Tue Apr 30 13:13:33 1991 Michael Tiemann (tiemann at cygint.cygnus.com)
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB.
2 Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 GDB is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GDB is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GDB; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <stdio.h>
21 #include <string.h>
22 #include "defs.h"
23 #include "param.h"
24 #include "symtab.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30
31 extern char *cplus_demangle ();
32 extern char *cplus_mangle_opname ();
33
34 /* The value-history records all the values printed
35 by print commands during this session. Each chunk
36 records 60 consecutive values. The first chunk on
37 the chain records the most recent values.
38 The total number of values is in value_history_count. */
39
40 #define VALUE_HISTORY_CHUNK 60
41
42 struct value_history_chunk
43 {
44 struct value_history_chunk *next;
45 value values[VALUE_HISTORY_CHUNK];
46 };
47
48 /* Chain of chunks now in use. */
49
50 static struct value_history_chunk *value_history_chain;
51
52 static int value_history_count; /* Abs number of last entry stored */
53 \f
54 /* List of all value objects currently allocated
55 (except for those released by calls to release_value)
56 This is so they can be freed after each command. */
57
58 static value all_values;
59
60 /* Allocate a value that has the correct length for type TYPE. */
61
62 value
63 allocate_value (type)
64 struct type *type;
65 {
66 register value val;
67
68 check_stub_type (type);
69
70 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
71 VALUE_NEXT (val) = all_values;
72 all_values = val;
73 VALUE_TYPE (val) = type;
74 VALUE_LVAL (val) = not_lval;
75 VALUE_ADDRESS (val) = 0;
76 VALUE_FRAME (val) = 0;
77 VALUE_OFFSET (val) = 0;
78 VALUE_BITPOS (val) = 0;
79 VALUE_BITSIZE (val) = 0;
80 VALUE_REPEATED (val) = 0;
81 VALUE_REPETITIONS (val) = 0;
82 VALUE_REGNO (val) = -1;
83 VALUE_LAZY (val) = 0;
84 VALUE_OPTIMIZED_OUT (val) = 0;
85 return val;
86 }
87
88 /* Allocate a value that has the correct length
89 for COUNT repetitions type TYPE. */
90
91 value
92 allocate_repeat_value (type, count)
93 struct type *type;
94 int count;
95 {
96 register value val;
97
98 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
99 VALUE_NEXT (val) = all_values;
100 all_values = val;
101 VALUE_TYPE (val) = type;
102 VALUE_LVAL (val) = not_lval;
103 VALUE_ADDRESS (val) = 0;
104 VALUE_FRAME (val) = 0;
105 VALUE_OFFSET (val) = 0;
106 VALUE_BITPOS (val) = 0;
107 VALUE_BITSIZE (val) = 0;
108 VALUE_REPEATED (val) = 1;
109 VALUE_REPETITIONS (val) = count;
110 VALUE_REGNO (val) = -1;
111 VALUE_LAZY (val) = 0;
112 VALUE_OPTIMIZED_OUT (val) = 0;
113 return val;
114 }
115
116 /* Return a mark in the value chain. All values allocated after the
117 mark is obtained (except for those released) are subject to being freed
118 if a subsequent value_free_to_mark is passed the mark. */
119 value
120 value_mark ()
121 {
122 return all_values;
123 }
124
125 /* Free all values allocated since MARK was obtained by value_mark
126 (except for those released). */
127 void
128 value_free_to_mark (mark)
129 value mark;
130 {
131 value val, next;
132
133 for (val = all_values; val && val != mark; val = next)
134 {
135 next = VALUE_NEXT (val);
136 value_free (val);
137 }
138 all_values = val;
139 }
140
141 /* Free all the values that have been allocated (except for those released).
142 Called after each command, successful or not. */
143
144 void
145 free_all_values ()
146 {
147 register value val, next;
148
149 for (val = all_values; val; val = next)
150 {
151 next = VALUE_NEXT (val);
152 value_free (val);
153 }
154
155 all_values = 0;
156 }
157
158 /* Remove VAL from the chain all_values
159 so it will not be freed automatically. */
160
161 void
162 release_value (val)
163 register value val;
164 {
165 register value v;
166
167 if (all_values == val)
168 {
169 all_values = val->next;
170 return;
171 }
172
173 for (v = all_values; v; v = v->next)
174 {
175 if (v->next == val)
176 {
177 v->next = val->next;
178 break;
179 }
180 }
181 }
182
183 /* Return a copy of the value ARG.
184 It contains the same contents, for same memory address,
185 but it's a different block of storage. */
186
187 static value
188 value_copy (arg)
189 value arg;
190 {
191 register value val;
192 register struct type *type = VALUE_TYPE (arg);
193 if (VALUE_REPEATED (arg))
194 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
195 else
196 val = allocate_value (type);
197 VALUE_LVAL (val) = VALUE_LVAL (arg);
198 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
199 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
200 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
201 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
202 VALUE_REGNO (val) = VALUE_REGNO (arg);
203 VALUE_LAZY (val) = VALUE_LAZY (arg);
204 if (!VALUE_LAZY (val))
205 {
206 bcopy (VALUE_CONTENTS_RAW (arg), VALUE_CONTENTS_RAW (val),
207 TYPE_LENGTH (VALUE_TYPE (arg))
208 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
209 }
210 return val;
211 }
212 \f
213 /* Access to the value history. */
214
215 /* Record a new value in the value history.
216 Returns the absolute history index of the entry.
217 Result of -1 indicates the value was not saved; otherwise it is the
218 value history index of this new item. */
219
220 int
221 record_latest_value (val)
222 value val;
223 {
224 int i;
225
226 /* Check error now if about to store an invalid float. We return -1
227 to the caller, but allow them to continue, e.g. to print it as "Nan". */
228 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) {
229 (void) unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
230 if (i) return -1; /* Indicate value not saved in history */
231 }
232
233 /* Here we treat value_history_count as origin-zero
234 and applying to the value being stored now. */
235
236 i = value_history_count % VALUE_HISTORY_CHUNK;
237 if (i == 0)
238 {
239 register struct value_history_chunk *new
240 = (struct value_history_chunk *)
241 xmalloc (sizeof (struct value_history_chunk));
242 bzero (new->values, sizeof new->values);
243 new->next = value_history_chain;
244 value_history_chain = new;
245 }
246
247 value_history_chain->values[i] = val;
248 release_value (val);
249
250 /* Now we regard value_history_count as origin-one
251 and applying to the value just stored. */
252
253 return ++value_history_count;
254 }
255
256 /* Return a copy of the value in the history with sequence number NUM. */
257
258 value
259 access_value_history (num)
260 int num;
261 {
262 register struct value_history_chunk *chunk;
263 register int i;
264 register int absnum = num;
265
266 if (absnum <= 0)
267 absnum += value_history_count;
268
269 if (absnum <= 0)
270 {
271 if (num == 0)
272 error ("The history is empty.");
273 else if (num == 1)
274 error ("There is only one value in the history.");
275 else
276 error ("History does not go back to $$%d.", -num);
277 }
278 if (absnum > value_history_count)
279 error ("History has not yet reached $%d.", absnum);
280
281 absnum--;
282
283 /* Now absnum is always absolute and origin zero. */
284
285 chunk = value_history_chain;
286 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
287 i > 0; i--)
288 chunk = chunk->next;
289
290 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
291 }
292
293 /* Clear the value history entirely.
294 Must be done when new symbol tables are loaded,
295 because the type pointers become invalid. */
296
297 void
298 clear_value_history ()
299 {
300 register struct value_history_chunk *next;
301 register int i;
302 register value val;
303
304 while (value_history_chain)
305 {
306 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
307 if (val = value_history_chain->values[i])
308 free (val);
309 next = value_history_chain->next;
310 free (value_history_chain);
311 value_history_chain = next;
312 }
313 value_history_count = 0;
314 }
315
316 static void
317 show_values (num_exp, from_tty)
318 char *num_exp;
319 int from_tty;
320 {
321 register int i;
322 register value val;
323 static int num = 1;
324
325 if (num_exp)
326 {
327 if (num_exp[0] == '+' && num_exp[1] == '\0')
328 /* "info history +" should print from the stored position. */
329 ;
330 else
331 /* "info history <exp>" should print around value number <exp>. */
332 num = parse_and_eval_address (num_exp) - 5;
333 }
334 else
335 {
336 /* "info history" means print the last 10 values. */
337 num = value_history_count - 9;
338 }
339
340 if (num <= 0)
341 num = 1;
342
343 for (i = num; i < num + 10 && i <= value_history_count; i++)
344 {
345 val = access_value_history (i);
346 printf_filtered ("$%d = ", i);
347 value_print (val, stdout, 0, Val_pretty_default);
348 printf_filtered ("\n");
349 }
350
351 /* The next "info history +" should start after what we just printed. */
352 num += 10;
353
354 /* Hitting just return after this command should do the same thing as
355 "info history +". If num_exp is null, this is unnecessary, since
356 "info history +" is not useful after "info history". */
357 if (from_tty && num_exp)
358 {
359 num_exp[0] = '+';
360 num_exp[1] = '\0';
361 }
362 }
363 \f
364 /* Internal variables. These are variables within the debugger
365 that hold values assigned by debugger commands.
366 The user refers to them with a '$' prefix
367 that does not appear in the variable names stored internally. */
368
369 static struct internalvar *internalvars;
370
371 /* Look up an internal variable with name NAME. NAME should not
372 normally include a dollar sign.
373
374 If the specified internal variable does not exist,
375 one is created, with a void value. */
376
377 struct internalvar *
378 lookup_internalvar (name)
379 char *name;
380 {
381 register struct internalvar *var;
382
383 for (var = internalvars; var; var = var->next)
384 if (!strcmp (var->name, name))
385 return var;
386
387 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
388 var->name = concat (name, "", "");
389 var->value = allocate_value (builtin_type_void);
390 release_value (var->value);
391 var->next = internalvars;
392 internalvars = var;
393 return var;
394 }
395
396 value
397 value_of_internalvar (var)
398 struct internalvar *var;
399 {
400 register value val;
401
402 #ifdef IS_TRAPPED_INTERNALVAR
403 if (IS_TRAPPED_INTERNALVAR (var->name))
404 return VALUE_OF_TRAPPED_INTERNALVAR (var);
405 #endif
406
407 val = value_copy (var->value);
408 if (VALUE_LAZY (val))
409 value_fetch_lazy (val);
410 VALUE_LVAL (val) = lval_internalvar;
411 VALUE_INTERNALVAR (val) = var;
412 return val;
413 }
414
415 void
416 set_internalvar_component (var, offset, bitpos, bitsize, newval)
417 struct internalvar *var;
418 int offset, bitpos, bitsize;
419 value newval;
420 {
421 register char *addr = VALUE_CONTENTS (var->value) + offset;
422
423 #ifdef IS_TRAPPED_INTERNALVAR
424 if (IS_TRAPPED_INTERNALVAR (var->name))
425 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
426 #endif
427
428 if (bitsize)
429 modify_field (addr, (int) value_as_long (newval),
430 bitpos, bitsize);
431 else
432 bcopy (VALUE_CONTENTS (newval), addr,
433 TYPE_LENGTH (VALUE_TYPE (newval)));
434 }
435
436 void
437 set_internalvar (var, val)
438 struct internalvar *var;
439 value val;
440 {
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
444 #endif
445
446 free (var->value);
447 var->value = value_copy (val);
448 release_value (var->value);
449 }
450
451 char *
452 internalvar_name (var)
453 struct internalvar *var;
454 {
455 return var->name;
456 }
457
458 /* Free all internalvars. Done when new symtabs are loaded,
459 because that makes the values invalid. */
460
461 void
462 clear_internalvars ()
463 {
464 register struct internalvar *var;
465
466 while (internalvars)
467 {
468 var = internalvars;
469 internalvars = var->next;
470 free (var->name);
471 free (var->value);
472 free (var);
473 }
474 }
475
476 static void
477 show_convenience ()
478 {
479 register struct internalvar *var;
480 int varseen = 0;
481
482 for (var = internalvars; var; var = var->next)
483 {
484 #ifdef IS_TRAPPED_INTERNALVAR
485 if (IS_TRAPPED_INTERNALVAR (var->name))
486 continue;
487 #endif
488 if (!varseen)
489 {
490 #if 0
491 /* Useless noise. */
492 printf ("Debugger convenience variables:\n\n");
493 #endif
494 varseen = 1;
495 }
496 printf ("$%s = ", var->name);
497 value_print (var->value, stdout, 0, Val_pretty_default);
498 printf ("\n");
499 }
500 if (!varseen)
501 printf ("No debugger convenience variables now defined.\n\
502 Convenience variables have names starting with \"$\";\n\
503 use \"set\" as in \"set $foo = 5\" to define them.\n");
504 }
505 \f
506 /* Extract a value as a C number (either long or double).
507 Knows how to convert fixed values to double, or
508 floating values to long.
509 Does not deallocate the value. */
510
511 LONGEST
512 value_as_long (val)
513 register value val;
514 {
515 /* This coerces arrays and functions, which is necessary (e.g.
516 in disassemble_command). It also dereferences references, which
517 I suspect is the most logical thing to do. */
518 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
519 COERCE_ARRAY (val);
520 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
521 }
522
523 double
524 value_as_double (val)
525 register value val;
526 {
527 double foo;
528 int inv;
529
530 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
531 if (inv)
532 error ("Invalid floating value found in program.");
533 return foo;
534 }
535 \f
536 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
537 as a long, or as a double, assuming the raw data is described
538 by type TYPE. Knows how to convert different sizes of values
539 and can convert between fixed and floating point. We don't assume
540 any alignment for the raw data. Return value is in host byte order.
541
542 If you want functions and arrays to be coerced to pointers, and
543 references to be dereferenced, call value_as_long() instead.
544
545 C++: It is assumed that the front-end has taken care of
546 all matters concerning pointers to members. A pointer
547 to member which reaches here is considered to be equivalent
548 to an INT (or some size). After all, it is only an offset. */
549
550 LONGEST
551 unpack_long (type, valaddr)
552 struct type *type;
553 char *valaddr;
554 {
555 register enum type_code code = TYPE_CODE (type);
556 register int len = TYPE_LENGTH (type);
557 register int nosign = TYPE_UNSIGNED (type);
558
559 if (code == TYPE_CODE_ENUM)
560 code = TYPE_CODE_INT;
561 if (code == TYPE_CODE_FLT)
562 {
563 if (len == sizeof (float))
564 {
565 float retval;
566 bcopy (valaddr, &retval, sizeof (retval));
567 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
568 return retval;
569 }
570
571 if (len == sizeof (double))
572 {
573 double retval;
574 bcopy (valaddr, &retval, sizeof (retval));
575 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
576 return retval;
577 }
578 else
579 {
580 error ("Unexpected type of floating point number.");
581 }
582 }
583 else if (code == TYPE_CODE_INT && nosign)
584 {
585 if (len == sizeof (char))
586 {
587 unsigned char retval = * (unsigned char *) valaddr;
588 /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */
589 return retval;
590 }
591
592 if (len == sizeof (short))
593 {
594 unsigned short retval;
595 bcopy (valaddr, &retval, sizeof (retval));
596 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
597 return retval;
598 }
599
600 if (len == sizeof (int))
601 {
602 unsigned int retval;
603 bcopy (valaddr, &retval, sizeof (retval));
604 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
605 return retval;
606 }
607
608 if (len == sizeof (long))
609 {
610 unsigned long retval;
611 bcopy (valaddr, &retval, sizeof (retval));
612 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
613 return retval;
614 }
615 #ifdef LONG_LONG
616 if (len == sizeof (long long))
617 {
618 unsigned long long retval;
619 bcopy (valaddr, &retval, sizeof (retval));
620 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
621 return retval;
622 }
623 #endif
624 else
625 {
626 error ("That operation is not possible on an integer of that size.");
627 }
628 }
629 else if (code == TYPE_CODE_INT)
630 {
631 if (len == sizeof (char))
632 {
633 char retval;
634 bcopy (valaddr, &retval, sizeof (retval));
635 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
636 return retval;
637 }
638
639 if (len == sizeof (short))
640 {
641 short retval;
642 bcopy (valaddr, &retval, sizeof (retval));
643 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
644 return retval;
645 }
646
647 if (len == sizeof (int))
648 {
649 int retval;
650 bcopy (valaddr, &retval, sizeof (retval));
651 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
652 return retval;
653 }
654
655 if (len == sizeof (long))
656 {
657 long retval;
658 bcopy (valaddr, &retval, sizeof (retval));
659 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
660 return retval;
661 }
662
663 #ifdef LONG_LONG
664 if (len == sizeof (long long))
665 {
666 long long retval;
667 bcopy (valaddr, &retval, sizeof (retval));
668 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
669 return retval;
670 }
671 #endif
672 else
673 {
674 error ("That operation is not possible on an integer of that size.");
675 }
676 }
677 else if (code == TYPE_CODE_PTR
678 || code == TYPE_CODE_REF)
679 {
680 if (len == sizeof (char *))
681 {
682 CORE_ADDR retval;
683 bcopy (valaddr, &retval, sizeof (retval));
684 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
685 return retval;
686 }
687 }
688 else if (code == TYPE_CODE_MEMBER)
689 error ("not implemented: member types in unpack_long");
690
691 error ("Value not integer or pointer.");
692 return 0; /* For lint -- never reached */
693 }
694
695 /* Return a double value from the specified type and address.
696 INVP points to an int which is set to 0 for valid value,
697 1 for invalid value (bad float format). In either case,
698 the returned double is OK to use. Argument is in target
699 format, result is in host format. */
700
701 double
702 unpack_double (type, valaddr, invp)
703 struct type *type;
704 char *valaddr;
705 int *invp;
706 {
707 register enum type_code code = TYPE_CODE (type);
708 register int len = TYPE_LENGTH (type);
709 register int nosign = TYPE_UNSIGNED (type);
710
711 *invp = 0; /* Assume valid. */
712 if (code == TYPE_CODE_FLT)
713 {
714 if (INVALID_FLOAT (valaddr, len))
715 {
716 *invp = 1;
717 return 1.234567891011121314;
718 }
719
720 if (len == sizeof (float))
721 {
722 float retval;
723 bcopy (valaddr, &retval, sizeof (retval));
724 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
725 return retval;
726 }
727
728 if (len == sizeof (double))
729 {
730 double retval;
731 bcopy (valaddr, &retval, sizeof (retval));
732 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
733 return retval;
734 }
735 else
736 {
737 error ("Unexpected type of floating point number.");
738 }
739 }
740 else if (nosign) {
741 /* Unsigned -- be sure we compensate for signed LONGEST. */
742 #ifdef LONG_LONG
743 return (unsigned long long) unpack_long (type, valaddr);
744 #else
745 return (unsigned long ) unpack_long (type, valaddr);
746 #endif
747 } else {
748 /* Signed -- we are OK with unpack_long. */
749 return unpack_long (type, valaddr);
750 }
751 }
752 \f
753 /* Given a value ARG1 (offset by OFFSET bytes)
754 of a struct or union type ARG_TYPE,
755 extract and return the value of one of its fields.
756 FIELDNO says which field.
757
758 For C++, must also be able to return values from static fields */
759
760 value
761 value_primitive_field (arg1, offset, fieldno, arg_type)
762 register value arg1;
763 int offset;
764 register int fieldno;
765 register struct type *arg_type;
766 {
767 register value v;
768 register struct type *type;
769
770 check_stub_type (arg_type);
771 type = TYPE_FIELD_TYPE (arg_type, fieldno);
772
773 /* Handle packed fields */
774
775 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
776 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
777 {
778 v = value_from_long (type,
779 unpack_field_as_long (arg_type,
780 VALUE_CONTENTS (arg1),
781 fieldno));
782 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
783 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
784 }
785 else
786 {
787 v = allocate_value (type);
788 if (VALUE_LAZY (arg1))
789 VALUE_LAZY (v) = 1;
790 else
791 bcopy (VALUE_CONTENTS_RAW (arg1) + offset,
792 VALUE_CONTENTS_RAW (v),
793 TYPE_LENGTH (type));
794 }
795 VALUE_LVAL (v) = VALUE_LVAL (arg1);
796 if (VALUE_LVAL (arg1) == lval_internalvar)
797 VALUE_LVAL (v) = lval_internalvar_component;
798 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
799 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
800 return v;
801 }
802
803 /* Given a value ARG1 of a struct or union type,
804 extract and return the value of one of its fields.
805 FIELDNO says which field.
806
807 For C++, must also be able to return values from static fields */
808
809 value
810 value_field (arg1, fieldno)
811 register value arg1;
812 register int fieldno;
813 {
814 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
815 }
816
817 value
818 value_fn_field (arg1, fieldno, subfieldno)
819 register value arg1;
820 register int fieldno;
821 int subfieldno;
822 {
823 register value v;
824 struct fn_field *f = TYPE_FN_FIELDLIST1 (VALUE_TYPE (arg1), fieldno);
825 register struct type *type = TYPE_FN_FIELD_TYPE (f, subfieldno);
826 struct symbol *sym;
827
828 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, subfieldno),
829 0, VAR_NAMESPACE, 0, NULL);
830 if (! sym) error ("Internal error: could not find physical method named %s",
831 TYPE_FN_FIELD_PHYSNAME (f, subfieldno));
832
833 v = allocate_value (type);
834 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
835 VALUE_TYPE (v) = type;
836 return v;
837 }
838
839 /* Return a virtual function as a value.
840 ARG1 is the object which provides the virtual function
841 table pointer. ARG1 is side-effected in calling this function.
842 F is the list of member functions which contains the desired virtual
843 function.
844 J is an index into F which provides the desired virtual function.
845
846 TYPE is the type in which F is located. */
847 value
848 value_virtual_fn_field (arg1, f, j, type)
849 value arg1;
850 struct fn_field *f;
851 int j;
852 struct type *type;
853 {
854 /* First, get the virtual function table pointer. That comes
855 with a strange type, so cast it to type `pointer to long' (which
856 should serve just fine as a function type). Then, index into
857 the table, and convert final value to appropriate function type. */
858 value entry, vfn, vtbl;
859 value vi = value_from_long (builtin_type_int,
860 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
861 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
862 struct type *context;
863 if (fcontext == NULL)
864 /* We don't have an fcontext (e.g. the program was compiled with
865 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
866 This won't work right for multiple inheritance, but at least we
867 should do as well as GDB 3.x did. */
868 fcontext = TYPE_VPTR_BASETYPE (type);
869 context = lookup_pointer_type (fcontext);
870 /* Now context is a pointer to the basetype containing the vtbl. */
871 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
872 arg1 = value_ind (value_cast (context, value_addr (arg1)));
873
874 context = VALUE_TYPE (arg1);
875 /* Now context is the basetype containing the vtbl. */
876
877 /* This type may have been defined before its virtual function table
878 was. If so, fill in the virtual function table entry for the
879 type now. */
880 if (TYPE_VPTR_FIELDNO (context) < 0)
881 fill_in_vptr_fieldno (context);
882
883 /* The virtual function table is now an array of structures
884 which have the form { int16 offset, delta; void *pfn; }. */
885 vtbl = value_ind (value_field (arg1, TYPE_VPTR_FIELDNO (context)));
886
887 /* Index into the virtual function table. This is hard-coded because
888 looking up a field is not cheap, and it may be important to save
889 time, e.g. if the user has set a conditional breakpoint calling
890 a virtual function. */
891 entry = value_subscript (vtbl, vi);
892
893 /* Move the `this' pointer according to the virtual function table. */
894 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
895 if (! VALUE_LAZY (arg1))
896 {
897 VALUE_LAZY (arg1) = 1;
898 value_fetch_lazy (arg1);
899 }
900
901 vfn = value_field (entry, 2);
902 /* Reinstantiate the function pointer with the correct type. */
903 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
904
905 return vfn;
906 }
907
908 /* ARG is a pointer to an object we know to be at least
909 a DTYPE. BTYPE is the most derived basetype that has
910 already been searched (and need not be searched again).
911 After looking at the vtables between BTYPE and DTYPE,
912 return the most derived type we find. The caller must
913 be satisfied when the return value == DTYPE.
914
915 FIXME-tiemann: should work with dossier entries as well. */
916
917 static value
918 value_headof (arg, btype, dtype)
919 value arg;
920 struct type *btype, *dtype;
921 {
922 /* First collect the vtables we must look at for this object. */
923 /* FIXME-tiemann: right now, just look at top-most vtable. */
924 value vtbl, entry, best_entry = 0;
925 struct type *entry_type;
926 int i, nelems;
927 int offset, best_offset = 0;
928 struct symbol *sym;
929 CORE_ADDR pc_for_sym;
930 char *demangled_name;
931
932 btype = TYPE_VPTR_BASETYPE (dtype);
933 check_stub_type (btype);
934 if (btype != dtype)
935 vtbl = value_cast (lookup_pointer_type (btype), arg);
936 else
937 vtbl = arg;
938 vtbl = value_ind (value_field (value_ind (vtbl), TYPE_VPTR_FIELDNO (btype)));
939
940 /* Check that VTBL looks like it points to a virtual function table. */
941 i = find_pc_misc_function (VALUE_ADDRESS (vtbl));
942 if (i < 0 || ! VTBL_PREFIX_P (misc_function_vector[i].name))
943 {
944 /* If we expected to find a vtable, but did not, let the user
945 know that we aren't happy, but don't throw an error.
946 FIXME: there has to be a better way to do this. */
947 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
948 bcopy (VALUE_TYPE (arg), error_type, sizeof (struct type));
949 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
950 VALUE_TYPE (arg) = error_type;
951 return arg;
952 }
953
954 /* Now search through the virtual function table. */
955 entry = value_ind (vtbl);
956 entry_type = VALUE_TYPE (entry);
957 nelems = value_as_long (value_field (entry, 2));
958 for (i = 1; i <= nelems; i++)
959 {
960 entry = value_subscript (vtbl, value_from_long (builtin_type_int, i));
961 offset = value_as_long (value_field (entry, 0));
962 if (offset < best_offset)
963 {
964 best_offset = offset;
965 best_entry = entry;
966 }
967 }
968 if (best_entry == 0)
969 return arg;
970
971 /* Move the pointer according to BEST_ENTRY's offset, and figure
972 out what type we should return as the new pointer. */
973 pc_for_sym = value_as_long (value_field (best_entry, 2));
974 sym = find_pc_function (pc_for_sym);
975 demangled_name = cplus_demangle (SYMBOL_NAME (sym), -1);
976 *(strchr (demangled_name, ':')) = '\0';
977 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
978 if (sym == 0)
979 error ("could not find type declaration for `%s'", SYMBOL_NAME (sym));
980 free (demangled_name);
981 arg = value_add (value_cast (builtin_type_int, arg),
982 value_field (best_entry, 0));
983 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
984 return arg;
985 }
986
987 /* ARG is a pointer object of type TYPE. If TYPE has virtual
988 function tables, probe ARG's tables (including the vtables
989 of its baseclasses) to figure out the most derived type that ARG
990 could actually be a pointer to. */
991
992 value
993 value_from_vtable_info (arg, type)
994 value arg;
995 struct type *type;
996 {
997 /* Take care of preliminaries. */
998 if (TYPE_VPTR_FIELDNO (type) < 0)
999 fill_in_vptr_fieldno (type);
1000 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1001 return 0;
1002
1003 return value_headof (arg, 0, type);
1004 }
1005
1006 /* The value of a static class member does not depend
1007 on its instance, only on its type. If FIELDNO >= 0,
1008 then fieldno is a valid field number and is used directly.
1009 Otherwise, FIELDNAME is the name of the field we are
1010 searching for. If it is not a static field name, an
1011 error is signaled. TYPE is the type in which we look for the
1012 static field member.
1013
1014 Return zero if we couldn't find anything; the caller may signal
1015 an error in that case. */
1016
1017 value
1018 value_static_field (type, fieldname, fieldno)
1019 register struct type *type;
1020 char *fieldname;
1021 register int fieldno;
1022 {
1023 register value v;
1024 struct symbol *sym;
1025 char *phys_name;
1026
1027 if (fieldno < 0)
1028 {
1029 /* Look for static field. */
1030 int i;
1031 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1032 if (! strcmp (TYPE_FIELD_NAME (type, i), fieldname))
1033 {
1034 if (TYPE_FIELD_STATIC (type, i))
1035 {
1036 fieldno = i;
1037 goto found;
1038 }
1039 else
1040 error ("field `%s' is not static", fieldname);
1041 }
1042 for (; i > 0; i--)
1043 {
1044 v = value_static_field (TYPE_BASECLASS (type, i), fieldname, -1);
1045 if (v != 0)
1046 return v;
1047 }
1048
1049 if (destructor_name_p (fieldname, type))
1050 error ("Cannot get value of destructor");
1051
1052 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1053 {
1054 if (! strcmp (TYPE_FN_FIELDLIST_NAME (type, i), fieldname))
1055 error ("Cannot get value of method \"%s\"", fieldname);
1056 }
1057 error("there is no field named %s", fieldname);
1058 }
1059
1060 found:
1061 phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1062 sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1063 if (! sym) error ("Internal error: could not find physical static variable named %s", phys_name);
1064
1065 type = TYPE_FIELD_TYPE (type, fieldno);
1066 v = value_at (type, (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1067 return v;
1068 }
1069
1070 /* Compute the address of the baseclass which is
1071 the INDEXth baseclass of TYPE. The TYPE base
1072 of the object is at VALADDR.
1073
1074 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1075 or 0 if no error. In that case the return value is not the address
1076 of the baseclasss, but the address which could not be read
1077 successfully. */
1078
1079 char *
1080 baseclass_addr (type, index, valaddr, valuep, errp)
1081 struct type *type;
1082 int index;
1083 char *valaddr;
1084 value *valuep;
1085 int *errp;
1086 {
1087 struct type *basetype = TYPE_BASECLASS (type, index);
1088
1089 if (errp)
1090 *errp = 0;
1091
1092 if (BASETYPE_VIA_VIRTUAL (type, index))
1093 {
1094 /* Must hunt for the pointer to this virtual baseclass. */
1095 register int i, len = TYPE_NFIELDS (type);
1096 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1097 char *vbase_name, *type_name = type_name_no_tag (basetype);
1098
1099 if (TYPE_MAIN_VARIANT (basetype))
1100 basetype = TYPE_MAIN_VARIANT (basetype);
1101
1102 vbase_name = (char *)alloca (strlen (type_name) + 8);
1103 sprintf (vbase_name, "_vb$%s", type_name);
1104 /* First look for the virtual baseclass pointer
1105 in the fields. */
1106 for (i = n_baseclasses; i < len; i++)
1107 {
1108 if (! strcmp (vbase_name, TYPE_FIELD_NAME (type, i)))
1109 {
1110 value val = allocate_value (basetype);
1111 CORE_ADDR addr;
1112 int status;
1113
1114 addr = unpack_long (TYPE_FIELD_TYPE (type, i),
1115 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1116
1117 status = target_read_memory (addr,
1118 VALUE_CONTENTS_RAW (val),
1119 TYPE_LENGTH (type));
1120 VALUE_LVAL (val) = lval_memory;
1121 VALUE_ADDRESS (val) = addr;
1122
1123 if (status != 0)
1124 {
1125 if (valuep)
1126 *valuep = NULL;
1127 release_value (val);
1128 value_free (val);
1129 if (errp)
1130 *errp = status;
1131 return (char *)addr;
1132 }
1133 else
1134 {
1135 if (valuep)
1136 *valuep = val;
1137 return (char *) VALUE_CONTENTS (val);
1138 }
1139 }
1140 }
1141 /* Not in the fields, so try looking through the baseclasses. */
1142 for (i = index+1; i < n_baseclasses; i++)
1143 {
1144 char *baddr;
1145
1146 baddr = baseclass_addr (type, i, valaddr, valuep);
1147 if (baddr)
1148 return baddr;
1149 }
1150 /* Not found. */
1151 if (valuep)
1152 *valuep = 0;
1153 return 0;
1154 }
1155
1156 /* Baseclass is easily computed. */
1157 if (valuep)
1158 *valuep = 0;
1159 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1160 }
1161
1162 /* Ugly hack to convert method stubs into method types.
1163
1164 He ain't kiddin'. This demangles the name of the method into a string
1165 including argument types, parses out each argument type, generates
1166 a string casting a zero to that type, evaluates the string, and stuffs
1167 the resulting type into an argtype vector!!! Then it knows the type
1168 of the whole function (including argument types for overloading),
1169 which info used to be in the stab's but was removed to hack back
1170 the space required for them. */
1171 void
1172 check_stub_method (type, i, j)
1173 struct type *type;
1174 int i, j;
1175 {
1176 extern char *gdb_mangle_typename (), *strchr ();
1177 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1178 char *field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1179 char *inner_name = gdb_mangle_typename (type);
1180 int mangled_name_len = (strlen (field_name)
1181 + strlen (inner_name)
1182 + strlen (TYPE_FN_FIELD_PHYSNAME (f, j))
1183 + 1);
1184 char *mangled_name;
1185 char *demangled_name;
1186 char *argtypetext, *p;
1187 int depth = 0, argcount = 1;
1188 struct type **argtypes;
1189
1190 if (OPNAME_PREFIX_P (field_name))
1191 {
1192 char *opname = cplus_mangle_opname (field_name + 3);
1193 mangled_name_len += strlen (opname);
1194 mangled_name = (char *)xmalloc (mangled_name_len);
1195
1196 strncpy (mangled_name, field_name, 3);
1197 mangled_name[3] = '\0';
1198 strcat (mangled_name, opname);
1199 }
1200 else
1201 {
1202 mangled_name = (char *)xmalloc (mangled_name_len);
1203 strcpy (mangled_name, TYPE_FN_FIELDLIST_NAME (type, i));
1204 }
1205 strcat (mangled_name, inner_name);
1206 strcat (mangled_name, TYPE_FN_FIELD_PHYSNAME (f, j));
1207 demangled_name = cplus_demangle (mangled_name, 0);
1208
1209 /* Now, read in the parameters that define this type. */
1210 argtypetext = strchr (demangled_name, '(') + 1;
1211 p = argtypetext;
1212 while (*p)
1213 {
1214 if (*p == '(')
1215 depth += 1;
1216 else if (*p == ')')
1217 depth -= 1;
1218 else if (*p == ',' && depth == 0)
1219 argcount += 1;
1220
1221 p += 1;
1222 }
1223 /* We need one more slot for the void [...] or NULL [end of arglist] */
1224 argtypes = (struct type **)xmalloc ((argcount+1) * sizeof (struct type *));
1225 p = argtypetext;
1226 argtypes[0] = lookup_pointer_type (type);
1227 argcount = 1;
1228
1229 if (*p != ')') /* () means no args, skip while */
1230 {
1231 while (*p)
1232 {
1233 if (*p == '(')
1234 depth += 1;
1235 else if (*p == ')')
1236 depth -= 1;
1237
1238 if (depth <= 0 && (*p == ',' || *p == ')'))
1239 {
1240 char *tmp = (char *)alloca (p - argtypetext + 4);
1241 value val;
1242 tmp[0] = '(';
1243 bcopy (argtypetext, tmp+1, p - argtypetext);
1244 tmp[p-argtypetext+1] = ')';
1245 tmp[p-argtypetext+2] = '0';
1246 tmp[p-argtypetext+3] = '\0';
1247 val = parse_and_eval (tmp);
1248 argtypes[argcount] = VALUE_TYPE (val);
1249 argcount += 1;
1250 argtypetext = p + 1;
1251 }
1252 p += 1;
1253 }
1254 }
1255
1256 if (p[-2] != '.') /* ... */
1257 argtypes[argcount] = builtin_type_void; /* Ellist terminator */
1258 else
1259 argtypes[argcount] = NULL; /* List terminator */
1260
1261 free (demangled_name);
1262
1263 type = lookup_method_type (type, TYPE_TARGET_TYPE (TYPE_FN_FIELD_TYPE (f, j)), argtypes);
1264 /* Free the stub type...it's no longer needed. */
1265 free (TYPE_FN_FIELD_TYPE (f, j));
1266 TYPE_FN_FIELD_PHYSNAME (f, j) = mangled_name;
1267 TYPE_FN_FIELD_TYPE (f, j) = type;
1268 }
1269 \f
1270 long
1271 unpack_field_as_long (type, valaddr, fieldno)
1272 struct type *type;
1273 char *valaddr;
1274 int fieldno;
1275 {
1276 long val;
1277 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1278 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1279
1280 bcopy (valaddr + bitpos / 8, &val, sizeof val);
1281 SWAP_TARGET_AND_HOST (&val, sizeof val);
1282
1283 /* Extracting bits depends on endianness of the machine. */
1284 #if BITS_BIG_ENDIAN
1285 val = val >> (sizeof val * 8 - bitpos % 8 - bitsize);
1286 #else
1287 val = val >> (bitpos % 8);
1288 #endif
1289
1290 val &= (1 << bitsize) - 1;
1291 return val;
1292 }
1293
1294 /* Modify the value of a bitfield. ADDR points to a block of memory in
1295 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1296 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1297 indicate which bits (in target bit order) comprise the bitfield. */
1298
1299 void
1300 modify_field (addr, fieldval, bitpos, bitsize)
1301 char *addr;
1302 int fieldval;
1303 int bitpos, bitsize;
1304 {
1305 long oword;
1306
1307 /* Reject values too big to fit in the field in question.
1308 Otherwise adjoining fields may be corrupted. */
1309 if (fieldval & ~((1<<bitsize)-1))
1310 error ("Value %d does not fit in %d bits.", fieldval, bitsize);
1311
1312 bcopy (addr, &oword, sizeof oword);
1313 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */
1314
1315 /* Shifting for bit field depends on endianness of the target machine. */
1316 #if BITS_BIG_ENDIAN
1317 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1318 #endif
1319
1320 oword &= ~(((1 << bitsize) - 1) << bitpos);
1321 oword |= fieldval << bitpos;
1322
1323 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */
1324 bcopy (&oword, addr, sizeof oword);
1325 }
1326 \f
1327 /* Convert C numbers into newly allocated values */
1328
1329 value
1330 value_from_long (type, num)
1331 struct type *type;
1332 register LONGEST num;
1333 {
1334 register value val = allocate_value (type);
1335 register enum type_code code = TYPE_CODE (type);
1336 register int len = TYPE_LENGTH (type);
1337
1338 if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM)
1339 {
1340 if (len == sizeof (char))
1341 * (char *) VALUE_CONTENTS_RAW (val) = num;
1342 else if (len == sizeof (short))
1343 * (short *) VALUE_CONTENTS_RAW (val) = num;
1344 else if (len == sizeof (int))
1345 * (int *) VALUE_CONTENTS_RAW (val) = num;
1346 else if (len == sizeof (long))
1347 * (long *) VALUE_CONTENTS_RAW (val) = num;
1348 #ifdef LONG_LONG
1349 else if (len == sizeof (long long))
1350 * (long long *) VALUE_CONTENTS_RAW (val) = num;
1351 #endif
1352 else
1353 error ("Integer type encountered with unexpected data length.");
1354 }
1355 else
1356 error ("Unexpected type encountered for integer constant.");
1357
1358 /* num was in host byte order. So now put the value's contents
1359 into target byte order. */
1360 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1361
1362 return val;
1363 }
1364
1365 value
1366 value_from_double (type, num)
1367 struct type *type;
1368 double num;
1369 {
1370 register value val = allocate_value (type);
1371 register enum type_code code = TYPE_CODE (type);
1372 register int len = TYPE_LENGTH (type);
1373
1374 if (code == TYPE_CODE_FLT)
1375 {
1376 if (len == sizeof (float))
1377 * (float *) VALUE_CONTENTS_RAW (val) = num;
1378 else if (len == sizeof (double))
1379 * (double *) VALUE_CONTENTS_RAW (val) = num;
1380 else
1381 error ("Floating type encountered with unexpected data length.");
1382 }
1383 else
1384 error ("Unexpected type encountered for floating constant.");
1385
1386 /* num was in host byte order. So now put the value's contents
1387 into target byte order. */
1388 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1389
1390 return val;
1391 }
1392 \f
1393 /* Deal with the value that is "about to be returned". */
1394
1395 /* Return the value that a function returning now
1396 would be returning to its caller, assuming its type is VALTYPE.
1397 RETBUF is where we look for what ought to be the contents
1398 of the registers (in raw form). This is because it is often
1399 desirable to restore old values to those registers
1400 after saving the contents of interest, and then call
1401 this function using the saved values.
1402 struct_return is non-zero when the function in question is
1403 using the structure return conventions on the machine in question;
1404 0 when it is using the value returning conventions (this often
1405 means returning pointer to where structure is vs. returning value). */
1406
1407 value
1408 value_being_returned (valtype, retbuf, struct_return)
1409 register struct type *valtype;
1410 char retbuf[REGISTER_BYTES];
1411 int struct_return;
1412 /*ARGSUSED*/
1413 {
1414 register value val;
1415 CORE_ADDR addr;
1416
1417 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1418 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1419 if (struct_return) {
1420 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1421 if (!addr)
1422 error ("Function return value unknown");
1423 return value_at (valtype, addr);
1424 }
1425 #endif
1426
1427 val = allocate_value (valtype);
1428 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1429
1430 return val;
1431 }
1432
1433 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1434 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1435 and TYPE is the type (which is known to be struct, union or array).
1436
1437 On most machines, the struct convention is used unless we are
1438 using gcc and the type is of a special size. */
1439 #if !defined (USE_STRUCT_CONVENTION)
1440 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1441 (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \
1442 || TYPE_LENGTH (value_type) == 2 \
1443 || TYPE_LENGTH (value_type) == 4 \
1444 || TYPE_LENGTH (value_type) == 8 \
1445 ) \
1446 ))
1447 #endif
1448
1449 /* Return true if the function specified is using the structure returning
1450 convention on this machine to return arguments, or 0 if it is using
1451 the value returning convention. FUNCTION is the value representing
1452 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1453 is the type returned by the function. GCC_P is nonzero if compiled
1454 with GCC. */
1455
1456 int
1457 using_struct_return (function, funcaddr, value_type, gcc_p)
1458 value function;
1459 CORE_ADDR funcaddr;
1460 struct type *value_type;
1461 int gcc_p;
1462 /*ARGSUSED*/
1463 {
1464 register enum type_code code = TYPE_CODE (value_type);
1465
1466 if (code == TYPE_CODE_ERROR)
1467 error ("Function return type unknown.");
1468
1469 if (code == TYPE_CODE_STRUCT ||
1470 code == TYPE_CODE_UNION ||
1471 code == TYPE_CODE_ARRAY)
1472 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1473
1474 return 0;
1475 }
1476
1477 /* Store VAL so it will be returned if a function returns now.
1478 Does not verify that VAL's type matches what the current
1479 function wants to return. */
1480
1481 void
1482 set_return_value (val)
1483 value val;
1484 {
1485 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1486 double dbuf;
1487 LONGEST lbuf;
1488
1489 if (code == TYPE_CODE_ERROR)
1490 error ("Function return type unknown.");
1491
1492 if (code == TYPE_CODE_STRUCT
1493 || code == TYPE_CODE_UNION)
1494 error ("Specifying a struct or union return value is not supported.");
1495
1496 /* FIXME, this is bogus. We don't know what the return conventions
1497 are, or how values should be promoted.... */
1498 if (code == TYPE_CODE_FLT)
1499 {
1500 dbuf = value_as_double (val);
1501
1502 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1503 }
1504 else
1505 {
1506 lbuf = value_as_long (val);
1507 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1508 }
1509 }
1510 \f
1511 void
1512 _initialize_values ()
1513 {
1514 add_cmd ("convenience", no_class, show_convenience,
1515 "Debugger convenience (\"$foo\") variables.\n\
1516 These variables are created when you assign them values;\n\
1517 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1518 A few convenience variables are given values automatically:\n\
1519 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1520 \"$__\" holds the contents of the last address examined with \"x\".",
1521 &showlist);
1522
1523 add_cmd ("values", no_class, show_values,
1524 "Elements of value history around item number IDX (or last ten).",
1525 &showlist);
1526 }