2011-03-10 Maxim Grigoriev <maxim2405@gmail.com>
[binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "solib-svr4.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame.h"
42 #include "frame-base.h"
43 #include "frame-unwind.h"
44
45 #include "arch-utils.h"
46 #include "gdbarch.h"
47 #include "remote.h"
48 #include "serial.h"
49
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "gdb_assert.h"
53
54 #include "xtensa-isa.h"
55 #include "xtensa-tdep.h"
56 #include "xtensa-config.h"
57
58
59 static int xtensa_debug_level = 0;
60
61 #define DEBUGWARN(args...) \
62 if (xtensa_debug_level > 0) \
63 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
64
65 #define DEBUGINFO(args...) \
66 if (xtensa_debug_level > 1) \
67 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
68
69 #define DEBUGTRACE(args...) \
70 if (xtensa_debug_level > 2) \
71 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
72
73 #define DEBUGVERB(args...) \
74 if (xtensa_debug_level > 3) \
75 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
76
77
78 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
79 #define SP_ALIGNMENT 16
80
81
82 /* On Windowed ABI, we use a6 through a11 for passing arguments
83 to a function called by GDB because CALL4 is used. */
84 #define ARGS_NUM_REGS 6
85 #define REGISTER_SIZE 4
86
87
88 /* Extract the call size from the return address or PS register. */
89 #define PS_CALLINC_SHIFT 16
90 #define PS_CALLINC_MASK 0x00030000
91 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
92 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
93
94 /* On TX, hardware can be configured without Exception Option.
95 There is no PS register in this case. Inside XT-GDB, let us treat
96 it as a virtual read-only register always holding the same value. */
97 #define TX_PS 0x20
98
99 /* ABI-independent macros. */
100 #define ARG_NOF(gdbarch) \
101 (gdbarch_tdep (gdbarch)->call_abi \
102 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
103 #define ARG_1ST(gdbarch) \
104 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
105 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
106 : (gdbarch_tdep (gdbarch)->a0_base + 6))
107
108 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
109 indicates that the instruction is an ENTRY instruction. */
110
111 #define XTENSA_IS_ENTRY(gdbarch, op1) \
112 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
113 ? ((op1) == 0x6c) : ((op1) == 0x36))
114
115 #define XTENSA_ENTRY_LENGTH 3
116
117 /* windowing_enabled() returns true, if windowing is enabled.
118 WOE must be set to 1; EXCM to 0.
119 Note: We assume that EXCM is always 0 for XEA1. */
120
121 #define PS_WOE (1<<18)
122 #define PS_EXC (1<<4)
123
124 static int
125 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
126 {
127 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
128 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
129 return 0;
130
131 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
132 }
133
134 /* Convert a live A-register number to the corresponding AR-register
135 number. */
136 static int
137 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
138 {
139 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
140 int arreg;
141
142 arreg = a_regnum - tdep->a0_base;
143 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
144 arreg &= tdep->num_aregs - 1;
145
146 return arreg + tdep->ar_base;
147 }
148
149 /* Convert a live AR-register number to the corresponding A-register order
150 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
151 static int
152 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
153 {
154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
155 int areg;
156
157 areg = ar_regnum - tdep->ar_base;
158 if (areg < 0 || areg >= tdep->num_aregs)
159 return -1;
160 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
161 return (areg > 15) ? -1 : areg;
162 }
163
164 /* Read Xtensa register directly from the hardware. */
165 static unsigned long
166 xtensa_read_register (int regnum)
167 {
168 ULONGEST value;
169
170 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
171 return (unsigned long) value;
172 }
173
174 /* Write Xtensa register directly to the hardware. */
175 static void
176 xtensa_write_register (int regnum, ULONGEST value)
177 {
178 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
179 }
180
181 /* Return the window size of the previous call to the function from which we
182 have just returned.
183
184 This function is used to extract the return value after a called function
185 has returned to the caller. On Xtensa, the register that holds the return
186 value (from the perspective of the caller) depends on what call
187 instruction was used. For now, we are assuming that the call instruction
188 precedes the current address, so we simply analyze the call instruction.
189 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
190 method to call the inferior function. */
191
192 static int
193 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
194 {
195 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
196 int winsize = 4;
197 int insn;
198 gdb_byte buf[4];
199
200 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
201
202 /* Read the previous instruction (should be a call[x]{4|8|12}. */
203 read_memory (pc-3, buf, 3);
204 insn = extract_unsigned_integer (buf, 3, byte_order);
205
206 /* Decode call instruction:
207 Little Endian
208 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
209 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
210 Big Endian
211 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
212 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
213
214 if (byte_order == BFD_ENDIAN_LITTLE)
215 {
216 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
217 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
218 }
219 else
220 {
221 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
222 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
223 }
224 return winsize;
225 }
226
227
228 /* REGISTER INFORMATION */
229
230 /* Find register by name. */
231 static int
232 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
233 {
234 int i;
235
236 for (i = 0; i < gdbarch_num_regs (gdbarch)
237 + gdbarch_num_pseudo_regs (gdbarch);
238 i++)
239
240 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
241 return i;
242
243 return -1;
244 }
245
246 /* Returns the name of a register. */
247 static const char *
248 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
249 {
250 /* Return the name stored in the register map. */
251 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
252 + gdbarch_num_pseudo_regs (gdbarch))
253 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
254
255 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
256 return 0;
257 }
258
259 /* Return the type of a register. Create a new type, if necessary. */
260
261 static struct type *
262 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 /* Return signed integer for ARx and Ax registers. */
267 if ((regnum >= tdep->ar_base
268 && regnum < tdep->ar_base + tdep->num_aregs)
269 || (regnum >= tdep->a0_base
270 && regnum < tdep->a0_base + 16))
271 return builtin_type (gdbarch)->builtin_int;
272
273 if (regnum == gdbarch_pc_regnum (gdbarch)
274 || regnum == tdep->a0_base + 1)
275 return builtin_type (gdbarch)->builtin_data_ptr;
276
277 /* Return the stored type for all other registers. */
278 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
279 + gdbarch_num_pseudo_regs (gdbarch))
280 {
281 xtensa_register_t* reg = &tdep->regmap[regnum];
282
283 /* Set ctype for this register (only the first time). */
284
285 if (reg->ctype == 0)
286 {
287 struct ctype_cache *tp;
288 int size = reg->byte_size;
289
290 /* We always use the memory representation,
291 even if the register width is smaller. */
292 switch (size)
293 {
294 case 1:
295 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
296 break;
297
298 case 2:
299 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
300 break;
301
302 case 4:
303 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
304 break;
305
306 case 8:
307 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
308 break;
309
310 case 16:
311 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
312 break;
313
314 default:
315 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
316 if (tp->size == size)
317 break;
318
319 if (tp == NULL)
320 {
321 char *name = xmalloc (16);
322 tp = xmalloc (sizeof (struct ctype_cache));
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
325 tp->size = size;
326
327 sprintf (name, "int%d", size * 8);
328 tp->virtual_type
329 = arch_integer_type (gdbarch, size * 8, 1, xstrdup (name));
330 }
331
332 reg->ctype = tp->virtual_type;
333 }
334 }
335 return reg->ctype;
336 }
337
338 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
339 return 0;
340 }
341
342
343 /* Return the 'local' register number for stubs, dwarf2, etc.
344 The debugging information enumerates registers starting from 0 for A0
345 to n for An. So, we only have to add the base number for A0. */
346
347 static int
348 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
349 {
350 int i;
351
352 if (regnum >= 0 && regnum < 16)
353 return gdbarch_tdep (gdbarch)->a0_base + regnum;
354
355 for (i = 0;
356 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
357 i++)
358 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
359 return i;
360
361 internal_error (__FILE__, __LINE__,
362 _("invalid dwarf/stabs register number %d"), regnum);
363 return 0;
364 }
365
366
367 /* Write the bits of a masked register to the various registers.
368 Only the masked areas of these registers are modified; the other
369 fields are untouched. The size of masked registers is always less
370 than or equal to 32 bits. */
371
372 static void
373 xtensa_register_write_masked (struct regcache *regcache,
374 xtensa_register_t *reg, const gdb_byte *buffer)
375 {
376 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
377 const xtensa_mask_t *mask = reg->mask;
378
379 int shift = 0; /* Shift for next mask (mod 32). */
380 int start, size; /* Start bit and size of current mask. */
381
382 unsigned int *ptr = value;
383 unsigned int regval, m, mem = 0;
384
385 int bytesize = reg->byte_size;
386 int bitsize = bytesize * 8;
387 int i, r;
388
389 DEBUGTRACE ("xtensa_register_write_masked ()\n");
390
391 /* Copy the masked register to host byte-order. */
392 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
393 for (i = 0; i < bytesize; i++)
394 {
395 mem >>= 8;
396 mem |= (buffer[bytesize - i - 1] << 24);
397 if ((i & 3) == 3)
398 *ptr++ = mem;
399 }
400 else
401 for (i = 0; i < bytesize; i++)
402 {
403 mem >>= 8;
404 mem |= (buffer[i] << 24);
405 if ((i & 3) == 3)
406 *ptr++ = mem;
407 }
408
409 /* We might have to shift the final value:
410 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
411 bytesize & 3 == x -> shift (4-x) * 8. */
412
413 *ptr = mem >> (((0 - bytesize) & 3) * 8);
414 ptr = value;
415 mem = *ptr;
416
417 /* Write the bits to the masked areas of the other registers. */
418 for (i = 0; i < mask->count; i++)
419 {
420 start = mask->mask[i].bit_start;
421 size = mask->mask[i].bit_size;
422 regval = mem >> shift;
423
424 if ((shift += size) > bitsize)
425 error (_("size of all masks is larger than the register"));
426
427 if (shift >= 32)
428 {
429 mem = *(++ptr);
430 shift -= 32;
431 bitsize -= 32;
432
433 if (shift > 0)
434 regval |= mem << (size - shift);
435 }
436
437 /* Make sure we have a valid register. */
438 r = mask->mask[i].reg_num;
439 if (r >= 0 && size > 0)
440 {
441 /* Don't overwrite the unmasked areas. */
442 ULONGEST old_val;
443 regcache_cooked_read_unsigned (regcache, r, &old_val);
444 m = 0xffffffff >> (32 - size) << start;
445 regval <<= start;
446 regval = (regval & m) | (old_val & ~m);
447 regcache_cooked_write_unsigned (regcache, r, regval);
448 }
449 }
450 }
451
452
453 /* Read a tie state or mapped registers. Read the masked areas
454 of the registers and assemble them into a single value. */
455
456 static void
457 xtensa_register_read_masked (struct regcache *regcache,
458 xtensa_register_t *reg, gdb_byte *buffer)
459 {
460 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
461 const xtensa_mask_t *mask = reg->mask;
462
463 int shift = 0;
464 int start, size;
465
466 unsigned int *ptr = value;
467 unsigned int regval, mem = 0;
468
469 int bytesize = reg->byte_size;
470 int bitsize = bytesize * 8;
471 int i;
472
473 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
474 reg->name == 0 ? "" : reg->name);
475
476 /* Assemble the register from the masked areas of other registers. */
477 for (i = 0; i < mask->count; i++)
478 {
479 int r = mask->mask[i].reg_num;
480 if (r >= 0)
481 {
482 ULONGEST val;
483 regcache_cooked_read_unsigned (regcache, r, &val);
484 regval = (unsigned int) val;
485 }
486 else
487 regval = 0;
488
489 start = mask->mask[i].bit_start;
490 size = mask->mask[i].bit_size;
491
492 regval >>= start;
493
494 if (size < 32)
495 regval &= (0xffffffff >> (32 - size));
496
497 mem |= regval << shift;
498
499 if ((shift += size) > bitsize)
500 error (_("size of all masks is larger than the register"));
501
502 if (shift >= 32)
503 {
504 *ptr++ = mem;
505 bitsize -= 32;
506 shift -= 32;
507
508 if (shift == 0)
509 mem = 0;
510 else
511 mem = regval >> (size - shift);
512 }
513 }
514
515 if (shift > 0)
516 *ptr = mem;
517
518 /* Copy value to target byte order. */
519 ptr = value;
520 mem = *ptr;
521
522 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
523 for (i = 0; i < bytesize; i++)
524 {
525 if ((i & 3) == 0)
526 mem = *ptr++;
527 buffer[bytesize - i - 1] = mem & 0xff;
528 mem >>= 8;
529 }
530 else
531 for (i = 0; i < bytesize; i++)
532 {
533 if ((i & 3) == 0)
534 mem = *ptr++;
535 buffer[i] = mem & 0xff;
536 mem >>= 8;
537 }
538 }
539
540
541 /* Read pseudo registers. */
542
543 static void
544 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
545 struct regcache *regcache,
546 int regnum,
547 gdb_byte *buffer)
548 {
549 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
550
551 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
552 regnum, xtensa_register_name (gdbarch, regnum));
553
554 if (regnum == gdbarch_num_regs (gdbarch)
555 + gdbarch_num_pseudo_regs (gdbarch) - 1)
556 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
557
558 /* Read aliases a0..a15, if this is a Windowed ABI. */
559 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
560 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
561 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
562 {
563 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
564
565 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
566 regnum = arreg_number (gdbarch, regnum,
567 extract_unsigned_integer (buf, 4, byte_order));
568 }
569
570 /* We can always read non-pseudo registers. */
571 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
572 regcache_raw_read (regcache, regnum, buffer);
573
574
575 /* We have to find out how to deal with priveleged registers.
576 Let's treat them as pseudo-registers, but we cannot read/write them. */
577
578 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
579 {
580 buffer[0] = (gdb_byte)0;
581 buffer[1] = (gdb_byte)0;
582 buffer[2] = (gdb_byte)0;
583 buffer[3] = (gdb_byte)0;
584 }
585 /* Pseudo registers. */
586 else if (regnum >= 0
587 && regnum < gdbarch_num_regs (gdbarch)
588 + gdbarch_num_pseudo_regs (gdbarch))
589 {
590 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
591 xtensa_register_type_t type = reg->type;
592 int flags = gdbarch_tdep (gdbarch)->target_flags;
593
594 /* We cannot read Unknown or Unmapped registers. */
595 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
596 {
597 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
598 {
599 warning (_("cannot read register %s"),
600 xtensa_register_name (gdbarch, regnum));
601 return;
602 }
603 }
604
605 /* Some targets cannot read TIE register files. */
606 else if (type == xtRegisterTypeTieRegfile)
607 {
608 /* Use 'fetch' to get register? */
609 if (flags & xtTargetFlagsUseFetchStore)
610 {
611 warning (_("cannot read register"));
612 return;
613 }
614
615 /* On some targets (esp. simulators), we can always read the reg. */
616 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
617 {
618 warning (_("cannot read register"));
619 return;
620 }
621 }
622
623 /* We can always read mapped registers. */
624 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
625 {
626 xtensa_register_read_masked (regcache, reg, buffer);
627 return;
628 }
629
630 /* Assume that we can read the register. */
631 regcache_raw_read (regcache, regnum, buffer);
632 }
633 else
634 internal_error (__FILE__, __LINE__,
635 _("invalid register number %d"), regnum);
636 }
637
638
639 /* Write pseudo registers. */
640
641 static void
642 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
643 struct regcache *regcache,
644 int regnum,
645 const gdb_byte *buffer)
646 {
647 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
648
649 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
650 regnum, xtensa_register_name (gdbarch, regnum));
651
652 if (regnum == gdbarch_num_regs (gdbarch)
653 + gdbarch_num_pseudo_regs (gdbarch) -1)
654 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
655
656 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
657 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
658 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
659 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
660 {
661 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
662 unsigned int wb;
663
664 regcache_raw_read (regcache,
665 gdbarch_tdep (gdbarch)->wb_regnum, buf);
666 regnum = arreg_number (gdbarch, regnum,
667 extract_unsigned_integer (buf, 4, byte_order));
668 }
669
670 /* We can always write 'core' registers.
671 Note: We might have converted Ax->ARy. */
672 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
673 regcache_raw_write (regcache, regnum, buffer);
674
675 /* We have to find out how to deal with priveleged registers.
676 Let's treat them as pseudo-registers, but we cannot read/write them. */
677
678 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
679 {
680 return;
681 }
682 /* Pseudo registers. */
683 else if (regnum >= 0
684 && regnum < gdbarch_num_regs (gdbarch)
685 + gdbarch_num_pseudo_regs (gdbarch))
686 {
687 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
688 xtensa_register_type_t type = reg->type;
689 int flags = gdbarch_tdep (gdbarch)->target_flags;
690
691 /* On most targets, we cannot write registers
692 of type "Unknown" or "Unmapped". */
693 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
694 {
695 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
696 {
697 warning (_("cannot write register %s"),
698 xtensa_register_name (gdbarch, regnum));
699 return;
700 }
701 }
702
703 /* Some targets cannot read TIE register files. */
704 else if (type == xtRegisterTypeTieRegfile)
705 {
706 /* Use 'store' to get register? */
707 if (flags & xtTargetFlagsUseFetchStore)
708 {
709 warning (_("cannot write register"));
710 return;
711 }
712
713 /* On some targets (esp. simulators), we can always write
714 the register. */
715 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
716 {
717 warning (_("cannot write register"));
718 return;
719 }
720 }
721
722 /* We can always write mapped registers. */
723 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
724 {
725 xtensa_register_write_masked (regcache, reg, buffer);
726 return;
727 }
728
729 /* Assume that we can write the register. */
730 regcache_raw_write (regcache, regnum, buffer);
731 }
732 else
733 internal_error (__FILE__, __LINE__,
734 _("invalid register number %d"), regnum);
735 }
736
737 static struct reggroup *xtensa_ar_reggroup;
738 static struct reggroup *xtensa_user_reggroup;
739 static struct reggroup *xtensa_vectra_reggroup;
740 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
741
742 static void
743 xtensa_init_reggroups (void)
744 {
745 int i;
746 char cpname[] = "cp0";
747
748 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
749 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
750 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
751
752 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
753 {
754 cpname[2] = '0' + i;
755 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
756 }
757 }
758
759 static void
760 xtensa_add_reggroups (struct gdbarch *gdbarch)
761 {
762 int i;
763
764 /* Predefined groups. */
765 reggroup_add (gdbarch, all_reggroup);
766 reggroup_add (gdbarch, save_reggroup);
767 reggroup_add (gdbarch, restore_reggroup);
768 reggroup_add (gdbarch, system_reggroup);
769 reggroup_add (gdbarch, vector_reggroup);
770 reggroup_add (gdbarch, general_reggroup);
771 reggroup_add (gdbarch, float_reggroup);
772
773 /* Xtensa-specific groups. */
774 reggroup_add (gdbarch, xtensa_ar_reggroup);
775 reggroup_add (gdbarch, xtensa_user_reggroup);
776 reggroup_add (gdbarch, xtensa_vectra_reggroup);
777
778 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
779 reggroup_add (gdbarch, xtensa_cp[i]);
780 }
781
782 static int
783 xtensa_coprocessor_register_group (struct reggroup *group)
784 {
785 int i;
786
787 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
788 if (group == xtensa_cp[i])
789 return i;
790
791 return -1;
792 }
793
794 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
795 | XTENSA_REGISTER_FLAGS_WRITABLE \
796 | XTENSA_REGISTER_FLAGS_VOLATILE)
797
798 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
799 | XTENSA_REGISTER_FLAGS_WRITABLE)
800
801 static int
802 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
803 int regnum,
804 struct reggroup *group)
805 {
806 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
807 xtensa_register_type_t type = reg->type;
808 xtensa_register_group_t rg = reg->group;
809 int cp_number;
810
811 if (group == save_reggroup)
812 /* Every single register should be included into the list of registers
813 to be watched for changes while using -data-list-changed-registers. */
814 return 1;
815
816 /* First, skip registers that are not visible to this target
817 (unknown and unmapped registers when not using ISS). */
818
819 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
820 return 0;
821 if (group == all_reggroup)
822 return 1;
823 if (group == xtensa_ar_reggroup)
824 return rg & xtRegisterGroupAddrReg;
825 if (group == xtensa_user_reggroup)
826 return rg & xtRegisterGroupUser;
827 if (group == float_reggroup)
828 return rg & xtRegisterGroupFloat;
829 if (group == general_reggroup)
830 return rg & xtRegisterGroupGeneral;
831 if (group == system_reggroup)
832 return rg & xtRegisterGroupState;
833 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
834 return rg & xtRegisterGroupVectra;
835 if (group == restore_reggroup)
836 return (regnum < gdbarch_num_regs (gdbarch)
837 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
838 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
839 return rg & (xtRegisterGroupCP0 << cp_number);
840 else
841 return 1;
842 }
843
844
845 /* Supply register REGNUM from the buffer specified by GREGS and LEN
846 in the general-purpose register set REGSET to register cache
847 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
848
849 static void
850 xtensa_supply_gregset (const struct regset *regset,
851 struct regcache *rc,
852 int regnum,
853 const void *gregs,
854 size_t len)
855 {
856 const xtensa_elf_gregset_t *regs = gregs;
857 struct gdbarch *gdbarch = get_regcache_arch (rc);
858 int i;
859
860 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
861
862 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
863 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
864 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
865 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
866 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
868 (char *) &regs->windowbase);
869 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
871 (char *) &regs->windowstart);
872 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
874 (char *) &regs->lbeg);
875 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
877 (char *) &regs->lend);
878 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
879 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
880 (char *) &regs->lcount);
881 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
882 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
883 (char *) &regs->sar);
884 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
885 && regnum < gdbarch_tdep (gdbarch)->ar_base
886 + gdbarch_tdep (gdbarch)->num_aregs)
887 regcache_raw_supply (rc, regnum,
888 (char *) &regs->ar[regnum - gdbarch_tdep
889 (gdbarch)->ar_base]);
890 else if (regnum == -1)
891 {
892 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
893 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
894 (char *) &regs->ar[i]);
895 }
896 }
897
898
899 /* Xtensa register set. */
900
901 static struct regset
902 xtensa_gregset =
903 {
904 NULL,
905 xtensa_supply_gregset
906 };
907
908
909 /* Return the appropriate register set for the core
910 section identified by SECT_NAME and SECT_SIZE. */
911
912 static const struct regset *
913 xtensa_regset_from_core_section (struct gdbarch *core_arch,
914 const char *sect_name,
915 size_t sect_size)
916 {
917 DEBUGTRACE ("xtensa_regset_from_core_section "
918 "(..., sect_name==\"%s\", sect_size==%x)\n",
919 sect_name, (unsigned int) sect_size);
920
921 if (strcmp (sect_name, ".reg") == 0
922 && sect_size >= sizeof(xtensa_elf_gregset_t))
923 return &xtensa_gregset;
924
925 return NULL;
926 }
927
928
929 /* Handling frames. */
930
931 /* Number of registers to save in case of Windowed ABI. */
932 #define XTENSA_NUM_SAVED_AREGS 12
933
934 /* Frame cache part for Windowed ABI. */
935 typedef struct xtensa_windowed_frame_cache
936 {
937 int wb; /* WINDOWBASE of the previous frame. */
938 int callsize; /* Call size of this frame. */
939 int ws; /* WINDOWSTART of the previous frame. It keeps track of
940 life windows only. If there is no bit set for the
941 window, that means it had been already spilled
942 because of window overflow. */
943
944 /* Addresses of spilled A-registers.
945 AREGS[i] == -1, if corresponding AR is alive. */
946 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
947 } xtensa_windowed_frame_cache_t;
948
949 /* Call0 ABI Definitions. */
950
951 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
952 analysis. */
953 #define C0_NREGS 16 /* Number of A-registers to track. */
954 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
955 #define C0_SP 1 /* Register used as SP. */
956 #define C0_FP 15 /* Register used as FP. */
957 #define C0_RA 0 /* Register used as return address. */
958 #define C0_ARGS 2 /* Register used as first arg/retval. */
959 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
960
961 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
962 A-register where the current content of the reg came from (in terms
963 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
964 mean that the orignal content of the register was saved to the stack.
965 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
966 know where SP will end up until the entire prologue has been analyzed. */
967
968 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
969 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
970 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
971
972 extern xtensa_isa xtensa_default_isa;
973
974 typedef struct xtensa_c0reg
975 {
976 int fr_reg; /* original register from which register content
977 is derived, or C0_CONST, or C0_INEXP. */
978 int fr_ofs; /* constant offset from reg, or immediate value. */
979 int to_stk; /* offset from original SP to register (4-byte aligned),
980 or C0_NOSTK if register has not been saved. */
981 } xtensa_c0reg_t;
982
983 /* Frame cache part for Call0 ABI. */
984 typedef struct xtensa_call0_frame_cache
985 {
986 int c0_frmsz; /* Stack frame size. */
987 int c0_hasfp; /* Current frame uses frame pointer. */
988 int fp_regnum; /* A-register used as FP. */
989 int c0_fp; /* Actual value of frame pointer. */
990 int c0_fpalign; /* Dinamic adjustment for the stack
991 pointer. It's an AND mask. Zero,
992 if alignment was not adjusted. */
993 int c0_old_sp; /* In case of dynamic adjustment, it is
994 a register holding unaligned sp.
995 C0_INEXP, when undefined. */
996 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
997 stack offset. C0_NOSTK otherwise. */
998
999 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
1000 } xtensa_call0_frame_cache_t;
1001
1002 typedef struct xtensa_frame_cache
1003 {
1004 CORE_ADDR base; /* Stack pointer of this frame. */
1005 CORE_ADDR pc; /* PC of this frame at the function entry point. */
1006 CORE_ADDR ra; /* The raw return address of this frame. */
1007 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1008 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1009 int call0; /* It's a call0 framework (else windowed). */
1010 union
1011 {
1012 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1013 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1014 };
1015 } xtensa_frame_cache_t;
1016
1017
1018 static struct xtensa_frame_cache *
1019 xtensa_alloc_frame_cache (int windowed)
1020 {
1021 xtensa_frame_cache_t *cache;
1022 int i;
1023
1024 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1025
1026 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1027
1028 cache->base = 0;
1029 cache->pc = 0;
1030 cache->ra = 0;
1031 cache->ps = 0;
1032 cache->prev_sp = 0;
1033 cache->call0 = !windowed;
1034 if (cache->call0)
1035 {
1036 cache->c0.c0_frmsz = -1;
1037 cache->c0.c0_hasfp = 0;
1038 cache->c0.fp_regnum = -1;
1039 cache->c0.c0_fp = -1;
1040 cache->c0.c0_fpalign = 0;
1041 cache->c0.c0_old_sp = C0_INEXP;
1042 cache->c0.c0_sp_ofs = C0_NOSTK;
1043
1044 for (i = 0; i < C0_NREGS; i++)
1045 {
1046 cache->c0.c0_rt[i].fr_reg = i;
1047 cache->c0.c0_rt[i].fr_ofs = 0;
1048 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1049 }
1050 }
1051 else
1052 {
1053 cache->wd.wb = 0;
1054 cache->wd.ws = 0;
1055 cache->wd.callsize = -1;
1056
1057 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1058 cache->wd.aregs[i] = -1;
1059 }
1060 return cache;
1061 }
1062
1063
1064 static CORE_ADDR
1065 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1066 {
1067 return address & ~15;
1068 }
1069
1070
1071 static CORE_ADDR
1072 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1073 {
1074 gdb_byte buf[8];
1075 CORE_ADDR pc;
1076
1077 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1078 host_address_to_string (next_frame));
1079
1080 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1081 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1082
1083 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1084
1085 return pc;
1086 }
1087
1088
1089 static struct frame_id
1090 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1091 {
1092 CORE_ADDR pc, fp;
1093
1094 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1095
1096 pc = get_frame_pc (this_frame);
1097 fp = get_frame_register_unsigned
1098 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1099
1100 /* Make dummy frame ID unique by adding a constant. */
1101 return frame_id_build (fp + SP_ALIGNMENT, pc);
1102 }
1103
1104 /* Returns true, if instruction to execute next is unique to Xtensa Window
1105 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1106
1107 static int
1108 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1109 {
1110 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1111 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1112 unsigned int code;
1113
1114 if (byte_order == BFD_ENDIAN_BIG)
1115 {
1116 /* Check, if this is L32E or S32E. */
1117 code = insn & 0xf000ff00;
1118 if ((code == 0x00009000) || (code == 0x00009400))
1119 return 1;
1120 /* Check, if this is RFWU or RFWO. */
1121 code = insn & 0xffffff00;
1122 return ((code == 0x00430000) || (code == 0x00530000));
1123 }
1124 else
1125 {
1126 /* Check, if this is L32E or S32E. */
1127 code = insn & 0x00ff000f;
1128 if ((code == 0x090000) || (code == 0x490000))
1129 return 1;
1130 /* Check, if this is RFWU or RFWO. */
1131 code = insn & 0x00ffffff;
1132 return ((code == 0x00003400) || (code == 0x00003500));
1133 }
1134 }
1135
1136 /* Returns the best guess about which register is a frame pointer
1137 for the function containing CURRENT_PC. */
1138
1139 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1140 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1141
1142 static unsigned int
1143 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1144 {
1145 #define RETURN_FP goto done
1146
1147 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1148 CORE_ADDR start_addr;
1149 xtensa_isa isa;
1150 xtensa_insnbuf ins, slot;
1151 char ibuf[XTENSA_ISA_BSZ];
1152 CORE_ADDR ia, bt, ba;
1153 xtensa_format ifmt;
1154 int ilen, islots, is;
1155 xtensa_opcode opc;
1156 const char *opcname;
1157
1158 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1159 if (start_addr == 0)
1160 return fp_regnum;
1161
1162 if (!xtensa_default_isa)
1163 xtensa_default_isa = xtensa_isa_init (0, 0);
1164 isa = xtensa_default_isa;
1165 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1166 ins = xtensa_insnbuf_alloc (isa);
1167 slot = xtensa_insnbuf_alloc (isa);
1168 ba = 0;
1169
1170 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1171 {
1172 if (ia + xtensa_isa_maxlength (isa) > bt)
1173 {
1174 ba = ia;
1175 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1176 ? ba + XTENSA_ISA_BSZ : current_pc;
1177 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1178 RETURN_FP;
1179 }
1180
1181 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1182 ifmt = xtensa_format_decode (isa, ins);
1183 if (ifmt == XTENSA_UNDEFINED)
1184 RETURN_FP;
1185 ilen = xtensa_format_length (isa, ifmt);
1186 if (ilen == XTENSA_UNDEFINED)
1187 RETURN_FP;
1188 islots = xtensa_format_num_slots (isa, ifmt);
1189 if (islots == XTENSA_UNDEFINED)
1190 RETURN_FP;
1191
1192 for (is = 0; is < islots; ++is)
1193 {
1194 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1195 RETURN_FP;
1196
1197 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1198 if (opc == XTENSA_UNDEFINED)
1199 RETURN_FP;
1200
1201 opcname = xtensa_opcode_name (isa, opc);
1202
1203 if (strcasecmp (opcname, "mov.n") == 0
1204 || strcasecmp (opcname, "or") == 0)
1205 {
1206 unsigned int register_operand;
1207
1208 /* Possible candidate for setting frame pointer
1209 from A1. This is what we are looking for. */
1210
1211 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1212 is, slot, &register_operand) != 0)
1213 RETURN_FP;
1214 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1215 RETURN_FP;
1216 if (register_operand == 1) /* Mov{.n} FP A1. */
1217 {
1218 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1219 &register_operand) != 0)
1220 RETURN_FP;
1221 if (xtensa_operand_decode (isa, opc, 0,
1222 &register_operand) != 0)
1223 RETURN_FP;
1224
1225 fp_regnum
1226 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1227 RETURN_FP;
1228 }
1229 }
1230
1231 if (
1232 /* We have problems decoding the memory. */
1233 opcname == NULL
1234 || strcasecmp (opcname, "ill") == 0
1235 || strcasecmp (opcname, "ill.n") == 0
1236 /* Hit planted breakpoint. */
1237 || strcasecmp (opcname, "break") == 0
1238 || strcasecmp (opcname, "break.n") == 0
1239 /* Flow control instructions finish prologue. */
1240 || xtensa_opcode_is_branch (isa, opc) > 0
1241 || xtensa_opcode_is_jump (isa, opc) > 0
1242 || xtensa_opcode_is_loop (isa, opc) > 0
1243 || xtensa_opcode_is_call (isa, opc) > 0
1244 || strcasecmp (opcname, "simcall") == 0
1245 || strcasecmp (opcname, "syscall") == 0)
1246 /* Can not continue analysis. */
1247 RETURN_FP;
1248 }
1249 }
1250 done:
1251 xtensa_insnbuf_free(isa, slot);
1252 xtensa_insnbuf_free(isa, ins);
1253 return fp_regnum;
1254 }
1255
1256 /* The key values to identify the frame using "cache" are
1257
1258 cache->base = SP (or best guess about FP) of this frame;
1259 cache->pc = entry-PC (entry point of the frame function);
1260 cache->prev_sp = SP of the previous frame. */
1261
1262 static void
1263 call0_frame_cache (struct frame_info *this_frame,
1264 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1265
1266 static void
1267 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1268 xtensa_frame_cache_t *cache,
1269 CORE_ADDR pc);
1270
1271 static struct xtensa_frame_cache *
1272 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1273 {
1274 xtensa_frame_cache_t *cache;
1275 CORE_ADDR ra, wb, ws, pc, sp, ps;
1276 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1277 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1278 unsigned int fp_regnum;
1279 int windowed, ps_regnum;
1280
1281 if (*this_cache)
1282 return *this_cache;
1283
1284 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1285 ps_regnum = gdbarch_ps_regnum (gdbarch);
1286 ps = (ps_regnum >= 0
1287 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1288
1289 windowed = windowing_enabled (gdbarch, ps);
1290
1291 /* Get pristine xtensa-frame. */
1292 cache = xtensa_alloc_frame_cache (windowed);
1293 *this_cache = cache;
1294
1295 if (windowed)
1296 {
1297 char op1;
1298
1299 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1300 wb = get_frame_register_unsigned (this_frame,
1301 gdbarch_tdep (gdbarch)->wb_regnum);
1302 ws = get_frame_register_unsigned (this_frame,
1303 gdbarch_tdep (gdbarch)->ws_regnum);
1304
1305 op1 = read_memory_integer (pc, 1, byte_order);
1306 if (XTENSA_IS_ENTRY (gdbarch, op1))
1307 {
1308 int callinc = CALLINC (ps);
1309 ra = get_frame_register_unsigned
1310 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1311
1312 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1313 cache->wd.callsize = 0;
1314 cache->wd.wb = wb;
1315 cache->wd.ws = ws;
1316 cache->prev_sp = get_frame_register_unsigned
1317 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1318
1319 /* This only can be the outermost frame since we are
1320 just about to execute ENTRY. SP hasn't been set yet.
1321 We can assume any frame size, because it does not
1322 matter, and, let's fake frame base in cache. */
1323 cache->base = cache->prev_sp - 16;
1324
1325 cache->pc = pc;
1326 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1327 cache->ps = (ps & ~PS_CALLINC_MASK)
1328 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1329
1330 return cache;
1331 }
1332 else
1333 {
1334 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1335 ra = get_frame_register_unsigned (this_frame,
1336 gdbarch_tdep (gdbarch)->a0_base);
1337 cache->wd.callsize = WINSIZE (ra);
1338 cache->wd.wb = (wb - cache->wd.callsize / 4)
1339 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1340 cache->wd.ws = ws & ~(1 << wb);
1341
1342 cache->pc = get_frame_func (this_frame);
1343 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1344 cache->ps = (ps & ~PS_CALLINC_MASK)
1345 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1346 }
1347
1348 if (cache->wd.ws == 0)
1349 {
1350 int i;
1351
1352 /* Set A0...A3. */
1353 sp = get_frame_register_unsigned
1354 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1355
1356 for (i = 0; i < 4; i++, sp += 4)
1357 {
1358 cache->wd.aregs[i] = sp;
1359 }
1360
1361 if (cache->wd.callsize > 4)
1362 {
1363 /* Set A4...A7/A11. */
1364 /* Get the SP of the frame previous to the previous one.
1365 To achieve this, we have to dereference SP twice. */
1366 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1367 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1368 sp -= cache->wd.callsize * 4;
1369
1370 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1371 {
1372 cache->wd.aregs[i] = sp;
1373 }
1374 }
1375 }
1376
1377 if ((cache->prev_sp == 0) && ( ra != 0 ))
1378 /* If RA is equal to 0 this frame is an outermost frame. Leave
1379 cache->prev_sp unchanged marking the boundary of the frame stack. */
1380 {
1381 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1382 {
1383 /* Register window overflow already happened.
1384 We can read caller's SP from the proper spill loction. */
1385 sp = get_frame_register_unsigned
1386 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1387 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1388 }
1389 else
1390 {
1391 /* Read caller's frame SP directly from the previous window. */
1392 int regnum = arreg_number
1393 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1394 cache->wd.wb);
1395
1396 cache->prev_sp = xtensa_read_register (regnum);
1397 }
1398 }
1399 }
1400 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1401 {
1402 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1403
1404 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1405 /* Everything was set already, including cache->base. */
1406 return cache;
1407 }
1408 else /* Call0 framework. */
1409 {
1410 call0_frame_cache (this_frame, cache, pc);
1411 fp_regnum = cache->c0.fp_regnum;
1412 }
1413
1414 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1415
1416 return cache;
1417 }
1418
1419 static int xtensa_session_once_reported = 1;
1420
1421 /* Report a problem with prologue analysis while doing backtracing.
1422 But, do it only once to avoid annoyng repeated messages. */
1423
1424 static void warning_once ()
1425 {
1426 if (xtensa_session_once_reported == 0)
1427 warning (_("\
1428 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1429 This message will not be repeated in this session.\n"));
1430
1431 xtensa_session_once_reported = 1;
1432 }
1433
1434
1435 static void
1436 xtensa_frame_this_id (struct frame_info *this_frame,
1437 void **this_cache,
1438 struct frame_id *this_id)
1439 {
1440 struct xtensa_frame_cache *cache =
1441 xtensa_frame_cache (this_frame, this_cache);
1442
1443 if (cache->prev_sp == 0)
1444 return;
1445
1446 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1447 }
1448
1449 static struct value *
1450 xtensa_frame_prev_register (struct frame_info *this_frame,
1451 void **this_cache,
1452 int regnum)
1453 {
1454 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1455 struct xtensa_frame_cache *cache;
1456 ULONGEST saved_reg = 0;
1457 int done = 1;
1458
1459 if (*this_cache == NULL)
1460 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1461 cache = *this_cache;
1462
1463 if (regnum ==gdbarch_pc_regnum (gdbarch))
1464 saved_reg = cache->ra;
1465 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1466 saved_reg = cache->prev_sp;
1467 else if (!cache->call0)
1468 {
1469 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1470 saved_reg = cache->wd.ws;
1471 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1472 saved_reg = cache->wd.wb;
1473 else if (regnum == gdbarch_ps_regnum (gdbarch))
1474 saved_reg = cache->ps;
1475 else
1476 done = 0;
1477 }
1478 else
1479 done = 0;
1480
1481 if (done)
1482 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1483
1484 if (!cache->call0) /* Windowed ABI. */
1485 {
1486 /* Convert A-register numbers to AR-register numbers,
1487 if we deal with A-register. */
1488 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1489 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1490 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1491
1492 /* Check, if we deal with AR-register saved on stack. */
1493 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1494 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1495 + gdbarch_tdep (gdbarch)->num_aregs))
1496 {
1497 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1498
1499 if (areg >= 0
1500 && areg < XTENSA_NUM_SAVED_AREGS
1501 && cache->wd.aregs[areg] != -1)
1502 return frame_unwind_got_memory (this_frame, regnum,
1503 cache->wd.aregs[areg]);
1504 }
1505 }
1506 else /* Call0 ABI. */
1507 {
1508 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1509 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1510 + C0_NREGS))
1511 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1512
1513 if (reg < C0_NREGS)
1514 {
1515 CORE_ADDR spe;
1516 int stkofs;
1517
1518 /* If register was saved in the prologue, retrieve it. */
1519 stkofs = cache->c0.c0_rt[reg].to_stk;
1520 if (stkofs != C0_NOSTK)
1521 {
1522 /* Determine SP on entry based on FP. */
1523 spe = cache->c0.c0_fp
1524 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1525
1526 return frame_unwind_got_memory (this_frame, regnum,
1527 spe + stkofs);
1528 }
1529 }
1530 }
1531
1532 /* All other registers have been either saved to
1533 the stack or are still alive in the processor. */
1534
1535 return frame_unwind_got_register (this_frame, regnum, regnum);
1536 }
1537
1538
1539 static const struct frame_unwind
1540 xtensa_unwind =
1541 {
1542 NORMAL_FRAME,
1543 xtensa_frame_this_id,
1544 xtensa_frame_prev_register,
1545 NULL,
1546 default_frame_sniffer
1547 };
1548
1549 static CORE_ADDR
1550 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1551 {
1552 struct xtensa_frame_cache *cache =
1553 xtensa_frame_cache (this_frame, this_cache);
1554
1555 return cache->base;
1556 }
1557
1558 static const struct frame_base
1559 xtensa_frame_base =
1560 {
1561 &xtensa_unwind,
1562 xtensa_frame_base_address,
1563 xtensa_frame_base_address,
1564 xtensa_frame_base_address
1565 };
1566
1567
1568 static void
1569 xtensa_extract_return_value (struct type *type,
1570 struct regcache *regcache,
1571 void *dst)
1572 {
1573 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1574 bfd_byte *valbuf = dst;
1575 int len = TYPE_LENGTH (type);
1576 ULONGEST pc, wb;
1577 int callsize, areg;
1578 int offset = 0;
1579
1580 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1581
1582 gdb_assert(len > 0);
1583
1584 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1585 {
1586 /* First, we have to find the caller window in the register file. */
1587 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1588 callsize = extract_call_winsize (gdbarch, pc);
1589
1590 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1591 if (len > (callsize > 8 ? 8 : 16))
1592 internal_error (__FILE__, __LINE__,
1593 _("cannot extract return value of %d bytes long"),
1594 len);
1595
1596 /* Get the register offset of the return
1597 register (A2) in the caller window. */
1598 regcache_raw_read_unsigned
1599 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1600 areg = arreg_number (gdbarch,
1601 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1602 }
1603 else
1604 {
1605 /* No windowing hardware - Call0 ABI. */
1606 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1607 }
1608
1609 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1610
1611 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1612 offset = 4 - len;
1613
1614 for (; len > 0; len -= 4, areg++, valbuf += 4)
1615 {
1616 if (len < 4)
1617 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1618 else
1619 regcache_raw_read (regcache, areg, valbuf);
1620 }
1621 }
1622
1623
1624 static void
1625 xtensa_store_return_value (struct type *type,
1626 struct regcache *regcache,
1627 const void *dst)
1628 {
1629 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1630 const bfd_byte *valbuf = dst;
1631 unsigned int areg;
1632 ULONGEST pc, wb;
1633 int callsize;
1634 int len = TYPE_LENGTH (type);
1635 int offset = 0;
1636
1637 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1638
1639 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1640 {
1641 regcache_raw_read_unsigned
1642 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1643 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1644 callsize = extract_call_winsize (gdbarch, pc);
1645
1646 if (len > (callsize > 8 ? 8 : 16))
1647 internal_error (__FILE__, __LINE__,
1648 _("unimplemented for this length: %d"),
1649 TYPE_LENGTH (type));
1650 areg = arreg_number (gdbarch,
1651 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1652
1653 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1654 callsize, (int) wb);
1655 }
1656 else
1657 {
1658 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1659 }
1660
1661 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1662 offset = 4 - len;
1663
1664 for (; len > 0; len -= 4, areg++, valbuf += 4)
1665 {
1666 if (len < 4)
1667 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1668 else
1669 regcache_raw_write (regcache, areg, valbuf);
1670 }
1671 }
1672
1673
1674 static enum return_value_convention
1675 xtensa_return_value (struct gdbarch *gdbarch,
1676 struct type *func_type,
1677 struct type *valtype,
1678 struct regcache *regcache,
1679 gdb_byte *readbuf,
1680 const gdb_byte *writebuf)
1681 {
1682 /* Structures up to 16 bytes are returned in registers. */
1683
1684 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1685 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1686 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1687 && TYPE_LENGTH (valtype) > 16);
1688
1689 if (struct_return)
1690 return RETURN_VALUE_STRUCT_CONVENTION;
1691
1692 DEBUGTRACE ("xtensa_return_value(...)\n");
1693
1694 if (writebuf != NULL)
1695 {
1696 xtensa_store_return_value (valtype, regcache, writebuf);
1697 }
1698
1699 if (readbuf != NULL)
1700 {
1701 gdb_assert (!struct_return);
1702 xtensa_extract_return_value (valtype, regcache, readbuf);
1703 }
1704 return RETURN_VALUE_REGISTER_CONVENTION;
1705 }
1706
1707
1708 /* DUMMY FRAME */
1709
1710 static CORE_ADDR
1711 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1712 struct value *function,
1713 struct regcache *regcache,
1714 CORE_ADDR bp_addr,
1715 int nargs,
1716 struct value **args,
1717 CORE_ADDR sp,
1718 int struct_return,
1719 CORE_ADDR struct_addr)
1720 {
1721 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1722 int i;
1723 int size, onstack_size;
1724 gdb_byte *buf = (gdb_byte *) alloca (16);
1725 CORE_ADDR ra, ps;
1726 struct argument_info
1727 {
1728 const bfd_byte *contents;
1729 int length;
1730 int onstack; /* onstack == 0 => in reg */
1731 int align; /* alignment */
1732 union
1733 {
1734 int offset; /* stack offset if on stack. */
1735 int regno; /* regno if in register. */
1736 } u;
1737 };
1738
1739 struct argument_info *arg_info =
1740 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1741
1742 CORE_ADDR osp = sp;
1743
1744 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1745
1746 if (xtensa_debug_level > 3)
1747 {
1748 int i;
1749 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1750 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1751 "struct_addr=0x%x\n",
1752 (int) sp, (int) struct_return, (int) struct_addr);
1753
1754 for (i = 0; i < nargs; i++)
1755 {
1756 struct value *arg = args[i];
1757 struct type *arg_type = check_typedef (value_type (arg));
1758 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1759 host_address_to_string (arg),
1760 TYPE_LENGTH (arg_type));
1761 switch (TYPE_CODE (arg_type))
1762 {
1763 case TYPE_CODE_INT:
1764 fprintf_unfiltered (gdb_stdlog, "int");
1765 break;
1766 case TYPE_CODE_STRUCT:
1767 fprintf_unfiltered (gdb_stdlog, "struct");
1768 break;
1769 default:
1770 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1771 break;
1772 }
1773 fprintf_unfiltered (gdb_stdlog, " %s\n",
1774 host_address_to_string (value_contents (arg)));
1775 }
1776 }
1777
1778 /* First loop: collect information.
1779 Cast into type_long. (This shouldn't happen often for C because
1780 GDB already does this earlier.) It's possible that GDB could
1781 do it all the time but it's harmless to leave this code here. */
1782
1783 size = 0;
1784 onstack_size = 0;
1785 i = 0;
1786
1787 if (struct_return)
1788 size = REGISTER_SIZE;
1789
1790 for (i = 0; i < nargs; i++)
1791 {
1792 struct argument_info *info = &arg_info[i];
1793 struct value *arg = args[i];
1794 struct type *arg_type = check_typedef (value_type (arg));
1795
1796 switch (TYPE_CODE (arg_type))
1797 {
1798 case TYPE_CODE_INT:
1799 case TYPE_CODE_BOOL:
1800 case TYPE_CODE_CHAR:
1801 case TYPE_CODE_RANGE:
1802 case TYPE_CODE_ENUM:
1803
1804 /* Cast argument to long if necessary as the mask does it too. */
1805 if (TYPE_LENGTH (arg_type)
1806 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1807 {
1808 arg_type = builtin_type (gdbarch)->builtin_long;
1809 arg = value_cast (arg_type, arg);
1810 }
1811 /* Aligment is equal to the type length for the basic types. */
1812 info->align = TYPE_LENGTH (arg_type);
1813 break;
1814
1815 case TYPE_CODE_FLT:
1816
1817 /* Align doubles correctly. */
1818 if (TYPE_LENGTH (arg_type)
1819 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1820 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1821 else
1822 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1823 break;
1824
1825 case TYPE_CODE_STRUCT:
1826 default:
1827 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1828 break;
1829 }
1830 info->length = TYPE_LENGTH (arg_type);
1831 info->contents = value_contents (arg);
1832
1833 /* Align size and onstack_size. */
1834 size = (size + info->align - 1) & ~(info->align - 1);
1835 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1836
1837 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1838 {
1839 info->onstack = 1;
1840 info->u.offset = onstack_size;
1841 onstack_size += info->length;
1842 }
1843 else
1844 {
1845 info->onstack = 0;
1846 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1847 }
1848 size += info->length;
1849 }
1850
1851 /* Adjust the stack pointer and align it. */
1852 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1853
1854 /* Simulate MOVSP, if Windowed ABI. */
1855 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1856 && (sp != osp))
1857 {
1858 read_memory (osp - 16, buf, 16);
1859 write_memory (sp - 16, buf, 16);
1860 }
1861
1862 /* Second Loop: Load arguments. */
1863
1864 if (struct_return)
1865 {
1866 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1867 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1868 }
1869
1870 for (i = 0; i < nargs; i++)
1871 {
1872 struct argument_info *info = &arg_info[i];
1873
1874 if (info->onstack)
1875 {
1876 int n = info->length;
1877 CORE_ADDR offset = sp + info->u.offset;
1878
1879 /* Odd-sized structs are aligned to the lower side of a memory
1880 word in big-endian mode and require a shift. This only
1881 applies for structures smaller than one word. */
1882
1883 if (n < REGISTER_SIZE
1884 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1885 offset += (REGISTER_SIZE - n);
1886
1887 write_memory (offset, info->contents, info->length);
1888
1889 }
1890 else
1891 {
1892 int n = info->length;
1893 const bfd_byte *cp = info->contents;
1894 int r = info->u.regno;
1895
1896 /* Odd-sized structs are aligned to the lower side of registers in
1897 big-endian mode and require a shift. The odd-sized leftover will
1898 be at the end. Note that this is only true for structures smaller
1899 than REGISTER_SIZE; for larger odd-sized structures the excess
1900 will be left-aligned in the register on both endiannesses. */
1901
1902 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1903 {
1904 ULONGEST v;
1905 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1906 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1907
1908 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1909 regcache_cooked_write (regcache, r, buf);
1910
1911 cp += REGISTER_SIZE;
1912 n -= REGISTER_SIZE;
1913 r++;
1914 }
1915 else
1916 while (n > 0)
1917 {
1918 regcache_cooked_write (regcache, r, cp);
1919
1920 cp += REGISTER_SIZE;
1921 n -= REGISTER_SIZE;
1922 r++;
1923 }
1924 }
1925 }
1926
1927 /* Set the return address of dummy frame to the dummy address.
1928 The return address for the current function (in A0) is
1929 saved in the dummy frame, so we can savely overwrite A0 here. */
1930
1931 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1932 {
1933 ULONGEST val;
1934
1935 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1936 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1937 ps = (unsigned long) val & ~0x00030000;
1938 regcache_cooked_write_unsigned
1939 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1940 regcache_cooked_write_unsigned (regcache,
1941 gdbarch_ps_regnum (gdbarch),
1942 ps | 0x00010000);
1943
1944 /* All the registers have been saved. After executing
1945 dummy call, they all will be restored. So it's safe
1946 to modify WINDOWSTART register to make it look like there
1947 is only one register window corresponding to WINDOWEBASE. */
1948
1949 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1950 regcache_cooked_write_unsigned
1951 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1952 1 << extract_unsigned_integer (buf, 4, byte_order));
1953 }
1954 else
1955 {
1956 /* Simulate CALL0: write RA into A0 register. */
1957 regcache_cooked_write_unsigned
1958 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1959 }
1960
1961 /* Set new stack pointer and return it. */
1962 regcache_cooked_write_unsigned (regcache,
1963 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1964 /* Make dummy frame ID unique by adding a constant. */
1965 return sp + SP_ALIGNMENT;
1966 }
1967
1968
1969 /* Return a breakpoint for the current location of PC. We always use
1970 the density version if we have density instructions (regardless of the
1971 current instruction at PC), and use regular instructions otherwise. */
1972
1973 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1974 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1975 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1976 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1977
1978 static const unsigned char *
1979 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1980 int *lenptr)
1981 {
1982 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1983 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1984 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1985 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1986
1987 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1988
1989 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1990 {
1991 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1992 {
1993 *lenptr = sizeof (density_big_breakpoint);
1994 return density_big_breakpoint;
1995 }
1996 else
1997 {
1998 *lenptr = sizeof (density_little_breakpoint);
1999 return density_little_breakpoint;
2000 }
2001 }
2002 else
2003 {
2004 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2005 {
2006 *lenptr = sizeof (big_breakpoint);
2007 return big_breakpoint;
2008 }
2009 else
2010 {
2011 *lenptr = sizeof (little_breakpoint);
2012 return little_breakpoint;
2013 }
2014 }
2015 }
2016
2017 /* Call0 ABI support routines. */
2018
2019 /* Return true, if PC points to "ret" or "ret.n". */
2020
2021 static int
2022 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2023 {
2024 #define RETURN_RET goto done
2025 xtensa_isa isa;
2026 xtensa_insnbuf ins, slot;
2027 char ibuf[XTENSA_ISA_BSZ];
2028 CORE_ADDR ia, bt, ba;
2029 xtensa_format ifmt;
2030 int ilen, islots, is;
2031 xtensa_opcode opc;
2032 const char *opcname;
2033 int found_ret = 0;
2034
2035 isa = xtensa_default_isa;
2036 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2037 ins = xtensa_insnbuf_alloc (isa);
2038 slot = xtensa_insnbuf_alloc (isa);
2039 ba = 0;
2040
2041 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2042 {
2043 if (ia + xtensa_isa_maxlength (isa) > bt)
2044 {
2045 ba = ia;
2046 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2047 ? ba + XTENSA_ISA_BSZ : finish_pc;
2048 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2049 RETURN_RET;
2050 }
2051
2052 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2053 ifmt = xtensa_format_decode (isa, ins);
2054 if (ifmt == XTENSA_UNDEFINED)
2055 RETURN_RET;
2056 ilen = xtensa_format_length (isa, ifmt);
2057 if (ilen == XTENSA_UNDEFINED)
2058 RETURN_RET;
2059 islots = xtensa_format_num_slots (isa, ifmt);
2060 if (islots == XTENSA_UNDEFINED)
2061 RETURN_RET;
2062
2063 for (is = 0; is < islots; ++is)
2064 {
2065 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2066 RETURN_RET;
2067
2068 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2069 if (opc == XTENSA_UNDEFINED)
2070 RETURN_RET;
2071
2072 opcname = xtensa_opcode_name (isa, opc);
2073
2074 if ((strcasecmp (opcname, "ret.n") == 0)
2075 || (strcasecmp (opcname, "ret") == 0))
2076 {
2077 found_ret = 1;
2078 RETURN_RET;
2079 }
2080 }
2081 }
2082 done:
2083 xtensa_insnbuf_free(isa, slot);
2084 xtensa_insnbuf_free(isa, ins);
2085 return found_ret;
2086 }
2087
2088 /* Call0 opcode class. Opcodes are preclassified according to what they
2089 mean for Call0 prologue analysis, and their number of significant operands.
2090 The purpose of this is to simplify prologue analysis by separating
2091 instruction decoding (libisa) from the semantics of prologue analysis. */
2092
2093 typedef enum
2094 {
2095 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2096 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2097 c0opc_flow, /* Flow control insn. */
2098 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2099 c0opc_break, /* Debugger software breakpoints. */
2100 c0opc_add, /* Adding two registers. */
2101 c0opc_addi, /* Adding a register and an immediate. */
2102 c0opc_and, /* Bitwise "and"-ing two registers. */
2103 c0opc_sub, /* Subtracting a register from a register. */
2104 c0opc_mov, /* Moving a register to a register. */
2105 c0opc_movi, /* Moving an immediate to a register. */
2106 c0opc_l32r, /* Loading a literal. */
2107 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2108 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2109 c0opc_l32e, /* L32E instruction. */
2110 c0opc_s32e, /* S32E instruction. */
2111 c0opc_rfwo, /* RFWO instruction. */
2112 c0opc_rfwu, /* RFWU instruction. */
2113 c0opc_NrOf /* Number of opcode classifications. */
2114 } xtensa_insn_kind;
2115
2116 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2117
2118 static int
2119 rwx_special_register (const char *opcname)
2120 {
2121 char ch = *opcname++;
2122
2123 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2124 return 0;
2125 if (*opcname++ != 's')
2126 return 0;
2127 if (*opcname++ != 'r')
2128 return 0;
2129 if (*opcname++ != '.')
2130 return 0;
2131
2132 return 1;
2133 }
2134
2135 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2136
2137 static xtensa_insn_kind
2138 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2139 {
2140 const char *opcname;
2141 xtensa_insn_kind opclass = c0opc_uninteresting;
2142
2143 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2144
2145 /* Get opcode name and handle special classifications. */
2146
2147 opcname = xtensa_opcode_name (isa, opc);
2148
2149 if (opcname == NULL
2150 || strcasecmp (opcname, "ill") == 0
2151 || strcasecmp (opcname, "ill.n") == 0)
2152 opclass = c0opc_illegal;
2153 else if (strcasecmp (opcname, "break") == 0
2154 || strcasecmp (opcname, "break.n") == 0)
2155 opclass = c0opc_break;
2156 else if (strcasecmp (opcname, "entry") == 0)
2157 opclass = c0opc_entry;
2158 else if (strcasecmp (opcname, "rfwo") == 0)
2159 opclass = c0opc_rfwo;
2160 else if (strcasecmp (opcname, "rfwu") == 0)
2161 opclass = c0opc_rfwu;
2162 else if (xtensa_opcode_is_branch (isa, opc) > 0
2163 || xtensa_opcode_is_jump (isa, opc) > 0
2164 || xtensa_opcode_is_loop (isa, opc) > 0
2165 || xtensa_opcode_is_call (isa, opc) > 0
2166 || strcasecmp (opcname, "simcall") == 0
2167 || strcasecmp (opcname, "syscall") == 0)
2168 opclass = c0opc_flow;
2169
2170 /* Also, classify specific opcodes that need to be tracked. */
2171 else if (strcasecmp (opcname, "add") == 0
2172 || strcasecmp (opcname, "add.n") == 0)
2173 opclass = c0opc_add;
2174 else if (strcasecmp (opcname, "and") == 0)
2175 opclass = c0opc_and;
2176 else if (strcasecmp (opcname, "addi") == 0
2177 || strcasecmp (opcname, "addi.n") == 0
2178 || strcasecmp (opcname, "addmi") == 0)
2179 opclass = c0opc_addi;
2180 else if (strcasecmp (opcname, "sub") == 0)
2181 opclass = c0opc_sub;
2182 else if (strcasecmp (opcname, "mov.n") == 0
2183 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2184 opclass = c0opc_mov;
2185 else if (strcasecmp (opcname, "movi") == 0
2186 || strcasecmp (opcname, "movi.n") == 0)
2187 opclass = c0opc_movi;
2188 else if (strcasecmp (opcname, "l32r") == 0)
2189 opclass = c0opc_l32r;
2190 else if (strcasecmp (opcname, "s32i") == 0
2191 || strcasecmp (opcname, "s32i.n") == 0)
2192 opclass = c0opc_s32i;
2193 else if (strcasecmp (opcname, "l32e") == 0)
2194 opclass = c0opc_l32e;
2195 else if (strcasecmp (opcname, "s32e") == 0)
2196 opclass = c0opc_s32e;
2197 else if (rwx_special_register (opcname))
2198 opclass = c0opc_rwxsr;
2199
2200 return opclass;
2201 }
2202
2203 /* Tracks register movement/mutation for a given operation, which may
2204 be within a bundle. Updates the destination register tracking info
2205 accordingly. The pc is needed only for pc-relative load instructions
2206 (eg. l32r). The SP register number is needed to identify stores to
2207 the stack frame. Returns 0, if analysis was succesfull, non-zero
2208 otherwise. */
2209
2210 static int
2211 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2212 xtensa_insn_kind opclass, int nods, unsigned odv[],
2213 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2214 {
2215 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2216 unsigned litbase, litaddr, litval;
2217
2218 switch (opclass)
2219 {
2220 case c0opc_addi:
2221 /* 3 operands: dst, src, imm. */
2222 gdb_assert (nods == 3);
2223 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2224 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2225 break;
2226 case c0opc_add:
2227 /* 3 operands: dst, src1, src2. */
2228 gdb_assert (nods == 3);
2229 if (src[odv[1]].fr_reg == C0_CONST)
2230 {
2231 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2232 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2233 }
2234 else if (src[odv[2]].fr_reg == C0_CONST)
2235 {
2236 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2237 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2238 }
2239 else dst[odv[0]].fr_reg = C0_INEXP;
2240 break;
2241 case c0opc_and:
2242 /* 3 operands: dst, src1, src2. */
2243 gdb_assert (nods == 3);
2244 if (cache->c0.c0_fpalign == 0)
2245 {
2246 /* Handle dynamic stack alignment. */
2247 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2248 {
2249 if (src[odv[2]].fr_reg == C0_CONST)
2250 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2251 break;
2252 }
2253 else if ((src[odv[0]].fr_reg == spreg)
2254 && (src[odv[2]].fr_reg == spreg))
2255 {
2256 if (src[odv[1]].fr_reg == C0_CONST)
2257 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2258 break;
2259 }
2260 /* else fall through. */
2261 }
2262 if (src[odv[1]].fr_reg == C0_CONST)
2263 {
2264 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2265 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2266 }
2267 else if (src[odv[2]].fr_reg == C0_CONST)
2268 {
2269 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2270 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2271 }
2272 else dst[odv[0]].fr_reg = C0_INEXP;
2273 break;
2274 case c0opc_sub:
2275 /* 3 operands: dst, src1, src2. */
2276 gdb_assert (nods == 3);
2277 if (src[odv[2]].fr_reg == C0_CONST)
2278 {
2279 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2280 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2281 }
2282 else dst[odv[0]].fr_reg = C0_INEXP;
2283 break;
2284 case c0opc_mov:
2285 /* 2 operands: dst, src [, src]. */
2286 gdb_assert (nods == 2);
2287 /* First, check if it's a special case of saving unaligned SP
2288 to a spare register in case of dynamic stack adjustment.
2289 But, only do it one time. The second time could be initializing
2290 frame pointer. We don't want to overwrite the first one. */
2291 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2292 cache->c0.c0_old_sp = odv[0];
2293
2294 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2295 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2296 break;
2297 case c0opc_movi:
2298 /* 2 operands: dst, imm. */
2299 gdb_assert (nods == 2);
2300 dst[odv[0]].fr_reg = C0_CONST;
2301 dst[odv[0]].fr_ofs = odv[1];
2302 break;
2303 case c0opc_l32r:
2304 /* 2 operands: dst, literal offset. */
2305 gdb_assert (nods == 2);
2306 /* litbase = xtensa_get_litbase (pc); can be also used. */
2307 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2308 ? 0 : xtensa_read_register
2309 (gdbarch_tdep (gdbarch)->litbase_regnum);
2310 litaddr = litbase & 1
2311 ? (litbase & ~1) + (signed)odv[1]
2312 : (pc + 3 + (signed)odv[1]) & ~3;
2313 litval = read_memory_integer (litaddr, 4, byte_order);
2314 dst[odv[0]].fr_reg = C0_CONST;
2315 dst[odv[0]].fr_ofs = litval;
2316 break;
2317 case c0opc_s32i:
2318 /* 3 operands: value, base, offset. */
2319 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2320 /* First, check if it's a spill for saved unaligned SP,
2321 when dynamic stack adjustment was applied to this frame. */
2322 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2323 && (odv[1] == spreg) /* SP usage indicates spill. */
2324 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2325 cache->c0.c0_sp_ofs = odv[2];
2326
2327 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2328 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2329 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2330 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2331 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2332 {
2333 /* ISA encoding guarantees alignment. But, check it anyway. */
2334 gdb_assert ((odv[2] & 3) == 0);
2335 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2336 }
2337 break;
2338 /* If we end up inside Window Overflow / Underflow interrupt handler
2339 report an error because these handlers should have been handled
2340 already in a different way. */
2341 case c0opc_l32e:
2342 case c0opc_s32e:
2343 case c0opc_rfwo:
2344 case c0opc_rfwu:
2345 return 1;
2346 default:
2347 return 1;
2348 }
2349 return 0;
2350 }
2351
2352 /* Analyze prologue of the function at start address to determine if it uses
2353 the Call0 ABI, and if so track register moves and linear modifications
2354 in the prologue up to the PC or just beyond the prologue, whichever is
2355 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2356 prologue. The prologue may overlap non-prologue instructions but is
2357 guaranteed to end by the first flow-control instruction (jump, branch,
2358 call or return). Since an optimized function may move information around
2359 and change the stack frame arbitrarily during the prologue, the information
2360 is guaranteed valid only at the point in the function indicated by the PC.
2361 May be used to skip the prologue or identify the ABI, w/o tracking.
2362
2363 Returns: Address of first instruction after prologue, or PC (whichever
2364 is first), or 0, if decoding failed (in libisa).
2365 Input args:
2366 start Start address of function/prologue.
2367 pc Program counter to stop at. Use 0 to continue to end of prologue.
2368 If 0, avoids infinite run-on in corrupt code memory by bounding
2369 the scan to the end of the function if that can be determined.
2370 nregs Number of general registers to track.
2371 InOut args:
2372 cache Xtensa frame cache.
2373
2374 Note that these may produce useful results even if decoding fails
2375 because they begin with default assumptions that analysis may change. */
2376
2377 static CORE_ADDR
2378 call0_analyze_prologue (struct gdbarch *gdbarch,
2379 CORE_ADDR start, CORE_ADDR pc,
2380 int nregs, xtensa_frame_cache_t *cache)
2381 {
2382 CORE_ADDR ia; /* Current insn address in prologue. */
2383 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2384 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2385 char ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2386 xtensa_isa isa; /* libisa ISA handle. */
2387 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2388 xtensa_format ifmt; /* libisa instruction format. */
2389 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2390 xtensa_opcode opc; /* Opcode in current slot. */
2391 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2392 int nods; /* Opcode number of operands. */
2393 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2394 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2395 int j; /* General loop counter. */
2396 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2397 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2398 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2399
2400 struct symtab_and_line prologue_sal;
2401
2402 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2403 (int)start, (int)pc);
2404
2405 /* Try to limit the scan to the end of the function if a non-zero pc
2406 arg was not supplied to avoid probing beyond the end of valid memory.
2407 If memory is full of garbage that classifies as c0opc_uninteresting.
2408 If this fails (eg. if no symbols) pc ends up 0 as it was.
2409 Intialize the Call0 frame and register tracking info.
2410 Assume it's Call0 until an 'entry' instruction is encountered.
2411 Assume we may be in the prologue until we hit a flow control instr. */
2412
2413 rtmp = NULL;
2414 body_pc = UINT_MAX;
2415 end_pc = 0;
2416
2417 /* Find out, if we have an information about the prologue from DWARF. */
2418 prologue_sal = find_pc_line (start, 0);
2419 if (prologue_sal.line != 0) /* Found debug info. */
2420 body_pc = prologue_sal.end;
2421
2422 /* If we are going to analyze the prologue in general without knowing about
2423 the current PC, make the best assumtion for the end of the prologue. */
2424 if (pc == 0)
2425 {
2426 find_pc_partial_function (start, 0, NULL, &end_pc);
2427 body_pc = min (end_pc, body_pc);
2428 }
2429 else
2430 body_pc = min (pc, body_pc);
2431
2432 cache->call0 = 1;
2433 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2434
2435 if (!xtensa_default_isa)
2436 xtensa_default_isa = xtensa_isa_init (0, 0);
2437 isa = xtensa_default_isa;
2438 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2439 ins = xtensa_insnbuf_alloc (isa);
2440 slot = xtensa_insnbuf_alloc (isa);
2441
2442 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2443 {
2444 /* (Re)fill instruction buffer from memory if necessary, but do not
2445 read memory beyond PC to be sure we stay within text section
2446 (this protection only works if a non-zero pc is supplied). */
2447
2448 if (ia + xtensa_isa_maxlength (isa) > bt)
2449 {
2450 ba = ia;
2451 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2452 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2453 error (_("Unable to read target memory ..."));
2454 }
2455
2456 /* Decode format information. */
2457
2458 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2459 ifmt = xtensa_format_decode (isa, ins);
2460 if (ifmt == XTENSA_UNDEFINED)
2461 {
2462 fail = 1;
2463 goto done;
2464 }
2465 ilen = xtensa_format_length (isa, ifmt);
2466 if (ilen == XTENSA_UNDEFINED)
2467 {
2468 fail = 1;
2469 goto done;
2470 }
2471 islots = xtensa_format_num_slots (isa, ifmt);
2472 if (islots == XTENSA_UNDEFINED)
2473 {
2474 fail = 1;
2475 goto done;
2476 }
2477
2478 /* Analyze a bundle or a single instruction, using a snapshot of
2479 the register tracking info as input for the entire bundle so that
2480 register changes do not take effect within this bundle. */
2481
2482 for (j = 0; j < nregs; ++j)
2483 rtmp[j] = cache->c0.c0_rt[j];
2484
2485 for (is = 0; is < islots; ++is)
2486 {
2487 /* Decode a slot and classify the opcode. */
2488
2489 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2490 if (fail)
2491 goto done;
2492
2493 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2494 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2495 (unsigned)ia, opc);
2496 if (opc == XTENSA_UNDEFINED)
2497 opclass = c0opc_illegal;
2498 else
2499 opclass = call0_classify_opcode (isa, opc);
2500
2501 /* Decide whether to track this opcode, ignore it, or bail out. */
2502
2503 switch (opclass)
2504 {
2505 case c0opc_illegal:
2506 case c0opc_break:
2507 fail = 1;
2508 goto done;
2509
2510 case c0opc_uninteresting:
2511 continue;
2512
2513 case c0opc_flow: /* Flow control instructions stop analysis. */
2514 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2515 goto done;
2516
2517 case c0opc_entry:
2518 cache->call0 = 0;
2519 ia += ilen; /* Skip over 'entry' insn. */
2520 goto done;
2521
2522 default:
2523 cache->call0 = 1;
2524 }
2525
2526 /* Only expected opcodes should get this far. */
2527
2528 /* Extract and decode the operands. */
2529 nods = xtensa_opcode_num_operands (isa, opc);
2530 if (nods == XTENSA_UNDEFINED)
2531 {
2532 fail = 1;
2533 goto done;
2534 }
2535
2536 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2537 {
2538 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2539 is, slot, &odv[j]);
2540 if (fail)
2541 goto done;
2542
2543 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2544 if (fail)
2545 goto done;
2546 }
2547
2548 /* Check operands to verify use of 'mov' assembler macro. */
2549 if (opclass == c0opc_mov && nods == 3)
2550 {
2551 if (odv[2] == odv[1])
2552 {
2553 nods = 2;
2554 if ((odv[0] == 1) && (odv[1] != 1))
2555 /* OR A1, An, An , where n != 1.
2556 This means we are inside epilogue already. */
2557 goto done;
2558 }
2559 else
2560 {
2561 opclass = c0opc_uninteresting;
2562 continue;
2563 }
2564 }
2565
2566 /* Track register movement and modification for this operation. */
2567 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2568 opclass, nods, odv, ia, 1, cache);
2569 if (fail)
2570 goto done;
2571 }
2572 }
2573 done:
2574 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2575 (unsigned)ia, fail ? "failed" : "succeeded");
2576 xtensa_insnbuf_free(isa, slot);
2577 xtensa_insnbuf_free(isa, ins);
2578 return fail ? XTENSA_ISA_BADPC : ia;
2579 }
2580
2581 /* Initialize frame cache for the current frame in CALL0 ABI. */
2582
2583 static void
2584 call0_frame_cache (struct frame_info *this_frame,
2585 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2586 {
2587 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2589 CORE_ADDR start_pc; /* The beginning of the function. */
2590 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2591 CORE_ADDR sp, fp, ra;
2592 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2593
2594 sp = get_frame_register_unsigned
2595 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2596 fp = sp; /* Assume FP == SP until proven otherwise. */
2597
2598 /* Find the beginning of the prologue of the function containing the PC
2599 and analyze it up to the PC or the end of the prologue. */
2600
2601 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2602 {
2603 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2604
2605 if (body_pc == XTENSA_ISA_BADPC)
2606 {
2607 warning_once ();
2608 ra = 0;
2609 goto finish_frame_analysis;
2610 }
2611 }
2612
2613 /* Get the frame information and FP (if used) at the current PC.
2614 If PC is in the prologue, the prologue analysis is more reliable
2615 than DWARF info. We don't not know for sure, if PC is in the prologue,
2616 but we do know no calls have yet taken place, so we can almost
2617 certainly rely on the prologue analysis. */
2618
2619 if (body_pc <= pc)
2620 {
2621 /* Prologue analysis was successful up to the PC.
2622 It includes the cases when PC == START_PC. */
2623 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2624 /* c0_hasfp == true means there is a frame pointer because
2625 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2626 was derived from SP. Otherwise, it would be C0_FP. */
2627 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2628 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2629 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2630 }
2631 else /* No data from the prologue analysis. */
2632 {
2633 c0_hasfp = 0;
2634 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2635 c0_frmsz = 0;
2636 start_pc = pc;
2637 }
2638
2639 if (cache->c0.c0_fpalign)
2640 {
2641 /* This frame has a special prologue with a dynamic stack adjustment
2642 to force an alignment, which is bigger than standard 16 bytes. */
2643
2644 CORE_ADDR unaligned_sp;
2645
2646 if (cache->c0.c0_old_sp == C0_INEXP)
2647 /* This can't be. Prologue code should be consistent.
2648 Unaligned stack pointer should be saved in a spare register. */
2649 {
2650 warning_once ();
2651 ra = 0;
2652 goto finish_frame_analysis;
2653 }
2654
2655 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2656 /* Saved unaligned value of SP is kept in a register. */
2657 unaligned_sp = get_frame_register_unsigned
2658 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2659 else
2660 /* Get the value from stack. */
2661 unaligned_sp = (CORE_ADDR)
2662 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2663
2664 prev_sp = unaligned_sp + c0_frmsz;
2665 }
2666 else
2667 prev_sp = fp + c0_frmsz;
2668
2669 /* Frame size from debug info or prologue tracking does not account for
2670 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2671 if (c0_hasfp)
2672 {
2673 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2674
2675 /* Update the stack frame size. */
2676 c0_frmsz += fp - sp;
2677 }
2678
2679 /* Get the return address (RA) from the stack if saved,
2680 or try to get it from a register. */
2681
2682 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2683 if (to_stk != C0_NOSTK)
2684 ra = (CORE_ADDR)
2685 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2686 4, byte_order);
2687
2688 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2689 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2690 {
2691 /* Special case for terminating backtrace at a function that wants to
2692 be seen as the outermost one. Such a function will clear it's RA (A0)
2693 register to 0 in the prologue instead of saving its original value. */
2694 ra = 0;
2695 }
2696 else
2697 {
2698 /* RA was copied to another register or (before any function call) may
2699 still be in the original RA register. This is not always reliable:
2700 even in a leaf function, register tracking stops after prologue, and
2701 even in prologue, non-prologue instructions (not tracked) may overwrite
2702 RA or any register it was copied to. If likely in prologue or before
2703 any call, use retracking info and hope for the best (compiler should
2704 have saved RA in stack if not in a leaf function). If not in prologue,
2705 too bad. */
2706
2707 int i;
2708 for (i = 0;
2709 (i < C0_NREGS) &&
2710 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2711 ++i);
2712 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2713 i = C0_RA;
2714 if (i < C0_NREGS)
2715 {
2716 ra = get_frame_register_unsigned
2717 (this_frame,
2718 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2719 }
2720 else ra = 0;
2721 }
2722
2723 finish_frame_analysis:
2724 cache->pc = start_pc;
2725 cache->ra = ra;
2726 /* RA == 0 marks the outermost frame. Do not go past it. */
2727 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2728 cache->c0.fp_regnum = fp_regnum;
2729 cache->c0.c0_frmsz = c0_frmsz;
2730 cache->c0.c0_hasfp = c0_hasfp;
2731 cache->c0.c0_fp = fp;
2732 }
2733
2734 static CORE_ADDR a0_saved;
2735 static CORE_ADDR a7_saved;
2736 static CORE_ADDR a11_saved;
2737 static int a0_was_saved;
2738 static int a7_was_saved;
2739 static int a11_was_saved;
2740
2741 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2742 static void
2743 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2744 {
2745 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2746 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2747 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2748 unsigned int spilled_value
2749 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2750
2751 if ((at == 0) && !a0_was_saved)
2752 {
2753 a0_saved = xtensa_read_register (atreg);
2754 a0_was_saved = 1;
2755 }
2756 else if ((at == 7) && !a7_was_saved)
2757 {
2758 a7_saved = xtensa_read_register (atreg);
2759 a7_was_saved = 1;
2760 }
2761 else if ((at == 11) && !a11_was_saved)
2762 {
2763 a11_saved = xtensa_read_register (atreg);
2764 a11_was_saved = 1;
2765 }
2766
2767 xtensa_write_register (atreg, spilled_value);
2768 }
2769
2770 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2771 static void
2772 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2773 {
2774 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2775 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2776 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2777 ULONGEST spilled_value = xtensa_read_register (atreg);
2778
2779 write_memory_unsigned_integer (addr, 4,
2780 gdbarch_byte_order (gdbarch),
2781 spilled_value);
2782 }
2783
2784 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2785
2786 typedef enum
2787 {
2788 xtWindowOverflow,
2789 xtWindowUnderflow,
2790 xtNoExceptionHandler
2791 } xtensa_exception_handler_t;
2792
2793 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2794 Return type of Xtensa Window Interrupt Handler on success. */
2795 static xtensa_exception_handler_t
2796 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2797 {
2798 xtensa_isa isa;
2799 xtensa_insnbuf ins, slot;
2800 char ibuf[XTENSA_ISA_BSZ];
2801 CORE_ADDR ia, bt, ba;
2802 xtensa_format ifmt;
2803 int ilen, islots, is;
2804 xtensa_opcode opc;
2805 int insn_num = 0;
2806 int fail = 0;
2807 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2808
2809 int at, as, offset;
2810 int num_operands;
2811
2812 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2813 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2814
2815 isa = xtensa_default_isa;
2816 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2817 ins = xtensa_insnbuf_alloc (isa);
2818 slot = xtensa_insnbuf_alloc (isa);
2819 ba = 0;
2820 ia = current_pc;
2821 bt = ia;
2822
2823 a0_was_saved = 0;
2824 a7_was_saved = 0;
2825 a11_was_saved = 0;
2826
2827 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2828 {
2829 if (ia + xtensa_isa_maxlength (isa) > bt)
2830 {
2831 ba = ia;
2832 bt = (ba + XTENSA_ISA_BSZ);
2833 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2834 return xtNoExceptionHandler;
2835 }
2836 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2837 ifmt = xtensa_format_decode (isa, ins);
2838 if (ifmt == XTENSA_UNDEFINED)
2839 return xtNoExceptionHandler;
2840 ilen = xtensa_format_length (isa, ifmt);
2841 if (ilen == XTENSA_UNDEFINED)
2842 return xtNoExceptionHandler;
2843 islots = xtensa_format_num_slots (isa, ifmt);
2844 if (islots == XTENSA_UNDEFINED)
2845 return xtNoExceptionHandler;
2846 for (is = 0; is < islots; ++is)
2847 {
2848 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2849 return xtNoExceptionHandler;
2850 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2851 if (opc == XTENSA_UNDEFINED)
2852 return xtNoExceptionHandler;
2853 switch (call0_classify_opcode (isa, opc))
2854 {
2855 case c0opc_illegal:
2856 case c0opc_flow:
2857 case c0opc_entry:
2858 case c0opc_break:
2859 /* We expect none of them here. */
2860 return xtNoExceptionHandler;
2861 case c0opc_l32e:
2862 func = execute_l32e;
2863 break;
2864 case c0opc_s32e:
2865 func = execute_s32e;
2866 break;
2867 case c0opc_rfwo: /* RFWO. */
2868 /* Here, we return from WindowOverflow handler and,
2869 if we stopped at the very beginning, which means
2870 A0 was saved, we have to restore it now. */
2871 if (a0_was_saved)
2872 {
2873 int arreg = arreg_number (gdbarch,
2874 gdbarch_tdep (gdbarch)->a0_base,
2875 wb);
2876 xtensa_write_register (arreg, a0_saved);
2877 }
2878 return xtWindowOverflow;
2879 case c0opc_rfwu: /* RFWU. */
2880 /* Here, we return from WindowUnderflow handler.
2881 Let's see if either A7 or A11 has to be restored. */
2882 if (WindowUnderflow12)
2883 {
2884 if (a11_was_saved)
2885 {
2886 int arreg = arreg_number (gdbarch,
2887 gdbarch_tdep (gdbarch)->a0_base + 11,
2888 wb);
2889 xtensa_write_register (arreg, a11_saved);
2890 }
2891 }
2892 else if (a7_was_saved)
2893 {
2894 int arreg = arreg_number (gdbarch,
2895 gdbarch_tdep (gdbarch)->a0_base + 7,
2896 wb);
2897 xtensa_write_register (arreg, a7_saved);
2898 }
2899 return xtWindowUnderflow;
2900 default: /* Simply skip this insns. */
2901 continue;
2902 }
2903
2904 /* Decode arguments for L32E / S32E and simulate their execution. */
2905 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2906 return xtNoExceptionHandler;
2907 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2908 return xtNoExceptionHandler;
2909 if (xtensa_operand_decode (isa, opc, 0, &at))
2910 return xtNoExceptionHandler;
2911 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2912 return xtNoExceptionHandler;
2913 if (xtensa_operand_decode (isa, opc, 1, &as))
2914 return xtNoExceptionHandler;
2915 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2916 return xtNoExceptionHandler;
2917 if (xtensa_operand_decode (isa, opc, 2, &offset))
2918 return xtNoExceptionHandler;
2919
2920 (*func) (gdbarch, at, as, offset, wb);
2921 }
2922
2923 ia += ilen;
2924 }
2925 return xtNoExceptionHandler;
2926 }
2927
2928 /* Handle Window Overflow / Underflow exception frames. */
2929
2930 static void
2931 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2932 xtensa_frame_cache_t *cache,
2933 CORE_ADDR pc)
2934 {
2935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2936 CORE_ADDR ps, wb, ws, ra;
2937 int epc1_regnum, i, regnum;
2938 xtensa_exception_handler_t eh_type;
2939
2940 /* Read PS, WB, and WS from the hardware. Note that PS register
2941 must be present, if Windowed ABI is supported. */
2942 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2943 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2944 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2945
2946 /* Execute all the remaining instructions from Window Interrupt Handler
2947 by simulating them on the remote protocol level. On return, set the
2948 type of Xtensa Window Interrupt Handler, or report an error. */
2949 eh_type = execute_code (gdbarch, pc, wb);
2950 if (eh_type == xtNoExceptionHandler)
2951 error (_("\
2952 Unable to decode Xtensa Window Interrupt Handler's code."));
2953
2954 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2955 cache->call0 = 0; /* It's Windowed ABI. */
2956
2957 /* All registers for the cached frame will be alive. */
2958 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2959 cache->wd.aregs[i] = -1;
2960
2961 if (eh_type == xtWindowOverflow)
2962 cache->wd.ws = ws ^ (1 << wb);
2963 else /* eh_type == xtWindowUnderflow. */
2964 cache->wd.ws = ws | (1 << wb);
2965
2966 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2967 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2968 cache->wd.wb);
2969 ra = xtensa_read_register (regnum);
2970 cache->wd.callsize = WINSIZE (ra);
2971 cache->prev_sp = xtensa_read_register (regnum + 1);
2972 /* Set regnum to a frame pointer of the frame being cached. */
2973 regnum = xtensa_scan_prologue (gdbarch, pc);
2974 regnum = arreg_number (gdbarch,
2975 gdbarch_tdep (gdbarch)->a0_base + regnum,
2976 cache->wd.wb);
2977 cache->base = get_frame_register_unsigned (this_frame, regnum);
2978
2979 /* Read PC of interrupted function from EPC1 register. */
2980 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2981 if (epc1_regnum < 0)
2982 error(_("Unable to read Xtensa register EPC1"));
2983 cache->ra = xtensa_read_register (epc1_regnum);
2984 cache->pc = get_frame_func (this_frame);
2985 }
2986
2987
2988 /* Skip function prologue.
2989
2990 Return the pc of the first instruction after prologue. GDB calls this to
2991 find the address of the first line of the function or (if there is no line
2992 number information) to skip the prologue for planting breakpoints on
2993 function entries. Use debug info (if present) or prologue analysis to skip
2994 the prologue to achieve reliable debugging behavior. For windowed ABI,
2995 only the 'entry' instruction is skipped. It is not strictly necessary to
2996 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2997 backtrace at any point in the prologue, however certain potential hazards
2998 are avoided and a more "normal" debugging experience is ensured by
2999 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
3000 For example, if we don't skip the prologue:
3001 - Some args may not yet have been saved to the stack where the debug
3002 info expects to find them (true anyway when only 'entry' is skipped);
3003 - Software breakpoints ('break' instrs) may not have been unplanted
3004 when the prologue analysis is done on initializing the frame cache,
3005 and breaks in the prologue will throw off the analysis.
3006
3007 If we have debug info ( line-number info, in particular ) we simply skip
3008 the code associated with the first function line effectively skipping
3009 the prologue code. It works even in cases like
3010
3011 int main()
3012 { int local_var = 1;
3013 ....
3014 }
3015
3016 because, for this source code, both Xtensa compilers will generate two
3017 separate entries ( with the same line number ) in dwarf line-number
3018 section to make sure there is a boundary between the prologue code and
3019 the rest of the function.
3020
3021 If there is no debug info, we need to analyze the code. */
3022
3023 /* #define DONT_SKIP_PROLOGUE */
3024
3025 static CORE_ADDR
3026 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3027 {
3028 struct symtab_and_line prologue_sal;
3029 CORE_ADDR body_pc;
3030
3031 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3032
3033 #if DONT_SKIP_PROLOGUE
3034 return start_pc;
3035 #endif
3036
3037 /* Try to find first body line from debug info. */
3038
3039 prologue_sal = find_pc_line (start_pc, 0);
3040 if (prologue_sal.line != 0) /* Found debug info. */
3041 {
3042 /* In Call0, it is possible to have a function with only one instruction
3043 ('ret') resulting from a one-line optimized function that does nothing.
3044 In that case, prologue_sal.end may actually point to the start of the
3045 next function in the text section, causing a breakpoint to be set at
3046 the wrong place. Check, if the end address is within a different
3047 function, and if so return the start PC. We know we have symbol
3048 information. */
3049
3050 CORE_ADDR end_func;
3051
3052 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3053 && call0_ret (start_pc, prologue_sal.end))
3054 return start_pc;
3055
3056 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3057 if (end_func != start_pc)
3058 return start_pc;
3059
3060 return prologue_sal.end;
3061 }
3062
3063 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3064 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3065 xtensa_alloc_frame_cache (0));
3066 return body_pc != 0 ? body_pc : start_pc;
3067 }
3068
3069 /* Verify the current configuration. */
3070 static void
3071 xtensa_verify_config (struct gdbarch *gdbarch)
3072 {
3073 struct ui_file *log;
3074 struct cleanup *cleanups;
3075 struct gdbarch_tdep *tdep;
3076 long length;
3077 char *buf;
3078
3079 tdep = gdbarch_tdep (gdbarch);
3080 log = mem_fileopen ();
3081 cleanups = make_cleanup_ui_file_delete (log);
3082
3083 /* Verify that we got a reasonable number of AREGS. */
3084 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3085 fprintf_unfiltered (log, _("\
3086 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3087 tdep->num_aregs);
3088
3089 /* Verify that certain registers exist. */
3090
3091 if (tdep->pc_regnum == -1)
3092 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3093 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3094 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3095
3096 if (tdep->isa_use_windowed_registers)
3097 {
3098 if (tdep->wb_regnum == -1)
3099 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3100 if (tdep->ws_regnum == -1)
3101 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3102 if (tdep->ar_base == -1)
3103 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3104 }
3105
3106 if (tdep->a0_base == -1)
3107 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3108
3109 buf = ui_file_xstrdup (log, &length);
3110 make_cleanup (xfree, buf);
3111 if (length > 0)
3112 internal_error (__FILE__, __LINE__,
3113 _("the following are invalid: %s"), buf);
3114 do_cleanups (cleanups);
3115 }
3116
3117
3118 /* Derive specific register numbers from the array of registers. */
3119
3120 static void
3121 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3122 {
3123 xtensa_register_t* rmap;
3124 int n, max_size = 4;
3125
3126 tdep->num_regs = 0;
3127 tdep->num_nopriv_regs = 0;
3128
3129 /* Special registers 0..255 (core). */
3130 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3131
3132 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3133 {
3134 if (rmap->target_number == 0x0020)
3135 tdep->pc_regnum = n;
3136 else if (rmap->target_number == 0x0100)
3137 tdep->ar_base = n;
3138 else if (rmap->target_number == 0x0000)
3139 tdep->a0_base = n;
3140 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3141 tdep->wb_regnum = n;
3142 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3143 tdep->ws_regnum = n;
3144 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3145 tdep->debugcause_regnum = n;
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3147 tdep->exccause_regnum = n;
3148 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3149 tdep->excvaddr_regnum = n;
3150 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3151 tdep->lbeg_regnum = n;
3152 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3153 tdep->lend_regnum = n;
3154 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3155 tdep->lcount_regnum = n;
3156 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3157 tdep->sar_regnum = n;
3158 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3159 tdep->litbase_regnum = n;
3160 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3161 tdep->ps_regnum = n;
3162 #if 0
3163 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3164 tdep->interrupt_regnum = n;
3165 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3166 tdep->interrupt2_regnum = n;
3167 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3168 tdep->cpenable_regnum = n;
3169 #endif
3170
3171 if (rmap->byte_size > max_size)
3172 max_size = rmap->byte_size;
3173 if (rmap->mask != 0 && tdep->num_regs == 0)
3174 tdep->num_regs = n;
3175 /* Find out out how to deal with priveleged registers.
3176
3177 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3178 && tdep->num_nopriv_regs == 0)
3179 tdep->num_nopriv_regs = n;
3180 */
3181 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3182 && tdep->num_regs == 0)
3183 tdep->num_regs = n;
3184 }
3185
3186 /* Number of pseudo registers. */
3187 tdep->num_pseudo_regs = n - tdep->num_regs;
3188
3189 /* Empirically determined maximum sizes. */
3190 tdep->max_register_raw_size = max_size;
3191 tdep->max_register_virtual_size = max_size;
3192 }
3193
3194 /* Module "constructor" function. */
3195
3196 extern struct gdbarch_tdep xtensa_tdep;
3197
3198 static struct gdbarch *
3199 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3200 {
3201 struct gdbarch_tdep *tdep;
3202 struct gdbarch *gdbarch;
3203 struct xtensa_abi_handler *abi_handler;
3204
3205 DEBUGTRACE ("gdbarch_init()\n");
3206
3207 /* We have to set the byte order before we call gdbarch_alloc. */
3208 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3209
3210 tdep = &xtensa_tdep;
3211 gdbarch = gdbarch_alloc (&info, tdep);
3212 xtensa_derive_tdep (tdep);
3213
3214 /* Verify our configuration. */
3215 xtensa_verify_config (gdbarch);
3216 xtensa_session_once_reported = 0;
3217
3218 /* Pseudo-Register read/write. */
3219 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3220 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3221
3222 /* Set target information. */
3223 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3224 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3225 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3226 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3227 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3228
3229 /* Renumber registers for known formats (stabs and dwarf2). */
3230 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3231 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3232
3233 /* We provide our own function to get register information. */
3234 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3235 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3236
3237 /* To call functions from GDB using dummy frame. */
3238 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3239
3240 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3241
3242 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3243
3244 /* Advance PC across any prologue instructions to reach "real" code. */
3245 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3246
3247 /* Stack grows downward. */
3248 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3249
3250 /* Set breakpoints. */
3251 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
3252
3253 /* After breakpoint instruction or illegal instruction, pc still
3254 points at break instruction, so don't decrement. */
3255 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3256
3257 /* We don't skip args. */
3258 set_gdbarch_frame_args_skip (gdbarch, 0);
3259
3260 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3261
3262 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3263
3264 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3265
3266 /* Frame handling. */
3267 frame_base_set_default (gdbarch, &xtensa_frame_base);
3268 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3269 dwarf2_append_unwinders (gdbarch);
3270
3271 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3272
3273 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3274
3275 xtensa_add_reggroups (gdbarch);
3276 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3277
3278 set_gdbarch_regset_from_core_section (gdbarch,
3279 xtensa_regset_from_core_section);
3280
3281 set_solib_svr4_fetch_link_map_offsets
3282 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3283
3284 return gdbarch;
3285 }
3286
3287 static void
3288 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3289 {
3290 error (_("xtensa_dump_tdep(): not implemented"));
3291 }
3292
3293 /* Provide a prototype to silence -Wmissing-prototypes. */
3294 extern initialize_file_ftype _initialize_xtensa_tdep;
3295
3296 void
3297 _initialize_xtensa_tdep (void)
3298 {
3299 struct cmd_list_element *c;
3300
3301 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3302 xtensa_init_reggroups ();
3303
3304 add_setshow_zinteger_cmd ("xtensa",
3305 class_maintenance,
3306 &xtensa_debug_level,
3307 _("Set Xtensa debugging."),
3308 _("Show Xtensa debugging."), _("\
3309 When non-zero, Xtensa-specific debugging is enabled. \
3310 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3311 NULL,
3312 NULL,
3313 &setdebuglist, &showdebuglist);
3314 }