* gdbtypes.h: Re-interpret struct field. Suppport address of static.
[binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "scm-lang.h"
33 #include "demangle.h"
34
35 /* Local function prototypes. */
36
37 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
38 struct type *));
39
40 static void show_values PARAMS ((char *, int));
41
42 static void show_convenience PARAMS ((char *, int));
43
44 static int vb_match PARAMS ((struct type *, int, struct type *));
45
46 /* The value-history records all the values printed
47 by print commands during this session. Each chunk
48 records 60 consecutive values. The first chunk on
49 the chain records the most recent values.
50 The total number of values is in value_history_count. */
51
52 #define VALUE_HISTORY_CHUNK 60
53
54 struct value_history_chunk
55 {
56 struct value_history_chunk *next;
57 value_ptr values[VALUE_HISTORY_CHUNK];
58 };
59
60 /* Chain of chunks now in use. */
61
62 static struct value_history_chunk *value_history_chain;
63
64 static int value_history_count; /* Abs number of last entry stored */
65 \f
66 /* List of all value objects currently allocated
67 (except for those released by calls to release_value)
68 This is so they can be freed after each command. */
69
70 static value_ptr all_values;
71
72 /* Allocate a value that has the correct length for type TYPE. */
73
74 value_ptr
75 allocate_value (type)
76 struct type *type;
77 {
78 register value_ptr val;
79 struct type *atype = check_typedef (type);
80
81 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
82 VALUE_NEXT (val) = all_values;
83 all_values = val;
84 VALUE_TYPE (val) = type;
85 VALUE_LVAL (val) = not_lval;
86 VALUE_ADDRESS (val) = 0;
87 VALUE_FRAME (val) = 0;
88 VALUE_OFFSET (val) = 0;
89 VALUE_BITPOS (val) = 0;
90 VALUE_BITSIZE (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 VALUE_BFD_SECTION (val) = NULL;
95 val->modifiable = 1;
96 return val;
97 }
98
99 /* Allocate a value that has the correct length
100 for COUNT repetitions type TYPE. */
101
102 value_ptr
103 allocate_repeat_value (type, count)
104 struct type *type;
105 int count;
106 {
107 int low_bound = current_language->string_lower_bound; /* ??? */
108 /* FIXME-type-allocation: need a way to free this type when we are
109 done with it. */
110 struct type *range_type
111 = create_range_type ((struct type *) NULL, builtin_type_int,
112 low_bound, count + low_bound - 1);
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 return allocate_value (create_array_type ((struct type *) NULL,
116 type, range_type));
117 }
118
119 /* Return a mark in the value chain. All values allocated after the
120 mark is obtained (except for those released) are subject to being freed
121 if a subsequent value_free_to_mark is passed the mark. */
122 value_ptr
123 value_mark ()
124 {
125 return all_values;
126 }
127
128 /* Free all values allocated since MARK was obtained by value_mark
129 (except for those released). */
130 void
131 value_free_to_mark (mark)
132 value_ptr mark;
133 {
134 value_ptr val, next;
135
136 for (val = all_values; val && val != mark; val = next)
137 {
138 next = VALUE_NEXT (val);
139 value_free (val);
140 }
141 all_values = val;
142 }
143
144 /* Free all the values that have been allocated (except for those released).
145 Called after each command, successful or not. */
146
147 void
148 free_all_values ()
149 {
150 register value_ptr val, next;
151
152 for (val = all_values; val; val = next)
153 {
154 next = VALUE_NEXT (val);
155 value_free (val);
156 }
157
158 all_values = 0;
159 }
160
161 /* Remove VAL from the chain all_values
162 so it will not be freed automatically. */
163
164 void
165 release_value (val)
166 register value_ptr val;
167 {
168 register value_ptr v;
169
170 if (all_values == val)
171 {
172 all_values = val->next;
173 return;
174 }
175
176 for (v = all_values; v; v = v->next)
177 {
178 if (v->next == val)
179 {
180 v->next = val->next;
181 break;
182 }
183 }
184 }
185
186 /* Release all values up to mark */
187 value_ptr
188 value_release_to_mark (mark)
189 value_ptr mark;
190 {
191 value_ptr val, next;
192
193 for (val = next = all_values; next; next = VALUE_NEXT (next))
194 if (VALUE_NEXT (next) == mark)
195 {
196 all_values = VALUE_NEXT (next);
197 VALUE_NEXT (next) = 0;
198 return val;
199 }
200 all_values = 0;
201 return val;
202 }
203
204 /* Return a copy of the value ARG.
205 It contains the same contents, for same memory address,
206 but it's a different block of storage. */
207
208 value_ptr
209 value_copy (arg)
210 value_ptr arg;
211 {
212 register struct type *type = VALUE_TYPE (arg);
213 register value_ptr val = allocate_value (type);
214 VALUE_LVAL (val) = VALUE_LVAL (arg);
215 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
216 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
217 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
218 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
219 VALUE_FRAME (val) = VALUE_FRAME (arg);
220 VALUE_REGNO (val) = VALUE_REGNO (arg);
221 VALUE_LAZY (val) = VALUE_LAZY (arg);
222 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
223 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
224 val->modifiable = arg->modifiable;
225 if (!VALUE_LAZY (val))
226 {
227 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
228 TYPE_LENGTH (VALUE_TYPE (arg)));
229 }
230 return val;
231 }
232 \f
233 /* Access to the value history. */
234
235 /* Record a new value in the value history.
236 Returns the absolute history index of the entry.
237 Result of -1 indicates the value was not saved; otherwise it is the
238 value history index of this new item. */
239
240 int
241 record_latest_value (val)
242 value_ptr val;
243 {
244 int i;
245
246 /* We don't want this value to have anything to do with the inferior anymore.
247 In particular, "set $1 = 50" should not affect the variable from which
248 the value was taken, and fast watchpoints should be able to assume that
249 a value on the value history never changes. */
250 if (VALUE_LAZY (val))
251 value_fetch_lazy (val);
252 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
253 from. This is a bit dubious, because then *&$1 does not just return $1
254 but the current contents of that location. c'est la vie... */
255 val->modifiable = 0;
256 release_value (val);
257
258 /* Here we treat value_history_count as origin-zero
259 and applying to the value being stored now. */
260
261 i = value_history_count % VALUE_HISTORY_CHUNK;
262 if (i == 0)
263 {
264 register struct value_history_chunk *new
265 = (struct value_history_chunk *)
266 xmalloc (sizeof (struct value_history_chunk));
267 memset (new->values, 0, sizeof new->values);
268 new->next = value_history_chain;
269 value_history_chain = new;
270 }
271
272 value_history_chain->values[i] = val;
273
274 /* Now we regard value_history_count as origin-one
275 and applying to the value just stored. */
276
277 return ++value_history_count;
278 }
279
280 /* Return a copy of the value in the history with sequence number NUM. */
281
282 value_ptr
283 access_value_history (num)
284 int num;
285 {
286 register struct value_history_chunk *chunk;
287 register int i;
288 register int absnum = num;
289
290 if (absnum <= 0)
291 absnum += value_history_count;
292
293 if (absnum <= 0)
294 {
295 if (num == 0)
296 error ("The history is empty.");
297 else if (num == 1)
298 error ("There is only one value in the history.");
299 else
300 error ("History does not go back to $$%d.", -num);
301 }
302 if (absnum > value_history_count)
303 error ("History has not yet reached $%d.", absnum);
304
305 absnum--;
306
307 /* Now absnum is always absolute and origin zero. */
308
309 chunk = value_history_chain;
310 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
311 i > 0; i--)
312 chunk = chunk->next;
313
314 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
315 }
316
317 /* Clear the value history entirely.
318 Must be done when new symbol tables are loaded,
319 because the type pointers become invalid. */
320
321 void
322 clear_value_history ()
323 {
324 register struct value_history_chunk *next;
325 register int i;
326 register value_ptr val;
327
328 while (value_history_chain)
329 {
330 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
331 if ((val = value_history_chain->values[i]) != NULL)
332 free ((PTR)val);
333 next = value_history_chain->next;
334 free ((PTR)value_history_chain);
335 value_history_chain = next;
336 }
337 value_history_count = 0;
338 }
339
340 static void
341 show_values (num_exp, from_tty)
342 char *num_exp;
343 int from_tty;
344 {
345 register int i;
346 register value_ptr val;
347 static int num = 1;
348
349 if (num_exp)
350 {
351 /* "info history +" should print from the stored position.
352 "info history <exp>" should print around value number <exp>. */
353 if (num_exp[0] != '+' || num_exp[1] != '\0')
354 num = parse_and_eval_address (num_exp) - 5;
355 }
356 else
357 {
358 /* "info history" means print the last 10 values. */
359 num = value_history_count - 9;
360 }
361
362 if (num <= 0)
363 num = 1;
364
365 for (i = num; i < num + 10 && i <= value_history_count; i++)
366 {
367 val = access_value_history (i);
368 printf_filtered ("$%d = ", i);
369 value_print (val, gdb_stdout, 0, Val_pretty_default);
370 printf_filtered ("\n");
371 }
372
373 /* The next "info history +" should start after what we just printed. */
374 num += 10;
375
376 /* Hitting just return after this command should do the same thing as
377 "info history +". If num_exp is null, this is unnecessary, since
378 "info history +" is not useful after "info history". */
379 if (from_tty && num_exp)
380 {
381 num_exp[0] = '+';
382 num_exp[1] = '\0';
383 }
384 }
385 \f
386 /* Internal variables. These are variables within the debugger
387 that hold values assigned by debugger commands.
388 The user refers to them with a '$' prefix
389 that does not appear in the variable names stored internally. */
390
391 static struct internalvar *internalvars;
392
393 /* Look up an internal variable with name NAME. NAME should not
394 normally include a dollar sign.
395
396 If the specified internal variable does not exist,
397 one is created, with a void value. */
398
399 struct internalvar *
400 lookup_internalvar (name)
401 char *name;
402 {
403 register struct internalvar *var;
404
405 for (var = internalvars; var; var = var->next)
406 if (STREQ (var->name, name))
407 return var;
408
409 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
410 var->name = concat (name, NULL);
411 var->value = allocate_value (builtin_type_void);
412 release_value (var->value);
413 var->next = internalvars;
414 internalvars = var;
415 return var;
416 }
417
418 value_ptr
419 value_of_internalvar (var)
420 struct internalvar *var;
421 {
422 register value_ptr val;
423
424 #ifdef IS_TRAPPED_INTERNALVAR
425 if (IS_TRAPPED_INTERNALVAR (var->name))
426 return VALUE_OF_TRAPPED_INTERNALVAR (var);
427 #endif
428
429 val = value_copy (var->value);
430 if (VALUE_LAZY (val))
431 value_fetch_lazy (val);
432 VALUE_LVAL (val) = lval_internalvar;
433 VALUE_INTERNALVAR (val) = var;
434 return val;
435 }
436
437 void
438 set_internalvar_component (var, offset, bitpos, bitsize, newval)
439 struct internalvar *var;
440 int offset, bitpos, bitsize;
441 value_ptr newval;
442 {
443 register char *addr = VALUE_CONTENTS (var->value) + offset;
444
445 #ifdef IS_TRAPPED_INTERNALVAR
446 if (IS_TRAPPED_INTERNALVAR (var->name))
447 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
448 #endif
449
450 if (bitsize)
451 modify_field (addr, value_as_long (newval),
452 bitpos, bitsize);
453 else
454 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
455 }
456
457 void
458 set_internalvar (var, val)
459 struct internalvar *var;
460 value_ptr val;
461 {
462 value_ptr newval;
463
464 #ifdef IS_TRAPPED_INTERNALVAR
465 if (IS_TRAPPED_INTERNALVAR (var->name))
466 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
467 #endif
468
469 newval = value_copy (val);
470 newval->modifiable = 1;
471
472 /* Force the value to be fetched from the target now, to avoid problems
473 later when this internalvar is referenced and the target is gone or
474 has changed. */
475 if (VALUE_LAZY (newval))
476 value_fetch_lazy (newval);
477
478 /* Begin code which must not call error(). If var->value points to
479 something free'd, an error() obviously leaves a dangling pointer.
480 But we also get a danling pointer if var->value points to
481 something in the value chain (i.e., before release_value is
482 called), because after the error free_all_values will get called before
483 long. */
484 free ((PTR)var->value);
485 var->value = newval;
486 release_value (newval);
487 /* End code which must not call error(). */
488 }
489
490 char *
491 internalvar_name (var)
492 struct internalvar *var;
493 {
494 return var->name;
495 }
496
497 /* Free all internalvars. Done when new symtabs are loaded,
498 because that makes the values invalid. */
499
500 void
501 clear_internalvars ()
502 {
503 register struct internalvar *var;
504
505 while (internalvars)
506 {
507 var = internalvars;
508 internalvars = var->next;
509 free ((PTR)var->name);
510 free ((PTR)var->value);
511 free ((PTR)var);
512 }
513 }
514
515 static void
516 show_convenience (ignore, from_tty)
517 char *ignore;
518 int from_tty;
519 {
520 register struct internalvar *var;
521 int varseen = 0;
522
523 for (var = internalvars; var; var = var->next)
524 {
525 #ifdef IS_TRAPPED_INTERNALVAR
526 if (IS_TRAPPED_INTERNALVAR (var->name))
527 continue;
528 #endif
529 if (!varseen)
530 {
531 varseen = 1;
532 }
533 printf_filtered ("$%s = ", var->name);
534 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
535 printf_filtered ("\n");
536 }
537 if (!varseen)
538 printf_unfiltered ("No debugger convenience variables now defined.\n\
539 Convenience variables have names starting with \"$\";\n\
540 use \"set\" as in \"set $foo = 5\" to define them.\n");
541 }
542 \f
543 /* Extract a value as a C number (either long or double).
544 Knows how to convert fixed values to double, or
545 floating values to long.
546 Does not deallocate the value. */
547
548 LONGEST
549 value_as_long (val)
550 register value_ptr val;
551 {
552 /* This coerces arrays and functions, which is necessary (e.g.
553 in disassemble_command). It also dereferences references, which
554 I suspect is the most logical thing to do. */
555 COERCE_ARRAY (val);
556 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
557 }
558
559 DOUBLEST
560 value_as_double (val)
561 register value_ptr val;
562 {
563 DOUBLEST foo;
564 int inv;
565
566 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
567 if (inv)
568 error ("Invalid floating value found in program.");
569 return foo;
570 }
571 /* Extract a value as a C pointer.
572 Does not deallocate the value. */
573 CORE_ADDR
574 value_as_pointer (val)
575 value_ptr val;
576 {
577 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
578 whether we want this to be true eventually. */
579 #if 0
580 /* ADDR_BITS_REMOVE is wrong if we are being called for a
581 non-address (e.g. argument to "signal", "info break", etc.), or
582 for pointers to char, in which the low bits *are* significant. */
583 return ADDR_BITS_REMOVE(value_as_long (val));
584 #else
585 return value_as_long (val);
586 #endif
587 }
588 \f
589 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
590 as a long, or as a double, assuming the raw data is described
591 by type TYPE. Knows how to convert different sizes of values
592 and can convert between fixed and floating point. We don't assume
593 any alignment for the raw data. Return value is in host byte order.
594
595 If you want functions and arrays to be coerced to pointers, and
596 references to be dereferenced, call value_as_long() instead.
597
598 C++: It is assumed that the front-end has taken care of
599 all matters concerning pointers to members. A pointer
600 to member which reaches here is considered to be equivalent
601 to an INT (or some size). After all, it is only an offset. */
602
603 LONGEST
604 unpack_long (type, valaddr)
605 struct type *type;
606 char *valaddr;
607 {
608 register enum type_code code = TYPE_CODE (type);
609 register int len = TYPE_LENGTH (type);
610 register int nosign = TYPE_UNSIGNED (type);
611
612 if (current_language->la_language == language_scm
613 && is_scmvalue_type (type))
614 return scm_unpack (type, valaddr, TYPE_CODE_INT);
615
616 switch (code)
617 {
618 case TYPE_CODE_TYPEDEF:
619 return unpack_long (check_typedef (type), valaddr);
620 case TYPE_CODE_ENUM:
621 case TYPE_CODE_BOOL:
622 case TYPE_CODE_INT:
623 case TYPE_CODE_CHAR:
624 case TYPE_CODE_RANGE:
625 if (nosign)
626 return extract_unsigned_integer (valaddr, len);
627 else
628 return extract_signed_integer (valaddr, len);
629
630 case TYPE_CODE_FLT:
631 return extract_floating (valaddr, len);
632
633 case TYPE_CODE_PTR:
634 case TYPE_CODE_REF:
635 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
636 whether we want this to be true eventually. */
637 return extract_address (valaddr, len);
638
639 case TYPE_CODE_MEMBER:
640 error ("not implemented: member types in unpack_long");
641
642 default:
643 error ("Value can't be converted to integer.");
644 }
645 return 0; /* Placate lint. */
646 }
647
648 /* Return a double value from the specified type and address.
649 INVP points to an int which is set to 0 for valid value,
650 1 for invalid value (bad float format). In either case,
651 the returned double is OK to use. Argument is in target
652 format, result is in host format. */
653
654 DOUBLEST
655 unpack_double (type, valaddr, invp)
656 struct type *type;
657 char *valaddr;
658 int *invp;
659 {
660 register enum type_code code = TYPE_CODE (type);
661 register int len = TYPE_LENGTH (type);
662 register int nosign = TYPE_UNSIGNED (type);
663
664 *invp = 0; /* Assume valid. */
665 CHECK_TYPEDEF (type);
666 if (code == TYPE_CODE_FLT)
667 {
668 #ifdef INVALID_FLOAT
669 if (INVALID_FLOAT (valaddr, len))
670 {
671 *invp = 1;
672 return 1.234567891011121314;
673 }
674 #endif
675 return extract_floating (valaddr, len);
676 }
677 else if (nosign)
678 {
679 /* Unsigned -- be sure we compensate for signed LONGEST. */
680 #if !defined (_MSC_VER) || (_MSC_VER > 900)
681 return (ULONGEST) unpack_long (type, valaddr);
682 #else
683 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
684 return (LONGEST) unpack_long (type, valaddr);
685 #endif /* _MSC_VER */
686 }
687 else
688 {
689 /* Signed -- we are OK with unpack_long. */
690 return unpack_long (type, valaddr);
691 }
692 }
693
694 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
695 as a CORE_ADDR, assuming the raw data is described by type TYPE.
696 We don't assume any alignment for the raw data. Return value is in
697 host byte order.
698
699 If you want functions and arrays to be coerced to pointers, and
700 references to be dereferenced, call value_as_pointer() instead.
701
702 C++: It is assumed that the front-end has taken care of
703 all matters concerning pointers to members. A pointer
704 to member which reaches here is considered to be equivalent
705 to an INT (or some size). After all, it is only an offset. */
706
707 CORE_ADDR
708 unpack_pointer (type, valaddr)
709 struct type *type;
710 char *valaddr;
711 {
712 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
713 whether we want this to be true eventually. */
714 return unpack_long (type, valaddr);
715 }
716 \f
717 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
718
719 value_ptr
720 value_static_field (type, fieldno)
721 struct type *type;
722 int fieldno;
723 {
724 CORE_ADDR addr;
725 asection *sect;
726 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
727 {
728 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
729 sect = NULL;
730 }
731 else
732 {
733 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
734 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
735 if (sym == NULL)
736 return NULL;
737 addr = SYMBOL_VALUE_ADDRESS (sym);
738 sect = SYMBOL_BFD_SECTION (sym);
739 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
740 }
741 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
742 }
743
744 /* Given a value ARG1 (offset by OFFSET bytes)
745 of a struct or union type ARG_TYPE,
746 extract and return the value of one of its (non-static) fields.
747 FIELDNO says which field. */
748
749 value_ptr
750 value_primitive_field (arg1, offset, fieldno, arg_type)
751 register value_ptr arg1;
752 int offset;
753 register int fieldno;
754 register struct type *arg_type;
755 {
756 register value_ptr v;
757 register struct type *type;
758
759 CHECK_TYPEDEF (arg_type);
760 type = TYPE_FIELD_TYPE (arg_type, fieldno);
761
762 /* Handle packed fields */
763
764 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
765 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
766 {
767 v = value_from_longest (type,
768 unpack_field_as_long (arg_type,
769 VALUE_CONTENTS (arg1),
770 fieldno));
771 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
772 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
773 }
774 else
775 {
776 v = allocate_value (type);
777 if (VALUE_LAZY (arg1))
778 VALUE_LAZY (v) = 1;
779 else
780 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
781 TYPE_LENGTH (type));
782 }
783 VALUE_LVAL (v) = VALUE_LVAL (arg1);
784 if (VALUE_LVAL (arg1) == lval_internalvar)
785 VALUE_LVAL (v) = lval_internalvar_component;
786 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
787 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
788 return v;
789 }
790
791 /* Given a value ARG1 of a struct or union type,
792 extract and return the value of one of its (non-static) fields.
793 FIELDNO says which field. */
794
795 value_ptr
796 value_field (arg1, fieldno)
797 register value_ptr arg1;
798 register int fieldno;
799 {
800 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
801 }
802
803 /* Return a non-virtual function as a value.
804 F is the list of member functions which contains the desired method.
805 J is an index into F which provides the desired method. */
806
807 value_ptr
808 value_fn_field (arg1p, f, j, type, offset)
809 value_ptr *arg1p;
810 struct fn_field *f;
811 int j;
812 struct type *type;
813 int offset;
814 {
815 register value_ptr v;
816 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
817 struct symbol *sym;
818
819 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
820 0, VAR_NAMESPACE, 0, NULL);
821 if (! sym)
822 return NULL;
823 /*
824 error ("Internal error: could not find physical method named %s",
825 TYPE_FN_FIELD_PHYSNAME (f, j));
826 */
827
828 v = allocate_value (ftype);
829 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
830 VALUE_TYPE (v) = ftype;
831
832 if (arg1p)
833 {
834 if (type != VALUE_TYPE (*arg1p))
835 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
836 value_addr (*arg1p)));
837
838 /* Move the `this' pointer according to the offset.
839 VALUE_OFFSET (*arg1p) += offset;
840 */
841 }
842
843 return v;
844 }
845
846 /* Return a virtual function as a value.
847 ARG1 is the object which provides the virtual function
848 table pointer. *ARG1P is side-effected in calling this function.
849 F is the list of member functions which contains the desired virtual
850 function.
851 J is an index into F which provides the desired virtual function.
852
853 TYPE is the type in which F is located. */
854 value_ptr
855 value_virtual_fn_field (arg1p, f, j, type, offset)
856 value_ptr *arg1p;
857 struct fn_field *f;
858 int j;
859 struct type *type;
860 int offset;
861 {
862 value_ptr arg1 = *arg1p;
863 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
864 struct type *entry_type;
865 /* First, get the virtual function table pointer. That comes
866 with a strange type, so cast it to type `pointer to long' (which
867 should serve just fine as a function type). Then, index into
868 the table, and convert final value to appropriate function type. */
869 value_ptr entry, vfn, vtbl;
870 value_ptr vi = value_from_longest (builtin_type_int,
871 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
872 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
873 struct type *context;
874 if (fcontext == NULL)
875 /* We don't have an fcontext (e.g. the program was compiled with
876 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
877 This won't work right for multiple inheritance, but at least we
878 should do as well as GDB 3.x did. */
879 fcontext = TYPE_VPTR_BASETYPE (type);
880 context = lookup_pointer_type (fcontext);
881 /* Now context is a pointer to the basetype containing the vtbl. */
882 if (TYPE_TARGET_TYPE (context) != type1)
883 {
884 arg1 = value_ind (value_cast (context, value_addr (arg1)));
885 type1 = check_typedef (VALUE_TYPE (arg1));
886 }
887
888 context = type1;
889 /* Now context is the basetype containing the vtbl. */
890
891 /* This type may have been defined before its virtual function table
892 was. If so, fill in the virtual function table entry for the
893 type now. */
894 if (TYPE_VPTR_FIELDNO (context) < 0)
895 fill_in_vptr_fieldno (context);
896
897 /* The virtual function table is now an array of structures
898 which have the form { int16 offset, delta; void *pfn; }. */
899 vtbl = value_ind (value_primitive_field (arg1, 0,
900 TYPE_VPTR_FIELDNO (context),
901 TYPE_VPTR_BASETYPE (context)));
902
903 /* Index into the virtual function table. This is hard-coded because
904 looking up a field is not cheap, and it may be important to save
905 time, e.g. if the user has set a conditional breakpoint calling
906 a virtual function. */
907 entry = value_subscript (vtbl, vi);
908 entry_type = check_typedef (VALUE_TYPE (entry));
909
910 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
911 {
912 /* Move the `this' pointer according to the virtual function table. */
913 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
914
915 if (! VALUE_LAZY (arg1))
916 {
917 VALUE_LAZY (arg1) = 1;
918 value_fetch_lazy (arg1);
919 }
920
921 vfn = value_field (entry, 2);
922 }
923 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
924 vfn = entry;
925 else
926 error ("I'm confused: virtual function table has bad type");
927 /* Reinstantiate the function pointer with the correct type. */
928 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
929
930 *arg1p = arg1;
931 return vfn;
932 }
933
934 /* ARG is a pointer to an object we know to be at least
935 a DTYPE. BTYPE is the most derived basetype that has
936 already been searched (and need not be searched again).
937 After looking at the vtables between BTYPE and DTYPE,
938 return the most derived type we find. The caller must
939 be satisfied when the return value == DTYPE.
940
941 FIXME-tiemann: should work with dossier entries as well. */
942
943 static value_ptr
944 value_headof (in_arg, btype, dtype)
945 value_ptr in_arg;
946 struct type *btype, *dtype;
947 {
948 /* First collect the vtables we must look at for this object. */
949 /* FIXME-tiemann: right now, just look at top-most vtable. */
950 value_ptr arg, vtbl, entry, best_entry = 0;
951 int i, nelems;
952 int offset, best_offset = 0;
953 struct symbol *sym;
954 CORE_ADDR pc_for_sym;
955 char *demangled_name;
956 struct minimal_symbol *msymbol;
957
958 btype = TYPE_VPTR_BASETYPE (dtype);
959 CHECK_TYPEDEF (btype);
960 arg = in_arg;
961 if (btype != dtype)
962 arg = value_cast (lookup_pointer_type (btype), arg);
963 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
964
965 /* Check that VTBL looks like it points to a virtual function table. */
966 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
967 if (msymbol == NULL
968 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
969 || !VTBL_PREFIX_P (demangled_name))
970 {
971 /* If we expected to find a vtable, but did not, let the user
972 know that we aren't happy, but don't throw an error.
973 FIXME: there has to be a better way to do this. */
974 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
975 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
976 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
977 VALUE_TYPE (in_arg) = error_type;
978 return in_arg;
979 }
980
981 /* Now search through the virtual function table. */
982 entry = value_ind (vtbl);
983 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
984 for (i = 1; i <= nelems; i++)
985 {
986 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
987 (LONGEST) i));
988 /* This won't work if we're using thunks. */
989 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
990 break;
991 offset = longest_to_int (value_as_long (value_field (entry, 0)));
992 /* If we use '<=' we can handle single inheritance
993 * where all offsets are zero - just use the first entry found. */
994 if (offset <= best_offset)
995 {
996 best_offset = offset;
997 best_entry = entry;
998 }
999 }
1000 /* Move the pointer according to BEST_ENTRY's offset, and figure
1001 out what type we should return as the new pointer. */
1002 if (best_entry == 0)
1003 {
1004 /* An alternative method (which should no longer be necessary).
1005 * But we leave it in for future use, when we will hopefully
1006 * have optimizes the vtable to use thunks instead of offsets. */
1007 /* Use the name of vtable itself to extract a base type. */
1008 demangled_name += 4; /* Skip _vt$ prefix. */
1009 }
1010 else
1011 {
1012 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1013 sym = find_pc_function (pc_for_sym);
1014 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1015 *(strchr (demangled_name, ':')) = '\0';
1016 }
1017 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1018 if (sym == NULL)
1019 error ("could not find type declaration for `%s'", demangled_name);
1020 if (best_entry)
1021 {
1022 free (demangled_name);
1023 arg = value_add (value_cast (builtin_type_int, arg),
1024 value_field (best_entry, 0));
1025 }
1026 else arg = in_arg;
1027 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1028 return arg;
1029 }
1030
1031 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1032 function tables, probe ARG's tables (including the vtables
1033 of its baseclasses) to figure out the most derived type that ARG
1034 could actually be a pointer to. */
1035
1036 value_ptr
1037 value_from_vtable_info (arg, type)
1038 value_ptr arg;
1039 struct type *type;
1040 {
1041 /* Take care of preliminaries. */
1042 if (TYPE_VPTR_FIELDNO (type) < 0)
1043 fill_in_vptr_fieldno (type);
1044 if (TYPE_VPTR_FIELDNO (type) < 0)
1045 return 0;
1046
1047 return value_headof (arg, 0, type);
1048 }
1049
1050 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1051 pointer which is for the base class whose type is BASECLASS. */
1052
1053 static int
1054 vb_match (type, index, basetype)
1055 struct type *type;
1056 int index;
1057 struct type *basetype;
1058 {
1059 struct type *fieldtype;
1060 char *name = TYPE_FIELD_NAME (type, index);
1061 char *field_class_name = NULL;
1062
1063 if (*name != '_')
1064 return 0;
1065 /* gcc 2.4 uses _vb$. */
1066 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1067 field_class_name = name + 4;
1068 /* gcc 2.5 will use __vb_. */
1069 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1070 field_class_name = name + 5;
1071
1072 if (field_class_name == NULL)
1073 /* This field is not a virtual base class pointer. */
1074 return 0;
1075
1076 /* It's a virtual baseclass pointer, now we just need to find out whether
1077 it is for this baseclass. */
1078 fieldtype = TYPE_FIELD_TYPE (type, index);
1079 if (fieldtype == NULL
1080 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1081 /* "Can't happen". */
1082 return 0;
1083
1084 /* What we check for is that either the types are equal (needed for
1085 nameless types) or have the same name. This is ugly, and a more
1086 elegant solution should be devised (which would probably just push
1087 the ugliness into symbol reading unless we change the stabs format). */
1088 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1089 return 1;
1090
1091 if (TYPE_NAME (basetype) != NULL
1092 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1093 && STREQ (TYPE_NAME (basetype),
1094 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1095 return 1;
1096 return 0;
1097 }
1098
1099 /* Compute the offset of the baseclass which is
1100 the INDEXth baseclass of class TYPE,
1101 for value at VALADDR (in host) at ADDRESS (in target).
1102 The result is the offset of the baseclass value relative
1103 to (the address of)(ARG) + OFFSET.
1104
1105 -1 is returned on error. */
1106
1107 int
1108 baseclass_offset (type, index, valaddr, address)
1109 struct type *type;
1110 int index;
1111 char *valaddr;
1112 CORE_ADDR address;
1113 {
1114 struct type *basetype = TYPE_BASECLASS (type, index);
1115
1116 if (BASETYPE_VIA_VIRTUAL (type, index))
1117 {
1118 /* Must hunt for the pointer to this virtual baseclass. */
1119 register int i, len = TYPE_NFIELDS (type);
1120 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1121
1122 /* First look for the virtual baseclass pointer
1123 in the fields. */
1124 for (i = n_baseclasses; i < len; i++)
1125 {
1126 if (vb_match (type, i, basetype))
1127 {
1128 CORE_ADDR addr
1129 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1130 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1131
1132 return addr - (LONGEST) address;
1133 }
1134 }
1135 /* Not in the fields, so try looking through the baseclasses. */
1136 for (i = index+1; i < n_baseclasses; i++)
1137 {
1138 int boffset =
1139 baseclass_offset (type, i, valaddr, address);
1140 if (boffset)
1141 return boffset;
1142 }
1143 /* Not found. */
1144 return -1;
1145 }
1146
1147 /* Baseclass is easily computed. */
1148 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1149 }
1150 \f
1151 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1152 VALADDR.
1153
1154 Extracting bits depends on endianness of the machine. Compute the
1155 number of least significant bits to discard. For big endian machines,
1156 we compute the total number of bits in the anonymous object, subtract
1157 off the bit count from the MSB of the object to the MSB of the
1158 bitfield, then the size of the bitfield, which leaves the LSB discard
1159 count. For little endian machines, the discard count is simply the
1160 number of bits from the LSB of the anonymous object to the LSB of the
1161 bitfield.
1162
1163 If the field is signed, we also do sign extension. */
1164
1165 LONGEST
1166 unpack_field_as_long (type, valaddr, fieldno)
1167 struct type *type;
1168 char *valaddr;
1169 int fieldno;
1170 {
1171 ULONGEST val;
1172 ULONGEST valmask;
1173 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1174 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1175 int lsbcount;
1176
1177 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1178
1179 /* Extract bits. See comment above. */
1180
1181 if (BITS_BIG_ENDIAN)
1182 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1183 else
1184 lsbcount = (bitpos % 8);
1185 val >>= lsbcount;
1186
1187 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1188 If the field is signed, and is negative, then sign extend. */
1189
1190 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1191 {
1192 valmask = (((ULONGEST) 1) << bitsize) - 1;
1193 val &= valmask;
1194 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1195 {
1196 if (val & (valmask ^ (valmask >> 1)))
1197 {
1198 val |= ~valmask;
1199 }
1200 }
1201 }
1202 return (val);
1203 }
1204
1205 /* Modify the value of a bitfield. ADDR points to a block of memory in
1206 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1207 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1208 indicate which bits (in target bit order) comprise the bitfield. */
1209
1210 void
1211 modify_field (addr, fieldval, bitpos, bitsize)
1212 char *addr;
1213 LONGEST fieldval;
1214 int bitpos, bitsize;
1215 {
1216 LONGEST oword;
1217
1218 /* If a negative fieldval fits in the field in question, chop
1219 off the sign extension bits. */
1220 if (bitsize < (8 * (int) sizeof (fieldval))
1221 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1222 fieldval = fieldval & ((1 << bitsize) - 1);
1223
1224 /* Warn if value is too big to fit in the field in question. */
1225 if (bitsize < (8 * (int) sizeof (fieldval))
1226 && 0 != (fieldval & ~((1<<bitsize)-1)))
1227 {
1228 /* FIXME: would like to include fieldval in the message, but
1229 we don't have a sprintf_longest. */
1230 warning ("Value does not fit in %d bits.", bitsize);
1231
1232 /* Truncate it, otherwise adjoining fields may be corrupted. */
1233 fieldval = fieldval & ((1 << bitsize) - 1);
1234 }
1235
1236 oword = extract_signed_integer (addr, sizeof oword);
1237
1238 /* Shifting for bit field depends on endianness of the target machine. */
1239 if (BITS_BIG_ENDIAN)
1240 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1241
1242 /* Mask out old value, while avoiding shifts >= size of oword */
1243 if (bitsize < 8 * (int) sizeof (oword))
1244 oword &= ~(((((ULONGEST)1) << bitsize) - 1) << bitpos);
1245 else
1246 oword &= ~((~(ULONGEST)0) << bitpos);
1247 oword |= fieldval << bitpos;
1248
1249 store_signed_integer (addr, sizeof oword, oword);
1250 }
1251 \f
1252 /* Convert C numbers into newly allocated values */
1253
1254 value_ptr
1255 value_from_longest (type, num)
1256 struct type *type;
1257 register LONGEST num;
1258 {
1259 register value_ptr val = allocate_value (type);
1260 register enum type_code code;
1261 register int len;
1262 retry:
1263 code = TYPE_CODE (type);
1264 len = TYPE_LENGTH (type);
1265
1266 switch (code)
1267 {
1268 case TYPE_CODE_TYPEDEF:
1269 type = check_typedef (type);
1270 goto retry;
1271 case TYPE_CODE_INT:
1272 case TYPE_CODE_CHAR:
1273 case TYPE_CODE_ENUM:
1274 case TYPE_CODE_BOOL:
1275 case TYPE_CODE_RANGE:
1276 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1277 break;
1278
1279 case TYPE_CODE_REF:
1280 case TYPE_CODE_PTR:
1281 /* This assumes that all pointers of a given length
1282 have the same form. */
1283 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1284 break;
1285
1286 default:
1287 error ("Unexpected type encountered for integer constant.");
1288 }
1289 return val;
1290 }
1291
1292 value_ptr
1293 value_from_double (type, num)
1294 struct type *type;
1295 DOUBLEST num;
1296 {
1297 register value_ptr val = allocate_value (type);
1298 struct type *base_type = check_typedef (type);
1299 register enum type_code code = TYPE_CODE (base_type);
1300 register int len = TYPE_LENGTH (base_type);
1301
1302 if (code == TYPE_CODE_FLT)
1303 {
1304 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1305 }
1306 else
1307 error ("Unexpected type encountered for floating constant.");
1308
1309 return val;
1310 }
1311 \f
1312 /* Deal with the value that is "about to be returned". */
1313
1314 /* Return the value that a function returning now
1315 would be returning to its caller, assuming its type is VALTYPE.
1316 RETBUF is where we look for what ought to be the contents
1317 of the registers (in raw form). This is because it is often
1318 desirable to restore old values to those registers
1319 after saving the contents of interest, and then call
1320 this function using the saved values.
1321 struct_return is non-zero when the function in question is
1322 using the structure return conventions on the machine in question;
1323 0 when it is using the value returning conventions (this often
1324 means returning pointer to where structure is vs. returning value). */
1325
1326 value_ptr
1327 value_being_returned (valtype, retbuf, struct_return)
1328 register struct type *valtype;
1329 char retbuf[REGISTER_BYTES];
1330 int struct_return;
1331 /*ARGSUSED*/
1332 {
1333 register value_ptr val;
1334 CORE_ADDR addr;
1335
1336 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1337 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1338 if (struct_return) {
1339 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1340 if (!addr)
1341 error ("Function return value unknown");
1342 return value_at (valtype, addr, NULL);
1343 }
1344 #endif
1345
1346 val = allocate_value (valtype);
1347 CHECK_TYPEDEF (valtype);
1348 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1349
1350 return val;
1351 }
1352
1353 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1354 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1355 and TYPE is the type (which is known to be struct, union or array).
1356
1357 On most machines, the struct convention is used unless we are
1358 using gcc and the type is of a special size. */
1359 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1360 native compiler. GCC 2.3.3 was the last release that did it the
1361 old way. Since gcc2_compiled was not changed, we have no
1362 way to correctly win in all cases, so we just do the right thing
1363 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1364 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1365 would cause more chaos than dealing with some struct returns being
1366 handled wrong. */
1367 #if !defined (USE_STRUCT_CONVENTION)
1368 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1369 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1370 || TYPE_LENGTH (value_type) == 2 \
1371 || TYPE_LENGTH (value_type) == 4 \
1372 || TYPE_LENGTH (value_type) == 8 \
1373 ) \
1374 ))
1375 #endif
1376
1377 /* Some fundamental types (such as long double) are returned on the stack for
1378 certain architectures. This macro should return true for any type besides
1379 struct, union or array that gets returned on the stack. */
1380
1381 #ifndef RETURN_VALUE_ON_STACK
1382 #define RETURN_VALUE_ON_STACK(TYPE) 0
1383 #endif
1384
1385 /* Return true if the function specified is using the structure returning
1386 convention on this machine to return arguments, or 0 if it is using
1387 the value returning convention. FUNCTION is the value representing
1388 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1389 is the type returned by the function. GCC_P is nonzero if compiled
1390 with GCC. */
1391
1392 int
1393 using_struct_return (function, funcaddr, value_type, gcc_p)
1394 value_ptr function;
1395 CORE_ADDR funcaddr;
1396 struct type *value_type;
1397 int gcc_p;
1398 /*ARGSUSED*/
1399 {
1400 register enum type_code code = TYPE_CODE (value_type);
1401
1402 if (code == TYPE_CODE_ERROR)
1403 error ("Function return type unknown.");
1404
1405 if (code == TYPE_CODE_STRUCT
1406 || code == TYPE_CODE_UNION
1407 || code == TYPE_CODE_ARRAY
1408 || RETURN_VALUE_ON_STACK (value_type))
1409 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1410
1411 return 0;
1412 }
1413
1414 /* Store VAL so it will be returned if a function returns now.
1415 Does not verify that VAL's type matches what the current
1416 function wants to return. */
1417
1418 void
1419 set_return_value (val)
1420 value_ptr val;
1421 {
1422 struct type *type = check_typedef (VALUE_TYPE (val));
1423 register enum type_code code = TYPE_CODE (type);
1424
1425 if (code == TYPE_CODE_ERROR)
1426 error ("Function return type unknown.");
1427
1428 if ( code == TYPE_CODE_STRUCT
1429 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1430 error ("GDB does not support specifying a struct or union return value.");
1431
1432 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1433 }
1434 \f
1435 void
1436 _initialize_values ()
1437 {
1438 add_cmd ("convenience", no_class, show_convenience,
1439 "Debugger convenience (\"$foo\") variables.\n\
1440 These variables are created when you assign them values;\n\
1441 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1442 A few convenience variables are given values automatically:\n\
1443 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1444 \"$__\" holds the contents of the last address examined with \"x\".",
1445 &showlist);
1446
1447 add_cmd ("values", no_class, show_values,
1448 "Elements of value history around item number IDX (or last ten).",
1449 &showlist);
1450 }