ir_function_inlining: Avoid NULL dereference on assignment conditions.
[mesa.git] / glsl_types.cpp
1 /*
2 * Copyright © 2009 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <cstdio>
25 #include <stdlib.h>
26 #include "glsl_symbol_table.h"
27 #include "glsl_parser_extras.h"
28 #include "glsl_types.h"
29 #include "builtin_types.h"
30 #include "hash_table.h"
31
32
33 hash_table *glsl_type::array_types = NULL;
34
35 static void
36 add_types_to_symbol_table(glsl_symbol_table *symtab,
37 const struct glsl_type *types,
38 unsigned num_types, bool warn)
39 {
40 (void) warn;
41
42 for (unsigned i = 0; i < num_types; i++) {
43 symtab->add_type(types[i].name, & types[i]);
44 }
45 }
46
47
48 static void
49 generate_110_types(glsl_symbol_table *symtab)
50 {
51 add_types_to_symbol_table(symtab, builtin_core_types,
52 Elements(builtin_core_types),
53 false);
54 add_types_to_symbol_table(symtab, builtin_structure_types,
55 Elements(builtin_structure_types),
56 false);
57 add_types_to_symbol_table(symtab, builtin_110_deprecated_structure_types,
58 Elements(builtin_110_deprecated_structure_types),
59 false);
60 add_types_to_symbol_table(symtab, & void_type, 1, false);
61 }
62
63
64 static void
65 generate_120_types(glsl_symbol_table *symtab)
66 {
67 generate_110_types(symtab);
68
69 add_types_to_symbol_table(symtab, builtin_120_types,
70 Elements(builtin_120_types), false);
71 }
72
73
74 static void
75 generate_130_types(glsl_symbol_table *symtab)
76 {
77 generate_120_types(symtab);
78
79 add_types_to_symbol_table(symtab, builtin_130_types,
80 Elements(builtin_130_types), false);
81 }
82
83
84 static void
85 generate_ARB_texture_rectangle_types(glsl_symbol_table *symtab, bool warn)
86 {
87 add_types_to_symbol_table(symtab, builtin_ARB_texture_rectangle_types,
88 Elements(builtin_ARB_texture_rectangle_types),
89 warn);
90 }
91
92
93 void
94 _mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state)
95 {
96 switch (state->language_version) {
97 case 110:
98 generate_110_types(state->symbols);
99 break;
100 case 120:
101 generate_120_types(state->symbols);
102 break;
103 case 130:
104 generate_130_types(state->symbols);
105 break;
106 default:
107 /* error */
108 break;
109 }
110
111 if (state->ARB_texture_rectangle_enable) {
112 generate_ARB_texture_rectangle_types(state->symbols,
113 state->ARB_texture_rectangle_warn);
114 }
115 }
116
117
118 const glsl_type *glsl_type::get_base_type() const
119 {
120 switch (base_type) {
121 case GLSL_TYPE_UINT:
122 return uint_type;
123 case GLSL_TYPE_INT:
124 return int_type;
125 case GLSL_TYPE_FLOAT:
126 return float_type;
127 case GLSL_TYPE_BOOL:
128 return bool_type;
129 default:
130 return error_type;
131 }
132 }
133
134
135 ir_function *
136 glsl_type::generate_constructor_prototype(glsl_symbol_table *symtab) const
137 {
138 /* FINISHME: Add support for non-array types. */
139 assert(base_type == GLSL_TYPE_ARRAY);
140
141 /* Generate the function name and add it to the symbol table.
142 */
143 ir_function *const f = new ir_function(name);
144
145 bool added = symtab->add_function(name, f);
146 assert(added);
147
148 ir_function_signature *const sig = new ir_function_signature(this);
149 f->add_signature(sig);
150
151 for (unsigned i = 0; i < length; i++) {
152 char *const param_name = (char *) malloc(10);
153
154 snprintf(param_name, 10, "p%08X", i);
155
156 ir_variable *var = new ir_variable(fields.array, param_name);
157
158 var->mode = ir_var_in;
159 sig->parameters.push_tail(var);
160 }
161
162 return f;
163 }
164
165
166 /**
167 * Generate the function intro for a constructor
168 *
169 * \param type Data type to be constructed
170 * \param count Number of parameters to this concrete constructor. Most
171 * types have at least two constructors. One will take a
172 * single scalar parameter and the other will take "N"
173 * scalar parameters.
174 * \param parameters Storage for the list of parameters. These are
175 * typically stored in an \c ir_function_signature.
176 * \param declarations Pointers to the variable declarations for the function
177 * parameters. These are used later to avoid having to use
178 * the symbol table.
179 */
180 static ir_function_signature *
181 generate_constructor_intro(const glsl_type *type, unsigned parameter_count,
182 ir_variable **declarations)
183 {
184 /* Names of parameters used in vector and matrix constructors
185 */
186 static const char *const names[] = {
187 "a", "b", "c", "d", "e", "f", "g", "h",
188 "i", "j", "k", "l", "m", "n", "o", "p",
189 };
190
191 assert(parameter_count <= Elements(names));
192
193 const glsl_type *const parameter_type = type->get_base_type();
194
195 ir_function_signature *const signature = new ir_function_signature(type);
196
197 for (unsigned i = 0; i < parameter_count; i++) {
198 ir_variable *var = new ir_variable(parameter_type, names[i]);
199
200 var->mode = ir_var_in;
201 signature->parameters.push_tail(var);
202
203 declarations[i] = var;
204 }
205
206 ir_variable *retval = new ir_variable(type, "__retval");
207 signature->body.push_tail(retval);
208
209 declarations[16] = retval;
210 return signature;
211 }
212
213
214 /**
215 * Generate the body of a vector constructor that takes a single scalar
216 */
217 static void
218 generate_vec_body_from_scalar(exec_list *instructions,
219 ir_variable **declarations)
220 {
221 ir_instruction *inst;
222
223 /* Generate a single assignment of the parameter to __retval.x and return
224 * __retval.xxxx for however many vector components there are.
225 */
226 ir_dereference *const lhs_ref = new ir_dereference(declarations[16]);
227 ir_dereference *const rhs = new ir_dereference(declarations[0]);
228
229 ir_swizzle *lhs = new ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
230
231 inst = new ir_assignment(lhs, rhs, NULL);
232 instructions->push_tail(inst);
233
234 ir_dereference *const retref = new ir_dereference(declarations[16]);
235
236 ir_swizzle *retval = new ir_swizzle(retref, 0, 0, 0, 0,
237 declarations[16]->type->vector_elements);
238
239 inst = new ir_return(retval);
240 instructions->push_tail(inst);
241 }
242
243
244 /**
245 * Generate the body of a vector constructor that takes multiple scalars
246 */
247 static void
248 generate_vec_body_from_N_scalars(exec_list *instructions,
249 ir_variable **declarations)
250 {
251 ir_instruction *inst;
252 const glsl_type *const vec_type = declarations[16]->type;
253
254
255 /* Generate an assignment of each parameter to a single component of
256 * __retval.x and return __retval.
257 */
258 for (unsigned i = 0; i < vec_type->vector_elements; i++) {
259 ir_dereference *const lhs_ref = new ir_dereference(declarations[16]);
260 ir_dereference *const rhs = new ir_dereference(declarations[i]);
261
262 ir_swizzle *lhs = new ir_swizzle(lhs_ref, 1, 0, 0, 0, 1);
263
264 inst = new ir_assignment(lhs, rhs, NULL);
265 instructions->push_tail(inst);
266 }
267
268 ir_dereference *retval = new ir_dereference(declarations[16]);
269
270 inst = new ir_return(retval);
271 instructions->push_tail(inst);
272 }
273
274
275 /**
276 * Generate the body of a matrix constructor that takes a single scalar
277 */
278 static void
279 generate_mat_body_from_scalar(exec_list *instructions,
280 ir_variable **declarations)
281 {
282 ir_instruction *inst;
283
284 /* Generate an assignment of the parameter to the X component of a
285 * temporary vector. Set the remaining fields of the vector to 0. The
286 * size of the vector is equal to the number of rows of the matrix.
287 *
288 * Set each column of the matrix to a successive "rotation" of the
289 * temporary vector. This fills the matrix with 0s, but writes the single
290 * scalar along the matrix's diagonal.
291 *
292 * For a mat4x3, this is equivalent to:
293 *
294 * vec3 tmp;
295 * mat4x3 __retval;
296 * tmp.x = a;
297 * tmp.y = 0.0;
298 * tmp.z = 0.0;
299 * __retval[0] = tmp.xyy;
300 * __retval[1] = tmp.yxy;
301 * __retval[2] = tmp.yyx;
302 * __retval[3] = tmp.yyy;
303 */
304 const glsl_type *const column_type = declarations[16]->type->column_type();
305 const glsl_type *const row_type = declarations[16]->type->row_type();
306 ir_variable *const column = new ir_variable(column_type, "v");
307
308 instructions->push_tail(column);
309
310 ir_dereference *const lhs_ref = new ir_dereference(column);
311 ir_dereference *const rhs = new ir_dereference(declarations[0]);
312
313 ir_swizzle *lhs = new ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
314
315 inst = new ir_assignment(lhs, rhs, NULL);
316 instructions->push_tail(inst);
317
318 const float z = 0.0f;
319 ir_constant *const zero = new ir_constant(glsl_type::float_type, &z);
320
321 for (unsigned i = 1; i < column_type->vector_elements; i++) {
322 ir_dereference *const lhs_ref = new ir_dereference(column);
323
324 ir_swizzle *lhs = new ir_swizzle(lhs_ref, i, 0, 0, 0, 1);
325
326 inst = new ir_assignment(lhs, zero, NULL);
327 instructions->push_tail(inst);
328 }
329
330
331 for (unsigned i = 0; i < row_type->vector_elements; i++) {
332 static const unsigned swiz[] = { 1, 1, 1, 0, 1, 1, 1 };
333 ir_dereference *const rhs_ref = new ir_dereference(column);
334
335 /* This will be .xyyy when i=0, .yxyy when i=1, etc.
336 */
337 ir_swizzle *rhs = new ir_swizzle(rhs_ref, swiz[3 - i], swiz[4 - i],
338 swiz[5 - i], swiz[6 - i],
339 column_type->vector_elements);
340
341 ir_constant *const idx = new ir_constant(glsl_type::int_type, &i);
342 ir_dereference *const lhs = new ir_dereference(declarations[16], idx);
343
344 inst = new ir_assignment(lhs, rhs, NULL);
345 instructions->push_tail(inst);
346 }
347
348 ir_dereference *const retval = new ir_dereference(declarations[16]);
349 inst = new ir_return(retval);
350 instructions->push_tail(inst);
351 }
352
353
354 /**
355 * Generate the body of a vector constructor that takes multiple scalars
356 */
357 static void
358 generate_mat_body_from_N_scalars(exec_list *instructions,
359 ir_variable **declarations)
360 {
361 ir_instruction *inst;
362 const glsl_type *const row_type = declarations[16]->type->row_type();
363 const glsl_type *const column_type = declarations[16]->type->column_type();
364
365
366 /* Generate an assignment of each parameter to a single component of
367 * of a particular column of __retval and return __retval.
368 */
369 for (unsigned i = 0; i < column_type->vector_elements; i++) {
370 for (unsigned j = 0; j < row_type->vector_elements; j++) {
371 ir_constant *row_index = new ir_constant(glsl_type::int_type, &i);
372 ir_dereference *const row_access =
373 new ir_dereference(declarations[16], row_index);
374
375 ir_swizzle *component_access = new ir_swizzle(row_access,
376 j, 0, 0, 0, 1);
377
378 const unsigned param = (i * row_type->vector_elements) + j;
379 ir_dereference *const rhs = new ir_dereference(declarations[param]);
380
381 inst = new ir_assignment(component_access, rhs, NULL);
382 instructions->push_tail(inst);
383 }
384 }
385
386 ir_dereference *retval = new ir_dereference(declarations[16]);
387
388 inst = new ir_return(retval);
389 instructions->push_tail(inst);
390 }
391
392
393 /**
394 * Generate the constructors for a set of GLSL types
395 *
396 * Constructor implementations are added to \c instructions, and the symbols
397 * are added to \c symtab.
398 */
399 static void
400 generate_constructor(glsl_symbol_table *symtab, const struct glsl_type *types,
401 unsigned num_types, exec_list *instructions)
402 {
403 ir_variable *declarations[17];
404
405 for (unsigned i = 0; i < num_types; i++) {
406 /* Only numeric and boolean vectors and matrices get constructors here.
407 * Structures need to be handled elsewhere. It is expected that scalar
408 * constructors are never actually called, so they are not generated.
409 */
410 if (!types[i].is_numeric() && !types[i].is_boolean())
411 continue;
412
413 if (types[i].is_scalar())
414 continue;
415
416 /* Generate the function block, add it to the symbol table, and emit it.
417 */
418 ir_function *const f = new ir_function(types[i].name);
419
420 bool added = symtab->add_function(types[i].name, f);
421 assert(added);
422
423 instructions->push_tail(f);
424
425 /* Each type has several basic constructors. The total number of forms
426 * depends on the derived type.
427 *
428 * Vectors: 1 scalar, N scalars
429 * Matrices: 1 scalar, NxM scalars
430 *
431 * Several possible types of constructors are not included in this list.
432 *
433 * Scalar constructors are not included. The expectation is that the
434 * IR generator won't actually generate these as constructor calls. The
435 * expectation is that it will just generate the necessary type
436 * conversion.
437 *
438 * Matrix contructors from matrices are also not included. The
439 * expectation is that the IR generator will generate a call to the
440 * appropriate from-scalars constructor.
441 */
442 ir_function_signature *const sig =
443 generate_constructor_intro(&types[i], 1, declarations);
444 f->add_signature(sig);
445
446 if (types[i].is_vector()) {
447 generate_vec_body_from_scalar(&sig->body, declarations);
448
449 ir_function_signature *const vec_sig =
450 generate_constructor_intro(&types[i], types[i].vector_elements,
451 declarations);
452 f->add_signature(vec_sig);
453
454 generate_vec_body_from_N_scalars(&vec_sig->body, declarations);
455 } else {
456 assert(types[i].is_matrix());
457
458 generate_mat_body_from_scalar(&sig->body, declarations);
459
460 ir_function_signature *const mat_sig =
461 generate_constructor_intro(&types[i],
462 (types[i].vector_elements
463 * types[i].matrix_columns),
464 declarations);
465 f->add_signature(mat_sig);
466
467 generate_mat_body_from_N_scalars(&mat_sig->body, declarations);
468 }
469 }
470 }
471
472
473 void
474 generate_110_constructors(glsl_symbol_table *symtab, exec_list *instructions)
475 {
476 generate_constructor(symtab, builtin_core_types,
477 Elements(builtin_core_types), instructions);
478 }
479
480
481 void
482 generate_120_constructors(glsl_symbol_table *symtab, exec_list *instructions)
483 {
484 generate_110_constructors(symtab, instructions);
485
486 generate_constructor(symtab, builtin_120_types,
487 Elements(builtin_120_types), instructions);
488 }
489
490
491 void
492 generate_130_constructors(glsl_symbol_table *symtab, exec_list *instructions)
493 {
494 generate_120_constructors(symtab, instructions);
495
496 generate_constructor(symtab, builtin_130_types,
497 Elements(builtin_130_types), instructions);
498 }
499
500
501 void
502 _mesa_glsl_initialize_constructors(exec_list *instructions,
503 struct _mesa_glsl_parse_state *state)
504 {
505 switch (state->language_version) {
506 case 110:
507 generate_110_constructors(state->symbols, instructions);
508 break;
509 case 120:
510 generate_120_constructors(state->symbols, instructions);
511 break;
512 case 130:
513 generate_130_constructors(state->symbols, instructions);
514 break;
515 default:
516 /* error */
517 break;
518 }
519 }
520
521
522 glsl_type::glsl_type(const glsl_type *array, unsigned length) :
523 base_type(GLSL_TYPE_ARRAY),
524 sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
525 sampler_type(0),
526 vector_elements(0), matrix_columns(0),
527 name(NULL), length(length)
528 {
529 this->fields.array = array;
530
531 /* Allow a maximum of 10 characters for the array size. This is enough
532 * for 32-bits of ~0. The extra 3 are for the '[', ']', and terminating
533 * NUL.
534 */
535 const unsigned name_length = strlen(array->name) + 10 + 3;
536 char *const n = (char *) malloc(name_length);
537
538 if (length == 0)
539 snprintf(n, name_length, "%s[]", array->name);
540 else
541 snprintf(n, name_length, "%s[%u]", array->name, length);
542
543 this->name = n;
544 }
545
546
547 const glsl_type *
548 glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns)
549 {
550 if (base_type == GLSL_TYPE_VOID)
551 return &void_type;
552
553 if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4))
554 return error_type;
555
556 /* Treat GLSL vectors as Nx1 matrices.
557 */
558 if (columns == 1) {
559 switch (base_type) {
560 case GLSL_TYPE_UINT:
561 return uint_type + (rows - 1);
562 case GLSL_TYPE_INT:
563 return int_type + (rows - 1);
564 case GLSL_TYPE_FLOAT:
565 return float_type + (rows - 1);
566 case GLSL_TYPE_BOOL:
567 return bool_type + (rows - 1);
568 default:
569 return error_type;
570 }
571 } else {
572 if ((base_type != GLSL_TYPE_FLOAT) || (rows == 1))
573 return error_type;
574
575 /* GLSL matrix types are named mat{COLUMNS}x{ROWS}. Only the following
576 * combinations are valid:
577 *
578 * 1 2 3 4
579 * 1
580 * 2 x x x
581 * 3 x x x
582 * 4 x x x
583 */
584 #define IDX(c,r) (((c-1)*3) + (r-1))
585
586 switch (IDX(columns, rows)) {
587 case IDX(2,2): return mat2_type;
588 case IDX(2,3): return mat2x3_type;
589 case IDX(2,4): return mat2x4_type;
590 case IDX(3,2): return mat3x2_type;
591 case IDX(3,3): return mat3_type;
592 case IDX(3,4): return mat3x4_type;
593 case IDX(4,2): return mat4x2_type;
594 case IDX(4,3): return mat4x3_type;
595 case IDX(4,4): return mat4_type;
596 default: return error_type;
597 }
598 }
599
600 assert(!"Should not get here.");
601 return error_type;
602 }
603
604
605 int
606 glsl_type::array_key_compare(const void *a, const void *b)
607 {
608 const glsl_type *const key1 = (glsl_type *) a;
609 const glsl_type *const key2 = (glsl_type *) b;
610
611 /* Return zero is the types match (there is zero difference) or non-zero
612 * otherwise.
613 */
614 return ((key1->fields.array == key2->fields.array)
615 && (key1->length == key2->length)) ? 0 : 1;
616 }
617
618
619 unsigned
620 glsl_type::array_key_hash(const void *a)
621 {
622 const glsl_type *const key = (glsl_type *) a;
623
624 const struct {
625 const glsl_type *t;
626 unsigned l;
627 char nul;
628 } hash_key = {
629 key->fields.array,
630 key->length,
631 '\0'
632 };
633
634 return hash_table_string_hash(& hash_key);
635 }
636
637
638 const glsl_type *
639 glsl_type::get_array_instance(const glsl_type *base, unsigned array_size)
640 {
641 const glsl_type key(base, array_size);
642
643 if (array_types == NULL) {
644 array_types = hash_table_ctor(64, array_key_hash, array_key_compare);
645 }
646
647 const glsl_type *t = (glsl_type *) hash_table_find(array_types, & key);
648 if (t == NULL) {
649 t = new glsl_type(base, array_size);
650
651 hash_table_insert(array_types, (void *) t, t);
652 }
653
654 assert(t->base_type == GLSL_TYPE_ARRAY);
655 assert(t->length == array_size);
656 assert(t->fields.array == base);
657
658 return t;
659 }