Modified Files:
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value
35 value_headof PARAMS ((value, struct type *, struct type *));
36
37 static void
38 show_values PARAMS ((char *, int));
39
40 static void
41 show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value
72 allocate_value (type)
73 struct type *type;
74 {
75 register value val;
76
77 check_stub_type (type);
78
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value val;
106
107 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value mark;
139 {
140 value val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value val;
173 {
174 register value v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value
197 value_copy (arg)
198 value arg;
199 {
200 register value val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 if (!VALUE_LAZY (val))
214 {
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
218 }
219 return val;
220 }
221 \f
222 /* Access to the value history. */
223
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
228
229 int
230 record_latest_value (val)
231 value val;
232 {
233 int i;
234
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
238 {
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
241 }
242
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
245
246 i = value_history_count % VALUE_HISTORY_CHUNK;
247 if (i == 0)
248 {
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
255 }
256
257 value_history_chain->values[i] = val;
258
259 /* We don't want this value to have anything to do with the inferior anymore.
260 In particular, "set $1 = 50" should not affect the variable from which
261 the value was taken, and fast watchpoints should be able to assume that
262 a value on the value history never changes. */
263 if (VALUE_LAZY (val))
264 value_fetch_lazy (val);
265 VALUE_LVAL (val) = not_lval;
266 release_value (val);
267
268 /* Now we regard value_history_count as origin-one
269 and applying to the value just stored. */
270
271 return ++value_history_count;
272 }
273
274 /* Return a copy of the value in the history with sequence number NUM. */
275
276 value
277 access_value_history (num)
278 int num;
279 {
280 register struct value_history_chunk *chunk;
281 register int i;
282 register int absnum = num;
283
284 if (absnum <= 0)
285 absnum += value_history_count;
286
287 if (absnum <= 0)
288 {
289 if (num == 0)
290 error ("The history is empty.");
291 else if (num == 1)
292 error ("There is only one value in the history.");
293 else
294 error ("History does not go back to $$%d.", -num);
295 }
296 if (absnum > value_history_count)
297 error ("History has not yet reached $%d.", absnum);
298
299 absnum--;
300
301 /* Now absnum is always absolute and origin zero. */
302
303 chunk = value_history_chain;
304 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
305 i > 0; i--)
306 chunk = chunk->next;
307
308 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
309 }
310
311 /* Clear the value history entirely.
312 Must be done when new symbol tables are loaded,
313 because the type pointers become invalid. */
314
315 void
316 clear_value_history ()
317 {
318 register struct value_history_chunk *next;
319 register int i;
320 register value val;
321
322 while (value_history_chain)
323 {
324 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
325 if ((val = value_history_chain->values[i]) != NULL)
326 free ((PTR)val);
327 next = value_history_chain->next;
328 free ((PTR)value_history_chain);
329 value_history_chain = next;
330 }
331 value_history_count = 0;
332 }
333
334 static void
335 show_values (num_exp, from_tty)
336 char *num_exp;
337 int from_tty;
338 {
339 register int i;
340 register value val;
341 static int num = 1;
342
343 if (num_exp)
344 {
345 /* "info history +" should print from the stored position.
346 "info history <exp>" should print around value number <exp>. */
347 if (num_exp[0] != '+' || num_exp[1] != '\0')
348 num = parse_and_eval_address (num_exp) - 5;
349 }
350 else
351 {
352 /* "info history" means print the last 10 values. */
353 num = value_history_count - 9;
354 }
355
356 if (num <= 0)
357 num = 1;
358
359 for (i = num; i < num + 10 && i <= value_history_count; i++)
360 {
361 val = access_value_history (i);
362 printf_filtered ("$%d = ", i);
363 value_print (val, stdout, 0, Val_pretty_default);
364 printf_filtered ("\n");
365 }
366
367 /* The next "info history +" should start after what we just printed. */
368 num += 10;
369
370 /* Hitting just return after this command should do the same thing as
371 "info history +". If num_exp is null, this is unnecessary, since
372 "info history +" is not useful after "info history". */
373 if (from_tty && num_exp)
374 {
375 num_exp[0] = '+';
376 num_exp[1] = '\0';
377 }
378 }
379 \f
380 /* Internal variables. These are variables within the debugger
381 that hold values assigned by debugger commands.
382 The user refers to them with a '$' prefix
383 that does not appear in the variable names stored internally. */
384
385 static struct internalvar *internalvars;
386
387 /* Look up an internal variable with name NAME. NAME should not
388 normally include a dollar sign.
389
390 If the specified internal variable does not exist,
391 one is created, with a void value. */
392
393 struct internalvar *
394 lookup_internalvar (name)
395 char *name;
396 {
397 register struct internalvar *var;
398
399 for (var = internalvars; var; var = var->next)
400 if (STREQ (var->name, name))
401 return var;
402
403 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
404 var->name = concat (name, NULL);
405 var->value = allocate_value (builtin_type_void);
406 release_value (var->value);
407 var->next = internalvars;
408 internalvars = var;
409 return var;
410 }
411
412 value
413 value_of_internalvar (var)
414 struct internalvar *var;
415 {
416 register value val;
417
418 #ifdef IS_TRAPPED_INTERNALVAR
419 if (IS_TRAPPED_INTERNALVAR (var->name))
420 return VALUE_OF_TRAPPED_INTERNALVAR (var);
421 #endif
422
423 val = value_copy (var->value);
424 if (VALUE_LAZY (val))
425 value_fetch_lazy (val);
426 VALUE_LVAL (val) = lval_internalvar;
427 VALUE_INTERNALVAR (val) = var;
428 return val;
429 }
430
431 void
432 set_internalvar_component (var, offset, bitpos, bitsize, newval)
433 struct internalvar *var;
434 int offset, bitpos, bitsize;
435 value newval;
436 {
437 register char *addr = VALUE_CONTENTS (var->value) + offset;
438
439 #ifdef IS_TRAPPED_INTERNALVAR
440 if (IS_TRAPPED_INTERNALVAR (var->name))
441 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
442 #endif
443
444 if (bitsize)
445 modify_field (addr, value_as_long (newval),
446 bitpos, bitsize);
447 else
448 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
449 }
450
451 void
452 set_internalvar (var, val)
453 struct internalvar *var;
454 value val;
455 {
456 #ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var->name))
458 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
459 #endif
460
461 free ((PTR)var->value);
462 var->value = value_copy (val);
463 /* Force the value to be fetched from the target now, to avoid problems
464 later when this internalvar is referenced and the target is gone or
465 has changed. */
466 if (VALUE_LAZY (var->value))
467 value_fetch_lazy (var->value);
468 release_value (var->value);
469 }
470
471 char *
472 internalvar_name (var)
473 struct internalvar *var;
474 {
475 return var->name;
476 }
477
478 /* Free all internalvars. Done when new symtabs are loaded,
479 because that makes the values invalid. */
480
481 void
482 clear_internalvars ()
483 {
484 register struct internalvar *var;
485
486 while (internalvars)
487 {
488 var = internalvars;
489 internalvars = var->next;
490 free ((PTR)var->name);
491 free ((PTR)var->value);
492 free ((PTR)var);
493 }
494 }
495
496 static void
497 show_convenience (ignore, from_tty)
498 char *ignore;
499 int from_tty;
500 {
501 register struct internalvar *var;
502 int varseen = 0;
503
504 for (var = internalvars; var; var = var->next)
505 {
506 #ifdef IS_TRAPPED_INTERNALVAR
507 if (IS_TRAPPED_INTERNALVAR (var->name))
508 continue;
509 #endif
510 if (!varseen)
511 {
512 varseen = 1;
513 }
514 printf_filtered ("$%s = ", var->name);
515 value_print (var->value, stdout, 0, Val_pretty_default);
516 printf_filtered ("\n");
517 }
518 if (!varseen)
519 printf ("No debugger convenience variables now defined.\n\
520 Convenience variables have names starting with \"$\";\n\
521 use \"set\" as in \"set $foo = 5\" to define them.\n");
522 }
523 \f
524 /* Extract a value as a C number (either long or double).
525 Knows how to convert fixed values to double, or
526 floating values to long.
527 Does not deallocate the value. */
528
529 LONGEST
530 value_as_long (val)
531 register value val;
532 {
533 /* This coerces arrays and functions, which is necessary (e.g.
534 in disassemble_command). It also dereferences references, which
535 I suspect is the most logical thing to do. */
536 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
537 COERCE_ARRAY (val);
538 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
539 }
540
541 double
542 value_as_double (val)
543 register value val;
544 {
545 double foo;
546 int inv;
547
548 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
549 if (inv)
550 error ("Invalid floating value found in program.");
551 return foo;
552 }
553 /* Extract a value as a C pointer.
554 Does not deallocate the value. */
555 CORE_ADDR
556 value_as_pointer (val)
557 value val;
558 {
559 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
560 whether we want this to be true eventually. */
561 #if 0
562 /* ADDR_BITS_REMOVE is wrong if we are being called for a
563 non-address (e.g. argument to "signal", "info break", etc.), or
564 for pointers to char, in which the low bits *are* significant. */
565 return ADDR_BITS_REMOVE(value_as_long (val));
566 #else
567 return value_as_long (val);
568 #endif
569 }
570 \f
571 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
572 as a long, or as a double, assuming the raw data is described
573 by type TYPE. Knows how to convert different sizes of values
574 and can convert between fixed and floating point. We don't assume
575 any alignment for the raw data. Return value is in host byte order.
576
577 If you want functions and arrays to be coerced to pointers, and
578 references to be dereferenced, call value_as_long() instead.
579
580 C++: It is assumed that the front-end has taken care of
581 all matters concerning pointers to members. A pointer
582 to member which reaches here is considered to be equivalent
583 to an INT (or some size). After all, it is only an offset. */
584
585 /* FIXME: This should be rewritten as a switch statement for speed and
586 ease of comprehension. */
587
588 LONGEST
589 unpack_long (type, valaddr)
590 struct type *type;
591 char *valaddr;
592 {
593 register enum type_code code = TYPE_CODE (type);
594 register int len = TYPE_LENGTH (type);
595 register int nosign = TYPE_UNSIGNED (type);
596
597 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
598 code = TYPE_CODE_INT;
599 if (code == TYPE_CODE_FLT)
600 {
601 if (len == sizeof (float))
602 {
603 float retval;
604 memcpy (&retval, valaddr, sizeof (retval));
605 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
606 return retval;
607 }
608
609 if (len == sizeof (double))
610 {
611 double retval;
612 memcpy (&retval, valaddr, sizeof (retval));
613 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
614 return retval;
615 }
616 else
617 {
618 error ("Unexpected type of floating point number.");
619 }
620 }
621 else if ((code == TYPE_CODE_INT || code == TYPE_CODE_CHAR) && nosign)
622 {
623 return extract_unsigned_integer (valaddr, len);
624 }
625 else if (code == TYPE_CODE_INT || code == TYPE_CODE_CHAR)
626 {
627 return extract_signed_integer (valaddr, len);
628 }
629 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
630 whether we want this to be true eventually. */
631 else if (code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
632 {
633 return extract_address (valaddr, len);
634 }
635 else if (code == TYPE_CODE_MEMBER)
636 error ("not implemented: member types in unpack_long");
637
638 error ("Value not integer or pointer.");
639 return 0; /* For lint -- never reached */
640 }
641
642 /* Return a double value from the specified type and address.
643 INVP points to an int which is set to 0 for valid value,
644 1 for invalid value (bad float format). In either case,
645 the returned double is OK to use. Argument is in target
646 format, result is in host format. */
647
648 double
649 unpack_double (type, valaddr, invp)
650 struct type *type;
651 char *valaddr;
652 int *invp;
653 {
654 register enum type_code code = TYPE_CODE (type);
655 register int len = TYPE_LENGTH (type);
656 register int nosign = TYPE_UNSIGNED (type);
657
658 *invp = 0; /* Assume valid. */
659 if (code == TYPE_CODE_FLT)
660 {
661 if (INVALID_FLOAT (valaddr, len))
662 {
663 *invp = 1;
664 return 1.234567891011121314;
665 }
666
667 if (len == sizeof (float))
668 {
669 float retval;
670 memcpy (&retval, valaddr, sizeof (retval));
671 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
672 return retval;
673 }
674
675 if (len == sizeof (double))
676 {
677 double retval;
678 memcpy (&retval, valaddr, sizeof (retval));
679 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
680 return retval;
681 }
682 else
683 {
684 error ("Unexpected type of floating point number.");
685 return 0; /* Placate lint. */
686 }
687 }
688 else if (nosign) {
689 /* Unsigned -- be sure we compensate for signed LONGEST. */
690 return (unsigned LONGEST) unpack_long (type, valaddr);
691 } else {
692 /* Signed -- we are OK with unpack_long. */
693 return unpack_long (type, valaddr);
694 }
695 }
696
697 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
698 as a CORE_ADDR, assuming the raw data is described by type TYPE.
699 We don't assume any alignment for the raw data. Return value is in
700 host byte order.
701
702 If you want functions and arrays to be coerced to pointers, and
703 references to be dereferenced, call value_as_pointer() instead.
704
705 C++: It is assumed that the front-end has taken care of
706 all matters concerning pointers to members. A pointer
707 to member which reaches here is considered to be equivalent
708 to an INT (or some size). After all, it is only an offset. */
709
710 CORE_ADDR
711 unpack_pointer (type, valaddr)
712 struct type *type;
713 char *valaddr;
714 {
715 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
716 whether we want this to be true eventually. */
717 return unpack_long (type, valaddr);
718 }
719 \f
720 /* Given a value ARG1 (offset by OFFSET bytes)
721 of a struct or union type ARG_TYPE,
722 extract and return the value of one of its fields.
723 FIELDNO says which field.
724
725 For C++, must also be able to return values from static fields */
726
727 value
728 value_primitive_field (arg1, offset, fieldno, arg_type)
729 register value arg1;
730 int offset;
731 register int fieldno;
732 register struct type *arg_type;
733 {
734 register value v;
735 register struct type *type;
736
737 check_stub_type (arg_type);
738 type = TYPE_FIELD_TYPE (arg_type, fieldno);
739
740 /* Handle packed fields */
741
742 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
743 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
744 {
745 v = value_from_longest (type,
746 unpack_field_as_long (arg_type,
747 VALUE_CONTENTS (arg1),
748 fieldno));
749 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
750 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
751 }
752 else
753 {
754 v = allocate_value (type);
755 if (VALUE_LAZY (arg1))
756 VALUE_LAZY (v) = 1;
757 else
758 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
759 TYPE_LENGTH (type));
760 }
761 VALUE_LVAL (v) = VALUE_LVAL (arg1);
762 if (VALUE_LVAL (arg1) == lval_internalvar)
763 VALUE_LVAL (v) = lval_internalvar_component;
764 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
765 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
766 return v;
767 }
768
769 /* Given a value ARG1 of a struct or union type,
770 extract and return the value of one of its fields.
771 FIELDNO says which field.
772
773 For C++, must also be able to return values from static fields */
774
775 value
776 value_field (arg1, fieldno)
777 register value arg1;
778 register int fieldno;
779 {
780 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
781 }
782
783 /* Return a non-virtual function as a value.
784 F is the list of member functions which contains the desired method.
785 J is an index into F which provides the desired method. */
786
787 value
788 value_fn_field (arg1p, f, j, type, offset)
789 value *arg1p;
790 struct fn_field *f;
791 int j;
792 struct type *type;
793 int offset;
794 {
795 register value v;
796 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
797 struct symbol *sym;
798
799 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
800 0, VAR_NAMESPACE, 0, NULL);
801 if (! sym) error ("Internal error: could not find physical method named %s",
802 TYPE_FN_FIELD_PHYSNAME (f, j));
803
804 v = allocate_value (ftype);
805 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
806 VALUE_TYPE (v) = ftype;
807
808 if (arg1p)
809 {
810 if (type != VALUE_TYPE (*arg1p))
811 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
812 value_addr (*arg1p)));
813
814 /* Move the `this' pointer according to the offset.
815 VALUE_OFFSET (*arg1p) += offset;
816 */
817 }
818
819 return v;
820 }
821
822 /* Return a virtual function as a value.
823 ARG1 is the object which provides the virtual function
824 table pointer. *ARG1P is side-effected in calling this function.
825 F is the list of member functions which contains the desired virtual
826 function.
827 J is an index into F which provides the desired virtual function.
828
829 TYPE is the type in which F is located. */
830 value
831 value_virtual_fn_field (arg1p, f, j, type, offset)
832 value *arg1p;
833 struct fn_field *f;
834 int j;
835 struct type *type;
836 int offset;
837 {
838 value arg1 = *arg1p;
839 /* First, get the virtual function table pointer. That comes
840 with a strange type, so cast it to type `pointer to long' (which
841 should serve just fine as a function type). Then, index into
842 the table, and convert final value to appropriate function type. */
843 value entry, vfn, vtbl;
844 value vi = value_from_longest (builtin_type_int,
845 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
846 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
847 struct type *context;
848 if (fcontext == NULL)
849 /* We don't have an fcontext (e.g. the program was compiled with
850 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
851 This won't work right for multiple inheritance, but at least we
852 should do as well as GDB 3.x did. */
853 fcontext = TYPE_VPTR_BASETYPE (type);
854 context = lookup_pointer_type (fcontext);
855 /* Now context is a pointer to the basetype containing the vtbl. */
856 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
857 arg1 = value_ind (value_cast (context, value_addr (arg1)));
858
859 context = VALUE_TYPE (arg1);
860 /* Now context is the basetype containing the vtbl. */
861
862 /* This type may have been defined before its virtual function table
863 was. If so, fill in the virtual function table entry for the
864 type now. */
865 if (TYPE_VPTR_FIELDNO (context) < 0)
866 fill_in_vptr_fieldno (context);
867
868 /* The virtual function table is now an array of structures
869 which have the form { int16 offset, delta; void *pfn; }. */
870 vtbl = value_ind (value_primitive_field (arg1, 0,
871 TYPE_VPTR_FIELDNO (context),
872 TYPE_VPTR_BASETYPE (context)));
873
874 /* Index into the virtual function table. This is hard-coded because
875 looking up a field is not cheap, and it may be important to save
876 time, e.g. if the user has set a conditional breakpoint calling
877 a virtual function. */
878 entry = value_subscript (vtbl, vi);
879
880 /* Move the `this' pointer according to the virtual function table. */
881 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
882
883 if (! VALUE_LAZY (arg1))
884 {
885 VALUE_LAZY (arg1) = 1;
886 value_fetch_lazy (arg1);
887 }
888
889 vfn = value_field (entry, 2);
890 /* Reinstantiate the function pointer with the correct type. */
891 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
892
893 *arg1p = arg1;
894 return vfn;
895 }
896
897 /* ARG is a pointer to an object we know to be at least
898 a DTYPE. BTYPE is the most derived basetype that has
899 already been searched (and need not be searched again).
900 After looking at the vtables between BTYPE and DTYPE,
901 return the most derived type we find. The caller must
902 be satisfied when the return value == DTYPE.
903
904 FIXME-tiemann: should work with dossier entries as well. */
905
906 static value
907 value_headof (in_arg, btype, dtype)
908 value in_arg;
909 struct type *btype, *dtype;
910 {
911 /* First collect the vtables we must look at for this object. */
912 /* FIXME-tiemann: right now, just look at top-most vtable. */
913 value arg, vtbl, entry, best_entry = 0;
914 int i, nelems;
915 int offset, best_offset = 0;
916 struct symbol *sym;
917 CORE_ADDR pc_for_sym;
918 char *demangled_name;
919 struct minimal_symbol *msymbol;
920
921 btype = TYPE_VPTR_BASETYPE (dtype);
922 check_stub_type (btype);
923 arg = in_arg;
924 if (btype != dtype)
925 arg = value_cast (lookup_pointer_type (btype), arg);
926 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
927
928 /* Check that VTBL looks like it points to a virtual function table. */
929 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
930 if (msymbol == NULL
931 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
932 {
933 /* If we expected to find a vtable, but did not, let the user
934 know that we aren't happy, but don't throw an error.
935 FIXME: there has to be a better way to do this. */
936 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
937 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
938 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
939 VALUE_TYPE (in_arg) = error_type;
940 return in_arg;
941 }
942
943 /* Now search through the virtual function table. */
944 entry = value_ind (vtbl);
945 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
946 for (i = 1; i <= nelems; i++)
947 {
948 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
949 (LONGEST) i));
950 offset = longest_to_int (value_as_long (value_field (entry, 0)));
951 /* If we use '<=' we can handle single inheritance
952 * where all offsets are zero - just use the first entry found. */
953 if (offset <= best_offset)
954 {
955 best_offset = offset;
956 best_entry = entry;
957 }
958 }
959 /* Move the pointer according to BEST_ENTRY's offset, and figure
960 out what type we should return as the new pointer. */
961 if (best_entry == 0)
962 {
963 /* An alternative method (which should no longer be necessary).
964 * But we leave it in for future use, when we will hopefully
965 * have optimizes the vtable to use thunks instead of offsets. */
966 /* Use the name of vtable itself to extract a base type. */
967 demangled_name += 4; /* Skip \7fvt$ prefix. */
968 }
969 else
970 {
971 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
972 sym = find_pc_function (pc_for_sym);
973 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
974 *(strchr (demangled_name, ':')) = '\0';
975 }
976 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
977 if (sym == NULL)
978 error ("could not find type declaration for `%s'", demangled_name);
979 if (best_entry)
980 {
981 free (demangled_name);
982 arg = value_add (value_cast (builtin_type_int, arg),
983 value_field (best_entry, 0));
984 }
985 else arg = in_arg;
986 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
987 return arg;
988 }
989
990 /* ARG is a pointer object of type TYPE. If TYPE has virtual
991 function tables, probe ARG's tables (including the vtables
992 of its baseclasses) to figure out the most derived type that ARG
993 could actually be a pointer to. */
994
995 value
996 value_from_vtable_info (arg, type)
997 value arg;
998 struct type *type;
999 {
1000 /* Take care of preliminaries. */
1001 if (TYPE_VPTR_FIELDNO (type) < 0)
1002 fill_in_vptr_fieldno (type);
1003 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1004 return 0;
1005
1006 return value_headof (arg, 0, type);
1007 }
1008
1009 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1010 pointer which is for the base class whose type is BASECLASS. */
1011
1012 static int
1013 vb_match (type, index, basetype)
1014 struct type *type;
1015 int index;
1016 struct type *basetype;
1017 {
1018 struct type *fieldtype;
1019 char *name = TYPE_FIELD_NAME (type, index);
1020 char *field_class_name = NULL;
1021
1022 if (*name != '_')
1023 return 0;
1024 /* gcc 2.4 uses \7fvb$. */
1025 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1026 field_class_name = name + 4;
1027 /* gcc 2.5 will use \7f_vb_. */
1028 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1029 field_class_name = name + 5;
1030
1031 if (field_class_name == NULL)
1032 /* This field is not a virtual base class pointer. */
1033 return 0;
1034
1035 /* It's a virtual baseclass pointer, now we just need to find out whether
1036 it is for this baseclass. */
1037 fieldtype = TYPE_FIELD_TYPE (type, index);
1038 if (fieldtype == NULL
1039 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1040 /* "Can't happen". */
1041 return 0;
1042
1043 /* What we check for is that either the types are equal (needed for
1044 nameless types) or have the same name. This is ugly, and a more
1045 elegant solution should be devised (which would probably just push
1046 the ugliness into symbol reading unless we change the stabs format). */
1047 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1048 return 1;
1049
1050 if (TYPE_NAME (basetype) != NULL
1051 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1052 && STREQ (TYPE_NAME (basetype),
1053 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1054 return 1;
1055 return 0;
1056 }
1057
1058 /* Compute the offset of the baseclass which is
1059 the INDEXth baseclass of class TYPE, for a value ARG,
1060 wih extra offset of OFFSET.
1061 The result is the offste of the baseclass value relative
1062 to (the address of)(ARG) + OFFSET.
1063
1064 -1 is returned on error. */
1065
1066 int
1067 baseclass_offset (type, index, arg, offset)
1068 struct type *type;
1069 int index;
1070 value arg;
1071 int offset;
1072 {
1073 struct type *basetype = TYPE_BASECLASS (type, index);
1074
1075 if (BASETYPE_VIA_VIRTUAL (type, index))
1076 {
1077 /* Must hunt for the pointer to this virtual baseclass. */
1078 register int i, len = TYPE_NFIELDS (type);
1079 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1080
1081 /* First look for the virtual baseclass pointer
1082 in the fields. */
1083 for (i = n_baseclasses; i < len; i++)
1084 {
1085 if (vb_match (type, i, basetype))
1086 {
1087 CORE_ADDR addr
1088 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1089 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1090 + offset
1091 + (TYPE_FIELD_BITPOS (type, i) / 8));
1092
1093 if (VALUE_LVAL (arg) != lval_memory)
1094 return -1;
1095
1096 return addr -
1097 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1098 }
1099 }
1100 /* Not in the fields, so try looking through the baseclasses. */
1101 for (i = index+1; i < n_baseclasses; i++)
1102 {
1103 int boffset =
1104 baseclass_offset (type, i, arg, offset);
1105 if (boffset)
1106 return boffset;
1107 }
1108 /* Not found. */
1109 return -1;
1110 }
1111
1112 /* Baseclass is easily computed. */
1113 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1114 }
1115
1116 /* Compute the address of the baseclass which is
1117 the INDEXth baseclass of class TYPE. The TYPE base
1118 of the object is at VALADDR.
1119
1120 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1121 or 0 if no error. In that case the return value is not the address
1122 of the baseclasss, but the address which could not be read
1123 successfully. */
1124
1125 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1126
1127 char *
1128 baseclass_addr (type, index, valaddr, valuep, errp)
1129 struct type *type;
1130 int index;
1131 char *valaddr;
1132 value *valuep;
1133 int *errp;
1134 {
1135 struct type *basetype = TYPE_BASECLASS (type, index);
1136
1137 if (errp)
1138 *errp = 0;
1139
1140 if (BASETYPE_VIA_VIRTUAL (type, index))
1141 {
1142 /* Must hunt for the pointer to this virtual baseclass. */
1143 register int i, len = TYPE_NFIELDS (type);
1144 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1145
1146 /* First look for the virtual baseclass pointer
1147 in the fields. */
1148 for (i = n_baseclasses; i < len; i++)
1149 {
1150 if (vb_match (type, i, basetype))
1151 {
1152 value val = allocate_value (basetype);
1153 CORE_ADDR addr;
1154 int status;
1155
1156 addr
1157 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1158 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1159
1160 status = target_read_memory (addr,
1161 VALUE_CONTENTS_RAW (val),
1162 TYPE_LENGTH (basetype));
1163 VALUE_LVAL (val) = lval_memory;
1164 VALUE_ADDRESS (val) = addr;
1165
1166 if (status != 0)
1167 {
1168 if (valuep)
1169 *valuep = NULL;
1170 release_value (val);
1171 value_free (val);
1172 if (errp)
1173 *errp = status;
1174 return (char *)addr;
1175 }
1176 else
1177 {
1178 if (valuep)
1179 *valuep = val;
1180 return (char *) VALUE_CONTENTS (val);
1181 }
1182 }
1183 }
1184 /* Not in the fields, so try looking through the baseclasses. */
1185 for (i = index+1; i < n_baseclasses; i++)
1186 {
1187 char *baddr;
1188
1189 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1190 if (baddr)
1191 return baddr;
1192 }
1193 /* Not found. */
1194 if (valuep)
1195 *valuep = 0;
1196 return 0;
1197 }
1198
1199 /* Baseclass is easily computed. */
1200 if (valuep)
1201 *valuep = 0;
1202 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1203 }
1204 \f
1205 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1206 VALADDR.
1207
1208 Extracting bits depends on endianness of the machine. Compute the
1209 number of least significant bits to discard. For big endian machines,
1210 we compute the total number of bits in the anonymous object, subtract
1211 off the bit count from the MSB of the object to the MSB of the
1212 bitfield, then the size of the bitfield, which leaves the LSB discard
1213 count. For little endian machines, the discard count is simply the
1214 number of bits from the LSB of the anonymous object to the LSB of the
1215 bitfield.
1216
1217 If the field is signed, we also do sign extension. */
1218
1219 LONGEST
1220 unpack_field_as_long (type, valaddr, fieldno)
1221 struct type *type;
1222 char *valaddr;
1223 int fieldno;
1224 {
1225 unsigned LONGEST val;
1226 unsigned LONGEST valmask;
1227 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1228 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1229 int lsbcount;
1230
1231 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1232
1233 /* Extract bits. See comment above. */
1234
1235 #if BITS_BIG_ENDIAN
1236 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1237 #else
1238 lsbcount = (bitpos % 8);
1239 #endif
1240 val >>= lsbcount;
1241
1242 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1243 If the field is signed, and is negative, then sign extend. */
1244
1245 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1246 {
1247 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1248 val &= valmask;
1249 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1250 {
1251 if (val & (valmask ^ (valmask >> 1)))
1252 {
1253 val |= ~valmask;
1254 }
1255 }
1256 }
1257 return (val);
1258 }
1259
1260 /* Modify the value of a bitfield. ADDR points to a block of memory in
1261 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1262 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1263 indicate which bits (in target bit order) comprise the bitfield. */
1264
1265 void
1266 modify_field (addr, fieldval, bitpos, bitsize)
1267 char *addr;
1268 LONGEST fieldval;
1269 int bitpos, bitsize;
1270 {
1271 LONGEST oword;
1272
1273 /* Reject values too big to fit in the field in question,
1274 otherwise adjoining fields may be corrupted. */
1275 if (bitsize < (8 * sizeof (fieldval))
1276 && 0 != (fieldval & ~((1<<bitsize)-1)))
1277 {
1278 /* FIXME: would like to include fieldval in the message, but
1279 we don't have a sprintf_longest. */
1280 error ("Value does not fit in %d bits.", bitsize);
1281 }
1282
1283 oword = extract_signed_integer (addr, sizeof oword);
1284
1285 /* Shifting for bit field depends on endianness of the target machine. */
1286 #if BITS_BIG_ENDIAN
1287 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1288 #endif
1289
1290 /* Mask out old value, while avoiding shifts >= size of oword */
1291 if (bitsize < 8 * sizeof (oword))
1292 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1293 else
1294 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1295 oword |= fieldval << bitpos;
1296
1297 store_signed_integer (addr, sizeof oword, oword);
1298 }
1299 \f
1300 /* Convert C numbers into newly allocated values */
1301
1302 value
1303 value_from_longest (type, num)
1304 struct type *type;
1305 register LONGEST num;
1306 {
1307 register value val = allocate_value (type);
1308 register enum type_code code = TYPE_CODE (type);
1309 register int len = TYPE_LENGTH (type);
1310
1311 switch (code)
1312 {
1313 case TYPE_CODE_INT:
1314 case TYPE_CODE_CHAR:
1315 case TYPE_CODE_ENUM:
1316 case TYPE_CODE_BOOL:
1317 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1318 break;
1319
1320 case TYPE_CODE_REF:
1321 case TYPE_CODE_PTR:
1322 /* This assumes that all pointers of a given length
1323 have the same form. */
1324 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1325 break;
1326
1327 default:
1328 error ("Unexpected type encountered for integer constant.");
1329 }
1330 return val;
1331 }
1332
1333 value
1334 value_from_double (type, num)
1335 struct type *type;
1336 double num;
1337 {
1338 register value val = allocate_value (type);
1339 register enum type_code code = TYPE_CODE (type);
1340 register int len = TYPE_LENGTH (type);
1341
1342 if (code == TYPE_CODE_FLT)
1343 {
1344 if (len == sizeof (float))
1345 * (float *) VALUE_CONTENTS_RAW (val) = num;
1346 else if (len == sizeof (double))
1347 * (double *) VALUE_CONTENTS_RAW (val) = num;
1348 else
1349 error ("Floating type encountered with unexpected data length.");
1350 }
1351 else
1352 error ("Unexpected type encountered for floating constant.");
1353
1354 /* num was in host byte order. So now put the value's contents
1355 into target byte order. */
1356 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1357
1358 return val;
1359 }
1360 \f
1361 /* Deal with the value that is "about to be returned". */
1362
1363 /* Return the value that a function returning now
1364 would be returning to its caller, assuming its type is VALTYPE.
1365 RETBUF is where we look for what ought to be the contents
1366 of the registers (in raw form). This is because it is often
1367 desirable to restore old values to those registers
1368 after saving the contents of interest, and then call
1369 this function using the saved values.
1370 struct_return is non-zero when the function in question is
1371 using the structure return conventions on the machine in question;
1372 0 when it is using the value returning conventions (this often
1373 means returning pointer to where structure is vs. returning value). */
1374
1375 value
1376 value_being_returned (valtype, retbuf, struct_return)
1377 register struct type *valtype;
1378 char retbuf[REGISTER_BYTES];
1379 int struct_return;
1380 /*ARGSUSED*/
1381 {
1382 register value val;
1383 CORE_ADDR addr;
1384
1385 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1386 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1387 if (struct_return) {
1388 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1389 if (!addr)
1390 error ("Function return value unknown");
1391 return value_at (valtype, addr);
1392 }
1393 #endif
1394
1395 val = allocate_value (valtype);
1396 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1397
1398 return val;
1399 }
1400
1401 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1402 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1403 and TYPE is the type (which is known to be struct, union or array).
1404
1405 On most machines, the struct convention is used unless we are
1406 using gcc and the type is of a special size. */
1407 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1408 native compiler. GCC 2.3.3 was the last release that did it the
1409 old way. Since gcc2_compiled was not changed, we have no
1410 way to correctly win in all cases, so we just do the right thing
1411 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1412 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1413 would cause more chaos than dealing with some struct returns being
1414 handled wrong. */
1415 #if !defined (USE_STRUCT_CONVENTION)
1416 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1417 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1418 || TYPE_LENGTH (value_type) == 2 \
1419 || TYPE_LENGTH (value_type) == 4 \
1420 || TYPE_LENGTH (value_type) == 8 \
1421 ) \
1422 ))
1423 #endif
1424
1425 /* Return true if the function specified is using the structure returning
1426 convention on this machine to return arguments, or 0 if it is using
1427 the value returning convention. FUNCTION is the value representing
1428 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1429 is the type returned by the function. GCC_P is nonzero if compiled
1430 with GCC. */
1431
1432 int
1433 using_struct_return (function, funcaddr, value_type, gcc_p)
1434 value function;
1435 CORE_ADDR funcaddr;
1436 struct type *value_type;
1437 int gcc_p;
1438 /*ARGSUSED*/
1439 {
1440 register enum type_code code = TYPE_CODE (value_type);
1441
1442 if (code == TYPE_CODE_ERROR)
1443 error ("Function return type unknown.");
1444
1445 if (code == TYPE_CODE_STRUCT ||
1446 code == TYPE_CODE_UNION ||
1447 code == TYPE_CODE_ARRAY)
1448 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1449
1450 return 0;
1451 }
1452
1453 /* Store VAL so it will be returned if a function returns now.
1454 Does not verify that VAL's type matches what the current
1455 function wants to return. */
1456
1457 void
1458 set_return_value (val)
1459 value val;
1460 {
1461 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1462 double dbuf;
1463 LONGEST lbuf;
1464
1465 if (code == TYPE_CODE_ERROR)
1466 error ("Function return type unknown.");
1467
1468 if ( code == TYPE_CODE_STRUCT
1469 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1470 error ("GDB does not support specifying a struct or union return value.");
1471
1472 /* FIXME, this is bogus. We don't know what the return conventions
1473 are, or how values should be promoted.... */
1474 if (code == TYPE_CODE_FLT)
1475 {
1476 dbuf = value_as_double (val);
1477
1478 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1479 }
1480 else
1481 {
1482 lbuf = value_as_long (val);
1483 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1484 }
1485 }
1486 \f
1487 void
1488 _initialize_values ()
1489 {
1490 add_cmd ("convenience", no_class, show_convenience,
1491 "Debugger convenience (\"$foo\") variables.\n\
1492 These variables are created when you assign them values;\n\
1493 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1494 A few convenience variables are given values automatically:\n\
1495 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1496 \"$__\" holds the contents of the last address examined with \"x\".",
1497 &showlist);
1498
1499 add_cmd ("values", no_class, show_values,
1500 "Elements of value history around item number IDX (or last ten).",
1501 &showlist);
1502 }