1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "expression.h"
26 #include "gdb_regex.h"
30 #include "gdbthread.h"
32 #include "varobj-iter.h"
35 #include "python/python.h"
36 #include "python/python-internal.h"
41 /* Non-zero if we want to see trace of varobj level stuff. */
43 unsigned int varobjdebug
= 0;
45 show_varobjdebug (struct ui_file
*file
, int from_tty
,
46 struct cmd_list_element
*c
, const char *value
)
48 fprintf_filtered (file
, _("Varobj debugging is %s.\n"), value
);
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string
[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing
= 0;
59 varobj_enable_pretty_printing (void)
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
71 /* Alloc'd expression for this parent. */
72 struct expression
*exp
;
74 /* Block for which this expression is valid. */
75 const struct block
*valid_block
;
77 /* The frame for this expression. This field is set iff valid_block is
79 struct frame_id frame
;
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
97 /* Language-related operations for this variable and its
99 const struct lang_varobj_ops
*lang_ops
;
101 /* The varobj for this root node. */
102 struct varobj
*rootvar
;
104 /* Next root variable */
105 struct varobj_root
*next
;
108 /* Dynamic part of varobj. */
110 struct varobj_dynamic
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
116 int children_requested
;
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject
*constructor
;
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject
*pretty_printer
;
127 /* The iterator returned by the printer's 'children' method, or NULL
129 struct varobj_iter
*child_iter
;
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item
*saved_item
;
142 struct cpstack
*next
;
145 /* A list of varobjs */
153 /* Private function prototypes */
155 /* Helper functions for the above subcommands. */
157 static int delete_variable (struct cpstack
**, struct varobj
*, int);
159 static void delete_variable_1 (struct cpstack
**, int *,
160 struct varobj
*, int, int);
162 static int install_variable (struct varobj
*);
164 static void uninstall_variable (struct varobj
*);
166 static struct varobj
*create_child (struct varobj
*, int, char *);
168 static struct varobj
*
169 create_child_with_value (struct varobj
*parent
, int index
,
170 struct varobj_item
*item
);
172 /* Utility routines */
174 static struct varobj
*new_variable (void);
176 static struct varobj
*new_root_variable (void);
178 static void free_variable (struct varobj
*var
);
180 static struct cleanup
*make_cleanup_free_variable (struct varobj
*var
);
182 static enum varobj_display_formats
variable_default_display (struct varobj
*);
184 static void cppush (struct cpstack
**pstack
, char *name
);
186 static char *cppop (struct cpstack
**pstack
);
188 static int update_type_if_necessary (struct varobj
*var
,
189 struct value
*new_value
);
191 static int install_new_value (struct varobj
*var
, struct value
*value
,
194 /* Language-specific routines. */
196 static int number_of_children (const struct varobj
*);
198 static char *name_of_variable (const struct varobj
*);
200 static char *name_of_child (struct varobj
*, int);
202 static struct value
*value_of_root (struct varobj
**var_handle
, int *);
204 static struct value
*value_of_child (const struct varobj
*parent
, int index
);
206 static char *my_value_of_variable (struct varobj
*var
,
207 enum varobj_display_formats format
);
209 static int is_root_p (const struct varobj
*var
);
211 static struct varobj
*varobj_add_child (struct varobj
*var
,
212 struct varobj_item
*item
);
216 /* Mappings of varobj_display_formats enums to gdb's format codes. */
217 static int format_code
[] = { 0, 't', 'd', 'x', 'o', 'z' };
219 /* Header of the list of root variable objects. */
220 static struct varobj_root
*rootlist
;
222 /* Prime number indicating the number of buckets in the hash table. */
223 /* A prime large enough to avoid too many colisions. */
224 #define VAROBJ_TABLE_SIZE 227
226 /* Pointer to the varobj hash table (built at run time). */
227 static struct vlist
**varobj_table
;
231 /* API Implementation */
233 is_root_p (const struct varobj
*var
)
235 return (var
->root
->rootvar
== var
);
239 /* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
242 varobj_ensure_python_env (const struct varobj
*var
)
244 return ensure_python_env (var
->root
->exp
->gdbarch
,
245 var
->root
->exp
->language_defn
);
249 /* Creates a varobj (not its children). */
251 /* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
254 static struct frame_info
*
255 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr
)
257 struct frame_info
*frame
= NULL
;
259 if (frame_addr
== (CORE_ADDR
) 0)
262 for (frame
= get_current_frame ();
264 frame
= get_prev_frame (frame
))
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base
= get_frame_base_address (frame
);
271 int addr_bit
= gdbarch_addr_bit (get_frame_arch (frame
));
273 if (addr_bit
< (sizeof (CORE_ADDR
) * HOST_CHAR_BIT
))
274 frame_base
&= ((CORE_ADDR
) 1 << addr_bit
) - 1;
276 if (frame_base
== frame_addr
)
284 varobj_create (char *objname
,
285 char *expression
, CORE_ADDR frame
, enum varobj_type type
)
288 struct cleanup
*old_chain
;
290 /* Fill out a varobj structure for the (root) variable being constructed. */
291 var
= new_root_variable ();
292 old_chain
= make_cleanup_free_variable (var
);
294 if (expression
!= NULL
)
296 struct frame_info
*fi
;
297 struct frame_id old_id
= null_frame_id
;
298 const struct block
*block
;
300 struct value
*value
= NULL
;
303 /* Parse and evaluate the expression, filling in as much of the
304 variable's data as possible. */
306 if (has_stack_frames ())
308 /* Allow creator to specify context of variable. */
309 if ((type
== USE_CURRENT_FRAME
) || (type
== USE_SELECTED_FRAME
))
310 fi
= get_selected_frame (NULL
);
312 /* FIXME: cagney/2002-11-23: This code should be doing a
313 lookup using the frame ID and not just the frame's
314 ``address''. This, of course, means an interface
315 change. However, with out that interface change ISAs,
316 such as the ia64 with its two stacks, won't work.
317 Similar goes for the case where there is a frameless
319 fi
= find_frame_addr_in_frame_chain (frame
);
324 /* frame = -2 means always use selected frame. */
325 if (type
== USE_SELECTED_FRAME
)
326 var
->root
->floating
= 1;
332 block
= get_frame_block (fi
, 0);
333 pc
= get_frame_pc (fi
);
337 innermost_block
= NULL
;
338 /* Wrap the call to parse expression, so we can
339 return a sensible error. */
342 var
->root
->exp
= parse_exp_1 (&p
, pc
, block
, 0);
345 CATCH (except
, RETURN_MASK_ERROR
)
347 do_cleanups (old_chain
);
352 /* Don't allow variables to be created for types. */
353 if (var
->root
->exp
->elts
[0].opcode
== OP_TYPE
354 || var
->root
->exp
->elts
[0].opcode
== OP_TYPEOF
355 || var
->root
->exp
->elts
[0].opcode
== OP_DECLTYPE
)
357 do_cleanups (old_chain
);
358 fprintf_unfiltered (gdb_stderr
, "Attempt to use a type name"
359 " as an expression.\n");
363 var
->format
= variable_default_display (var
);
364 var
->root
->valid_block
= innermost_block
;
365 var
->name
= xstrdup (expression
);
366 /* For a root var, the name and the expr are the same. */
367 var
->path_expr
= xstrdup (expression
);
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
372 Since select_frame is so benign, just call it for all cases. */
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
380 error (_("Failed to find the specified frame"));
382 var
->root
->frame
= get_frame_id (fi
);
383 var
->root
->thread_id
= ptid_to_global_thread_id (inferior_ptid
);
384 old_id
= get_frame_id (get_selected_frame (NULL
));
388 /* We definitely need to catch errors here.
389 If evaluate_expression succeeds we got the value we wanted.
390 But if it fails, we still go on with a call to evaluate_type(). */
393 value
= evaluate_expression (var
->root
->exp
);
395 CATCH (except
, RETURN_MASK_ERROR
)
397 /* Error getting the value. Try to at least get the
399 struct value
*type_only_value
= evaluate_type (var
->root
->exp
);
401 var
->type
= value_type (type_only_value
);
407 int real_type_found
= 0;
409 var
->type
= value_actual_type (value
, 0, &real_type_found
);
411 value
= value_cast (var
->type
, value
);
414 /* Set language info */
415 var
->root
->lang_ops
= var
->root
->exp
->language_defn
->la_varobj_ops
;
417 install_new_value (var
, value
, 1 /* Initial assignment */);
419 /* Set ourselves as our root. */
420 var
->root
->rootvar
= var
;
422 /* Reset the selected frame. */
423 if (frame_id_p (old_id
))
424 select_frame (frame_find_by_id (old_id
));
427 /* If the variable object name is null, that means this
428 is a temporary variable, so don't install it. */
430 if ((var
!= NULL
) && (objname
!= NULL
))
432 var
->obj_name
= xstrdup (objname
);
434 /* If a varobj name is duplicated, the install will fail so
436 if (!install_variable (var
))
438 do_cleanups (old_chain
);
443 discard_cleanups (old_chain
);
447 /* Generates an unique name that can be used for a varobj. */
450 varobj_gen_name (void)
455 /* Generate a name for this object. */
457 obj_name
= xstrprintf ("var%d", id
);
462 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
463 error if OBJNAME cannot be found. */
466 varobj_get_handle (char *objname
)
470 unsigned int index
= 0;
473 for (chp
= objname
; *chp
; chp
++)
475 index
= (index
+ (i
++ * (unsigned int) *chp
)) % VAROBJ_TABLE_SIZE
;
478 cv
= *(varobj_table
+ index
);
479 while ((cv
!= NULL
) && (strcmp (cv
->var
->obj_name
, objname
) != 0))
483 error (_("Variable object not found"));
488 /* Given the handle, return the name of the object. */
491 varobj_get_objname (const struct varobj
*var
)
493 return var
->obj_name
;
496 /* Given the handle, return the expression represented by the object. The
497 result must be freed by the caller. */
500 varobj_get_expression (const struct varobj
*var
)
502 return name_of_variable (var
);
505 /* Deletes a varobj and all its children if only_children == 0,
506 otherwise deletes only the children. If DELLIST is non-NULL, it is
507 assigned a malloc'ed list of all the (malloc'ed) names of the variables
508 that have been deleted (NULL terminated). Returns the number of deleted
512 varobj_delete (struct varobj
*var
, char ***dellist
, int only_children
)
516 struct cpstack
*result
= NULL
;
519 /* Initialize a stack for temporary results. */
520 cppush (&result
, NULL
);
523 /* Delete only the variable children. */
524 delcount
= delete_variable (&result
, var
, 1 /* only the children */ );
526 /* Delete the variable and all its children. */
527 delcount
= delete_variable (&result
, var
, 0 /* parent+children */ );
529 /* We may have been asked to return a list of what has been deleted. */
532 *dellist
= XNEWVEC (char *, delcount
+ 1);
536 *cp
= cppop (&result
);
537 while ((*cp
!= NULL
) && (mycount
> 0))
541 *cp
= cppop (&result
);
544 if (mycount
|| (*cp
!= NULL
))
545 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
554 /* Convenience function for varobj_set_visualizer. Instantiate a
555 pretty-printer for a given value. */
557 instantiate_pretty_printer (PyObject
*constructor
, struct value
*value
)
559 PyObject
*val_obj
= NULL
;
562 val_obj
= value_to_value_object (value
);
566 printer
= PyObject_CallFunctionObjArgs (constructor
, val_obj
, NULL
);
573 /* Set/Get variable object display format. */
575 enum varobj_display_formats
576 varobj_set_display_format (struct varobj
*var
,
577 enum varobj_display_formats format
)
584 case FORMAT_HEXADECIMAL
:
586 case FORMAT_ZHEXADECIMAL
:
587 var
->format
= format
;
591 var
->format
= variable_default_display (var
);
594 if (varobj_value_is_changeable_p (var
)
595 && var
->value
&& !value_lazy (var
->value
))
597 xfree (var
->print_value
);
598 var
->print_value
= varobj_value_get_print_value (var
->value
,
605 enum varobj_display_formats
606 varobj_get_display_format (const struct varobj
*var
)
612 varobj_get_display_hint (const struct varobj
*var
)
617 struct cleanup
*back_to
;
619 if (!gdb_python_initialized
)
622 back_to
= varobj_ensure_python_env (var
);
624 if (var
->dynamic
->pretty_printer
!= NULL
)
625 result
= gdbpy_get_display_hint (var
->dynamic
->pretty_printer
);
627 do_cleanups (back_to
);
633 /* Return true if the varobj has items after TO, false otherwise. */
636 varobj_has_more (const struct varobj
*var
, int to
)
638 if (VEC_length (varobj_p
, var
->children
) > to
)
640 return ((to
== -1 || VEC_length (varobj_p
, var
->children
) == to
)
641 && (var
->dynamic
->saved_item
!= NULL
));
644 /* If the variable object is bound to a specific thread, that
645 is its evaluation can always be done in context of a frame
646 inside that thread, returns GDB id of the thread -- which
647 is always positive. Otherwise, returns -1. */
649 varobj_get_thread_id (const struct varobj
*var
)
651 if (var
->root
->valid_block
&& var
->root
->thread_id
> 0)
652 return var
->root
->thread_id
;
658 varobj_set_frozen (struct varobj
*var
, int frozen
)
660 /* When a variable is unfrozen, we don't fetch its value.
661 The 'not_fetched' flag remains set, so next -var-update
664 We don't fetch the value, because for structures the client
665 should do -var-update anyway. It would be bad to have different
666 client-size logic for structure and other types. */
667 var
->frozen
= frozen
;
671 varobj_get_frozen (const struct varobj
*var
)
676 /* A helper function that restricts a range to what is actually
677 available in a VEC. This follows the usual rules for the meaning
678 of FROM and TO -- if either is negative, the entire range is
682 varobj_restrict_range (VEC (varobj_p
) *children
, int *from
, int *to
)
684 if (*from
< 0 || *to
< 0)
687 *to
= VEC_length (varobj_p
, children
);
691 if (*from
> VEC_length (varobj_p
, children
))
692 *from
= VEC_length (varobj_p
, children
);
693 if (*to
> VEC_length (varobj_p
, children
))
694 *to
= VEC_length (varobj_p
, children
);
700 /* A helper for update_dynamic_varobj_children that installs a new
701 child when needed. */
704 install_dynamic_child (struct varobj
*var
,
705 VEC (varobj_p
) **changed
,
706 VEC (varobj_p
) **type_changed
,
707 VEC (varobj_p
) **newobj
,
708 VEC (varobj_p
) **unchanged
,
711 struct varobj_item
*item
)
713 if (VEC_length (varobj_p
, var
->children
) < index
+ 1)
715 /* There's no child yet. */
716 struct varobj
*child
= varobj_add_child (var
, item
);
720 VEC_safe_push (varobj_p
, *newobj
, child
);
726 varobj_p existing
= VEC_index (varobj_p
, var
->children
, index
);
727 int type_updated
= update_type_if_necessary (existing
, item
->value
);
732 VEC_safe_push (varobj_p
, *type_changed
, existing
);
734 if (install_new_value (existing
, item
->value
, 0))
736 if (!type_updated
&& changed
)
737 VEC_safe_push (varobj_p
, *changed
, existing
);
739 else if (!type_updated
&& unchanged
)
740 VEC_safe_push (varobj_p
, *unchanged
, existing
);
747 dynamic_varobj_has_child_method (const struct varobj
*var
)
749 struct cleanup
*back_to
;
750 PyObject
*printer
= var
->dynamic
->pretty_printer
;
753 if (!gdb_python_initialized
)
756 back_to
= varobj_ensure_python_env (var
);
757 result
= PyObject_HasAttr (printer
, gdbpy_children_cst
);
758 do_cleanups (back_to
);
763 /* A factory for creating dynamic varobj's iterators. Returns an
764 iterator object suitable for iterating over VAR's children. */
766 static struct varobj_iter
*
767 varobj_get_iterator (struct varobj
*var
)
770 if (var
->dynamic
->pretty_printer
)
771 return py_varobj_get_iterator (var
, var
->dynamic
->pretty_printer
);
774 gdb_assert_not_reached (_("\
775 requested an iterator from a non-dynamic varobj"));
778 /* Release and clear VAR's saved item, if any. */
781 varobj_clear_saved_item (struct varobj_dynamic
*var
)
783 if (var
->saved_item
!= NULL
)
785 value_free (var
->saved_item
->value
);
786 xfree (var
->saved_item
);
787 var
->saved_item
= NULL
;
792 update_dynamic_varobj_children (struct varobj
*var
,
793 VEC (varobj_p
) **changed
,
794 VEC (varobj_p
) **type_changed
,
795 VEC (varobj_p
) **newobj
,
796 VEC (varobj_p
) **unchanged
,
806 if (update_children
|| var
->dynamic
->child_iter
== NULL
)
808 varobj_iter_delete (var
->dynamic
->child_iter
);
809 var
->dynamic
->child_iter
= varobj_get_iterator (var
);
811 varobj_clear_saved_item (var
->dynamic
);
815 if (var
->dynamic
->child_iter
== NULL
)
819 i
= VEC_length (varobj_p
, var
->children
);
821 /* We ask for one extra child, so that MI can report whether there
822 are more children. */
823 for (; to
< 0 || i
< to
+ 1; ++i
)
827 /* See if there was a leftover from last time. */
828 if (var
->dynamic
->saved_item
!= NULL
)
830 item
= var
->dynamic
->saved_item
;
831 var
->dynamic
->saved_item
= NULL
;
835 item
= varobj_iter_next (var
->dynamic
->child_iter
);
836 /* Release vitem->value so its lifetime is not bound to the
837 execution of a command. */
838 if (item
!= NULL
&& item
->value
!= NULL
)
839 release_value_or_incref (item
->value
);
844 /* Iteration is done. Remove iterator from VAR. */
845 varobj_iter_delete (var
->dynamic
->child_iter
);
846 var
->dynamic
->child_iter
= NULL
;
849 /* We don't want to push the extra child on any report list. */
850 if (to
< 0 || i
< to
)
852 int can_mention
= from
< 0 || i
>= from
;
854 install_dynamic_child (var
, can_mention
? changed
: NULL
,
855 can_mention
? type_changed
: NULL
,
856 can_mention
? newobj
: NULL
,
857 can_mention
? unchanged
: NULL
,
858 can_mention
? cchanged
: NULL
, i
,
865 var
->dynamic
->saved_item
= item
;
867 /* We want to truncate the child list just before this
873 if (i
< VEC_length (varobj_p
, var
->children
))
878 for (j
= i
; j
< VEC_length (varobj_p
, var
->children
); ++j
)
879 varobj_delete (VEC_index (varobj_p
, var
->children
, j
), NULL
, 0);
880 VEC_truncate (varobj_p
, var
->children
, i
);
883 /* If there are fewer children than requested, note that the list of
885 if (to
>= 0 && VEC_length (varobj_p
, var
->children
) < to
)
888 var
->num_children
= VEC_length (varobj_p
, var
->children
);
894 varobj_get_num_children (struct varobj
*var
)
896 if (var
->num_children
== -1)
898 if (varobj_is_dynamic_p (var
))
902 /* If we have a dynamic varobj, don't report -1 children.
903 So, try to fetch some children first. */
904 update_dynamic_varobj_children (var
, NULL
, NULL
, NULL
, NULL
, &dummy
,
908 var
->num_children
= number_of_children (var
);
911 return var
->num_children
>= 0 ? var
->num_children
: 0;
914 /* Creates a list of the immediate children of a variable object;
915 the return code is the number of such children or -1 on error. */
918 varobj_list_children (struct varobj
*var
, int *from
, int *to
)
921 int i
, children_changed
;
923 var
->dynamic
->children_requested
= 1;
925 if (varobj_is_dynamic_p (var
))
927 /* This, in theory, can result in the number of children changing without
928 frontend noticing. But well, calling -var-list-children on the same
929 varobj twice is not something a sane frontend would do. */
930 update_dynamic_varobj_children (var
, NULL
, NULL
, NULL
, NULL
,
931 &children_changed
, 0, 0, *to
);
932 varobj_restrict_range (var
->children
, from
, to
);
933 return var
->children
;
936 if (var
->num_children
== -1)
937 var
->num_children
= number_of_children (var
);
939 /* If that failed, give up. */
940 if (var
->num_children
== -1)
941 return var
->children
;
943 /* If we're called when the list of children is not yet initialized,
944 allocate enough elements in it. */
945 while (VEC_length (varobj_p
, var
->children
) < var
->num_children
)
946 VEC_safe_push (varobj_p
, var
->children
, NULL
);
948 for (i
= 0; i
< var
->num_children
; i
++)
950 varobj_p existing
= VEC_index (varobj_p
, var
->children
, i
);
952 if (existing
== NULL
)
954 /* Either it's the first call to varobj_list_children for
955 this variable object, and the child was never created,
956 or it was explicitly deleted by the client. */
957 name
= name_of_child (var
, i
);
958 existing
= create_child (var
, i
, name
);
959 VEC_replace (varobj_p
, var
->children
, i
, existing
);
963 varobj_restrict_range (var
->children
, from
, to
);
964 return var
->children
;
967 static struct varobj
*
968 varobj_add_child (struct varobj
*var
, struct varobj_item
*item
)
970 varobj_p v
= create_child_with_value (var
,
971 VEC_length (varobj_p
, var
->children
),
974 VEC_safe_push (varobj_p
, var
->children
, v
);
978 /* Obtain the type of an object Variable as a string similar to the one gdb
979 prints on the console. The caller is responsible for freeing the string.
983 varobj_get_type (struct varobj
*var
)
985 /* For the "fake" variables, do not return a type. (Its type is
987 Do not return a type for invalid variables as well. */
988 if (CPLUS_FAKE_CHILD (var
) || !var
->root
->is_valid
)
991 return type_to_string (var
->type
);
994 /* Obtain the type of an object variable. */
997 varobj_get_gdb_type (const struct varobj
*var
)
1002 /* Is VAR a path expression parent, i.e., can it be used to construct
1003 a valid path expression? */
1006 is_path_expr_parent (const struct varobj
*var
)
1008 gdb_assert (var
->root
->lang_ops
->is_path_expr_parent
!= NULL
);
1009 return var
->root
->lang_ops
->is_path_expr_parent (var
);
1012 /* Is VAR a path expression parent, i.e., can it be used to construct
1013 a valid path expression? By default we assume any VAR can be a path
1017 varobj_default_is_path_expr_parent (const struct varobj
*var
)
1022 /* Return the path expression parent for VAR. */
1024 const struct varobj
*
1025 varobj_get_path_expr_parent (const struct varobj
*var
)
1027 const struct varobj
*parent
= var
;
1029 while (!is_root_p (parent
) && !is_path_expr_parent (parent
))
1030 parent
= parent
->parent
;
1035 /* Return a pointer to the full rooted expression of varobj VAR.
1036 If it has not been computed yet, compute it. */
1038 varobj_get_path_expr (const struct varobj
*var
)
1040 if (var
->path_expr
== NULL
)
1042 /* For root varobjs, we initialize path_expr
1043 when creating varobj, so here it should be
1045 struct varobj
*mutable_var
= (struct varobj
*) var
;
1046 gdb_assert (!is_root_p (var
));
1048 mutable_var
->path_expr
= (*var
->root
->lang_ops
->path_expr_of_child
) (var
);
1051 return var
->path_expr
;
1054 const struct language_defn
*
1055 varobj_get_language (const struct varobj
*var
)
1057 return var
->root
->exp
->language_defn
;
1061 varobj_get_attributes (const struct varobj
*var
)
1065 if (varobj_editable_p (var
))
1066 /* FIXME: define masks for attributes. */
1067 attributes
|= 0x00000001; /* Editable */
1072 /* Return true if VAR is a dynamic varobj. */
1075 varobj_is_dynamic_p (const struct varobj
*var
)
1077 return var
->dynamic
->pretty_printer
!= NULL
;
1081 varobj_get_formatted_value (struct varobj
*var
,
1082 enum varobj_display_formats format
)
1084 return my_value_of_variable (var
, format
);
1088 varobj_get_value (struct varobj
*var
)
1090 return my_value_of_variable (var
, var
->format
);
1093 /* Set the value of an object variable (if it is editable) to the
1094 value of the given expression. */
1095 /* Note: Invokes functions that can call error(). */
1098 varobj_set_value (struct varobj
*var
, char *expression
)
1100 struct value
*val
= NULL
; /* Initialize to keep gcc happy. */
1101 /* The argument "expression" contains the variable's new value.
1102 We need to first construct a legal expression for this -- ugh! */
1103 /* Does this cover all the bases? */
1104 struct expression
*exp
;
1105 struct value
*value
= NULL
; /* Initialize to keep gcc happy. */
1106 int saved_input_radix
= input_radix
;
1107 const char *s
= expression
;
1109 gdb_assert (varobj_editable_p (var
));
1111 input_radix
= 10; /* ALWAYS reset to decimal temporarily. */
1112 exp
= parse_exp_1 (&s
, 0, 0, 0);
1115 value
= evaluate_expression (exp
);
1118 CATCH (except
, RETURN_MASK_ERROR
)
1120 /* We cannot proceed without a valid expression. */
1126 /* All types that are editable must also be changeable. */
1127 gdb_assert (varobj_value_is_changeable_p (var
));
1129 /* The value of a changeable variable object must not be lazy. */
1130 gdb_assert (!value_lazy (var
->value
));
1132 /* Need to coerce the input. We want to check if the
1133 value of the variable object will be different
1134 after assignment, and the first thing value_assign
1135 does is coerce the input.
1136 For example, if we are assigning an array to a pointer variable we
1137 should compare the pointer with the array's address, not with the
1139 value
= coerce_array (value
);
1141 /* The new value may be lazy. value_assign, or
1142 rather value_contents, will take care of this. */
1145 val
= value_assign (var
->value
, value
);
1148 CATCH (except
, RETURN_MASK_ERROR
)
1154 /* If the value has changed, record it, so that next -var-update can
1155 report this change. If a variable had a value of '1', we've set it
1156 to '333' and then set again to '1', when -var-update will report this
1157 variable as changed -- because the first assignment has set the
1158 'updated' flag. There's no need to optimize that, because return value
1159 of -var-update should be considered an approximation. */
1160 var
->updated
= install_new_value (var
, val
, 0 /* Compare values. */);
1161 input_radix
= saved_input_radix
;
1167 /* A helper function to install a constructor function and visualizer
1168 in a varobj_dynamic. */
1171 install_visualizer (struct varobj_dynamic
*var
, PyObject
*constructor
,
1172 PyObject
*visualizer
)
1174 Py_XDECREF (var
->constructor
);
1175 var
->constructor
= constructor
;
1177 Py_XDECREF (var
->pretty_printer
);
1178 var
->pretty_printer
= visualizer
;
1180 varobj_iter_delete (var
->child_iter
);
1181 var
->child_iter
= NULL
;
1184 /* Install the default visualizer for VAR. */
1187 install_default_visualizer (struct varobj
*var
)
1189 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1190 if (CPLUS_FAKE_CHILD (var
))
1193 if (pretty_printing
)
1195 PyObject
*pretty_printer
= NULL
;
1199 pretty_printer
= gdbpy_get_varobj_pretty_printer (var
->value
);
1200 if (! pretty_printer
)
1202 gdbpy_print_stack ();
1203 error (_("Cannot instantiate printer for default visualizer"));
1207 if (pretty_printer
== Py_None
)
1209 Py_DECREF (pretty_printer
);
1210 pretty_printer
= NULL
;
1213 install_visualizer (var
->dynamic
, NULL
, pretty_printer
);
1217 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1218 make a new object. */
1221 construct_visualizer (struct varobj
*var
, PyObject
*constructor
)
1223 PyObject
*pretty_printer
;
1225 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1226 if (CPLUS_FAKE_CHILD (var
))
1229 Py_INCREF (constructor
);
1230 if (constructor
== Py_None
)
1231 pretty_printer
= NULL
;
1234 pretty_printer
= instantiate_pretty_printer (constructor
, var
->value
);
1235 if (! pretty_printer
)
1237 gdbpy_print_stack ();
1238 Py_DECREF (constructor
);
1239 constructor
= Py_None
;
1240 Py_INCREF (constructor
);
1243 if (pretty_printer
== Py_None
)
1245 Py_DECREF (pretty_printer
);
1246 pretty_printer
= NULL
;
1250 install_visualizer (var
->dynamic
, constructor
, pretty_printer
);
1253 #endif /* HAVE_PYTHON */
1255 /* A helper function for install_new_value. This creates and installs
1256 a visualizer for VAR, if appropriate. */
1259 install_new_value_visualizer (struct varobj
*var
)
1262 /* If the constructor is None, then we want the raw value. If VAR
1263 does not have a value, just skip this. */
1264 if (!gdb_python_initialized
)
1267 if (var
->dynamic
->constructor
!= Py_None
&& var
->value
!= NULL
)
1269 struct cleanup
*cleanup
;
1271 cleanup
= varobj_ensure_python_env (var
);
1273 if (var
->dynamic
->constructor
== NULL
)
1274 install_default_visualizer (var
);
1276 construct_visualizer (var
, var
->dynamic
->constructor
);
1278 do_cleanups (cleanup
);
1285 /* When using RTTI to determine variable type it may be changed in runtime when
1286 the variable value is changed. This function checks whether type of varobj
1287 VAR will change when a new value NEW_VALUE is assigned and if it is so
1288 updates the type of VAR. */
1291 update_type_if_necessary (struct varobj
*var
, struct value
*new_value
)
1295 struct value_print_options opts
;
1297 get_user_print_options (&opts
);
1298 if (opts
.objectprint
)
1300 struct type
*new_type
;
1301 char *curr_type_str
, *new_type_str
;
1302 int type_name_changed
;
1304 new_type
= value_actual_type (new_value
, 0, 0);
1305 new_type_str
= type_to_string (new_type
);
1306 curr_type_str
= varobj_get_type (var
);
1307 type_name_changed
= strcmp (curr_type_str
, new_type_str
) != 0;
1308 xfree (curr_type_str
);
1309 xfree (new_type_str
);
1311 if (type_name_changed
)
1313 var
->type
= new_type
;
1315 /* This information may be not valid for a new type. */
1316 varobj_delete (var
, NULL
, 1);
1317 VEC_free (varobj_p
, var
->children
);
1318 var
->num_children
= -1;
1327 /* Assign a new value to a variable object. If INITIAL is non-zero,
1328 this is the first assignement after the variable object was just
1329 created, or changed type. In that case, just assign the value
1331 Otherwise, assign the new value, and return 1 if the value is
1332 different from the current one, 0 otherwise. The comparison is
1333 done on textual representation of value. Therefore, some types
1334 need not be compared. E.g. for structures the reported value is
1335 always "{...}", so no comparison is necessary here. If the old
1336 value was NULL and new one is not, or vice versa, we always return 1.
1338 The VALUE parameter should not be released -- the function will
1339 take care of releasing it when needed. */
1341 install_new_value (struct varobj
*var
, struct value
*value
, int initial
)
1346 int intentionally_not_fetched
= 0;
1347 char *print_value
= NULL
;
1349 /* We need to know the varobj's type to decide if the value should
1350 be fetched or not. C++ fake children (public/protected/private)
1351 don't have a type. */
1352 gdb_assert (var
->type
|| CPLUS_FAKE_CHILD (var
));
1353 changeable
= varobj_value_is_changeable_p (var
);
1355 /* If the type has custom visualizer, we consider it to be always
1356 changeable. FIXME: need to make sure this behaviour will not
1357 mess up read-sensitive values. */
1358 if (var
->dynamic
->pretty_printer
!= NULL
)
1361 need_to_fetch
= changeable
;
1363 /* We are not interested in the address of references, and given
1364 that in C++ a reference is not rebindable, it cannot
1365 meaningfully change. So, get hold of the real value. */
1367 value
= coerce_ref (value
);
1369 if (var
->type
&& TYPE_CODE (var
->type
) == TYPE_CODE_UNION
)
1370 /* For unions, we need to fetch the value implicitly because
1371 of implementation of union member fetch. When gdb
1372 creates a value for a field and the value of the enclosing
1373 structure is not lazy, it immediately copies the necessary
1374 bytes from the enclosing values. If the enclosing value is
1375 lazy, the call to value_fetch_lazy on the field will read
1376 the data from memory. For unions, that means we'll read the
1377 same memory more than once, which is not desirable. So
1381 /* The new value might be lazy. If the type is changeable,
1382 that is we'll be comparing values of this type, fetch the
1383 value now. Otherwise, on the next update the old value
1384 will be lazy, which means we've lost that old value. */
1385 if (need_to_fetch
&& value
&& value_lazy (value
))
1387 const struct varobj
*parent
= var
->parent
;
1388 int frozen
= var
->frozen
;
1390 for (; !frozen
&& parent
; parent
= parent
->parent
)
1391 frozen
|= parent
->frozen
;
1393 if (frozen
&& initial
)
1395 /* For variables that are frozen, or are children of frozen
1396 variables, we don't do fetch on initial assignment.
1397 For non-initial assignemnt we do the fetch, since it means we're
1398 explicitly asked to compare the new value with the old one. */
1399 intentionally_not_fetched
= 1;
1406 value_fetch_lazy (value
);
1409 CATCH (except
, RETURN_MASK_ERROR
)
1411 /* Set the value to NULL, so that for the next -var-update,
1412 we don't try to compare the new value with this value,
1413 that we couldn't even read. */
1420 /* Get a reference now, before possibly passing it to any Python
1421 code that might release it. */
1423 value_incref (value
);
1425 /* Below, we'll be comparing string rendering of old and new
1426 values. Don't get string rendering if the value is
1427 lazy -- if it is, the code above has decided that the value
1428 should not be fetched. */
1429 if (value
!= NULL
&& !value_lazy (value
)
1430 && var
->dynamic
->pretty_printer
== NULL
)
1431 print_value
= varobj_value_get_print_value (value
, var
->format
, var
);
1433 /* If the type is changeable, compare the old and the new values.
1434 If this is the initial assignment, we don't have any old value
1436 if (!initial
&& changeable
)
1438 /* If the value of the varobj was changed by -var-set-value,
1439 then the value in the varobj and in the target is the same.
1440 However, that value is different from the value that the
1441 varobj had after the previous -var-update. So need to the
1442 varobj as changed. */
1447 else if (var
->dynamic
->pretty_printer
== NULL
)
1449 /* Try to compare the values. That requires that both
1450 values are non-lazy. */
1451 if (var
->not_fetched
&& value_lazy (var
->value
))
1453 /* This is a frozen varobj and the value was never read.
1454 Presumably, UI shows some "never read" indicator.
1455 Now that we've fetched the real value, we need to report
1456 this varobj as changed so that UI can show the real
1460 else if (var
->value
== NULL
&& value
== NULL
)
1463 else if (var
->value
== NULL
|| value
== NULL
)
1469 gdb_assert (!value_lazy (var
->value
));
1470 gdb_assert (!value_lazy (value
));
1472 gdb_assert (var
->print_value
!= NULL
&& print_value
!= NULL
);
1473 if (strcmp (var
->print_value
, print_value
) != 0)
1479 if (!initial
&& !changeable
)
1481 /* For values that are not changeable, we don't compare the values.
1482 However, we want to notice if a value was not NULL and now is NULL,
1483 or vise versa, so that we report when top-level varobjs come in scope
1484 and leave the scope. */
1485 changed
= (var
->value
!= NULL
) != (value
!= NULL
);
1488 /* We must always keep the new value, since children depend on it. */
1489 if (var
->value
!= NULL
&& var
->value
!= value
)
1490 value_free (var
->value
);
1492 if (value
&& value_lazy (value
) && intentionally_not_fetched
)
1493 var
->not_fetched
= 1;
1495 var
->not_fetched
= 0;
1498 install_new_value_visualizer (var
);
1500 /* If we installed a pretty-printer, re-compare the printed version
1501 to see if the variable changed. */
1502 if (var
->dynamic
->pretty_printer
!= NULL
)
1504 xfree (print_value
);
1505 print_value
= varobj_value_get_print_value (var
->value
, var
->format
,
1507 if ((var
->print_value
== NULL
&& print_value
!= NULL
)
1508 || (var
->print_value
!= NULL
&& print_value
== NULL
)
1509 || (var
->print_value
!= NULL
&& print_value
!= NULL
1510 && strcmp (var
->print_value
, print_value
) != 0))
1513 if (var
->print_value
)
1514 xfree (var
->print_value
);
1515 var
->print_value
= print_value
;
1517 gdb_assert (!var
->value
|| value_type (var
->value
));
1522 /* Return the requested range for a varobj. VAR is the varobj. FROM
1523 and TO are out parameters; *FROM and *TO will be set to the
1524 selected sub-range of VAR. If no range was selected using
1525 -var-set-update-range, then both will be -1. */
1527 varobj_get_child_range (const struct varobj
*var
, int *from
, int *to
)
1533 /* Set the selected sub-range of children of VAR to start at index
1534 FROM and end at index TO. If either FROM or TO is less than zero,
1535 this is interpreted as a request for all children. */
1537 varobj_set_child_range (struct varobj
*var
, int from
, int to
)
1544 varobj_set_visualizer (struct varobj
*var
, const char *visualizer
)
1547 PyObject
*mainmod
, *globals
, *constructor
;
1548 struct cleanup
*back_to
;
1550 if (!gdb_python_initialized
)
1553 back_to
= varobj_ensure_python_env (var
);
1555 mainmod
= PyImport_AddModule ("__main__");
1556 globals
= PyModule_GetDict (mainmod
);
1557 Py_INCREF (globals
);
1558 make_cleanup_py_decref (globals
);
1560 constructor
= PyRun_String (visualizer
, Py_eval_input
, globals
, globals
);
1564 gdbpy_print_stack ();
1565 error (_("Could not evaluate visualizer expression: %s"), visualizer
);
1568 construct_visualizer (var
, constructor
);
1569 Py_XDECREF (constructor
);
1571 /* If there are any children now, wipe them. */
1572 varobj_delete (var
, NULL
, 1 /* children only */);
1573 var
->num_children
= -1;
1575 do_cleanups (back_to
);
1577 error (_("Python support required"));
1581 /* If NEW_VALUE is the new value of the given varobj (var), return
1582 non-zero if var has mutated. In other words, if the type of
1583 the new value is different from the type of the varobj's old
1586 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1589 varobj_value_has_mutated (const struct varobj
*var
, struct value
*new_value
,
1590 struct type
*new_type
)
1592 /* If we haven't previously computed the number of children in var,
1593 it does not matter from the front-end's perspective whether
1594 the type has mutated or not. For all intents and purposes,
1595 it has not mutated. */
1596 if (var
->num_children
< 0)
1599 if (var
->root
->lang_ops
->value_has_mutated
)
1601 /* The varobj module, when installing new values, explicitly strips
1602 references, saying that we're not interested in those addresses.
1603 But detection of mutation happens before installing the new
1604 value, so our value may be a reference that we need to strip
1605 in order to remain consistent. */
1606 if (new_value
!= NULL
)
1607 new_value
= coerce_ref (new_value
);
1608 return var
->root
->lang_ops
->value_has_mutated (var
, new_value
, new_type
);
1614 /* Update the values for a variable and its children. This is a
1615 two-pronged attack. First, re-parse the value for the root's
1616 expression to see if it's changed. Then go all the way
1617 through its children, reconstructing them and noting if they've
1620 The EXPLICIT parameter specifies if this call is result
1621 of MI request to update this specific variable, or
1622 result of implicit -var-update *. For implicit request, we don't
1623 update frozen variables.
1625 NOTE: This function may delete the caller's varobj. If it
1626 returns TYPE_CHANGED, then it has done this and VARP will be modified
1627 to point to the new varobj. */
1629 VEC(varobj_update_result
) *
1630 varobj_update (struct varobj
**varp
, int is_explicit
)
1632 int type_changed
= 0;
1634 struct value
*newobj
;
1635 VEC (varobj_update_result
) *stack
= NULL
;
1636 VEC (varobj_update_result
) *result
= NULL
;
1638 /* Frozen means frozen -- we don't check for any change in
1639 this varobj, including its going out of scope, or
1640 changing type. One use case for frozen varobjs is
1641 retaining previously evaluated expressions, and we don't
1642 want them to be reevaluated at all. */
1643 if (!is_explicit
&& (*varp
)->frozen
)
1646 if (!(*varp
)->root
->is_valid
)
1648 varobj_update_result r
= {0};
1651 r
.status
= VAROBJ_INVALID
;
1652 VEC_safe_push (varobj_update_result
, result
, &r
);
1656 if ((*varp
)->root
->rootvar
== *varp
)
1658 varobj_update_result r
= {0};
1661 r
.status
= VAROBJ_IN_SCOPE
;
1663 /* Update the root variable. value_of_root can return NULL
1664 if the variable is no longer around, i.e. we stepped out of
1665 the frame in which a local existed. We are letting the
1666 value_of_root variable dispose of the varobj if the type
1668 newobj
= value_of_root (varp
, &type_changed
);
1669 if (update_type_if_necessary(*varp
, newobj
))
1672 r
.type_changed
= type_changed
;
1673 if (install_new_value ((*varp
), newobj
, type_changed
))
1677 r
.status
= VAROBJ_NOT_IN_SCOPE
;
1678 r
.value_installed
= 1;
1680 if (r
.status
== VAROBJ_NOT_IN_SCOPE
)
1682 if (r
.type_changed
|| r
.changed
)
1683 VEC_safe_push (varobj_update_result
, result
, &r
);
1687 VEC_safe_push (varobj_update_result
, stack
, &r
);
1691 varobj_update_result r
= {0};
1694 VEC_safe_push (varobj_update_result
, stack
, &r
);
1697 /* Walk through the children, reconstructing them all. */
1698 while (!VEC_empty (varobj_update_result
, stack
))
1700 varobj_update_result r
= *(VEC_last (varobj_update_result
, stack
));
1701 struct varobj
*v
= r
.varobj
;
1703 VEC_pop (varobj_update_result
, stack
);
1705 /* Update this variable, unless it's a root, which is already
1707 if (!r
.value_installed
)
1709 struct type
*new_type
;
1711 newobj
= value_of_child (v
->parent
, v
->index
);
1712 if (update_type_if_necessary(v
, newobj
))
1715 new_type
= value_type (newobj
);
1717 new_type
= v
->root
->lang_ops
->type_of_child (v
->parent
, v
->index
);
1719 if (varobj_value_has_mutated (v
, newobj
, new_type
))
1721 /* The children are no longer valid; delete them now.
1722 Report the fact that its type changed as well. */
1723 varobj_delete (v
, NULL
, 1 /* only_children */);
1724 v
->num_children
= -1;
1731 if (install_new_value (v
, newobj
, r
.type_changed
))
1738 /* We probably should not get children of a dynamic varobj, but
1739 for which -var-list-children was never invoked. */
1740 if (varobj_is_dynamic_p (v
))
1742 VEC (varobj_p
) *changed
= 0, *type_changed
= 0, *unchanged
= 0;
1743 VEC (varobj_p
) *newobj
= 0;
1744 int i
, children_changed
= 0;
1749 if (!v
->dynamic
->children_requested
)
1753 /* If we initially did not have potential children, but
1754 now we do, consider the varobj as changed.
1755 Otherwise, if children were never requested, consider
1756 it as unchanged -- presumably, such varobj is not yet
1757 expanded in the UI, so we need not bother getting
1759 if (!varobj_has_more (v
, 0))
1761 update_dynamic_varobj_children (v
, NULL
, NULL
, NULL
, NULL
,
1763 if (varobj_has_more (v
, 0))
1768 VEC_safe_push (varobj_update_result
, result
, &r
);
1773 /* If update_dynamic_varobj_children returns 0, then we have
1774 a non-conforming pretty-printer, so we skip it. */
1775 if (update_dynamic_varobj_children (v
, &changed
, &type_changed
, &newobj
,
1776 &unchanged
, &children_changed
, 1,
1779 if (children_changed
|| newobj
)
1781 r
.children_changed
= 1;
1784 /* Push in reverse order so that the first child is
1785 popped from the work stack first, and so will be
1786 added to result first. This does not affect
1787 correctness, just "nicer". */
1788 for (i
= VEC_length (varobj_p
, type_changed
) - 1; i
>= 0; --i
)
1790 varobj_p tmp
= VEC_index (varobj_p
, type_changed
, i
);
1791 varobj_update_result r
= {0};
1793 /* Type may change only if value was changed. */
1797 r
.value_installed
= 1;
1798 VEC_safe_push (varobj_update_result
, stack
, &r
);
1800 for (i
= VEC_length (varobj_p
, changed
) - 1; i
>= 0; --i
)
1802 varobj_p tmp
= VEC_index (varobj_p
, changed
, i
);
1803 varobj_update_result r
= {0};
1807 r
.value_installed
= 1;
1808 VEC_safe_push (varobj_update_result
, stack
, &r
);
1810 for (i
= VEC_length (varobj_p
, unchanged
) - 1; i
>= 0; --i
)
1812 varobj_p tmp
= VEC_index (varobj_p
, unchanged
, i
);
1816 varobj_update_result r
= {0};
1819 r
.value_installed
= 1;
1820 VEC_safe_push (varobj_update_result
, stack
, &r
);
1823 if (r
.changed
|| r
.children_changed
)
1824 VEC_safe_push (varobj_update_result
, result
, &r
);
1826 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1827 because NEW has been put into the result vector. */
1828 VEC_free (varobj_p
, changed
);
1829 VEC_free (varobj_p
, type_changed
);
1830 VEC_free (varobj_p
, unchanged
);
1836 /* Push any children. Use reverse order so that the first
1837 child is popped from the work stack first, and so
1838 will be added to result first. This does not
1839 affect correctness, just "nicer". */
1840 for (i
= VEC_length (varobj_p
, v
->children
)-1; i
>= 0; --i
)
1842 varobj_p c
= VEC_index (varobj_p
, v
->children
, i
);
1844 /* Child may be NULL if explicitly deleted by -var-delete. */
1845 if (c
!= NULL
&& !c
->frozen
)
1847 varobj_update_result r
= {0};
1850 VEC_safe_push (varobj_update_result
, stack
, &r
);
1854 if (r
.changed
|| r
.type_changed
)
1855 VEC_safe_push (varobj_update_result
, result
, &r
);
1858 VEC_free (varobj_update_result
, stack
);
1864 /* Helper functions */
1867 * Variable object construction/destruction
1871 delete_variable (struct cpstack
**resultp
, struct varobj
*var
,
1872 int only_children_p
)
1876 delete_variable_1 (resultp
, &delcount
, var
,
1877 only_children_p
, 1 /* remove_from_parent_p */ );
1882 /* Delete the variable object VAR and its children. */
1883 /* IMPORTANT NOTE: If we delete a variable which is a child
1884 and the parent is not removed we dump core. It must be always
1885 initially called with remove_from_parent_p set. */
1887 delete_variable_1 (struct cpstack
**resultp
, int *delcountp
,
1888 struct varobj
*var
, int only_children_p
,
1889 int remove_from_parent_p
)
1893 /* Delete any children of this variable, too. */
1894 for (i
= 0; i
< VEC_length (varobj_p
, var
->children
); ++i
)
1896 varobj_p child
= VEC_index (varobj_p
, var
->children
, i
);
1900 if (!remove_from_parent_p
)
1901 child
->parent
= NULL
;
1902 delete_variable_1 (resultp
, delcountp
, child
, 0, only_children_p
);
1904 VEC_free (varobj_p
, var
->children
);
1906 /* if we were called to delete only the children we are done here. */
1907 if (only_children_p
)
1910 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1911 /* If the name is null, this is a temporary variable, that has not
1912 yet been installed, don't report it, it belongs to the caller... */
1913 if (var
->obj_name
!= NULL
)
1915 cppush (resultp
, xstrdup (var
->obj_name
));
1916 *delcountp
= *delcountp
+ 1;
1919 /* If this variable has a parent, remove it from its parent's list. */
1920 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1921 (as indicated by remove_from_parent_p) we don't bother doing an
1922 expensive list search to find the element to remove when we are
1923 discarding the list afterwards. */
1924 if ((remove_from_parent_p
) && (var
->parent
!= NULL
))
1926 VEC_replace (varobj_p
, var
->parent
->children
, var
->index
, NULL
);
1929 if (var
->obj_name
!= NULL
)
1930 uninstall_variable (var
);
1932 /* Free memory associated with this variable. */
1933 free_variable (var
);
1936 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1938 install_variable (struct varobj
*var
)
1941 struct vlist
*newvl
;
1943 unsigned int index
= 0;
1946 for (chp
= var
->obj_name
; *chp
; chp
++)
1948 index
= (index
+ (i
++ * (unsigned int) *chp
)) % VAROBJ_TABLE_SIZE
;
1951 cv
= *(varobj_table
+ index
);
1952 while ((cv
!= NULL
) && (strcmp (cv
->var
->obj_name
, var
->obj_name
) != 0))
1956 error (_("Duplicate variable object name"));
1958 /* Add varobj to hash table. */
1959 newvl
= XNEW (struct vlist
);
1960 newvl
->next
= *(varobj_table
+ index
);
1962 *(varobj_table
+ index
) = newvl
;
1964 /* If root, add varobj to root list. */
1965 if (is_root_p (var
))
1967 /* Add to list of root variables. */
1968 if (rootlist
== NULL
)
1969 var
->root
->next
= NULL
;
1971 var
->root
->next
= rootlist
;
1972 rootlist
= var
->root
;
1978 /* Unistall the object VAR. */
1980 uninstall_variable (struct varobj
*var
)
1984 struct varobj_root
*cr
;
1985 struct varobj_root
*prer
;
1987 unsigned int index
= 0;
1990 /* Remove varobj from hash table. */
1991 for (chp
= var
->obj_name
; *chp
; chp
++)
1993 index
= (index
+ (i
++ * (unsigned int) *chp
)) % VAROBJ_TABLE_SIZE
;
1996 cv
= *(varobj_table
+ index
);
1998 while ((cv
!= NULL
) && (strcmp (cv
->var
->obj_name
, var
->obj_name
) != 0))
2005 fprintf_unfiltered (gdb_stdlog
, "Deleting %s\n", var
->obj_name
);
2010 ("Assertion failed: Could not find variable object \"%s\" to delete",
2016 *(varobj_table
+ index
) = cv
->next
;
2018 prev
->next
= cv
->next
;
2022 /* If root, remove varobj from root list. */
2023 if (is_root_p (var
))
2025 /* Remove from list of root variables. */
2026 if (rootlist
== var
->root
)
2027 rootlist
= var
->root
->next
;
2032 while ((cr
!= NULL
) && (cr
->rootvar
!= var
))
2039 warning (_("Assertion failed: Could not find "
2040 "varobj \"%s\" in root list"),
2047 prer
->next
= cr
->next
;
2053 /* Create and install a child of the parent of the given name.
2055 The created VAROBJ takes ownership of the allocated NAME. */
2057 static struct varobj
*
2058 create_child (struct varobj
*parent
, int index
, char *name
)
2060 struct varobj_item item
;
2063 item
.value
= value_of_child (parent
, index
);
2065 return create_child_with_value (parent
, index
, &item
);
2068 static struct varobj
*
2069 create_child_with_value (struct varobj
*parent
, int index
,
2070 struct varobj_item
*item
)
2072 struct varobj
*child
;
2075 child
= new_variable ();
2077 /* NAME is allocated by caller. */
2078 child
->name
= item
->name
;
2079 child
->index
= index
;
2080 child
->parent
= parent
;
2081 child
->root
= parent
->root
;
2083 if (varobj_is_anonymous_child (child
))
2084 childs_name
= xstrprintf ("%s.%d_anonymous", parent
->obj_name
, index
);
2086 childs_name
= xstrprintf ("%s.%s", parent
->obj_name
, item
->name
);
2087 child
->obj_name
= childs_name
;
2089 install_variable (child
);
2091 /* Compute the type of the child. Must do this before
2092 calling install_new_value. */
2093 if (item
->value
!= NULL
)
2094 /* If the child had no evaluation errors, var->value
2095 will be non-NULL and contain a valid type. */
2096 child
->type
= value_actual_type (item
->value
, 0, NULL
);
2098 /* Otherwise, we must compute the type. */
2099 child
->type
= (*child
->root
->lang_ops
->type_of_child
) (child
->parent
,
2101 install_new_value (child
, item
->value
, 1);
2108 * Miscellaneous utility functions.
2111 /* Allocate memory and initialize a new variable. */
2112 static struct varobj
*
2117 var
= XNEW (struct varobj
);
2119 var
->path_expr
= NULL
;
2120 var
->obj_name
= NULL
;
2124 var
->num_children
= -1;
2126 var
->children
= NULL
;
2127 var
->format
= FORMAT_NATURAL
;
2130 var
->print_value
= NULL
;
2132 var
->not_fetched
= 0;
2133 var
->dynamic
= XNEW (struct varobj_dynamic
);
2134 var
->dynamic
->children_requested
= 0;
2137 var
->dynamic
->constructor
= 0;
2138 var
->dynamic
->pretty_printer
= 0;
2139 var
->dynamic
->child_iter
= 0;
2140 var
->dynamic
->saved_item
= 0;
2145 /* Allocate memory and initialize a new root variable. */
2146 static struct varobj
*
2147 new_root_variable (void)
2149 struct varobj
*var
= new_variable ();
2151 var
->root
= XNEW (struct varobj_root
);
2152 var
->root
->lang_ops
= NULL
;
2153 var
->root
->exp
= NULL
;
2154 var
->root
->valid_block
= NULL
;
2155 var
->root
->frame
= null_frame_id
;
2156 var
->root
->floating
= 0;
2157 var
->root
->rootvar
= NULL
;
2158 var
->root
->is_valid
= 1;
2163 /* Free any allocated memory associated with VAR. */
2165 free_variable (struct varobj
*var
)
2168 if (var
->dynamic
->pretty_printer
!= NULL
)
2170 struct cleanup
*cleanup
= varobj_ensure_python_env (var
);
2172 Py_XDECREF (var
->dynamic
->constructor
);
2173 Py_XDECREF (var
->dynamic
->pretty_printer
);
2174 do_cleanups (cleanup
);
2178 varobj_iter_delete (var
->dynamic
->child_iter
);
2179 varobj_clear_saved_item (var
->dynamic
);
2180 value_free (var
->value
);
2182 /* Free the expression if this is a root variable. */
2183 if (is_root_p (var
))
2185 xfree (var
->root
->exp
);
2190 xfree (var
->obj_name
);
2191 xfree (var
->print_value
);
2192 xfree (var
->path_expr
);
2193 xfree (var
->dynamic
);
2198 do_free_variable_cleanup (void *var
)
2200 free_variable ((struct varobj
*) var
);
2203 static struct cleanup
*
2204 make_cleanup_free_variable (struct varobj
*var
)
2206 return make_cleanup (do_free_variable_cleanup
, var
);
2209 /* Return the type of the value that's stored in VAR,
2210 or that would have being stored there if the
2211 value were accessible.
2213 This differs from VAR->type in that VAR->type is always
2214 the true type of the expession in the source language.
2215 The return value of this function is the type we're
2216 actually storing in varobj, and using for displaying
2217 the values and for comparing previous and new values.
2219 For example, top-level references are always stripped. */
2221 varobj_get_value_type (const struct varobj
*var
)
2226 type
= value_type (var
->value
);
2230 type
= check_typedef (type
);
2232 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
2233 type
= get_target_type (type
);
2235 type
= check_typedef (type
);
2240 /* What is the default display for this variable? We assume that
2241 everything is "natural". Any exceptions? */
2242 static enum varobj_display_formats
2243 variable_default_display (struct varobj
*var
)
2245 return FORMAT_NATURAL
;
2248 /* FIXME: The following should be generic for any pointer. */
2250 cppush (struct cpstack
**pstack
, char *name
)
2254 s
= XNEW (struct cpstack
);
2260 /* FIXME: The following should be generic for any pointer. */
2262 cppop (struct cpstack
**pstack
)
2267 if ((*pstack
)->name
== NULL
&& (*pstack
)->next
== NULL
)
2272 *pstack
= (*pstack
)->next
;
2279 * Language-dependencies
2282 /* Common entry points */
2284 /* Return the number of children for a given variable.
2285 The result of this function is defined by the language
2286 implementation. The number of children returned by this function
2287 is the number of children that the user will see in the variable
2290 number_of_children (const struct varobj
*var
)
2292 return (*var
->root
->lang_ops
->number_of_children
) (var
);
2295 /* What is the expression for the root varobj VAR? Returns a malloc'd
2298 name_of_variable (const struct varobj
*var
)
2300 return (*var
->root
->lang_ops
->name_of_variable
) (var
);
2303 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2306 name_of_child (struct varobj
*var
, int index
)
2308 return (*var
->root
->lang_ops
->name_of_child
) (var
, index
);
2311 /* If frame associated with VAR can be found, switch
2312 to it and return 1. Otherwise, return 0. */
2315 check_scope (const struct varobj
*var
)
2317 struct frame_info
*fi
;
2320 fi
= frame_find_by_id (var
->root
->frame
);
2325 CORE_ADDR pc
= get_frame_pc (fi
);
2327 if (pc
< BLOCK_START (var
->root
->valid_block
) ||
2328 pc
>= BLOCK_END (var
->root
->valid_block
))
2336 /* Helper function to value_of_root. */
2338 static struct value
*
2339 value_of_root_1 (struct varobj
**var_handle
)
2341 struct value
*new_val
= NULL
;
2342 struct varobj
*var
= *var_handle
;
2343 int within_scope
= 0;
2344 struct cleanup
*back_to
;
2346 /* Only root variables can be updated... */
2347 if (!is_root_p (var
))
2348 /* Not a root var. */
2351 back_to
= make_cleanup_restore_current_thread ();
2353 /* Determine whether the variable is still around. */
2354 if (var
->root
->valid_block
== NULL
|| var
->root
->floating
)
2356 else if (var
->root
->thread_id
== 0)
2358 /* The program was single-threaded when the variable object was
2359 created. Technically, it's possible that the program became
2360 multi-threaded since then, but we don't support such
2362 within_scope
= check_scope (var
);
2366 ptid_t ptid
= global_thread_id_to_ptid (var
->root
->thread_id
);
2368 if (!ptid_equal (minus_one_ptid
, ptid
))
2370 switch_to_thread (ptid
);
2371 within_scope
= check_scope (var
);
2378 /* We need to catch errors here, because if evaluate
2379 expression fails we want to just return NULL. */
2382 new_val
= evaluate_expression (var
->root
->exp
);
2384 CATCH (except
, RETURN_MASK_ERROR
)
2390 do_cleanups (back_to
);
2395 /* What is the ``struct value *'' of the root variable VAR?
2396 For floating variable object, evaluation can get us a value
2397 of different type from what is stored in varobj already. In
2399 - *type_changed will be set to 1
2400 - old varobj will be freed, and new one will be
2401 created, with the same name.
2402 - *var_handle will be set to the new varobj
2403 Otherwise, *type_changed will be set to 0. */
2404 static struct value
*
2405 value_of_root (struct varobj
**var_handle
, int *type_changed
)
2409 if (var_handle
== NULL
)
2414 /* This should really be an exception, since this should
2415 only get called with a root variable. */
2417 if (!is_root_p (var
))
2420 if (var
->root
->floating
)
2422 struct varobj
*tmp_var
;
2423 char *old_type
, *new_type
;
2425 tmp_var
= varobj_create (NULL
, var
->name
, (CORE_ADDR
) 0,
2426 USE_SELECTED_FRAME
);
2427 if (tmp_var
== NULL
)
2431 old_type
= varobj_get_type (var
);
2432 new_type
= varobj_get_type (tmp_var
);
2433 if (strcmp (old_type
, new_type
) == 0)
2435 /* The expression presently stored inside var->root->exp
2436 remembers the locations of local variables relatively to
2437 the frame where the expression was created (in DWARF location
2438 button, for example). Naturally, those locations are not
2439 correct in other frames, so update the expression. */
2441 struct expression
*tmp_exp
= var
->root
->exp
;
2443 var
->root
->exp
= tmp_var
->root
->exp
;
2444 tmp_var
->root
->exp
= tmp_exp
;
2446 varobj_delete (tmp_var
, NULL
, 0);
2451 tmp_var
->obj_name
= xstrdup (var
->obj_name
);
2452 tmp_var
->from
= var
->from
;
2453 tmp_var
->to
= var
->to
;
2454 varobj_delete (var
, NULL
, 0);
2456 install_variable (tmp_var
);
2457 *var_handle
= tmp_var
;
2470 struct value
*value
;
2472 value
= value_of_root_1 (var_handle
);
2473 if (var
->value
== NULL
|| value
== NULL
)
2475 /* For root varobj-s, a NULL value indicates a scoping issue.
2476 So, nothing to do in terms of checking for mutations. */
2478 else if (varobj_value_has_mutated (var
, value
, value_type (value
)))
2480 /* The type has mutated, so the children are no longer valid.
2481 Just delete them, and tell our caller that the type has
2483 varobj_delete (var
, NULL
, 1 /* only_children */);
2484 var
->num_children
= -1;
2493 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2494 static struct value
*
2495 value_of_child (const struct varobj
*parent
, int index
)
2497 struct value
*value
;
2499 value
= (*parent
->root
->lang_ops
->value_of_child
) (parent
, index
);
2504 /* GDB already has a command called "value_of_variable". Sigh. */
2506 my_value_of_variable (struct varobj
*var
, enum varobj_display_formats format
)
2508 if (var
->root
->is_valid
)
2510 if (var
->dynamic
->pretty_printer
!= NULL
)
2511 return varobj_value_get_print_value (var
->value
, var
->format
, var
);
2512 return (*var
->root
->lang_ops
->value_of_variable
) (var
, format
);
2519 varobj_formatted_print_options (struct value_print_options
*opts
,
2520 enum varobj_display_formats format
)
2522 get_formatted_print_options (opts
, format_code
[(int) format
]);
2523 opts
->deref_ref
= 0;
2528 varobj_value_get_print_value (struct value
*value
,
2529 enum varobj_display_formats format
,
2530 const struct varobj
*var
)
2532 struct ui_file
*stb
;
2533 struct cleanup
*old_chain
;
2534 char *thevalue
= NULL
;
2535 struct value_print_options opts
;
2536 struct type
*type
= NULL
;
2538 char *encoding
= NULL
;
2539 struct gdbarch
*gdbarch
= NULL
;
2540 /* Initialize it just to avoid a GCC false warning. */
2541 CORE_ADDR str_addr
= 0;
2542 int string_print
= 0;
2547 stb
= mem_fileopen ();
2548 old_chain
= make_cleanup_ui_file_delete (stb
);
2550 gdbarch
= get_type_arch (value_type (value
));
2552 if (gdb_python_initialized
)
2554 PyObject
*value_formatter
= var
->dynamic
->pretty_printer
;
2556 varobj_ensure_python_env (var
);
2558 if (value_formatter
)
2560 /* First check to see if we have any children at all. If so,
2561 we simply return {...}. */
2562 if (dynamic_varobj_has_child_method (var
))
2564 do_cleanups (old_chain
);
2565 return xstrdup ("{...}");
2568 if (PyObject_HasAttr (value_formatter
, gdbpy_to_string_cst
))
2570 struct value
*replacement
;
2571 PyObject
*output
= NULL
;
2573 output
= apply_varobj_pretty_printer (value_formatter
,
2577 /* If we have string like output ... */
2580 make_cleanup_py_decref (output
);
2582 /* If this is a lazy string, extract it. For lazy
2583 strings we always print as a string, so set
2585 if (gdbpy_is_lazy_string (output
))
2587 gdbpy_extract_lazy_string (output
, &str_addr
, &type
,
2589 make_cleanup (free_current_contents
, &encoding
);
2594 /* If it is a regular (non-lazy) string, extract
2595 it and copy the contents into THEVALUE. If the
2596 hint says to print it as a string, set
2597 string_print. Otherwise just return the extracted
2598 string as a value. */
2600 char *s
= python_string_to_target_string (output
);
2606 hint
= gdbpy_get_display_hint (value_formatter
);
2609 if (!strcmp (hint
, "string"))
2615 thevalue
= (char *) xmemdup (s
, len
+ 1, len
+ 1);
2616 type
= builtin_type (gdbarch
)->builtin_char
;
2621 do_cleanups (old_chain
);
2625 make_cleanup (xfree
, thevalue
);
2628 gdbpy_print_stack ();
2631 /* If the printer returned a replacement value, set VALUE
2632 to REPLACEMENT. If there is not a replacement value,
2633 just use the value passed to this function. */
2635 value
= replacement
;
2641 varobj_formatted_print_options (&opts
, format
);
2643 /* If the THEVALUE has contents, it is a regular string. */
2645 LA_PRINT_STRING (stb
, type
, (gdb_byte
*) thevalue
, len
, encoding
, 0, &opts
);
2646 else if (string_print
)
2647 /* Otherwise, if string_print is set, and it is not a regular
2648 string, it is a lazy string. */
2649 val_print_string (type
, encoding
, str_addr
, len
, stb
, &opts
);
2651 /* All other cases. */
2652 common_val_print (value
, stb
, 0, &opts
, current_language
);
2654 thevalue
= ui_file_xstrdup (stb
, NULL
);
2656 do_cleanups (old_chain
);
2661 varobj_editable_p (const struct varobj
*var
)
2665 if (!(var
->root
->is_valid
&& var
->value
&& VALUE_LVAL (var
->value
)))
2668 type
= varobj_get_value_type (var
);
2670 switch (TYPE_CODE (type
))
2672 case TYPE_CODE_STRUCT
:
2673 case TYPE_CODE_UNION
:
2674 case TYPE_CODE_ARRAY
:
2675 case TYPE_CODE_FUNC
:
2676 case TYPE_CODE_METHOD
:
2686 /* Call VAR's value_is_changeable_p language-specific callback. */
2689 varobj_value_is_changeable_p (const struct varobj
*var
)
2691 return var
->root
->lang_ops
->value_is_changeable_p (var
);
2694 /* Return 1 if that varobj is floating, that is is always evaluated in the
2695 selected frame, and not bound to thread/frame. Such variable objects
2696 are created using '@' as frame specifier to -var-create. */
2698 varobj_floating_p (const struct varobj
*var
)
2700 return var
->root
->floating
;
2703 /* Implement the "value_is_changeable_p" varobj callback for most
2707 varobj_default_value_is_changeable_p (const struct varobj
*var
)
2712 if (CPLUS_FAKE_CHILD (var
))
2715 type
= varobj_get_value_type (var
);
2717 switch (TYPE_CODE (type
))
2719 case TYPE_CODE_STRUCT
:
2720 case TYPE_CODE_UNION
:
2721 case TYPE_CODE_ARRAY
:
2732 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2733 with an arbitrary caller supplied DATA pointer. */
2736 all_root_varobjs (void (*func
) (struct varobj
*var
, void *data
), void *data
)
2738 struct varobj_root
*var_root
, *var_root_next
;
2740 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2742 for (var_root
= rootlist
; var_root
!= NULL
; var_root
= var_root_next
)
2744 var_root_next
= var_root
->next
;
2746 (*func
) (var_root
->rootvar
, data
);
2750 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2751 defined on globals. It is a helper for varobj_invalidate.
2753 This function is called after changing the symbol file, in this case the
2754 pointers to "struct type" stored by the varobj are no longer valid. All
2755 varobj must be either re-evaluated, or marked as invalid here. */
2758 varobj_invalidate_iter (struct varobj
*var
, void *unused
)
2760 /* global and floating var must be re-evaluated. */
2761 if (var
->root
->floating
|| var
->root
->valid_block
== NULL
)
2763 struct varobj
*tmp_var
;
2765 /* Try to create a varobj with same expression. If we succeed
2766 replace the old varobj, otherwise invalidate it. */
2767 tmp_var
= varobj_create (NULL
, var
->name
, (CORE_ADDR
) 0,
2769 if (tmp_var
!= NULL
)
2771 tmp_var
->obj_name
= xstrdup (var
->obj_name
);
2772 varobj_delete (var
, NULL
, 0);
2773 install_variable (tmp_var
);
2776 var
->root
->is_valid
= 0;
2778 else /* locals must be invalidated. */
2779 var
->root
->is_valid
= 0;
2782 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2783 are defined on globals.
2784 Invalidated varobjs will be always printed in_scope="invalid". */
2787 varobj_invalidate (void)
2789 all_root_varobjs (varobj_invalidate_iter
, NULL
);
2792 extern void _initialize_varobj (void);
2794 _initialize_varobj (void)
2796 varobj_table
= XCNEWVEC (struct vlist
*, VAROBJ_TABLE_SIZE
);
2798 add_setshow_zuinteger_cmd ("varobj", class_maintenance
,
2800 _("Set varobj debugging."),
2801 _("Show varobj debugging."),
2802 _("When non-zero, varobj debugging is enabled."),
2803 NULL
, show_varobjdebug
,
2804 &setdebuglist
, &showdebuglist
);