 value_ptr
1341 value_being_returned (valtype, retbuf, struct_return)
1342 register struct type *valtype;
1343 char retbuf[REGISTER_BYTES];
1344 int struct_return;
1345 /*ARGSUSED*/
1346 {
1347 register value_ptr val;
1348 CORE_ADDR addr;
1349
1350 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1351 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1352 if (struct_return) {
1353 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1354 if (!addr)
1355 error ("Function return value unknown");
1356 return value_at (valtype, addr);
1357 }
1358 #endif
1359
1360 val = allocate_value (valtype);
1361 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1362
1363 return val;
1364 }
1365
1366 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1367 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1368 and TYPE is the type (which is known to be struct, union or array).
1369
1370 On most machines, the struct convention is used unless we are
1371 using gcc and the type is of a special size. */
1372 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1373 native compiler. GCC 2.3.3 was the last release that did it the
1374 old way. Since gcc2_compiled was not changed, we have no
1375 way to correctly win in all cases, so we just do the right thing
1376 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1377 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1378 would cause more chaos than dealing with some struct returns being
1379 handled wrong. */
1380 #if !defined (USE_STRUCT_CONVENTION)
1381 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1382 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1383 || TYPE_LENGTH (value_type) == 2 \
1384 || TYPE_LENGTH (value_type) == 4 \
1385 || TYPE_LENGTH (value_type) == 8 \
1386 ) \
1387 ))
1388 #endif
1389
1390 /* Return true if the function specified is using the structure returning
1391 convention on this machine to return arguments, or 0 if it is using
1392 the value returning convention. FUNCTION is the value representing
1393 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1394 is the type returned by the function. GCC_P is nonzero if compiled
1395 with GCC. */
1396
1397 int
1398 using_struct_return (function, funcaddr, value_type, gcc_p)
1399 value_ptr function;
1400 CORE_ADDR funcaddr;
1401 struct type *value_type;
1402 int gcc_p;
1403 /*ARGSUSED*/
1404 {
1405 register enum type_code code = TYPE_CODE (value_type);
1406
1407 if (code == TYPE_CODE_ERROR)
1408 error ("Function return type unknown.");
1409
1410 if (code == TYPE_CODE_STRUCT ||
1411 code == TYPE_CODE_UNION ||
1412 code == TYPE_CODE_ARRAY)
1413 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1414
1415 return 0;
1416 }
1417
1418 /* Store VAL so it will be returned if a function returns now.
1419 Does not verify that VAL's type matches what the current
1420 function wants to return. */
1421
1422 void
1423 set_return_value (val)
1424 value_ptr val;
1425 {
1426 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1427 double dbuf;
1428 LONGEST lbuf;
1429
1430 if (code == TYPE_CODE_ERROR)
1431 error ("Function return type unknown.");
1432
1433 if ( code == TYPE_CODE_STRUCT
1434 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1435 error ("GDB does not support specifying a struct or union return value.");
1436
1437 /* FIXME, this is bogus. We don't know what the return conventions
1438 are, or how values should be promoted.... */
1439 if (code == TYPE_CODE_FLT)
1440 {
1441 dbuf = value_as_double (val);
1442
1443 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1444 }
1445 else
1446 {
1447 lbuf = value_as_long (val);
1448 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1449 }
1450 }
1451 \f
1452 void
1453 _initialize_values ()
1454 {
1455 add_cmd ("convenience", no_class, show_convenience,
1456 "Debugger convenience (\"$foo\") variables.\n\
1457 These variables are created when you assign them values;\n\
1458 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1459 A few convenience variables are given values automatically:\n\
1460 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1461 \"$__\" holds the contents of the last address examined with \"x\".",
1462 &showlist);
1463
1464 add_cmd ("values", no_class, show_values,
1465 "Elements of value history around item number IDX (or last ten).",
1466 &showlist);
1467 }