* values.c (unpack_long): Remove obsolete comment about using a
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
35 struct type *));
36
37 static void show_values PARAMS ((char *, int));
38
39 static void show_convenience PARAMS ((char *, int));
40
41 /* The value-history records all the values printed
42 by print commands during this session. Each chunk
43 records 60 consecutive values. The first chunk on
44 the chain records the most recent values.
45 The total number of values is in value_history_count. */
46
47 #define VALUE_HISTORY_CHUNK 60
48
49 struct value_history_chunk
50 {
51 struct value_history_chunk *next;
52 value_ptr values[VALUE_HISTORY_CHUNK];
53 };
54
55 /* Chain of chunks now in use. */
56
57 static struct value_history_chunk *value_history_chain;
58
59 static int value_history_count; /* Abs number of last entry stored */
60 \f
61 /* List of all value objects currently allocated
62 (except for those released by calls to release_value)
63 This is so they can be freed after each command. */
64
65 static value_ptr all_values;
66
67 /* Allocate a value that has the correct length for type TYPE. */
68
69 value_ptr
70 allocate_value (type)
71 struct type *type;
72 {
73 register value_ptr val;
74
75 check_stub_type (type);
76
77 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
78 VALUE_NEXT (val) = all_values;
79 all_values = val;
80 VALUE_TYPE (val) = type;
81 VALUE_LVAL (val) = not_lval;
82 VALUE_ADDRESS (val) = 0;
83 VALUE_FRAME (val) = 0;
84 VALUE_OFFSET (val) = 0;
85 VALUE_BITPOS (val) = 0;
86 VALUE_BITSIZE (val) = 0;
87 VALUE_REPEATED (val) = 0;
88 VALUE_REPETITIONS (val) = 0;
89 VALUE_REGNO (val) = -1;
90 VALUE_LAZY (val) = 0;
91 VALUE_OPTIMIZED_OUT (val) = 0;
92 val->modifiable = 1;
93 return val;
94 }
95
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
99 value_ptr
100 allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103 {
104 register value_ptr val;
105
106 val =
107 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value_ptr
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value_ptr mark;
139 {
140 value_ptr val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value_ptr val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value_ptr val;
173 {
174 register value_ptr v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value_ptr
197 value_copy (arg)
198 value_ptr arg;
199 {
200 register value_ptr val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 val->modifiable = arg->modifiable;
214 if (!VALUE_LAZY (val))
215 {
216 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
217 TYPE_LENGTH (VALUE_TYPE (arg))
218 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
219 }
220 return val;
221 }
222 \f
223 /* Access to the value history. */
224
225 /* Record a new value in the value history.
226 Returns the absolute history index of the entry.
227 Result of -1 indicates the value was not saved; otherwise it is the
228 value history index of this new item. */
229
230 int
231 record_latest_value (val)
232 value_ptr val;
233 {
234 int i;
235
236 /* Check error now if about to store an invalid float. We return -1
237 to the caller, but allow them to continue, e.g. to print it as "Nan". */
238 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
239 {
240 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
241 if (i) return -1; /* Indicate value not saved in history */
242 }
243
244 /* Here we treat value_history_count as origin-zero
245 and applying to the value being stored now. */
246
247 i = value_history_count % VALUE_HISTORY_CHUNK;
248 if (i == 0)
249 {
250 register struct value_history_chunk *new
251 = (struct value_history_chunk *)
252 xmalloc (sizeof (struct value_history_chunk));
253 memset (new->values, 0, sizeof new->values);
254 new->next = value_history_chain;
255 value_history_chain = new;
256 }
257
258 value_history_chain->values[i] = val;
259
260 /* We don't want this value to have anything to do with the inferior anymore.
261 In particular, "set $1 = 50" should not affect the variable from which
262 the value was taken, and fast watchpoints should be able to assume that
263 a value on the value history never changes. */
264 if (VALUE_LAZY (val))
265 value_fetch_lazy (val);
266 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
267 from. This is a bit dubious, because then *&$1 does not just return $1
268 but the current contents of that location. c'est la vie... */
269 val->modifiable = 0;
270 release_value (val);
271
272 /* Now we regard value_history_count as origin-one
273 and applying to the value just stored. */
274
275 return ++value_history_count;
276 }
277
278 /* Return a copy of the value in the history with sequence number NUM. */
279
280 value_ptr
281 access_value_history (num)
282 int num;
283 {
284 register struct value_history_chunk *chunk;
285 register int i;
286 register int absnum = num;
287
288 if (absnum <= 0)
289 absnum += value_history_count;
290
291 if (absnum <= 0)
292 {
293 if (num == 0)
294 error ("The history is empty.");
295 else if (num == 1)
296 error ("There is only one value in the history.");
297 else
298 error ("History does not go back to $$%d.", -num);
299 }
300 if (absnum > value_history_count)
301 error ("History has not yet reached $%d.", absnum);
302
303 absnum--;
304
305 /* Now absnum is always absolute and origin zero. */
306
307 chunk = value_history_chain;
308 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
309 i > 0; i--)
310 chunk = chunk->next;
311
312 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
313 }
314
315 /* Clear the value history entirely.
316 Must be done when new symbol tables are loaded,
317 because the type pointers become invalid. */
318
319 void
320 clear_value_history ()
321 {
322 register struct value_history_chunk *next;
323 register int i;
324 register value_ptr val;
325
326 while (value_history_chain)
327 {
328 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
329 if ((val = value_history_chain->values[i]) != NULL)
330 free ((PTR)val);
331 next = value_history_chain->next;
332 free ((PTR)value_history_chain);
333 value_history_chain = next;
334 }
335 value_history_count = 0;
336 }
337
338 static void
339 show_values (num_exp, from_tty)
340 char *num_exp;
341 int from_tty;
342 {
343 register int i;
344 register value_ptr val;
345 static int num = 1;
346
347 if (num_exp)
348 {
349 /* "info history +" should print from the stored position.
350 "info history <exp>" should print around value number <exp>. */
351 if (num_exp[0] != '+' || num_exp[1] != '\0')
352 num = parse_and_eval_address (num_exp) - 5;
353 }
354 else
355 {
356 /* "info history" means print the last 10 values. */
357 num = value_history_count - 9;
358 }
359
360 if (num <= 0)
361 num = 1;
362
363 for (i = num; i < num + 10 && i <= value_history_count; i++)
364 {
365 val = access_value_history (i);
366 printf_filtered ("$%d = ", i);
367 value_print (val, gdb_stdout, 0, Val_pretty_default);
368 printf_filtered ("\n");
369 }
370
371 /* The next "info history +" should start after what we just printed. */
372 num += 10;
373
374 /* Hitting just return after this command should do the same thing as
375 "info history +". If num_exp is null, this is unnecessary, since
376 "info history +" is not useful after "info history". */
377 if (from_tty && num_exp)
378 {
379 num_exp[0] = '+';
380 num_exp[1] = '\0';
381 }
382 }
383 \f
384 /* Internal variables. These are variables within the debugger
385 that hold values assigned by debugger commands.
386 The user refers to them with a '$' prefix
387 that does not appear in the variable names stored internally. */
388
389 static struct internalvar *internalvars;
390
391 /* Look up an internal variable with name NAME. NAME should not
392 normally include a dollar sign.
393
394 If the specified internal variable does not exist,
395 one is created, with a void value. */
396
397 struct internalvar *
398 lookup_internalvar (name)
399 char *name;
400 {
401 register struct internalvar *var;
402
403 for (var = internalvars; var; var = var->next)
404 if (STREQ (var->name, name))
405 return var;
406
407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
408 var->name = concat (name, NULL);
409 var->value = allocate_value (builtin_type_void);
410 release_value (var->value);
411 var->next = internalvars;
412 internalvars = var;
413 return var;
414 }
415
416 value_ptr
417 value_of_internalvar (var)
418 struct internalvar *var;
419 {
420 register value_ptr val;
421
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
425 #endif
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433 }
434
435 void
436 set_internalvar_component (var, offset, bitpos, bitsize, newval)
437 struct internalvar *var;
438 int offset, bitpos, bitsize;
439 value_ptr newval;
440 {
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
442
443 #ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
446 #endif
447
448 if (bitsize)
449 modify_field (addr, value_as_long (newval),
450 bitpos, bitsize);
451 else
452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
453 }
454
455 void
456 set_internalvar (var, val)
457 struct internalvar *var;
458 value_ptr val;
459 {
460 value_ptr newval;
461
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
465 #endif
466
467 newval = value_copy (val);
468
469 /* Force the value to be fetched from the target now, to avoid problems
470 later when this internalvar is referenced and the target is gone or
471 has changed. */
472 if (VALUE_LAZY (newval))
473 value_fetch_lazy (newval);
474
475 /* Begin code which must not call error(). If var->value points to
476 something free'd, an error() obviously leaves a dangling pointer.
477 But we also get a danling pointer if var->value points to
478 something in the value chain (i.e., before release_value is
479 called), because after the error free_all_values will get called before
480 long. */
481 free ((PTR)var->value);
482 var->value = newval;
483 release_value (newval);
484 /* End code which must not call error(). */
485 }
486
487 char *
488 internalvar_name (var)
489 struct internalvar *var;
490 {
491 return var->name;
492 }
493
494 /* Free all internalvars. Done when new symtabs are loaded,
495 because that makes the values invalid. */
496
497 void
498 clear_internalvars ()
499 {
500 register struct internalvar *var;
501
502 while (internalvars)
503 {
504 var = internalvars;
505 internalvars = var->next;
506 free ((PTR)var->name);
507 free ((PTR)var->value);
508 free ((PTR)var);
509 }
510 }
511
512 static void
513 show_convenience (ignore, from_tty)
514 char *ignore;
515 int from_tty;
516 {
517 register struct internalvar *var;
518 int varseen = 0;
519
520 for (var = internalvars; var; var = var->next)
521 {
522 #ifdef IS_TRAPPED_INTERNALVAR
523 if (IS_TRAPPED_INTERNALVAR (var->name))
524 continue;
525 #endif
526 if (!varseen)
527 {
528 varseen = 1;
529 }
530 printf_filtered ("$%s = ", var->name);
531 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
532 printf_filtered ("\n");
533 }
534 if (!varseen)
535 printf_unfiltered ("No debugger convenience variables now defined.\n\
536 Convenience variables have names starting with \"$\";\n\
537 use \"set\" as in \"set $foo = 5\" to define them.\n");
538 }
539 \f
540 /* Extract a value as a C number (either long or double).
541 Knows how to convert fixed values to double, or
542 floating values to long.
543 Does not deallocate the value. */
544
545 LONGEST
546 value_as_long (val)
547 register value_ptr val;
548 {
549 /* This coerces arrays and functions, which is necessary (e.g.
550 in disassemble_command). It also dereferences references, which
551 I suspect is the most logical thing to do. */
552 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
553 COERCE_ARRAY (val);
554 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
555 }
556
557 double
558 value_as_double (val)
559 register value_ptr val;
560 {
561 double foo;
562 int inv;
563
564 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
565 if (inv)
566 error ("Invalid floating value found in program.");
567 return foo;
568 }
569 /* Extract a value as a C pointer.
570 Does not deallocate the value. */
571 CORE_ADDR
572 value_as_pointer (val)
573 value_ptr val;
574 {
575 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
576 whether we want this to be true eventually. */
577 #if 0
578 /* ADDR_BITS_REMOVE is wrong if we are being called for a
579 non-address (e.g. argument to "signal", "info break", etc.), or
580 for pointers to char, in which the low bits *are* significant. */
581 return ADDR_BITS_REMOVE(value_as_long (val));
582 #else
583 return value_as_long (val);
584 #endif
585 }
586 \f
587 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
588 as a long, or as a double, assuming the raw data is described
589 by type TYPE. Knows how to convert different sizes of values
590 and can convert between fixed and floating point. We don't assume
591 any alignment for the raw data. Return value is in host byte order.
592
593 If you want functions and arrays to be coerced to pointers, and
594 references to be dereferenced, call value_as_long() instead.
595
596 C++: It is assumed that the front-end has taken care of
597 all matters concerning pointers to members. A pointer
598 to member which reaches here is considered to be equivalent
599 to an INT (or some size). After all, it is only an offset. */
600
601 LONGEST
602 unpack_long (type, valaddr)
603 struct type *type;
604 char *valaddr;
605 {
606 register enum type_code code = TYPE_CODE (type);
607 register int len = TYPE_LENGTH (type);
608 register int nosign = TYPE_UNSIGNED (type);
609
610 switch (code)
611 {
612 case TYPE_CODE_ENUM:
613 case TYPE_CODE_BOOL:
614 case TYPE_CODE_INT:
615 case TYPE_CODE_CHAR:
616 case TYPE_CODE_RANGE:
617 if (nosign)
618 return extract_unsigned_integer (valaddr, len);
619 else
620 return extract_signed_integer (valaddr, len);
621
622 case TYPE_CODE_FLT:
623 return extract_floating (valaddr, len);
624
625 case TYPE_CODE_PTR:
626 case TYPE_CODE_REF:
627 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
628 whether we want this to be true eventually. */
629 return extract_address (valaddr, len);
630
631 case TYPE_CODE_MEMBER:
632 error ("not implemented: member types in unpack_long");
633
634 default:
635 error ("Value can't be converted to integer.");
636 }
637 return 0; /* Placate lint. */
638 }
639
640 /* Return a double value from the specified type and address.
641 INVP points to an int which is set to 0 for valid value,
642 1 for invalid value (bad float format). In either case,
643 the returned double is OK to use. Argument is in target
644 format, result is in host format. */
645
646 double
647 unpack_double (type, valaddr, invp)
648 struct type *type;
649 char *valaddr;
650 int *invp;
651 {
652 register enum type_code code = TYPE_CODE (type);
653 register int len = TYPE_LENGTH (type);
654 register int nosign = TYPE_UNSIGNED (type);
655
656 *invp = 0; /* Assume valid. */
657 if (code == TYPE_CODE_FLT)
658 {
659 if (INVALID_FLOAT (valaddr, len))
660 {
661 *invp = 1;
662 return 1.234567891011121314;
663 }
664 return extract_floating (valaddr, len);
665 }
666 else if (nosign)
667 {
668 /* Unsigned -- be sure we compensate for signed LONGEST. */
669 return (unsigned LONGEST) unpack_long (type, valaddr);
670 }
671 else
672 {
673 /* Signed -- we are OK with unpack_long. */
674 return unpack_long (type, valaddr);
675 }
676 }
677
678 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
679 as a CORE_ADDR, assuming the raw data is described by type TYPE.
680 We don't assume any alignment for the raw data. Return value is in
681 host byte order.
682
683 If you want functions and arrays to be coerced to pointers, and
684 references to be dereferenced, call value_as_pointer() instead.
685
686 C++: It is assumed that the front-end has taken care of
687 all matters concerning pointers to members. A pointer
688 to member which reaches here is considered to be equivalent
689 to an INT (or some size). After all, it is only an offset. */
690
691 CORE_ADDR
692 unpack_pointer (type, valaddr)
693 struct type *type;
694 char *valaddr;
695 {
696 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
697 whether we want this to be true eventually. */
698 return unpack_long (type, valaddr);
699 }
700 \f
701 /* Given a value ARG1 (offset by OFFSET bytes)
702 of a struct or union type ARG_TYPE,
703 extract and return the value of one of its fields.
704 FIELDNO says which field.
705
706 For C++, must also be able to return values from static fields */
707
708 value_ptr
709 value_primitive_field (arg1, offset, fieldno, arg_type)
710 register value_ptr arg1;
711 int offset;
712 register int fieldno;
713 register struct type *arg_type;
714 {
715 register value_ptr v;
716 register struct type *type;
717
718 check_stub_type (arg_type);
719 type = TYPE_FIELD_TYPE (arg_type, fieldno);
720
721 /* Handle packed fields */
722
723 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
724 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
725 {
726 v = value_from_longest (type,
727 unpack_field_as_long (arg_type,
728 VALUE_CONTENTS (arg1),
729 fieldno));
730 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
731 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
732 }
733 else
734 {
735 v = allocate_value (type);
736 if (VALUE_LAZY (arg1))
737 VALUE_LAZY (v) = 1;
738 else
739 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
740 TYPE_LENGTH (type));
741 }
742 VALUE_LVAL (v) = VALUE_LVAL (arg1);
743 if (VALUE_LVAL (arg1) == lval_internalvar)
744 VALUE_LVAL (v) = lval_internalvar_component;
745 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
746 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
747 return v;
748 }
749
750 /* Given a value ARG1 of a struct or union type,
751 extract and return the value of one of its fields.
752 FIELDNO says which field.
753
754 For C++, must also be able to return values from static fields */
755
756 value_ptr
757 value_field (arg1, fieldno)
758 register value_ptr arg1;
759 register int fieldno;
760 {
761 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
762 }
763
764 /* Return a non-virtual function as a value.
765 F is the list of member functions which contains the desired method.
766 J is an index into F which provides the desired method. */
767
768 value_ptr
769 value_fn_field (arg1p, f, j, type, offset)
770 value_ptr *arg1p;
771 struct fn_field *f;
772 int j;
773 struct type *type;
774 int offset;
775 {
776 register value_ptr v;
777 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
778 struct symbol *sym;
779
780 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
781 0, VAR_NAMESPACE, 0, NULL);
782 if (! sym)
783 return NULL;
784 /*
785 error ("Internal error: could not find physical method named %s",
786 TYPE_FN_FIELD_PHYSNAME (f, j));
787 */
788
789 v = allocate_value (ftype);
790 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
791 VALUE_TYPE (v) = ftype;
792
793 if (arg1p)
794 {
795 if (type != VALUE_TYPE (*arg1p))
796 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
797 value_addr (*arg1p)));
798
799 /* Move the `this' pointer according to the offset.
800 VALUE_OFFSET (*arg1p) += offset;
801 */
802 }
803
804 return v;
805 }
806
807 /* Return a virtual function as a value.
808 ARG1 is the object which provides the virtual function
809 table pointer. *ARG1P is side-effected in calling this function.
810 F is the list of member functions which contains the desired virtual
811 function.
812 J is an index into F which provides the desired virtual function.
813
814 TYPE is the type in which F is located. */
815 value_ptr
816 value_virtual_fn_field (arg1p, f, j, type, offset)
817 value_ptr *arg1p;
818 struct fn_field *f;
819 int j;
820 struct type *type;
821 int offset;
822 {
823 value_ptr arg1 = *arg1p;
824 /* First, get the virtual function table pointer. That comes
825 with a strange type, so cast it to type `pointer to long' (which
826 should serve just fine as a function type). Then, index into
827 the table, and convert final value to appropriate function type. */
828 value_ptr entry, vfn, vtbl;
829 value_ptr vi = value_from_longest (builtin_type_int,
830 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
831 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
832 struct type *context;
833 if (fcontext == NULL)
834 /* We don't have an fcontext (e.g. the program was compiled with
835 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
836 This won't work right for multiple inheritance, but at least we
837 should do as well as GDB 3.x did. */
838 fcontext = TYPE_VPTR_BASETYPE (type);
839 context = lookup_pointer_type (fcontext);
840 /* Now context is a pointer to the basetype containing the vtbl. */
841 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
842 arg1 = value_ind (value_cast (context, value_addr (arg1)));
843
844 context = VALUE_TYPE (arg1);
845 /* Now context is the basetype containing the vtbl. */
846
847 /* This type may have been defined before its virtual function table
848 was. If so, fill in the virtual function table entry for the
849 type now. */
850 if (TYPE_VPTR_FIELDNO (context) < 0)
851 fill_in_vptr_fieldno (context);
852
853 /* The virtual function table is now an array of structures
854 which have the form { int16 offset, delta; void *pfn; }. */
855 vtbl = value_ind (value_primitive_field (arg1, 0,
856 TYPE_VPTR_FIELDNO (context),
857 TYPE_VPTR_BASETYPE (context)));
858
859 /* Index into the virtual function table. This is hard-coded because
860 looking up a field is not cheap, and it may be important to save
861 time, e.g. if the user has set a conditional breakpoint calling
862 a virtual function. */
863 entry = value_subscript (vtbl, vi);
864
865 /* Move the `this' pointer according to the virtual function table. */
866 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
867
868 if (! VALUE_LAZY (arg1))
869 {
870 VALUE_LAZY (arg1) = 1;
871 value_fetch_lazy (arg1);
872 }
873
874 vfn = value_field (entry, 2);
875 /* Reinstantiate the function pointer with the correct type. */
876 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
877
878 *arg1p = arg1;
879 return vfn;
880 }
881
882 /* ARG is a pointer to an object we know to be at least
883 a DTYPE. BTYPE is the most derived basetype that has
884 already been searched (and need not be searched again).
885 After looking at the vtables between BTYPE and DTYPE,
886 return the most derived type we find. The caller must
887 be satisfied when the return value == DTYPE.
888
889 FIXME-tiemann: should work with dossier entries as well. */
890
891 static value_ptr
892 value_headof (in_arg, btype, dtype)
893 value_ptr in_arg;
894 struct type *btype, *dtype;
895 {
896 /* First collect the vtables we must look at for this object. */
897 /* FIXME-tiemann: right now, just look at top-most vtable. */
898 value_ptr arg, vtbl, entry, best_entry = 0;
899 int i, nelems;
900 int offset, best_offset = 0;
901 struct symbol *sym;
902 CORE_ADDR pc_for_sym;
903 char *demangled_name;
904 struct minimal_symbol *msymbol;
905
906 btype = TYPE_VPTR_BASETYPE (dtype);
907 check_stub_type (btype);
908 arg = in_arg;
909 if (btype != dtype)
910 arg = value_cast (lookup_pointer_type (btype), arg);
911 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
912
913 /* Check that VTBL looks like it points to a virtual function table. */
914 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
915 if (msymbol == NULL
916 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
917 {
918 /* If we expected to find a vtable, but did not, let the user
919 know that we aren't happy, but don't throw an error.
920 FIXME: there has to be a better way to do this. */
921 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
922 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
923 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
924 VALUE_TYPE (in_arg) = error_type;
925 return in_arg;
926 }
927
928 /* Now search through the virtual function table. */
929 entry = value_ind (vtbl);
930 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
931 for (i = 1; i <= nelems; i++)
932 {
933 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
934 (LONGEST) i));
935 offset = longest_to_int (value_as_long (value_field (entry, 0)));
936 /* If we use '<=' we can handle single inheritance
937 * where all offsets are zero - just use the first entry found. */
938 if (offset <= best_offset)
939 {
940 best_offset = offset;
941 best_entry = entry;
942 }
943 }
944 /* Move the pointer according to BEST_ENTRY's offset, and figure
945 out what type we should return as the new pointer. */
946 if (best_entry == 0)
947 {
948 /* An alternative method (which should no longer be necessary).
949 * But we leave it in for future use, when we will hopefully
950 * have optimizes the vtable to use thunks instead of offsets. */
951 /* Use the name of vtable itself to extract a base type. */
952 demangled_name += 4; /* Skip _vt$ prefix. */
953 }
954 else
955 {
956 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
957 sym = find_pc_function (pc_for_sym);
958 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
959 *(strchr (demangled_name, ':')) = '\0';
960 }
961 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
962 if (sym == NULL)
963 error ("could not find type declaration for `%s'", demangled_name);
964 if (best_entry)
965 {
966 free (demangled_name);
967 arg = value_add (value_cast (builtin_type_int, arg),
968 value_field (best_entry, 0));
969 }
970 else arg = in_arg;
971 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
972 return arg;
973 }
974
975 /* ARG is a pointer object of type TYPE. If TYPE has virtual
976 function tables, probe ARG's tables (including the vtables
977 of its baseclasses) to figure out the most derived type that ARG
978 could actually be a pointer to. */
979
980 value_ptr
981 value_from_vtable_info (arg, type)
982 value_ptr arg;
983 struct type *type;
984 {
985 /* Take care of preliminaries. */
986 if (TYPE_VPTR_FIELDNO (type) < 0)
987 fill_in_vptr_fieldno (type);
988 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
989 return 0;
990
991 return value_headof (arg, 0, type);
992 }
993
994 /* Return true if the INDEXth field of TYPE is a virtual baseclass
995 pointer which is for the base class whose type is BASECLASS. */
996
997 static int
998 vb_match (type, index, basetype)
999 struct type *type;
1000 int index;
1001 struct type *basetype;
1002 {
1003 struct type *fieldtype;
1004 char *name = TYPE_FIELD_NAME (type, index);
1005 char *field_class_name = NULL;
1006
1007 if (*name != '_')
1008 return 0;
1009 /* gcc 2.4 uses _vb$. */
1010 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1011 field_class_name = name + 4;
1012 /* gcc 2.5 will use __vb_. */
1013 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1014 field_class_name = name + 5;
1015
1016 if (field_class_name == NULL)
1017 /* This field is not a virtual base class pointer. */
1018 return 0;
1019
1020 /* It's a virtual baseclass pointer, now we just need to find out whether
1021 it is for this baseclass. */
1022 fieldtype = TYPE_FIELD_TYPE (type, index);
1023 if (fieldtype == NULL
1024 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1025 /* "Can't happen". */
1026 return 0;
1027
1028 /* What we check for is that either the types are equal (needed for
1029 nameless types) or have the same name. This is ugly, and a more
1030 elegant solution should be devised (which would probably just push
1031 the ugliness into symbol reading unless we change the stabs format). */
1032 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1033 return 1;
1034
1035 if (TYPE_NAME (basetype) != NULL
1036 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1037 && STREQ (TYPE_NAME (basetype),
1038 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1039 return 1;
1040 return 0;
1041 }
1042
1043 /* Compute the offset of the baseclass which is
1044 the INDEXth baseclass of class TYPE, for a value ARG,
1045 wih extra offset of OFFSET.
1046 The result is the offste of the baseclass value relative
1047 to (the address of)(ARG) + OFFSET.
1048
1049 -1 is returned on error. */
1050
1051 int
1052 baseclass_offset (type, index, arg, offset)
1053 struct type *type;
1054 int index;
1055 value_ptr arg;
1056 int offset;
1057 {
1058 struct type *basetype = TYPE_BASECLASS (type, index);
1059
1060 if (BASETYPE_VIA_VIRTUAL (type, index))
1061 {
1062 /* Must hunt for the pointer to this virtual baseclass. */
1063 register int i, len = TYPE_NFIELDS (type);
1064 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1065
1066 /* First look for the virtual baseclass pointer
1067 in the fields. */
1068 for (i = n_baseclasses; i < len; i++)
1069 {
1070 if (vb_match (type, i, basetype))
1071 {
1072 CORE_ADDR addr
1073 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1074 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1075 + offset
1076 + (TYPE_FIELD_BITPOS (type, i) / 8));
1077
1078 if (VALUE_LVAL (arg) != lval_memory)
1079 return -1;
1080
1081 return addr -
1082 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1083 }
1084 }
1085 /* Not in the fields, so try looking through the baseclasses. */
1086 for (i = index+1; i < n_baseclasses; i++)
1087 {
1088 int boffset =
1089 baseclass_offset (type, i, arg, offset);
1090 if (boffset)
1091 return boffset;
1092 }
1093 /* Not found. */
1094 return -1;
1095 }
1096
1097 /* Baseclass is easily computed. */
1098 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1099 }
1100
1101 /* Compute the address of the baseclass which is
1102 the INDEXth baseclass of class TYPE. The TYPE base
1103 of the object is at VALADDR.
1104
1105 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1106 or 0 if no error. In that case the return value is not the address
1107 of the baseclasss, but the address which could not be read
1108 successfully. */
1109
1110 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1111
1112 char *
1113 baseclass_addr (type, index, valaddr, valuep, errp)
1114 struct type *type;
1115 int index;
1116 char *valaddr;
1117 value_ptr *valuep;
1118 int *errp;
1119 {
1120 struct type *basetype = TYPE_BASECLASS (type, index);
1121
1122 if (errp)
1123 *errp = 0;
1124
1125 if (BASETYPE_VIA_VIRTUAL (type, index))
1126 {
1127 /* Must hunt for the pointer to this virtual baseclass. */
1128 register int i, len = TYPE_NFIELDS (type);
1129 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1130
1131 /* First look for the virtual baseclass pointer
1132 in the fields. */
1133 for (i = n_baseclasses; i < len; i++)
1134 {
1135 if (vb_match (type, i, basetype))
1136 {
1137 value_ptr val = allocate_value (basetype);
1138 CORE_ADDR addr;
1139 int status;
1140
1141 addr
1142 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1143 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1144
1145 status = target_read_memory (addr,
1146 VALUE_CONTENTS_RAW (val),
1147 TYPE_LENGTH (basetype));
1148 VALUE_LVAL (val) = lval_memory;
1149 VALUE_ADDRESS (val) = addr;
1150
1151 if (status != 0)
1152 {
1153 if (valuep)
1154 *valuep = NULL;
1155 release_value (val);
1156 value_free (val);
1157 if (errp)
1158 *errp = status;
1159 return (char *)addr;
1160 }
1161 else
1162 {
1163 if (valuep)
1164 *valuep = val;
1165 return (char *) VALUE_CONTENTS (val);
1166 }
1167 }
1168 }
1169 /* Not in the fields, so try looking through the baseclasses. */
1170 for (i = index+1; i < n_baseclasses; i++)
1171 {
1172 char *baddr;
1173
1174 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1175 if (baddr)
1176 return baddr;
1177 }
1178 /* Not found. */
1179 if (valuep)
1180 *valuep = 0;
1181 return 0;
1182 }
1183
1184 /* Baseclass is easily computed. */
1185 if (valuep)
1186 *valuep = 0;
1187 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1188 }
1189 \f
1190 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1191 VALADDR.
1192
1193 Extracting bits depends on endianness of the machine. Compute the
1194 number of least significant bits to discard. For big endian machines,
1195 we compute the total number of bits in the anonymous object, subtract
1196 off the bit count from the MSB of the object to the MSB of the
1197 bitfield, then the size of the bitfield, which leaves the LSB discard
1198 count. For little endian machines, the discard count is simply the
1199 number of bits from the LSB of the anonymous object to the LSB of the
1200 bitfield.
1201
1202 If the field is signed, we also do sign extension. */
1203
1204 LONGEST
1205 unpack_field_as_long (type, valaddr, fieldno)
1206 struct type *type;
1207 char *valaddr;
1208 int fieldno;
1209 {
1210 unsigned LONGEST val;
1211 unsigned LONGEST valmask;
1212 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1213 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1214 int lsbcount;
1215
1216 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1217
1218 /* Extract bits. See comment above. */
1219
1220 #if BITS_BIG_ENDIAN
1221 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1222 #else
1223 lsbcount = (bitpos % 8);
1224 #endif
1225 val >>= lsbcount;
1226
1227 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1228 If the field is signed, and is negative, then sign extend. */
1229
1230 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1231 {
1232 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1233 val &= valmask;
1234 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1235 {
1236 if (val & (valmask ^ (valmask >> 1)))
1237 {
1238 val |= ~valmask;
1239 }
1240 }
1241 }
1242 return (val);
1243 }
1244
1245 /* Modify the value of a bitfield. ADDR points to a block of memory in
1246 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1247 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1248 indicate which bits (in target bit order) comprise the bitfield. */
1249
1250 void
1251 modify_field (addr, fieldval, bitpos, bitsize)
1252 char *addr;
1253 LONGEST fieldval;
1254 int bitpos, bitsize;
1255 {
1256 LONGEST oword;
1257
1258 /* Reject values too big to fit in the field in question,
1259 otherwise adjoining fields may be corrupted. */
1260 if (bitsize < (8 * sizeof (fieldval))
1261 && 0 != (fieldval & ~((1<<bitsize)-1)))
1262 {
1263 /* FIXME: would like to include fieldval in the message, but
1264 we don't have a sprintf_longest. */
1265 error ("Value does not fit in %d bits.", bitsize);
1266 }
1267
1268 oword = extract_signed_integer (addr, sizeof oword);
1269
1270 /* Shifting for bit field depends on endianness of the target machine. */
1271 #if BITS_BIG_ENDIAN
1272 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1273 #endif
1274
1275 /* Mask out old value, while avoiding shifts >= size of oword */
1276 if (bitsize < 8 * sizeof (oword))
1277 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1278 else
1279 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1280 oword |= fieldval << bitpos;
1281
1282 store_signed_integer (addr, sizeof oword, oword);
1283 }
1284 \f
1285 /* Convert C numbers into newly allocated values */
1286
1287 value_ptr
1288 value_from_longest (type, num)
1289 struct type *type;
1290 register LONGEST num;
1291 {
1292 register value_ptr val = allocate_value (type);
1293 register enum type_code code = TYPE_CODE (type);
1294 register int len = TYPE_LENGTH (type);
1295
1296 switch (code)
1297 {
1298 case TYPE_CODE_INT:
1299 case TYPE_CODE_CHAR:
1300 case TYPE_CODE_ENUM:
1301 case TYPE_CODE_BOOL:
1302 case TYPE_CODE_RANGE:
1303 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1304 break;
1305
1306 case TYPE_CODE_REF:
1307 case TYPE_CODE_PTR:
1308 /* This assumes that all pointers of a given length
1309 have the same form. */
1310 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1311 break;
1312
1313 default:
1314 error ("Unexpected type encountered for integer constant.");
1315 }
1316 return val;
1317 }
1318
1319 value_ptr
1320 value_from_double (type, num)
1321 struct type *type;
1322 double num;
1323 {
1324 register value_ptr val = allocate_value (type);
1325 register enum type_code code = TYPE_CODE (type);
1326 register int len = TYPE_LENGTH (type);
1327
1328 if (code == TYPE_CODE_FLT)
1329 {
1330 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1331 }
1332 else
1333 error ("Unexpected type encountered for floating constant.");
1334
1335 return val;
1336 }
1337 \f
1338 /* Deal with the value that is "about to be returned". */
1339
1340 /* Return the value that a function returning now
1341 would be returning to its caller, assuming its type is VALTYPE.
1342 RETBUF is where we look for what ought to be the contents
1343 of the registers (in raw form). This is because it is often
1344 desirable to restore old values to those registers
1345 after saving the contents of interest, and then call
1346 this function using the saved values.
1347 struct_return is non-zero when the function in question is
1348 using the structure return conventions on the machine in question;
1349 0 when it is using the value returning conventions (this often
1350 means returning pointer to where structure is vs. returning value). */
1351
1352 value_ptr
1353 value_being_returned (valtype, retbuf, struct_return)
1354 register struct type *valtype;
1355 char retbuf[REGISTER_BYTES];
1356 int struct_return;
1357 /*ARGSUSED*/
1358 {
1359 register value_ptr val;
1360 CORE_ADDR addr;
1361
1362 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1363 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1364 if (struct_return) {
1365 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1366 if (!addr)
1367 error ("Function return value unknown");
1368 return value_at (valtype, addr);
1369 }
1370 #endif
1371
1372 val = allocate_value (valtype);
1373 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1374
1375 return val;
1376 }
1377
1378 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1379 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1380 and TYPE is the type (which is known to be struct, union or array).
1381
1382 On most machines, the struct convention is used unless we are
1383 using gcc and the type is of a special size. */
1384 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1385 native compiler. GCC 2.3.3 was the last release that did it the
1386 old way. Since gcc2_compiled was not changed, we have no
1387 way to correctly win in all cases, so we just do the right thing
1388 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1389 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1390 would cause more chaos than dealing with some struct returns being
1391 handled wrong. */
1392 #if !defined (USE_STRUCT_CONVENTION)
1393 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1394 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1395 || TYPE_LENGTH (value_type) == 2 \
1396 || TYPE_LENGTH (value_type) == 4 \
1397 || TYPE_LENGTH (value_type) == 8 \
1398 ) \
1399 ))
1400 #endif
1401
1402 /* Return true if the function specified is using the structure returning
1403 convention on this machine to return arguments, or 0 if it is using
1404 the value returning convention. FUNCTION is the value representing
1405 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1406 is the type returned by the function. GCC_P is nonzero if compiled
1407 with GCC. */
1408
1409 int
1410 using_struct_return (function, funcaddr, value_type, gcc_p)
1411 value_ptr function;
1412 CORE_ADDR funcaddr;
1413 struct type *value_type;
1414 int gcc_p;
1415 /*ARGSUSED*/
1416 {
1417 register enum type_code code = TYPE_CODE (value_type);
1418
1419 if (code == TYPE_CODE_ERROR)
1420 error ("Function return type unknown.");
1421
1422 if (code == TYPE_CODE_STRUCT ||
1423 code == TYPE_CODE_UNION ||
1424 code == TYPE_CODE_ARRAY)
1425 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1426
1427 return 0;
1428 }
1429
1430 /* Store VAL so it will be returned if a function returns now.
1431 Does not verify that VAL's type matches what the current
1432 function wants to return. */
1433
1434 void
1435 set_return_value (val)
1436 value_ptr val;
1437 {
1438 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1439 double dbuf;
1440 LONGEST lbuf;
1441
1442 if (code == TYPE_CODE_ERROR)
1443 error ("Function return type unknown.");
1444
1445 if ( code == TYPE_CODE_STRUCT
1446 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1447 error ("GDB does not support specifying a struct or union return value.");
1448
1449 /* FIXME, this is bogus. We don't know what the return conventions
1450 are, or how values should be promoted.... */
1451 if (code == TYPE_CODE_FLT)
1452 {
1453 dbuf = value_as_double (val);
1454
1455 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1456 }
1457 else
1458 {
1459 lbuf = value_as_long (val);
1460 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1461 }
1462 }
1463 \f
1464 void
1465 _initialize_values ()
1466 {
1467 add_cmd ("convenience", no_class, show_convenience,
1468 "Debugger convenience (\"$foo\") variables.\n\
1469 These variables are created when you assign them values;\n\
1470 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1471 A few convenience variables are given values automatically:\n\
1472 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1473 \"$__\" holds the contents of the last address examined with \"x\".",
1474 &showlist);
1475
1476 add_cmd ("values", no_class, show_values,
1477 "Elements of value history around item number IDX (or last ten).",
1478 &showlist);
1479 }