Fix GCC6 -Wmisleading-indentation issues.
[binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #else
38 typedef int PyObject;
39 #endif
40
41 /* Non-zero if we want to see trace of varobj level stuff. */
42
43 unsigned int varobjdebug = 0;
44 static void
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47 {
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49 }
50
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
54
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
57
58 void
59 varobj_enable_pretty_printing (void)
60 {
61 pretty_printing = 1;
62 }
63
64 /* Data structures */
65
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
68 struct varobj_root
69 {
70
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame;
80
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 int floating;
92
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
103
104 /* Next root variable */
105 struct varobj_root *next;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
137 };
138
139 struct cpstack
140 {
141 char *name;
142 struct cpstack *next;
143 };
144
145 /* A list of varobjs */
146
147 struct vlist
148 {
149 struct varobj *var;
150 struct vlist *next;
151 };
152
153 /* Private function prototypes */
154
155 /* Helper functions for the above subcommands. */
156
157 static int delete_variable (struct cpstack **, struct varobj *, int);
158
159 static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
161
162 static int install_variable (struct varobj *);
163
164 static void uninstall_variable (struct varobj *);
165
166 static struct varobj *create_child (struct varobj *, int, char *);
167
168 static struct varobj *
169 create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
171
172 /* Utility routines */
173
174 static struct varobj *new_variable (void);
175
176 static struct varobj *new_root_variable (void);
177
178 static void free_variable (struct varobj *var);
179
180 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
182 static enum varobj_display_formats variable_default_display (struct varobj *);
183
184 static void cppush (struct cpstack **pstack, char *name);
185
186 static char *cppop (struct cpstack **pstack);
187
188 static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
191 static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
194 /* Language-specific routines. */
195
196 static int number_of_children (const struct varobj *);
197
198 static char *name_of_variable (const struct varobj *);
199
200 static char *name_of_child (struct varobj *, int);
201
202 static struct value *value_of_root (struct varobj **var_handle, int *);
203
204 static struct value *value_of_child (const struct varobj *parent, int index);
205
206 static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
208
209 static int is_root_p (const struct varobj *var);
210
211 static struct varobj *varobj_add_child (struct varobj *var,
212 struct varobj_item *item);
213
214 /* Private data */
215
216 /* Mappings of varobj_display_formats enums to gdb's format codes. */
217 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
218
219 /* Header of the list of root variable objects. */
220 static struct varobj_root *rootlist;
221
222 /* Prime number indicating the number of buckets in the hash table. */
223 /* A prime large enough to avoid too many colisions. */
224 #define VAROBJ_TABLE_SIZE 227
225
226 /* Pointer to the varobj hash table (built at run time). */
227 static struct vlist **varobj_table;
228
229 \f
230
231 /* API Implementation */
232 static int
233 is_root_p (const struct varobj *var)
234 {
235 return (var->root->rootvar == var);
236 }
237
238 #ifdef HAVE_PYTHON
239 /* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
241 struct cleanup *
242 varobj_ensure_python_env (const struct varobj *var)
243 {
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246 }
247 #endif
248
249 /* Creates a varobj (not its children). */
250
251 /* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254 static struct frame_info *
255 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256 {
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
265 {
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
272
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
277 return frame;
278 }
279
280 return NULL;
281 }
282
283 struct varobj *
284 varobj_create (char *objname,
285 char *expression, CORE_ADDR frame, enum varobj_type type)
286 {
287 struct varobj *var;
288 struct cleanup *old_chain;
289
290 /* Fill out a varobj structure for the (root) variable being constructed. */
291 var = new_root_variable ();
292 old_chain = make_cleanup_free_variable (var);
293
294 if (expression != NULL)
295 {
296 struct frame_info *fi;
297 struct frame_id old_id = null_frame_id;
298 const struct block *block;
299 const char *p;
300 struct value *value = NULL;
301 CORE_ADDR pc;
302
303 /* Parse and evaluate the expression, filling in as much of the
304 variable's data as possible. */
305
306 if (has_stack_frames ())
307 {
308 /* Allow creator to specify context of variable. */
309 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
310 fi = get_selected_frame (NULL);
311 else
312 /* FIXME: cagney/2002-11-23: This code should be doing a
313 lookup using the frame ID and not just the frame's
314 ``address''. This, of course, means an interface
315 change. However, with out that interface change ISAs,
316 such as the ia64 with its two stacks, won't work.
317 Similar goes for the case where there is a frameless
318 function. */
319 fi = find_frame_addr_in_frame_chain (frame);
320 }
321 else
322 fi = NULL;
323
324 /* frame = -2 means always use selected frame. */
325 if (type == USE_SELECTED_FRAME)
326 var->root->floating = 1;
327
328 pc = 0;
329 block = NULL;
330 if (fi != NULL)
331 {
332 block = get_frame_block (fi, 0);
333 pc = get_frame_pc (fi);
334 }
335
336 p = expression;
337 innermost_block = NULL;
338 /* Wrap the call to parse expression, so we can
339 return a sensible error. */
340 TRY
341 {
342 var->root->exp = parse_exp_1 (&p, pc, block, 0);
343 }
344
345 CATCH (except, RETURN_MASK_ERROR)
346 {
347 do_cleanups (old_chain);
348 return NULL;
349 }
350 END_CATCH
351
352 /* Don't allow variables to be created for types. */
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
356 {
357 do_cleanups (old_chain);
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
365 var->name = xstrdup (expression);
366 /* For a root var, the name and the expr are the same. */
367 var->path_expr = xstrdup (expression);
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
372 Since select_frame is so benign, just call it for all cases. */
373 if (innermost_block)
374 {
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
382 var->root->frame = get_frame_id (fi);
383 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
384 old_id = get_frame_id (get_selected_frame (NULL));
385 select_frame (fi);
386 }
387
388 /* We definitely need to catch errors here.
389 If evaluate_expression succeeds we got the value we wanted.
390 But if it fails, we still go on with a call to evaluate_type(). */
391 TRY
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395 CATCH (except, RETURN_MASK_ERROR)
396 {
397 /* Error getting the value. Try to at least get the
398 right type. */
399 struct value *type_only_value = evaluate_type (var->root->exp);
400
401 var->type = value_type (type_only_value);
402 }
403 END_CATCH
404
405 if (value != NULL)
406 {
407 int real_type_found = 0;
408
409 var->type = value_actual_type (value, 0, &real_type_found);
410 if (real_type_found)
411 value = value_cast (var->type, value);
412 }
413
414 /* Set language info */
415 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
416
417 install_new_value (var, value, 1 /* Initial assignment */);
418
419 /* Set ourselves as our root. */
420 var->root->rootvar = var;
421
422 /* Reset the selected frame. */
423 if (frame_id_p (old_id))
424 select_frame (frame_find_by_id (old_id));
425 }
426
427 /* If the variable object name is null, that means this
428 is a temporary variable, so don't install it. */
429
430 if ((var != NULL) && (objname != NULL))
431 {
432 var->obj_name = xstrdup (objname);
433
434 /* If a varobj name is duplicated, the install will fail so
435 we must cleanup. */
436 if (!install_variable (var))
437 {
438 do_cleanups (old_chain);
439 return NULL;
440 }
441 }
442
443 discard_cleanups (old_chain);
444 return var;
445 }
446
447 /* Generates an unique name that can be used for a varobj. */
448
449 char *
450 varobj_gen_name (void)
451 {
452 static int id = 0;
453 char *obj_name;
454
455 /* Generate a name for this object. */
456 id++;
457 obj_name = xstrprintf ("var%d", id);
458
459 return obj_name;
460 }
461
462 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
463 error if OBJNAME cannot be found. */
464
465 struct varobj *
466 varobj_get_handle (char *objname)
467 {
468 struct vlist *cv;
469 const char *chp;
470 unsigned int index = 0;
471 unsigned int i = 1;
472
473 for (chp = objname; *chp; chp++)
474 {
475 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
476 }
477
478 cv = *(varobj_table + index);
479 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
480 cv = cv->next;
481
482 if (cv == NULL)
483 error (_("Variable object not found"));
484
485 return cv->var;
486 }
487
488 /* Given the handle, return the name of the object. */
489
490 char *
491 varobj_get_objname (const struct varobj *var)
492 {
493 return var->obj_name;
494 }
495
496 /* Given the handle, return the expression represented by the object. The
497 result must be freed by the caller. */
498
499 char *
500 varobj_get_expression (const struct varobj *var)
501 {
502 return name_of_variable (var);
503 }
504
505 /* Deletes a varobj and all its children if only_children == 0,
506 otherwise deletes only the children. If DELLIST is non-NULL, it is
507 assigned a malloc'ed list of all the (malloc'ed) names of the variables
508 that have been deleted (NULL terminated). Returns the number of deleted
509 variables. */
510
511 int
512 varobj_delete (struct varobj *var, char ***dellist, int only_children)
513 {
514 int delcount;
515 int mycount;
516 struct cpstack *result = NULL;
517 char **cp;
518
519 /* Initialize a stack for temporary results. */
520 cppush (&result, NULL);
521
522 if (only_children)
523 /* Delete only the variable children. */
524 delcount = delete_variable (&result, var, 1 /* only the children */ );
525 else
526 /* Delete the variable and all its children. */
527 delcount = delete_variable (&result, var, 0 /* parent+children */ );
528
529 /* We may have been asked to return a list of what has been deleted. */
530 if (dellist != NULL)
531 {
532 *dellist = XNEWVEC (char *, delcount + 1);
533
534 cp = *dellist;
535 mycount = delcount;
536 *cp = cppop (&result);
537 while ((*cp != NULL) && (mycount > 0))
538 {
539 mycount--;
540 cp++;
541 *cp = cppop (&result);
542 }
543
544 if (mycount || (*cp != NULL))
545 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
546 mycount);
547 }
548
549 return delcount;
550 }
551
552 #if HAVE_PYTHON
553
554 /* Convenience function for varobj_set_visualizer. Instantiate a
555 pretty-printer for a given value. */
556 static PyObject *
557 instantiate_pretty_printer (PyObject *constructor, struct value *value)
558 {
559 PyObject *val_obj = NULL;
560 PyObject *printer;
561
562 val_obj = value_to_value_object (value);
563 if (! val_obj)
564 return NULL;
565
566 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
567 Py_DECREF (val_obj);
568 return printer;
569 }
570
571 #endif
572
573 /* Set/Get variable object display format. */
574
575 enum varobj_display_formats
576 varobj_set_display_format (struct varobj *var,
577 enum varobj_display_formats format)
578 {
579 switch (format)
580 {
581 case FORMAT_NATURAL:
582 case FORMAT_BINARY:
583 case FORMAT_DECIMAL:
584 case FORMAT_HEXADECIMAL:
585 case FORMAT_OCTAL:
586 case FORMAT_ZHEXADECIMAL:
587 var->format = format;
588 break;
589
590 default:
591 var->format = variable_default_display (var);
592 }
593
594 if (varobj_value_is_changeable_p (var)
595 && var->value && !value_lazy (var->value))
596 {
597 xfree (var->print_value);
598 var->print_value = varobj_value_get_print_value (var->value,
599 var->format, var);
600 }
601
602 return var->format;
603 }
604
605 enum varobj_display_formats
606 varobj_get_display_format (const struct varobj *var)
607 {
608 return var->format;
609 }
610
611 char *
612 varobj_get_display_hint (const struct varobj *var)
613 {
614 char *result = NULL;
615
616 #if HAVE_PYTHON
617 struct cleanup *back_to;
618
619 if (!gdb_python_initialized)
620 return NULL;
621
622 back_to = varobj_ensure_python_env (var);
623
624 if (var->dynamic->pretty_printer != NULL)
625 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
626
627 do_cleanups (back_to);
628 #endif
629
630 return result;
631 }
632
633 /* Return true if the varobj has items after TO, false otherwise. */
634
635 int
636 varobj_has_more (const struct varobj *var, int to)
637 {
638 if (VEC_length (varobj_p, var->children) > to)
639 return 1;
640 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
641 && (var->dynamic->saved_item != NULL));
642 }
643
644 /* If the variable object is bound to a specific thread, that
645 is its evaluation can always be done in context of a frame
646 inside that thread, returns GDB id of the thread -- which
647 is always positive. Otherwise, returns -1. */
648 int
649 varobj_get_thread_id (const struct varobj *var)
650 {
651 if (var->root->valid_block && var->root->thread_id > 0)
652 return var->root->thread_id;
653 else
654 return -1;
655 }
656
657 void
658 varobj_set_frozen (struct varobj *var, int frozen)
659 {
660 /* When a variable is unfrozen, we don't fetch its value.
661 The 'not_fetched' flag remains set, so next -var-update
662 won't complain.
663
664 We don't fetch the value, because for structures the client
665 should do -var-update anyway. It would be bad to have different
666 client-size logic for structure and other types. */
667 var->frozen = frozen;
668 }
669
670 int
671 varobj_get_frozen (const struct varobj *var)
672 {
673 return var->frozen;
674 }
675
676 /* A helper function that restricts a range to what is actually
677 available in a VEC. This follows the usual rules for the meaning
678 of FROM and TO -- if either is negative, the entire range is
679 used. */
680
681 void
682 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
683 {
684 if (*from < 0 || *to < 0)
685 {
686 *from = 0;
687 *to = VEC_length (varobj_p, children);
688 }
689 else
690 {
691 if (*from > VEC_length (varobj_p, children))
692 *from = VEC_length (varobj_p, children);
693 if (*to > VEC_length (varobj_p, children))
694 *to = VEC_length (varobj_p, children);
695 if (*from > *to)
696 *from = *to;
697 }
698 }
699
700 /* A helper for update_dynamic_varobj_children that installs a new
701 child when needed. */
702
703 static void
704 install_dynamic_child (struct varobj *var,
705 VEC (varobj_p) **changed,
706 VEC (varobj_p) **type_changed,
707 VEC (varobj_p) **newobj,
708 VEC (varobj_p) **unchanged,
709 int *cchanged,
710 int index,
711 struct varobj_item *item)
712 {
713 if (VEC_length (varobj_p, var->children) < index + 1)
714 {
715 /* There's no child yet. */
716 struct varobj *child = varobj_add_child (var, item);
717
718 if (newobj)
719 {
720 VEC_safe_push (varobj_p, *newobj, child);
721 *cchanged = 1;
722 }
723 }
724 else
725 {
726 varobj_p existing = VEC_index (varobj_p, var->children, index);
727 int type_updated = update_type_if_necessary (existing, item->value);
728
729 if (type_updated)
730 {
731 if (type_changed)
732 VEC_safe_push (varobj_p, *type_changed, existing);
733 }
734 if (install_new_value (existing, item->value, 0))
735 {
736 if (!type_updated && changed)
737 VEC_safe_push (varobj_p, *changed, existing);
738 }
739 else if (!type_updated && unchanged)
740 VEC_safe_push (varobj_p, *unchanged, existing);
741 }
742 }
743
744 #if HAVE_PYTHON
745
746 static int
747 dynamic_varobj_has_child_method (const struct varobj *var)
748 {
749 struct cleanup *back_to;
750 PyObject *printer = var->dynamic->pretty_printer;
751 int result;
752
753 if (!gdb_python_initialized)
754 return 0;
755
756 back_to = varobj_ensure_python_env (var);
757 result = PyObject_HasAttr (printer, gdbpy_children_cst);
758 do_cleanups (back_to);
759 return result;
760 }
761 #endif
762
763 /* A factory for creating dynamic varobj's iterators. Returns an
764 iterator object suitable for iterating over VAR's children. */
765
766 static struct varobj_iter *
767 varobj_get_iterator (struct varobj *var)
768 {
769 #if HAVE_PYTHON
770 if (var->dynamic->pretty_printer)
771 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
772 #endif
773
774 gdb_assert_not_reached (_("\
775 requested an iterator from a non-dynamic varobj"));
776 }
777
778 /* Release and clear VAR's saved item, if any. */
779
780 static void
781 varobj_clear_saved_item (struct varobj_dynamic *var)
782 {
783 if (var->saved_item != NULL)
784 {
785 value_free (var->saved_item->value);
786 xfree (var->saved_item);
787 var->saved_item = NULL;
788 }
789 }
790
791 static int
792 update_dynamic_varobj_children (struct varobj *var,
793 VEC (varobj_p) **changed,
794 VEC (varobj_p) **type_changed,
795 VEC (varobj_p) **newobj,
796 VEC (varobj_p) **unchanged,
797 int *cchanged,
798 int update_children,
799 int from,
800 int to)
801 {
802 int i;
803
804 *cchanged = 0;
805
806 if (update_children || var->dynamic->child_iter == NULL)
807 {
808 varobj_iter_delete (var->dynamic->child_iter);
809 var->dynamic->child_iter = varobj_get_iterator (var);
810
811 varobj_clear_saved_item (var->dynamic);
812
813 i = 0;
814
815 if (var->dynamic->child_iter == NULL)
816 return 0;
817 }
818 else
819 i = VEC_length (varobj_p, var->children);
820
821 /* We ask for one extra child, so that MI can report whether there
822 are more children. */
823 for (; to < 0 || i < to + 1; ++i)
824 {
825 varobj_item *item;
826
827 /* See if there was a leftover from last time. */
828 if (var->dynamic->saved_item != NULL)
829 {
830 item = var->dynamic->saved_item;
831 var->dynamic->saved_item = NULL;
832 }
833 else
834 {
835 item = varobj_iter_next (var->dynamic->child_iter);
836 /* Release vitem->value so its lifetime is not bound to the
837 execution of a command. */
838 if (item != NULL && item->value != NULL)
839 release_value_or_incref (item->value);
840 }
841
842 if (item == NULL)
843 {
844 /* Iteration is done. Remove iterator from VAR. */
845 varobj_iter_delete (var->dynamic->child_iter);
846 var->dynamic->child_iter = NULL;
847 break;
848 }
849 /* We don't want to push the extra child on any report list. */
850 if (to < 0 || i < to)
851 {
852 int can_mention = from < 0 || i >= from;
853
854 install_dynamic_child (var, can_mention ? changed : NULL,
855 can_mention ? type_changed : NULL,
856 can_mention ? newobj : NULL,
857 can_mention ? unchanged : NULL,
858 can_mention ? cchanged : NULL, i,
859 item);
860
861 xfree (item);
862 }
863 else
864 {
865 var->dynamic->saved_item = item;
866
867 /* We want to truncate the child list just before this
868 element. */
869 break;
870 }
871 }
872
873 if (i < VEC_length (varobj_p, var->children))
874 {
875 int j;
876
877 *cchanged = 1;
878 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
879 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
880 VEC_truncate (varobj_p, var->children, i);
881 }
882
883 /* If there are fewer children than requested, note that the list of
884 children changed. */
885 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
886 *cchanged = 1;
887
888 var->num_children = VEC_length (varobj_p, var->children);
889
890 return 1;
891 }
892
893 int
894 varobj_get_num_children (struct varobj *var)
895 {
896 if (var->num_children == -1)
897 {
898 if (varobj_is_dynamic_p (var))
899 {
900 int dummy;
901
902 /* If we have a dynamic varobj, don't report -1 children.
903 So, try to fetch some children first. */
904 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
905 0, 0, 0);
906 }
907 else
908 var->num_children = number_of_children (var);
909 }
910
911 return var->num_children >= 0 ? var->num_children : 0;
912 }
913
914 /* Creates a list of the immediate children of a variable object;
915 the return code is the number of such children or -1 on error. */
916
917 VEC (varobj_p)*
918 varobj_list_children (struct varobj *var, int *from, int *to)
919 {
920 char *name;
921 int i, children_changed;
922
923 var->dynamic->children_requested = 1;
924
925 if (varobj_is_dynamic_p (var))
926 {
927 /* This, in theory, can result in the number of children changing without
928 frontend noticing. But well, calling -var-list-children on the same
929 varobj twice is not something a sane frontend would do. */
930 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
931 &children_changed, 0, 0, *to);
932 varobj_restrict_range (var->children, from, to);
933 return var->children;
934 }
935
936 if (var->num_children == -1)
937 var->num_children = number_of_children (var);
938
939 /* If that failed, give up. */
940 if (var->num_children == -1)
941 return var->children;
942
943 /* If we're called when the list of children is not yet initialized,
944 allocate enough elements in it. */
945 while (VEC_length (varobj_p, var->children) < var->num_children)
946 VEC_safe_push (varobj_p, var->children, NULL);
947
948 for (i = 0; i < var->num_children; i++)
949 {
950 varobj_p existing = VEC_index (varobj_p, var->children, i);
951
952 if (existing == NULL)
953 {
954 /* Either it's the first call to varobj_list_children for
955 this variable object, and the child was never created,
956 or it was explicitly deleted by the client. */
957 name = name_of_child (var, i);
958 existing = create_child (var, i, name);
959 VEC_replace (varobj_p, var->children, i, existing);
960 }
961 }
962
963 varobj_restrict_range (var->children, from, to);
964 return var->children;
965 }
966
967 static struct varobj *
968 varobj_add_child (struct varobj *var, struct varobj_item *item)
969 {
970 varobj_p v = create_child_with_value (var,
971 VEC_length (varobj_p, var->children),
972 item);
973
974 VEC_safe_push (varobj_p, var->children, v);
975 return v;
976 }
977
978 /* Obtain the type of an object Variable as a string similar to the one gdb
979 prints on the console. The caller is responsible for freeing the string.
980 */
981
982 char *
983 varobj_get_type (struct varobj *var)
984 {
985 /* For the "fake" variables, do not return a type. (Its type is
986 NULL, too.)
987 Do not return a type for invalid variables as well. */
988 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
989 return NULL;
990
991 return type_to_string (var->type);
992 }
993
994 /* Obtain the type of an object variable. */
995
996 struct type *
997 varobj_get_gdb_type (const struct varobj *var)
998 {
999 return var->type;
1000 }
1001
1002 /* Is VAR a path expression parent, i.e., can it be used to construct
1003 a valid path expression? */
1004
1005 static int
1006 is_path_expr_parent (const struct varobj *var)
1007 {
1008 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1009 return var->root->lang_ops->is_path_expr_parent (var);
1010 }
1011
1012 /* Is VAR a path expression parent, i.e., can it be used to construct
1013 a valid path expression? By default we assume any VAR can be a path
1014 parent. */
1015
1016 int
1017 varobj_default_is_path_expr_parent (const struct varobj *var)
1018 {
1019 return 1;
1020 }
1021
1022 /* Return the path expression parent for VAR. */
1023
1024 const struct varobj *
1025 varobj_get_path_expr_parent (const struct varobj *var)
1026 {
1027 const struct varobj *parent = var;
1028
1029 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1030 parent = parent->parent;
1031
1032 return parent;
1033 }
1034
1035 /* Return a pointer to the full rooted expression of varobj VAR.
1036 If it has not been computed yet, compute it. */
1037 char *
1038 varobj_get_path_expr (const struct varobj *var)
1039 {
1040 if (var->path_expr == NULL)
1041 {
1042 /* For root varobjs, we initialize path_expr
1043 when creating varobj, so here it should be
1044 child varobj. */
1045 struct varobj *mutable_var = (struct varobj *) var;
1046 gdb_assert (!is_root_p (var));
1047
1048 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
1049 }
1050
1051 return var->path_expr;
1052 }
1053
1054 const struct language_defn *
1055 varobj_get_language (const struct varobj *var)
1056 {
1057 return var->root->exp->language_defn;
1058 }
1059
1060 int
1061 varobj_get_attributes (const struct varobj *var)
1062 {
1063 int attributes = 0;
1064
1065 if (varobj_editable_p (var))
1066 /* FIXME: define masks for attributes. */
1067 attributes |= 0x00000001; /* Editable */
1068
1069 return attributes;
1070 }
1071
1072 /* Return true if VAR is a dynamic varobj. */
1073
1074 int
1075 varobj_is_dynamic_p (const struct varobj *var)
1076 {
1077 return var->dynamic->pretty_printer != NULL;
1078 }
1079
1080 char *
1081 varobj_get_formatted_value (struct varobj *var,
1082 enum varobj_display_formats format)
1083 {
1084 return my_value_of_variable (var, format);
1085 }
1086
1087 char *
1088 varobj_get_value (struct varobj *var)
1089 {
1090 return my_value_of_variable (var, var->format);
1091 }
1092
1093 /* Set the value of an object variable (if it is editable) to the
1094 value of the given expression. */
1095 /* Note: Invokes functions that can call error(). */
1096
1097 int
1098 varobj_set_value (struct varobj *var, char *expression)
1099 {
1100 struct value *val = NULL; /* Initialize to keep gcc happy. */
1101 /* The argument "expression" contains the variable's new value.
1102 We need to first construct a legal expression for this -- ugh! */
1103 /* Does this cover all the bases? */
1104 struct expression *exp;
1105 struct value *value = NULL; /* Initialize to keep gcc happy. */
1106 int saved_input_radix = input_radix;
1107 const char *s = expression;
1108
1109 gdb_assert (varobj_editable_p (var));
1110
1111 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1112 exp = parse_exp_1 (&s, 0, 0, 0);
1113 TRY
1114 {
1115 value = evaluate_expression (exp);
1116 }
1117
1118 CATCH (except, RETURN_MASK_ERROR)
1119 {
1120 /* We cannot proceed without a valid expression. */
1121 xfree (exp);
1122 return 0;
1123 }
1124 END_CATCH
1125
1126 /* All types that are editable must also be changeable. */
1127 gdb_assert (varobj_value_is_changeable_p (var));
1128
1129 /* The value of a changeable variable object must not be lazy. */
1130 gdb_assert (!value_lazy (var->value));
1131
1132 /* Need to coerce the input. We want to check if the
1133 value of the variable object will be different
1134 after assignment, and the first thing value_assign
1135 does is coerce the input.
1136 For example, if we are assigning an array to a pointer variable we
1137 should compare the pointer with the array's address, not with the
1138 array's content. */
1139 value = coerce_array (value);
1140
1141 /* The new value may be lazy. value_assign, or
1142 rather value_contents, will take care of this. */
1143 TRY
1144 {
1145 val = value_assign (var->value, value);
1146 }
1147
1148 CATCH (except, RETURN_MASK_ERROR)
1149 {
1150 return 0;
1151 }
1152 END_CATCH
1153
1154 /* If the value has changed, record it, so that next -var-update can
1155 report this change. If a variable had a value of '1', we've set it
1156 to '333' and then set again to '1', when -var-update will report this
1157 variable as changed -- because the first assignment has set the
1158 'updated' flag. There's no need to optimize that, because return value
1159 of -var-update should be considered an approximation. */
1160 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1161 input_radix = saved_input_radix;
1162 return 1;
1163 }
1164
1165 #if HAVE_PYTHON
1166
1167 /* A helper function to install a constructor function and visualizer
1168 in a varobj_dynamic. */
1169
1170 static void
1171 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1172 PyObject *visualizer)
1173 {
1174 Py_XDECREF (var->constructor);
1175 var->constructor = constructor;
1176
1177 Py_XDECREF (var->pretty_printer);
1178 var->pretty_printer = visualizer;
1179
1180 varobj_iter_delete (var->child_iter);
1181 var->child_iter = NULL;
1182 }
1183
1184 /* Install the default visualizer for VAR. */
1185
1186 static void
1187 install_default_visualizer (struct varobj *var)
1188 {
1189 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1190 if (CPLUS_FAKE_CHILD (var))
1191 return;
1192
1193 if (pretty_printing)
1194 {
1195 PyObject *pretty_printer = NULL;
1196
1197 if (var->value)
1198 {
1199 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1200 if (! pretty_printer)
1201 {
1202 gdbpy_print_stack ();
1203 error (_("Cannot instantiate printer for default visualizer"));
1204 }
1205 }
1206
1207 if (pretty_printer == Py_None)
1208 {
1209 Py_DECREF (pretty_printer);
1210 pretty_printer = NULL;
1211 }
1212
1213 install_visualizer (var->dynamic, NULL, pretty_printer);
1214 }
1215 }
1216
1217 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1218 make a new object. */
1219
1220 static void
1221 construct_visualizer (struct varobj *var, PyObject *constructor)
1222 {
1223 PyObject *pretty_printer;
1224
1225 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1226 if (CPLUS_FAKE_CHILD (var))
1227 return;
1228
1229 Py_INCREF (constructor);
1230 if (constructor == Py_None)
1231 pretty_printer = NULL;
1232 else
1233 {
1234 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1235 if (! pretty_printer)
1236 {
1237 gdbpy_print_stack ();
1238 Py_DECREF (constructor);
1239 constructor = Py_None;
1240 Py_INCREF (constructor);
1241 }
1242
1243 if (pretty_printer == Py_None)
1244 {
1245 Py_DECREF (pretty_printer);
1246 pretty_printer = NULL;
1247 }
1248 }
1249
1250 install_visualizer (var->dynamic, constructor, pretty_printer);
1251 }
1252
1253 #endif /* HAVE_PYTHON */
1254
1255 /* A helper function for install_new_value. This creates and installs
1256 a visualizer for VAR, if appropriate. */
1257
1258 static void
1259 install_new_value_visualizer (struct varobj *var)
1260 {
1261 #if HAVE_PYTHON
1262 /* If the constructor is None, then we want the raw value. If VAR
1263 does not have a value, just skip this. */
1264 if (!gdb_python_initialized)
1265 return;
1266
1267 if (var->dynamic->constructor != Py_None && var->value != NULL)
1268 {
1269 struct cleanup *cleanup;
1270
1271 cleanup = varobj_ensure_python_env (var);
1272
1273 if (var->dynamic->constructor == NULL)
1274 install_default_visualizer (var);
1275 else
1276 construct_visualizer (var, var->dynamic->constructor);
1277
1278 do_cleanups (cleanup);
1279 }
1280 #else
1281 /* Do nothing. */
1282 #endif
1283 }
1284
1285 /* When using RTTI to determine variable type it may be changed in runtime when
1286 the variable value is changed. This function checks whether type of varobj
1287 VAR will change when a new value NEW_VALUE is assigned and if it is so
1288 updates the type of VAR. */
1289
1290 static int
1291 update_type_if_necessary (struct varobj *var, struct value *new_value)
1292 {
1293 if (new_value)
1294 {
1295 struct value_print_options opts;
1296
1297 get_user_print_options (&opts);
1298 if (opts.objectprint)
1299 {
1300 struct type *new_type;
1301 char *curr_type_str, *new_type_str;
1302 int type_name_changed;
1303
1304 new_type = value_actual_type (new_value, 0, 0);
1305 new_type_str = type_to_string (new_type);
1306 curr_type_str = varobj_get_type (var);
1307 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1308 xfree (curr_type_str);
1309 xfree (new_type_str);
1310
1311 if (type_name_changed)
1312 {
1313 var->type = new_type;
1314
1315 /* This information may be not valid for a new type. */
1316 varobj_delete (var, NULL, 1);
1317 VEC_free (varobj_p, var->children);
1318 var->num_children = -1;
1319 return 1;
1320 }
1321 }
1322 }
1323
1324 return 0;
1325 }
1326
1327 /* Assign a new value to a variable object. If INITIAL is non-zero,
1328 this is the first assignement after the variable object was just
1329 created, or changed type. In that case, just assign the value
1330 and return 0.
1331 Otherwise, assign the new value, and return 1 if the value is
1332 different from the current one, 0 otherwise. The comparison is
1333 done on textual representation of value. Therefore, some types
1334 need not be compared. E.g. for structures the reported value is
1335 always "{...}", so no comparison is necessary here. If the old
1336 value was NULL and new one is not, or vice versa, we always return 1.
1337
1338 The VALUE parameter should not be released -- the function will
1339 take care of releasing it when needed. */
1340 static int
1341 install_new_value (struct varobj *var, struct value *value, int initial)
1342 {
1343 int changeable;
1344 int need_to_fetch;
1345 int changed = 0;
1346 int intentionally_not_fetched = 0;
1347 char *print_value = NULL;
1348
1349 /* We need to know the varobj's type to decide if the value should
1350 be fetched or not. C++ fake children (public/protected/private)
1351 don't have a type. */
1352 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1353 changeable = varobj_value_is_changeable_p (var);
1354
1355 /* If the type has custom visualizer, we consider it to be always
1356 changeable. FIXME: need to make sure this behaviour will not
1357 mess up read-sensitive values. */
1358 if (var->dynamic->pretty_printer != NULL)
1359 changeable = 1;
1360
1361 need_to_fetch = changeable;
1362
1363 /* We are not interested in the address of references, and given
1364 that in C++ a reference is not rebindable, it cannot
1365 meaningfully change. So, get hold of the real value. */
1366 if (value)
1367 value = coerce_ref (value);
1368
1369 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1370 /* For unions, we need to fetch the value implicitly because
1371 of implementation of union member fetch. When gdb
1372 creates a value for a field and the value of the enclosing
1373 structure is not lazy, it immediately copies the necessary
1374 bytes from the enclosing values. If the enclosing value is
1375 lazy, the call to value_fetch_lazy on the field will read
1376 the data from memory. For unions, that means we'll read the
1377 same memory more than once, which is not desirable. So
1378 fetch now. */
1379 need_to_fetch = 1;
1380
1381 /* The new value might be lazy. If the type is changeable,
1382 that is we'll be comparing values of this type, fetch the
1383 value now. Otherwise, on the next update the old value
1384 will be lazy, which means we've lost that old value. */
1385 if (need_to_fetch && value && value_lazy (value))
1386 {
1387 const struct varobj *parent = var->parent;
1388 int frozen = var->frozen;
1389
1390 for (; !frozen && parent; parent = parent->parent)
1391 frozen |= parent->frozen;
1392
1393 if (frozen && initial)
1394 {
1395 /* For variables that are frozen, or are children of frozen
1396 variables, we don't do fetch on initial assignment.
1397 For non-initial assignemnt we do the fetch, since it means we're
1398 explicitly asked to compare the new value with the old one. */
1399 intentionally_not_fetched = 1;
1400 }
1401 else
1402 {
1403
1404 TRY
1405 {
1406 value_fetch_lazy (value);
1407 }
1408
1409 CATCH (except, RETURN_MASK_ERROR)
1410 {
1411 /* Set the value to NULL, so that for the next -var-update,
1412 we don't try to compare the new value with this value,
1413 that we couldn't even read. */
1414 value = NULL;
1415 }
1416 END_CATCH
1417 }
1418 }
1419
1420 /* Get a reference now, before possibly passing it to any Python
1421 code that might release it. */
1422 if (value != NULL)
1423 value_incref (value);
1424
1425 /* Below, we'll be comparing string rendering of old and new
1426 values. Don't get string rendering if the value is
1427 lazy -- if it is, the code above has decided that the value
1428 should not be fetched. */
1429 if (value != NULL && !value_lazy (value)
1430 && var->dynamic->pretty_printer == NULL)
1431 print_value = varobj_value_get_print_value (value, var->format, var);
1432
1433 /* If the type is changeable, compare the old and the new values.
1434 If this is the initial assignment, we don't have any old value
1435 to compare with. */
1436 if (!initial && changeable)
1437 {
1438 /* If the value of the varobj was changed by -var-set-value,
1439 then the value in the varobj and in the target is the same.
1440 However, that value is different from the value that the
1441 varobj had after the previous -var-update. So need to the
1442 varobj as changed. */
1443 if (var->updated)
1444 {
1445 changed = 1;
1446 }
1447 else if (var->dynamic->pretty_printer == NULL)
1448 {
1449 /* Try to compare the values. That requires that both
1450 values are non-lazy. */
1451 if (var->not_fetched && value_lazy (var->value))
1452 {
1453 /* This is a frozen varobj and the value was never read.
1454 Presumably, UI shows some "never read" indicator.
1455 Now that we've fetched the real value, we need to report
1456 this varobj as changed so that UI can show the real
1457 value. */
1458 changed = 1;
1459 }
1460 else if (var->value == NULL && value == NULL)
1461 /* Equal. */
1462 ;
1463 else if (var->value == NULL || value == NULL)
1464 {
1465 changed = 1;
1466 }
1467 else
1468 {
1469 gdb_assert (!value_lazy (var->value));
1470 gdb_assert (!value_lazy (value));
1471
1472 gdb_assert (var->print_value != NULL && print_value != NULL);
1473 if (strcmp (var->print_value, print_value) != 0)
1474 changed = 1;
1475 }
1476 }
1477 }
1478
1479 if (!initial && !changeable)
1480 {
1481 /* For values that are not changeable, we don't compare the values.
1482 However, we want to notice if a value was not NULL and now is NULL,
1483 or vise versa, so that we report when top-level varobjs come in scope
1484 and leave the scope. */
1485 changed = (var->value != NULL) != (value != NULL);
1486 }
1487
1488 /* We must always keep the new value, since children depend on it. */
1489 if (var->value != NULL && var->value != value)
1490 value_free (var->value);
1491 var->value = value;
1492 if (value && value_lazy (value) && intentionally_not_fetched)
1493 var->not_fetched = 1;
1494 else
1495 var->not_fetched = 0;
1496 var->updated = 0;
1497
1498 install_new_value_visualizer (var);
1499
1500 /* If we installed a pretty-printer, re-compare the printed version
1501 to see if the variable changed. */
1502 if (var->dynamic->pretty_printer != NULL)
1503 {
1504 xfree (print_value);
1505 print_value = varobj_value_get_print_value (var->value, var->format,
1506 var);
1507 if ((var->print_value == NULL && print_value != NULL)
1508 || (var->print_value != NULL && print_value == NULL)
1509 || (var->print_value != NULL && print_value != NULL
1510 && strcmp (var->print_value, print_value) != 0))
1511 changed = 1;
1512 }
1513 if (var->print_value)
1514 xfree (var->print_value);
1515 var->print_value = print_value;
1516
1517 gdb_assert (!var->value || value_type (var->value));
1518
1519 return changed;
1520 }
1521
1522 /* Return the requested range for a varobj. VAR is the varobj. FROM
1523 and TO are out parameters; *FROM and *TO will be set to the
1524 selected sub-range of VAR. If no range was selected using
1525 -var-set-update-range, then both will be -1. */
1526 void
1527 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1528 {
1529 *from = var->from;
1530 *to = var->to;
1531 }
1532
1533 /* Set the selected sub-range of children of VAR to start at index
1534 FROM and end at index TO. If either FROM or TO is less than zero,
1535 this is interpreted as a request for all children. */
1536 void
1537 varobj_set_child_range (struct varobj *var, int from, int to)
1538 {
1539 var->from = from;
1540 var->to = to;
1541 }
1542
1543 void
1544 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1545 {
1546 #if HAVE_PYTHON
1547 PyObject *mainmod, *globals, *constructor;
1548 struct cleanup *back_to;
1549
1550 if (!gdb_python_initialized)
1551 return;
1552
1553 back_to = varobj_ensure_python_env (var);
1554
1555 mainmod = PyImport_AddModule ("__main__");
1556 globals = PyModule_GetDict (mainmod);
1557 Py_INCREF (globals);
1558 make_cleanup_py_decref (globals);
1559
1560 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1561
1562 if (! constructor)
1563 {
1564 gdbpy_print_stack ();
1565 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1566 }
1567
1568 construct_visualizer (var, constructor);
1569 Py_XDECREF (constructor);
1570
1571 /* If there are any children now, wipe them. */
1572 varobj_delete (var, NULL, 1 /* children only */);
1573 var->num_children = -1;
1574
1575 do_cleanups (back_to);
1576 #else
1577 error (_("Python support required"));
1578 #endif
1579 }
1580
1581 /* If NEW_VALUE is the new value of the given varobj (var), return
1582 non-zero if var has mutated. In other words, if the type of
1583 the new value is different from the type of the varobj's old
1584 value.
1585
1586 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1587
1588 static int
1589 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1590 struct type *new_type)
1591 {
1592 /* If we haven't previously computed the number of children in var,
1593 it does not matter from the front-end's perspective whether
1594 the type has mutated or not. For all intents and purposes,
1595 it has not mutated. */
1596 if (var->num_children < 0)
1597 return 0;
1598
1599 if (var->root->lang_ops->value_has_mutated)
1600 {
1601 /* The varobj module, when installing new values, explicitly strips
1602 references, saying that we're not interested in those addresses.
1603 But detection of mutation happens before installing the new
1604 value, so our value may be a reference that we need to strip
1605 in order to remain consistent. */
1606 if (new_value != NULL)
1607 new_value = coerce_ref (new_value);
1608 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1609 }
1610 else
1611 return 0;
1612 }
1613
1614 /* Update the values for a variable and its children. This is a
1615 two-pronged attack. First, re-parse the value for the root's
1616 expression to see if it's changed. Then go all the way
1617 through its children, reconstructing them and noting if they've
1618 changed.
1619
1620 The EXPLICIT parameter specifies if this call is result
1621 of MI request to update this specific variable, or
1622 result of implicit -var-update *. For implicit request, we don't
1623 update frozen variables.
1624
1625 NOTE: This function may delete the caller's varobj. If it
1626 returns TYPE_CHANGED, then it has done this and VARP will be modified
1627 to point to the new varobj. */
1628
1629 VEC(varobj_update_result) *
1630 varobj_update (struct varobj **varp, int is_explicit)
1631 {
1632 int type_changed = 0;
1633 int i;
1634 struct value *newobj;
1635 VEC (varobj_update_result) *stack = NULL;
1636 VEC (varobj_update_result) *result = NULL;
1637
1638 /* Frozen means frozen -- we don't check for any change in
1639 this varobj, including its going out of scope, or
1640 changing type. One use case for frozen varobjs is
1641 retaining previously evaluated expressions, and we don't
1642 want them to be reevaluated at all. */
1643 if (!is_explicit && (*varp)->frozen)
1644 return result;
1645
1646 if (!(*varp)->root->is_valid)
1647 {
1648 varobj_update_result r = {0};
1649
1650 r.varobj = *varp;
1651 r.status = VAROBJ_INVALID;
1652 VEC_safe_push (varobj_update_result, result, &r);
1653 return result;
1654 }
1655
1656 if ((*varp)->root->rootvar == *varp)
1657 {
1658 varobj_update_result r = {0};
1659
1660 r.varobj = *varp;
1661 r.status = VAROBJ_IN_SCOPE;
1662
1663 /* Update the root variable. value_of_root can return NULL
1664 if the variable is no longer around, i.e. we stepped out of
1665 the frame in which a local existed. We are letting the
1666 value_of_root variable dispose of the varobj if the type
1667 has changed. */
1668 newobj = value_of_root (varp, &type_changed);
1669 if (update_type_if_necessary(*varp, newobj))
1670 type_changed = 1;
1671 r.varobj = *varp;
1672 r.type_changed = type_changed;
1673 if (install_new_value ((*varp), newobj, type_changed))
1674 r.changed = 1;
1675
1676 if (newobj == NULL)
1677 r.status = VAROBJ_NOT_IN_SCOPE;
1678 r.value_installed = 1;
1679
1680 if (r.status == VAROBJ_NOT_IN_SCOPE)
1681 {
1682 if (r.type_changed || r.changed)
1683 VEC_safe_push (varobj_update_result, result, &r);
1684 return result;
1685 }
1686
1687 VEC_safe_push (varobj_update_result, stack, &r);
1688 }
1689 else
1690 {
1691 varobj_update_result r = {0};
1692
1693 r.varobj = *varp;
1694 VEC_safe_push (varobj_update_result, stack, &r);
1695 }
1696
1697 /* Walk through the children, reconstructing them all. */
1698 while (!VEC_empty (varobj_update_result, stack))
1699 {
1700 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1701 struct varobj *v = r.varobj;
1702
1703 VEC_pop (varobj_update_result, stack);
1704
1705 /* Update this variable, unless it's a root, which is already
1706 updated. */
1707 if (!r.value_installed)
1708 {
1709 struct type *new_type;
1710
1711 newobj = value_of_child (v->parent, v->index);
1712 if (update_type_if_necessary(v, newobj))
1713 r.type_changed = 1;
1714 if (newobj)
1715 new_type = value_type (newobj);
1716 else
1717 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1718
1719 if (varobj_value_has_mutated (v, newobj, new_type))
1720 {
1721 /* The children are no longer valid; delete them now.
1722 Report the fact that its type changed as well. */
1723 varobj_delete (v, NULL, 1 /* only_children */);
1724 v->num_children = -1;
1725 v->to = -1;
1726 v->from = -1;
1727 v->type = new_type;
1728 r.type_changed = 1;
1729 }
1730
1731 if (install_new_value (v, newobj, r.type_changed))
1732 {
1733 r.changed = 1;
1734 v->updated = 0;
1735 }
1736 }
1737
1738 /* We probably should not get children of a dynamic varobj, but
1739 for which -var-list-children was never invoked. */
1740 if (varobj_is_dynamic_p (v))
1741 {
1742 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1743 VEC (varobj_p) *newobj = 0;
1744 int i, children_changed = 0;
1745
1746 if (v->frozen)
1747 continue;
1748
1749 if (!v->dynamic->children_requested)
1750 {
1751 int dummy;
1752
1753 /* If we initially did not have potential children, but
1754 now we do, consider the varobj as changed.
1755 Otherwise, if children were never requested, consider
1756 it as unchanged -- presumably, such varobj is not yet
1757 expanded in the UI, so we need not bother getting
1758 it. */
1759 if (!varobj_has_more (v, 0))
1760 {
1761 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1762 &dummy, 0, 0, 0);
1763 if (varobj_has_more (v, 0))
1764 r.changed = 1;
1765 }
1766
1767 if (r.changed)
1768 VEC_safe_push (varobj_update_result, result, &r);
1769
1770 continue;
1771 }
1772
1773 /* If update_dynamic_varobj_children returns 0, then we have
1774 a non-conforming pretty-printer, so we skip it. */
1775 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1776 &unchanged, &children_changed, 1,
1777 v->from, v->to))
1778 {
1779 if (children_changed || newobj)
1780 {
1781 r.children_changed = 1;
1782 r.newobj = newobj;
1783 }
1784 /* Push in reverse order so that the first child is
1785 popped from the work stack first, and so will be
1786 added to result first. This does not affect
1787 correctness, just "nicer". */
1788 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1789 {
1790 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1791 varobj_update_result r = {0};
1792
1793 /* Type may change only if value was changed. */
1794 r.varobj = tmp;
1795 r.changed = 1;
1796 r.type_changed = 1;
1797 r.value_installed = 1;
1798 VEC_safe_push (varobj_update_result, stack, &r);
1799 }
1800 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1801 {
1802 varobj_p tmp = VEC_index (varobj_p, changed, i);
1803 varobj_update_result r = {0};
1804
1805 r.varobj = tmp;
1806 r.changed = 1;
1807 r.value_installed = 1;
1808 VEC_safe_push (varobj_update_result, stack, &r);
1809 }
1810 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1811 {
1812 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1813
1814 if (!tmp->frozen)
1815 {
1816 varobj_update_result r = {0};
1817
1818 r.varobj = tmp;
1819 r.value_installed = 1;
1820 VEC_safe_push (varobj_update_result, stack, &r);
1821 }
1822 }
1823 if (r.changed || r.children_changed)
1824 VEC_safe_push (varobj_update_result, result, &r);
1825
1826 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1827 because NEW has been put into the result vector. */
1828 VEC_free (varobj_p, changed);
1829 VEC_free (varobj_p, type_changed);
1830 VEC_free (varobj_p, unchanged);
1831
1832 continue;
1833 }
1834 }
1835
1836 /* Push any children. Use reverse order so that the first
1837 child is popped from the work stack first, and so
1838 will be added to result first. This does not
1839 affect correctness, just "nicer". */
1840 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1841 {
1842 varobj_p c = VEC_index (varobj_p, v->children, i);
1843
1844 /* Child may be NULL if explicitly deleted by -var-delete. */
1845 if (c != NULL && !c->frozen)
1846 {
1847 varobj_update_result r = {0};
1848
1849 r.varobj = c;
1850 VEC_safe_push (varobj_update_result, stack, &r);
1851 }
1852 }
1853
1854 if (r.changed || r.type_changed)
1855 VEC_safe_push (varobj_update_result, result, &r);
1856 }
1857
1858 VEC_free (varobj_update_result, stack);
1859
1860 return result;
1861 }
1862 \f
1863
1864 /* Helper functions */
1865
1866 /*
1867 * Variable object construction/destruction
1868 */
1869
1870 static int
1871 delete_variable (struct cpstack **resultp, struct varobj *var,
1872 int only_children_p)
1873 {
1874 int delcount = 0;
1875
1876 delete_variable_1 (resultp, &delcount, var,
1877 only_children_p, 1 /* remove_from_parent_p */ );
1878
1879 return delcount;
1880 }
1881
1882 /* Delete the variable object VAR and its children. */
1883 /* IMPORTANT NOTE: If we delete a variable which is a child
1884 and the parent is not removed we dump core. It must be always
1885 initially called with remove_from_parent_p set. */
1886 static void
1887 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1888 struct varobj *var, int only_children_p,
1889 int remove_from_parent_p)
1890 {
1891 int i;
1892
1893 /* Delete any children of this variable, too. */
1894 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1895 {
1896 varobj_p child = VEC_index (varobj_p, var->children, i);
1897
1898 if (!child)
1899 continue;
1900 if (!remove_from_parent_p)
1901 child->parent = NULL;
1902 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1903 }
1904 VEC_free (varobj_p, var->children);
1905
1906 /* if we were called to delete only the children we are done here. */
1907 if (only_children_p)
1908 return;
1909
1910 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1911 /* If the name is null, this is a temporary variable, that has not
1912 yet been installed, don't report it, it belongs to the caller... */
1913 if (var->obj_name != NULL)
1914 {
1915 cppush (resultp, xstrdup (var->obj_name));
1916 *delcountp = *delcountp + 1;
1917 }
1918
1919 /* If this variable has a parent, remove it from its parent's list. */
1920 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1921 (as indicated by remove_from_parent_p) we don't bother doing an
1922 expensive list search to find the element to remove when we are
1923 discarding the list afterwards. */
1924 if ((remove_from_parent_p) && (var->parent != NULL))
1925 {
1926 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1927 }
1928
1929 if (var->obj_name != NULL)
1930 uninstall_variable (var);
1931
1932 /* Free memory associated with this variable. */
1933 free_variable (var);
1934 }
1935
1936 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1937 static int
1938 install_variable (struct varobj *var)
1939 {
1940 struct vlist *cv;
1941 struct vlist *newvl;
1942 const char *chp;
1943 unsigned int index = 0;
1944 unsigned int i = 1;
1945
1946 for (chp = var->obj_name; *chp; chp++)
1947 {
1948 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1949 }
1950
1951 cv = *(varobj_table + index);
1952 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1953 cv = cv->next;
1954
1955 if (cv != NULL)
1956 error (_("Duplicate variable object name"));
1957
1958 /* Add varobj to hash table. */
1959 newvl = XNEW (struct vlist);
1960 newvl->next = *(varobj_table + index);
1961 newvl->var = var;
1962 *(varobj_table + index) = newvl;
1963
1964 /* If root, add varobj to root list. */
1965 if (is_root_p (var))
1966 {
1967 /* Add to list of root variables. */
1968 if (rootlist == NULL)
1969 var->root->next = NULL;
1970 else
1971 var->root->next = rootlist;
1972 rootlist = var->root;
1973 }
1974
1975 return 1; /* OK */
1976 }
1977
1978 /* Unistall the object VAR. */
1979 static void
1980 uninstall_variable (struct varobj *var)
1981 {
1982 struct vlist *cv;
1983 struct vlist *prev;
1984 struct varobj_root *cr;
1985 struct varobj_root *prer;
1986 const char *chp;
1987 unsigned int index = 0;
1988 unsigned int i = 1;
1989
1990 /* Remove varobj from hash table. */
1991 for (chp = var->obj_name; *chp; chp++)
1992 {
1993 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1994 }
1995
1996 cv = *(varobj_table + index);
1997 prev = NULL;
1998 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1999 {
2000 prev = cv;
2001 cv = cv->next;
2002 }
2003
2004 if (varobjdebug)
2005 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2006
2007 if (cv == NULL)
2008 {
2009 warning
2010 ("Assertion failed: Could not find variable object \"%s\" to delete",
2011 var->obj_name);
2012 return;
2013 }
2014
2015 if (prev == NULL)
2016 *(varobj_table + index) = cv->next;
2017 else
2018 prev->next = cv->next;
2019
2020 xfree (cv);
2021
2022 /* If root, remove varobj from root list. */
2023 if (is_root_p (var))
2024 {
2025 /* Remove from list of root variables. */
2026 if (rootlist == var->root)
2027 rootlist = var->root->next;
2028 else
2029 {
2030 prer = NULL;
2031 cr = rootlist;
2032 while ((cr != NULL) && (cr->rootvar != var))
2033 {
2034 prer = cr;
2035 cr = cr->next;
2036 }
2037 if (cr == NULL)
2038 {
2039 warning (_("Assertion failed: Could not find "
2040 "varobj \"%s\" in root list"),
2041 var->obj_name);
2042 return;
2043 }
2044 if (prer == NULL)
2045 rootlist = NULL;
2046 else
2047 prer->next = cr->next;
2048 }
2049 }
2050
2051 }
2052
2053 /* Create and install a child of the parent of the given name.
2054
2055 The created VAROBJ takes ownership of the allocated NAME. */
2056
2057 static struct varobj *
2058 create_child (struct varobj *parent, int index, char *name)
2059 {
2060 struct varobj_item item;
2061
2062 item.name = name;
2063 item.value = value_of_child (parent, index);
2064
2065 return create_child_with_value (parent, index, &item);
2066 }
2067
2068 static struct varobj *
2069 create_child_with_value (struct varobj *parent, int index,
2070 struct varobj_item *item)
2071 {
2072 struct varobj *child;
2073 char *childs_name;
2074
2075 child = new_variable ();
2076
2077 /* NAME is allocated by caller. */
2078 child->name = item->name;
2079 child->index = index;
2080 child->parent = parent;
2081 child->root = parent->root;
2082
2083 if (varobj_is_anonymous_child (child))
2084 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2085 else
2086 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2087 child->obj_name = childs_name;
2088
2089 install_variable (child);
2090
2091 /* Compute the type of the child. Must do this before
2092 calling install_new_value. */
2093 if (item->value != NULL)
2094 /* If the child had no evaluation errors, var->value
2095 will be non-NULL and contain a valid type. */
2096 child->type = value_actual_type (item->value, 0, NULL);
2097 else
2098 /* Otherwise, we must compute the type. */
2099 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2100 child->index);
2101 install_new_value (child, item->value, 1);
2102
2103 return child;
2104 }
2105 \f
2106
2107 /*
2108 * Miscellaneous utility functions.
2109 */
2110
2111 /* Allocate memory and initialize a new variable. */
2112 static struct varobj *
2113 new_variable (void)
2114 {
2115 struct varobj *var;
2116
2117 var = XNEW (struct varobj);
2118 var->name = NULL;
2119 var->path_expr = NULL;
2120 var->obj_name = NULL;
2121 var->index = -1;
2122 var->type = NULL;
2123 var->value = NULL;
2124 var->num_children = -1;
2125 var->parent = NULL;
2126 var->children = NULL;
2127 var->format = FORMAT_NATURAL;
2128 var->root = NULL;
2129 var->updated = 0;
2130 var->print_value = NULL;
2131 var->frozen = 0;
2132 var->not_fetched = 0;
2133 var->dynamic = XNEW (struct varobj_dynamic);
2134 var->dynamic->children_requested = 0;
2135 var->from = -1;
2136 var->to = -1;
2137 var->dynamic->constructor = 0;
2138 var->dynamic->pretty_printer = 0;
2139 var->dynamic->child_iter = 0;
2140 var->dynamic->saved_item = 0;
2141
2142 return var;
2143 }
2144
2145 /* Allocate memory and initialize a new root variable. */
2146 static struct varobj *
2147 new_root_variable (void)
2148 {
2149 struct varobj *var = new_variable ();
2150
2151 var->root = XNEW (struct varobj_root);
2152 var->root->lang_ops = NULL;
2153 var->root->exp = NULL;
2154 var->root->valid_block = NULL;
2155 var->root->frame = null_frame_id;
2156 var->root->floating = 0;
2157 var->root->rootvar = NULL;
2158 var->root->is_valid = 1;
2159
2160 return var;
2161 }
2162
2163 /* Free any allocated memory associated with VAR. */
2164 static void
2165 free_variable (struct varobj *var)
2166 {
2167 #if HAVE_PYTHON
2168 if (var->dynamic->pretty_printer != NULL)
2169 {
2170 struct cleanup *cleanup = varobj_ensure_python_env (var);
2171
2172 Py_XDECREF (var->dynamic->constructor);
2173 Py_XDECREF (var->dynamic->pretty_printer);
2174 do_cleanups (cleanup);
2175 }
2176 #endif
2177
2178 varobj_iter_delete (var->dynamic->child_iter);
2179 varobj_clear_saved_item (var->dynamic);
2180 value_free (var->value);
2181
2182 /* Free the expression if this is a root variable. */
2183 if (is_root_p (var))
2184 {
2185 xfree (var->root->exp);
2186 xfree (var->root);
2187 }
2188
2189 xfree (var->name);
2190 xfree (var->obj_name);
2191 xfree (var->print_value);
2192 xfree (var->path_expr);
2193 xfree (var->dynamic);
2194 xfree (var);
2195 }
2196
2197 static void
2198 do_free_variable_cleanup (void *var)
2199 {
2200 free_variable ((struct varobj *) var);
2201 }
2202
2203 static struct cleanup *
2204 make_cleanup_free_variable (struct varobj *var)
2205 {
2206 return make_cleanup (do_free_variable_cleanup, var);
2207 }
2208
2209 /* Return the type of the value that's stored in VAR,
2210 or that would have being stored there if the
2211 value were accessible.
2212
2213 This differs from VAR->type in that VAR->type is always
2214 the true type of the expession in the source language.
2215 The return value of this function is the type we're
2216 actually storing in varobj, and using for displaying
2217 the values and for comparing previous and new values.
2218
2219 For example, top-level references are always stripped. */
2220 struct type *
2221 varobj_get_value_type (const struct varobj *var)
2222 {
2223 struct type *type;
2224
2225 if (var->value)
2226 type = value_type (var->value);
2227 else
2228 type = var->type;
2229
2230 type = check_typedef (type);
2231
2232 if (TYPE_CODE (type) == TYPE_CODE_REF)
2233 type = get_target_type (type);
2234
2235 type = check_typedef (type);
2236
2237 return type;
2238 }
2239
2240 /* What is the default display for this variable? We assume that
2241 everything is "natural". Any exceptions? */
2242 static enum varobj_display_formats
2243 variable_default_display (struct varobj *var)
2244 {
2245 return FORMAT_NATURAL;
2246 }
2247
2248 /* FIXME: The following should be generic for any pointer. */
2249 static void
2250 cppush (struct cpstack **pstack, char *name)
2251 {
2252 struct cpstack *s;
2253
2254 s = XNEW (struct cpstack);
2255 s->name = name;
2256 s->next = *pstack;
2257 *pstack = s;
2258 }
2259
2260 /* FIXME: The following should be generic for any pointer. */
2261 static char *
2262 cppop (struct cpstack **pstack)
2263 {
2264 struct cpstack *s;
2265 char *v;
2266
2267 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2268 return NULL;
2269
2270 s = *pstack;
2271 v = s->name;
2272 *pstack = (*pstack)->next;
2273 xfree (s);
2274
2275 return v;
2276 }
2277 \f
2278 /*
2279 * Language-dependencies
2280 */
2281
2282 /* Common entry points */
2283
2284 /* Return the number of children for a given variable.
2285 The result of this function is defined by the language
2286 implementation. The number of children returned by this function
2287 is the number of children that the user will see in the variable
2288 display. */
2289 static int
2290 number_of_children (const struct varobj *var)
2291 {
2292 return (*var->root->lang_ops->number_of_children) (var);
2293 }
2294
2295 /* What is the expression for the root varobj VAR? Returns a malloc'd
2296 string. */
2297 static char *
2298 name_of_variable (const struct varobj *var)
2299 {
2300 return (*var->root->lang_ops->name_of_variable) (var);
2301 }
2302
2303 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2304 string. */
2305 static char *
2306 name_of_child (struct varobj *var, int index)
2307 {
2308 return (*var->root->lang_ops->name_of_child) (var, index);
2309 }
2310
2311 /* If frame associated with VAR can be found, switch
2312 to it and return 1. Otherwise, return 0. */
2313
2314 static int
2315 check_scope (const struct varobj *var)
2316 {
2317 struct frame_info *fi;
2318 int scope;
2319
2320 fi = frame_find_by_id (var->root->frame);
2321 scope = fi != NULL;
2322
2323 if (fi)
2324 {
2325 CORE_ADDR pc = get_frame_pc (fi);
2326
2327 if (pc < BLOCK_START (var->root->valid_block) ||
2328 pc >= BLOCK_END (var->root->valid_block))
2329 scope = 0;
2330 else
2331 select_frame (fi);
2332 }
2333 return scope;
2334 }
2335
2336 /* Helper function to value_of_root. */
2337
2338 static struct value *
2339 value_of_root_1 (struct varobj **var_handle)
2340 {
2341 struct value *new_val = NULL;
2342 struct varobj *var = *var_handle;
2343 int within_scope = 0;
2344 struct cleanup *back_to;
2345
2346 /* Only root variables can be updated... */
2347 if (!is_root_p (var))
2348 /* Not a root var. */
2349 return NULL;
2350
2351 back_to = make_cleanup_restore_current_thread ();
2352
2353 /* Determine whether the variable is still around. */
2354 if (var->root->valid_block == NULL || var->root->floating)
2355 within_scope = 1;
2356 else if (var->root->thread_id == 0)
2357 {
2358 /* The program was single-threaded when the variable object was
2359 created. Technically, it's possible that the program became
2360 multi-threaded since then, but we don't support such
2361 scenario yet. */
2362 within_scope = check_scope (var);
2363 }
2364 else
2365 {
2366 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2367
2368 if (!ptid_equal (minus_one_ptid, ptid))
2369 {
2370 switch_to_thread (ptid);
2371 within_scope = check_scope (var);
2372 }
2373 }
2374
2375 if (within_scope)
2376 {
2377
2378 /* We need to catch errors here, because if evaluate
2379 expression fails we want to just return NULL. */
2380 TRY
2381 {
2382 new_val = evaluate_expression (var->root->exp);
2383 }
2384 CATCH (except, RETURN_MASK_ERROR)
2385 {
2386 }
2387 END_CATCH
2388 }
2389
2390 do_cleanups (back_to);
2391
2392 return new_val;
2393 }
2394
2395 /* What is the ``struct value *'' of the root variable VAR?
2396 For floating variable object, evaluation can get us a value
2397 of different type from what is stored in varobj already. In
2398 that case:
2399 - *type_changed will be set to 1
2400 - old varobj will be freed, and new one will be
2401 created, with the same name.
2402 - *var_handle will be set to the new varobj
2403 Otherwise, *type_changed will be set to 0. */
2404 static struct value *
2405 value_of_root (struct varobj **var_handle, int *type_changed)
2406 {
2407 struct varobj *var;
2408
2409 if (var_handle == NULL)
2410 return NULL;
2411
2412 var = *var_handle;
2413
2414 /* This should really be an exception, since this should
2415 only get called with a root variable. */
2416
2417 if (!is_root_p (var))
2418 return NULL;
2419
2420 if (var->root->floating)
2421 {
2422 struct varobj *tmp_var;
2423 char *old_type, *new_type;
2424
2425 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2426 USE_SELECTED_FRAME);
2427 if (tmp_var == NULL)
2428 {
2429 return NULL;
2430 }
2431 old_type = varobj_get_type (var);
2432 new_type = varobj_get_type (tmp_var);
2433 if (strcmp (old_type, new_type) == 0)
2434 {
2435 /* The expression presently stored inside var->root->exp
2436 remembers the locations of local variables relatively to
2437 the frame where the expression was created (in DWARF location
2438 button, for example). Naturally, those locations are not
2439 correct in other frames, so update the expression. */
2440
2441 struct expression *tmp_exp = var->root->exp;
2442
2443 var->root->exp = tmp_var->root->exp;
2444 tmp_var->root->exp = tmp_exp;
2445
2446 varobj_delete (tmp_var, NULL, 0);
2447 *type_changed = 0;
2448 }
2449 else
2450 {
2451 tmp_var->obj_name = xstrdup (var->obj_name);
2452 tmp_var->from = var->from;
2453 tmp_var->to = var->to;
2454 varobj_delete (var, NULL, 0);
2455
2456 install_variable (tmp_var);
2457 *var_handle = tmp_var;
2458 var = *var_handle;
2459 *type_changed = 1;
2460 }
2461 xfree (old_type);
2462 xfree (new_type);
2463 }
2464 else
2465 {
2466 *type_changed = 0;
2467 }
2468
2469 {
2470 struct value *value;
2471
2472 value = value_of_root_1 (var_handle);
2473 if (var->value == NULL || value == NULL)
2474 {
2475 /* For root varobj-s, a NULL value indicates a scoping issue.
2476 So, nothing to do in terms of checking for mutations. */
2477 }
2478 else if (varobj_value_has_mutated (var, value, value_type (value)))
2479 {
2480 /* The type has mutated, so the children are no longer valid.
2481 Just delete them, and tell our caller that the type has
2482 changed. */
2483 varobj_delete (var, NULL, 1 /* only_children */);
2484 var->num_children = -1;
2485 var->to = -1;
2486 var->from = -1;
2487 *type_changed = 1;
2488 }
2489 return value;
2490 }
2491 }
2492
2493 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2494 static struct value *
2495 value_of_child (const struct varobj *parent, int index)
2496 {
2497 struct value *value;
2498
2499 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2500
2501 return value;
2502 }
2503
2504 /* GDB already has a command called "value_of_variable". Sigh. */
2505 static char *
2506 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2507 {
2508 if (var->root->is_valid)
2509 {
2510 if (var->dynamic->pretty_printer != NULL)
2511 return varobj_value_get_print_value (var->value, var->format, var);
2512 return (*var->root->lang_ops->value_of_variable) (var, format);
2513 }
2514 else
2515 return NULL;
2516 }
2517
2518 void
2519 varobj_formatted_print_options (struct value_print_options *opts,
2520 enum varobj_display_formats format)
2521 {
2522 get_formatted_print_options (opts, format_code[(int) format]);
2523 opts->deref_ref = 0;
2524 opts->raw = 1;
2525 }
2526
2527 char *
2528 varobj_value_get_print_value (struct value *value,
2529 enum varobj_display_formats format,
2530 const struct varobj *var)
2531 {
2532 struct ui_file *stb;
2533 struct cleanup *old_chain;
2534 char *thevalue = NULL;
2535 struct value_print_options opts;
2536 struct type *type = NULL;
2537 long len = 0;
2538 char *encoding = NULL;
2539 struct gdbarch *gdbarch = NULL;
2540 /* Initialize it just to avoid a GCC false warning. */
2541 CORE_ADDR str_addr = 0;
2542 int string_print = 0;
2543
2544 if (value == NULL)
2545 return NULL;
2546
2547 stb = mem_fileopen ();
2548 old_chain = make_cleanup_ui_file_delete (stb);
2549
2550 gdbarch = get_type_arch (value_type (value));
2551 #if HAVE_PYTHON
2552 if (gdb_python_initialized)
2553 {
2554 PyObject *value_formatter = var->dynamic->pretty_printer;
2555
2556 varobj_ensure_python_env (var);
2557
2558 if (value_formatter)
2559 {
2560 /* First check to see if we have any children at all. If so,
2561 we simply return {...}. */
2562 if (dynamic_varobj_has_child_method (var))
2563 {
2564 do_cleanups (old_chain);
2565 return xstrdup ("{...}");
2566 }
2567
2568 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2569 {
2570 struct value *replacement;
2571 PyObject *output = NULL;
2572
2573 output = apply_varobj_pretty_printer (value_formatter,
2574 &replacement,
2575 stb);
2576
2577 /* If we have string like output ... */
2578 if (output)
2579 {
2580 make_cleanup_py_decref (output);
2581
2582 /* If this is a lazy string, extract it. For lazy
2583 strings we always print as a string, so set
2584 string_print. */
2585 if (gdbpy_is_lazy_string (output))
2586 {
2587 gdbpy_extract_lazy_string (output, &str_addr, &type,
2588 &len, &encoding);
2589 make_cleanup (free_current_contents, &encoding);
2590 string_print = 1;
2591 }
2592 else
2593 {
2594 /* If it is a regular (non-lazy) string, extract
2595 it and copy the contents into THEVALUE. If the
2596 hint says to print it as a string, set
2597 string_print. Otherwise just return the extracted
2598 string as a value. */
2599
2600 char *s = python_string_to_target_string (output);
2601
2602 if (s)
2603 {
2604 char *hint;
2605
2606 hint = gdbpy_get_display_hint (value_formatter);
2607 if (hint)
2608 {
2609 if (!strcmp (hint, "string"))
2610 string_print = 1;
2611 xfree (hint);
2612 }
2613
2614 len = strlen (s);
2615 thevalue = (char *) xmemdup (s, len + 1, len + 1);
2616 type = builtin_type (gdbarch)->builtin_char;
2617 xfree (s);
2618
2619 if (!string_print)
2620 {
2621 do_cleanups (old_chain);
2622 return thevalue;
2623 }
2624
2625 make_cleanup (xfree, thevalue);
2626 }
2627 else
2628 gdbpy_print_stack ();
2629 }
2630 }
2631 /* If the printer returned a replacement value, set VALUE
2632 to REPLACEMENT. If there is not a replacement value,
2633 just use the value passed to this function. */
2634 if (replacement)
2635 value = replacement;
2636 }
2637 }
2638 }
2639 #endif
2640
2641 varobj_formatted_print_options (&opts, format);
2642
2643 /* If the THEVALUE has contents, it is a regular string. */
2644 if (thevalue)
2645 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2646 else if (string_print)
2647 /* Otherwise, if string_print is set, and it is not a regular
2648 string, it is a lazy string. */
2649 val_print_string (type, encoding, str_addr, len, stb, &opts);
2650 else
2651 /* All other cases. */
2652 common_val_print (value, stb, 0, &opts, current_language);
2653
2654 thevalue = ui_file_xstrdup (stb, NULL);
2655
2656 do_cleanups (old_chain);
2657 return thevalue;
2658 }
2659
2660 int
2661 varobj_editable_p (const struct varobj *var)
2662 {
2663 struct type *type;
2664
2665 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2666 return 0;
2667
2668 type = varobj_get_value_type (var);
2669
2670 switch (TYPE_CODE (type))
2671 {
2672 case TYPE_CODE_STRUCT:
2673 case TYPE_CODE_UNION:
2674 case TYPE_CODE_ARRAY:
2675 case TYPE_CODE_FUNC:
2676 case TYPE_CODE_METHOD:
2677 return 0;
2678 break;
2679
2680 default:
2681 return 1;
2682 break;
2683 }
2684 }
2685
2686 /* Call VAR's value_is_changeable_p language-specific callback. */
2687
2688 int
2689 varobj_value_is_changeable_p (const struct varobj *var)
2690 {
2691 return var->root->lang_ops->value_is_changeable_p (var);
2692 }
2693
2694 /* Return 1 if that varobj is floating, that is is always evaluated in the
2695 selected frame, and not bound to thread/frame. Such variable objects
2696 are created using '@' as frame specifier to -var-create. */
2697 int
2698 varobj_floating_p (const struct varobj *var)
2699 {
2700 return var->root->floating;
2701 }
2702
2703 /* Implement the "value_is_changeable_p" varobj callback for most
2704 languages. */
2705
2706 int
2707 varobj_default_value_is_changeable_p (const struct varobj *var)
2708 {
2709 int r;
2710 struct type *type;
2711
2712 if (CPLUS_FAKE_CHILD (var))
2713 return 0;
2714
2715 type = varobj_get_value_type (var);
2716
2717 switch (TYPE_CODE (type))
2718 {
2719 case TYPE_CODE_STRUCT:
2720 case TYPE_CODE_UNION:
2721 case TYPE_CODE_ARRAY:
2722 r = 0;
2723 break;
2724
2725 default:
2726 r = 1;
2727 }
2728
2729 return r;
2730 }
2731
2732 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2733 with an arbitrary caller supplied DATA pointer. */
2734
2735 void
2736 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2737 {
2738 struct varobj_root *var_root, *var_root_next;
2739
2740 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2741
2742 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2743 {
2744 var_root_next = var_root->next;
2745
2746 (*func) (var_root->rootvar, data);
2747 }
2748 }
2749
2750 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2751 defined on globals. It is a helper for varobj_invalidate.
2752
2753 This function is called after changing the symbol file, in this case the
2754 pointers to "struct type" stored by the varobj are no longer valid. All
2755 varobj must be either re-evaluated, or marked as invalid here. */
2756
2757 static void
2758 varobj_invalidate_iter (struct varobj *var, void *unused)
2759 {
2760 /* global and floating var must be re-evaluated. */
2761 if (var->root->floating || var->root->valid_block == NULL)
2762 {
2763 struct varobj *tmp_var;
2764
2765 /* Try to create a varobj with same expression. If we succeed
2766 replace the old varobj, otherwise invalidate it. */
2767 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2768 USE_CURRENT_FRAME);
2769 if (tmp_var != NULL)
2770 {
2771 tmp_var->obj_name = xstrdup (var->obj_name);
2772 varobj_delete (var, NULL, 0);
2773 install_variable (tmp_var);
2774 }
2775 else
2776 var->root->is_valid = 0;
2777 }
2778 else /* locals must be invalidated. */
2779 var->root->is_valid = 0;
2780 }
2781
2782 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2783 are defined on globals.
2784 Invalidated varobjs will be always printed in_scope="invalid". */
2785
2786 void
2787 varobj_invalidate (void)
2788 {
2789 all_root_varobjs (varobj_invalidate_iter, NULL);
2790 }
2791 \f
2792 extern void _initialize_varobj (void);
2793 void
2794 _initialize_varobj (void)
2795 {
2796 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2797
2798 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2799 &varobjdebug,
2800 _("Set varobj debugging."),
2801 _("Show varobj debugging."),
2802 _("When non-zero, varobj debugging is enabled."),
2803 NULL, show_varobjdebug,
2804 &setdebuglist, &showdebuglist);
2805 }