* Update copyright message to include 1993, 1994.
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "demangle.h"
32
33 /* Local function prototypes. */
34
35 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
36 struct type *));
37
38 static void show_values PARAMS ((char *, int));
39
40 static void show_convenience PARAMS ((char *, int));
41
42 /* The value-history records all the values printed
43 by print commands during this session. Each chunk
44 records 60 consecutive values. The first chunk on
45 the chain records the most recent values.
46 The total number of values is in value_history_count. */
47
48 #define VALUE_HISTORY_CHUNK 60
49
50 struct value_history_chunk
51 {
52 struct value_history_chunk *next;
53 value_ptr values[VALUE_HISTORY_CHUNK];
54 };
55
56 /* Chain of chunks now in use. */
57
58 static struct value_history_chunk *value_history_chain;
59
60 static int value_history_count; /* Abs number of last entry stored */
61 \f
62 /* List of all value objects currently allocated
63 (except for those released by calls to release_value)
64 This is so they can be freed after each command. */
65
66 static value_ptr all_values;
67
68 /* Allocate a value that has the correct length for type TYPE. */
69
70 value_ptr
71 allocate_value (type)
72 struct type *type;
73 {
74 register value_ptr val;
75
76 check_stub_type (type);
77
78 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
79 VALUE_NEXT (val) = all_values;
80 all_values = val;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REPEATED (val) = 0;
89 VALUE_REPETITIONS (val) = 0;
90 VALUE_REGNO (val) = -1;
91 VALUE_LAZY (val) = 0;
92 VALUE_OPTIMIZED_OUT (val) = 0;
93 val->modifiable = 1;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value_ptr
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value_ptr val;
106
107 val =
108 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
109 VALUE_NEXT (val) = all_values;
110 all_values = val;
111 VALUE_TYPE (val) = type;
112 VALUE_LVAL (val) = not_lval;
113 VALUE_ADDRESS (val) = 0;
114 VALUE_FRAME (val) = 0;
115 VALUE_OFFSET (val) = 0;
116 VALUE_BITPOS (val) = 0;
117 VALUE_BITSIZE (val) = 0;
118 VALUE_REPEATED (val) = 1;
119 VALUE_REPETITIONS (val) = count;
120 VALUE_REGNO (val) = -1;
121 VALUE_LAZY (val) = 0;
122 VALUE_OPTIMIZED_OUT (val) = 0;
123 return val;
124 }
125
126 /* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
129 value_ptr
130 value_mark ()
131 {
132 return all_values;
133 }
134
135 /* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
137 void
138 value_free_to_mark (mark)
139 value_ptr mark;
140 {
141 value_ptr val, next;
142
143 for (val = all_values; val && val != mark; val = next)
144 {
145 next = VALUE_NEXT (val);
146 value_free (val);
147 }
148 all_values = val;
149 }
150
151 /* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
153
154 void
155 free_all_values ()
156 {
157 register value_ptr val, next;
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166 }
167
168 /* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171 void
172 release_value (val)
173 register value_ptr val;
174 {
175 register value_ptr v;
176
177 if (all_values == val)
178 {
179 all_values = val->next;
180 return;
181 }
182
183 for (v = all_values; v; v = v->next)
184 {
185 if (v->next == val)
186 {
187 v->next = val->next;
188 break;
189 }
190 }
191 }
192
193 /* Release all values up to mark */
194 value_ptr
195 value_release_to_mark (mark)
196 value_ptr mark;
197 {
198 value_ptr val, next;
199
200 for (val = next = all_values; next; next = VALUE_NEXT (next))
201 if (VALUE_NEXT (next) == mark)
202 {
203 all_values = VALUE_NEXT (next);
204 VALUE_NEXT (next) = 0;
205 return val;
206 }
207 all_values = 0;
208 return val;
209 }
210
211 /* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
214
215 value_ptr
216 value_copy (arg)
217 value_ptr arg;
218 {
219 register value_ptr val;
220 register struct type *type = VALUE_TYPE (arg);
221 if (VALUE_REPEATED (arg))
222 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
223 else
224 val = allocate_value (type);
225 VALUE_LVAL (val) = VALUE_LVAL (arg);
226 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
227 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
228 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
229 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
230 VALUE_REGNO (val) = VALUE_REGNO (arg);
231 VALUE_LAZY (val) = VALUE_LAZY (arg);
232 val->modifiable = arg->modifiable;
233 if (!VALUE_LAZY (val))
234 {
235 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
236 TYPE_LENGTH (VALUE_TYPE (arg))
237 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
238 }
239 return val;
240 }
241 \f
242 /* Access to the value history. */
243
244 /* Record a new value in the value history.
245 Returns the absolute history index of the entry.
246 Result of -1 indicates the value was not saved; otherwise it is the
247 value history index of this new item. */
248
249 int
250 record_latest_value (val)
251 value_ptr val;
252 {
253 int i;
254
255 /* Check error now if about to store an invalid float. We return -1
256 to the caller, but allow them to continue, e.g. to print it as "Nan". */
257 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
258 {
259 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
260 if (i) return -1; /* Indicate value not saved in history */
261 }
262
263 /* We don't want this value to have anything to do with the inferior anymore.
264 In particular, "set $1 = 50" should not affect the variable from which
265 the value was taken, and fast watchpoints should be able to assume that
266 a value on the value history never changes. */
267 if (VALUE_LAZY (val))
268 value_fetch_lazy (val);
269 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
270 from. This is a bit dubious, because then *&$1 does not just return $1
271 but the current contents of that location. c'est la vie... */
272 val->modifiable = 0;
273 release_value (val);
274
275 /* Here we treat value_history_count as origin-zero
276 and applying to the value being stored now. */
277
278 i = value_history_count % VALUE_HISTORY_CHUNK;
279 if (i == 0)
280 {
281 register struct value_history_chunk *new
282 = (struct value_history_chunk *)
283 xmalloc (sizeof (struct value_history_chunk));
284 memset (new->values, 0, sizeof new->values);
285 new->next = value_history_chain;
286 value_history_chain = new;
287 }
288
289 value_history_chain->values[i] = val;
290
291 /* Now we regard value_history_count as origin-one
292 and applying to the value just stored. */
293
294 return ++value_history_count;
295 }
296
297 /* Return a copy of the value in the history with sequence number NUM. */
298
299 value_ptr
300 access_value_history (num)
301 int num;
302 {
303 register struct value_history_chunk *chunk;
304 register int i;
305 register int absnum = num;
306
307 if (absnum <= 0)
308 absnum += value_history_count;
309
310 if (absnum <= 0)
311 {
312 if (num == 0)
313 error ("The history is empty.");
314 else if (num == 1)
315 error ("There is only one value in the history.");
316 else
317 error ("History does not go back to $$%d.", -num);
318 }
319 if (absnum > value_history_count)
320 error ("History has not yet reached $%d.", absnum);
321
322 absnum--;
323
324 /* Now absnum is always absolute and origin zero. */
325
326 chunk = value_history_chain;
327 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
328 i > 0; i--)
329 chunk = chunk->next;
330
331 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
332 }
333
334 /* Clear the value history entirely.
335 Must be done when new symbol tables are loaded,
336 because the type pointers become invalid. */
337
338 void
339 clear_value_history ()
340 {
341 register struct value_history_chunk *next;
342 register int i;
343 register value_ptr val;
344
345 while (value_history_chain)
346 {
347 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
348 if ((val = value_history_chain->values[i]) != NULL)
349 free ((PTR)val);
350 next = value_history_chain->next;
351 free ((PTR)value_history_chain);
352 value_history_chain = next;
353 }
354 value_history_count = 0;
355 }
356
357 static void
358 show_values (num_exp, from_tty)
359 char *num_exp;
360 int from_tty;
361 {
362 register int i;
363 register value_ptr val;
364 static int num = 1;
365
366 if (num_exp)
367 {
368 /* "info history +" should print from the stored position.
369 "info history <exp>" should print around value number <exp>. */
370 if (num_exp[0] != '+' || num_exp[1] != '\0')
371 num = parse_and_eval_address (num_exp) - 5;
372 }
373 else
374 {
375 /* "info history" means print the last 10 values. */
376 num = value_history_count - 9;
377 }
378
379 if (num <= 0)
380 num = 1;
381
382 for (i = num; i < num + 10 && i <= value_history_count; i++)
383 {
384 val = access_value_history (i);
385 printf_filtered ("$%d = ", i);
386 value_print (val, gdb_stdout, 0, Val_pretty_default);
387 printf_filtered ("\n");
388 }
389
390 /* The next "info history +" should start after what we just printed. */
391 num += 10;
392
393 /* Hitting just return after this command should do the same thing as
394 "info history +". If num_exp is null, this is unnecessary, since
395 "info history +" is not useful after "info history". */
396 if (from_tty && num_exp)
397 {
398 num_exp[0] = '+';
399 num_exp[1] = '\0';
400 }
401 }
402 \f
403 /* Internal variables. These are variables within the debugger
404 that hold values assigned by debugger commands.
405 The user refers to them with a '$' prefix
406 that does not appear in the variable names stored internally. */
407
408 static struct internalvar *internalvars;
409
410 /* Look up an internal variable with name NAME. NAME should not
411 normally include a dollar sign.
412
413 If the specified internal variable does not exist,
414 one is created, with a void value. */
415
416 struct internalvar *
417 lookup_internalvar (name)
418 char *name;
419 {
420 register struct internalvar *var;
421
422 for (var = internalvars; var; var = var->next)
423 if (STREQ (var->name, name))
424 return var;
425
426 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
427 var->name = concat (name, NULL);
428 var->value = allocate_value (builtin_type_void);
429 release_value (var->value);
430 var->next = internalvars;
431 internalvars = var;
432 return var;
433 }
434
435 value_ptr
436 value_of_internalvar (var)
437 struct internalvar *var;
438 {
439 register value_ptr val;
440
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 return VALUE_OF_TRAPPED_INTERNALVAR (var);
444 #endif
445
446 val = value_copy (var->value);
447 if (VALUE_LAZY (val))
448 value_fetch_lazy (val);
449 VALUE_LVAL (val) = lval_internalvar;
450 VALUE_INTERNALVAR (val) = var;
451 return val;
452 }
453
454 void
455 set_internalvar_component (var, offset, bitpos, bitsize, newval)
456 struct internalvar *var;
457 int offset, bitpos, bitsize;
458 value_ptr newval;
459 {
460 register char *addr = VALUE_CONTENTS (var->value) + offset;
461
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
465 #endif
466
467 if (bitsize)
468 modify_field (addr, value_as_long (newval),
469 bitpos, bitsize);
470 else
471 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
472 }
473
474 void
475 set_internalvar (var, val)
476 struct internalvar *var;
477 value_ptr val;
478 {
479 value_ptr newval;
480
481 #ifdef IS_TRAPPED_INTERNALVAR
482 if (IS_TRAPPED_INTERNALVAR (var->name))
483 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
484 #endif
485
486 newval = value_copy (val);
487
488 /* Force the value to be fetched from the target now, to avoid problems
489 later when this internalvar is referenced and the target is gone or
490 has changed. */
491 if (VALUE_LAZY (newval))
492 value_fetch_lazy (newval);
493
494 /* Begin code which must not call error(). If var->value points to
495 something free'd, an error() obviously leaves a dangling pointer.
496 But we also get a danling pointer if var->value points to
497 something in the value chain (i.e., before release_value is
498 called), because after the error free_all_values will get called before
499 long. */
500 free ((PTR)var->value);
501 var->value = newval;
502 release_value (newval);
503 /* End code which must not call error(). */
504 }
505
506 char *
507 internalvar_name (var)
508 struct internalvar *var;
509 {
510 return var->name;
511 }
512
513 /* Free all internalvars. Done when new symtabs are loaded,
514 because that makes the values invalid. */
515
516 void
517 clear_internalvars ()
518 {
519 register struct internalvar *var;
520
521 while (internalvars)
522 {
523 var = internalvars;
524 internalvars = var->next;
525 free ((PTR)var->name);
526 free ((PTR)var->value);
527 free ((PTR)var);
528 }
529 }
530
531 static void
532 show_convenience (ignore, from_tty)
533 char *ignore;
534 int from_tty;
535 {
536 register struct internalvar *var;
537 int varseen = 0;
538
539 for (var = internalvars; var; var = var->next)
540 {
541 #ifdef IS_TRAPPED_INTERNALVAR
542 if (IS_TRAPPED_INTERNALVAR (var->name))
543 continue;
544 #endif
545 if (!varseen)
546 {
547 varseen = 1;
548 }
549 printf_filtered ("$%s = ", var->name);
550 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
551 printf_filtered ("\n");
552 }
553 if (!varseen)
554 printf_unfiltered ("No debugger convenience variables now defined.\n\
555 Convenience variables have names starting with \"$\";\n\
556 use \"set\" as in \"set $foo = 5\" to define them.\n");
557 }
558 \f
559 /* Extract a value as a C number (either long or double).
560 Knows how to convert fixed values to double, or
561 floating values to long.
562 Does not deallocate the value. */
563
564 LONGEST
565 value_as_long (val)
566 register value_ptr val;
567 {
568 /* This coerces arrays and functions, which is necessary (e.g.
569 in disassemble_command). It also dereferences references, which
570 I suspect is the most logical thing to do. */
571 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
572 COERCE_ARRAY (val);
573 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
574 }
575
576 double
577 value_as_double (val)
578 register value_ptr val;
579 {
580 double foo;
581 int inv;
582
583 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
584 if (inv)
585 error ("Invalid floating value found in program.");
586 return foo;
587 }
588 /* Extract a value as a C pointer.
589 Does not deallocate the value. */
590 CORE_ADDR
591 value_as_pointer (val)
592 value_ptr val;
593 {
594 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
595 whether we want this to be true eventually. */
596 #if 0
597 /* ADDR_BITS_REMOVE is wrong if we are being called for a
598 non-address (e.g. argument to "signal", "info break", etc.), or
599 for pointers to char, in which the low bits *are* significant. */
600 return ADDR_BITS_REMOVE(value_as_long (val));
601 #else
602 return value_as_long (val);
603 #endif
604 }
605 \f
606 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
607 as a long, or as a double, assuming the raw data is described
608 by type TYPE. Knows how to convert different sizes of values
609 and can convert between fixed and floating point. We don't assume
610 any alignment for the raw data. Return value is in host byte order.
611
612 If you want functions and arrays to be coerced to pointers, and
613 references to be dereferenced, call value_as_long() instead.
614
615 C++: It is assumed that the front-end has taken care of
616 all matters concerning pointers to members. A pointer
617 to member which reaches here is considered to be equivalent
618 to an INT (or some size). After all, it is only an offset. */
619
620 LONGEST
621 unpack_long (type, valaddr)
622 struct type *type;
623 char *valaddr;
624 {
625 register enum type_code code = TYPE_CODE (type);
626 register int len = TYPE_LENGTH (type);
627 register int nosign = TYPE_UNSIGNED (type);
628
629 switch (code)
630 {
631 case TYPE_CODE_ENUM:
632 case TYPE_CODE_BOOL:
633 case TYPE_CODE_INT:
634 case TYPE_CODE_CHAR:
635 case TYPE_CODE_RANGE:
636 if (nosign)
637 return extract_unsigned_integer (valaddr, len);
638 else
639 return extract_signed_integer (valaddr, len);
640
641 case TYPE_CODE_FLT:
642 return extract_floating (valaddr, len);
643
644 case TYPE_CODE_PTR:
645 case TYPE_CODE_REF:
646 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
647 whether we want this to be true eventually. */
648 return extract_address (valaddr, len);
649
650 case TYPE_CODE_MEMBER:
651 error ("not implemented: member types in unpack_long");
652
653 default:
654 error ("Value can't be converted to integer.");
655 }
656 return 0; /* Placate lint. */
657 }
658
659 /* Return a double value from the specified type and address.
660 INVP points to an int which is set to 0 for valid value,
661 1 for invalid value (bad float format). In either case,
662 the returned double is OK to use. Argument is in target
663 format, result is in host format. */
664
665 double
666 unpack_double (type, valaddr, invp)
667 struct type *type;
668 char *valaddr;
669 int *invp;
670 {
671 register enum type_code code = TYPE_CODE (type);
672 register int len = TYPE_LENGTH (type);
673 register int nosign = TYPE_UNSIGNED (type);
674
675 *invp = 0; /* Assume valid. */
676 if (code == TYPE_CODE_FLT)
677 {
678 if (INVALID_FLOAT (valaddr, len))
679 {
680 *invp = 1;
681 return 1.234567891011121314;
682 }
683 return extract_floating (valaddr, len);
684 }
685 else if (nosign)
686 {
687 /* Unsigned -- be sure we compensate for signed LONGEST. */
688 return (unsigned LONGEST) unpack_long (type, valaddr);
689 }
690 else
691 {
692 /* Signed -- we are OK with unpack_long. */
693 return unpack_long (type, valaddr);
694 }
695 }
696
697 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
698 as a CORE_ADDR, assuming the raw data is described by type TYPE.
699 We don't assume any alignment for the raw data. Return value is in
700 host byte order.
701
702 If you want functions and arrays to be coerced to pointers, and
703 references to be dereferenced, call value_as_pointer() instead.
704
705 C++: It is assumed that the front-end has taken care of
706 all matters concerning pointers to members. A pointer
707 to member which reaches here is considered to be equivalent
708 to an INT (or some size). After all, it is only an offset. */
709
710 CORE_ADDR
711 unpack_pointer (type, valaddr)
712 struct type *type;
713 char *valaddr;
714 {
715 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
716 whether we want this to be true eventually. */
717 return unpack_long (type, valaddr);
718 }
719 \f
720 /* Given a value ARG1 (offset by OFFSET bytes)
721 of a struct or union type ARG_TYPE,
722 extract and return the value of one of its fields.
723 FIELDNO says which field.
724
725 For C++, must also be able to return values from static fields */
726
727 value_ptr
728 value_primitive_field (arg1, offset, fieldno, arg_type)
729 register value_ptr arg1;
730 int offset;
731 register int fieldno;
732 register struct type *arg_type;
733 {
734 register value_ptr v;
735 register struct type *type;
736
737 check_stub_type (arg_type);
738 type = TYPE_FIELD_TYPE (arg_type, fieldno);
739
740 /* Handle packed fields */
741
742 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
743 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
744 {
745 v = value_from_longest (type,
746 unpack_field_as_long (arg_type,
747 VALUE_CONTENTS (arg1),
748 fieldno));
749 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
750 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
751 }
752 else
753 {
754 v = allocate_value (type);
755 if (VALUE_LAZY (arg1))
756 VALUE_LAZY (v) = 1;
757 else
758 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
759 TYPE_LENGTH (type));
760 }
761 VALUE_LVAL (v) = VALUE_LVAL (arg1);
762 if (VALUE_LVAL (arg1) == lval_internalvar)
763 VALUE_LVAL (v) = lval_internalvar_component;
764 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
765 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
766 return v;
767 }
768
769 /* Given a value ARG1 of a struct or union type,
770 extract and return the value of one of its fields.
771 FIELDNO says which field.
772
773 For C++, must also be able to return values from static fields */
774
775 value_ptr
776 value_field (arg1, fieldno)
777 register value_ptr arg1;
778 register int fieldno;
779 {
780 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
781 }
782
783 /* Return a non-virtual function as a value.
784 F is the list of member functions which contains the desired method.
785 J is an index into F which provides the desired method. */
786
787 value_ptr
788 value_fn_field (arg1p, f, j, type, offset)
789 value_ptr *arg1p;
790 struct fn_field *f;
791 int j;
792 struct type *type;
793 int offset;
794 {
795 register value_ptr v;
796 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
797 struct symbol *sym;
798
799 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
800 0, VAR_NAMESPACE, 0, NULL);
801 if (! sym)
802 return NULL;
803 /*
804 error ("Internal error: could not find physical method named %s",
805 TYPE_FN_FIELD_PHYSNAME (f, j));
806 */
807
808 v = allocate_value (ftype);
809 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
810 VALUE_TYPE (v) = ftype;
811
812 if (arg1p)
813 {
814 if (type != VALUE_TYPE (*arg1p))
815 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
816 value_addr (*arg1p)));
817
818 /* Move the `this' pointer according to the offset.
819 VALUE_OFFSET (*arg1p) += offset;
820 */
821 }
822
823 return v;
824 }
825
826 /* Return a virtual function as a value.
827 ARG1 is the object which provides the virtual function
828 table pointer. *ARG1P is side-effected in calling this function.
829 F is the list of member functions which contains the desired virtual
830 function.
831 J is an index into F which provides the desired virtual function.
832
833 TYPE is the type in which F is located. */
834 value_ptr
835 value_virtual_fn_field (arg1p, f, j, type, offset)
836 value_ptr *arg1p;
837 struct fn_field *f;
838 int j;
839 struct type *type;
840 int offset;
841 {
842 value_ptr arg1 = *arg1p;
843 /* First, get the virtual function table pointer. That comes
844 with a strange type, so cast it to type `pointer to long' (which
845 should serve just fine as a function type). Then, index into
846 the table, and convert final value to appropriate function type. */
847 value_ptr entry, vfn, vtbl;
848 value_ptr vi = value_from_longest (builtin_type_int,
849 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
850 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
851 struct type *context;
852 if (fcontext == NULL)
853 /* We don't have an fcontext (e.g. the program was compiled with
854 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
855 This won't work right for multiple inheritance, but at least we
856 should do as well as GDB 3.x did. */
857 fcontext = TYPE_VPTR_BASETYPE (type);
858 context = lookup_pointer_type (fcontext);
859 /* Now context is a pointer to the basetype containing the vtbl. */
860 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
861 arg1 = value_ind (value_cast (context, value_addr (arg1)));
862
863 context = VALUE_TYPE (arg1);
864 /* Now context is the basetype containing the vtbl. */
865
866 /* This type may have been defined before its virtual function table
867 was. If so, fill in the virtual function table entry for the
868 type now. */
869 if (TYPE_VPTR_FIELDNO (context) < 0)
870 fill_in_vptr_fieldno (context);
871
872 /* The virtual function table is now an array of structures
873 which have the form { int16 offset, delta; void *pfn; }. */
874 vtbl = value_ind (value_primitive_field (arg1, 0,
875 TYPE_VPTR_FIELDNO (context),
876 TYPE_VPTR_BASETYPE (context)));
877
878 /* Index into the virtual function table. This is hard-coded because
879 looking up a field is not cheap, and it may be important to save
880 time, e.g. if the user has set a conditional breakpoint calling
881 a virtual function. */
882 entry = value_subscript (vtbl, vi);
883
884 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
885 {
886 /* Move the `this' pointer according to the virtual function table. */
887 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
888
889 if (! VALUE_LAZY (arg1))
890 {
891 VALUE_LAZY (arg1) = 1;
892 value_fetch_lazy (arg1);
893 }
894
895 vfn = value_field (entry, 2);
896 }
897 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
898 vfn = entry;
899 else
900 error ("I'm confused: virtual function table has bad type");
901 /* Reinstantiate the function pointer with the correct type. */
902 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
903
904 *arg1p = arg1;
905 return vfn;
906 }
907
908 /* ARG is a pointer to an object we know to be at least
909 a DTYPE. BTYPE is the most derived basetype that has
910 already been searched (and need not be searched again).
911 After looking at the vtables between BTYPE and DTYPE,
912 return the most derived type we find. The caller must
913 be satisfied when the return value == DTYPE.
914
915 FIXME-tiemann: should work with dossier entries as well. */
916
917 static value_ptr
918 value_headof (in_arg, btype, dtype)
919 value_ptr in_arg;
920 struct type *btype, *dtype;
921 {
922 /* First collect the vtables we must look at for this object. */
923 /* FIXME-tiemann: right now, just look at top-most vtable. */
924 value_ptr arg, vtbl, entry, best_entry = 0;
925 int i, nelems;
926 int offset, best_offset = 0;
927 struct symbol *sym;
928 CORE_ADDR pc_for_sym;
929 char *demangled_name;
930 struct minimal_symbol *msymbol;
931
932 btype = TYPE_VPTR_BASETYPE (dtype);
933 check_stub_type (btype);
934 arg = in_arg;
935 if (btype != dtype)
936 arg = value_cast (lookup_pointer_type (btype), arg);
937 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
938
939 /* Check that VTBL looks like it points to a virtual function table. */
940 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
941 if (msymbol == NULL
942 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
943 || !VTBL_PREFIX_P (demangled_name))
944 {
945 /* If we expected to find a vtable, but did not, let the user
946 know that we aren't happy, but don't throw an error.
947 FIXME: there has to be a better way to do this. */
948 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
949 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
950 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
951 VALUE_TYPE (in_arg) = error_type;
952 return in_arg;
953 }
954
955 /* Now search through the virtual function table. */
956 entry = value_ind (vtbl);
957 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
958 for (i = 1; i <= nelems; i++)
959 {
960 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
961 (LONGEST) i));
962 /* This won't work if we're using thunks. */
963 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
964 break;
965 offset = longest_to_int (value_as_long (value_field (entry, 0)));
966 /* If we use '<=' we can handle single inheritance
967 * where all offsets are zero - just use the first entry found. */
968 if (offset <= best_offset)
969 {
970 best_offset = offset;
971 best_entry = entry;
972 }
973 }
974 /* Move the pointer according to BEST_ENTRY's offset, and figure
975 out what type we should return as the new pointer. */
976 if (best_entry == 0)
977 {
978 /* An alternative method (which should no longer be necessary).
979 * But we leave it in for future use, when we will hopefully
980 * have optimizes the vtable to use thunks instead of offsets. */
981 /* Use the name of vtable itself to extract a base type. */
982 demangled_name += 4; /* Skip _vt$ prefix. */
983 }
984 else
985 {
986 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
987 sym = find_pc_function (pc_for_sym);
988 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
989 *(strchr (demangled_name, ':')) = '\0';
990 }
991 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
992 if (sym == NULL)
993 error ("could not find type declaration for `%s'", demangled_name);
994 if (best_entry)
995 {
996 free (demangled_name);
997 arg = value_add (value_cast (builtin_type_int, arg),
998 value_field (best_entry, 0));
999 }
1000 else arg = in_arg;
1001 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1002 return arg;
1003 }
1004
1005 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1006 function tables, probe ARG's tables (including the vtables
1007 of its baseclasses) to figure out the most derived type that ARG
1008 could actually be a pointer to. */
1009
1010 value_ptr
1011 value_from_vtable_info (arg, type)
1012 value_ptr arg;
1013 struct type *type;
1014 {
1015 /* Take care of preliminaries. */
1016 if (TYPE_VPTR_FIELDNO (type) < 0)
1017 fill_in_vptr_fieldno (type);
1018 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1019 return 0;
1020
1021 return value_headof (arg, 0, type);
1022 }
1023
1024 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1025 pointer which is for the base class whose type is BASECLASS. */
1026
1027 static int
1028 vb_match (type, index, basetype)
1029 struct type *type;
1030 int index;
1031 struct type *basetype;
1032 {
1033 struct type *fieldtype;
1034 char *name = TYPE_FIELD_NAME (type, index);
1035 char *field_class_name = NULL;
1036
1037 if (*name != '_')
1038 return 0;
1039 /* gcc 2.4 uses _vb$. */
1040 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1041 field_class_name = name + 4;
1042 /* gcc 2.5 will use __vb_. */
1043 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1044 field_class_name = name + 5;
1045
1046 if (field_class_name == NULL)
1047 /* This field is not a virtual base class pointer. */
1048 return 0;
1049
1050 /* It's a virtual baseclass pointer, now we just need to find out whether
1051 it is for this baseclass. */
1052 fieldtype = TYPE_FIELD_TYPE (type, index);
1053 if (fieldtype == NULL
1054 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1055 /* "Can't happen". */
1056 return 0;
1057
1058 /* What we check for is that either the types are equal (needed for
1059 nameless types) or have the same name. This is ugly, and a more
1060 elegant solution should be devised (which would probably just push
1061 the ugliness into symbol reading unless we change the stabs format). */
1062 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1063 return 1;
1064
1065 if (TYPE_NAME (basetype) != NULL
1066 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1067 && STREQ (TYPE_NAME (basetype),
1068 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1069 return 1;
1070 return 0;
1071 }
1072
1073 /* Compute the offset of the baseclass which is
1074 the INDEXth baseclass of class TYPE, for a value ARG,
1075 wih extra offset of OFFSET.
1076 The result is the offste of the baseclass value relative
1077 to (the address of)(ARG) + OFFSET.
1078
1079 -1 is returned on error. */
1080
1081 int
1082 baseclass_offset (type, index, arg, offset)
1083 struct type *type;
1084 int index;
1085 value_ptr arg;
1086 int offset;
1087 {
1088 struct type *basetype = TYPE_BASECLASS (type, index);
1089
1090 if (BASETYPE_VIA_VIRTUAL (type, index))
1091 {
1092 /* Must hunt for the pointer to this virtual baseclass. */
1093 register int i, len = TYPE_NFIELDS (type);
1094 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1095
1096 /* First look for the virtual baseclass pointer
1097 in the fields. */
1098 for (i = n_baseclasses; i < len; i++)
1099 {
1100 if (vb_match (type, i, basetype))
1101 {
1102 CORE_ADDR addr
1103 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1104 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1105 + offset
1106 + (TYPE_FIELD_BITPOS (type, i) / 8));
1107
1108 if (VALUE_LVAL (arg) != lval_memory)
1109 return -1;
1110
1111 return addr -
1112 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1113 }
1114 }
1115 /* Not in the fields, so try looking through the baseclasses. */
1116 for (i = index+1; i < n_baseclasses; i++)
1117 {
1118 int boffset =
1119 baseclass_offset (type, i, arg, offset);
1120 if (boffset)
1121 return boffset;
1122 }
1123 /* Not found. */
1124 return -1;
1125 }
1126
1127 /* Baseclass is easily computed. */
1128 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1129 }
1130
1131 /* Compute the address of the baseclass which is
1132 the INDEXth baseclass of class TYPE. The TYPE base
1133 of the object is at VALADDR.
1134
1135 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1136 or 0 if no error. In that case the return value is not the address
1137 of the baseclasss, but the address which could not be read
1138 successfully. */
1139
1140 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1141
1142 char *
1143 baseclass_addr (type, index, valaddr, valuep, errp)
1144 struct type *type;
1145 int index;
1146 char *valaddr;
1147 value_ptr *valuep;
1148 int *errp;
1149 {
1150 struct type *basetype = TYPE_BASECLASS (type, index);
1151
1152 if (errp)
1153 *errp = 0;
1154
1155 if (BASETYPE_VIA_VIRTUAL (type, index))
1156 {
1157 /* Must hunt for the pointer to this virtual baseclass. */
1158 register int i, len = TYPE_NFIELDS (type);
1159 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1160
1161 /* First look for the virtual baseclass pointer
1162 in the fields. */
1163 for (i = n_baseclasses; i < len; i++)
1164 {
1165 if (vb_match (type, i, basetype))
1166 {
1167 value_ptr val = allocate_value (basetype);
1168 CORE_ADDR addr;
1169 int status;
1170
1171 addr
1172 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1173 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1174
1175 status = target_read_memory (addr,
1176 VALUE_CONTENTS_RAW (val),
1177 TYPE_LENGTH (basetype));
1178 VALUE_LVAL (val) = lval_memory;
1179 VALUE_ADDRESS (val) = addr;
1180
1181 if (status != 0)
1182 {
1183 if (valuep)
1184 *valuep = NULL;
1185 release_value (val);
1186 value_free (val);
1187 if (errp)
1188 *errp = status;
1189 return (char *)addr;
1190 }
1191 else
1192 {
1193 if (valuep)
1194 *valuep = val;
1195 return (char *) VALUE_CONTENTS (val);
1196 }
1197 }
1198 }
1199 /* Not in the fields, so try looking through the baseclasses. */
1200 for (i = index+1; i < n_baseclasses; i++)
1201 {
1202 char *baddr;
1203
1204 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1205 if (baddr)
1206 return baddr;
1207 }
1208 /* Not found. */
1209 if (valuep)
1210 *valuep = 0;
1211 return 0;
1212 }
1213
1214 /* Baseclass is easily computed. */
1215 if (valuep)
1216 *valuep = 0;
1217 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1218 }
1219 \f
1220 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1221 VALADDR.
1222
1223 Extracting bits depends on endianness of the machine. Compute the
1224 number of least significant bits to discard. For big endian machines,
1225 we compute the total number of bits in the anonymous object, subtract
1226 off the bit count from the MSB of the object to the MSB of the
1227 bitfield, then the size of the bitfield, which leaves the LSB discard
1228 count. For little endian machines, the discard count is simply the
1229 number of bits from the LSB of the anonymous object to the LSB of the
1230 bitfield.
1231
1232 If the field is signed, we also do sign extension. */
1233
1234 LONGEST
1235 unpack_field_as_long (type, valaddr, fieldno)
1236 struct type *type;
1237 char *valaddr;
1238 int fieldno;
1239 {
1240 unsigned LONGEST val;
1241 unsigned LONGEST valmask;
1242 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1243 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1244 int lsbcount;
1245
1246 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1247
1248 /* Extract bits. See comment above. */
1249
1250 #if BITS_BIG_ENDIAN
1251 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1252 #else
1253 lsbcount = (bitpos % 8);
1254 #endif
1255 val >>= lsbcount;
1256
1257 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1258 If the field is signed, and is negative, then sign extend. */
1259
1260 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1261 {
1262 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1263 val &= valmask;
1264 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1265 {
1266 if (val & (valmask ^ (valmask >> 1)))
1267 {
1268 val |= ~valmask;
1269 }
1270 }
1271 }
1272 return (val);
1273 }
1274
1275 /* Modify the value of a bitfield. ADDR points to a block of memory in
1276 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1277 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1278 indicate which bits (in target bit order) comprise the bitfield. */
1279
1280 void
1281 modify_field (addr, fieldval, bitpos, bitsize)
1282 char *addr;
1283 LONGEST fieldval;
1284 int bitpos, bitsize;
1285 {
1286 LONGEST oword;
1287
1288 /* Reject values too big to fit in the field in question,
1289 otherwise adjoining fields may be corrupted. */
1290 if (bitsize < (8 * sizeof (fieldval))
1291 && 0 != (fieldval & ~((1<<bitsize)-1)))
1292 {
1293 /* FIXME: would like to include fieldval in the message, but
1294 we don't have a sprintf_longest. */
1295 error ("Value does not fit in %d bits.", bitsize);
1296 }
1297
1298 oword = extract_signed_integer (addr, sizeof oword);
1299
1300 /* Shifting for bit field depends on endianness of the target machine. */
1301 #if BITS_BIG_ENDIAN
1302 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1303 #endif
1304
1305 /* Mask out old value, while avoiding shifts >= size of oword */
1306 if (bitsize < 8 * sizeof (oword))
1307 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1308 else
1309 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1310 oword |= fieldval << bitpos;
1311
1312 store_signed_integer (addr, sizeof oword, oword);
1313 }
1314 \f
1315 /* Convert C numbers into newly allocated values */
1316
1317 value_ptr
1318 value_from_longest (type, num)
1319 struct type *type;
1320 register LONGEST num;
1321 {
1322 register value_ptr val = allocate_value (type);
1323 register enum type_code code = TYPE_CODE (type);
1324 register int len = TYPE_LENGTH (type);
1325
1326 switch (code)
1327 {
1328 case TYPE_CODE_INT:
1329 case TYPE_CODE_CHAR:
1330 case TYPE_CODE_ENUM:
1331 case TYPE_CODE_BOOL:
1332 case TYPE_CODE_RANGE:
1333 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1334 break;
1335
1336 case TYPE_CODE_REF:
1337 case TYPE_CODE_PTR:
1338 /* This assumes that all pointers of a given length
1339 have the same form. */
1340 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1341 break;
1342
1343 default:
1344 error ("Unexpected type encountered for integer constant.");
1345 }
1346 return val;
1347 }
1348
1349 value_ptr
1350 value_from_double (type, num)
1351 struct type *type;
1352 double num;
1353 {
1354 register value_ptr val = allocate_value (type);
1355 register enum type_code code = TYPE_CODE (type);
1356 register int len = TYPE_LENGTH (type);
1357
1358 if (code == TYPE_CODE_FLT)
1359 {
1360 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1361 }
1362 else
1363 error ("Unexpected type encountered for floating constant.");
1364
1365 return val;
1366 }
1367 \f
1368 /* Deal with the value that is "about to be returned". */
1369
1370 /* Return the value that a function returning now
1371 would be returning to its caller, assuming its type is VALTYPE.
1372 RETBUF is where we look for what ought to be the contents
1373 of the registers (in raw form). This is because it is often
1374 desirable to restore old values to those registers
1375 after saving the contents of interest, and then call
1376 this function using the saved values.
1377 struct_return is non-zero when the function in question is
1378 using the structure return conventions on the machine in question;
1379 0 when it is using the value returning conventions (this often
1380 means returning pointer to where structure is vs. returning value). */
1381
1382 value_ptr
1383 value_being_returned (valtype, retbuf, struct_return)
1384 register struct type *valtype;
1385 char retbuf[REGISTER_BYTES];
1386 int struct_return;
1387 /*ARGSUSED*/
1388 {
1389 register value_ptr val;
1390 CORE_ADDR addr;
1391
1392 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1393 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1394 if (struct_return) {
1395 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1396 if (!addr)
1397 error ("Function return value unknown");
1398 return value_at (valtype, addr);
1399 }
1400 #endif
1401
1402 val = allocate_value (valtype);
1403 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1404
1405 return val;
1406 }
1407
1408 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1409 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1410 and TYPE is the type (which is known to be struct, union or array).
1411
1412 On most machines, the struct convention is used unless we are
1413 using gcc and the type is of a special size. */
1414 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1415 native compiler. GCC 2.3.3 was the last release that did it the
1416 old way. Since gcc2_compiled was not changed, we have no
1417 way to correctly win in all cases, so we just do the right thing
1418 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1419 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1420 would cause more chaos than dealing with some struct returns being
1421 handled wrong. */
1422 #if !defined (USE_STRUCT_CONVENTION)
1423 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1424 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1425 || TYPE_LENGTH (value_type) == 2 \
1426 || TYPE_LENGTH (value_type) == 4 \
1427 || TYPE_LENGTH (value_type) == 8 \
1428 ) \
1429 ))
1430 #endif
1431
1432 /* Return true if the function specified is using the structure returning
1433 convention on this machine to return arguments, or 0 if it is using
1434 the value returning convention. FUNCTION is the value representing
1435 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1436 is the type returned by the function. GCC_P is nonzero if compiled
1437 with GCC. */
1438
1439 int
1440 using_struct_return (function, funcaddr, value_type, gcc_p)
1441 value_ptr function;
1442 CORE_ADDR funcaddr;
1443 struct type *value_type;
1444 int gcc_p;
1445 /*ARGSUSED*/
1446 {
1447 register enum type_code code = TYPE_CODE (value_type);
1448
1449 if (code == TYPE_CODE_ERROR)
1450 error ("Function return type unknown.");
1451
1452 if (code == TYPE_CODE_STRUCT ||
1453 code == TYPE_CODE_UNION ||
1454 code == TYPE_CODE_ARRAY)
1455 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1456
1457 return 0;
1458 }
1459
1460 /* Store VAL so it will be returned if a function returns now.
1461 Does not verify that VAL's type matches what the current
1462 function wants to return. */
1463
1464 void
1465 set_return_value (val)
1466 value_ptr val;
1467 {
1468 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1469 double dbuf;
1470 LONGEST lbuf;
1471
1472 if (code == TYPE_CODE_ERROR)
1473 error ("Function return type unknown.");
1474
1475 if ( code == TYPE_CODE_STRUCT
1476 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1477 error ("GDB does not support specifying a struct or union return value.");
1478
1479 /* FIXME, this is bogus. We don't know what the return conventions
1480 are, or how values should be promoted.... */
1481 if (code == TYPE_CODE_FLT)
1482 {
1483 dbuf = value_as_double (val);
1484
1485 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1486 }
1487 else
1488 {
1489 lbuf = value_as_long (val);
1490 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1491 }
1492 }
1493 \f
1494 void
1495 _initialize_values ()
1496 {
1497 add_cmd ("convenience", no_class, show_convenience,
1498 "Debugger convenience (\"$foo\") variables.\n\
1499 These variables are created when you assign them values;\n\
1500 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1501 A few convenience variables are given values automatically:\n\
1502 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1503 \"$__\" holds the contents of the last address examined with \"x\".",
1504 &showlist);
1505
1506 add_cmd ("values", no_class, show_values,
1507 "Elements of value history around item number IDX (or last ten).",
1508 &showlist);
1509 }