51fa520702e28f774465b7bee03c8cd31069bbd0
[binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
43
44 #include "arch-utils.h"
45 #include "gdbarch.h"
46 #include "remote.h"
47 #include "serial.h"
48
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
55 #include <algorithm>
56
57
58 static unsigned int xtensa_debug_level = 0;
59
60 #define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63
64 #define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67
68 #define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71
72 #define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75
76
77 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
78 #define SP_ALIGNMENT 16
79
80
81 /* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
83 #define ARGS_NUM_REGS 6
84 #define REGISTER_SIZE 4
85
86
87 /* Extract the call size from the return address or PS register. */
88 #define PS_CALLINC_SHIFT 16
89 #define PS_CALLINC_MASK 0x00030000
90 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
92
93 /* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
96 #define TX_PS 0x20
97
98 /* ABI-independent macros. */
99 #define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102 #define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
106
107 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
109
110 #define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
112 ? ((op1) == 0x6c) : ((op1) == 0x36))
113
114 #define XTENSA_ENTRY_LENGTH 3
115
116 /* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
119
120 #define PS_WOE (1<<18)
121 #define PS_EXC (1<<4)
122
123 /* Big enough to hold the size of the largest register in bytes. */
124 #define XTENSA_MAX_REGISTER_SIZE 64
125
126 static int
127 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
128 {
129 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
130 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
131 return 0;
132
133 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
134 }
135
136 /* Convert a live A-register number to the corresponding AR-register
137 number. */
138 static int
139 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
140 {
141 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
142 int arreg;
143
144 arreg = a_regnum - tdep->a0_base;
145 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
146 arreg &= tdep->num_aregs - 1;
147
148 return arreg + tdep->ar_base;
149 }
150
151 /* Convert a live AR-register number to the corresponding A-register order
152 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
153 static int
154 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157 int areg;
158
159 areg = ar_regnum - tdep->ar_base;
160 if (areg < 0 || areg >= tdep->num_aregs)
161 return -1;
162 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
163 return (areg > 15) ? -1 : areg;
164 }
165
166 /* Read Xtensa register directly from the hardware. */
167 static unsigned long
168 xtensa_read_register (int regnum)
169 {
170 ULONGEST value;
171
172 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
173 return (unsigned long) value;
174 }
175
176 /* Write Xtensa register directly to the hardware. */
177 static void
178 xtensa_write_register (int regnum, ULONGEST value)
179 {
180 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
181 }
182
183 /* Return the window size of the previous call to the function from which we
184 have just returned.
185
186 This function is used to extract the return value after a called function
187 has returned to the caller. On Xtensa, the register that holds the return
188 value (from the perspective of the caller) depends on what call
189 instruction was used. For now, we are assuming that the call instruction
190 precedes the current address, so we simply analyze the call instruction.
191 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
192 method to call the inferior function. */
193
194 static int
195 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
196 {
197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
198 int winsize = 4;
199 int insn;
200 gdb_byte buf[4];
201
202 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
203
204 /* Read the previous instruction (should be a call[x]{4|8|12}. */
205 read_memory (pc-3, buf, 3);
206 insn = extract_unsigned_integer (buf, 3, byte_order);
207
208 /* Decode call instruction:
209 Little Endian
210 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
211 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
212 Big Endian
213 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
214 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
215
216 if (byte_order == BFD_ENDIAN_LITTLE)
217 {
218 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
219 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
220 }
221 else
222 {
223 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
224 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
225 }
226 return winsize;
227 }
228
229
230 /* REGISTER INFORMATION */
231
232 /* Find register by name. */
233 static int
234 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
235 {
236 int i;
237
238 for (i = 0; i < gdbarch_num_regs (gdbarch)
239 + gdbarch_num_pseudo_regs (gdbarch);
240 i++)
241
242 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
243 return i;
244
245 return -1;
246 }
247
248 /* Returns the name of a register. */
249 static const char *
250 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
251 {
252 /* Return the name stored in the register map. */
253 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
254 + gdbarch_num_pseudo_regs (gdbarch))
255 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
256
257 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
258 return 0;
259 }
260
261 /* Return the type of a register. Create a new type, if necessary. */
262
263 static struct type *
264 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267
268 /* Return signed integer for ARx and Ax registers. */
269 if ((regnum >= tdep->ar_base
270 && regnum < tdep->ar_base + tdep->num_aregs)
271 || (regnum >= tdep->a0_base
272 && regnum < tdep->a0_base + 16))
273 return builtin_type (gdbarch)->builtin_int;
274
275 if (regnum == gdbarch_pc_regnum (gdbarch)
276 || regnum == tdep->a0_base + 1)
277 return builtin_type (gdbarch)->builtin_data_ptr;
278
279 /* Return the stored type for all other registers. */
280 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
281 + gdbarch_num_pseudo_regs (gdbarch))
282 {
283 xtensa_register_t* reg = &tdep->regmap[regnum];
284
285 /* Set ctype for this register (only the first time). */
286
287 if (reg->ctype == 0)
288 {
289 struct ctype_cache *tp;
290 int size = reg->byte_size;
291
292 /* We always use the memory representation,
293 even if the register width is smaller. */
294 switch (size)
295 {
296 case 1:
297 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
298 break;
299
300 case 2:
301 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
302 break;
303
304 case 4:
305 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
306 break;
307
308 case 8:
309 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
310 break;
311
312 case 16:
313 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
314 break;
315
316 default:
317 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
318 if (tp->size == size)
319 break;
320
321 if (tp == NULL)
322 {
323 char *name = xstrprintf ("int%d", size * 8);
324
325 tp = XNEW (struct ctype_cache);
326 tp->next = tdep->type_entries;
327 tdep->type_entries = tp;
328 tp->size = size;
329 tp->virtual_type
330 = arch_integer_type (gdbarch, size * 8, 1, name);
331 xfree (name);
332 }
333
334 reg->ctype = tp->virtual_type;
335 }
336 }
337 return reg->ctype;
338 }
339
340 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
341 return 0;
342 }
343
344
345 /* Return the 'local' register number for stubs, dwarf2, etc.
346 The debugging information enumerates registers starting from 0 for A0
347 to n for An. So, we only have to add the base number for A0. */
348
349 static int
350 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
351 {
352 int i;
353
354 if (regnum >= 0 && regnum < 16)
355 return gdbarch_tdep (gdbarch)->a0_base + regnum;
356
357 for (i = 0;
358 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
359 i++)
360 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
361 return i;
362
363 return -1;
364 }
365
366
367 /* Write the bits of a masked register to the various registers.
368 Only the masked areas of these registers are modified; the other
369 fields are untouched. The size of masked registers is always less
370 than or equal to 32 bits. */
371
372 static void
373 xtensa_register_write_masked (struct regcache *regcache,
374 xtensa_register_t *reg, const gdb_byte *buffer)
375 {
376 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
377 const xtensa_mask_t *mask = reg->mask;
378
379 int shift = 0; /* Shift for next mask (mod 32). */
380 int start, size; /* Start bit and size of current mask. */
381
382 unsigned int *ptr = value;
383 unsigned int regval, m, mem = 0;
384
385 int bytesize = reg->byte_size;
386 int bitsize = bytesize * 8;
387 int i, r;
388
389 DEBUGTRACE ("xtensa_register_write_masked ()\n");
390
391 /* Copy the masked register to host byte-order. */
392 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
393 for (i = 0; i < bytesize; i++)
394 {
395 mem >>= 8;
396 mem |= (buffer[bytesize - i - 1] << 24);
397 if ((i & 3) == 3)
398 *ptr++ = mem;
399 }
400 else
401 for (i = 0; i < bytesize; i++)
402 {
403 mem >>= 8;
404 mem |= (buffer[i] << 24);
405 if ((i & 3) == 3)
406 *ptr++ = mem;
407 }
408
409 /* We might have to shift the final value:
410 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
411 bytesize & 3 == x -> shift (4-x) * 8. */
412
413 *ptr = mem >> (((0 - bytesize) & 3) * 8);
414 ptr = value;
415 mem = *ptr;
416
417 /* Write the bits to the masked areas of the other registers. */
418 for (i = 0; i < mask->count; i++)
419 {
420 start = mask->mask[i].bit_start;
421 size = mask->mask[i].bit_size;
422 regval = mem >> shift;
423
424 if ((shift += size) > bitsize)
425 error (_("size of all masks is larger than the register"));
426
427 if (shift >= 32)
428 {
429 mem = *(++ptr);
430 shift -= 32;
431 bitsize -= 32;
432
433 if (shift > 0)
434 regval |= mem << (size - shift);
435 }
436
437 /* Make sure we have a valid register. */
438 r = mask->mask[i].reg_num;
439 if (r >= 0 && size > 0)
440 {
441 /* Don't overwrite the unmasked areas. */
442 ULONGEST old_val;
443 regcache_cooked_read_unsigned (regcache, r, &old_val);
444 m = 0xffffffff >> (32 - size) << start;
445 regval <<= start;
446 regval = (regval & m) | (old_val & ~m);
447 regcache_cooked_write_unsigned (regcache, r, regval);
448 }
449 }
450 }
451
452
453 /* Read a tie state or mapped registers. Read the masked areas
454 of the registers and assemble them into a single value. */
455
456 static enum register_status
457 xtensa_register_read_masked (struct regcache *regcache,
458 xtensa_register_t *reg, gdb_byte *buffer)
459 {
460 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
461 const xtensa_mask_t *mask = reg->mask;
462
463 int shift = 0;
464 int start, size;
465
466 unsigned int *ptr = value;
467 unsigned int regval, mem = 0;
468
469 int bytesize = reg->byte_size;
470 int bitsize = bytesize * 8;
471 int i;
472
473 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
474 reg->name == 0 ? "" : reg->name);
475
476 /* Assemble the register from the masked areas of other registers. */
477 for (i = 0; i < mask->count; i++)
478 {
479 int r = mask->mask[i].reg_num;
480 if (r >= 0)
481 {
482 enum register_status status;
483 ULONGEST val;
484
485 status = regcache_cooked_read_unsigned (regcache, r, &val);
486 if (status != REG_VALID)
487 return status;
488 regval = (unsigned int) val;
489 }
490 else
491 regval = 0;
492
493 start = mask->mask[i].bit_start;
494 size = mask->mask[i].bit_size;
495
496 regval >>= start;
497
498 if (size < 32)
499 regval &= (0xffffffff >> (32 - size));
500
501 mem |= regval << shift;
502
503 if ((shift += size) > bitsize)
504 error (_("size of all masks is larger than the register"));
505
506 if (shift >= 32)
507 {
508 *ptr++ = mem;
509 bitsize -= 32;
510 shift -= 32;
511
512 if (shift == 0)
513 mem = 0;
514 else
515 mem = regval >> (size - shift);
516 }
517 }
518
519 if (shift > 0)
520 *ptr = mem;
521
522 /* Copy value to target byte order. */
523 ptr = value;
524 mem = *ptr;
525
526 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
527 for (i = 0; i < bytesize; i++)
528 {
529 if ((i & 3) == 0)
530 mem = *ptr++;
531 buffer[bytesize - i - 1] = mem & 0xff;
532 mem >>= 8;
533 }
534 else
535 for (i = 0; i < bytesize; i++)
536 {
537 if ((i & 3) == 0)
538 mem = *ptr++;
539 buffer[i] = mem & 0xff;
540 mem >>= 8;
541 }
542
543 return REG_VALID;
544 }
545
546
547 /* Read pseudo registers. */
548
549 static enum register_status
550 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
551 struct regcache *regcache,
552 int regnum,
553 gdb_byte *buffer)
554 {
555 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
556
557 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
558 regnum, xtensa_register_name (gdbarch, regnum));
559
560 /* Read aliases a0..a15, if this is a Windowed ABI. */
561 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
562 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
563 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
564 {
565 ULONGEST value;
566 enum register_status status;
567
568 status = regcache_raw_read_unsigned (regcache,
569 gdbarch_tdep (gdbarch)->wb_regnum,
570 &value);
571 if (status != REG_VALID)
572 return status;
573 regnum = arreg_number (gdbarch, regnum, value);
574 }
575
576 /* We can always read non-pseudo registers. */
577 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
578 return regcache_raw_read (regcache, regnum, buffer);
579
580 /* We have to find out how to deal with priveleged registers.
581 Let's treat them as pseudo-registers, but we cannot read/write them. */
582
583 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
584 || regnum < gdbarch_tdep (gdbarch)->a0_base)
585 {
586 buffer[0] = (gdb_byte)0;
587 buffer[1] = (gdb_byte)0;
588 buffer[2] = (gdb_byte)0;
589 buffer[3] = (gdb_byte)0;
590 return REG_VALID;
591 }
592 /* Pseudo registers. */
593 else if (regnum >= 0
594 && regnum < gdbarch_num_regs (gdbarch)
595 + gdbarch_num_pseudo_regs (gdbarch))
596 {
597 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
598 xtensa_register_type_t type = reg->type;
599 int flags = gdbarch_tdep (gdbarch)->target_flags;
600
601 /* We cannot read Unknown or Unmapped registers. */
602 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
603 {
604 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
605 {
606 warning (_("cannot read register %s"),
607 xtensa_register_name (gdbarch, regnum));
608 return REG_VALID;
609 }
610 }
611
612 /* Some targets cannot read TIE register files. */
613 else if (type == xtRegisterTypeTieRegfile)
614 {
615 /* Use 'fetch' to get register? */
616 if (flags & xtTargetFlagsUseFetchStore)
617 {
618 warning (_("cannot read register"));
619 return REG_VALID;
620 }
621
622 /* On some targets (esp. simulators), we can always read the reg. */
623 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
624 {
625 warning (_("cannot read register"));
626 return REG_VALID;
627 }
628 }
629
630 /* We can always read mapped registers. */
631 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
632 return xtensa_register_read_masked (regcache, reg, buffer);
633
634 /* Assume that we can read the register. */
635 return regcache_raw_read (regcache, regnum, buffer);
636 }
637 else
638 internal_error (__FILE__, __LINE__,
639 _("invalid register number %d"), regnum);
640 }
641
642
643 /* Write pseudo registers. */
644
645 static void
646 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
647 struct regcache *regcache,
648 int regnum,
649 const gdb_byte *buffer)
650 {
651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
652
653 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
654 regnum, xtensa_register_name (gdbarch, regnum));
655
656 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
657 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
658 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
659 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
660 {
661 ULONGEST value;
662 regcache_raw_read_unsigned (regcache,
663 gdbarch_tdep (gdbarch)->wb_regnum, &value);
664 regnum = arreg_number (gdbarch, regnum, value);
665 }
666
667 /* We can always write 'core' registers.
668 Note: We might have converted Ax->ARy. */
669 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
670 regcache_raw_write (regcache, regnum, buffer);
671
672 /* We have to find out how to deal with priveleged registers.
673 Let's treat them as pseudo-registers, but we cannot read/write them. */
674
675 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
676 {
677 return;
678 }
679 /* Pseudo registers. */
680 else if (regnum >= 0
681 && regnum < gdbarch_num_regs (gdbarch)
682 + gdbarch_num_pseudo_regs (gdbarch))
683 {
684 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
685 xtensa_register_type_t type = reg->type;
686 int flags = gdbarch_tdep (gdbarch)->target_flags;
687
688 /* On most targets, we cannot write registers
689 of type "Unknown" or "Unmapped". */
690 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
691 {
692 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
693 {
694 warning (_("cannot write register %s"),
695 xtensa_register_name (gdbarch, regnum));
696 return;
697 }
698 }
699
700 /* Some targets cannot read TIE register files. */
701 else if (type == xtRegisterTypeTieRegfile)
702 {
703 /* Use 'store' to get register? */
704 if (flags & xtTargetFlagsUseFetchStore)
705 {
706 warning (_("cannot write register"));
707 return;
708 }
709
710 /* On some targets (esp. simulators), we can always write
711 the register. */
712 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
713 {
714 warning (_("cannot write register"));
715 return;
716 }
717 }
718
719 /* We can always write mapped registers. */
720 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
721 {
722 xtensa_register_write_masked (regcache, reg, buffer);
723 return;
724 }
725
726 /* Assume that we can write the register. */
727 regcache_raw_write (regcache, regnum, buffer);
728 }
729 else
730 internal_error (__FILE__, __LINE__,
731 _("invalid register number %d"), regnum);
732 }
733
734 static struct reggroup *xtensa_ar_reggroup;
735 static struct reggroup *xtensa_user_reggroup;
736 static struct reggroup *xtensa_vectra_reggroup;
737 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
738
739 static void
740 xtensa_init_reggroups (void)
741 {
742 int i;
743
744 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
745 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
746 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
747
748 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
749 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
750 }
751
752 static void
753 xtensa_add_reggroups (struct gdbarch *gdbarch)
754 {
755 int i;
756
757 /* Predefined groups. */
758 reggroup_add (gdbarch, all_reggroup);
759 reggroup_add (gdbarch, save_reggroup);
760 reggroup_add (gdbarch, restore_reggroup);
761 reggroup_add (gdbarch, system_reggroup);
762 reggroup_add (gdbarch, vector_reggroup);
763 reggroup_add (gdbarch, general_reggroup);
764 reggroup_add (gdbarch, float_reggroup);
765
766 /* Xtensa-specific groups. */
767 reggroup_add (gdbarch, xtensa_ar_reggroup);
768 reggroup_add (gdbarch, xtensa_user_reggroup);
769 reggroup_add (gdbarch, xtensa_vectra_reggroup);
770
771 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
772 reggroup_add (gdbarch, xtensa_cp[i]);
773 }
774
775 static int
776 xtensa_coprocessor_register_group (struct reggroup *group)
777 {
778 int i;
779
780 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
781 if (group == xtensa_cp[i])
782 return i;
783
784 return -1;
785 }
786
787 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
788 | XTENSA_REGISTER_FLAGS_WRITABLE \
789 | XTENSA_REGISTER_FLAGS_VOLATILE)
790
791 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
792 | XTENSA_REGISTER_FLAGS_WRITABLE)
793
794 static int
795 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
796 int regnum,
797 struct reggroup *group)
798 {
799 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
800 xtensa_register_type_t type = reg->type;
801 xtensa_register_group_t rg = reg->group;
802 int cp_number;
803
804 if (group == save_reggroup)
805 /* Every single register should be included into the list of registers
806 to be watched for changes while using -data-list-changed-registers. */
807 return 1;
808
809 /* First, skip registers that are not visible to this target
810 (unknown and unmapped registers when not using ISS). */
811
812 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
813 return 0;
814 if (group == all_reggroup)
815 return 1;
816 if (group == xtensa_ar_reggroup)
817 return rg & xtRegisterGroupAddrReg;
818 if (group == xtensa_user_reggroup)
819 return rg & xtRegisterGroupUser;
820 if (group == float_reggroup)
821 return rg & xtRegisterGroupFloat;
822 if (group == general_reggroup)
823 return rg & xtRegisterGroupGeneral;
824 if (group == system_reggroup)
825 return rg & xtRegisterGroupState;
826 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
827 return rg & xtRegisterGroupVectra;
828 if (group == restore_reggroup)
829 return (regnum < gdbarch_num_regs (gdbarch)
830 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
831 cp_number = xtensa_coprocessor_register_group (group);
832 if (cp_number >= 0)
833 return rg & (xtRegisterGroupCP0 << cp_number);
834 else
835 return 1;
836 }
837
838
839 /* Supply register REGNUM from the buffer specified by GREGS and LEN
840 in the general-purpose register set REGSET to register cache
841 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
842
843 static void
844 xtensa_supply_gregset (const struct regset *regset,
845 struct regcache *rc,
846 int regnum,
847 const void *gregs,
848 size_t len)
849 {
850 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
851 struct gdbarch *gdbarch = get_regcache_arch (rc);
852 int i;
853
854 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
855
856 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
857 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
858 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
859 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
860 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
861 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
862 (char *) &regs->windowbase);
863 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
865 (char *) &regs->windowstart);
866 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
868 (char *) &regs->lbeg);
869 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
871 (char *) &regs->lend);
872 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
874 (char *) &regs->lcount);
875 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
877 (char *) &regs->sar);
878 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
879 && regnum < gdbarch_tdep (gdbarch)->ar_base
880 + gdbarch_tdep (gdbarch)->num_aregs)
881 regcache_raw_supply (rc, regnum,
882 (char *) &regs->ar[regnum - gdbarch_tdep
883 (gdbarch)->ar_base]);
884 else if (regnum == -1)
885 {
886 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
887 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
888 (char *) &regs->ar[i]);
889 }
890 }
891
892
893 /* Xtensa register set. */
894
895 static struct regset
896 xtensa_gregset =
897 {
898 NULL,
899 xtensa_supply_gregset
900 };
901
902
903 /* Iterate over supported core file register note sections. */
904
905 static void
906 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
907 iterate_over_regset_sections_cb *cb,
908 void *cb_data,
909 const struct regcache *regcache)
910 {
911 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
912
913 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
914 NULL, cb_data);
915 }
916
917
918 /* Handling frames. */
919
920 /* Number of registers to save in case of Windowed ABI. */
921 #define XTENSA_NUM_SAVED_AREGS 12
922
923 /* Frame cache part for Windowed ABI. */
924 typedef struct xtensa_windowed_frame_cache
925 {
926 int wb; /* WINDOWBASE of the previous frame. */
927 int callsize; /* Call size of this frame. */
928 int ws; /* WINDOWSTART of the previous frame. It keeps track of
929 life windows only. If there is no bit set for the
930 window, that means it had been already spilled
931 because of window overflow. */
932
933 /* Addresses of spilled A-registers.
934 AREGS[i] == -1, if corresponding AR is alive. */
935 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
936 } xtensa_windowed_frame_cache_t;
937
938 /* Call0 ABI Definitions. */
939
940 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
941 analysis. */
942 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
943 #define C0_SP 1 /* Register used as SP. */
944 #define C0_FP 15 /* Register used as FP. */
945 #define C0_RA 0 /* Register used as return address. */
946 #define C0_ARGS 2 /* Register used as first arg/retval. */
947 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
948
949 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
950 A-register where the current content of the reg came from (in terms
951 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
952 mean that the orignal content of the register was saved to the stack.
953 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
954 know where SP will end up until the entire prologue has been analyzed. */
955
956 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
957 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
958 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
959
960 extern xtensa_isa xtensa_default_isa;
961
962 typedef struct xtensa_c0reg
963 {
964 int fr_reg; /* original register from which register content
965 is derived, or C0_CONST, or C0_INEXP. */
966 int fr_ofs; /* constant offset from reg, or immediate value. */
967 int to_stk; /* offset from original SP to register (4-byte aligned),
968 or C0_NOSTK if register has not been saved. */
969 } xtensa_c0reg_t;
970
971 /* Frame cache part for Call0 ABI. */
972 typedef struct xtensa_call0_frame_cache
973 {
974 int c0_frmsz; /* Stack frame size. */
975 int c0_hasfp; /* Current frame uses frame pointer. */
976 int fp_regnum; /* A-register used as FP. */
977 int c0_fp; /* Actual value of frame pointer. */
978 int c0_fpalign; /* Dinamic adjustment for the stack
979 pointer. It's an AND mask. Zero,
980 if alignment was not adjusted. */
981 int c0_old_sp; /* In case of dynamic adjustment, it is
982 a register holding unaligned sp.
983 C0_INEXP, when undefined. */
984 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
985 stack offset. C0_NOSTK otherwise. */
986
987 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
988 } xtensa_call0_frame_cache_t;
989
990 typedef struct xtensa_frame_cache
991 {
992 CORE_ADDR base; /* Stack pointer of this frame. */
993 CORE_ADDR pc; /* PC of this frame at the function entry point. */
994 CORE_ADDR ra; /* The raw return address of this frame. */
995 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
996 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
997 int call0; /* It's a call0 framework (else windowed). */
998 union
999 {
1000 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1001 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1002 };
1003 } xtensa_frame_cache_t;
1004
1005
1006 static struct xtensa_frame_cache *
1007 xtensa_alloc_frame_cache (int windowed)
1008 {
1009 xtensa_frame_cache_t *cache;
1010 int i;
1011
1012 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1013
1014 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1015
1016 cache->base = 0;
1017 cache->pc = 0;
1018 cache->ra = 0;
1019 cache->ps = 0;
1020 cache->prev_sp = 0;
1021 cache->call0 = !windowed;
1022 if (cache->call0)
1023 {
1024 cache->c0.c0_frmsz = -1;
1025 cache->c0.c0_hasfp = 0;
1026 cache->c0.fp_regnum = -1;
1027 cache->c0.c0_fp = -1;
1028 cache->c0.c0_fpalign = 0;
1029 cache->c0.c0_old_sp = C0_INEXP;
1030 cache->c0.c0_sp_ofs = C0_NOSTK;
1031
1032 for (i = 0; i < C0_NREGS; i++)
1033 {
1034 cache->c0.c0_rt[i].fr_reg = i;
1035 cache->c0.c0_rt[i].fr_ofs = 0;
1036 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1037 }
1038 }
1039 else
1040 {
1041 cache->wd.wb = 0;
1042 cache->wd.ws = 0;
1043 cache->wd.callsize = -1;
1044
1045 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1046 cache->wd.aregs[i] = -1;
1047 }
1048 return cache;
1049 }
1050
1051
1052 static CORE_ADDR
1053 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1054 {
1055 return address & ~15;
1056 }
1057
1058
1059 static CORE_ADDR
1060 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1061 {
1062 gdb_byte buf[8];
1063 CORE_ADDR pc;
1064
1065 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1066 host_address_to_string (next_frame));
1067
1068 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1069 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1070
1071 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1072
1073 return pc;
1074 }
1075
1076
1077 static struct frame_id
1078 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1079 {
1080 CORE_ADDR pc, fp;
1081
1082 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1083
1084 pc = get_frame_pc (this_frame);
1085 fp = get_frame_register_unsigned
1086 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1087
1088 /* Make dummy frame ID unique by adding a constant. */
1089 return frame_id_build (fp + SP_ALIGNMENT, pc);
1090 }
1091
1092 /* Returns true, if instruction to execute next is unique to Xtensa Window
1093 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1094
1095 static int
1096 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1097 {
1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1099 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1100 unsigned int code;
1101
1102 if (byte_order == BFD_ENDIAN_BIG)
1103 {
1104 /* Check, if this is L32E or S32E. */
1105 code = insn & 0xf000ff00;
1106 if ((code == 0x00009000) || (code == 0x00009400))
1107 return 1;
1108 /* Check, if this is RFWU or RFWO. */
1109 code = insn & 0xffffff00;
1110 return ((code == 0x00430000) || (code == 0x00530000));
1111 }
1112 else
1113 {
1114 /* Check, if this is L32E or S32E. */
1115 code = insn & 0x00ff000f;
1116 if ((code == 0x090000) || (code == 0x490000))
1117 return 1;
1118 /* Check, if this is RFWU or RFWO. */
1119 code = insn & 0x00ffffff;
1120 return ((code == 0x00003400) || (code == 0x00003500));
1121 }
1122 }
1123
1124 /* Returns the best guess about which register is a frame pointer
1125 for the function containing CURRENT_PC. */
1126
1127 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1128 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1129
1130 static unsigned int
1131 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1132 {
1133 #define RETURN_FP goto done
1134
1135 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1136 CORE_ADDR start_addr;
1137 xtensa_isa isa;
1138 xtensa_insnbuf ins, slot;
1139 gdb_byte ibuf[XTENSA_ISA_BSZ];
1140 CORE_ADDR ia, bt, ba;
1141 xtensa_format ifmt;
1142 int ilen, islots, is;
1143 xtensa_opcode opc;
1144 const char *opcname;
1145
1146 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1147 if (start_addr == 0)
1148 return fp_regnum;
1149
1150 isa = xtensa_default_isa;
1151 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1152 ins = xtensa_insnbuf_alloc (isa);
1153 slot = xtensa_insnbuf_alloc (isa);
1154 ba = 0;
1155
1156 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1157 {
1158 if (ia + xtensa_isa_maxlength (isa) > bt)
1159 {
1160 ba = ia;
1161 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1162 ? ba + XTENSA_ISA_BSZ : current_pc;
1163 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1164 RETURN_FP;
1165 }
1166
1167 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1168 ifmt = xtensa_format_decode (isa, ins);
1169 if (ifmt == XTENSA_UNDEFINED)
1170 RETURN_FP;
1171 ilen = xtensa_format_length (isa, ifmt);
1172 if (ilen == XTENSA_UNDEFINED)
1173 RETURN_FP;
1174 islots = xtensa_format_num_slots (isa, ifmt);
1175 if (islots == XTENSA_UNDEFINED)
1176 RETURN_FP;
1177
1178 for (is = 0; is < islots; ++is)
1179 {
1180 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1181 RETURN_FP;
1182
1183 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1184 if (opc == XTENSA_UNDEFINED)
1185 RETURN_FP;
1186
1187 opcname = xtensa_opcode_name (isa, opc);
1188
1189 if (strcasecmp (opcname, "mov.n") == 0
1190 || strcasecmp (opcname, "or") == 0)
1191 {
1192 unsigned int register_operand;
1193
1194 /* Possible candidate for setting frame pointer
1195 from A1. This is what we are looking for. */
1196
1197 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1198 is, slot, &register_operand) != 0)
1199 RETURN_FP;
1200 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1201 RETURN_FP;
1202 if (register_operand == 1) /* Mov{.n} FP A1. */
1203 {
1204 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1205 &register_operand) != 0)
1206 RETURN_FP;
1207 if (xtensa_operand_decode (isa, opc, 0,
1208 &register_operand) != 0)
1209 RETURN_FP;
1210
1211 fp_regnum
1212 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1213 RETURN_FP;
1214 }
1215 }
1216
1217 if (
1218 /* We have problems decoding the memory. */
1219 opcname == NULL
1220 || strcasecmp (opcname, "ill") == 0
1221 || strcasecmp (opcname, "ill.n") == 0
1222 /* Hit planted breakpoint. */
1223 || strcasecmp (opcname, "break") == 0
1224 || strcasecmp (opcname, "break.n") == 0
1225 /* Flow control instructions finish prologue. */
1226 || xtensa_opcode_is_branch (isa, opc) > 0
1227 || xtensa_opcode_is_jump (isa, opc) > 0
1228 || xtensa_opcode_is_loop (isa, opc) > 0
1229 || xtensa_opcode_is_call (isa, opc) > 0
1230 || strcasecmp (opcname, "simcall") == 0
1231 || strcasecmp (opcname, "syscall") == 0)
1232 /* Can not continue analysis. */
1233 RETURN_FP;
1234 }
1235 }
1236 done:
1237 xtensa_insnbuf_free(isa, slot);
1238 xtensa_insnbuf_free(isa, ins);
1239 return fp_regnum;
1240 }
1241
1242 /* The key values to identify the frame using "cache" are
1243
1244 cache->base = SP (or best guess about FP) of this frame;
1245 cache->pc = entry-PC (entry point of the frame function);
1246 cache->prev_sp = SP of the previous frame. */
1247
1248 static void
1249 call0_frame_cache (struct frame_info *this_frame,
1250 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1251
1252 static void
1253 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1254 xtensa_frame_cache_t *cache,
1255 CORE_ADDR pc);
1256
1257 static struct xtensa_frame_cache *
1258 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1259 {
1260 xtensa_frame_cache_t *cache;
1261 CORE_ADDR ra, wb, ws, pc, sp, ps;
1262 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1263 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1264 unsigned int fp_regnum;
1265 int windowed, ps_regnum;
1266
1267 if (*this_cache)
1268 return (struct xtensa_frame_cache *) *this_cache;
1269
1270 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1271 ps_regnum = gdbarch_ps_regnum (gdbarch);
1272 ps = (ps_regnum >= 0
1273 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1274
1275 windowed = windowing_enabled (gdbarch, ps);
1276
1277 /* Get pristine xtensa-frame. */
1278 cache = xtensa_alloc_frame_cache (windowed);
1279 *this_cache = cache;
1280
1281 if (windowed)
1282 {
1283 LONGEST op1;
1284
1285 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1286 wb = get_frame_register_unsigned (this_frame,
1287 gdbarch_tdep (gdbarch)->wb_regnum);
1288 ws = get_frame_register_unsigned (this_frame,
1289 gdbarch_tdep (gdbarch)->ws_regnum);
1290
1291 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1292 && XTENSA_IS_ENTRY (gdbarch, op1))
1293 {
1294 int callinc = CALLINC (ps);
1295 ra = get_frame_register_unsigned
1296 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1297
1298 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1299 cache->wd.callsize = 0;
1300 cache->wd.wb = wb;
1301 cache->wd.ws = ws;
1302 cache->prev_sp = get_frame_register_unsigned
1303 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1304
1305 /* This only can be the outermost frame since we are
1306 just about to execute ENTRY. SP hasn't been set yet.
1307 We can assume any frame size, because it does not
1308 matter, and, let's fake frame base in cache. */
1309 cache->base = cache->prev_sp - 16;
1310
1311 cache->pc = pc;
1312 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1313 cache->ps = (ps & ~PS_CALLINC_MASK)
1314 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1315
1316 return cache;
1317 }
1318 else
1319 {
1320 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1321 ra = get_frame_register_unsigned (this_frame,
1322 gdbarch_tdep (gdbarch)->a0_base);
1323 cache->wd.callsize = WINSIZE (ra);
1324 cache->wd.wb = (wb - cache->wd.callsize / 4)
1325 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1326 cache->wd.ws = ws & ~(1 << wb);
1327
1328 cache->pc = get_frame_func (this_frame);
1329 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1330 cache->ps = (ps & ~PS_CALLINC_MASK)
1331 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1332 }
1333
1334 if (cache->wd.ws == 0)
1335 {
1336 int i;
1337
1338 /* Set A0...A3. */
1339 sp = get_frame_register_unsigned
1340 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1341
1342 for (i = 0; i < 4; i++, sp += 4)
1343 {
1344 cache->wd.aregs[i] = sp;
1345 }
1346
1347 if (cache->wd.callsize > 4)
1348 {
1349 /* Set A4...A7/A11. */
1350 /* Get the SP of the frame previous to the previous one.
1351 To achieve this, we have to dereference SP twice. */
1352 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1353 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1354 sp -= cache->wd.callsize * 4;
1355
1356 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1357 {
1358 cache->wd.aregs[i] = sp;
1359 }
1360 }
1361 }
1362
1363 if ((cache->prev_sp == 0) && ( ra != 0 ))
1364 /* If RA is equal to 0 this frame is an outermost frame. Leave
1365 cache->prev_sp unchanged marking the boundary of the frame stack. */
1366 {
1367 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1368 {
1369 /* Register window overflow already happened.
1370 We can read caller's SP from the proper spill loction. */
1371 sp = get_frame_register_unsigned
1372 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1373 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1374 }
1375 else
1376 {
1377 /* Read caller's frame SP directly from the previous window. */
1378 int regnum = arreg_number
1379 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1380 cache->wd.wb);
1381
1382 cache->prev_sp = xtensa_read_register (regnum);
1383 }
1384 }
1385 }
1386 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1387 {
1388 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1389
1390 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1391 /* Everything was set already, including cache->base. */
1392 return cache;
1393 }
1394 else /* Call0 framework. */
1395 {
1396 call0_frame_cache (this_frame, cache, pc);
1397 fp_regnum = cache->c0.fp_regnum;
1398 }
1399
1400 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1401
1402 return cache;
1403 }
1404
1405 static int xtensa_session_once_reported = 1;
1406
1407 /* Report a problem with prologue analysis while doing backtracing.
1408 But, do it only once to avoid annoyng repeated messages. */
1409
1410 static void
1411 warning_once (void)
1412 {
1413 if (xtensa_session_once_reported == 0)
1414 warning (_("\
1415 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1416 This message will not be repeated in this session.\n"));
1417
1418 xtensa_session_once_reported = 1;
1419 }
1420
1421
1422 static void
1423 xtensa_frame_this_id (struct frame_info *this_frame,
1424 void **this_cache,
1425 struct frame_id *this_id)
1426 {
1427 struct xtensa_frame_cache *cache =
1428 xtensa_frame_cache (this_frame, this_cache);
1429
1430 if (cache->prev_sp == 0)
1431 return;
1432
1433 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1434 }
1435
1436 static struct value *
1437 xtensa_frame_prev_register (struct frame_info *this_frame,
1438 void **this_cache,
1439 int regnum)
1440 {
1441 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1442 struct xtensa_frame_cache *cache;
1443 ULONGEST saved_reg = 0;
1444 int done = 1;
1445
1446 if (*this_cache == NULL)
1447 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1448 cache = (struct xtensa_frame_cache *) *this_cache;
1449
1450 if (regnum ==gdbarch_pc_regnum (gdbarch))
1451 saved_reg = cache->ra;
1452 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1453 saved_reg = cache->prev_sp;
1454 else if (!cache->call0)
1455 {
1456 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1457 saved_reg = cache->wd.ws;
1458 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1459 saved_reg = cache->wd.wb;
1460 else if (regnum == gdbarch_ps_regnum (gdbarch))
1461 saved_reg = cache->ps;
1462 else
1463 done = 0;
1464 }
1465 else
1466 done = 0;
1467
1468 if (done)
1469 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1470
1471 if (!cache->call0) /* Windowed ABI. */
1472 {
1473 /* Convert A-register numbers to AR-register numbers,
1474 if we deal with A-register. */
1475 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1476 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1477 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1478
1479 /* Check, if we deal with AR-register saved on stack. */
1480 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1481 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1482 + gdbarch_tdep (gdbarch)->num_aregs))
1483 {
1484 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1485
1486 if (areg >= 0
1487 && areg < XTENSA_NUM_SAVED_AREGS
1488 && cache->wd.aregs[areg] != -1)
1489 return frame_unwind_got_memory (this_frame, regnum,
1490 cache->wd.aregs[areg]);
1491 }
1492 }
1493 else /* Call0 ABI. */
1494 {
1495 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1496 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1497 + C0_NREGS))
1498 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1499
1500 if (reg < C0_NREGS)
1501 {
1502 CORE_ADDR spe;
1503 int stkofs;
1504
1505 /* If register was saved in the prologue, retrieve it. */
1506 stkofs = cache->c0.c0_rt[reg].to_stk;
1507 if (stkofs != C0_NOSTK)
1508 {
1509 /* Determine SP on entry based on FP. */
1510 spe = cache->c0.c0_fp
1511 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1512
1513 return frame_unwind_got_memory (this_frame, regnum,
1514 spe + stkofs);
1515 }
1516 }
1517 }
1518
1519 /* All other registers have been either saved to
1520 the stack or are still alive in the processor. */
1521
1522 return frame_unwind_got_register (this_frame, regnum, regnum);
1523 }
1524
1525
1526 static const struct frame_unwind
1527 xtensa_unwind =
1528 {
1529 NORMAL_FRAME,
1530 default_frame_unwind_stop_reason,
1531 xtensa_frame_this_id,
1532 xtensa_frame_prev_register,
1533 NULL,
1534 default_frame_sniffer
1535 };
1536
1537 static CORE_ADDR
1538 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1539 {
1540 struct xtensa_frame_cache *cache =
1541 xtensa_frame_cache (this_frame, this_cache);
1542
1543 return cache->base;
1544 }
1545
1546 static const struct frame_base
1547 xtensa_frame_base =
1548 {
1549 &xtensa_unwind,
1550 xtensa_frame_base_address,
1551 xtensa_frame_base_address,
1552 xtensa_frame_base_address
1553 };
1554
1555
1556 static void
1557 xtensa_extract_return_value (struct type *type,
1558 struct regcache *regcache,
1559 void *dst)
1560 {
1561 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1562 bfd_byte *valbuf = (bfd_byte *) dst;
1563 int len = TYPE_LENGTH (type);
1564 ULONGEST pc, wb;
1565 int callsize, areg;
1566 int offset = 0;
1567
1568 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1569
1570 gdb_assert(len > 0);
1571
1572 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1573 {
1574 /* First, we have to find the caller window in the register file. */
1575 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1576 callsize = extract_call_winsize (gdbarch, pc);
1577
1578 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1579 if (len > (callsize > 8 ? 8 : 16))
1580 internal_error (__FILE__, __LINE__,
1581 _("cannot extract return value of %d bytes long"),
1582 len);
1583
1584 /* Get the register offset of the return
1585 register (A2) in the caller window. */
1586 regcache_raw_read_unsigned
1587 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1588 areg = arreg_number (gdbarch,
1589 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1590 }
1591 else
1592 {
1593 /* No windowing hardware - Call0 ABI. */
1594 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1595 }
1596
1597 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1598
1599 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1600 offset = 4 - len;
1601
1602 for (; len > 0; len -= 4, areg++, valbuf += 4)
1603 {
1604 if (len < 4)
1605 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1606 else
1607 regcache_raw_read (regcache, areg, valbuf);
1608 }
1609 }
1610
1611
1612 static void
1613 xtensa_store_return_value (struct type *type,
1614 struct regcache *regcache,
1615 const void *dst)
1616 {
1617 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1618 const bfd_byte *valbuf = (const bfd_byte *) dst;
1619 unsigned int areg;
1620 ULONGEST pc, wb;
1621 int callsize;
1622 int len = TYPE_LENGTH (type);
1623 int offset = 0;
1624
1625 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1626
1627 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1628 {
1629 regcache_raw_read_unsigned
1630 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1631 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1632 callsize = extract_call_winsize (gdbarch, pc);
1633
1634 if (len > (callsize > 8 ? 8 : 16))
1635 internal_error (__FILE__, __LINE__,
1636 _("unimplemented for this length: %d"),
1637 TYPE_LENGTH (type));
1638 areg = arreg_number (gdbarch,
1639 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1640
1641 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1642 callsize, (int) wb);
1643 }
1644 else
1645 {
1646 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1647 }
1648
1649 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1650 offset = 4 - len;
1651
1652 for (; len > 0; len -= 4, areg++, valbuf += 4)
1653 {
1654 if (len < 4)
1655 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1656 else
1657 regcache_raw_write (regcache, areg, valbuf);
1658 }
1659 }
1660
1661
1662 static enum return_value_convention
1663 xtensa_return_value (struct gdbarch *gdbarch,
1664 struct value *function,
1665 struct type *valtype,
1666 struct regcache *regcache,
1667 gdb_byte *readbuf,
1668 const gdb_byte *writebuf)
1669 {
1670 /* Structures up to 16 bytes are returned in registers. */
1671
1672 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1673 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1674 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1675 && TYPE_LENGTH (valtype) > 16);
1676
1677 if (struct_return)
1678 return RETURN_VALUE_STRUCT_CONVENTION;
1679
1680 DEBUGTRACE ("xtensa_return_value(...)\n");
1681
1682 if (writebuf != NULL)
1683 {
1684 xtensa_store_return_value (valtype, regcache, writebuf);
1685 }
1686
1687 if (readbuf != NULL)
1688 {
1689 gdb_assert (!struct_return);
1690 xtensa_extract_return_value (valtype, regcache, readbuf);
1691 }
1692 return RETURN_VALUE_REGISTER_CONVENTION;
1693 }
1694
1695
1696 /* DUMMY FRAME */
1697
1698 static CORE_ADDR
1699 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1700 struct value *function,
1701 struct regcache *regcache,
1702 CORE_ADDR bp_addr,
1703 int nargs,
1704 struct value **args,
1705 CORE_ADDR sp,
1706 int struct_return,
1707 CORE_ADDR struct_addr)
1708 {
1709 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1710 int i;
1711 int size, onstack_size;
1712 gdb_byte *buf = (gdb_byte *) alloca (16);
1713 CORE_ADDR ra, ps;
1714 struct argument_info
1715 {
1716 const bfd_byte *contents;
1717 int length;
1718 int onstack; /* onstack == 0 => in reg */
1719 int align; /* alignment */
1720 union
1721 {
1722 int offset; /* stack offset if on stack. */
1723 int regno; /* regno if in register. */
1724 } u;
1725 };
1726
1727 struct argument_info *arg_info =
1728 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1729
1730 CORE_ADDR osp = sp;
1731
1732 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1733
1734 if (xtensa_debug_level > 3)
1735 {
1736 int i;
1737 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1738 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1739 "struct_addr=0x%x\n",
1740 (int) sp, (int) struct_return, (int) struct_addr);
1741
1742 for (i = 0; i < nargs; i++)
1743 {
1744 struct value *arg = args[i];
1745 struct type *arg_type = check_typedef (value_type (arg));
1746 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1747 host_address_to_string (arg),
1748 TYPE_LENGTH (arg_type));
1749 switch (TYPE_CODE (arg_type))
1750 {
1751 case TYPE_CODE_INT:
1752 fprintf_unfiltered (gdb_stdlog, "int");
1753 break;
1754 case TYPE_CODE_STRUCT:
1755 fprintf_unfiltered (gdb_stdlog, "struct");
1756 break;
1757 default:
1758 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1759 break;
1760 }
1761 fprintf_unfiltered (gdb_stdlog, " %s\n",
1762 host_address_to_string (value_contents (arg)));
1763 }
1764 }
1765
1766 /* First loop: collect information.
1767 Cast into type_long. (This shouldn't happen often for C because
1768 GDB already does this earlier.) It's possible that GDB could
1769 do it all the time but it's harmless to leave this code here. */
1770
1771 size = 0;
1772 onstack_size = 0;
1773 i = 0;
1774
1775 if (struct_return)
1776 size = REGISTER_SIZE;
1777
1778 for (i = 0; i < nargs; i++)
1779 {
1780 struct argument_info *info = &arg_info[i];
1781 struct value *arg = args[i];
1782 struct type *arg_type = check_typedef (value_type (arg));
1783
1784 switch (TYPE_CODE (arg_type))
1785 {
1786 case TYPE_CODE_INT:
1787 case TYPE_CODE_BOOL:
1788 case TYPE_CODE_CHAR:
1789 case TYPE_CODE_RANGE:
1790 case TYPE_CODE_ENUM:
1791
1792 /* Cast argument to long if necessary as the mask does it too. */
1793 if (TYPE_LENGTH (arg_type)
1794 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1795 {
1796 arg_type = builtin_type (gdbarch)->builtin_long;
1797 arg = value_cast (arg_type, arg);
1798 }
1799 /* Aligment is equal to the type length for the basic types. */
1800 info->align = TYPE_LENGTH (arg_type);
1801 break;
1802
1803 case TYPE_CODE_FLT:
1804
1805 /* Align doubles correctly. */
1806 if (TYPE_LENGTH (arg_type)
1807 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1808 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1809 else
1810 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1811 break;
1812
1813 case TYPE_CODE_STRUCT:
1814 default:
1815 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1816 break;
1817 }
1818 info->length = TYPE_LENGTH (arg_type);
1819 info->contents = value_contents (arg);
1820
1821 /* Align size and onstack_size. */
1822 size = (size + info->align - 1) & ~(info->align - 1);
1823 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1824
1825 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1826 {
1827 info->onstack = 1;
1828 info->u.offset = onstack_size;
1829 onstack_size += info->length;
1830 }
1831 else
1832 {
1833 info->onstack = 0;
1834 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1835 }
1836 size += info->length;
1837 }
1838
1839 /* Adjust the stack pointer and align it. */
1840 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1841
1842 /* Simulate MOVSP, if Windowed ABI. */
1843 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1844 && (sp != osp))
1845 {
1846 read_memory (osp - 16, buf, 16);
1847 write_memory (sp - 16, buf, 16);
1848 }
1849
1850 /* Second Loop: Load arguments. */
1851
1852 if (struct_return)
1853 {
1854 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1855 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1856 }
1857
1858 for (i = 0; i < nargs; i++)
1859 {
1860 struct argument_info *info = &arg_info[i];
1861
1862 if (info->onstack)
1863 {
1864 int n = info->length;
1865 CORE_ADDR offset = sp + info->u.offset;
1866
1867 /* Odd-sized structs are aligned to the lower side of a memory
1868 word in big-endian mode and require a shift. This only
1869 applies for structures smaller than one word. */
1870
1871 if (n < REGISTER_SIZE
1872 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1873 offset += (REGISTER_SIZE - n);
1874
1875 write_memory (offset, info->contents, info->length);
1876
1877 }
1878 else
1879 {
1880 int n = info->length;
1881 const bfd_byte *cp = info->contents;
1882 int r = info->u.regno;
1883
1884 /* Odd-sized structs are aligned to the lower side of registers in
1885 big-endian mode and require a shift. The odd-sized leftover will
1886 be at the end. Note that this is only true for structures smaller
1887 than REGISTER_SIZE; for larger odd-sized structures the excess
1888 will be left-aligned in the register on both endiannesses. */
1889
1890 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1891 {
1892 ULONGEST v;
1893 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1894 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1895
1896 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1897 regcache_cooked_write (regcache, r, buf);
1898
1899 cp += REGISTER_SIZE;
1900 n -= REGISTER_SIZE;
1901 r++;
1902 }
1903 else
1904 while (n > 0)
1905 {
1906 regcache_cooked_write (regcache, r, cp);
1907
1908 cp += REGISTER_SIZE;
1909 n -= REGISTER_SIZE;
1910 r++;
1911 }
1912 }
1913 }
1914
1915 /* Set the return address of dummy frame to the dummy address.
1916 The return address for the current function (in A0) is
1917 saved in the dummy frame, so we can savely overwrite A0 here. */
1918
1919 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1920 {
1921 ULONGEST val;
1922
1923 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1924 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1925 ps = (unsigned long) val & ~0x00030000;
1926 regcache_cooked_write_unsigned
1927 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1928 regcache_cooked_write_unsigned (regcache,
1929 gdbarch_ps_regnum (gdbarch),
1930 ps | 0x00010000);
1931
1932 /* All the registers have been saved. After executing
1933 dummy call, they all will be restored. So it's safe
1934 to modify WINDOWSTART register to make it look like there
1935 is only one register window corresponding to WINDOWEBASE. */
1936
1937 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1938 regcache_cooked_write_unsigned
1939 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1940 1 << extract_unsigned_integer (buf, 4, byte_order));
1941 }
1942 else
1943 {
1944 /* Simulate CALL0: write RA into A0 register. */
1945 regcache_cooked_write_unsigned
1946 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1947 }
1948
1949 /* Set new stack pointer and return it. */
1950 regcache_cooked_write_unsigned (regcache,
1951 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1952 /* Make dummy frame ID unique by adding a constant. */
1953 return sp + SP_ALIGNMENT;
1954 }
1955
1956 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1957
1958 static int
1959 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1960 {
1961 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1962 return 2;
1963 else
1964 return 4;
1965 }
1966
1967 /* Return a breakpoint for the current location of PC. We always use
1968 the density version if we have density instructions (regardless of the
1969 current instruction at PC), and use regular instructions otherwise. */
1970
1971 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1972 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1973 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1974 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1975
1976 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1977
1978 static const gdb_byte *
1979 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1980 {
1981 *size = kind;
1982
1983 if (kind == 4)
1984 {
1985 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1986 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1987
1988 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1989 return big_breakpoint;
1990 else
1991 return little_breakpoint;
1992 }
1993 else
1994 {
1995 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1996 static unsigned char density_little_breakpoint[]
1997 = DENSITY_LITTLE_BREAKPOINT;
1998
1999 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2000 return density_big_breakpoint;
2001 else
2002 return density_little_breakpoint;
2003 }
2004 }
2005
2006 /* Call0 ABI support routines. */
2007
2008 /* Return true, if PC points to "ret" or "ret.n". */
2009
2010 static int
2011 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2012 {
2013 #define RETURN_RET goto done
2014 xtensa_isa isa;
2015 xtensa_insnbuf ins, slot;
2016 gdb_byte ibuf[XTENSA_ISA_BSZ];
2017 CORE_ADDR ia, bt, ba;
2018 xtensa_format ifmt;
2019 int ilen, islots, is;
2020 xtensa_opcode opc;
2021 const char *opcname;
2022 int found_ret = 0;
2023
2024 isa = xtensa_default_isa;
2025 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2026 ins = xtensa_insnbuf_alloc (isa);
2027 slot = xtensa_insnbuf_alloc (isa);
2028 ba = 0;
2029
2030 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2031 {
2032 if (ia + xtensa_isa_maxlength (isa) > bt)
2033 {
2034 ba = ia;
2035 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2036 ? ba + XTENSA_ISA_BSZ : finish_pc;
2037 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2038 RETURN_RET;
2039 }
2040
2041 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2042 ifmt = xtensa_format_decode (isa, ins);
2043 if (ifmt == XTENSA_UNDEFINED)
2044 RETURN_RET;
2045 ilen = xtensa_format_length (isa, ifmt);
2046 if (ilen == XTENSA_UNDEFINED)
2047 RETURN_RET;
2048 islots = xtensa_format_num_slots (isa, ifmt);
2049 if (islots == XTENSA_UNDEFINED)
2050 RETURN_RET;
2051
2052 for (is = 0; is < islots; ++is)
2053 {
2054 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2055 RETURN_RET;
2056
2057 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2058 if (opc == XTENSA_UNDEFINED)
2059 RETURN_RET;
2060
2061 opcname = xtensa_opcode_name (isa, opc);
2062
2063 if ((strcasecmp (opcname, "ret.n") == 0)
2064 || (strcasecmp (opcname, "ret") == 0))
2065 {
2066 found_ret = 1;
2067 RETURN_RET;
2068 }
2069 }
2070 }
2071 done:
2072 xtensa_insnbuf_free(isa, slot);
2073 xtensa_insnbuf_free(isa, ins);
2074 return found_ret;
2075 }
2076
2077 /* Call0 opcode class. Opcodes are preclassified according to what they
2078 mean for Call0 prologue analysis, and their number of significant operands.
2079 The purpose of this is to simplify prologue analysis by separating
2080 instruction decoding (libisa) from the semantics of prologue analysis. */
2081
2082 typedef enum
2083 {
2084 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2085 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2086 c0opc_flow, /* Flow control insn. */
2087 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2088 c0opc_break, /* Debugger software breakpoints. */
2089 c0opc_add, /* Adding two registers. */
2090 c0opc_addi, /* Adding a register and an immediate. */
2091 c0opc_and, /* Bitwise "and"-ing two registers. */
2092 c0opc_sub, /* Subtracting a register from a register. */
2093 c0opc_mov, /* Moving a register to a register. */
2094 c0opc_movi, /* Moving an immediate to a register. */
2095 c0opc_l32r, /* Loading a literal. */
2096 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2097 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2098 c0opc_l32e, /* L32E instruction. */
2099 c0opc_s32e, /* S32E instruction. */
2100 c0opc_rfwo, /* RFWO instruction. */
2101 c0opc_rfwu, /* RFWU instruction. */
2102 c0opc_NrOf /* Number of opcode classifications. */
2103 } xtensa_insn_kind;
2104
2105 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2106
2107 static int
2108 rwx_special_register (const char *opcname)
2109 {
2110 char ch = *opcname++;
2111
2112 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2113 return 0;
2114 if (*opcname++ != 's')
2115 return 0;
2116 if (*opcname++ != 'r')
2117 return 0;
2118 if (*opcname++ != '.')
2119 return 0;
2120
2121 return 1;
2122 }
2123
2124 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2125
2126 static xtensa_insn_kind
2127 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2128 {
2129 const char *opcname;
2130 xtensa_insn_kind opclass = c0opc_uninteresting;
2131
2132 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2133
2134 /* Get opcode name and handle special classifications. */
2135
2136 opcname = xtensa_opcode_name (isa, opc);
2137
2138 if (opcname == NULL
2139 || strcasecmp (opcname, "ill") == 0
2140 || strcasecmp (opcname, "ill.n") == 0)
2141 opclass = c0opc_illegal;
2142 else if (strcasecmp (opcname, "break") == 0
2143 || strcasecmp (opcname, "break.n") == 0)
2144 opclass = c0opc_break;
2145 else if (strcasecmp (opcname, "entry") == 0)
2146 opclass = c0opc_entry;
2147 else if (strcasecmp (opcname, "rfwo") == 0)
2148 opclass = c0opc_rfwo;
2149 else if (strcasecmp (opcname, "rfwu") == 0)
2150 opclass = c0opc_rfwu;
2151 else if (xtensa_opcode_is_branch (isa, opc) > 0
2152 || xtensa_opcode_is_jump (isa, opc) > 0
2153 || xtensa_opcode_is_loop (isa, opc) > 0
2154 || xtensa_opcode_is_call (isa, opc) > 0
2155 || strcasecmp (opcname, "simcall") == 0
2156 || strcasecmp (opcname, "syscall") == 0)
2157 opclass = c0opc_flow;
2158
2159 /* Also, classify specific opcodes that need to be tracked. */
2160 else if (strcasecmp (opcname, "add") == 0
2161 || strcasecmp (opcname, "add.n") == 0)
2162 opclass = c0opc_add;
2163 else if (strcasecmp (opcname, "and") == 0)
2164 opclass = c0opc_and;
2165 else if (strcasecmp (opcname, "addi") == 0
2166 || strcasecmp (opcname, "addi.n") == 0
2167 || strcasecmp (opcname, "addmi") == 0)
2168 opclass = c0opc_addi;
2169 else if (strcasecmp (opcname, "sub") == 0)
2170 opclass = c0opc_sub;
2171 else if (strcasecmp (opcname, "mov.n") == 0
2172 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2173 opclass = c0opc_mov;
2174 else if (strcasecmp (opcname, "movi") == 0
2175 || strcasecmp (opcname, "movi.n") == 0)
2176 opclass = c0opc_movi;
2177 else if (strcasecmp (opcname, "l32r") == 0)
2178 opclass = c0opc_l32r;
2179 else if (strcasecmp (opcname, "s32i") == 0
2180 || strcasecmp (opcname, "s32i.n") == 0)
2181 opclass = c0opc_s32i;
2182 else if (strcasecmp (opcname, "l32e") == 0)
2183 opclass = c0opc_l32e;
2184 else if (strcasecmp (opcname, "s32e") == 0)
2185 opclass = c0opc_s32e;
2186 else if (rwx_special_register (opcname))
2187 opclass = c0opc_rwxsr;
2188
2189 return opclass;
2190 }
2191
2192 /* Tracks register movement/mutation for a given operation, which may
2193 be within a bundle. Updates the destination register tracking info
2194 accordingly. The pc is needed only for pc-relative load instructions
2195 (eg. l32r). The SP register number is needed to identify stores to
2196 the stack frame. Returns 0, if analysis was succesfull, non-zero
2197 otherwise. */
2198
2199 static int
2200 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2201 xtensa_insn_kind opclass, int nods, unsigned odv[],
2202 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2203 {
2204 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2205 unsigned litbase, litaddr, litval;
2206
2207 switch (opclass)
2208 {
2209 case c0opc_addi:
2210 /* 3 operands: dst, src, imm. */
2211 gdb_assert (nods == 3);
2212 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2213 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2214 break;
2215 case c0opc_add:
2216 /* 3 operands: dst, src1, src2. */
2217 gdb_assert (nods == 3);
2218 if (src[odv[1]].fr_reg == C0_CONST)
2219 {
2220 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2221 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2222 }
2223 else if (src[odv[2]].fr_reg == C0_CONST)
2224 {
2225 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2226 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2227 }
2228 else dst[odv[0]].fr_reg = C0_INEXP;
2229 break;
2230 case c0opc_and:
2231 /* 3 operands: dst, src1, src2. */
2232 gdb_assert (nods == 3);
2233 if (cache->c0.c0_fpalign == 0)
2234 {
2235 /* Handle dynamic stack alignment. */
2236 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2237 {
2238 if (src[odv[2]].fr_reg == C0_CONST)
2239 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2240 break;
2241 }
2242 else if ((src[odv[0]].fr_reg == spreg)
2243 && (src[odv[2]].fr_reg == spreg))
2244 {
2245 if (src[odv[1]].fr_reg == C0_CONST)
2246 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2247 break;
2248 }
2249 /* else fall through. */
2250 }
2251 if (src[odv[1]].fr_reg == C0_CONST)
2252 {
2253 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2254 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2255 }
2256 else if (src[odv[2]].fr_reg == C0_CONST)
2257 {
2258 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2259 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2260 }
2261 else dst[odv[0]].fr_reg = C0_INEXP;
2262 break;
2263 case c0opc_sub:
2264 /* 3 operands: dst, src1, src2. */
2265 gdb_assert (nods == 3);
2266 if (src[odv[2]].fr_reg == C0_CONST)
2267 {
2268 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2269 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2270 }
2271 else dst[odv[0]].fr_reg = C0_INEXP;
2272 break;
2273 case c0opc_mov:
2274 /* 2 operands: dst, src [, src]. */
2275 gdb_assert (nods == 2);
2276 /* First, check if it's a special case of saving unaligned SP
2277 to a spare register in case of dynamic stack adjustment.
2278 But, only do it one time. The second time could be initializing
2279 frame pointer. We don't want to overwrite the first one. */
2280 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2281 cache->c0.c0_old_sp = odv[0];
2282
2283 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2284 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2285 break;
2286 case c0opc_movi:
2287 /* 2 operands: dst, imm. */
2288 gdb_assert (nods == 2);
2289 dst[odv[0]].fr_reg = C0_CONST;
2290 dst[odv[0]].fr_ofs = odv[1];
2291 break;
2292 case c0opc_l32r:
2293 /* 2 operands: dst, literal offset. */
2294 gdb_assert (nods == 2);
2295 /* litbase = xtensa_get_litbase (pc); can be also used. */
2296 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2297 ? 0 : xtensa_read_register
2298 (gdbarch_tdep (gdbarch)->litbase_regnum);
2299 litaddr = litbase & 1
2300 ? (litbase & ~1) + (signed)odv[1]
2301 : (pc + 3 + (signed)odv[1]) & ~3;
2302 litval = read_memory_integer (litaddr, 4, byte_order);
2303 dst[odv[0]].fr_reg = C0_CONST;
2304 dst[odv[0]].fr_ofs = litval;
2305 break;
2306 case c0opc_s32i:
2307 /* 3 operands: value, base, offset. */
2308 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2309 /* First, check if it's a spill for saved unaligned SP,
2310 when dynamic stack adjustment was applied to this frame. */
2311 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2312 && (odv[1] == spreg) /* SP usage indicates spill. */
2313 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2314 cache->c0.c0_sp_ofs = odv[2];
2315
2316 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2317 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2318 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2319 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2320 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2321 {
2322 /* ISA encoding guarantees alignment. But, check it anyway. */
2323 gdb_assert ((odv[2] & 3) == 0);
2324 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2325 }
2326 break;
2327 /* If we end up inside Window Overflow / Underflow interrupt handler
2328 report an error because these handlers should have been handled
2329 already in a different way. */
2330 case c0opc_l32e:
2331 case c0opc_s32e:
2332 case c0opc_rfwo:
2333 case c0opc_rfwu:
2334 return 1;
2335 default:
2336 return 1;
2337 }
2338 return 0;
2339 }
2340
2341 /* Analyze prologue of the function at start address to determine if it uses
2342 the Call0 ABI, and if so track register moves and linear modifications
2343 in the prologue up to the PC or just beyond the prologue, whichever is
2344 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2345 prologue. The prologue may overlap non-prologue instructions but is
2346 guaranteed to end by the first flow-control instruction (jump, branch,
2347 call or return). Since an optimized function may move information around
2348 and change the stack frame arbitrarily during the prologue, the information
2349 is guaranteed valid only at the point in the function indicated by the PC.
2350 May be used to skip the prologue or identify the ABI, w/o tracking.
2351
2352 Returns: Address of first instruction after prologue, or PC (whichever
2353 is first), or 0, if decoding failed (in libisa).
2354 Input args:
2355 start Start address of function/prologue.
2356 pc Program counter to stop at. Use 0 to continue to end of prologue.
2357 If 0, avoids infinite run-on in corrupt code memory by bounding
2358 the scan to the end of the function if that can be determined.
2359 nregs Number of general registers to track.
2360 InOut args:
2361 cache Xtensa frame cache.
2362
2363 Note that these may produce useful results even if decoding fails
2364 because they begin with default assumptions that analysis may change. */
2365
2366 static CORE_ADDR
2367 call0_analyze_prologue (struct gdbarch *gdbarch,
2368 CORE_ADDR start, CORE_ADDR pc,
2369 int nregs, xtensa_frame_cache_t *cache)
2370 {
2371 CORE_ADDR ia; /* Current insn address in prologue. */
2372 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2373 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2374 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2375 xtensa_isa isa; /* libisa ISA handle. */
2376 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2377 xtensa_format ifmt; /* libisa instruction format. */
2378 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2379 xtensa_opcode opc; /* Opcode in current slot. */
2380 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2381 int nods; /* Opcode number of operands. */
2382 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2383 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2384 int j; /* General loop counter. */
2385 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2386 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2387 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2388
2389 struct symtab_and_line prologue_sal;
2390
2391 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2392 (int)start, (int)pc);
2393
2394 /* Try to limit the scan to the end of the function if a non-zero pc
2395 arg was not supplied to avoid probing beyond the end of valid memory.
2396 If memory is full of garbage that classifies as c0opc_uninteresting.
2397 If this fails (eg. if no symbols) pc ends up 0 as it was.
2398 Initialize the Call0 frame and register tracking info.
2399 Assume it's Call0 until an 'entry' instruction is encountered.
2400 Assume we may be in the prologue until we hit a flow control instr. */
2401
2402 rtmp = NULL;
2403 body_pc = UINT_MAX;
2404 end_pc = 0;
2405
2406 /* Find out, if we have an information about the prologue from DWARF. */
2407 prologue_sal = find_pc_line (start, 0);
2408 if (prologue_sal.line != 0) /* Found debug info. */
2409 body_pc = prologue_sal.end;
2410
2411 /* If we are going to analyze the prologue in general without knowing about
2412 the current PC, make the best assumtion for the end of the prologue. */
2413 if (pc == 0)
2414 {
2415 find_pc_partial_function (start, 0, NULL, &end_pc);
2416 body_pc = std::min (end_pc, body_pc);
2417 }
2418 else
2419 body_pc = std::min (pc, body_pc);
2420
2421 cache->call0 = 1;
2422 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2423
2424 isa = xtensa_default_isa;
2425 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2426 ins = xtensa_insnbuf_alloc (isa);
2427 slot = xtensa_insnbuf_alloc (isa);
2428
2429 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2430 {
2431 /* (Re)fill instruction buffer from memory if necessary, but do not
2432 read memory beyond PC to be sure we stay within text section
2433 (this protection only works if a non-zero pc is supplied). */
2434
2435 if (ia + xtensa_isa_maxlength (isa) > bt)
2436 {
2437 ba = ia;
2438 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2439 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2440 error (_("Unable to read target memory ..."));
2441 }
2442
2443 /* Decode format information. */
2444
2445 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2446 ifmt = xtensa_format_decode (isa, ins);
2447 if (ifmt == XTENSA_UNDEFINED)
2448 {
2449 fail = 1;
2450 goto done;
2451 }
2452 ilen = xtensa_format_length (isa, ifmt);
2453 if (ilen == XTENSA_UNDEFINED)
2454 {
2455 fail = 1;
2456 goto done;
2457 }
2458 islots = xtensa_format_num_slots (isa, ifmt);
2459 if (islots == XTENSA_UNDEFINED)
2460 {
2461 fail = 1;
2462 goto done;
2463 }
2464
2465 /* Analyze a bundle or a single instruction, using a snapshot of
2466 the register tracking info as input for the entire bundle so that
2467 register changes do not take effect within this bundle. */
2468
2469 for (j = 0; j < nregs; ++j)
2470 rtmp[j] = cache->c0.c0_rt[j];
2471
2472 for (is = 0; is < islots; ++is)
2473 {
2474 /* Decode a slot and classify the opcode. */
2475
2476 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2477 if (fail)
2478 goto done;
2479
2480 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2481 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2482 (unsigned)ia, opc);
2483 if (opc == XTENSA_UNDEFINED)
2484 opclass = c0opc_illegal;
2485 else
2486 opclass = call0_classify_opcode (isa, opc);
2487
2488 /* Decide whether to track this opcode, ignore it, or bail out. */
2489
2490 switch (opclass)
2491 {
2492 case c0opc_illegal:
2493 case c0opc_break:
2494 fail = 1;
2495 goto done;
2496
2497 case c0opc_uninteresting:
2498 continue;
2499
2500 case c0opc_flow: /* Flow control instructions stop analysis. */
2501 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2502 goto done;
2503
2504 case c0opc_entry:
2505 cache->call0 = 0;
2506 ia += ilen; /* Skip over 'entry' insn. */
2507 goto done;
2508
2509 default:
2510 cache->call0 = 1;
2511 }
2512
2513 /* Only expected opcodes should get this far. */
2514
2515 /* Extract and decode the operands. */
2516 nods = xtensa_opcode_num_operands (isa, opc);
2517 if (nods == XTENSA_UNDEFINED)
2518 {
2519 fail = 1;
2520 goto done;
2521 }
2522
2523 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2524 {
2525 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2526 is, slot, &odv[j]);
2527 if (fail)
2528 goto done;
2529
2530 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2531 if (fail)
2532 goto done;
2533 }
2534
2535 /* Check operands to verify use of 'mov' assembler macro. */
2536 if (opclass == c0opc_mov && nods == 3)
2537 {
2538 if (odv[2] == odv[1])
2539 {
2540 nods = 2;
2541 if ((odv[0] == 1) && (odv[1] != 1))
2542 /* OR A1, An, An , where n != 1.
2543 This means we are inside epilogue already. */
2544 goto done;
2545 }
2546 else
2547 {
2548 opclass = c0opc_uninteresting;
2549 continue;
2550 }
2551 }
2552
2553 /* Track register movement and modification for this operation. */
2554 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2555 opclass, nods, odv, ia, 1, cache);
2556 if (fail)
2557 goto done;
2558 }
2559 }
2560 done:
2561 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2562 (unsigned)ia, fail ? "failed" : "succeeded");
2563 xtensa_insnbuf_free(isa, slot);
2564 xtensa_insnbuf_free(isa, ins);
2565 return fail ? XTENSA_ISA_BADPC : ia;
2566 }
2567
2568 /* Initialize frame cache for the current frame in CALL0 ABI. */
2569
2570 static void
2571 call0_frame_cache (struct frame_info *this_frame,
2572 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2573 {
2574 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2576 CORE_ADDR start_pc; /* The beginning of the function. */
2577 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2578 CORE_ADDR sp, fp, ra;
2579 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2580
2581 sp = get_frame_register_unsigned
2582 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2583 fp = sp; /* Assume FP == SP until proven otherwise. */
2584
2585 /* Find the beginning of the prologue of the function containing the PC
2586 and analyze it up to the PC or the end of the prologue. */
2587
2588 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2589 {
2590 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2591
2592 if (body_pc == XTENSA_ISA_BADPC)
2593 {
2594 warning_once ();
2595 ra = 0;
2596 goto finish_frame_analysis;
2597 }
2598 }
2599
2600 /* Get the frame information and FP (if used) at the current PC.
2601 If PC is in the prologue, the prologue analysis is more reliable
2602 than DWARF info. We don't not know for sure, if PC is in the prologue,
2603 but we do know no calls have yet taken place, so we can almost
2604 certainly rely on the prologue analysis. */
2605
2606 if (body_pc <= pc)
2607 {
2608 /* Prologue analysis was successful up to the PC.
2609 It includes the cases when PC == START_PC. */
2610 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2611 /* c0_hasfp == true means there is a frame pointer because
2612 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2613 was derived from SP. Otherwise, it would be C0_FP. */
2614 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2615 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2616 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2617 }
2618 else /* No data from the prologue analysis. */
2619 {
2620 c0_hasfp = 0;
2621 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2622 c0_frmsz = 0;
2623 start_pc = pc;
2624 }
2625
2626 if (cache->c0.c0_fpalign)
2627 {
2628 /* This frame has a special prologue with a dynamic stack adjustment
2629 to force an alignment, which is bigger than standard 16 bytes. */
2630
2631 CORE_ADDR unaligned_sp;
2632
2633 if (cache->c0.c0_old_sp == C0_INEXP)
2634 /* This can't be. Prologue code should be consistent.
2635 Unaligned stack pointer should be saved in a spare register. */
2636 {
2637 warning_once ();
2638 ra = 0;
2639 goto finish_frame_analysis;
2640 }
2641
2642 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2643 /* Saved unaligned value of SP is kept in a register. */
2644 unaligned_sp = get_frame_register_unsigned
2645 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2646 else
2647 /* Get the value from stack. */
2648 unaligned_sp = (CORE_ADDR)
2649 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2650
2651 prev_sp = unaligned_sp + c0_frmsz;
2652 }
2653 else
2654 prev_sp = fp + c0_frmsz;
2655
2656 /* Frame size from debug info or prologue tracking does not account for
2657 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2658 if (c0_hasfp)
2659 {
2660 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2661
2662 /* Update the stack frame size. */
2663 c0_frmsz += fp - sp;
2664 }
2665
2666 /* Get the return address (RA) from the stack if saved,
2667 or try to get it from a register. */
2668
2669 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2670 if (to_stk != C0_NOSTK)
2671 ra = (CORE_ADDR)
2672 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2673 4, byte_order);
2674
2675 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2676 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2677 {
2678 /* Special case for terminating backtrace at a function that wants to
2679 be seen as the outermost one. Such a function will clear it's RA (A0)
2680 register to 0 in the prologue instead of saving its original value. */
2681 ra = 0;
2682 }
2683 else
2684 {
2685 /* RA was copied to another register or (before any function call) may
2686 still be in the original RA register. This is not always reliable:
2687 even in a leaf function, register tracking stops after prologue, and
2688 even in prologue, non-prologue instructions (not tracked) may overwrite
2689 RA or any register it was copied to. If likely in prologue or before
2690 any call, use retracking info and hope for the best (compiler should
2691 have saved RA in stack if not in a leaf function). If not in prologue,
2692 too bad. */
2693
2694 int i;
2695 for (i = 0;
2696 (i < C0_NREGS)
2697 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2698 ++i);
2699 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2700 i = C0_RA;
2701 if (i < C0_NREGS)
2702 {
2703 ra = get_frame_register_unsigned
2704 (this_frame,
2705 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2706 }
2707 else ra = 0;
2708 }
2709
2710 finish_frame_analysis:
2711 cache->pc = start_pc;
2712 cache->ra = ra;
2713 /* RA == 0 marks the outermost frame. Do not go past it. */
2714 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2715 cache->c0.fp_regnum = fp_regnum;
2716 cache->c0.c0_frmsz = c0_frmsz;
2717 cache->c0.c0_hasfp = c0_hasfp;
2718 cache->c0.c0_fp = fp;
2719 }
2720
2721 static CORE_ADDR a0_saved;
2722 static CORE_ADDR a7_saved;
2723 static CORE_ADDR a11_saved;
2724 static int a0_was_saved;
2725 static int a7_was_saved;
2726 static int a11_was_saved;
2727
2728 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2729 static void
2730 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2731 {
2732 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2733 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2734 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2735 unsigned int spilled_value
2736 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2737
2738 if ((at == 0) && !a0_was_saved)
2739 {
2740 a0_saved = xtensa_read_register (atreg);
2741 a0_was_saved = 1;
2742 }
2743 else if ((at == 7) && !a7_was_saved)
2744 {
2745 a7_saved = xtensa_read_register (atreg);
2746 a7_was_saved = 1;
2747 }
2748 else if ((at == 11) && !a11_was_saved)
2749 {
2750 a11_saved = xtensa_read_register (atreg);
2751 a11_was_saved = 1;
2752 }
2753
2754 xtensa_write_register (atreg, spilled_value);
2755 }
2756
2757 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2758 static void
2759 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2760 {
2761 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2762 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2763 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2764 ULONGEST spilled_value = xtensa_read_register (atreg);
2765
2766 write_memory_unsigned_integer (addr, 4,
2767 gdbarch_byte_order (gdbarch),
2768 spilled_value);
2769 }
2770
2771 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2772
2773 typedef enum
2774 {
2775 xtWindowOverflow,
2776 xtWindowUnderflow,
2777 xtNoExceptionHandler
2778 } xtensa_exception_handler_t;
2779
2780 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2781 Return type of Xtensa Window Interrupt Handler on success. */
2782 static xtensa_exception_handler_t
2783 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2784 {
2785 xtensa_isa isa;
2786 xtensa_insnbuf ins, slot;
2787 gdb_byte ibuf[XTENSA_ISA_BSZ];
2788 CORE_ADDR ia, bt, ba;
2789 xtensa_format ifmt;
2790 int ilen, islots, is;
2791 xtensa_opcode opc;
2792 int insn_num = 0;
2793 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2794
2795 uint32_t at, as, offset;
2796
2797 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2798 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2799
2800 isa = xtensa_default_isa;
2801 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2802 ins = xtensa_insnbuf_alloc (isa);
2803 slot = xtensa_insnbuf_alloc (isa);
2804 ba = 0;
2805 ia = current_pc;
2806 bt = ia;
2807
2808 a0_was_saved = 0;
2809 a7_was_saved = 0;
2810 a11_was_saved = 0;
2811
2812 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2813 {
2814 if (ia + xtensa_isa_maxlength (isa) > bt)
2815 {
2816 ba = ia;
2817 bt = (ba + XTENSA_ISA_BSZ);
2818 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2819 return xtNoExceptionHandler;
2820 }
2821 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2822 ifmt = xtensa_format_decode (isa, ins);
2823 if (ifmt == XTENSA_UNDEFINED)
2824 return xtNoExceptionHandler;
2825 ilen = xtensa_format_length (isa, ifmt);
2826 if (ilen == XTENSA_UNDEFINED)
2827 return xtNoExceptionHandler;
2828 islots = xtensa_format_num_slots (isa, ifmt);
2829 if (islots == XTENSA_UNDEFINED)
2830 return xtNoExceptionHandler;
2831 for (is = 0; is < islots; ++is)
2832 {
2833 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2834 return xtNoExceptionHandler;
2835 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2836 if (opc == XTENSA_UNDEFINED)
2837 return xtNoExceptionHandler;
2838 switch (call0_classify_opcode (isa, opc))
2839 {
2840 case c0opc_illegal:
2841 case c0opc_flow:
2842 case c0opc_entry:
2843 case c0opc_break:
2844 /* We expect none of them here. */
2845 return xtNoExceptionHandler;
2846 case c0opc_l32e:
2847 func = execute_l32e;
2848 break;
2849 case c0opc_s32e:
2850 func = execute_s32e;
2851 break;
2852 case c0opc_rfwo: /* RFWO. */
2853 /* Here, we return from WindowOverflow handler and,
2854 if we stopped at the very beginning, which means
2855 A0 was saved, we have to restore it now. */
2856 if (a0_was_saved)
2857 {
2858 int arreg = arreg_number (gdbarch,
2859 gdbarch_tdep (gdbarch)->a0_base,
2860 wb);
2861 xtensa_write_register (arreg, a0_saved);
2862 }
2863 return xtWindowOverflow;
2864 case c0opc_rfwu: /* RFWU. */
2865 /* Here, we return from WindowUnderflow handler.
2866 Let's see if either A7 or A11 has to be restored. */
2867 if (WindowUnderflow12)
2868 {
2869 if (a11_was_saved)
2870 {
2871 int arreg = arreg_number (gdbarch,
2872 gdbarch_tdep (gdbarch)->a0_base + 11,
2873 wb);
2874 xtensa_write_register (arreg, a11_saved);
2875 }
2876 }
2877 else if (a7_was_saved)
2878 {
2879 int arreg = arreg_number (gdbarch,
2880 gdbarch_tdep (gdbarch)->a0_base + 7,
2881 wb);
2882 xtensa_write_register (arreg, a7_saved);
2883 }
2884 return xtWindowUnderflow;
2885 default: /* Simply skip this insns. */
2886 continue;
2887 }
2888
2889 /* Decode arguments for L32E / S32E and simulate their execution. */
2890 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2891 return xtNoExceptionHandler;
2892 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2893 return xtNoExceptionHandler;
2894 if (xtensa_operand_decode (isa, opc, 0, &at))
2895 return xtNoExceptionHandler;
2896 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2897 return xtNoExceptionHandler;
2898 if (xtensa_operand_decode (isa, opc, 1, &as))
2899 return xtNoExceptionHandler;
2900 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2901 return xtNoExceptionHandler;
2902 if (xtensa_operand_decode (isa, opc, 2, &offset))
2903 return xtNoExceptionHandler;
2904
2905 (*func) (gdbarch, at, as, offset, wb);
2906 }
2907
2908 ia += ilen;
2909 }
2910 return xtNoExceptionHandler;
2911 }
2912
2913 /* Handle Window Overflow / Underflow exception frames. */
2914
2915 static void
2916 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2917 xtensa_frame_cache_t *cache,
2918 CORE_ADDR pc)
2919 {
2920 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2921 CORE_ADDR ps, wb, ws, ra;
2922 int epc1_regnum, i, regnum;
2923 xtensa_exception_handler_t eh_type;
2924
2925 /* Read PS, WB, and WS from the hardware. Note that PS register
2926 must be present, if Windowed ABI is supported. */
2927 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2928 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2929 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2930
2931 /* Execute all the remaining instructions from Window Interrupt Handler
2932 by simulating them on the remote protocol level. On return, set the
2933 type of Xtensa Window Interrupt Handler, or report an error. */
2934 eh_type = execute_code (gdbarch, pc, wb);
2935 if (eh_type == xtNoExceptionHandler)
2936 error (_("\
2937 Unable to decode Xtensa Window Interrupt Handler's code."));
2938
2939 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2940 cache->call0 = 0; /* It's Windowed ABI. */
2941
2942 /* All registers for the cached frame will be alive. */
2943 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2944 cache->wd.aregs[i] = -1;
2945
2946 if (eh_type == xtWindowOverflow)
2947 cache->wd.ws = ws ^ (1 << wb);
2948 else /* eh_type == xtWindowUnderflow. */
2949 cache->wd.ws = ws | (1 << wb);
2950
2951 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2952 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2953 cache->wd.wb);
2954 ra = xtensa_read_register (regnum);
2955 cache->wd.callsize = WINSIZE (ra);
2956 cache->prev_sp = xtensa_read_register (regnum + 1);
2957 /* Set regnum to a frame pointer of the frame being cached. */
2958 regnum = xtensa_scan_prologue (gdbarch, pc);
2959 regnum = arreg_number (gdbarch,
2960 gdbarch_tdep (gdbarch)->a0_base + regnum,
2961 cache->wd.wb);
2962 cache->base = get_frame_register_unsigned (this_frame, regnum);
2963
2964 /* Read PC of interrupted function from EPC1 register. */
2965 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2966 if (epc1_regnum < 0)
2967 error(_("Unable to read Xtensa register EPC1"));
2968 cache->ra = xtensa_read_register (epc1_regnum);
2969 cache->pc = get_frame_func (this_frame);
2970 }
2971
2972
2973 /* Skip function prologue.
2974
2975 Return the pc of the first instruction after prologue. GDB calls this to
2976 find the address of the first line of the function or (if there is no line
2977 number information) to skip the prologue for planting breakpoints on
2978 function entries. Use debug info (if present) or prologue analysis to skip
2979 the prologue to achieve reliable debugging behavior. For windowed ABI,
2980 only the 'entry' instruction is skipped. It is not strictly necessary to
2981 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2982 backtrace at any point in the prologue, however certain potential hazards
2983 are avoided and a more "normal" debugging experience is ensured by
2984 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2985 For example, if we don't skip the prologue:
2986 - Some args may not yet have been saved to the stack where the debug
2987 info expects to find them (true anyway when only 'entry' is skipped);
2988 - Software breakpoints ('break' instrs) may not have been unplanted
2989 when the prologue analysis is done on initializing the frame cache,
2990 and breaks in the prologue will throw off the analysis.
2991
2992 If we have debug info ( line-number info, in particular ) we simply skip
2993 the code associated with the first function line effectively skipping
2994 the prologue code. It works even in cases like
2995
2996 int main()
2997 { int local_var = 1;
2998 ....
2999 }
3000
3001 because, for this source code, both Xtensa compilers will generate two
3002 separate entries ( with the same line number ) in dwarf line-number
3003 section to make sure there is a boundary between the prologue code and
3004 the rest of the function.
3005
3006 If there is no debug info, we need to analyze the code. */
3007
3008 /* #define DONT_SKIP_PROLOGUE */
3009
3010 static CORE_ADDR
3011 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3012 {
3013 struct symtab_and_line prologue_sal;
3014 CORE_ADDR body_pc;
3015
3016 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3017
3018 #if DONT_SKIP_PROLOGUE
3019 return start_pc;
3020 #endif
3021
3022 /* Try to find first body line from debug info. */
3023
3024 prologue_sal = find_pc_line (start_pc, 0);
3025 if (prologue_sal.line != 0) /* Found debug info. */
3026 {
3027 /* In Call0, it is possible to have a function with only one instruction
3028 ('ret') resulting from a one-line optimized function that does nothing.
3029 In that case, prologue_sal.end may actually point to the start of the
3030 next function in the text section, causing a breakpoint to be set at
3031 the wrong place. Check, if the end address is within a different
3032 function, and if so return the start PC. We know we have symbol
3033 information. */
3034
3035 CORE_ADDR end_func;
3036
3037 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3038 && call0_ret (start_pc, prologue_sal.end))
3039 return start_pc;
3040
3041 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3042 if (end_func != start_pc)
3043 return start_pc;
3044
3045 return prologue_sal.end;
3046 }
3047
3048 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3049 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3050 xtensa_alloc_frame_cache (0));
3051 return body_pc != 0 ? body_pc : start_pc;
3052 }
3053
3054 /* Verify the current configuration. */
3055 static void
3056 xtensa_verify_config (struct gdbarch *gdbarch)
3057 {
3058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3059 string_file log;
3060
3061 /* Verify that we got a reasonable number of AREGS. */
3062 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3063 log.printf (_("\
3064 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3065 tdep->num_aregs);
3066
3067 /* Verify that certain registers exist. */
3068
3069 if (tdep->pc_regnum == -1)
3070 log.printf (_("\n\tpc_regnum: No PC register"));
3071 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3072 log.printf (_("\n\tps_regnum: No PS register"));
3073
3074 if (tdep->isa_use_windowed_registers)
3075 {
3076 if (tdep->wb_regnum == -1)
3077 log.printf (_("\n\twb_regnum: No WB register"));
3078 if (tdep->ws_regnum == -1)
3079 log.printf (_("\n\tws_regnum: No WS register"));
3080 if (tdep->ar_base == -1)
3081 log.printf (_("\n\tar_base: No AR registers"));
3082 }
3083
3084 if (tdep->a0_base == -1)
3085 log.printf (_("\n\ta0_base: No Ax registers"));
3086
3087 if (!log.empty ())
3088 internal_error (__FILE__, __LINE__,
3089 _("the following are invalid: %s"), log.c_str ());
3090 }
3091
3092
3093 /* Derive specific register numbers from the array of registers. */
3094
3095 static void
3096 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3097 {
3098 xtensa_register_t* rmap;
3099 int n, max_size = 4;
3100
3101 tdep->num_regs = 0;
3102 tdep->num_nopriv_regs = 0;
3103
3104 /* Special registers 0..255 (core). */
3105 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3106 /* User registers 0..255. */
3107 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3108
3109 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3110 {
3111 if (rmap->target_number == 0x0020)
3112 tdep->pc_regnum = n;
3113 else if (rmap->target_number == 0x0100)
3114 tdep->ar_base = n;
3115 else if (rmap->target_number == 0x0000)
3116 tdep->a0_base = n;
3117 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3118 tdep->wb_regnum = n;
3119 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3120 tdep->ws_regnum = n;
3121 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3122 tdep->debugcause_regnum = n;
3123 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3124 tdep->exccause_regnum = n;
3125 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3126 tdep->excvaddr_regnum = n;
3127 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3128 tdep->lbeg_regnum = n;
3129 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3130 tdep->lend_regnum = n;
3131 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3132 tdep->lcount_regnum = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3134 tdep->sar_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3136 tdep->litbase_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3138 tdep->ps_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3140 tdep->threadptr_regnum = n;
3141 #if 0
3142 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3143 tdep->interrupt_regnum = n;
3144 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3145 tdep->interrupt2_regnum = n;
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3147 tdep->cpenable_regnum = n;
3148 #endif
3149
3150 if (rmap->byte_size > max_size)
3151 max_size = rmap->byte_size;
3152 if (rmap->mask != 0 && tdep->num_regs == 0)
3153 tdep->num_regs = n;
3154 /* Find out out how to deal with priveleged registers.
3155
3156 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3157 && tdep->num_nopriv_regs == 0)
3158 tdep->num_nopriv_regs = n;
3159 */
3160 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3161 && tdep->num_regs == 0)
3162 tdep->num_regs = n;
3163 }
3164
3165 /* Number of pseudo registers. */
3166 tdep->num_pseudo_regs = n - tdep->num_regs;
3167
3168 /* Empirically determined maximum sizes. */
3169 tdep->max_register_raw_size = max_size;
3170 tdep->max_register_virtual_size = max_size;
3171 }
3172
3173 /* Module "constructor" function. */
3174
3175 extern struct gdbarch_tdep xtensa_tdep;
3176
3177 static struct gdbarch *
3178 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3179 {
3180 struct gdbarch_tdep *tdep;
3181 struct gdbarch *gdbarch;
3182
3183 DEBUGTRACE ("gdbarch_init()\n");
3184
3185 if (!xtensa_default_isa)
3186 xtensa_default_isa = xtensa_isa_init (0, 0);
3187
3188 /* We have to set the byte order before we call gdbarch_alloc. */
3189 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3190
3191 tdep = &xtensa_tdep;
3192 gdbarch = gdbarch_alloc (&info, tdep);
3193 xtensa_derive_tdep (tdep);
3194
3195 /* Verify our configuration. */
3196 xtensa_verify_config (gdbarch);
3197 xtensa_session_once_reported = 0;
3198
3199 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3200 set_gdbarch_wchar_signed (gdbarch, 0);
3201
3202 /* Pseudo-Register read/write. */
3203 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3204 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3205
3206 /* Set target information. */
3207 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3208 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3209 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3210 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3211 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3212
3213 /* Renumber registers for known formats (stabs and dwarf2). */
3214 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3215 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3216
3217 /* We provide our own function to get register information. */
3218 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3219 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3220
3221 /* To call functions from GDB using dummy frame. */
3222 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3223
3224 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3225
3226 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3227
3228 /* Advance PC across any prologue instructions to reach "real" code. */
3229 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3230
3231 /* Stack grows downward. */
3232 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3233
3234 /* Set breakpoints. */
3235 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3236 xtensa_breakpoint_kind_from_pc);
3237 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3238 xtensa_sw_breakpoint_from_kind);
3239
3240 /* After breakpoint instruction or illegal instruction, pc still
3241 points at break instruction, so don't decrement. */
3242 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3243
3244 /* We don't skip args. */
3245 set_gdbarch_frame_args_skip (gdbarch, 0);
3246
3247 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3248
3249 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3250
3251 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3252
3253 /* Frame handling. */
3254 frame_base_set_default (gdbarch, &xtensa_frame_base);
3255 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3256 dwarf2_append_unwinders (gdbarch);
3257
3258 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3259
3260 xtensa_add_reggroups (gdbarch);
3261 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3262
3263 set_gdbarch_iterate_over_regset_sections
3264 (gdbarch, xtensa_iterate_over_regset_sections);
3265
3266 set_solib_svr4_fetch_link_map_offsets
3267 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3268
3269 /* Hook in the ABI-specific overrides, if they have been registered. */
3270 gdbarch_init_osabi (info, gdbarch);
3271
3272 return gdbarch;
3273 }
3274
3275 static void
3276 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3277 {
3278 error (_("xtensa_dump_tdep(): not implemented"));
3279 }
3280
3281 void
3282 _initialize_xtensa_tdep (void)
3283 {
3284 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3285 xtensa_init_reggroups ();
3286
3287 add_setshow_zuinteger_cmd ("xtensa",
3288 class_maintenance,
3289 &xtensa_debug_level,
3290 _("Set Xtensa debugging."),
3291 _("Show Xtensa debugging."), _("\
3292 When non-zero, Xtensa-specific debugging is enabled. \
3293 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3294 NULL,
3295 NULL,
3296 &setdebuglist, &showdebuglist);
3297 }