Handle non-ASCII identifiers in Ada
[binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "value.h"
27 #include "osabi.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "regset.h"
31
32 #include "dwarf2/frame.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
35
36 #include "arch-utils.h"
37 #include "gdbarch.h"
38
39 #include "command.h"
40 #include "gdbcmd.h"
41
42 #include "xtensa-isa.h"
43 #include "xtensa-tdep.h"
44 #include "xtensa-config.h"
45 #include <algorithm>
46
47
48 static unsigned int xtensa_debug_level = 0;
49
50 #define DEBUGWARN(args...) \
51 if (xtensa_debug_level > 0) \
52 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
53
54 #define DEBUGINFO(args...) \
55 if (xtensa_debug_level > 1) \
56 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
57
58 #define DEBUGTRACE(args...) \
59 if (xtensa_debug_level > 2) \
60 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
61
62 #define DEBUGVERB(args...) \
63 if (xtensa_debug_level > 3) \
64 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
65
66
67 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
68 #define SP_ALIGNMENT 16
69
70
71 /* On Windowed ABI, we use a6 through a11 for passing arguments
72 to a function called by GDB because CALL4 is used. */
73 #define ARGS_NUM_REGS 6
74 #define REGISTER_SIZE 4
75
76
77 /* Extract the call size from the return address or PS register. */
78 #define PS_CALLINC_SHIFT 16
79 #define PS_CALLINC_MASK 0x00030000
80 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
81 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
82
83 /* On TX, hardware can be configured without Exception Option.
84 There is no PS register in this case. Inside XT-GDB, let us treat
85 it as a virtual read-only register always holding the same value. */
86 #define TX_PS 0x20
87
88 /* ABI-independent macros. */
89 #define ARG_NOF(tdep) \
90 (tdep->call_abi \
91 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
92 #define ARG_1ST(tdep) \
93 (tdep->call_abi == CallAbiCall0Only \
94 ? (tdep->a0_base + C0_ARGS) \
95 : (tdep->a0_base + 6))
96
97 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
98 indicates that the instruction is an ENTRY instruction. */
99
100 #define XTENSA_IS_ENTRY(gdbarch, op1) \
101 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
102 ? ((op1) == 0x6c) : ((op1) == 0x36))
103
104 #define XTENSA_ENTRY_LENGTH 3
105
106 /* windowing_enabled() returns true, if windowing is enabled.
107 WOE must be set to 1; EXCM to 0.
108 Note: We assume that EXCM is always 0 for XEA1. */
109
110 #define PS_WOE (1<<18)
111 #define PS_EXC (1<<4)
112
113 /* Big enough to hold the size of the largest register in bytes. */
114 #define XTENSA_MAX_REGISTER_SIZE 64
115
116 static int
117 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
118 {
119 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
120
121 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
122 if (tdep->call_abi == CallAbiCall0Only)
123 return 0;
124
125 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
126 }
127
128 /* Convert a live A-register number to the corresponding AR-register
129 number. */
130 static int
131 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
132 {
133 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
134 int arreg;
135
136 arreg = a_regnum - tdep->a0_base;
137 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
138 arreg &= tdep->num_aregs - 1;
139
140 return arreg + tdep->ar_base;
141 }
142
143 /* Convert a live AR-register number to the corresponding A-register order
144 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
145 static int
146 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
147 {
148 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
149 int areg;
150
151 areg = ar_regnum - tdep->ar_base;
152 if (areg < 0 || areg >= tdep->num_aregs)
153 return -1;
154 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
155 return (areg > 15) ? -1 : areg;
156 }
157
158 /* Read Xtensa register directly from the hardware. */
159 static unsigned long
160 xtensa_read_register (int regnum)
161 {
162 ULONGEST value;
163
164 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
165 return (unsigned long) value;
166 }
167
168 /* Write Xtensa register directly to the hardware. */
169 static void
170 xtensa_write_register (int regnum, ULONGEST value)
171 {
172 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
173 }
174
175 /* Return the window size of the previous call to the function from which we
176 have just returned.
177
178 This function is used to extract the return value after a called function
179 has returned to the caller. On Xtensa, the register that holds the return
180 value (from the perspective of the caller) depends on what call
181 instruction was used. For now, we are assuming that the call instruction
182 precedes the current address, so we simply analyze the call instruction.
183 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
184 method to call the inferior function. */
185
186 static int
187 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
188 {
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 int winsize = 4;
191 int insn;
192 gdb_byte buf[4];
193
194 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
195
196 /* Read the previous instruction (should be a call[x]{4|8|12}. */
197 read_memory (pc-3, buf, 3);
198 insn = extract_unsigned_integer (buf, 3, byte_order);
199
200 /* Decode call instruction:
201 Little Endian
202 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
203 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
204 Big Endian
205 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
206 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
207
208 if (byte_order == BFD_ENDIAN_LITTLE)
209 {
210 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
211 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
212 }
213 else
214 {
215 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
216 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
217 }
218 return winsize;
219 }
220
221
222 /* REGISTER INFORMATION */
223
224 /* Find register by name. */
225 static int
226 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
227 {
228 int i;
229 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
230
231 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
232 if (strcasecmp (tdep->regmap[i].name, name) == 0)
233 return i;
234
235 return -1;
236 }
237
238 /* Returns the name of a register. */
239 static const char *
240 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
241 {
242 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
243
244 /* Return the name stored in the register map. */
245 if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
246 return tdep->regmap[regnum].name;
247
248 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
249 return 0;
250 }
251
252 /* Return the type of a register. Create a new type, if necessary. */
253
254 static struct type *
255 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
256 {
257 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
258
259 /* Return signed integer for ARx and Ax registers. */
260 if ((regnum >= tdep->ar_base
261 && regnum < tdep->ar_base + tdep->num_aregs)
262 || (regnum >= tdep->a0_base
263 && regnum < tdep->a0_base + 16))
264 return builtin_type (gdbarch)->builtin_int;
265
266 if (regnum == gdbarch_pc_regnum (gdbarch)
267 || regnum == tdep->a0_base + 1)
268 return builtin_type (gdbarch)->builtin_data_ptr;
269
270 /* Return the stored type for all other registers. */
271 else if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
272 {
273 xtensa_register_t* reg = &tdep->regmap[regnum];
274
275 /* Set ctype for this register (only the first time). */
276
277 if (reg->ctype == 0)
278 {
279 struct ctype_cache *tp;
280 int size = reg->byte_size;
281
282 /* We always use the memory representation,
283 even if the register width is smaller. */
284 switch (size)
285 {
286 case 1:
287 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
288 break;
289
290 case 2:
291 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
292 break;
293
294 case 4:
295 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
296 break;
297
298 case 8:
299 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
300 break;
301
302 case 16:
303 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
304 break;
305
306 default:
307 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
308 if (tp->size == size)
309 break;
310
311 if (tp == NULL)
312 {
313 std::string name = string_printf ("int%d", size * 8);
314
315 tp = XNEW (struct ctype_cache);
316 tp->next = tdep->type_entries;
317 tdep->type_entries = tp;
318 tp->size = size;
319 tp->virtual_type
320 = arch_integer_type (gdbarch, size * 8, 1, name.c_str ());
321 }
322
323 reg->ctype = tp->virtual_type;
324 }
325 }
326 return reg->ctype;
327 }
328
329 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
330 return 0;
331 }
332
333
334 /* Return the 'local' register number for stubs, dwarf2, etc.
335 The debugging information enumerates registers starting from 0 for A0
336 to n for An. So, we only have to add the base number for A0. */
337
338 static int
339 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
340 {
341 int i;
342 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
343
344 if (regnum >= 0 && regnum < 16)
345 return tdep->a0_base + regnum;
346
347 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
348 if (regnum == tdep->regmap[i].target_number)
349 return i;
350
351 return -1;
352 }
353
354
355 /* Write the bits of a masked register to the various registers.
356 Only the masked areas of these registers are modified; the other
357 fields are untouched. The size of masked registers is always less
358 than or equal to 32 bits. */
359
360 static void
361 xtensa_register_write_masked (struct regcache *regcache,
362 xtensa_register_t *reg, const gdb_byte *buffer)
363 {
364 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
365 const xtensa_mask_t *mask = reg->mask;
366
367 int shift = 0; /* Shift for next mask (mod 32). */
368 int start, size; /* Start bit and size of current mask. */
369
370 unsigned int *ptr = value;
371 unsigned int regval, m, mem = 0;
372
373 int bytesize = reg->byte_size;
374 int bitsize = bytesize * 8;
375 int i, r;
376
377 DEBUGTRACE ("xtensa_register_write_masked ()\n");
378
379 /* Copy the masked register to host byte-order. */
380 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
381 for (i = 0; i < bytesize; i++)
382 {
383 mem >>= 8;
384 mem |= (buffer[bytesize - i - 1] << 24);
385 if ((i & 3) == 3)
386 *ptr++ = mem;
387 }
388 else
389 for (i = 0; i < bytesize; i++)
390 {
391 mem >>= 8;
392 mem |= (buffer[i] << 24);
393 if ((i & 3) == 3)
394 *ptr++ = mem;
395 }
396
397 /* We might have to shift the final value:
398 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
399 bytesize & 3 == x -> shift (4-x) * 8. */
400
401 *ptr = mem >> (((0 - bytesize) & 3) * 8);
402 ptr = value;
403 mem = *ptr;
404
405 /* Write the bits to the masked areas of the other registers. */
406 for (i = 0; i < mask->count; i++)
407 {
408 start = mask->mask[i].bit_start;
409 size = mask->mask[i].bit_size;
410 regval = mem >> shift;
411
412 if ((shift += size) > bitsize)
413 error (_("size of all masks is larger than the register"));
414
415 if (shift >= 32)
416 {
417 mem = *(++ptr);
418 shift -= 32;
419 bitsize -= 32;
420
421 if (shift > 0)
422 regval |= mem << (size - shift);
423 }
424
425 /* Make sure we have a valid register. */
426 r = mask->mask[i].reg_num;
427 if (r >= 0 && size > 0)
428 {
429 /* Don't overwrite the unmasked areas. */
430 ULONGEST old_val;
431 regcache_cooked_read_unsigned (regcache, r, &old_val);
432 m = 0xffffffff >> (32 - size) << start;
433 regval <<= start;
434 regval = (regval & m) | (old_val & ~m);
435 regcache_cooked_write_unsigned (regcache, r, regval);
436 }
437 }
438 }
439
440
441 /* Read a tie state or mapped registers. Read the masked areas
442 of the registers and assemble them into a single value. */
443
444 static enum register_status
445 xtensa_register_read_masked (readable_regcache *regcache,
446 xtensa_register_t *reg, gdb_byte *buffer)
447 {
448 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
449 const xtensa_mask_t *mask = reg->mask;
450
451 int shift = 0;
452 int start, size;
453
454 unsigned int *ptr = value;
455 unsigned int regval, mem = 0;
456
457 int bytesize = reg->byte_size;
458 int bitsize = bytesize * 8;
459 int i;
460
461 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
462 reg->name == 0 ? "" : reg->name);
463
464 /* Assemble the register from the masked areas of other registers. */
465 for (i = 0; i < mask->count; i++)
466 {
467 int r = mask->mask[i].reg_num;
468 if (r >= 0)
469 {
470 enum register_status status;
471 ULONGEST val;
472
473 status = regcache->cooked_read (r, &val);
474 if (status != REG_VALID)
475 return status;
476 regval = (unsigned int) val;
477 }
478 else
479 regval = 0;
480
481 start = mask->mask[i].bit_start;
482 size = mask->mask[i].bit_size;
483
484 regval >>= start;
485
486 if (size < 32)
487 regval &= (0xffffffff >> (32 - size));
488
489 mem |= regval << shift;
490
491 if ((shift += size) > bitsize)
492 error (_("size of all masks is larger than the register"));
493
494 if (shift >= 32)
495 {
496 *ptr++ = mem;
497 bitsize -= 32;
498 shift -= 32;
499
500 if (shift == 0)
501 mem = 0;
502 else
503 mem = regval >> (size - shift);
504 }
505 }
506
507 if (shift > 0)
508 *ptr = mem;
509
510 /* Copy value to target byte order. */
511 ptr = value;
512 mem = *ptr;
513
514 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
515 for (i = 0; i < bytesize; i++)
516 {
517 if ((i & 3) == 0)
518 mem = *ptr++;
519 buffer[bytesize - i - 1] = mem & 0xff;
520 mem >>= 8;
521 }
522 else
523 for (i = 0; i < bytesize; i++)
524 {
525 if ((i & 3) == 0)
526 mem = *ptr++;
527 buffer[i] = mem & 0xff;
528 mem >>= 8;
529 }
530
531 return REG_VALID;
532 }
533
534
535 /* Read pseudo registers. */
536
537 static enum register_status
538 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
539 readable_regcache *regcache,
540 int regnum,
541 gdb_byte *buffer)
542 {
543 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
544 regnum, xtensa_register_name (gdbarch, regnum));
545 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
546
547 /* Read aliases a0..a15, if this is a Windowed ABI. */
548 if (tdep->isa_use_windowed_registers
549 && (regnum >= tdep->a0_base)
550 && (regnum <= tdep->a0_base + 15))
551 {
552 ULONGEST value;
553 enum register_status status;
554
555 status = regcache->raw_read (tdep->wb_regnum,
556 &value);
557 if (status != REG_VALID)
558 return status;
559 regnum = arreg_number (gdbarch, regnum, value);
560 }
561
562 /* We can always read non-pseudo registers. */
563 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
564 return regcache->raw_read (regnum, buffer);
565
566 /* We have to find out how to deal with priveleged registers.
567 Let's treat them as pseudo-registers, but we cannot read/write them. */
568
569 else if (tdep->call_abi == CallAbiCall0Only
570 || regnum < tdep->a0_base)
571 {
572 buffer[0] = (gdb_byte)0;
573 buffer[1] = (gdb_byte)0;
574 buffer[2] = (gdb_byte)0;
575 buffer[3] = (gdb_byte)0;
576 return REG_VALID;
577 }
578 /* Pseudo registers. */
579 else if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
580 {
581 xtensa_register_t *reg = &tdep->regmap[regnum];
582 xtensa_register_type_t type = reg->type;
583 int flags = tdep->target_flags;
584
585 /* We cannot read Unknown or Unmapped registers. */
586 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
587 {
588 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
589 {
590 warning (_("cannot read register %s"),
591 xtensa_register_name (gdbarch, regnum));
592 return REG_VALID;
593 }
594 }
595
596 /* Some targets cannot read TIE register files. */
597 else if (type == xtRegisterTypeTieRegfile)
598 {
599 /* Use 'fetch' to get register? */
600 if (flags & xtTargetFlagsUseFetchStore)
601 {
602 warning (_("cannot read register"));
603 return REG_VALID;
604 }
605
606 /* On some targets (esp. simulators), we can always read the reg. */
607 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
608 {
609 warning (_("cannot read register"));
610 return REG_VALID;
611 }
612 }
613
614 /* We can always read mapped registers. */
615 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
616 return xtensa_register_read_masked (regcache, reg, buffer);
617
618 /* Assume that we can read the register. */
619 return regcache->raw_read (regnum, buffer);
620 }
621 else
622 internal_error (__FILE__, __LINE__,
623 _("invalid register number %d"), regnum);
624 }
625
626
627 /* Write pseudo registers. */
628
629 static void
630 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
631 struct regcache *regcache,
632 int regnum,
633 const gdb_byte *buffer)
634 {
635 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
636 regnum, xtensa_register_name (gdbarch, regnum));
637 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
638
639 /* Renumber register, if aliases a0..a15 on Windowed ABI. */
640 if (tdep->isa_use_windowed_registers
641 && (regnum >= tdep->a0_base)
642 && (regnum <= tdep->a0_base + 15))
643 {
644 ULONGEST value;
645 regcache_raw_read_unsigned (regcache,
646 tdep->wb_regnum, &value);
647 regnum = arreg_number (gdbarch, regnum, value);
648 }
649
650 /* We can always write 'core' registers.
651 Note: We might have converted Ax->ARy. */
652 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
653 regcache->raw_write (regnum, buffer);
654
655 /* We have to find out how to deal with priveleged registers.
656 Let's treat them as pseudo-registers, but we cannot read/write them. */
657
658 else if (regnum < tdep->a0_base)
659 {
660 return;
661 }
662 /* Pseudo registers. */
663 else if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
664 {
665 xtensa_register_t *reg = &tdep->regmap[regnum];
666 xtensa_register_type_t type = reg->type;
667 int flags = tdep->target_flags;
668
669 /* On most targets, we cannot write registers
670 of type "Unknown" or "Unmapped". */
671 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
672 {
673 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
674 {
675 warning (_("cannot write register %s"),
676 xtensa_register_name (gdbarch, regnum));
677 return;
678 }
679 }
680
681 /* Some targets cannot read TIE register files. */
682 else if (type == xtRegisterTypeTieRegfile)
683 {
684 /* Use 'store' to get register? */
685 if (flags & xtTargetFlagsUseFetchStore)
686 {
687 warning (_("cannot write register"));
688 return;
689 }
690
691 /* On some targets (esp. simulators), we can always write
692 the register. */
693 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
694 {
695 warning (_("cannot write register"));
696 return;
697 }
698 }
699
700 /* We can always write mapped registers. */
701 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
702 {
703 xtensa_register_write_masked (regcache, reg, buffer);
704 return;
705 }
706
707 /* Assume that we can write the register. */
708 regcache->raw_write (regnum, buffer);
709 }
710 else
711 internal_error (__FILE__, __LINE__,
712 _("invalid register number %d"), regnum);
713 }
714
715 static struct reggroup *xtensa_ar_reggroup;
716 static struct reggroup *xtensa_user_reggroup;
717 static struct reggroup *xtensa_vectra_reggroup;
718 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
719
720 static void
721 xtensa_init_reggroups (void)
722 {
723 int i;
724
725 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
726 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
727 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
728
729 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
730 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i).release (),
731 USER_REGGROUP);
732 }
733
734 static void
735 xtensa_add_reggroups (struct gdbarch *gdbarch)
736 {
737 int i;
738
739 /* Predefined groups. */
740 reggroup_add (gdbarch, all_reggroup);
741 reggroup_add (gdbarch, save_reggroup);
742 reggroup_add (gdbarch, restore_reggroup);
743 reggroup_add (gdbarch, system_reggroup);
744 reggroup_add (gdbarch, vector_reggroup);
745 reggroup_add (gdbarch, general_reggroup);
746 reggroup_add (gdbarch, float_reggroup);
747
748 /* Xtensa-specific groups. */
749 reggroup_add (gdbarch, xtensa_ar_reggroup);
750 reggroup_add (gdbarch, xtensa_user_reggroup);
751 reggroup_add (gdbarch, xtensa_vectra_reggroup);
752
753 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
754 reggroup_add (gdbarch, xtensa_cp[i]);
755 }
756
757 static int
758 xtensa_coprocessor_register_group (struct reggroup *group)
759 {
760 int i;
761
762 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
763 if (group == xtensa_cp[i])
764 return i;
765
766 return -1;
767 }
768
769 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
770 | XTENSA_REGISTER_FLAGS_WRITABLE \
771 | XTENSA_REGISTER_FLAGS_VOLATILE)
772
773 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
774 | XTENSA_REGISTER_FLAGS_WRITABLE)
775
776 static int
777 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
778 int regnum,
779 struct reggroup *group)
780 {
781 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
782 xtensa_register_t* reg = &tdep->regmap[regnum];
783 xtensa_register_type_t type = reg->type;
784 xtensa_register_group_t rg = reg->group;
785 int cp_number;
786
787 if (group == save_reggroup)
788 /* Every single register should be included into the list of registers
789 to be watched for changes while using -data-list-changed-registers. */
790 return 1;
791
792 /* First, skip registers that are not visible to this target
793 (unknown and unmapped registers when not using ISS). */
794
795 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
796 return 0;
797 if (group == all_reggroup)
798 return 1;
799 if (group == xtensa_ar_reggroup)
800 return rg & xtRegisterGroupAddrReg;
801 if (group == xtensa_user_reggroup)
802 return rg & xtRegisterGroupUser;
803 if (group == float_reggroup)
804 return rg & xtRegisterGroupFloat;
805 if (group == general_reggroup)
806 return rg & xtRegisterGroupGeneral;
807 if (group == system_reggroup)
808 return rg & xtRegisterGroupState;
809 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
810 return rg & xtRegisterGroupVectra;
811 if (group == restore_reggroup)
812 return (regnum < gdbarch_num_regs (gdbarch)
813 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
814 cp_number = xtensa_coprocessor_register_group (group);
815 if (cp_number >= 0)
816 return rg & (xtRegisterGroupCP0 << cp_number);
817 else
818 return 1;
819 }
820
821
822 /* Supply register REGNUM from the buffer specified by GREGS and LEN
823 in the general-purpose register set REGSET to register cache
824 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
825
826 static void
827 xtensa_supply_gregset (const struct regset *regset,
828 struct regcache *rc,
829 int regnum,
830 const void *gregs,
831 size_t len)
832 {
833 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
834 struct gdbarch *gdbarch = rc->arch ();
835 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
836 int i;
837
838 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
839
840 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
841 rc->raw_supply (gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
842 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
843 rc->raw_supply (gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
844 if (regnum == tdep->wb_regnum || regnum == -1)
845 rc->raw_supply (tdep->wb_regnum,
846 (char *) &regs->windowbase);
847 if (regnum == tdep->ws_regnum || regnum == -1)
848 rc->raw_supply (tdep->ws_regnum,
849 (char *) &regs->windowstart);
850 if (regnum == tdep->lbeg_regnum || regnum == -1)
851 rc->raw_supply (tdep->lbeg_regnum,
852 (char *) &regs->lbeg);
853 if (regnum == tdep->lend_regnum || regnum == -1)
854 rc->raw_supply (tdep->lend_regnum,
855 (char *) &regs->lend);
856 if (regnum == tdep->lcount_regnum || regnum == -1)
857 rc->raw_supply (tdep->lcount_regnum,
858 (char *) &regs->lcount);
859 if (regnum == tdep->sar_regnum || regnum == -1)
860 rc->raw_supply (tdep->sar_regnum,
861 (char *) &regs->sar);
862 if (regnum >=tdep->ar_base
863 && regnum < tdep->ar_base
864 + tdep->num_aregs)
865 rc->raw_supply
866 (regnum, (char *) &regs->ar[regnum - tdep->ar_base]);
867 else if (regnum == -1)
868 {
869 for (i = 0; i < tdep->num_aregs; ++i)
870 rc->raw_supply (tdep->ar_base + i,
871 (char *) &regs->ar[i]);
872 }
873 }
874
875
876 /* Xtensa register set. */
877
878 static struct regset
879 xtensa_gregset =
880 {
881 NULL,
882 xtensa_supply_gregset
883 };
884
885
886 /* Iterate over supported core file register note sections. */
887
888 static void
889 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
890 iterate_over_regset_sections_cb *cb,
891 void *cb_data,
892 const struct regcache *regcache)
893 {
894 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
895
896 cb (".reg", sizeof (xtensa_elf_gregset_t), sizeof (xtensa_elf_gregset_t),
897 &xtensa_gregset, NULL, cb_data);
898 }
899
900
901 /* Handling frames. */
902
903 /* Number of registers to save in case of Windowed ABI. */
904 #define XTENSA_NUM_SAVED_AREGS 12
905
906 /* Frame cache part for Windowed ABI. */
907 typedef struct xtensa_windowed_frame_cache
908 {
909 int wb; /* WINDOWBASE of the previous frame. */
910 int callsize; /* Call size of this frame. */
911 int ws; /* WINDOWSTART of the previous frame. It keeps track of
912 life windows only. If there is no bit set for the
913 window, that means it had been already spilled
914 because of window overflow. */
915
916 /* Addresses of spilled A-registers.
917 AREGS[i] == -1, if corresponding AR is alive. */
918 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
919 } xtensa_windowed_frame_cache_t;
920
921 /* Call0 ABI Definitions. */
922
923 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
924 analysis. */
925 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
926 #define C0_SP 1 /* Register used as SP. */
927 #define C0_FP 15 /* Register used as FP. */
928 #define C0_RA 0 /* Register used as return address. */
929 #define C0_ARGS 2 /* Register used as first arg/retval. */
930 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
931
932 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
933 A-register where the current content of the reg came from (in terms
934 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
935 mean that the original content of the register was saved to the stack.
936 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
937 know where SP will end up until the entire prologue has been analyzed. */
938
939 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
940 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
941 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
942
943 extern xtensa_isa xtensa_default_isa;
944
945 typedef struct xtensa_c0reg
946 {
947 int fr_reg; /* original register from which register content
948 is derived, or C0_CONST, or C0_INEXP. */
949 int fr_ofs; /* constant offset from reg, or immediate value. */
950 int to_stk; /* offset from original SP to register (4-byte aligned),
951 or C0_NOSTK if register has not been saved. */
952 } xtensa_c0reg_t;
953
954 /* Frame cache part for Call0 ABI. */
955 typedef struct xtensa_call0_frame_cache
956 {
957 int c0_frmsz; /* Stack frame size. */
958 int c0_hasfp; /* Current frame uses frame pointer. */
959 int fp_regnum; /* A-register used as FP. */
960 int c0_fp; /* Actual value of frame pointer. */
961 int c0_fpalign; /* Dynamic adjustment for the stack
962 pointer. It's an AND mask. Zero,
963 if alignment was not adjusted. */
964 int c0_old_sp; /* In case of dynamic adjustment, it is
965 a register holding unaligned sp.
966 C0_INEXP, when undefined. */
967 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
968 stack offset. C0_NOSTK otherwise. */
969
970 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
971 } xtensa_call0_frame_cache_t;
972
973 typedef struct xtensa_frame_cache
974 {
975 CORE_ADDR base; /* Stack pointer of this frame. */
976 CORE_ADDR pc; /* PC of this frame at the function entry point. */
977 CORE_ADDR ra; /* The raw return address of this frame. */
978 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
979 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
980 int call0; /* It's a call0 framework (else windowed). */
981 union
982 {
983 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
984 xtensa_call0_frame_cache_t c0; /* call0 == true. */
985 };
986 } xtensa_frame_cache_t;
987
988
989 static struct xtensa_frame_cache *
990 xtensa_alloc_frame_cache (int windowed)
991 {
992 xtensa_frame_cache_t *cache;
993 int i;
994
995 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
996
997 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
998
999 cache->base = 0;
1000 cache->pc = 0;
1001 cache->ra = 0;
1002 cache->ps = 0;
1003 cache->prev_sp = 0;
1004 cache->call0 = !windowed;
1005 if (cache->call0)
1006 {
1007 cache->c0.c0_frmsz = -1;
1008 cache->c0.c0_hasfp = 0;
1009 cache->c0.fp_regnum = -1;
1010 cache->c0.c0_fp = -1;
1011 cache->c0.c0_fpalign = 0;
1012 cache->c0.c0_old_sp = C0_INEXP;
1013 cache->c0.c0_sp_ofs = C0_NOSTK;
1014
1015 for (i = 0; i < C0_NREGS; i++)
1016 {
1017 cache->c0.c0_rt[i].fr_reg = i;
1018 cache->c0.c0_rt[i].fr_ofs = 0;
1019 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1020 }
1021 }
1022 else
1023 {
1024 cache->wd.wb = 0;
1025 cache->wd.ws = 0;
1026 cache->wd.callsize = -1;
1027
1028 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1029 cache->wd.aregs[i] = -1;
1030 }
1031 return cache;
1032 }
1033
1034
1035 static CORE_ADDR
1036 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1037 {
1038 return address & ~15;
1039 }
1040
1041
1042 static CORE_ADDR
1043 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1044 {
1045 gdb_byte buf[8];
1046 CORE_ADDR pc;
1047
1048 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1049 host_address_to_string (next_frame));
1050
1051 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1052 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1053
1054 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1055
1056 return pc;
1057 }
1058
1059
1060 static struct frame_id
1061 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1062 {
1063 CORE_ADDR pc, fp;
1064 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1065
1066 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1067
1068 pc = get_frame_pc (this_frame);
1069 fp = get_frame_register_unsigned
1070 (this_frame, tdep->a0_base + 1);
1071
1072 /* Make dummy frame ID unique by adding a constant. */
1073 return frame_id_build (fp + SP_ALIGNMENT, pc);
1074 }
1075
1076 /* Returns true, if instruction to execute next is unique to Xtensa Window
1077 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1078
1079 static int
1080 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1081 {
1082 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1083 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1084 unsigned int code;
1085
1086 if (byte_order == BFD_ENDIAN_BIG)
1087 {
1088 /* Check, if this is L32E or S32E. */
1089 code = insn & 0xf000ff00;
1090 if ((code == 0x00009000) || (code == 0x00009400))
1091 return 1;
1092 /* Check, if this is RFWU or RFWO. */
1093 code = insn & 0xffffff00;
1094 return ((code == 0x00430000) || (code == 0x00530000));
1095 }
1096 else
1097 {
1098 /* Check, if this is L32E or S32E. */
1099 code = insn & 0x00ff000f;
1100 if ((code == 0x090000) || (code == 0x490000))
1101 return 1;
1102 /* Check, if this is RFWU or RFWO. */
1103 code = insn & 0x00ffffff;
1104 return ((code == 0x00003400) || (code == 0x00003500));
1105 }
1106 }
1107
1108 /* Returns the best guess about which register is a frame pointer
1109 for the function containing CURRENT_PC. */
1110
1111 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1112 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1113
1114 static unsigned int
1115 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1116 {
1117 #define RETURN_FP goto done
1118
1119 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1120 unsigned int fp_regnum = tdep->a0_base + 1;
1121 CORE_ADDR start_addr;
1122 xtensa_isa isa;
1123 xtensa_insnbuf ins, slot;
1124 gdb_byte ibuf[XTENSA_ISA_BSZ];
1125 CORE_ADDR ia, bt, ba;
1126 xtensa_format ifmt;
1127 int ilen, islots, is;
1128 xtensa_opcode opc;
1129 const char *opcname;
1130
1131 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1132 if (start_addr == 0)
1133 return fp_regnum;
1134
1135 isa = xtensa_default_isa;
1136 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1137 ins = xtensa_insnbuf_alloc (isa);
1138 slot = xtensa_insnbuf_alloc (isa);
1139 ba = 0;
1140
1141 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1142 {
1143 if (ia + xtensa_isa_maxlength (isa) > bt)
1144 {
1145 ba = ia;
1146 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1147 ? ba + XTENSA_ISA_BSZ : current_pc;
1148 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1149 RETURN_FP;
1150 }
1151
1152 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1153 ifmt = xtensa_format_decode (isa, ins);
1154 if (ifmt == XTENSA_UNDEFINED)
1155 RETURN_FP;
1156 ilen = xtensa_format_length (isa, ifmt);
1157 if (ilen == XTENSA_UNDEFINED)
1158 RETURN_FP;
1159 islots = xtensa_format_num_slots (isa, ifmt);
1160 if (islots == XTENSA_UNDEFINED)
1161 RETURN_FP;
1162
1163 for (is = 0; is < islots; ++is)
1164 {
1165 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1166 RETURN_FP;
1167
1168 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1169 if (opc == XTENSA_UNDEFINED)
1170 RETURN_FP;
1171
1172 opcname = xtensa_opcode_name (isa, opc);
1173
1174 if (strcasecmp (opcname, "mov.n") == 0
1175 || strcasecmp (opcname, "or") == 0)
1176 {
1177 unsigned int register_operand;
1178
1179 /* Possible candidate for setting frame pointer
1180 from A1. This is what we are looking for. */
1181
1182 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1183 is, slot, &register_operand) != 0)
1184 RETURN_FP;
1185 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1186 RETURN_FP;
1187 if (register_operand == 1) /* Mov{.n} FP A1. */
1188 {
1189 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1190 &register_operand) != 0)
1191 RETURN_FP;
1192 if (xtensa_operand_decode (isa, opc, 0,
1193 &register_operand) != 0)
1194 RETURN_FP;
1195
1196 fp_regnum
1197 = tdep->a0_base + register_operand;
1198 RETURN_FP;
1199 }
1200 }
1201
1202 if (
1203 /* We have problems decoding the memory. */
1204 opcname == NULL
1205 || strcasecmp (opcname, "ill") == 0
1206 || strcasecmp (opcname, "ill.n") == 0
1207 /* Hit planted breakpoint. */
1208 || strcasecmp (opcname, "break") == 0
1209 || strcasecmp (opcname, "break.n") == 0
1210 /* Flow control instructions finish prologue. */
1211 || xtensa_opcode_is_branch (isa, opc) > 0
1212 || xtensa_opcode_is_jump (isa, opc) > 0
1213 || xtensa_opcode_is_loop (isa, opc) > 0
1214 || xtensa_opcode_is_call (isa, opc) > 0
1215 || strcasecmp (opcname, "simcall") == 0
1216 || strcasecmp (opcname, "syscall") == 0)
1217 /* Can not continue analysis. */
1218 RETURN_FP;
1219 }
1220 }
1221 done:
1222 xtensa_insnbuf_free(isa, slot);
1223 xtensa_insnbuf_free(isa, ins);
1224 return fp_regnum;
1225 }
1226
1227 /* The key values to identify the frame using "cache" are
1228
1229 cache->base = SP (or best guess about FP) of this frame;
1230 cache->pc = entry-PC (entry point of the frame function);
1231 cache->prev_sp = SP of the previous frame. */
1232
1233 static void
1234 call0_frame_cache (struct frame_info *this_frame,
1235 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1236
1237 static void
1238 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1239 xtensa_frame_cache_t *cache,
1240 CORE_ADDR pc);
1241
1242 static struct xtensa_frame_cache *
1243 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1244 {
1245 xtensa_frame_cache_t *cache;
1246 CORE_ADDR ra, wb, ws, pc, sp, ps;
1247 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1248 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1249 unsigned int fp_regnum;
1250 int windowed, ps_regnum;
1251
1252 if (*this_cache)
1253 return (struct xtensa_frame_cache *) *this_cache;
1254
1255 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1256 ps_regnum = gdbarch_ps_regnum (gdbarch);
1257 ps = (ps_regnum >= 0
1258 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1259
1260 windowed = windowing_enabled (gdbarch, ps);
1261
1262 /* Get pristine xtensa-frame. */
1263 cache = xtensa_alloc_frame_cache (windowed);
1264 *this_cache = cache;
1265
1266 if (windowed)
1267 {
1268 LONGEST op1;
1269 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1270
1271 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1272 wb = get_frame_register_unsigned (this_frame,
1273 tdep->wb_regnum);
1274 ws = get_frame_register_unsigned (this_frame,
1275 tdep->ws_regnum);
1276
1277 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1278 && XTENSA_IS_ENTRY (gdbarch, op1))
1279 {
1280 int callinc = CALLINC (ps);
1281 ra = get_frame_register_unsigned
1282 (this_frame, tdep->a0_base + callinc * 4);
1283
1284 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1285 cache->wd.callsize = 0;
1286 cache->wd.wb = wb;
1287 cache->wd.ws = ws;
1288 cache->prev_sp = get_frame_register_unsigned
1289 (this_frame, tdep->a0_base + 1);
1290
1291 /* This only can be the outermost frame since we are
1292 just about to execute ENTRY. SP hasn't been set yet.
1293 We can assume any frame size, because it does not
1294 matter, and, let's fake frame base in cache. */
1295 cache->base = cache->prev_sp - 16;
1296
1297 cache->pc = pc;
1298 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1299 cache->ps = (ps & ~PS_CALLINC_MASK)
1300 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1301
1302 return cache;
1303 }
1304 else
1305 {
1306 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1307 ra = get_frame_register_unsigned (this_frame,
1308 tdep->a0_base);
1309 cache->wd.callsize = WINSIZE (ra);
1310 cache->wd.wb = (wb - cache->wd.callsize / 4)
1311 & (tdep->num_aregs / 4 - 1);
1312 cache->wd.ws = ws & ~(1 << wb);
1313
1314 cache->pc = get_frame_func (this_frame);
1315 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1316 cache->ps = (ps & ~PS_CALLINC_MASK)
1317 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1318 }
1319
1320 if (cache->wd.ws == 0)
1321 {
1322 int i;
1323
1324 /* Set A0...A3. */
1325 sp = get_frame_register_unsigned
1326 (this_frame, tdep->a0_base + 1) - 16;
1327
1328 for (i = 0; i < 4; i++, sp += 4)
1329 {
1330 cache->wd.aregs[i] = sp;
1331 }
1332
1333 if (cache->wd.callsize > 4)
1334 {
1335 /* Set A4...A7/A11. */
1336 /* Get the SP of the frame previous to the previous one.
1337 To achieve this, we have to dereference SP twice. */
1338 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1339 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1340 sp -= cache->wd.callsize * 4;
1341
1342 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1343 {
1344 cache->wd.aregs[i] = sp;
1345 }
1346 }
1347 }
1348
1349 if ((cache->prev_sp == 0) && ( ra != 0 ))
1350 /* If RA is equal to 0 this frame is an outermost frame. Leave
1351 cache->prev_sp unchanged marking the boundary of the frame stack. */
1352 {
1353 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1354 {
1355 /* Register window overflow already happened.
1356 We can read caller's SP from the proper spill location. */
1357 sp = get_frame_register_unsigned
1358 (this_frame, tdep->a0_base + 1);
1359 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1360 }
1361 else
1362 {
1363 /* Read caller's frame SP directly from the previous window. */
1364 int regnum = arreg_number
1365 (gdbarch, tdep->a0_base + 1,
1366 cache->wd.wb);
1367
1368 cache->prev_sp = xtensa_read_register (regnum);
1369 }
1370 }
1371 }
1372 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1373 {
1374 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1375
1376 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1377 /* Everything was set already, including cache->base. */
1378 return cache;
1379 }
1380 else /* Call0 framework. */
1381 {
1382 call0_frame_cache (this_frame, cache, pc);
1383 fp_regnum = cache->c0.fp_regnum;
1384 }
1385
1386 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1387
1388 return cache;
1389 }
1390
1391 static int xtensa_session_once_reported = 1;
1392
1393 /* Report a problem with prologue analysis while doing backtracing.
1394 But, do it only once to avoid annoying repeated messages. */
1395
1396 static void
1397 warning_once (void)
1398 {
1399 if (xtensa_session_once_reported == 0)
1400 warning (_("\
1401 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1402 This message will not be repeated in this session.\n"));
1403
1404 xtensa_session_once_reported = 1;
1405 }
1406
1407
1408 static void
1409 xtensa_frame_this_id (struct frame_info *this_frame,
1410 void **this_cache,
1411 struct frame_id *this_id)
1412 {
1413 struct xtensa_frame_cache *cache =
1414 xtensa_frame_cache (this_frame, this_cache);
1415
1416 if (cache->prev_sp == 0)
1417 return;
1418
1419 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1420 }
1421
1422 static struct value *
1423 xtensa_frame_prev_register (struct frame_info *this_frame,
1424 void **this_cache,
1425 int regnum)
1426 {
1427 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1428 struct xtensa_frame_cache *cache;
1429 ULONGEST saved_reg = 0;
1430 int done = 1;
1431 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1432
1433 if (*this_cache == NULL)
1434 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1435 cache = (struct xtensa_frame_cache *) *this_cache;
1436
1437 if (regnum ==gdbarch_pc_regnum (gdbarch))
1438 saved_reg = cache->ra;
1439 else if (regnum == tdep->a0_base + 1)
1440 saved_reg = cache->prev_sp;
1441 else if (!cache->call0)
1442 {
1443 if (regnum == tdep->ws_regnum)
1444 saved_reg = cache->wd.ws;
1445 else if (regnum == tdep->wb_regnum)
1446 saved_reg = cache->wd.wb;
1447 else if (regnum == gdbarch_ps_regnum (gdbarch))
1448 saved_reg = cache->ps;
1449 else
1450 done = 0;
1451 }
1452 else
1453 done = 0;
1454
1455 if (done)
1456 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1457
1458 if (!cache->call0) /* Windowed ABI. */
1459 {
1460 /* Convert A-register numbers to AR-register numbers,
1461 if we deal with A-register. */
1462 if (regnum >= tdep->a0_base
1463 && regnum <= tdep->a0_base + 15)
1464 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1465
1466 /* Check, if we deal with AR-register saved on stack. */
1467 if (regnum >= tdep->ar_base
1468 && regnum <= (tdep->ar_base
1469 + tdep->num_aregs))
1470 {
1471 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1472
1473 if (areg >= 0
1474 && areg < XTENSA_NUM_SAVED_AREGS
1475 && cache->wd.aregs[areg] != -1)
1476 return frame_unwind_got_memory (this_frame, regnum,
1477 cache->wd.aregs[areg]);
1478 }
1479 }
1480 else /* Call0 ABI. */
1481 {
1482 int reg = (regnum >= tdep->ar_base
1483 && regnum <= (tdep->ar_base
1484 + C0_NREGS))
1485 ? regnum - tdep->ar_base : regnum;
1486
1487 if (reg < C0_NREGS)
1488 {
1489 CORE_ADDR spe;
1490 int stkofs;
1491
1492 /* If register was saved in the prologue, retrieve it. */
1493 stkofs = cache->c0.c0_rt[reg].to_stk;
1494 if (stkofs != C0_NOSTK)
1495 {
1496 /* Determine SP on entry based on FP. */
1497 spe = cache->c0.c0_fp
1498 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1499
1500 return frame_unwind_got_memory (this_frame, regnum,
1501 spe + stkofs);
1502 }
1503 }
1504 }
1505
1506 /* All other registers have been either saved to
1507 the stack or are still alive in the processor. */
1508
1509 return frame_unwind_got_register (this_frame, regnum, regnum);
1510 }
1511
1512
1513 static const struct frame_unwind
1514 xtensa_unwind =
1515 {
1516 "xtensa prologue",
1517 NORMAL_FRAME,
1518 default_frame_unwind_stop_reason,
1519 xtensa_frame_this_id,
1520 xtensa_frame_prev_register,
1521 NULL,
1522 default_frame_sniffer
1523 };
1524
1525 static CORE_ADDR
1526 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1527 {
1528 struct xtensa_frame_cache *cache =
1529 xtensa_frame_cache (this_frame, this_cache);
1530
1531 return cache->base;
1532 }
1533
1534 static const struct frame_base
1535 xtensa_frame_base =
1536 {
1537 &xtensa_unwind,
1538 xtensa_frame_base_address,
1539 xtensa_frame_base_address,
1540 xtensa_frame_base_address
1541 };
1542
1543
1544 static void
1545 xtensa_extract_return_value (struct type *type,
1546 struct regcache *regcache,
1547 void *dst)
1548 {
1549 struct gdbarch *gdbarch = regcache->arch ();
1550 bfd_byte *valbuf = (bfd_byte *) dst;
1551 int len = TYPE_LENGTH (type);
1552 ULONGEST pc, wb;
1553 int callsize, areg;
1554 int offset = 0;
1555
1556 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1557
1558 gdb_assert(len > 0);
1559
1560 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1561 if (tdep->call_abi != CallAbiCall0Only)
1562 {
1563 /* First, we have to find the caller window in the register file. */
1564 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1565 callsize = extract_call_winsize (gdbarch, pc);
1566
1567 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1568 if (len > (callsize > 8 ? 8 : 16))
1569 internal_error (__FILE__, __LINE__,
1570 _("cannot extract return value of %d bytes long"),
1571 len);
1572
1573 /* Get the register offset of the return
1574 register (A2) in the caller window. */
1575 regcache_raw_read_unsigned
1576 (regcache, tdep->wb_regnum, &wb);
1577 areg = arreg_number (gdbarch,
1578 tdep->a0_base + 2 + callsize, wb);
1579 }
1580 else
1581 {
1582 /* No windowing hardware - Call0 ABI. */
1583 areg = tdep->a0_base + C0_ARGS;
1584 }
1585
1586 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1587
1588 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1589 offset = 4 - len;
1590
1591 for (; len > 0; len -= 4, areg++, valbuf += 4)
1592 {
1593 if (len < 4)
1594 regcache->raw_read_part (areg, offset, len, valbuf);
1595 else
1596 regcache->raw_read (areg, valbuf);
1597 }
1598 }
1599
1600
1601 static void
1602 xtensa_store_return_value (struct type *type,
1603 struct regcache *regcache,
1604 const void *dst)
1605 {
1606 struct gdbarch *gdbarch = regcache->arch ();
1607 const bfd_byte *valbuf = (const bfd_byte *) dst;
1608 unsigned int areg;
1609 ULONGEST pc, wb;
1610 int callsize;
1611 int len = TYPE_LENGTH (type);
1612 int offset = 0;
1613
1614 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1615
1616 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1617 if (tdep->call_abi != CallAbiCall0Only)
1618 {
1619 regcache_raw_read_unsigned
1620 (regcache, tdep->wb_regnum, &wb);
1621 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1622 callsize = extract_call_winsize (gdbarch, pc);
1623
1624 if (len > (callsize > 8 ? 8 : 16))
1625 internal_error (__FILE__, __LINE__,
1626 _("unimplemented for this length: %s"),
1627 pulongest (TYPE_LENGTH (type)));
1628 areg = arreg_number (gdbarch,
1629 tdep->a0_base + 2 + callsize, wb);
1630
1631 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1632 callsize, (int) wb);
1633 }
1634 else
1635 {
1636 areg = tdep->a0_base + C0_ARGS;
1637 }
1638
1639 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1640 offset = 4 - len;
1641
1642 for (; len > 0; len -= 4, areg++, valbuf += 4)
1643 {
1644 if (len < 4)
1645 regcache->raw_write_part (areg, offset, len, valbuf);
1646 else
1647 regcache->raw_write (areg, valbuf);
1648 }
1649 }
1650
1651
1652 static enum return_value_convention
1653 xtensa_return_value (struct gdbarch *gdbarch,
1654 struct value *function,
1655 struct type *valtype,
1656 struct regcache *regcache,
1657 gdb_byte *readbuf,
1658 const gdb_byte *writebuf)
1659 {
1660 /* Structures up to 16 bytes are returned in registers. */
1661
1662 int struct_return = ((valtype->code () == TYPE_CODE_STRUCT
1663 || valtype->code () == TYPE_CODE_UNION
1664 || valtype->code () == TYPE_CODE_ARRAY)
1665 && TYPE_LENGTH (valtype) > 16);
1666
1667 if (struct_return)
1668 return RETURN_VALUE_STRUCT_CONVENTION;
1669
1670 DEBUGTRACE ("xtensa_return_value(...)\n");
1671
1672 if (writebuf != NULL)
1673 {
1674 xtensa_store_return_value (valtype, regcache, writebuf);
1675 }
1676
1677 if (readbuf != NULL)
1678 {
1679 gdb_assert (!struct_return);
1680 xtensa_extract_return_value (valtype, regcache, readbuf);
1681 }
1682 return RETURN_VALUE_REGISTER_CONVENTION;
1683 }
1684
1685
1686 /* DUMMY FRAME */
1687
1688 static CORE_ADDR
1689 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1690 struct value *function,
1691 struct regcache *regcache,
1692 CORE_ADDR bp_addr,
1693 int nargs,
1694 struct value **args,
1695 CORE_ADDR sp,
1696 function_call_return_method return_method,
1697 CORE_ADDR struct_addr)
1698 {
1699 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1700 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1701 int size, onstack_size;
1702 gdb_byte *buf = (gdb_byte *) alloca (16);
1703 CORE_ADDR ra, ps;
1704 struct argument_info
1705 {
1706 const bfd_byte *contents;
1707 int length;
1708 int onstack; /* onstack == 0 => in reg */
1709 int align; /* alignment */
1710 union
1711 {
1712 int offset; /* stack offset if on stack. */
1713 int regno; /* regno if in register. */
1714 } u;
1715 };
1716
1717 struct argument_info *arg_info =
1718 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1719
1720 CORE_ADDR osp = sp;
1721
1722 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1723
1724 if (xtensa_debug_level > 3)
1725 {
1726 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1727 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, return_method=%d, "
1728 "struct_addr=0x%x\n",
1729 (int) sp, (int) return_method, (int) struct_addr);
1730
1731 for (int i = 0; i < nargs; i++)
1732 {
1733 struct value *arg = args[i];
1734 struct type *arg_type = check_typedef (value_type (arg));
1735 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3s ", i,
1736 host_address_to_string (arg),
1737 pulongest (TYPE_LENGTH (arg_type)));
1738 switch (arg_type->code ())
1739 {
1740 case TYPE_CODE_INT:
1741 fprintf_unfiltered (gdb_stdlog, "int");
1742 break;
1743 case TYPE_CODE_STRUCT:
1744 fprintf_unfiltered (gdb_stdlog, "struct");
1745 break;
1746 default:
1747 fprintf_unfiltered (gdb_stdlog, "%3d", arg_type->code ());
1748 break;
1749 }
1750 fprintf_unfiltered (gdb_stdlog, " %s\n",
1751 host_address_to_string (value_contents (arg).data ()));
1752 }
1753 }
1754
1755 /* First loop: collect information.
1756 Cast into type_long. (This shouldn't happen often for C because
1757 GDB already does this earlier.) It's possible that GDB could
1758 do it all the time but it's harmless to leave this code here. */
1759
1760 size = 0;
1761 onstack_size = 0;
1762
1763 if (return_method == return_method_struct)
1764 size = REGISTER_SIZE;
1765
1766 for (int i = 0; i < nargs; i++)
1767 {
1768 struct argument_info *info = &arg_info[i];
1769 struct value *arg = args[i];
1770 struct type *arg_type = check_typedef (value_type (arg));
1771
1772 switch (arg_type->code ())
1773 {
1774 case TYPE_CODE_INT:
1775 case TYPE_CODE_BOOL:
1776 case TYPE_CODE_CHAR:
1777 case TYPE_CODE_RANGE:
1778 case TYPE_CODE_ENUM:
1779
1780 /* Cast argument to long if necessary as the mask does it too. */
1781 if (TYPE_LENGTH (arg_type)
1782 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1783 {
1784 arg_type = builtin_type (gdbarch)->builtin_long;
1785 arg = value_cast (arg_type, arg);
1786 }
1787 /* Aligment is equal to the type length for the basic types. */
1788 info->align = TYPE_LENGTH (arg_type);
1789 break;
1790
1791 case TYPE_CODE_FLT:
1792
1793 /* Align doubles correctly. */
1794 if (TYPE_LENGTH (arg_type)
1795 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1796 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1797 else
1798 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1799 break;
1800
1801 case TYPE_CODE_STRUCT:
1802 default:
1803 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1804 break;
1805 }
1806 info->length = TYPE_LENGTH (arg_type);
1807 info->contents = value_contents (arg).data ();
1808
1809 /* Align size and onstack_size. */
1810 size = (size + info->align - 1) & ~(info->align - 1);
1811 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1812
1813 if (size + info->length > REGISTER_SIZE * ARG_NOF (tdep))
1814 {
1815 info->onstack = 1;
1816 info->u.offset = onstack_size;
1817 onstack_size += info->length;
1818 }
1819 else
1820 {
1821 info->onstack = 0;
1822 info->u.regno = ARG_1ST (tdep) + size / REGISTER_SIZE;
1823 }
1824 size += info->length;
1825 }
1826
1827 /* Adjust the stack pointer and align it. */
1828 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1829
1830 /* Simulate MOVSP, if Windowed ABI. */
1831 if ((tdep->call_abi != CallAbiCall0Only)
1832 && (sp != osp))
1833 {
1834 read_memory (osp - 16, buf, 16);
1835 write_memory (sp - 16, buf, 16);
1836 }
1837
1838 /* Second Loop: Load arguments. */
1839
1840 if (return_method == return_method_struct)
1841 {
1842 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1843 regcache->cooked_write (ARG_1ST (tdep), buf);
1844 }
1845
1846 for (int i = 0; i < nargs; i++)
1847 {
1848 struct argument_info *info = &arg_info[i];
1849
1850 if (info->onstack)
1851 {
1852 int n = info->length;
1853 CORE_ADDR offset = sp + info->u.offset;
1854
1855 /* Odd-sized structs are aligned to the lower side of a memory
1856 word in big-endian mode and require a shift. This only
1857 applies for structures smaller than one word. */
1858
1859 if (n < REGISTER_SIZE
1860 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1861 offset += (REGISTER_SIZE - n);
1862
1863 write_memory (offset, info->contents, info->length);
1864
1865 }
1866 else
1867 {
1868 int n = info->length;
1869 const bfd_byte *cp = info->contents;
1870 int r = info->u.regno;
1871
1872 /* Odd-sized structs are aligned to the lower side of registers in
1873 big-endian mode and require a shift. The odd-sized leftover will
1874 be at the end. Note that this is only true for structures smaller
1875 than REGISTER_SIZE; for larger odd-sized structures the excess
1876 will be left-aligned in the register on both endiannesses. */
1877
1878 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1879 {
1880 ULONGEST v;
1881 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1882 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1883
1884 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1885 regcache->cooked_write (r, buf);
1886
1887 cp += REGISTER_SIZE;
1888 n -= REGISTER_SIZE;
1889 r++;
1890 }
1891 else
1892 while (n > 0)
1893 {
1894 regcache->cooked_write (r, cp);
1895
1896 cp += REGISTER_SIZE;
1897 n -= REGISTER_SIZE;
1898 r++;
1899 }
1900 }
1901 }
1902
1903 /* Set the return address of dummy frame to the dummy address.
1904 The return address for the current function (in A0) is
1905 saved in the dummy frame, so we can safely overwrite A0 here. */
1906
1907 if (tdep->call_abi != CallAbiCall0Only)
1908 {
1909 ULONGEST val;
1910
1911 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1912 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1913 ps = (unsigned long) val & ~0x00030000;
1914 regcache_cooked_write_unsigned
1915 (regcache, tdep->a0_base + 4, ra);
1916 regcache_cooked_write_unsigned (regcache,
1917 gdbarch_ps_regnum (gdbarch),
1918 ps | 0x00010000);
1919
1920 /* All the registers have been saved. After executing
1921 dummy call, they all will be restored. So it's safe
1922 to modify WINDOWSTART register to make it look like there
1923 is only one register window corresponding to WINDOWEBASE. */
1924
1925 regcache->raw_read (tdep->wb_regnum, buf);
1926 regcache_cooked_write_unsigned
1927 (regcache, tdep->ws_regnum,
1928 1 << extract_unsigned_integer (buf, 4, byte_order));
1929 }
1930 else
1931 {
1932 /* Simulate CALL0: write RA into A0 register. */
1933 regcache_cooked_write_unsigned
1934 (regcache, tdep->a0_base, bp_addr);
1935 }
1936
1937 /* Set new stack pointer and return it. */
1938 regcache_cooked_write_unsigned (regcache,
1939 tdep->a0_base + 1, sp);
1940 /* Make dummy frame ID unique by adding a constant. */
1941 return sp + SP_ALIGNMENT;
1942 }
1943
1944 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1945
1946 static int
1947 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1948 {
1949 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1950
1951 if (tdep->isa_use_density_instructions)
1952 return 2;
1953 else
1954 return 4;
1955 }
1956
1957 /* Return a breakpoint for the current location of PC. We always use
1958 the density version if we have density instructions (regardless of the
1959 current instruction at PC), and use regular instructions otherwise. */
1960
1961 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1962 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1963 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1964 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1965
1966 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1967
1968 static const gdb_byte *
1969 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1970 {
1971 *size = kind;
1972
1973 if (kind == 4)
1974 {
1975 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1976 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1977
1978 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1979 return big_breakpoint;
1980 else
1981 return little_breakpoint;
1982 }
1983 else
1984 {
1985 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1986 static unsigned char density_little_breakpoint[]
1987 = DENSITY_LITTLE_BREAKPOINT;
1988
1989 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1990 return density_big_breakpoint;
1991 else
1992 return density_little_breakpoint;
1993 }
1994 }
1995
1996 /* Call0 ABI support routines. */
1997
1998 /* Return true, if PC points to "ret" or "ret.n". */
1999
2000 static int
2001 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2002 {
2003 #define RETURN_RET goto done
2004 xtensa_isa isa;
2005 xtensa_insnbuf ins, slot;
2006 gdb_byte ibuf[XTENSA_ISA_BSZ];
2007 CORE_ADDR ia, bt, ba;
2008 xtensa_format ifmt;
2009 int ilen, islots, is;
2010 xtensa_opcode opc;
2011 const char *opcname;
2012 int found_ret = 0;
2013
2014 isa = xtensa_default_isa;
2015 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2016 ins = xtensa_insnbuf_alloc (isa);
2017 slot = xtensa_insnbuf_alloc (isa);
2018 ba = 0;
2019
2020 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2021 {
2022 if (ia + xtensa_isa_maxlength (isa) > bt)
2023 {
2024 ba = ia;
2025 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2026 ? ba + XTENSA_ISA_BSZ : finish_pc;
2027 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2028 RETURN_RET;
2029 }
2030
2031 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2032 ifmt = xtensa_format_decode (isa, ins);
2033 if (ifmt == XTENSA_UNDEFINED)
2034 RETURN_RET;
2035 ilen = xtensa_format_length (isa, ifmt);
2036 if (ilen == XTENSA_UNDEFINED)
2037 RETURN_RET;
2038 islots = xtensa_format_num_slots (isa, ifmt);
2039 if (islots == XTENSA_UNDEFINED)
2040 RETURN_RET;
2041
2042 for (is = 0; is < islots; ++is)
2043 {
2044 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2045 RETURN_RET;
2046
2047 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2048 if (opc == XTENSA_UNDEFINED)
2049 RETURN_RET;
2050
2051 opcname = xtensa_opcode_name (isa, opc);
2052
2053 if ((strcasecmp (opcname, "ret.n") == 0)
2054 || (strcasecmp (opcname, "ret") == 0))
2055 {
2056 found_ret = 1;
2057 RETURN_RET;
2058 }
2059 }
2060 }
2061 done:
2062 xtensa_insnbuf_free(isa, slot);
2063 xtensa_insnbuf_free(isa, ins);
2064 return found_ret;
2065 }
2066
2067 /* Call0 opcode class. Opcodes are preclassified according to what they
2068 mean for Call0 prologue analysis, and their number of significant operands.
2069 The purpose of this is to simplify prologue analysis by separating
2070 instruction decoding (libisa) from the semantics of prologue analysis. */
2071
2072 typedef enum
2073 {
2074 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2075 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2076 c0opc_flow, /* Flow control insn. */
2077 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2078 c0opc_break, /* Debugger software breakpoints. */
2079 c0opc_add, /* Adding two registers. */
2080 c0opc_addi, /* Adding a register and an immediate. */
2081 c0opc_and, /* Bitwise "and"-ing two registers. */
2082 c0opc_sub, /* Subtracting a register from a register. */
2083 c0opc_mov, /* Moving a register to a register. */
2084 c0opc_movi, /* Moving an immediate to a register. */
2085 c0opc_l32r, /* Loading a literal. */
2086 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2087 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2088 c0opc_l32e, /* L32E instruction. */
2089 c0opc_s32e, /* S32E instruction. */
2090 c0opc_rfwo, /* RFWO instruction. */
2091 c0opc_rfwu, /* RFWU instruction. */
2092 c0opc_NrOf /* Number of opcode classifications. */
2093 } xtensa_insn_kind;
2094
2095 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2096
2097 static int
2098 rwx_special_register (const char *opcname)
2099 {
2100 char ch = *opcname++;
2101
2102 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2103 return 0;
2104 if (*opcname++ != 's')
2105 return 0;
2106 if (*opcname++ != 'r')
2107 return 0;
2108 if (*opcname++ != '.')
2109 return 0;
2110
2111 return 1;
2112 }
2113
2114 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2115
2116 static xtensa_insn_kind
2117 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2118 {
2119 const char *opcname;
2120 xtensa_insn_kind opclass = c0opc_uninteresting;
2121
2122 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2123
2124 /* Get opcode name and handle special classifications. */
2125
2126 opcname = xtensa_opcode_name (isa, opc);
2127
2128 if (opcname == NULL
2129 || strcasecmp (opcname, "ill") == 0
2130 || strcasecmp (opcname, "ill.n") == 0)
2131 opclass = c0opc_illegal;
2132 else if (strcasecmp (opcname, "break") == 0
2133 || strcasecmp (opcname, "break.n") == 0)
2134 opclass = c0opc_break;
2135 else if (strcasecmp (opcname, "entry") == 0)
2136 opclass = c0opc_entry;
2137 else if (strcasecmp (opcname, "rfwo") == 0)
2138 opclass = c0opc_rfwo;
2139 else if (strcasecmp (opcname, "rfwu") == 0)
2140 opclass = c0opc_rfwu;
2141 else if (xtensa_opcode_is_branch (isa, opc) > 0
2142 || xtensa_opcode_is_jump (isa, opc) > 0
2143 || xtensa_opcode_is_loop (isa, opc) > 0
2144 || xtensa_opcode_is_call (isa, opc) > 0
2145 || strcasecmp (opcname, "simcall") == 0
2146 || strcasecmp (opcname, "syscall") == 0)
2147 opclass = c0opc_flow;
2148
2149 /* Also, classify specific opcodes that need to be tracked. */
2150 else if (strcasecmp (opcname, "add") == 0
2151 || strcasecmp (opcname, "add.n") == 0)
2152 opclass = c0opc_add;
2153 else if (strcasecmp (opcname, "and") == 0)
2154 opclass = c0opc_and;
2155 else if (strcasecmp (opcname, "addi") == 0
2156 || strcasecmp (opcname, "addi.n") == 0
2157 || strcasecmp (opcname, "addmi") == 0)
2158 opclass = c0opc_addi;
2159 else if (strcasecmp (opcname, "sub") == 0)
2160 opclass = c0opc_sub;
2161 else if (strcasecmp (opcname, "mov.n") == 0
2162 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2163 opclass = c0opc_mov;
2164 else if (strcasecmp (opcname, "movi") == 0
2165 || strcasecmp (opcname, "movi.n") == 0)
2166 opclass = c0opc_movi;
2167 else if (strcasecmp (opcname, "l32r") == 0)
2168 opclass = c0opc_l32r;
2169 else if (strcasecmp (opcname, "s32i") == 0
2170 || strcasecmp (opcname, "s32i.n") == 0)
2171 opclass = c0opc_s32i;
2172 else if (strcasecmp (opcname, "l32e") == 0)
2173 opclass = c0opc_l32e;
2174 else if (strcasecmp (opcname, "s32e") == 0)
2175 opclass = c0opc_s32e;
2176 else if (rwx_special_register (opcname))
2177 opclass = c0opc_rwxsr;
2178
2179 return opclass;
2180 }
2181
2182 /* Tracks register movement/mutation for a given operation, which may
2183 be within a bundle. Updates the destination register tracking info
2184 accordingly. The pc is needed only for pc-relative load instructions
2185 (eg. l32r). The SP register number is needed to identify stores to
2186 the stack frame. Returns 0, if analysis was successful, non-zero
2187 otherwise. */
2188
2189 static int
2190 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2191 xtensa_insn_kind opclass, int nods, unsigned odv[],
2192 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2193 {
2194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2195 unsigned litbase, litaddr, litval;
2196 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2197
2198 switch (opclass)
2199 {
2200 case c0opc_addi:
2201 /* 3 operands: dst, src, imm. */
2202 gdb_assert (nods == 3);
2203 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2204 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2205 break;
2206 case c0opc_add:
2207 /* 3 operands: dst, src1, src2. */
2208 gdb_assert (nods == 3);
2209 if (src[odv[1]].fr_reg == C0_CONST)
2210 {
2211 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2212 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2213 }
2214 else if (src[odv[2]].fr_reg == C0_CONST)
2215 {
2216 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2217 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2218 }
2219 else dst[odv[0]].fr_reg = C0_INEXP;
2220 break;
2221 case c0opc_and:
2222 /* 3 operands: dst, src1, src2. */
2223 gdb_assert (nods == 3);
2224 if (cache->c0.c0_fpalign == 0)
2225 {
2226 /* Handle dynamic stack alignment. */
2227 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2228 {
2229 if (src[odv[2]].fr_reg == C0_CONST)
2230 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2231 break;
2232 }
2233 else if ((src[odv[0]].fr_reg == spreg)
2234 && (src[odv[2]].fr_reg == spreg))
2235 {
2236 if (src[odv[1]].fr_reg == C0_CONST)
2237 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2238 break;
2239 }
2240 /* else fall through. */
2241 }
2242 if (src[odv[1]].fr_reg == C0_CONST)
2243 {
2244 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2245 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2246 }
2247 else if (src[odv[2]].fr_reg == C0_CONST)
2248 {
2249 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2250 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2251 }
2252 else dst[odv[0]].fr_reg = C0_INEXP;
2253 break;
2254 case c0opc_sub:
2255 /* 3 operands: dst, src1, src2. */
2256 gdb_assert (nods == 3);
2257 if (src[odv[2]].fr_reg == C0_CONST)
2258 {
2259 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2260 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2261 }
2262 else dst[odv[0]].fr_reg = C0_INEXP;
2263 break;
2264 case c0opc_mov:
2265 /* 2 operands: dst, src [, src]. */
2266 gdb_assert (nods == 2);
2267 /* First, check if it's a special case of saving unaligned SP
2268 to a spare register in case of dynamic stack adjustment.
2269 But, only do it one time. The second time could be initializing
2270 frame pointer. We don't want to overwrite the first one. */
2271 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2272 cache->c0.c0_old_sp = odv[0];
2273
2274 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2275 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2276 break;
2277 case c0opc_movi:
2278 /* 2 operands: dst, imm. */
2279 gdb_assert (nods == 2);
2280 dst[odv[0]].fr_reg = C0_CONST;
2281 dst[odv[0]].fr_ofs = odv[1];
2282 break;
2283 case c0opc_l32r:
2284 /* 2 operands: dst, literal offset. */
2285 gdb_assert (nods == 2);
2286 /* litbase = xtensa_get_litbase (pc); can be also used. */
2287 litbase = (tdep->litbase_regnum == -1)
2288 ? 0 : xtensa_read_register
2289 (tdep->litbase_regnum);
2290 litaddr = litbase & 1
2291 ? (litbase & ~1) + (signed)odv[1]
2292 : (pc + 3 + (signed)odv[1]) & ~3;
2293 litval = read_memory_integer (litaddr, 4, byte_order);
2294 dst[odv[0]].fr_reg = C0_CONST;
2295 dst[odv[0]].fr_ofs = litval;
2296 break;
2297 case c0opc_s32i:
2298 /* 3 operands: value, base, offset. */
2299 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2300 /* First, check if it's a spill for saved unaligned SP,
2301 when dynamic stack adjustment was applied to this frame. */
2302 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2303 && (odv[1] == spreg) /* SP usage indicates spill. */
2304 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2305 cache->c0.c0_sp_ofs = odv[2];
2306
2307 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2308 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2309 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2310 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2311 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2312 {
2313 /* ISA encoding guarantees alignment. But, check it anyway. */
2314 gdb_assert ((odv[2] & 3) == 0);
2315 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2316 }
2317 break;
2318 /* If we end up inside Window Overflow / Underflow interrupt handler
2319 report an error because these handlers should have been handled
2320 already in a different way. */
2321 case c0opc_l32e:
2322 case c0opc_s32e:
2323 case c0opc_rfwo:
2324 case c0opc_rfwu:
2325 return 1;
2326 default:
2327 return 1;
2328 }
2329 return 0;
2330 }
2331
2332 /* Analyze prologue of the function at start address to determine if it uses
2333 the Call0 ABI, and if so track register moves and linear modifications
2334 in the prologue up to the PC or just beyond the prologue, whichever is
2335 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2336 prologue. The prologue may overlap non-prologue instructions but is
2337 guaranteed to end by the first flow-control instruction (jump, branch,
2338 call or return). Since an optimized function may move information around
2339 and change the stack frame arbitrarily during the prologue, the information
2340 is guaranteed valid only at the point in the function indicated by the PC.
2341 May be used to skip the prologue or identify the ABI, w/o tracking.
2342
2343 Returns: Address of first instruction after prologue, or PC (whichever
2344 is first), or 0, if decoding failed (in libisa).
2345 Input args:
2346 start Start address of function/prologue.
2347 pc Program counter to stop at. Use 0 to continue to end of prologue.
2348 If 0, avoids infinite run-on in corrupt code memory by bounding
2349 the scan to the end of the function if that can be determined.
2350 nregs Number of general registers to track.
2351 InOut args:
2352 cache Xtensa frame cache.
2353
2354 Note that these may produce useful results even if decoding fails
2355 because they begin with default assumptions that analysis may change. */
2356
2357 static CORE_ADDR
2358 call0_analyze_prologue (struct gdbarch *gdbarch,
2359 CORE_ADDR start, CORE_ADDR pc,
2360 int nregs, xtensa_frame_cache_t *cache)
2361 {
2362 CORE_ADDR ia; /* Current insn address in prologue. */
2363 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2364 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2365 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2366 xtensa_isa isa; /* libisa ISA handle. */
2367 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2368 xtensa_format ifmt; /* libisa instruction format. */
2369 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2370 xtensa_opcode opc; /* Opcode in current slot. */
2371 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2372 int nods; /* Opcode number of operands. */
2373 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2374 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2375 int j; /* General loop counter. */
2376 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2377 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2378 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2379
2380 struct symtab_and_line prologue_sal;
2381
2382 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2383 (int)start, (int)pc);
2384
2385 /* Try to limit the scan to the end of the function if a non-zero pc
2386 arg was not supplied to avoid probing beyond the end of valid memory.
2387 If memory is full of garbage that classifies as c0opc_uninteresting.
2388 If this fails (eg. if no symbols) pc ends up 0 as it was.
2389 Initialize the Call0 frame and register tracking info.
2390 Assume it's Call0 until an 'entry' instruction is encountered.
2391 Assume we may be in the prologue until we hit a flow control instr. */
2392
2393 rtmp = NULL;
2394 body_pc = UINT_MAX;
2395 end_pc = 0;
2396
2397 /* Find out, if we have an information about the prologue from DWARF. */
2398 prologue_sal = find_pc_line (start, 0);
2399 if (prologue_sal.line != 0) /* Found debug info. */
2400 body_pc = prologue_sal.end;
2401
2402 /* If we are going to analyze the prologue in general without knowing about
2403 the current PC, make the best assumption for the end of the prologue. */
2404 if (pc == 0)
2405 {
2406 find_pc_partial_function (start, 0, NULL, &end_pc);
2407 body_pc = std::min (end_pc, body_pc);
2408 }
2409 else
2410 body_pc = std::min (pc, body_pc);
2411
2412 cache->call0 = 1;
2413 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2414
2415 isa = xtensa_default_isa;
2416 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2417 ins = xtensa_insnbuf_alloc (isa);
2418 slot = xtensa_insnbuf_alloc (isa);
2419
2420 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2421 {
2422 /* (Re)fill instruction buffer from memory if necessary, but do not
2423 read memory beyond PC to be sure we stay within text section
2424 (this protection only works if a non-zero pc is supplied). */
2425
2426 if (ia + xtensa_isa_maxlength (isa) > bt)
2427 {
2428 ba = ia;
2429 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2430 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2431 error (_("Unable to read target memory ..."));
2432 }
2433
2434 /* Decode format information. */
2435
2436 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2437 ifmt = xtensa_format_decode (isa, ins);
2438 if (ifmt == XTENSA_UNDEFINED)
2439 {
2440 fail = 1;
2441 goto done;
2442 }
2443 ilen = xtensa_format_length (isa, ifmt);
2444 if (ilen == XTENSA_UNDEFINED)
2445 {
2446 fail = 1;
2447 goto done;
2448 }
2449 islots = xtensa_format_num_slots (isa, ifmt);
2450 if (islots == XTENSA_UNDEFINED)
2451 {
2452 fail = 1;
2453 goto done;
2454 }
2455
2456 /* Analyze a bundle or a single instruction, using a snapshot of
2457 the register tracking info as input for the entire bundle so that
2458 register changes do not take effect within this bundle. */
2459
2460 for (j = 0; j < nregs; ++j)
2461 rtmp[j] = cache->c0.c0_rt[j];
2462
2463 for (is = 0; is < islots; ++is)
2464 {
2465 /* Decode a slot and classify the opcode. */
2466
2467 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2468 if (fail)
2469 goto done;
2470
2471 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2472 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2473 (unsigned)ia, opc);
2474 if (opc == XTENSA_UNDEFINED)
2475 opclass = c0opc_illegal;
2476 else
2477 opclass = call0_classify_opcode (isa, opc);
2478
2479 /* Decide whether to track this opcode, ignore it, or bail out. */
2480
2481 switch (opclass)
2482 {
2483 case c0opc_illegal:
2484 case c0opc_break:
2485 fail = 1;
2486 goto done;
2487
2488 case c0opc_uninteresting:
2489 continue;
2490
2491 case c0opc_flow: /* Flow control instructions stop analysis. */
2492 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2493 goto done;
2494
2495 case c0opc_entry:
2496 cache->call0 = 0;
2497 ia += ilen; /* Skip over 'entry' insn. */
2498 goto done;
2499
2500 default:
2501 cache->call0 = 1;
2502 }
2503
2504 /* Only expected opcodes should get this far. */
2505
2506 /* Extract and decode the operands. */
2507 nods = xtensa_opcode_num_operands (isa, opc);
2508 if (nods == XTENSA_UNDEFINED)
2509 {
2510 fail = 1;
2511 goto done;
2512 }
2513
2514 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2515 {
2516 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2517 is, slot, &odv[j]);
2518 if (fail)
2519 goto done;
2520
2521 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2522 if (fail)
2523 goto done;
2524 }
2525
2526 /* Check operands to verify use of 'mov' assembler macro. */
2527 if (opclass == c0opc_mov && nods == 3)
2528 {
2529 if (odv[2] == odv[1])
2530 {
2531 nods = 2;
2532 if ((odv[0] == 1) && (odv[1] != 1))
2533 /* OR A1, An, An , where n != 1.
2534 This means we are inside epilogue already. */
2535 goto done;
2536 }
2537 else
2538 {
2539 opclass = c0opc_uninteresting;
2540 continue;
2541 }
2542 }
2543
2544 /* Track register movement and modification for this operation. */
2545 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2546 opclass, nods, odv, ia, 1, cache);
2547 if (fail)
2548 goto done;
2549 }
2550 }
2551 done:
2552 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2553 (unsigned)ia, fail ? "failed" : "succeeded");
2554 xtensa_insnbuf_free(isa, slot);
2555 xtensa_insnbuf_free(isa, ins);
2556 return fail ? XTENSA_ISA_BADPC : ia;
2557 }
2558
2559 /* Initialize frame cache for the current frame in CALL0 ABI. */
2560
2561 static void
2562 call0_frame_cache (struct frame_info *this_frame,
2563 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2564 {
2565 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2566 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2567 CORE_ADDR start_pc; /* The beginning of the function. */
2568 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2569 CORE_ADDR sp, fp, ra;
2570 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2571 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2572
2573 sp = get_frame_register_unsigned
2574 (this_frame, tdep->a0_base + 1);
2575 fp = sp; /* Assume FP == SP until proven otherwise. */
2576
2577 /* Find the beginning of the prologue of the function containing the PC
2578 and analyze it up to the PC or the end of the prologue. */
2579
2580 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2581 {
2582 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2583
2584 if (body_pc == XTENSA_ISA_BADPC)
2585 {
2586 warning_once ();
2587 ra = 0;
2588 goto finish_frame_analysis;
2589 }
2590 }
2591
2592 /* Get the frame information and FP (if used) at the current PC.
2593 If PC is in the prologue, the prologue analysis is more reliable
2594 than DWARF info. We don't not know for sure, if PC is in the prologue,
2595 but we do know no calls have yet taken place, so we can almost
2596 certainly rely on the prologue analysis. */
2597
2598 if (body_pc <= pc)
2599 {
2600 /* Prologue analysis was successful up to the PC.
2601 It includes the cases when PC == START_PC. */
2602 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2603 /* c0_hasfp == true means there is a frame pointer because
2604 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2605 was derived from SP. Otherwise, it would be C0_FP. */
2606 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2607 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2608 fp_regnum += tdep->a0_base;
2609 }
2610 else /* No data from the prologue analysis. */
2611 {
2612 c0_hasfp = 0;
2613 fp_regnum = tdep->a0_base + C0_SP;
2614 c0_frmsz = 0;
2615 start_pc = pc;
2616 }
2617
2618 if (cache->c0.c0_fpalign)
2619 {
2620 /* This frame has a special prologue with a dynamic stack adjustment
2621 to force an alignment, which is bigger than standard 16 bytes. */
2622
2623 CORE_ADDR unaligned_sp;
2624
2625 if (cache->c0.c0_old_sp == C0_INEXP)
2626 /* This can't be. Prologue code should be consistent.
2627 Unaligned stack pointer should be saved in a spare register. */
2628 {
2629 warning_once ();
2630 ra = 0;
2631 goto finish_frame_analysis;
2632 }
2633
2634 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2635 /* Saved unaligned value of SP is kept in a register. */
2636 unaligned_sp = get_frame_register_unsigned
2637 (this_frame, tdep->a0_base + cache->c0.c0_old_sp);
2638 else
2639 /* Get the value from stack. */
2640 unaligned_sp = (CORE_ADDR)
2641 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2642
2643 prev_sp = unaligned_sp + c0_frmsz;
2644 }
2645 else
2646 prev_sp = fp + c0_frmsz;
2647
2648 /* Frame size from debug info or prologue tracking does not account for
2649 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2650 if (c0_hasfp)
2651 {
2652 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2653
2654 /* Update the stack frame size. */
2655 c0_frmsz += fp - sp;
2656 }
2657
2658 /* Get the return address (RA) from the stack if saved,
2659 or try to get it from a register. */
2660
2661 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2662 if (to_stk != C0_NOSTK)
2663 ra = (CORE_ADDR)
2664 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2665 4, byte_order);
2666
2667 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2668 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2669 {
2670 /* Special case for terminating backtrace at a function that wants to
2671 be seen as the outermost one. Such a function will clear it's RA (A0)
2672 register to 0 in the prologue instead of saving its original value. */
2673 ra = 0;
2674 }
2675 else
2676 {
2677 /* RA was copied to another register or (before any function call) may
2678 still be in the original RA register. This is not always reliable:
2679 even in a leaf function, register tracking stops after prologue, and
2680 even in prologue, non-prologue instructions (not tracked) may overwrite
2681 RA or any register it was copied to. If likely in prologue or before
2682 any call, use retracking info and hope for the best (compiler should
2683 have saved RA in stack if not in a leaf function). If not in prologue,
2684 too bad. */
2685
2686 int i;
2687 for (i = 0;
2688 (i < C0_NREGS)
2689 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2690 ++i);
2691 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2692 i = C0_RA;
2693 if (i < C0_NREGS)
2694 {
2695 ra = get_frame_register_unsigned
2696 (this_frame,
2697 tdep->a0_base + cache->c0.c0_rt[i].fr_reg);
2698 }
2699 else ra = 0;
2700 }
2701
2702 finish_frame_analysis:
2703 cache->pc = start_pc;
2704 cache->ra = ra;
2705 /* RA == 0 marks the outermost frame. Do not go past it. */
2706 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2707 cache->c0.fp_regnum = fp_regnum;
2708 cache->c0.c0_frmsz = c0_frmsz;
2709 cache->c0.c0_hasfp = c0_hasfp;
2710 cache->c0.c0_fp = fp;
2711 }
2712
2713 static CORE_ADDR a0_saved;
2714 static CORE_ADDR a7_saved;
2715 static CORE_ADDR a11_saved;
2716 static int a0_was_saved;
2717 static int a7_was_saved;
2718 static int a11_was_saved;
2719
2720 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2721 static void
2722 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2723 {
2724 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2725 int atreg = arreg_number (gdbarch, tdep->a0_base + at, wb);
2726 int asreg = arreg_number (gdbarch, tdep->a0_base + as, wb);
2727 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2728 unsigned int spilled_value
2729 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2730
2731 if ((at == 0) && !a0_was_saved)
2732 {
2733 a0_saved = xtensa_read_register (atreg);
2734 a0_was_saved = 1;
2735 }
2736 else if ((at == 7) && !a7_was_saved)
2737 {
2738 a7_saved = xtensa_read_register (atreg);
2739 a7_was_saved = 1;
2740 }
2741 else if ((at == 11) && !a11_was_saved)
2742 {
2743 a11_saved = xtensa_read_register (atreg);
2744 a11_was_saved = 1;
2745 }
2746
2747 xtensa_write_register (atreg, spilled_value);
2748 }
2749
2750 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2751 static void
2752 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2753 {
2754 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2755 int atreg = arreg_number (gdbarch, tdep->a0_base + at, wb);
2756 int asreg = arreg_number (gdbarch, tdep->a0_base + as, wb);
2757 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2758 ULONGEST spilled_value = xtensa_read_register (atreg);
2759
2760 write_memory_unsigned_integer (addr, 4,
2761 gdbarch_byte_order (gdbarch),
2762 spilled_value);
2763 }
2764
2765 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2766
2767 typedef enum
2768 {
2769 xtWindowOverflow,
2770 xtWindowUnderflow,
2771 xtNoExceptionHandler
2772 } xtensa_exception_handler_t;
2773
2774 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2775 Return type of Xtensa Window Interrupt Handler on success. */
2776 static xtensa_exception_handler_t
2777 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2778 {
2779 xtensa_isa isa;
2780 xtensa_insnbuf ins, slot;
2781 gdb_byte ibuf[XTENSA_ISA_BSZ];
2782 CORE_ADDR ia, bt, ba;
2783 xtensa_format ifmt;
2784 int ilen, islots, is;
2785 xtensa_opcode opc;
2786 int insn_num = 0;
2787 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2788 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2789
2790 uint32_t at, as, offset;
2791
2792 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2793 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2794
2795 isa = xtensa_default_isa;
2796 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2797 ins = xtensa_insnbuf_alloc (isa);
2798 slot = xtensa_insnbuf_alloc (isa);
2799 ba = 0;
2800 ia = current_pc;
2801 bt = ia;
2802
2803 a0_was_saved = 0;
2804 a7_was_saved = 0;
2805 a11_was_saved = 0;
2806
2807 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2808 {
2809 if (ia + xtensa_isa_maxlength (isa) > bt)
2810 {
2811 ba = ia;
2812 bt = (ba + XTENSA_ISA_BSZ);
2813 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2814 return xtNoExceptionHandler;
2815 }
2816 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2817 ifmt = xtensa_format_decode (isa, ins);
2818 if (ifmt == XTENSA_UNDEFINED)
2819 return xtNoExceptionHandler;
2820 ilen = xtensa_format_length (isa, ifmt);
2821 if (ilen == XTENSA_UNDEFINED)
2822 return xtNoExceptionHandler;
2823 islots = xtensa_format_num_slots (isa, ifmt);
2824 if (islots == XTENSA_UNDEFINED)
2825 return xtNoExceptionHandler;
2826 for (is = 0; is < islots; ++is)
2827 {
2828 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2829 return xtNoExceptionHandler;
2830 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2831 if (opc == XTENSA_UNDEFINED)
2832 return xtNoExceptionHandler;
2833 switch (call0_classify_opcode (isa, opc))
2834 {
2835 case c0opc_illegal:
2836 case c0opc_flow:
2837 case c0opc_entry:
2838 case c0opc_break:
2839 /* We expect none of them here. */
2840 return xtNoExceptionHandler;
2841 case c0opc_l32e:
2842 func = execute_l32e;
2843 break;
2844 case c0opc_s32e:
2845 func = execute_s32e;
2846 break;
2847 case c0opc_rfwo: /* RFWO. */
2848 /* Here, we return from WindowOverflow handler and,
2849 if we stopped at the very beginning, which means
2850 A0 was saved, we have to restore it now. */
2851 if (a0_was_saved)
2852 {
2853 int arreg = arreg_number (gdbarch,
2854 tdep->a0_base,
2855 wb);
2856 xtensa_write_register (arreg, a0_saved);
2857 }
2858 return xtWindowOverflow;
2859 case c0opc_rfwu: /* RFWU. */
2860 /* Here, we return from WindowUnderflow handler.
2861 Let's see if either A7 or A11 has to be restored. */
2862 if (WindowUnderflow12)
2863 {
2864 if (a11_was_saved)
2865 {
2866 int arreg = arreg_number (gdbarch,
2867 tdep->a0_base + 11,
2868 wb);
2869 xtensa_write_register (arreg, a11_saved);
2870 }
2871 }
2872 else if (a7_was_saved)
2873 {
2874 int arreg = arreg_number (gdbarch,
2875 tdep->a0_base + 7,
2876 wb);
2877 xtensa_write_register (arreg, a7_saved);
2878 }
2879 return xtWindowUnderflow;
2880 default: /* Simply skip this insns. */
2881 continue;
2882 }
2883
2884 /* Decode arguments for L32E / S32E and simulate their execution. */
2885 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2886 return xtNoExceptionHandler;
2887 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2888 return xtNoExceptionHandler;
2889 if (xtensa_operand_decode (isa, opc, 0, &at))
2890 return xtNoExceptionHandler;
2891 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2892 return xtNoExceptionHandler;
2893 if (xtensa_operand_decode (isa, opc, 1, &as))
2894 return xtNoExceptionHandler;
2895 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2896 return xtNoExceptionHandler;
2897 if (xtensa_operand_decode (isa, opc, 2, &offset))
2898 return xtNoExceptionHandler;
2899
2900 (*func) (gdbarch, at, as, offset, wb);
2901 }
2902
2903 ia += ilen;
2904 }
2905 return xtNoExceptionHandler;
2906 }
2907
2908 /* Handle Window Overflow / Underflow exception frames. */
2909
2910 static void
2911 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2912 xtensa_frame_cache_t *cache,
2913 CORE_ADDR pc)
2914 {
2915 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2916 CORE_ADDR ps, wb, ws, ra;
2917 int epc1_regnum, i, regnum;
2918 xtensa_exception_handler_t eh_type;
2919 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2920
2921 /* Read PS, WB, and WS from the hardware. Note that PS register
2922 must be present, if Windowed ABI is supported. */
2923 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2924 wb = xtensa_read_register (tdep->wb_regnum);
2925 ws = xtensa_read_register (tdep->ws_regnum);
2926
2927 /* Execute all the remaining instructions from Window Interrupt Handler
2928 by simulating them on the remote protocol level. On return, set the
2929 type of Xtensa Window Interrupt Handler, or report an error. */
2930 eh_type = execute_code (gdbarch, pc, wb);
2931 if (eh_type == xtNoExceptionHandler)
2932 error (_("\
2933 Unable to decode Xtensa Window Interrupt Handler's code."));
2934
2935 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2936 cache->call0 = 0; /* It's Windowed ABI. */
2937
2938 /* All registers for the cached frame will be alive. */
2939 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2940 cache->wd.aregs[i] = -1;
2941
2942 if (eh_type == xtWindowOverflow)
2943 cache->wd.ws = ws ^ (1 << wb);
2944 else /* eh_type == xtWindowUnderflow. */
2945 cache->wd.ws = ws | (1 << wb);
2946
2947 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2948 regnum = arreg_number (gdbarch, tdep->a0_base,
2949 cache->wd.wb);
2950 ra = xtensa_read_register (regnum);
2951 cache->wd.callsize = WINSIZE (ra);
2952 cache->prev_sp = xtensa_read_register (regnum + 1);
2953 /* Set regnum to a frame pointer of the frame being cached. */
2954 regnum = xtensa_scan_prologue (gdbarch, pc);
2955 regnum = arreg_number (gdbarch,
2956 tdep->a0_base + regnum,
2957 cache->wd.wb);
2958 cache->base = get_frame_register_unsigned (this_frame, regnum);
2959
2960 /* Read PC of interrupted function from EPC1 register. */
2961 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2962 if (epc1_regnum < 0)
2963 error(_("Unable to read Xtensa register EPC1"));
2964 cache->ra = xtensa_read_register (epc1_regnum);
2965 cache->pc = get_frame_func (this_frame);
2966 }
2967
2968
2969 /* Skip function prologue.
2970
2971 Return the pc of the first instruction after prologue. GDB calls this to
2972 find the address of the first line of the function or (if there is no line
2973 number information) to skip the prologue for planting breakpoints on
2974 function entries. Use debug info (if present) or prologue analysis to skip
2975 the prologue to achieve reliable debugging behavior. For windowed ABI,
2976 only the 'entry' instruction is skipped. It is not strictly necessary to
2977 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2978 backtrace at any point in the prologue, however certain potential hazards
2979 are avoided and a more "normal" debugging experience is ensured by
2980 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2981 For example, if we don't skip the prologue:
2982 - Some args may not yet have been saved to the stack where the debug
2983 info expects to find them (true anyway when only 'entry' is skipped);
2984 - Software breakpoints ('break' instrs) may not have been unplanted
2985 when the prologue analysis is done on initializing the frame cache,
2986 and breaks in the prologue will throw off the analysis.
2987
2988 If we have debug info ( line-number info, in particular ) we simply skip
2989 the code associated with the first function line effectively skipping
2990 the prologue code. It works even in cases like
2991
2992 int main()
2993 { int local_var = 1;
2994 ....
2995 }
2996
2997 because, for this source code, both Xtensa compilers will generate two
2998 separate entries ( with the same line number ) in dwarf line-number
2999 section to make sure there is a boundary between the prologue code and
3000 the rest of the function.
3001
3002 If there is no debug info, we need to analyze the code. */
3003
3004 /* #define DONT_SKIP_PROLOGUE */
3005
3006 static CORE_ADDR
3007 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3008 {
3009 struct symtab_and_line prologue_sal;
3010 CORE_ADDR body_pc;
3011
3012 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3013
3014 #if DONT_SKIP_PROLOGUE
3015 return start_pc;
3016 #endif
3017
3018 /* Try to find first body line from debug info. */
3019
3020 prologue_sal = find_pc_line (start_pc, 0);
3021 if (prologue_sal.line != 0) /* Found debug info. */
3022 {
3023 /* In Call0, it is possible to have a function with only one instruction
3024 ('ret') resulting from a one-line optimized function that does nothing.
3025 In that case, prologue_sal.end may actually point to the start of the
3026 next function in the text section, causing a breakpoint to be set at
3027 the wrong place. Check, if the end address is within a different
3028 function, and if so return the start PC. We know we have symbol
3029 information. */
3030
3031 CORE_ADDR end_func;
3032
3033 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3034 if ((tdep->call_abi == CallAbiCall0Only)
3035 && call0_ret (start_pc, prologue_sal.end))
3036 return start_pc;
3037
3038 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3039 if (end_func != start_pc)
3040 return start_pc;
3041
3042 return prologue_sal.end;
3043 }
3044
3045 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3046 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3047 xtensa_alloc_frame_cache (0));
3048 return body_pc != 0 ? body_pc : start_pc;
3049 }
3050
3051 /* Verify the current configuration. */
3052 static void
3053 xtensa_verify_config (struct gdbarch *gdbarch)
3054 {
3055 xtensa_gdbarch_tdep *tdep = (xtensa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3056 string_file log;
3057
3058 /* Verify that we got a reasonable number of AREGS. */
3059 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3060 log.printf (_("\
3061 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3062 tdep->num_aregs);
3063
3064 /* Verify that certain registers exist. */
3065
3066 if (tdep->pc_regnum == -1)
3067 log.printf (_("\n\tpc_regnum: No PC register"));
3068 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3069 log.printf (_("\n\tps_regnum: No PS register"));
3070
3071 if (tdep->isa_use_windowed_registers)
3072 {
3073 if (tdep->wb_regnum == -1)
3074 log.printf (_("\n\twb_regnum: No WB register"));
3075 if (tdep->ws_regnum == -1)
3076 log.printf (_("\n\tws_regnum: No WS register"));
3077 if (tdep->ar_base == -1)
3078 log.printf (_("\n\tar_base: No AR registers"));
3079 }
3080
3081 if (tdep->a0_base == -1)
3082 log.printf (_("\n\ta0_base: No Ax registers"));
3083
3084 if (!log.empty ())
3085 internal_error (__FILE__, __LINE__,
3086 _("the following are invalid: %s"), log.c_str ());
3087 }
3088
3089
3090 /* Derive specific register numbers from the array of registers. */
3091
3092 static void
3093 xtensa_derive_tdep (xtensa_gdbarch_tdep *tdep)
3094 {
3095 xtensa_register_t* rmap;
3096 int n, max_size = 4;
3097
3098 tdep->num_regs = 0;
3099 tdep->num_nopriv_regs = 0;
3100
3101 /* Special registers 0..255 (core). */
3102 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3103 /* User registers 0..255. */
3104 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3105
3106 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3107 {
3108 if (rmap->target_number == 0x0020)
3109 tdep->pc_regnum = n;
3110 else if (rmap->target_number == 0x0100)
3111 tdep->ar_base = n;
3112 else if (rmap->target_number == 0x0000)
3113 tdep->a0_base = n;
3114 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3115 tdep->wb_regnum = n;
3116 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3117 tdep->ws_regnum = n;
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3119 tdep->debugcause_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3121 tdep->exccause_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3123 tdep->excvaddr_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3125 tdep->lbeg_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3127 tdep->lend_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3129 tdep->lcount_regnum = n;
3130 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3131 tdep->sar_regnum = n;
3132 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3133 tdep->litbase_regnum = n;
3134 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3135 tdep->ps_regnum = n;
3136 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3137 tdep->threadptr_regnum = n;
3138 #if 0
3139 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3140 tdep->interrupt_regnum = n;
3141 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3142 tdep->interrupt2_regnum = n;
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3144 tdep->cpenable_regnum = n;
3145 #endif
3146
3147 if (rmap->byte_size > max_size)
3148 max_size = rmap->byte_size;
3149 if (rmap->mask != 0 && tdep->num_regs == 0)
3150 tdep->num_regs = n;
3151 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3152 && tdep->num_nopriv_regs == 0)
3153 tdep->num_nopriv_regs = n;
3154 }
3155 if (tdep->num_regs == 0)
3156 tdep->num_regs = tdep->num_nopriv_regs;
3157
3158 /* Number of pseudo registers. */
3159 tdep->num_pseudo_regs = n - tdep->num_regs;
3160
3161 /* Empirically determined maximum sizes. */
3162 tdep->max_register_raw_size = max_size;
3163 tdep->max_register_virtual_size = max_size;
3164 }
3165
3166 /* Module "constructor" function. */
3167
3168 extern xtensa_gdbarch_tdep xtensa_tdep;
3169
3170 static struct gdbarch *
3171 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3172 {
3173 struct gdbarch *gdbarch;
3174
3175 DEBUGTRACE ("gdbarch_init()\n");
3176
3177 if (!xtensa_default_isa)
3178 xtensa_default_isa = xtensa_isa_init (0, 0);
3179
3180 /* We have to set the byte order before we call gdbarch_alloc. */
3181 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3182
3183 xtensa_gdbarch_tdep *tdep = &xtensa_tdep;
3184 gdbarch = gdbarch_alloc (&info, tdep);
3185 xtensa_derive_tdep (tdep);
3186
3187 /* Verify our configuration. */
3188 xtensa_verify_config (gdbarch);
3189 xtensa_session_once_reported = 0;
3190
3191 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3192 set_gdbarch_wchar_signed (gdbarch, 0);
3193
3194 /* Pseudo-Register read/write. */
3195 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3196 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3197
3198 /* Set target information. */
3199 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3200 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3201 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3202 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3203 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3204
3205 /* Renumber registers for known formats (stabs and dwarf2). */
3206 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3207 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3208
3209 /* We provide our own function to get register information. */
3210 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3211 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3212
3213 /* To call functions from GDB using dummy frame. */
3214 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3215
3216 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3217
3218 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3219
3220 /* Advance PC across any prologue instructions to reach "real" code. */
3221 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3222
3223 /* Stack grows downward. */
3224 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3225
3226 /* Set breakpoints. */
3227 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3228 xtensa_breakpoint_kind_from_pc);
3229 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3230 xtensa_sw_breakpoint_from_kind);
3231
3232 /* After breakpoint instruction or illegal instruction, pc still
3233 points at break instruction, so don't decrement. */
3234 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3235
3236 /* We don't skip args. */
3237 set_gdbarch_frame_args_skip (gdbarch, 0);
3238
3239 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3240
3241 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3242
3243 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3244
3245 /* Frame handling. */
3246 frame_base_set_default (gdbarch, &xtensa_frame_base);
3247 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3248 dwarf2_append_unwinders (gdbarch);
3249
3250 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3251
3252 xtensa_add_reggroups (gdbarch);
3253 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3254
3255 set_gdbarch_iterate_over_regset_sections
3256 (gdbarch, xtensa_iterate_over_regset_sections);
3257
3258 set_solib_svr4_fetch_link_map_offsets
3259 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3260
3261 /* Hook in the ABI-specific overrides, if they have been registered. */
3262 gdbarch_init_osabi (info, gdbarch);
3263
3264 return gdbarch;
3265 }
3266
3267 static void
3268 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3269 {
3270 error (_("xtensa_dump_tdep(): not implemented"));
3271 }
3272
3273 void _initialize_xtensa_tdep ();
3274 void
3275 _initialize_xtensa_tdep ()
3276 {
3277 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3278 xtensa_init_reggroups ();
3279
3280 add_setshow_zuinteger_cmd ("xtensa",
3281 class_maintenance,
3282 &xtensa_debug_level,
3283 _("Set Xtensa debugging."),
3284 _("Show Xtensa debugging."), _("\
3285 When non-zero, Xtensa-specific debugging is enabled. \
3286 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3287 NULL,
3288 NULL,
3289 &setdebuglist, &showdebuglist);
3290 }