[AIX] Memory error while checking if pointer is descriptor.
[binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
110 //
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 // Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
130
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
151 // Factory methods to create instruction templates in different formats.
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
207 // Return size of instruction template in bytes.
208 size_t
209 size() const;
210
211 // Return byte-alignment of instruction template.
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
275 arm_stub_type_last = arm_stub_v4_veneer_bx
276 } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
431 // This may be overridden in the child class.
432 virtual void
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
440
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
447 private:
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457 };
458
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
511 {
512 if (symbol != NULL)
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
516 }
517 else
518 {
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj. This is done to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 //
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 // branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869 public:
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
900 void
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
988 { return this->prev_addralign_; }
989
990 // Reset address and file offset.
991 void
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
1000 private:
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
1067 private:
1068 // Implement do_write for a given endianness.
1069 template<bool big_endian>
1070 void inline
1071 do_fixed_endian_write(Output_file*);
1072
1073 // The object containing the section pointed by this.
1074 Relobj* relobj_;
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_;
1077 };
1078
1079 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section.
1082
1083 typedef std::map<section_offset_type, section_offset_type>
1084 Arm_exidx_section_offset_map;
1085
1086 // Arm_exidx_merged_section class. This represents an EXIDX input section
1087 // with some of its entries merged.
1088
1089 class Arm_exidx_merged_section : public Output_relaxed_input_section
1090 {
1091 public:
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section& exidx_input_section,
1099 const Arm_exidx_section_offset_map& section_offset_map,
1100 uint32_t deleted_bytes);
1101
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_; }
1106
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map&
1109 section_offset_map() const
1110 { return this->section_offset_map_; }
1111
1112 protected:
1113 // Write merged section into file OF.
1114 void
1115 do_write(Output_file* of);
1116
1117 bool
1118 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119 section_offset_type*) const;
1120
1121 private:
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section& exidx_input_section_;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map& section_offset_map_;
1126 };
1127
1128 // A class to wrap an ordinary input section containing executable code.
1129
1130 template<bool big_endian>
1131 class Arm_input_section : public Output_relaxed_input_section
1132 {
1133 public:
1134 Arm_input_section(Relobj* relobj, unsigned int shndx)
1135 : Output_relaxed_input_section(relobj, shndx, 1),
1136 original_addralign_(1), original_size_(0), stub_table_(NULL)
1137 { }
1138
1139 ~Arm_input_section()
1140 { }
1141
1142 // Initialize.
1143 void
1144 init();
1145
1146 // Whether this is a stub table owner.
1147 bool
1148 is_stub_table_owner() const
1149 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1150
1151 // Return the stub table.
1152 Stub_table<big_endian>*
1153 stub_table() const
1154 { return this->stub_table_; }
1155
1156 // Set the stub_table.
1157 void
1158 set_stub_table(Stub_table<big_endian>* stub_table)
1159 { this->stub_table_ = stub_table; }
1160
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section<big_endian>*
1164 as_arm_input_section(Output_relaxed_input_section* poris)
1165 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1166
1167 protected:
1168 // Write data to output file.
1169 void
1170 do_write(Output_file*);
1171
1172 // Return required alignment of this.
1173 uint64_t
1174 do_addralign() const
1175 {
1176 if (this->is_stub_table_owner())
1177 return std::max(this->stub_table_->addralign(),
1178 this->original_addralign_);
1179 else
1180 return this->original_addralign_;
1181 }
1182
1183 // Finalize data size.
1184 void
1185 set_final_data_size();
1186
1187 // Reset address and file offset.
1188 void
1189 do_reset_address_and_file_offset();
1190
1191 // Output offset.
1192 bool
1193 do_output_offset(const Relobj* object, unsigned int shndx,
1194 section_offset_type offset,
1195 section_offset_type* poutput) const
1196 {
1197 if ((object == this->relobj())
1198 && (shndx == this->shndx())
1199 && (offset >= 0)
1200 && (convert_types<uint64_t, section_offset_type>(offset)
1201 <= this->original_size_))
1202 {
1203 *poutput = offset;
1204 return true;
1205 }
1206 else
1207 return false;
1208 }
1209
1210 private:
1211 // Copying is not allowed.
1212 Arm_input_section(const Arm_input_section&);
1213 Arm_input_section& operator=(const Arm_input_section&);
1214
1215 // Address alignment of the original input section.
1216 uint64_t original_addralign_;
1217 // Section size of the original input section.
1218 uint64_t original_size_;
1219 // Stub table.
1220 Stub_table<big_endian>* stub_table_;
1221 };
1222
1223 // Arm_exidx_fixup class. This is used to define a number of methods
1224 // and keep states for fixing up EXIDX coverage.
1225
1226 class Arm_exidx_fixup
1227 {
1228 public:
1229 Arm_exidx_fixup(Output_section* exidx_output_section)
1230 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1231 last_inlined_entry_(0), last_input_section_(NULL),
1232 section_offset_map_(NULL), first_output_text_section_(NULL)
1233 { }
1234
1235 ~Arm_exidx_fixup()
1236 { delete this->section_offset_map_; }
1237
1238 // Process an EXIDX section for entry merging. Return number of bytes to
1239 // be deleted in output. If parts of the input EXIDX section are merged
1240 // a heap allocated Arm_exidx_section_offset_map is store in the located
1241 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1242 // releasing it.
1243 template<bool big_endian>
1244 uint32_t
1245 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1246 Arm_exidx_section_offset_map** psection_offset_map);
1247
1248 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1249 // input section, if there is not one already.
1250 void
1251 add_exidx_cantunwind_as_needed();
1252
1253 // Return the output section for the text section which is linked to the
1254 // first exidx input in output.
1255 Output_section*
1256 first_output_text_section() const
1257 { return this->first_output_text_section_; }
1258
1259 private:
1260 // Copying is not allowed.
1261 Arm_exidx_fixup(const Arm_exidx_fixup&);
1262 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1263
1264 // Type of EXIDX unwind entry.
1265 enum Unwind_type
1266 {
1267 // No type.
1268 UT_NONE,
1269 // EXIDX_CANTUNWIND.
1270 UT_EXIDX_CANTUNWIND,
1271 // Inlined entry.
1272 UT_INLINED_ENTRY,
1273 // Normal entry.
1274 UT_NORMAL_ENTRY,
1275 };
1276
1277 // Process an EXIDX entry. We only care about the second word of the
1278 // entry. Return true if the entry can be deleted.
1279 bool
1280 process_exidx_entry(uint32_t second_word);
1281
1282 // Update the current section offset map during EXIDX section fix-up.
1283 // If there is no map, create one. INPUT_OFFSET is the offset of a
1284 // reference point, DELETED_BYTES is the number of deleted by in the
1285 // section so far. If DELETE_ENTRY is true, the reference point and
1286 // all offsets after the previous reference point are discarded.
1287 void
1288 update_offset_map(section_offset_type input_offset,
1289 section_size_type deleted_bytes, bool delete_entry);
1290
1291 // EXIDX output section.
1292 Output_section* exidx_output_section_;
1293 // Unwind type of the last EXIDX entry processed.
1294 Unwind_type last_unwind_type_;
1295 // Last seen inlined EXIDX entry.
1296 uint32_t last_inlined_entry_;
1297 // Last processed EXIDX input section.
1298 const Arm_exidx_input_section* last_input_section_;
1299 // Section offset map created in process_exidx_section.
1300 Arm_exidx_section_offset_map* section_offset_map_;
1301 // Output section for the text section which is linked to the first exidx
1302 // input in output.
1303 Output_section* first_output_text_section_;
1304 };
1305
1306 // Arm output section class. This is defined mainly to add a number of
1307 // stub generation methods.
1308
1309 template<bool big_endian>
1310 class Arm_output_section : public Output_section
1311 {
1312 public:
1313 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1314
1315 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1316 elfcpp::Elf_Xword flags)
1317 : Output_section(name, type, flags)
1318 { }
1319
1320 ~Arm_output_section()
1321 { }
1322
1323 // Group input sections for stub generation.
1324 void
1325 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1326
1327 // Downcast a base pointer to an Arm_output_section pointer. This is
1328 // not type-safe but we only use Arm_output_section not the base class.
1329 static Arm_output_section<big_endian>*
1330 as_arm_output_section(Output_section* os)
1331 { return static_cast<Arm_output_section<big_endian>*>(os); }
1332
1333 // Append all input text sections in this into LIST.
1334 void
1335 append_text_sections_to_list(Text_section_list* list);
1336
1337 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1338 // is a list of text input sections sorted in ascending order of their
1339 // output addresses.
1340 void
1341 fix_exidx_coverage(Layout* layout,
1342 const Text_section_list& sorted_text_section,
1343 Symbol_table* symtab);
1344
1345 private:
1346 // For convenience.
1347 typedef Output_section::Input_section Input_section;
1348 typedef Output_section::Input_section_list Input_section_list;
1349
1350 // Create a stub group.
1351 void create_stub_group(Input_section_list::const_iterator,
1352 Input_section_list::const_iterator,
1353 Input_section_list::const_iterator,
1354 Target_arm<big_endian>*,
1355 std::vector<Output_relaxed_input_section*>*);
1356 };
1357
1358 // Arm_exidx_input_section class. This represents an EXIDX input section.
1359
1360 class Arm_exidx_input_section
1361 {
1362 public:
1363 static const section_offset_type invalid_offset =
1364 static_cast<section_offset_type>(-1);
1365
1366 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1367 unsigned int link, uint32_t size, uint32_t addralign)
1368 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1369 addralign_(addralign)
1370 { }
1371
1372 ~Arm_exidx_input_section()
1373 { }
1374
1375 // Accessors: This is a read-only class.
1376
1377 // Return the object containing this EXIDX input section.
1378 Relobj*
1379 relobj() const
1380 { return this->relobj_; }
1381
1382 // Return the section index of this EXIDX input section.
1383 unsigned int
1384 shndx() const
1385 { return this->shndx_; }
1386
1387 // Return the section index of linked text section in the same object.
1388 unsigned int
1389 link() const
1390 { return this->link_; }
1391
1392 // Return size of the EXIDX input section.
1393 uint32_t
1394 size() const
1395 { return this->size_; }
1396
1397 // Reutnr address alignment of EXIDX input section.
1398 uint32_t
1399 addralign() const
1400 { return this->addralign_; }
1401
1402 private:
1403 // Object containing this.
1404 Relobj* relobj_;
1405 // Section index of this.
1406 unsigned int shndx_;
1407 // text section linked to this in the same object.
1408 unsigned int link_;
1409 // Size of this. For ARM 32-bit is sufficient.
1410 uint32_t size_;
1411 // Address alignment of this. For ARM 32-bit is sufficient.
1412 uint32_t addralign_;
1413 };
1414
1415 // Arm_relobj class.
1416
1417 template<bool big_endian>
1418 class Arm_relobj : public Sized_relobj<32, big_endian>
1419 {
1420 public:
1421 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1422
1423 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1424 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1425 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1426 stub_tables_(), local_symbol_is_thumb_function_(),
1427 attributes_section_data_(NULL), mapping_symbols_info_(),
1428 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1429 output_local_symbol_count_needs_update_(false),
1430 merge_flags_and_attributes_(true)
1431 { }
1432
1433 ~Arm_relobj()
1434 { delete this->attributes_section_data_; }
1435
1436 // Return the stub table of the SHNDX-th section if there is one.
1437 Stub_table<big_endian>*
1438 stub_table(unsigned int shndx) const
1439 {
1440 gold_assert(shndx < this->stub_tables_.size());
1441 return this->stub_tables_[shndx];
1442 }
1443
1444 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1445 void
1446 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1447 {
1448 gold_assert(shndx < this->stub_tables_.size());
1449 this->stub_tables_[shndx] = stub_table;
1450 }
1451
1452 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1453 // index. This is only valid after do_count_local_symbol is called.
1454 bool
1455 local_symbol_is_thumb_function(unsigned int r_sym) const
1456 {
1457 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1458 return this->local_symbol_is_thumb_function_[r_sym];
1459 }
1460
1461 // Scan all relocation sections for stub generation.
1462 void
1463 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1464 const Layout*);
1465
1466 // Convert regular input section with index SHNDX to a relaxed section.
1467 void
1468 convert_input_section_to_relaxed_section(unsigned shndx)
1469 {
1470 // The stubs have relocations and we need to process them after writing
1471 // out the stubs. So relocation now must follow section write.
1472 this->set_section_offset(shndx, -1ULL);
1473 this->set_relocs_must_follow_section_writes();
1474 }
1475
1476 // Downcast a base pointer to an Arm_relobj pointer. This is
1477 // not type-safe but we only use Arm_relobj not the base class.
1478 static Arm_relobj<big_endian>*
1479 as_arm_relobj(Relobj* relobj)
1480 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1481
1482 // Processor-specific flags in ELF file header. This is valid only after
1483 // reading symbols.
1484 elfcpp::Elf_Word
1485 processor_specific_flags() const
1486 { return this->processor_specific_flags_; }
1487
1488 // Attribute section data This is the contents of the .ARM.attribute section
1489 // if there is one.
1490 const Attributes_section_data*
1491 attributes_section_data() const
1492 { return this->attributes_section_data_; }
1493
1494 // Mapping symbol location.
1495 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1496
1497 // Functor for STL container.
1498 struct Mapping_symbol_position_less
1499 {
1500 bool
1501 operator()(const Mapping_symbol_position& p1,
1502 const Mapping_symbol_position& p2) const
1503 {
1504 return (p1.first < p2.first
1505 || (p1.first == p2.first && p1.second < p2.second));
1506 }
1507 };
1508
1509 // We only care about the first character of a mapping symbol, so
1510 // we only store that instead of the whole symbol name.
1511 typedef std::map<Mapping_symbol_position, char,
1512 Mapping_symbol_position_less> Mapping_symbols_info;
1513
1514 // Whether a section contains any Cortex-A8 workaround.
1515 bool
1516 section_has_cortex_a8_workaround(unsigned int shndx) const
1517 {
1518 return (this->section_has_cortex_a8_workaround_ != NULL
1519 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1520 }
1521
1522 // Mark a section that has Cortex-A8 workaround.
1523 void
1524 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1525 {
1526 if (this->section_has_cortex_a8_workaround_ == NULL)
1527 this->section_has_cortex_a8_workaround_ =
1528 new std::vector<bool>(this->shnum(), false);
1529 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1530 }
1531
1532 // Return the EXIDX section of an text section with index SHNDX or NULL
1533 // if the text section has no associated EXIDX section.
1534 const Arm_exidx_input_section*
1535 exidx_input_section_by_link(unsigned int shndx) const
1536 {
1537 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1538 return ((p != this->exidx_section_map_.end()
1539 && p->second->link() == shndx)
1540 ? p->second
1541 : NULL);
1542 }
1543
1544 // Return the EXIDX section with index SHNDX or NULL if there is none.
1545 const Arm_exidx_input_section*
1546 exidx_input_section_by_shndx(unsigned shndx) const
1547 {
1548 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1549 return ((p != this->exidx_section_map_.end()
1550 && p->second->shndx() == shndx)
1551 ? p->second
1552 : NULL);
1553 }
1554
1555 // Whether output local symbol count needs updating.
1556 bool
1557 output_local_symbol_count_needs_update() const
1558 { return this->output_local_symbol_count_needs_update_; }
1559
1560 // Set output_local_symbol_count_needs_update flag to be true.
1561 void
1562 set_output_local_symbol_count_needs_update()
1563 { this->output_local_symbol_count_needs_update_ = true; }
1564
1565 // Update output local symbol count at the end of relaxation.
1566 void
1567 update_output_local_symbol_count();
1568
1569 // Whether we want to merge processor-specific flags and attributes.
1570 bool
1571 merge_flags_and_attributes() const
1572 { return this->merge_flags_and_attributes_; }
1573
1574 protected:
1575 // Post constructor setup.
1576 void
1577 do_setup()
1578 {
1579 // Call parent's setup method.
1580 Sized_relobj<32, big_endian>::do_setup();
1581
1582 // Initialize look-up tables.
1583 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1584 this->stub_tables_.swap(empty_stub_table_list);
1585 }
1586
1587 // Count the local symbols.
1588 void
1589 do_count_local_symbols(Stringpool_template<char>*,
1590 Stringpool_template<char>*);
1591
1592 void
1593 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1594 const unsigned char* pshdrs,
1595 typename Sized_relobj<32, big_endian>::Views* pivews);
1596
1597 // Read the symbol information.
1598 void
1599 do_read_symbols(Read_symbols_data* sd);
1600
1601 // Process relocs for garbage collection.
1602 void
1603 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1604
1605 private:
1606
1607 // Whether a section needs to be scanned for relocation stubs.
1608 bool
1609 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1610 const Relobj::Output_sections&,
1611 const Symbol_table *, const unsigned char*);
1612
1613 // Whether a section is a scannable text section.
1614 bool
1615 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1616 const Output_section*, const Symbol_table *);
1617
1618 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1619 bool
1620 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1621 unsigned int, Output_section*,
1622 const Symbol_table *);
1623
1624 // Scan a section for the Cortex-A8 erratum.
1625 void
1626 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1627 unsigned int, Output_section*,
1628 Target_arm<big_endian>*);
1629
1630 // Find the linked text section of an EXIDX section by looking at the
1631 // first reloction of the EXIDX section. PSHDR points to the section
1632 // headers of a relocation section and PSYMS points to the local symbols.
1633 // PSHNDX points to a location storing the text section index if found.
1634 // Return whether we can find the linked section.
1635 bool
1636 find_linked_text_section(const unsigned char* pshdr,
1637 const unsigned char* psyms, unsigned int* pshndx);
1638
1639 //
1640 // Make a new Arm_exidx_input_section object for EXIDX section with
1641 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1642 // index of the linked text section.
1643 void
1644 make_exidx_input_section(unsigned int shndx,
1645 const elfcpp::Shdr<32, big_endian>& shdr,
1646 unsigned int text_shndx);
1647
1648 // Return the output address of either a plain input section or a
1649 // relaxed input section. SHNDX is the section index.
1650 Arm_address
1651 simple_input_section_output_address(unsigned int, Output_section*);
1652
1653 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1654 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1655 Exidx_section_map;
1656
1657 // List of stub tables.
1658 Stub_table_list stub_tables_;
1659 // Bit vector to tell if a local symbol is a thumb function or not.
1660 // This is only valid after do_count_local_symbol is called.
1661 std::vector<bool> local_symbol_is_thumb_function_;
1662 // processor-specific flags in ELF file header.
1663 elfcpp::Elf_Word processor_specific_flags_;
1664 // Object attributes if there is an .ARM.attributes section or NULL.
1665 Attributes_section_data* attributes_section_data_;
1666 // Mapping symbols information.
1667 Mapping_symbols_info mapping_symbols_info_;
1668 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1669 std::vector<bool>* section_has_cortex_a8_workaround_;
1670 // Map a text section to its associated .ARM.exidx section, if there is one.
1671 Exidx_section_map exidx_section_map_;
1672 // Whether output local symbol count needs updating.
1673 bool output_local_symbol_count_needs_update_;
1674 // Whether we merge processor flags and attributes of this object to
1675 // output.
1676 bool merge_flags_and_attributes_;
1677 };
1678
1679 // Arm_dynobj class.
1680
1681 template<bool big_endian>
1682 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1683 {
1684 public:
1685 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1686 const elfcpp::Ehdr<32, big_endian>& ehdr)
1687 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1688 processor_specific_flags_(0), attributes_section_data_(NULL)
1689 { }
1690
1691 ~Arm_dynobj()
1692 { delete this->attributes_section_data_; }
1693
1694 // Downcast a base pointer to an Arm_relobj pointer. This is
1695 // not type-safe but we only use Arm_relobj not the base class.
1696 static Arm_dynobj<big_endian>*
1697 as_arm_dynobj(Dynobj* dynobj)
1698 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1699
1700 // Processor-specific flags in ELF file header. This is valid only after
1701 // reading symbols.
1702 elfcpp::Elf_Word
1703 processor_specific_flags() const
1704 { return this->processor_specific_flags_; }
1705
1706 // Attributes section data.
1707 const Attributes_section_data*
1708 attributes_section_data() const
1709 { return this->attributes_section_data_; }
1710
1711 protected:
1712 // Read the symbol information.
1713 void
1714 do_read_symbols(Read_symbols_data* sd);
1715
1716 private:
1717 // processor-specific flags in ELF file header.
1718 elfcpp::Elf_Word processor_specific_flags_;
1719 // Object attributes if there is an .ARM.attributes section or NULL.
1720 Attributes_section_data* attributes_section_data_;
1721 };
1722
1723 // Functor to read reloc addends during stub generation.
1724
1725 template<int sh_type, bool big_endian>
1726 struct Stub_addend_reader
1727 {
1728 // Return the addend for a relocation of a particular type. Depending
1729 // on whether this is a REL or RELA relocation, read the addend from a
1730 // view or from a Reloc object.
1731 elfcpp::Elf_types<32>::Elf_Swxword
1732 operator()(
1733 unsigned int /* r_type */,
1734 const unsigned char* /* view */,
1735 const typename Reloc_types<sh_type,
1736 32, big_endian>::Reloc& /* reloc */) const;
1737 };
1738
1739 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1740
1741 template<bool big_endian>
1742 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1743 {
1744 elfcpp::Elf_types<32>::Elf_Swxword
1745 operator()(
1746 unsigned int,
1747 const unsigned char*,
1748 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1749 };
1750
1751 // Specialized Stub_addend_reader for RELA type relocation sections.
1752 // We currently do not handle RELA type relocation sections but it is trivial
1753 // to implement the addend reader. This is provided for completeness and to
1754 // make it easier to add support for RELA relocation sections in the future.
1755
1756 template<bool big_endian>
1757 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1758 {
1759 elfcpp::Elf_types<32>::Elf_Swxword
1760 operator()(
1761 unsigned int,
1762 const unsigned char*,
1763 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1764 big_endian>::Reloc& reloc) const
1765 { return reloc.get_r_addend(); }
1766 };
1767
1768 // Cortex_a8_reloc class. We keep record of relocation that may need
1769 // the Cortex-A8 erratum workaround.
1770
1771 class Cortex_a8_reloc
1772 {
1773 public:
1774 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1775 Arm_address destination)
1776 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1777 { }
1778
1779 ~Cortex_a8_reloc()
1780 { }
1781
1782 // Accessors: This is a read-only class.
1783
1784 // Return the relocation stub associated with this relocation if there is
1785 // one.
1786 const Reloc_stub*
1787 reloc_stub() const
1788 { return this->reloc_stub_; }
1789
1790 // Return the relocation type.
1791 unsigned int
1792 r_type() const
1793 { return this->r_type_; }
1794
1795 // Return the destination address of the relocation. LSB stores the THUMB
1796 // bit.
1797 Arm_address
1798 destination() const
1799 { return this->destination_; }
1800
1801 private:
1802 // Associated relocation stub if there is one, or NULL.
1803 const Reloc_stub* reloc_stub_;
1804 // Relocation type.
1805 unsigned int r_type_;
1806 // Destination address of this relocation. LSB is used to distinguish
1807 // ARM/THUMB mode.
1808 Arm_address destination_;
1809 };
1810
1811 // Arm_output_data_got class. We derive this from Output_data_got to add
1812 // extra methods to handle TLS relocations in a static link.
1813
1814 template<bool big_endian>
1815 class Arm_output_data_got : public Output_data_got<32, big_endian>
1816 {
1817 public:
1818 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1819 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1820 { }
1821
1822 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1823 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1824 // applied in a static link.
1825 void
1826 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1827 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1828
1829 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1830 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1831 // relocation that needs to be applied in a static link.
1832 void
1833 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1834 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1835 {
1836 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1837 index));
1838 }
1839
1840 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1841 // The first one is initialized to be 1, which is the module index for
1842 // the main executable and the second one 0. A reloc of the type
1843 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1844 // be applied by gold. GSYM is a global symbol.
1845 void
1846 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1847
1848 // Same as the above but for a local symbol in OBJECT with INDEX.
1849 void
1850 add_tls_gd32_with_static_reloc(unsigned int got_type,
1851 Sized_relobj<32, big_endian>* object,
1852 unsigned int index);
1853
1854 protected:
1855 // Write out the GOT table.
1856 void
1857 do_write(Output_file*);
1858
1859 private:
1860 // This class represent dynamic relocations that need to be applied by
1861 // gold because we are using TLS relocations in a static link.
1862 class Static_reloc
1863 {
1864 public:
1865 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1866 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1867 { this->u_.global.symbol = gsym; }
1868
1869 Static_reloc(unsigned int got_offset, unsigned int r_type,
1870 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1871 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1872 {
1873 this->u_.local.relobj = relobj;
1874 this->u_.local.index = index;
1875 }
1876
1877 // Return the GOT offset.
1878 unsigned int
1879 got_offset() const
1880 { return this->got_offset_; }
1881
1882 // Relocation type.
1883 unsigned int
1884 r_type() const
1885 { return this->r_type_; }
1886
1887 // Whether the symbol is global or not.
1888 bool
1889 symbol_is_global() const
1890 { return this->symbol_is_global_; }
1891
1892 // For a relocation against a global symbol, the global symbol.
1893 Symbol*
1894 symbol() const
1895 {
1896 gold_assert(this->symbol_is_global_);
1897 return this->u_.global.symbol;
1898 }
1899
1900 // For a relocation against a local symbol, the defining object.
1901 Sized_relobj<32, big_endian>*
1902 relobj() const
1903 {
1904 gold_assert(!this->symbol_is_global_);
1905 return this->u_.local.relobj;
1906 }
1907
1908 // For a relocation against a local symbol, the local symbol index.
1909 unsigned int
1910 index() const
1911 {
1912 gold_assert(!this->symbol_is_global_);
1913 return this->u_.local.index;
1914 }
1915
1916 private:
1917 // GOT offset of the entry to which this relocation is applied.
1918 unsigned int got_offset_;
1919 // Type of relocation.
1920 unsigned int r_type_;
1921 // Whether this relocation is against a global symbol.
1922 bool symbol_is_global_;
1923 // A global or local symbol.
1924 union
1925 {
1926 struct
1927 {
1928 // For a global symbol, the symbol itself.
1929 Symbol* symbol;
1930 } global;
1931 struct
1932 {
1933 // For a local symbol, the object defining object.
1934 Sized_relobj<32, big_endian>* relobj;
1935 // For a local symbol, the symbol index.
1936 unsigned int index;
1937 } local;
1938 } u_;
1939 };
1940
1941 // Symbol table of the output object.
1942 Symbol_table* symbol_table_;
1943 // Layout of the output object.
1944 Layout* layout_;
1945 // Static relocs to be applied to the GOT.
1946 std::vector<Static_reloc> static_relocs_;
1947 };
1948
1949 // Utilities for manipulating integers of up to 32-bits
1950
1951 namespace utils
1952 {
1953 // Sign extend an n-bit unsigned integer stored in an uint32_t into
1954 // an int32_t. NO_BITS must be between 1 to 32.
1955 template<int no_bits>
1956 static inline int32_t
1957 sign_extend(uint32_t bits)
1958 {
1959 gold_assert(no_bits >= 0 && no_bits <= 32);
1960 if (no_bits == 32)
1961 return static_cast<int32_t>(bits);
1962 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
1963 bits &= mask;
1964 uint32_t top_bit = 1U << (no_bits - 1);
1965 int32_t as_signed = static_cast<int32_t>(bits);
1966 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
1967 }
1968
1969 // Detects overflow of an NO_BITS integer stored in a uint32_t.
1970 template<int no_bits>
1971 static inline bool
1972 has_overflow(uint32_t bits)
1973 {
1974 gold_assert(no_bits >= 0 && no_bits <= 32);
1975 if (no_bits == 32)
1976 return false;
1977 int32_t max = (1 << (no_bits - 1)) - 1;
1978 int32_t min = -(1 << (no_bits - 1));
1979 int32_t as_signed = static_cast<int32_t>(bits);
1980 return as_signed > max || as_signed < min;
1981 }
1982
1983 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1984 // fits in the given number of bits as either a signed or unsigned value.
1985 // For example, has_signed_unsigned_overflow<8> would check
1986 // -128 <= bits <= 255
1987 template<int no_bits>
1988 static inline bool
1989 has_signed_unsigned_overflow(uint32_t bits)
1990 {
1991 gold_assert(no_bits >= 2 && no_bits <= 32);
1992 if (no_bits == 32)
1993 return false;
1994 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
1995 int32_t min = -(1 << (no_bits - 1));
1996 int32_t as_signed = static_cast<int32_t>(bits);
1997 return as_signed > max || as_signed < min;
1998 }
1999
2000 // Select bits from A and B using bits in MASK. For each n in [0..31],
2001 // the n-th bit in the result is chosen from the n-th bits of A and B.
2002 // A zero selects A and a one selects B.
2003 static inline uint32_t
2004 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2005 { return (a & ~mask) | (b & mask); }
2006 };
2007
2008 template<bool big_endian>
2009 class Target_arm : public Sized_target<32, big_endian>
2010 {
2011 public:
2012 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2013 Reloc_section;
2014
2015 // When were are relocating a stub, we pass this as the relocation number.
2016 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2017
2018 Target_arm()
2019 : Sized_target<32, big_endian>(&arm_info),
2020 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2021 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2022 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2023 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2024 may_use_blx_(false), should_force_pic_veneer_(false),
2025 arm_input_section_map_(), attributes_section_data_(NULL),
2026 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2027 { }
2028
2029 // Whether we can use BLX.
2030 bool
2031 may_use_blx() const
2032 { return this->may_use_blx_; }
2033
2034 // Set use-BLX flag.
2035 void
2036 set_may_use_blx(bool value)
2037 { this->may_use_blx_ = value; }
2038
2039 // Whether we force PCI branch veneers.
2040 bool
2041 should_force_pic_veneer() const
2042 { return this->should_force_pic_veneer_; }
2043
2044 // Set PIC veneer flag.
2045 void
2046 set_should_force_pic_veneer(bool value)
2047 { this->should_force_pic_veneer_ = value; }
2048
2049 // Whether we use THUMB-2 instructions.
2050 bool
2051 using_thumb2() const
2052 {
2053 Object_attribute* attr =
2054 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2055 int arch = attr->int_value();
2056 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2057 }
2058
2059 // Whether we use THUMB/THUMB-2 instructions only.
2060 bool
2061 using_thumb_only() const
2062 {
2063 Object_attribute* attr =
2064 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2065
2066 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2067 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2068 return true;
2069 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2070 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2071 return false;
2072 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2073 return attr->int_value() == 'M';
2074 }
2075
2076 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2077 bool
2078 may_use_arm_nop() const
2079 {
2080 Object_attribute* attr =
2081 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2082 int arch = attr->int_value();
2083 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2084 || arch == elfcpp::TAG_CPU_ARCH_V6K
2085 || arch == elfcpp::TAG_CPU_ARCH_V7
2086 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2087 }
2088
2089 // Whether we have THUMB-2 NOP.W instruction.
2090 bool
2091 may_use_thumb2_nop() const
2092 {
2093 Object_attribute* attr =
2094 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2095 int arch = attr->int_value();
2096 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2097 || arch == elfcpp::TAG_CPU_ARCH_V7
2098 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2099 }
2100
2101 // Process the relocations to determine unreferenced sections for
2102 // garbage collection.
2103 void
2104 gc_process_relocs(Symbol_table* symtab,
2105 Layout* layout,
2106 Sized_relobj<32, big_endian>* object,
2107 unsigned int data_shndx,
2108 unsigned int sh_type,
2109 const unsigned char* prelocs,
2110 size_t reloc_count,
2111 Output_section* output_section,
2112 bool needs_special_offset_handling,
2113 size_t local_symbol_count,
2114 const unsigned char* plocal_symbols);
2115
2116 // Scan the relocations to look for symbol adjustments.
2117 void
2118 scan_relocs(Symbol_table* symtab,
2119 Layout* layout,
2120 Sized_relobj<32, big_endian>* object,
2121 unsigned int data_shndx,
2122 unsigned int sh_type,
2123 const unsigned char* prelocs,
2124 size_t reloc_count,
2125 Output_section* output_section,
2126 bool needs_special_offset_handling,
2127 size_t local_symbol_count,
2128 const unsigned char* plocal_symbols);
2129
2130 // Finalize the sections.
2131 void
2132 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2133
2134 // Return the value to use for a dynamic symbol which requires special
2135 // treatment.
2136 uint64_t
2137 do_dynsym_value(const Symbol*) const;
2138
2139 // Relocate a section.
2140 void
2141 relocate_section(const Relocate_info<32, big_endian>*,
2142 unsigned int sh_type,
2143 const unsigned char* prelocs,
2144 size_t reloc_count,
2145 Output_section* output_section,
2146 bool needs_special_offset_handling,
2147 unsigned char* view,
2148 Arm_address view_address,
2149 section_size_type view_size,
2150 const Reloc_symbol_changes*);
2151
2152 // Scan the relocs during a relocatable link.
2153 void
2154 scan_relocatable_relocs(Symbol_table* symtab,
2155 Layout* layout,
2156 Sized_relobj<32, big_endian>* object,
2157 unsigned int data_shndx,
2158 unsigned int sh_type,
2159 const unsigned char* prelocs,
2160 size_t reloc_count,
2161 Output_section* output_section,
2162 bool needs_special_offset_handling,
2163 size_t local_symbol_count,
2164 const unsigned char* plocal_symbols,
2165 Relocatable_relocs*);
2166
2167 // Relocate a section during a relocatable link.
2168 void
2169 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2170 unsigned int sh_type,
2171 const unsigned char* prelocs,
2172 size_t reloc_count,
2173 Output_section* output_section,
2174 off_t offset_in_output_section,
2175 const Relocatable_relocs*,
2176 unsigned char* view,
2177 Arm_address view_address,
2178 section_size_type view_size,
2179 unsigned char* reloc_view,
2180 section_size_type reloc_view_size);
2181
2182 // Return whether SYM is defined by the ABI.
2183 bool
2184 do_is_defined_by_abi(Symbol* sym) const
2185 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2186
2187 // Return whether there is a GOT section.
2188 bool
2189 has_got_section() const
2190 { return this->got_ != NULL; }
2191
2192 // Return the size of the GOT section.
2193 section_size_type
2194 got_size()
2195 {
2196 gold_assert(this->got_ != NULL);
2197 return this->got_->data_size();
2198 }
2199
2200 // Map platform-specific reloc types
2201 static unsigned int
2202 get_real_reloc_type (unsigned int r_type);
2203
2204 //
2205 // Methods to support stub-generations.
2206 //
2207
2208 // Return the stub factory
2209 const Stub_factory&
2210 stub_factory() const
2211 { return this->stub_factory_; }
2212
2213 // Make a new Arm_input_section object.
2214 Arm_input_section<big_endian>*
2215 new_arm_input_section(Relobj*, unsigned int);
2216
2217 // Find the Arm_input_section object corresponding to the SHNDX-th input
2218 // section of RELOBJ.
2219 Arm_input_section<big_endian>*
2220 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2221
2222 // Make a new Stub_table
2223 Stub_table<big_endian>*
2224 new_stub_table(Arm_input_section<big_endian>*);
2225
2226 // Scan a section for stub generation.
2227 void
2228 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2229 const unsigned char*, size_t, Output_section*,
2230 bool, const unsigned char*, Arm_address,
2231 section_size_type);
2232
2233 // Relocate a stub.
2234 void
2235 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2236 Output_section*, unsigned char*, Arm_address,
2237 section_size_type);
2238
2239 // Get the default ARM target.
2240 static Target_arm<big_endian>*
2241 default_target()
2242 {
2243 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2244 && parameters->target().is_big_endian() == big_endian);
2245 return static_cast<Target_arm<big_endian>*>(
2246 parameters->sized_target<32, big_endian>());
2247 }
2248
2249 // Whether NAME belongs to a mapping symbol.
2250 static bool
2251 is_mapping_symbol_name(const char* name)
2252 {
2253 return (name
2254 && name[0] == '$'
2255 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2256 && (name[2] == '\0' || name[2] == '.'));
2257 }
2258
2259 // Whether we work around the Cortex-A8 erratum.
2260 bool
2261 fix_cortex_a8() const
2262 { return this->fix_cortex_a8_; }
2263
2264 // Whether we fix R_ARM_V4BX relocation.
2265 // 0 - do not fix
2266 // 1 - replace with MOV instruction (armv4 target)
2267 // 2 - make interworking veneer (>= armv4t targets only)
2268 General_options::Fix_v4bx
2269 fix_v4bx() const
2270 { return parameters->options().fix_v4bx(); }
2271
2272 // Scan a span of THUMB code section for Cortex-A8 erratum.
2273 void
2274 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2275 section_size_type, section_size_type,
2276 const unsigned char*, Arm_address);
2277
2278 // Apply Cortex-A8 workaround to a branch.
2279 void
2280 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2281 unsigned char*, Arm_address);
2282
2283 protected:
2284 // Make an ELF object.
2285 Object*
2286 do_make_elf_object(const std::string&, Input_file*, off_t,
2287 const elfcpp::Ehdr<32, big_endian>& ehdr);
2288
2289 Object*
2290 do_make_elf_object(const std::string&, Input_file*, off_t,
2291 const elfcpp::Ehdr<32, !big_endian>&)
2292 { gold_unreachable(); }
2293
2294 Object*
2295 do_make_elf_object(const std::string&, Input_file*, off_t,
2296 const elfcpp::Ehdr<64, false>&)
2297 { gold_unreachable(); }
2298
2299 Object*
2300 do_make_elf_object(const std::string&, Input_file*, off_t,
2301 const elfcpp::Ehdr<64, true>&)
2302 { gold_unreachable(); }
2303
2304 // Make an output section.
2305 Output_section*
2306 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2307 elfcpp::Elf_Xword flags)
2308 { return new Arm_output_section<big_endian>(name, type, flags); }
2309
2310 void
2311 do_adjust_elf_header(unsigned char* view, int len) const;
2312
2313 // We only need to generate stubs, and hence perform relaxation if we are
2314 // not doing relocatable linking.
2315 bool
2316 do_may_relax() const
2317 { return !parameters->options().relocatable(); }
2318
2319 bool
2320 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2321
2322 // Determine whether an object attribute tag takes an integer, a
2323 // string or both.
2324 int
2325 do_attribute_arg_type(int tag) const;
2326
2327 // Reorder tags during output.
2328 int
2329 do_attributes_order(int num) const;
2330
2331 // This is called when the target is selected as the default.
2332 void
2333 do_select_as_default_target()
2334 {
2335 // No locking is required since there should only be one default target.
2336 // We cannot have both the big-endian and little-endian ARM targets
2337 // as the default.
2338 gold_assert(arm_reloc_property_table == NULL);
2339 arm_reloc_property_table = new Arm_reloc_property_table();
2340 }
2341
2342 private:
2343 // The class which scans relocations.
2344 class Scan
2345 {
2346 public:
2347 Scan()
2348 : issued_non_pic_error_(false)
2349 { }
2350
2351 inline void
2352 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2353 Sized_relobj<32, big_endian>* object,
2354 unsigned int data_shndx,
2355 Output_section* output_section,
2356 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2357 const elfcpp::Sym<32, big_endian>& lsym);
2358
2359 inline void
2360 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2361 Sized_relobj<32, big_endian>* object,
2362 unsigned int data_shndx,
2363 Output_section* output_section,
2364 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2365 Symbol* gsym);
2366
2367 inline bool
2368 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2369 Sized_relobj<32, big_endian>* ,
2370 unsigned int ,
2371 Output_section* ,
2372 const elfcpp::Rel<32, big_endian>& ,
2373 unsigned int ,
2374 const elfcpp::Sym<32, big_endian>&)
2375 { return false; }
2376
2377 inline bool
2378 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2379 Sized_relobj<32, big_endian>* ,
2380 unsigned int ,
2381 Output_section* ,
2382 const elfcpp::Rel<32, big_endian>& ,
2383 unsigned int , Symbol*)
2384 { return false; }
2385
2386 private:
2387 static void
2388 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2389 unsigned int r_type);
2390
2391 static void
2392 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2393 unsigned int r_type, Symbol*);
2394
2395 void
2396 check_non_pic(Relobj*, unsigned int r_type);
2397
2398 // Almost identical to Symbol::needs_plt_entry except that it also
2399 // handles STT_ARM_TFUNC.
2400 static bool
2401 symbol_needs_plt_entry(const Symbol* sym)
2402 {
2403 // An undefined symbol from an executable does not need a PLT entry.
2404 if (sym->is_undefined() && !parameters->options().shared())
2405 return false;
2406
2407 return (!parameters->doing_static_link()
2408 && (sym->type() == elfcpp::STT_FUNC
2409 || sym->type() == elfcpp::STT_ARM_TFUNC)
2410 && (sym->is_from_dynobj()
2411 || sym->is_undefined()
2412 || sym->is_preemptible()));
2413 }
2414
2415 // Whether we have issued an error about a non-PIC compilation.
2416 bool issued_non_pic_error_;
2417 };
2418
2419 // The class which implements relocation.
2420 class Relocate
2421 {
2422 public:
2423 Relocate()
2424 { }
2425
2426 ~Relocate()
2427 { }
2428
2429 // Return whether the static relocation needs to be applied.
2430 inline bool
2431 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2432 int ref_flags,
2433 bool is_32bit,
2434 Output_section* output_section);
2435
2436 // Do a relocation. Return false if the caller should not issue
2437 // any warnings about this relocation.
2438 inline bool
2439 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2440 Output_section*, size_t relnum,
2441 const elfcpp::Rel<32, big_endian>&,
2442 unsigned int r_type, const Sized_symbol<32>*,
2443 const Symbol_value<32>*,
2444 unsigned char*, Arm_address,
2445 section_size_type);
2446
2447 // Return whether we want to pass flag NON_PIC_REF for this
2448 // reloc. This means the relocation type accesses a symbol not via
2449 // GOT or PLT.
2450 static inline bool
2451 reloc_is_non_pic (unsigned int r_type)
2452 {
2453 switch (r_type)
2454 {
2455 // These relocation types reference GOT or PLT entries explicitly.
2456 case elfcpp::R_ARM_GOT_BREL:
2457 case elfcpp::R_ARM_GOT_ABS:
2458 case elfcpp::R_ARM_GOT_PREL:
2459 case elfcpp::R_ARM_GOT_BREL12:
2460 case elfcpp::R_ARM_PLT32_ABS:
2461 case elfcpp::R_ARM_TLS_GD32:
2462 case elfcpp::R_ARM_TLS_LDM32:
2463 case elfcpp::R_ARM_TLS_IE32:
2464 case elfcpp::R_ARM_TLS_IE12GP:
2465
2466 // These relocate types may use PLT entries.
2467 case elfcpp::R_ARM_CALL:
2468 case elfcpp::R_ARM_THM_CALL:
2469 case elfcpp::R_ARM_JUMP24:
2470 case elfcpp::R_ARM_THM_JUMP24:
2471 case elfcpp::R_ARM_THM_JUMP19:
2472 case elfcpp::R_ARM_PLT32:
2473 case elfcpp::R_ARM_THM_XPC22:
2474 case elfcpp::R_ARM_PREL31:
2475 case elfcpp::R_ARM_SBREL31:
2476 return false;
2477
2478 default:
2479 return true;
2480 }
2481 }
2482
2483 private:
2484 // Do a TLS relocation.
2485 inline typename Arm_relocate_functions<big_endian>::Status
2486 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2487 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2488 const Sized_symbol<32>*, const Symbol_value<32>*,
2489 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2490 section_size_type);
2491
2492 };
2493
2494 // A class which returns the size required for a relocation type,
2495 // used while scanning relocs during a relocatable link.
2496 class Relocatable_size_for_reloc
2497 {
2498 public:
2499 unsigned int
2500 get_size_for_reloc(unsigned int, Relobj*);
2501 };
2502
2503 // Adjust TLS relocation type based on the options and whether this
2504 // is a local symbol.
2505 static tls::Tls_optimization
2506 optimize_tls_reloc(bool is_final, int r_type);
2507
2508 // Get the GOT section, creating it if necessary.
2509 Arm_output_data_got<big_endian>*
2510 got_section(Symbol_table*, Layout*);
2511
2512 // Get the GOT PLT section.
2513 Output_data_space*
2514 got_plt_section() const
2515 {
2516 gold_assert(this->got_plt_ != NULL);
2517 return this->got_plt_;
2518 }
2519
2520 // Create a PLT entry for a global symbol.
2521 void
2522 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2523
2524 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2525 void
2526 define_tls_base_symbol(Symbol_table*, Layout*);
2527
2528 // Create a GOT entry for the TLS module index.
2529 unsigned int
2530 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2531 Sized_relobj<32, big_endian>* object);
2532
2533 // Get the PLT section.
2534 const Output_data_plt_arm<big_endian>*
2535 plt_section() const
2536 {
2537 gold_assert(this->plt_ != NULL);
2538 return this->plt_;
2539 }
2540
2541 // Get the dynamic reloc section, creating it if necessary.
2542 Reloc_section*
2543 rel_dyn_section(Layout*);
2544
2545 // Get the section to use for TLS_DESC relocations.
2546 Reloc_section*
2547 rel_tls_desc_section(Layout*) const;
2548
2549 // Return true if the symbol may need a COPY relocation.
2550 // References from an executable object to non-function symbols
2551 // defined in a dynamic object may need a COPY relocation.
2552 bool
2553 may_need_copy_reloc(Symbol* gsym)
2554 {
2555 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2556 && gsym->may_need_copy_reloc());
2557 }
2558
2559 // Add a potential copy relocation.
2560 void
2561 copy_reloc(Symbol_table* symtab, Layout* layout,
2562 Sized_relobj<32, big_endian>* object,
2563 unsigned int shndx, Output_section* output_section,
2564 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2565 {
2566 this->copy_relocs_.copy_reloc(symtab, layout,
2567 symtab->get_sized_symbol<32>(sym),
2568 object, shndx, output_section, reloc,
2569 this->rel_dyn_section(layout));
2570 }
2571
2572 // Whether two EABI versions are compatible.
2573 static bool
2574 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2575
2576 // Merge processor-specific flags from input object and those in the ELF
2577 // header of the output.
2578 void
2579 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2580
2581 // Get the secondary compatible architecture.
2582 static int
2583 get_secondary_compatible_arch(const Attributes_section_data*);
2584
2585 // Set the secondary compatible architecture.
2586 static void
2587 set_secondary_compatible_arch(Attributes_section_data*, int);
2588
2589 static int
2590 tag_cpu_arch_combine(const char*, int, int*, int, int);
2591
2592 // Helper to print AEABI enum tag value.
2593 static std::string
2594 aeabi_enum_name(unsigned int);
2595
2596 // Return string value for TAG_CPU_name.
2597 static std::string
2598 tag_cpu_name_value(unsigned int);
2599
2600 // Merge object attributes from input object and those in the output.
2601 void
2602 merge_object_attributes(const char*, const Attributes_section_data*);
2603
2604 // Helper to get an AEABI object attribute
2605 Object_attribute*
2606 get_aeabi_object_attribute(int tag) const
2607 {
2608 Attributes_section_data* pasd = this->attributes_section_data_;
2609 gold_assert(pasd != NULL);
2610 Object_attribute* attr =
2611 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2612 gold_assert(attr != NULL);
2613 return attr;
2614 }
2615
2616 //
2617 // Methods to support stub-generations.
2618 //
2619
2620 // Group input sections for stub generation.
2621 void
2622 group_sections(Layout*, section_size_type, bool);
2623
2624 // Scan a relocation for stub generation.
2625 void
2626 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2627 const Sized_symbol<32>*, unsigned int,
2628 const Symbol_value<32>*,
2629 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2630
2631 // Scan a relocation section for stub.
2632 template<int sh_type>
2633 void
2634 scan_reloc_section_for_stubs(
2635 const Relocate_info<32, big_endian>* relinfo,
2636 const unsigned char* prelocs,
2637 size_t reloc_count,
2638 Output_section* output_section,
2639 bool needs_special_offset_handling,
2640 const unsigned char* view,
2641 elfcpp::Elf_types<32>::Elf_Addr view_address,
2642 section_size_type);
2643
2644 // Fix .ARM.exidx section coverage.
2645 void
2646 fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2647
2648 // Functors for STL set.
2649 struct output_section_address_less_than
2650 {
2651 bool
2652 operator()(const Output_section* s1, const Output_section* s2) const
2653 { return s1->address() < s2->address(); }
2654 };
2655
2656 // Information about this specific target which we pass to the
2657 // general Target structure.
2658 static const Target::Target_info arm_info;
2659
2660 // The types of GOT entries needed for this platform.
2661 enum Got_type
2662 {
2663 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2664 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2665 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2666 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2667 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2668 };
2669
2670 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2671
2672 // Map input section to Arm_input_section.
2673 typedef Unordered_map<Section_id,
2674 Arm_input_section<big_endian>*,
2675 Section_id_hash>
2676 Arm_input_section_map;
2677
2678 // Map output addresses to relocs for Cortex-A8 erratum.
2679 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2680 Cortex_a8_relocs_info;
2681
2682 // The GOT section.
2683 Arm_output_data_got<big_endian>* got_;
2684 // The PLT section.
2685 Output_data_plt_arm<big_endian>* plt_;
2686 // The GOT PLT section.
2687 Output_data_space* got_plt_;
2688 // The dynamic reloc section.
2689 Reloc_section* rel_dyn_;
2690 // Relocs saved to avoid a COPY reloc.
2691 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2692 // Space for variables copied with a COPY reloc.
2693 Output_data_space* dynbss_;
2694 // Offset of the GOT entry for the TLS module index.
2695 unsigned int got_mod_index_offset_;
2696 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2697 bool tls_base_symbol_defined_;
2698 // Vector of Stub_tables created.
2699 Stub_table_list stub_tables_;
2700 // Stub factory.
2701 const Stub_factory &stub_factory_;
2702 // Whether we can use BLX.
2703 bool may_use_blx_;
2704 // Whether we force PIC branch veneers.
2705 bool should_force_pic_veneer_;
2706 // Map for locating Arm_input_sections.
2707 Arm_input_section_map arm_input_section_map_;
2708 // Attributes section data in output.
2709 Attributes_section_data* attributes_section_data_;
2710 // Whether we want to fix code for Cortex-A8 erratum.
2711 bool fix_cortex_a8_;
2712 // Map addresses to relocs for Cortex-A8 erratum.
2713 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2714 };
2715
2716 template<bool big_endian>
2717 const Target::Target_info Target_arm<big_endian>::arm_info =
2718 {
2719 32, // size
2720 big_endian, // is_big_endian
2721 elfcpp::EM_ARM, // machine_code
2722 false, // has_make_symbol
2723 false, // has_resolve
2724 false, // has_code_fill
2725 true, // is_default_stack_executable
2726 '\0', // wrap_char
2727 "/usr/lib/libc.so.1", // dynamic_linker
2728 0x8000, // default_text_segment_address
2729 0x1000, // abi_pagesize (overridable by -z max-page-size)
2730 0x1000, // common_pagesize (overridable by -z common-page-size)
2731 elfcpp::SHN_UNDEF, // small_common_shndx
2732 elfcpp::SHN_UNDEF, // large_common_shndx
2733 0, // small_common_section_flags
2734 0, // large_common_section_flags
2735 ".ARM.attributes", // attributes_section
2736 "aeabi" // attributes_vendor
2737 };
2738
2739 // Arm relocate functions class
2740 //
2741
2742 template<bool big_endian>
2743 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2744 {
2745 public:
2746 typedef enum
2747 {
2748 STATUS_OKAY, // No error during relocation.
2749 STATUS_OVERFLOW, // Relocation oveflow.
2750 STATUS_BAD_RELOC // Relocation cannot be applied.
2751 } Status;
2752
2753 private:
2754 typedef Relocate_functions<32, big_endian> Base;
2755 typedef Arm_relocate_functions<big_endian> This;
2756
2757 // Encoding of imm16 argument for movt and movw ARM instructions
2758 // from ARM ARM:
2759 //
2760 // imm16 := imm4 | imm12
2761 //
2762 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2763 // +-------+---------------+-------+-------+-----------------------+
2764 // | | |imm4 | |imm12 |
2765 // +-------+---------------+-------+-------+-----------------------+
2766
2767 // Extract the relocation addend from VAL based on the ARM
2768 // instruction encoding described above.
2769 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2770 extract_arm_movw_movt_addend(
2771 typename elfcpp::Swap<32, big_endian>::Valtype val)
2772 {
2773 // According to the Elf ABI for ARM Architecture the immediate
2774 // field is sign-extended to form the addend.
2775 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2776 }
2777
2778 // Insert X into VAL based on the ARM instruction encoding described
2779 // above.
2780 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2781 insert_val_arm_movw_movt(
2782 typename elfcpp::Swap<32, big_endian>::Valtype val,
2783 typename elfcpp::Swap<32, big_endian>::Valtype x)
2784 {
2785 val &= 0xfff0f000;
2786 val |= x & 0x0fff;
2787 val |= (x & 0xf000) << 4;
2788 return val;
2789 }
2790
2791 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2792 // from ARM ARM:
2793 //
2794 // imm16 := imm4 | i | imm3 | imm8
2795 //
2796 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2797 // +---------+-+-----------+-------++-+-----+-------+---------------+
2798 // | |i| |imm4 || |imm3 | |imm8 |
2799 // +---------+-+-----------+-------++-+-----+-------+---------------+
2800
2801 // Extract the relocation addend from VAL based on the Thumb2
2802 // instruction encoding described above.
2803 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2804 extract_thumb_movw_movt_addend(
2805 typename elfcpp::Swap<32, big_endian>::Valtype val)
2806 {
2807 // According to the Elf ABI for ARM Architecture the immediate
2808 // field is sign-extended to form the addend.
2809 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2810 | ((val >> 15) & 0x0800)
2811 | ((val >> 4) & 0x0700)
2812 | (val & 0x00ff));
2813 }
2814
2815 // Insert X into VAL based on the Thumb2 instruction encoding
2816 // described above.
2817 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2818 insert_val_thumb_movw_movt(
2819 typename elfcpp::Swap<32, big_endian>::Valtype val,
2820 typename elfcpp::Swap<32, big_endian>::Valtype x)
2821 {
2822 val &= 0xfbf08f00;
2823 val |= (x & 0xf000) << 4;
2824 val |= (x & 0x0800) << 15;
2825 val |= (x & 0x0700) << 4;
2826 val |= (x & 0x00ff);
2827 return val;
2828 }
2829
2830 // Calculate the smallest constant Kn for the specified residual.
2831 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2832 static uint32_t
2833 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2834 {
2835 int32_t msb;
2836
2837 if (residual == 0)
2838 return 0;
2839 // Determine the most significant bit in the residual and
2840 // align the resulting value to a 2-bit boundary.
2841 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2842 ;
2843 // The desired shift is now (msb - 6), or zero, whichever
2844 // is the greater.
2845 return (((msb - 6) < 0) ? 0 : (msb - 6));
2846 }
2847
2848 // Calculate the final residual for the specified group index.
2849 // If the passed group index is less than zero, the method will return
2850 // the value of the specified residual without any change.
2851 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2852 static typename elfcpp::Swap<32, big_endian>::Valtype
2853 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2854 const int group)
2855 {
2856 for (int n = 0; n <= group; n++)
2857 {
2858 // Calculate which part of the value to mask.
2859 uint32_t shift = calc_grp_kn(residual);
2860 // Calculate the residual for the next time around.
2861 residual &= ~(residual & (0xff << shift));
2862 }
2863
2864 return residual;
2865 }
2866
2867 // Calculate the value of Gn for the specified group index.
2868 // We return it in the form of an encoded constant-and-rotation.
2869 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2870 static typename elfcpp::Swap<32, big_endian>::Valtype
2871 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2872 const int group)
2873 {
2874 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2875 uint32_t shift = 0;
2876
2877 for (int n = 0; n <= group; n++)
2878 {
2879 // Calculate which part of the value to mask.
2880 shift = calc_grp_kn(residual);
2881 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
2882 gn = residual & (0xff << shift);
2883 // Calculate the residual for the next time around.
2884 residual &= ~gn;
2885 }
2886 // Return Gn in the form of an encoded constant-and-rotation.
2887 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
2888 }
2889
2890 public:
2891 // Handle ARM long branches.
2892 static typename This::Status
2893 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2894 unsigned char *, const Sized_symbol<32>*,
2895 const Arm_relobj<big_endian>*, unsigned int,
2896 const Symbol_value<32>*, Arm_address, Arm_address, bool);
2897
2898 // Handle THUMB long branches.
2899 static typename This::Status
2900 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2901 unsigned char *, const Sized_symbol<32>*,
2902 const Arm_relobj<big_endian>*, unsigned int,
2903 const Symbol_value<32>*, Arm_address, Arm_address, bool);
2904
2905
2906 // Return the branch offset of a 32-bit THUMB branch.
2907 static inline int32_t
2908 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2909 {
2910 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
2911 // involving the J1 and J2 bits.
2912 uint32_t s = (upper_insn & (1U << 10)) >> 10;
2913 uint32_t upper = upper_insn & 0x3ffU;
2914 uint32_t lower = lower_insn & 0x7ffU;
2915 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
2916 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
2917 uint32_t i1 = j1 ^ s ? 0 : 1;
2918 uint32_t i2 = j2 ^ s ? 0 : 1;
2919
2920 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
2921 | (upper << 12) | (lower << 1));
2922 }
2923
2924 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
2925 // UPPER_INSN is the original upper instruction of the branch. Caller is
2926 // responsible for overflow checking and BLX offset adjustment.
2927 static inline uint16_t
2928 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
2929 {
2930 uint32_t s = offset < 0 ? 1 : 0;
2931 uint32_t bits = static_cast<uint32_t>(offset);
2932 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
2933 }
2934
2935 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
2936 // LOWER_INSN is the original lower instruction of the branch. Caller is
2937 // responsible for overflow checking and BLX offset adjustment.
2938 static inline uint16_t
2939 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
2940 {
2941 uint32_t s = offset < 0 ? 1 : 0;
2942 uint32_t bits = static_cast<uint32_t>(offset);
2943 return ((lower_insn & ~0x2fffU)
2944 | ((((bits >> 23) & 1) ^ !s) << 13)
2945 | ((((bits >> 22) & 1) ^ !s) << 11)
2946 | ((bits >> 1) & 0x7ffU));
2947 }
2948
2949 // Return the branch offset of a 32-bit THUMB conditional branch.
2950 static inline int32_t
2951 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2952 {
2953 uint32_t s = (upper_insn & 0x0400U) >> 10;
2954 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
2955 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
2956 uint32_t lower = (lower_insn & 0x07ffU);
2957 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
2958
2959 return utils::sign_extend<21>((upper << 12) | (lower << 1));
2960 }
2961
2962 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
2963 // instruction. UPPER_INSN is the original upper instruction of the branch.
2964 // Caller is responsible for overflow checking.
2965 static inline uint16_t
2966 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
2967 {
2968 uint32_t s = offset < 0 ? 1 : 0;
2969 uint32_t bits = static_cast<uint32_t>(offset);
2970 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
2971 }
2972
2973 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
2974 // instruction. LOWER_INSN is the original lower instruction of the branch.
2975 // Caller is reponsible for overflow checking.
2976 static inline uint16_t
2977 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
2978 {
2979 uint32_t bits = static_cast<uint32_t>(offset);
2980 uint32_t j2 = (bits & 0x00080000U) >> 19;
2981 uint32_t j1 = (bits & 0x00040000U) >> 18;
2982 uint32_t lo = (bits & 0x00000ffeU) >> 1;
2983
2984 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
2985 }
2986
2987 // R_ARM_ABS8: S + A
2988 static inline typename This::Status
2989 abs8(unsigned char *view,
2990 const Sized_relobj<32, big_endian>* object,
2991 const Symbol_value<32>* psymval)
2992 {
2993 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
2994 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2995 Valtype* wv = reinterpret_cast<Valtype*>(view);
2996 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
2997 Reltype addend = utils::sign_extend<8>(val);
2998 Reltype x = psymval->value(object, addend);
2999 val = utils::bit_select(val, x, 0xffU);
3000 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3001
3002 // R_ARM_ABS8 permits signed or unsigned results.
3003 int signed_x = static_cast<int32_t>(x);
3004 return ((signed_x < -128 || signed_x > 255)
3005 ? This::STATUS_OVERFLOW
3006 : This::STATUS_OKAY);
3007 }
3008
3009 // R_ARM_THM_ABS5: S + A
3010 static inline typename This::Status
3011 thm_abs5(unsigned char *view,
3012 const Sized_relobj<32, big_endian>* object,
3013 const Symbol_value<32>* psymval)
3014 {
3015 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3016 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3017 Valtype* wv = reinterpret_cast<Valtype*>(view);
3018 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3019 Reltype addend = (val & 0x7e0U) >> 6;
3020 Reltype x = psymval->value(object, addend);
3021 val = utils::bit_select(val, x << 6, 0x7e0U);
3022 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3023
3024 // R_ARM_ABS16 permits signed or unsigned results.
3025 int signed_x = static_cast<int32_t>(x);
3026 return ((signed_x < -32768 || signed_x > 65535)
3027 ? This::STATUS_OVERFLOW
3028 : This::STATUS_OKAY);
3029 }
3030
3031 // R_ARM_ABS12: S + A
3032 static inline typename This::Status
3033 abs12(unsigned char *view,
3034 const Sized_relobj<32, big_endian>* object,
3035 const Symbol_value<32>* psymval)
3036 {
3037 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3038 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3039 Valtype* wv = reinterpret_cast<Valtype*>(view);
3040 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3041 Reltype addend = val & 0x0fffU;
3042 Reltype x = psymval->value(object, addend);
3043 val = utils::bit_select(val, x, 0x0fffU);
3044 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3045 return (utils::has_overflow<12>(x)
3046 ? This::STATUS_OVERFLOW
3047 : This::STATUS_OKAY);
3048 }
3049
3050 // R_ARM_ABS16: S + A
3051 static inline typename This::Status
3052 abs16(unsigned char *view,
3053 const Sized_relobj<32, big_endian>* object,
3054 const Symbol_value<32>* psymval)
3055 {
3056 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3057 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3058 Valtype* wv = reinterpret_cast<Valtype*>(view);
3059 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3060 Reltype addend = utils::sign_extend<16>(val);
3061 Reltype x = psymval->value(object, addend);
3062 val = utils::bit_select(val, x, 0xffffU);
3063 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3064 return (utils::has_signed_unsigned_overflow<16>(x)
3065 ? This::STATUS_OVERFLOW
3066 : This::STATUS_OKAY);
3067 }
3068
3069 // R_ARM_ABS32: (S + A) | T
3070 static inline typename This::Status
3071 abs32(unsigned char *view,
3072 const Sized_relobj<32, big_endian>* object,
3073 const Symbol_value<32>* psymval,
3074 Arm_address thumb_bit)
3075 {
3076 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3077 Valtype* wv = reinterpret_cast<Valtype*>(view);
3078 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3079 Valtype x = psymval->value(object, addend) | thumb_bit;
3080 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3081 return This::STATUS_OKAY;
3082 }
3083
3084 // R_ARM_REL32: (S + A) | T - P
3085 static inline typename This::Status
3086 rel32(unsigned char *view,
3087 const Sized_relobj<32, big_endian>* object,
3088 const Symbol_value<32>* psymval,
3089 Arm_address address,
3090 Arm_address thumb_bit)
3091 {
3092 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3093 Valtype* wv = reinterpret_cast<Valtype*>(view);
3094 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3095 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3096 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3097 return This::STATUS_OKAY;
3098 }
3099
3100 // R_ARM_THM_JUMP24: (S + A) | T - P
3101 static typename This::Status
3102 thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3103 const Symbol_value<32>* psymval, Arm_address address,
3104 Arm_address thumb_bit);
3105
3106 // R_ARM_THM_JUMP6: S + A – P
3107 static inline typename This::Status
3108 thm_jump6(unsigned char *view,
3109 const Sized_relobj<32, big_endian>* object,
3110 const Symbol_value<32>* psymval,
3111 Arm_address address)
3112 {
3113 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3114 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3115 Valtype* wv = reinterpret_cast<Valtype*>(view);
3116 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3117 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3118 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3119 Reltype x = (psymval->value(object, addend) - address);
3120 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3121 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3122 // CZB does only forward jumps.
3123 return ((x > 0x007e)
3124 ? This::STATUS_OVERFLOW
3125 : This::STATUS_OKAY);
3126 }
3127
3128 // R_ARM_THM_JUMP8: S + A – P
3129 static inline typename This::Status
3130 thm_jump8(unsigned char *view,
3131 const Sized_relobj<32, big_endian>* object,
3132 const Symbol_value<32>* psymval,
3133 Arm_address address)
3134 {
3135 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3136 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3137 Valtype* wv = reinterpret_cast<Valtype*>(view);
3138 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3139 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3140 Reltype x = (psymval->value(object, addend) - address);
3141 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3142 return (utils::has_overflow<8>(x)
3143 ? This::STATUS_OVERFLOW
3144 : This::STATUS_OKAY);
3145 }
3146
3147 // R_ARM_THM_JUMP11: S + A – P
3148 static inline typename This::Status
3149 thm_jump11(unsigned char *view,
3150 const Sized_relobj<32, big_endian>* object,
3151 const Symbol_value<32>* psymval,
3152 Arm_address address)
3153 {
3154 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3155 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3156 Valtype* wv = reinterpret_cast<Valtype*>(view);
3157 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3158 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3159 Reltype x = (psymval->value(object, addend) - address);
3160 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3161 return (utils::has_overflow<11>(x)
3162 ? This::STATUS_OVERFLOW
3163 : This::STATUS_OKAY);
3164 }
3165
3166 // R_ARM_BASE_PREL: B(S) + A - P
3167 static inline typename This::Status
3168 base_prel(unsigned char* view,
3169 Arm_address origin,
3170 Arm_address address)
3171 {
3172 Base::rel32(view, origin - address);
3173 return STATUS_OKAY;
3174 }
3175
3176 // R_ARM_BASE_ABS: B(S) + A
3177 static inline typename This::Status
3178 base_abs(unsigned char* view,
3179 Arm_address origin)
3180 {
3181 Base::rel32(view, origin);
3182 return STATUS_OKAY;
3183 }
3184
3185 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3186 static inline typename This::Status
3187 got_brel(unsigned char* view,
3188 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3189 {
3190 Base::rel32(view, got_offset);
3191 return This::STATUS_OKAY;
3192 }
3193
3194 // R_ARM_GOT_PREL: GOT(S) + A - P
3195 static inline typename This::Status
3196 got_prel(unsigned char *view,
3197 Arm_address got_entry,
3198 Arm_address address)
3199 {
3200 Base::rel32(view, got_entry - address);
3201 return This::STATUS_OKAY;
3202 }
3203
3204 // R_ARM_PREL: (S + A) | T - P
3205 static inline typename This::Status
3206 prel31(unsigned char *view,
3207 const Sized_relobj<32, big_endian>* object,
3208 const Symbol_value<32>* psymval,
3209 Arm_address address,
3210 Arm_address thumb_bit)
3211 {
3212 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3213 Valtype* wv = reinterpret_cast<Valtype*>(view);
3214 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3215 Valtype addend = utils::sign_extend<31>(val);
3216 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3217 val = utils::bit_select(val, x, 0x7fffffffU);
3218 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3219 return (utils::has_overflow<31>(x) ?
3220 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3221 }
3222
3223 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3224 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3225 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3226 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3227 static inline typename This::Status
3228 movw(unsigned char* view,
3229 const Sized_relobj<32, big_endian>* object,
3230 const Symbol_value<32>* psymval,
3231 Arm_address relative_address_base,
3232 Arm_address thumb_bit,
3233 bool check_overflow)
3234 {
3235 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3236 Valtype* wv = reinterpret_cast<Valtype*>(view);
3237 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3238 Valtype addend = This::extract_arm_movw_movt_addend(val);
3239 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3240 - relative_address_base);
3241 val = This::insert_val_arm_movw_movt(val, x);
3242 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3243 return ((check_overflow && utils::has_overflow<16>(x))
3244 ? This::STATUS_OVERFLOW
3245 : This::STATUS_OKAY);
3246 }
3247
3248 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3249 // R_ARM_MOVT_PREL: S + A - P
3250 // R_ARM_MOVT_BREL: S + A - B(S)
3251 static inline typename This::Status
3252 movt(unsigned char* view,
3253 const Sized_relobj<32, big_endian>* object,
3254 const Symbol_value<32>* psymval,
3255 Arm_address relative_address_base)
3256 {
3257 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3258 Valtype* wv = reinterpret_cast<Valtype*>(view);
3259 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3260 Valtype addend = This::extract_arm_movw_movt_addend(val);
3261 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3262 val = This::insert_val_arm_movw_movt(val, x);
3263 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3264 // FIXME: IHI0044D says that we should check for overflow.
3265 return This::STATUS_OKAY;
3266 }
3267
3268 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3269 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3270 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3271 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3272 static inline typename This::Status
3273 thm_movw(unsigned char *view,
3274 const Sized_relobj<32, big_endian>* object,
3275 const Symbol_value<32>* psymval,
3276 Arm_address relative_address_base,
3277 Arm_address thumb_bit,
3278 bool check_overflow)
3279 {
3280 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3281 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3282 Valtype* wv = reinterpret_cast<Valtype*>(view);
3283 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3284 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3285 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3286 Reltype x =
3287 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3288 val = This::insert_val_thumb_movw_movt(val, x);
3289 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3290 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3291 return ((check_overflow && utils::has_overflow<16>(x))
3292 ? This::STATUS_OVERFLOW
3293 : This::STATUS_OKAY);
3294 }
3295
3296 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3297 // R_ARM_THM_MOVT_PREL: S + A - P
3298 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3299 static inline typename This::Status
3300 thm_movt(unsigned char* view,
3301 const Sized_relobj<32, big_endian>* object,
3302 const Symbol_value<32>* psymval,
3303 Arm_address relative_address_base)
3304 {
3305 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3306 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3307 Valtype* wv = reinterpret_cast<Valtype*>(view);
3308 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3309 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3310 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3311 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3312 val = This::insert_val_thumb_movw_movt(val, x);
3313 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3314 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3315 return This::STATUS_OKAY;
3316 }
3317
3318 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3319 static inline typename This::Status
3320 thm_alu11(unsigned char* view,
3321 const Sized_relobj<32, big_endian>* object,
3322 const Symbol_value<32>* psymval,
3323 Arm_address address,
3324 Arm_address thumb_bit)
3325 {
3326 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3327 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3328 Valtype* wv = reinterpret_cast<Valtype*>(view);
3329 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3330 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3331
3332 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3333 // -----------------------------------------------------------------------
3334 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3335 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3336 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3337 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3338 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3339 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3340
3341 // Determine a sign for the addend.
3342 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3343 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3344 // Thumb2 addend encoding:
3345 // imm12 := i | imm3 | imm8
3346 int32_t addend = (insn & 0xff)
3347 | ((insn & 0x00007000) >> 4)
3348 | ((insn & 0x04000000) >> 15);
3349 // Apply a sign to the added.
3350 addend *= sign;
3351
3352 int32_t x = (psymval->value(object, addend) | thumb_bit)
3353 - (address & 0xfffffffc);
3354 Reltype val = abs(x);
3355 // Mask out the value and a distinct part of the ADD/SUB opcode
3356 // (bits 7:5 of opword).
3357 insn = (insn & 0xfb0f8f00)
3358 | (val & 0xff)
3359 | ((val & 0x700) << 4)
3360 | ((val & 0x800) << 15);
3361 // Set the opcode according to whether the value to go in the
3362 // place is negative.
3363 if (x < 0)
3364 insn |= 0x00a00000;
3365
3366 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3367 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3368 return ((val > 0xfff) ?
3369 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3370 }
3371
3372 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3373 static inline typename This::Status
3374 thm_pc8(unsigned char* view,
3375 const Sized_relobj<32, big_endian>* object,
3376 const Symbol_value<32>* psymval,
3377 Arm_address address)
3378 {
3379 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3380 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3381 Valtype* wv = reinterpret_cast<Valtype*>(view);
3382 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3383 Reltype addend = ((insn & 0x00ff) << 2);
3384 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3385 Reltype val = abs(x);
3386 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3387
3388 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3389 return ((val > 0x03fc)
3390 ? This::STATUS_OVERFLOW
3391 : This::STATUS_OKAY);
3392 }
3393
3394 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3395 static inline typename This::Status
3396 thm_pc12(unsigned char* view,
3397 const Sized_relobj<32, big_endian>* object,
3398 const Symbol_value<32>* psymval,
3399 Arm_address address)
3400 {
3401 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3402 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3403 Valtype* wv = reinterpret_cast<Valtype*>(view);
3404 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3405 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3406 // Determine a sign for the addend (positive if the U bit is 1).
3407 const int sign = (insn & 0x00800000) ? 1 : -1;
3408 int32_t addend = (insn & 0xfff);
3409 // Apply a sign to the added.
3410 addend *= sign;
3411
3412 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3413 Reltype val = abs(x);
3414 // Mask out and apply the value and the U bit.
3415 insn = (insn & 0xff7ff000) | (val & 0xfff);
3416 // Set the U bit according to whether the value to go in the
3417 // place is positive.
3418 if (x >= 0)
3419 insn |= 0x00800000;
3420
3421 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3422 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3423 return ((val > 0xfff) ?
3424 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3425 }
3426
3427 // R_ARM_V4BX
3428 static inline typename This::Status
3429 v4bx(const Relocate_info<32, big_endian>* relinfo,
3430 unsigned char *view,
3431 const Arm_relobj<big_endian>* object,
3432 const Arm_address address,
3433 const bool is_interworking)
3434 {
3435
3436 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3437 Valtype* wv = reinterpret_cast<Valtype*>(view);
3438 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3439
3440 // Ensure that we have a BX instruction.
3441 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3442 const uint32_t reg = (val & 0xf);
3443 if (is_interworking && reg != 0xf)
3444 {
3445 Stub_table<big_endian>* stub_table =
3446 object->stub_table(relinfo->data_shndx);
3447 gold_assert(stub_table != NULL);
3448
3449 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3450 gold_assert(stub != NULL);
3451
3452 int32_t veneer_address =
3453 stub_table->address() + stub->offset() - 8 - address;
3454 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3455 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3456 // Replace with a branch to veneer (B <addr>)
3457 val = (val & 0xf0000000) | 0x0a000000
3458 | ((veneer_address >> 2) & 0x00ffffff);
3459 }
3460 else
3461 {
3462 // Preserve Rm (lowest four bits) and the condition code
3463 // (highest four bits). Other bits encode MOV PC,Rm.
3464 val = (val & 0xf000000f) | 0x01a0f000;
3465 }
3466 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3467 return This::STATUS_OKAY;
3468 }
3469
3470 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3471 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3472 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3473 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3474 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3475 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3476 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3477 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3478 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3479 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3480 static inline typename This::Status
3481 arm_grp_alu(unsigned char* view,
3482 const Sized_relobj<32, big_endian>* object,
3483 const Symbol_value<32>* psymval,
3484 const int group,
3485 Arm_address address,
3486 Arm_address thumb_bit,
3487 bool check_overflow)
3488 {
3489 gold_assert(group >= 0 && group < 3);
3490 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3491 Valtype* wv = reinterpret_cast<Valtype*>(view);
3492 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3493
3494 // ALU group relocations are allowed only for the ADD/SUB instructions.
3495 // (0x00800000 - ADD, 0x00400000 - SUB)
3496 const Valtype opcode = insn & 0x01e00000;
3497 if (opcode != 0x00800000 && opcode != 0x00400000)
3498 return This::STATUS_BAD_RELOC;
3499
3500 // Determine a sign for the addend.
3501 const int sign = (opcode == 0x00800000) ? 1 : -1;
3502 // shifter = rotate_imm * 2
3503 const uint32_t shifter = (insn & 0xf00) >> 7;
3504 // Initial addend value.
3505 int32_t addend = insn & 0xff;
3506 // Rotate addend right by shifter.
3507 addend = (addend >> shifter) | (addend << (32 - shifter));
3508 // Apply a sign to the added.
3509 addend *= sign;
3510
3511 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3512 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3513 // Check for overflow if required
3514 if (check_overflow
3515 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3516 return This::STATUS_OVERFLOW;
3517
3518 // Mask out the value and the ADD/SUB part of the opcode; take care
3519 // not to destroy the S bit.
3520 insn &= 0xff1ff000;
3521 // Set the opcode according to whether the value to go in the
3522 // place is negative.
3523 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3524 // Encode the offset (encoded Gn).
3525 insn |= gn;
3526
3527 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3528 return This::STATUS_OKAY;
3529 }
3530
3531 // R_ARM_LDR_PC_G0: S + A - P
3532 // R_ARM_LDR_PC_G1: S + A - P
3533 // R_ARM_LDR_PC_G2: S + A - P
3534 // R_ARM_LDR_SB_G0: S + A - B(S)
3535 // R_ARM_LDR_SB_G1: S + A - B(S)
3536 // R_ARM_LDR_SB_G2: S + A - B(S)
3537 static inline typename This::Status
3538 arm_grp_ldr(unsigned char* view,
3539 const Sized_relobj<32, big_endian>* object,
3540 const Symbol_value<32>* psymval,
3541 const int group,
3542 Arm_address address)
3543 {
3544 gold_assert(group >= 0 && group < 3);
3545 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3546 Valtype* wv = reinterpret_cast<Valtype*>(view);
3547 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3548
3549 const int sign = (insn & 0x00800000) ? 1 : -1;
3550 int32_t addend = (insn & 0xfff) * sign;
3551 int32_t x = (psymval->value(object, addend) - address);
3552 // Calculate the relevant G(n-1) value to obtain this stage residual.
3553 Valtype residual =
3554 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3555 if (residual >= 0x1000)
3556 return This::STATUS_OVERFLOW;
3557
3558 // Mask out the value and U bit.
3559 insn &= 0xff7ff000;
3560 // Set the U bit for non-negative values.
3561 if (x >= 0)
3562 insn |= 0x00800000;
3563 insn |= residual;
3564
3565 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3566 return This::STATUS_OKAY;
3567 }
3568
3569 // R_ARM_LDRS_PC_G0: S + A - P
3570 // R_ARM_LDRS_PC_G1: S + A - P
3571 // R_ARM_LDRS_PC_G2: S + A - P
3572 // R_ARM_LDRS_SB_G0: S + A - B(S)
3573 // R_ARM_LDRS_SB_G1: S + A - B(S)
3574 // R_ARM_LDRS_SB_G2: S + A - B(S)
3575 static inline typename This::Status
3576 arm_grp_ldrs(unsigned char* view,
3577 const Sized_relobj<32, big_endian>* object,
3578 const Symbol_value<32>* psymval,
3579 const int group,
3580 Arm_address address)
3581 {
3582 gold_assert(group >= 0 && group < 3);
3583 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3584 Valtype* wv = reinterpret_cast<Valtype*>(view);
3585 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3586
3587 const int sign = (insn & 0x00800000) ? 1 : -1;
3588 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3589 int32_t x = (psymval->value(object, addend) - address);
3590 // Calculate the relevant G(n-1) value to obtain this stage residual.
3591 Valtype residual =
3592 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3593 if (residual >= 0x100)
3594 return This::STATUS_OVERFLOW;
3595
3596 // Mask out the value and U bit.
3597 insn &= 0xff7ff0f0;
3598 // Set the U bit for non-negative values.
3599 if (x >= 0)
3600 insn |= 0x00800000;
3601 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3602
3603 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3604 return This::STATUS_OKAY;
3605 }
3606
3607 // R_ARM_LDC_PC_G0: S + A - P
3608 // R_ARM_LDC_PC_G1: S + A - P
3609 // R_ARM_LDC_PC_G2: S + A - P
3610 // R_ARM_LDC_SB_G0: S + A - B(S)
3611 // R_ARM_LDC_SB_G1: S + A - B(S)
3612 // R_ARM_LDC_SB_G2: S + A - B(S)
3613 static inline typename This::Status
3614 arm_grp_ldc(unsigned char* view,
3615 const Sized_relobj<32, big_endian>* object,
3616 const Symbol_value<32>* psymval,
3617 const int group,
3618 Arm_address address)
3619 {
3620 gold_assert(group >= 0 && group < 3);
3621 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3622 Valtype* wv = reinterpret_cast<Valtype*>(view);
3623 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3624
3625 const int sign = (insn & 0x00800000) ? 1 : -1;
3626 int32_t addend = ((insn & 0xff) << 2) * sign;
3627 int32_t x = (psymval->value(object, addend) - address);
3628 // Calculate the relevant G(n-1) value to obtain this stage residual.
3629 Valtype residual =
3630 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3631 if ((residual & 0x3) != 0 || residual >= 0x400)
3632 return This::STATUS_OVERFLOW;
3633
3634 // Mask out the value and U bit.
3635 insn &= 0xff7fff00;
3636 // Set the U bit for non-negative values.
3637 if (x >= 0)
3638 insn |= 0x00800000;
3639 insn |= (residual >> 2);
3640
3641 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3642 return This::STATUS_OKAY;
3643 }
3644 };
3645
3646 // Relocate ARM long branches. This handles relocation types
3647 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3648 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3649 // undefined and we do not use PLT in this relocation. In such a case,
3650 // the branch is converted into an NOP.
3651
3652 template<bool big_endian>
3653 typename Arm_relocate_functions<big_endian>::Status
3654 Arm_relocate_functions<big_endian>::arm_branch_common(
3655 unsigned int r_type,
3656 const Relocate_info<32, big_endian>* relinfo,
3657 unsigned char *view,
3658 const Sized_symbol<32>* gsym,
3659 const Arm_relobj<big_endian>* object,
3660 unsigned int r_sym,
3661 const Symbol_value<32>* psymval,
3662 Arm_address address,
3663 Arm_address thumb_bit,
3664 bool is_weakly_undefined_without_plt)
3665 {
3666 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3667 Valtype* wv = reinterpret_cast<Valtype*>(view);
3668 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3669
3670 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3671 && ((val & 0x0f000000UL) == 0x0a000000UL);
3672 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3673 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3674 && ((val & 0x0f000000UL) == 0x0b000000UL);
3675 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3676 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3677
3678 // Check that the instruction is valid.
3679 if (r_type == elfcpp::R_ARM_CALL)
3680 {
3681 if (!insn_is_uncond_bl && !insn_is_blx)
3682 return This::STATUS_BAD_RELOC;
3683 }
3684 else if (r_type == elfcpp::R_ARM_JUMP24)
3685 {
3686 if (!insn_is_b && !insn_is_cond_bl)
3687 return This::STATUS_BAD_RELOC;
3688 }
3689 else if (r_type == elfcpp::R_ARM_PLT32)
3690 {
3691 if (!insn_is_any_branch)
3692 return This::STATUS_BAD_RELOC;
3693 }
3694 else if (r_type == elfcpp::R_ARM_XPC25)
3695 {
3696 // FIXME: AAELF document IH0044C does not say much about it other
3697 // than it being obsolete.
3698 if (!insn_is_any_branch)
3699 return This::STATUS_BAD_RELOC;
3700 }
3701 else
3702 gold_unreachable();
3703
3704 // A branch to an undefined weak symbol is turned into a jump to
3705 // the next instruction unless a PLT entry will be created.
3706 // Do the same for local undefined symbols.
3707 // The jump to the next instruction is optimized as a NOP depending
3708 // on the architecture.
3709 const Target_arm<big_endian>* arm_target =
3710 Target_arm<big_endian>::default_target();
3711 if (is_weakly_undefined_without_plt)
3712 {
3713 Valtype cond = val & 0xf0000000U;
3714 if (arm_target->may_use_arm_nop())
3715 val = cond | 0x0320f000;
3716 else
3717 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3718 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3719 return This::STATUS_OKAY;
3720 }
3721
3722 Valtype addend = utils::sign_extend<26>(val << 2);
3723 Valtype branch_target = psymval->value(object, addend);
3724 int32_t branch_offset = branch_target - address;
3725
3726 // We need a stub if the branch offset is too large or if we need
3727 // to switch mode.
3728 bool may_use_blx = arm_target->may_use_blx();
3729 Reloc_stub* stub = NULL;
3730 if (utils::has_overflow<26>(branch_offset)
3731 || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
3732 {
3733 Valtype unadjusted_branch_target = psymval->value(object, 0);
3734
3735 Stub_type stub_type =
3736 Reloc_stub::stub_type_for_reloc(r_type, address,
3737 unadjusted_branch_target,
3738 (thumb_bit != 0));
3739 if (stub_type != arm_stub_none)
3740 {
3741 Stub_table<big_endian>* stub_table =
3742 object->stub_table(relinfo->data_shndx);
3743 gold_assert(stub_table != NULL);
3744
3745 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3746 stub = stub_table->find_reloc_stub(stub_key);
3747 gold_assert(stub != NULL);
3748 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3749 branch_target = stub_table->address() + stub->offset() + addend;
3750 branch_offset = branch_target - address;
3751 gold_assert(!utils::has_overflow<26>(branch_offset));
3752 }
3753 }
3754
3755 // At this point, if we still need to switch mode, the instruction
3756 // must either be a BLX or a BL that can be converted to a BLX.
3757 if (thumb_bit != 0)
3758 {
3759 // Turn BL to BLX.
3760 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3761 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3762 }
3763
3764 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3765 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3766 return (utils::has_overflow<26>(branch_offset)
3767 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3768 }
3769
3770 // Relocate THUMB long branches. This handles relocation types
3771 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3772 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3773 // undefined and we do not use PLT in this relocation. In such a case,
3774 // the branch is converted into an NOP.
3775
3776 template<bool big_endian>
3777 typename Arm_relocate_functions<big_endian>::Status
3778 Arm_relocate_functions<big_endian>::thumb_branch_common(
3779 unsigned int r_type,
3780 const Relocate_info<32, big_endian>* relinfo,
3781 unsigned char *view,
3782 const Sized_symbol<32>* gsym,
3783 const Arm_relobj<big_endian>* object,
3784 unsigned int r_sym,
3785 const Symbol_value<32>* psymval,
3786 Arm_address address,
3787 Arm_address thumb_bit,
3788 bool is_weakly_undefined_without_plt)
3789 {
3790 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3791 Valtype* wv = reinterpret_cast<Valtype*>(view);
3792 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3793 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3794
3795 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3796 // into account.
3797 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3798 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3799
3800 // Check that the instruction is valid.
3801 if (r_type == elfcpp::R_ARM_THM_CALL)
3802 {
3803 if (!is_bl_insn && !is_blx_insn)
3804 return This::STATUS_BAD_RELOC;
3805 }
3806 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3807 {
3808 // This cannot be a BLX.
3809 if (!is_bl_insn)
3810 return This::STATUS_BAD_RELOC;
3811 }
3812 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3813 {
3814 // Check for Thumb to Thumb call.
3815 if (!is_blx_insn)
3816 return This::STATUS_BAD_RELOC;
3817 if (thumb_bit != 0)
3818 {
3819 gold_warning(_("%s: Thumb BLX instruction targets "
3820 "thumb function '%s'."),
3821 object->name().c_str(),
3822 (gsym ? gsym->name() : "(local)"));
3823 // Convert BLX to BL.
3824 lower_insn |= 0x1000U;
3825 }
3826 }
3827 else
3828 gold_unreachable();
3829
3830 // A branch to an undefined weak symbol is turned into a jump to
3831 // the next instruction unless a PLT entry will be created.
3832 // The jump to the next instruction is optimized as a NOP.W for
3833 // Thumb-2 enabled architectures.
3834 const Target_arm<big_endian>* arm_target =
3835 Target_arm<big_endian>::default_target();
3836 if (is_weakly_undefined_without_plt)
3837 {
3838 if (arm_target->may_use_thumb2_nop())
3839 {
3840 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3841 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3842 }
3843 else
3844 {
3845 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3846 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3847 }
3848 return This::STATUS_OKAY;
3849 }
3850
3851 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
3852 Arm_address branch_target = psymval->value(object, addend);
3853
3854 // For BLX, bit 1 of target address comes from bit 1 of base address.
3855 bool may_use_blx = arm_target->may_use_blx();
3856 if (thumb_bit == 0 && may_use_blx)
3857 branch_target = utils::bit_select(branch_target, address, 0x2);
3858
3859 int32_t branch_offset = branch_target - address;
3860
3861 // We need a stub if the branch offset is too large or if we need
3862 // to switch mode.
3863 bool thumb2 = arm_target->using_thumb2();
3864 if ((!thumb2 && utils::has_overflow<23>(branch_offset))
3865 || (thumb2 && utils::has_overflow<25>(branch_offset))
3866 || ((thumb_bit == 0)
3867 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3868 || r_type == elfcpp::R_ARM_THM_JUMP24)))
3869 {
3870 Arm_address unadjusted_branch_target = psymval->value(object, 0);
3871
3872 Stub_type stub_type =
3873 Reloc_stub::stub_type_for_reloc(r_type, address,
3874 unadjusted_branch_target,
3875 (thumb_bit != 0));
3876
3877 if (stub_type != arm_stub_none)
3878 {
3879 Stub_table<big_endian>* stub_table =
3880 object->stub_table(relinfo->data_shndx);
3881 gold_assert(stub_table != NULL);
3882
3883 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3884 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
3885 gold_assert(stub != NULL);
3886 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3887 branch_target = stub_table->address() + stub->offset() + addend;
3888 if (thumb_bit == 0 && may_use_blx)
3889 branch_target = utils::bit_select(branch_target, address, 0x2);
3890 branch_offset = branch_target - address;
3891 }
3892 }
3893
3894 // At this point, if we still need to switch mode, the instruction
3895 // must either be a BLX or a BL that can be converted to a BLX.
3896 if (thumb_bit == 0)
3897 {
3898 gold_assert(may_use_blx
3899 && (r_type == elfcpp::R_ARM_THM_CALL
3900 || r_type == elfcpp::R_ARM_THM_XPC22));
3901 // Make sure this is a BLX.
3902 lower_insn &= ~0x1000U;
3903 }
3904 else
3905 {
3906 // Make sure this is a BL.
3907 lower_insn |= 0x1000U;
3908 }
3909
3910 // For a BLX instruction, make sure that the relocation is rounded up
3911 // to a word boundary. This follows the semantics of the instruction
3912 // which specifies that bit 1 of the target address will come from bit
3913 // 1 of the base address.
3914 if ((lower_insn & 0x5000U) == 0x4000U)
3915 gold_assert((branch_offset & 3) == 0);
3916
3917 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
3918 // We use the Thumb-2 encoding, which is safe even if dealing with
3919 // a Thumb-1 instruction by virtue of our overflow check above. */
3920 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
3921 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
3922
3923 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3924 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3925
3926 gold_assert(!utils::has_overflow<25>(branch_offset));
3927
3928 return ((thumb2
3929 ? utils::has_overflow<25>(branch_offset)
3930 : utils::has_overflow<23>(branch_offset))
3931 ? This::STATUS_OVERFLOW
3932 : This::STATUS_OKAY);
3933 }
3934
3935 // Relocate THUMB-2 long conditional branches.
3936 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3937 // undefined and we do not use PLT in this relocation. In such a case,
3938 // the branch is converted into an NOP.
3939
3940 template<bool big_endian>
3941 typename Arm_relocate_functions<big_endian>::Status
3942 Arm_relocate_functions<big_endian>::thm_jump19(
3943 unsigned char *view,
3944 const Arm_relobj<big_endian>* object,
3945 const Symbol_value<32>* psymval,
3946 Arm_address address,
3947 Arm_address thumb_bit)
3948 {
3949 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3950 Valtype* wv = reinterpret_cast<Valtype*>(view);
3951 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3952 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3953 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
3954
3955 Arm_address branch_target = psymval->value(object, addend);
3956 int32_t branch_offset = branch_target - address;
3957
3958 // ??? Should handle interworking? GCC might someday try to
3959 // use this for tail calls.
3960 // FIXME: We do support thumb entry to PLT yet.
3961 if (thumb_bit == 0)
3962 {
3963 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
3964 return This::STATUS_BAD_RELOC;
3965 }
3966
3967 // Put RELOCATION back into the insn.
3968 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
3969 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
3970
3971 // Put the relocated value back in the object file:
3972 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3973 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3974
3975 return (utils::has_overflow<21>(branch_offset)
3976 ? This::STATUS_OVERFLOW
3977 : This::STATUS_OKAY);
3978 }
3979
3980 // Get the GOT section, creating it if necessary.
3981
3982 template<bool big_endian>
3983 Arm_output_data_got<big_endian>*
3984 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
3985 {
3986 if (this->got_ == NULL)
3987 {
3988 gold_assert(symtab != NULL && layout != NULL);
3989
3990 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
3991
3992 Output_section* os;
3993 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3994 (elfcpp::SHF_ALLOC
3995 | elfcpp::SHF_WRITE),
3996 this->got_, false, false, false,
3997 true);
3998 // The old GNU linker creates a .got.plt section. We just
3999 // create another set of data in the .got section. Note that we
4000 // always create a PLT if we create a GOT, although the PLT
4001 // might be empty.
4002 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4003 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4004 (elfcpp::SHF_ALLOC
4005 | elfcpp::SHF_WRITE),
4006 this->got_plt_, false, false,
4007 false, false);
4008
4009 // The first three entries are reserved.
4010 this->got_plt_->set_current_data_size(3 * 4);
4011
4012 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4013 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4014 Symbol_table::PREDEFINED,
4015 this->got_plt_,
4016 0, 0, elfcpp::STT_OBJECT,
4017 elfcpp::STB_LOCAL,
4018 elfcpp::STV_HIDDEN, 0,
4019 false, false);
4020 }
4021 return this->got_;
4022 }
4023
4024 // Get the dynamic reloc section, creating it if necessary.
4025
4026 template<bool big_endian>
4027 typename Target_arm<big_endian>::Reloc_section*
4028 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4029 {
4030 if (this->rel_dyn_ == NULL)
4031 {
4032 gold_assert(layout != NULL);
4033 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4034 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4035 elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4036 false, false, false);
4037 }
4038 return this->rel_dyn_;
4039 }
4040
4041 // Insn_template methods.
4042
4043 // Return byte size of an instruction template.
4044
4045 size_t
4046 Insn_template::size() const
4047 {
4048 switch (this->type())
4049 {
4050 case THUMB16_TYPE:
4051 case THUMB16_SPECIAL_TYPE:
4052 return 2;
4053 case ARM_TYPE:
4054 case THUMB32_TYPE:
4055 case DATA_TYPE:
4056 return 4;
4057 default:
4058 gold_unreachable();
4059 }
4060 }
4061
4062 // Return alignment of an instruction template.
4063
4064 unsigned
4065 Insn_template::alignment() const
4066 {
4067 switch (this->type())
4068 {
4069 case THUMB16_TYPE:
4070 case THUMB16_SPECIAL_TYPE:
4071 case THUMB32_TYPE:
4072 return 2;
4073 case ARM_TYPE:
4074 case DATA_TYPE:
4075 return 4;
4076 default:
4077 gold_unreachable();
4078 }
4079 }
4080
4081 // Stub_template methods.
4082
4083 Stub_template::Stub_template(
4084 Stub_type type, const Insn_template* insns,
4085 size_t insn_count)
4086 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4087 entry_in_thumb_mode_(false), relocs_()
4088 {
4089 off_t offset = 0;
4090
4091 // Compute byte size and alignment of stub template.
4092 for (size_t i = 0; i < insn_count; i++)
4093 {
4094 unsigned insn_alignment = insns[i].alignment();
4095 size_t insn_size = insns[i].size();
4096 gold_assert((offset & (insn_alignment - 1)) == 0);
4097 this->alignment_ = std::max(this->alignment_, insn_alignment);
4098 switch (insns[i].type())
4099 {
4100 case Insn_template::THUMB16_TYPE:
4101 case Insn_template::THUMB16_SPECIAL_TYPE:
4102 if (i == 0)
4103 this->entry_in_thumb_mode_ = true;
4104 break;
4105
4106 case Insn_template::THUMB32_TYPE:
4107 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4108 this->relocs_.push_back(Reloc(i, offset));
4109 if (i == 0)
4110 this->entry_in_thumb_mode_ = true;
4111 break;
4112
4113 case Insn_template::ARM_TYPE:
4114 // Handle cases where the target is encoded within the
4115 // instruction.
4116 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4117 this->relocs_.push_back(Reloc(i, offset));
4118 break;
4119
4120 case Insn_template::DATA_TYPE:
4121 // Entry point cannot be data.
4122 gold_assert(i != 0);
4123 this->relocs_.push_back(Reloc(i, offset));
4124 break;
4125
4126 default:
4127 gold_unreachable();
4128 }
4129 offset += insn_size;
4130 }
4131 this->size_ = offset;
4132 }
4133
4134 // Stub methods.
4135
4136 // Template to implement do_write for a specific target endianness.
4137
4138 template<bool big_endian>
4139 void inline
4140 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4141 {
4142 const Stub_template* stub_template = this->stub_template();
4143 const Insn_template* insns = stub_template->insns();
4144
4145 // FIXME: We do not handle BE8 encoding yet.
4146 unsigned char* pov = view;
4147 for (size_t i = 0; i < stub_template->insn_count(); i++)
4148 {
4149 switch (insns[i].type())
4150 {
4151 case Insn_template::THUMB16_TYPE:
4152 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4153 break;
4154 case Insn_template::THUMB16_SPECIAL_TYPE:
4155 elfcpp::Swap<16, big_endian>::writeval(
4156 pov,
4157 this->thumb16_special(i));
4158 break;
4159 case Insn_template::THUMB32_TYPE:
4160 {
4161 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4162 uint32_t lo = insns[i].data() & 0xffff;
4163 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4164 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4165 }
4166 break;
4167 case Insn_template::ARM_TYPE:
4168 case Insn_template::DATA_TYPE:
4169 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4170 break;
4171 default:
4172 gold_unreachable();
4173 }
4174 pov += insns[i].size();
4175 }
4176 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4177 }
4178
4179 // Reloc_stub::Key methods.
4180
4181 // Dump a Key as a string for debugging.
4182
4183 std::string
4184 Reloc_stub::Key::name() const
4185 {
4186 if (this->r_sym_ == invalid_index)
4187 {
4188 // Global symbol key name
4189 // <stub-type>:<symbol name>:<addend>.
4190 const std::string sym_name = this->u_.symbol->name();
4191 // We need to print two hex number and two colons. So just add 100 bytes
4192 // to the symbol name size.
4193 size_t len = sym_name.size() + 100;
4194 char* buffer = new char[len];
4195 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4196 sym_name.c_str(), this->addend_);
4197 gold_assert(c > 0 && c < static_cast<int>(len));
4198 delete[] buffer;
4199 return std::string(buffer);
4200 }
4201 else
4202 {
4203 // local symbol key name
4204 // <stub-type>:<object>:<r_sym>:<addend>.
4205 const size_t len = 200;
4206 char buffer[len];
4207 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4208 this->u_.relobj, this->r_sym_, this->addend_);
4209 gold_assert(c > 0 && c < static_cast<int>(len));
4210 return std::string(buffer);
4211 }
4212 }
4213
4214 // Reloc_stub methods.
4215
4216 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4217 // LOCATION to DESTINATION.
4218 // This code is based on the arm_type_of_stub function in
4219 // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4220 // class simple.
4221
4222 Stub_type
4223 Reloc_stub::stub_type_for_reloc(
4224 unsigned int r_type,
4225 Arm_address location,
4226 Arm_address destination,
4227 bool target_is_thumb)
4228 {
4229 Stub_type stub_type = arm_stub_none;
4230
4231 // This is a bit ugly but we want to avoid using a templated class for
4232 // big and little endianities.
4233 bool may_use_blx;
4234 bool should_force_pic_veneer;
4235 bool thumb2;
4236 bool thumb_only;
4237 if (parameters->target().is_big_endian())
4238 {
4239 const Target_arm<true>* big_endian_target =
4240 Target_arm<true>::default_target();
4241 may_use_blx = big_endian_target->may_use_blx();
4242 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4243 thumb2 = big_endian_target->using_thumb2();
4244 thumb_only = big_endian_target->using_thumb_only();
4245 }
4246 else
4247 {
4248 const Target_arm<false>* little_endian_target =
4249 Target_arm<false>::default_target();
4250 may_use_blx = little_endian_target->may_use_blx();
4251 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4252 thumb2 = little_endian_target->using_thumb2();
4253 thumb_only = little_endian_target->using_thumb_only();
4254 }
4255
4256 int64_t branch_offset;
4257 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4258 {
4259 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4260 // base address (instruction address + 4).
4261 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4262 destination = utils::bit_select(destination, location, 0x2);
4263 branch_offset = static_cast<int64_t>(destination) - location;
4264
4265 // Handle cases where:
4266 // - this call goes too far (different Thumb/Thumb2 max
4267 // distance)
4268 // - it's a Thumb->Arm call and blx is not available, or it's a
4269 // Thumb->Arm branch (not bl). A stub is needed in this case.
4270 if ((!thumb2
4271 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4272 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4273 || (thumb2
4274 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4275 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4276 || ((!target_is_thumb)
4277 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4278 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4279 {
4280 if (target_is_thumb)
4281 {
4282 // Thumb to thumb.
4283 if (!thumb_only)
4284 {
4285 stub_type = (parameters->options().shared()
4286 || should_force_pic_veneer)
4287 // PIC stubs.
4288 ? ((may_use_blx
4289 && (r_type == elfcpp::R_ARM_THM_CALL))
4290 // V5T and above. Stub starts with ARM code, so
4291 // we must be able to switch mode before
4292 // reaching it, which is only possible for 'bl'
4293 // (ie R_ARM_THM_CALL relocation).
4294 ? arm_stub_long_branch_any_thumb_pic
4295 // On V4T, use Thumb code only.
4296 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4297
4298 // non-PIC stubs.
4299 : ((may_use_blx
4300 && (r_type == elfcpp::R_ARM_THM_CALL))
4301 ? arm_stub_long_branch_any_any // V5T and above.
4302 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4303 }
4304 else
4305 {
4306 stub_type = (parameters->options().shared()
4307 || should_force_pic_veneer)
4308 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4309 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4310 }
4311 }
4312 else
4313 {
4314 // Thumb to arm.
4315
4316 // FIXME: We should check that the input section is from an
4317 // object that has interwork enabled.
4318
4319 stub_type = (parameters->options().shared()
4320 || should_force_pic_veneer)
4321 // PIC stubs.
4322 ? ((may_use_blx
4323 && (r_type == elfcpp::R_ARM_THM_CALL))
4324 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4325 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4326
4327 // non-PIC stubs.
4328 : ((may_use_blx
4329 && (r_type == elfcpp::R_ARM_THM_CALL))
4330 ? arm_stub_long_branch_any_any // V5T and above.
4331 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4332
4333 // Handle v4t short branches.
4334 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4335 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4336 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4337 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4338 }
4339 }
4340 }
4341 else if (r_type == elfcpp::R_ARM_CALL
4342 || r_type == elfcpp::R_ARM_JUMP24
4343 || r_type == elfcpp::R_ARM_PLT32)
4344 {
4345 branch_offset = static_cast<int64_t>(destination) - location;
4346 if (target_is_thumb)
4347 {
4348 // Arm to thumb.
4349
4350 // FIXME: We should check that the input section is from an
4351 // object that has interwork enabled.
4352
4353 // We have an extra 2-bytes reach because of
4354 // the mode change (bit 24 (H) of BLX encoding).
4355 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4356 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4357 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4358 || (r_type == elfcpp::R_ARM_JUMP24)
4359 || (r_type == elfcpp::R_ARM_PLT32))
4360 {
4361 stub_type = (parameters->options().shared()
4362 || should_force_pic_veneer)
4363 // PIC stubs.
4364 ? (may_use_blx
4365 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4366 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4367
4368 // non-PIC stubs.
4369 : (may_use_blx
4370 ? arm_stub_long_branch_any_any // V5T and above.
4371 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4372 }
4373 }
4374 else
4375 {
4376 // Arm to arm.
4377 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4378 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4379 {
4380 stub_type = (parameters->options().shared()
4381 || should_force_pic_veneer)
4382 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4383 : arm_stub_long_branch_any_any; /// non-PIC.
4384 }
4385 }
4386 }
4387
4388 return stub_type;
4389 }
4390
4391 // Cortex_a8_stub methods.
4392
4393 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4394 // I is the position of the instruction template in the stub template.
4395
4396 uint16_t
4397 Cortex_a8_stub::do_thumb16_special(size_t i)
4398 {
4399 // The only use of this is to copy condition code from a conditional
4400 // branch being worked around to the corresponding conditional branch in
4401 // to the stub.
4402 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4403 && i == 0);
4404 uint16_t data = this->stub_template()->insns()[i].data();
4405 gold_assert((data & 0xff00U) == 0xd000U);
4406 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4407 return data;
4408 }
4409
4410 // Stub_factory methods.
4411
4412 Stub_factory::Stub_factory()
4413 {
4414 // The instruction template sequences are declared as static
4415 // objects and initialized first time the constructor runs.
4416
4417 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4418 // to reach the stub if necessary.
4419 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4420 {
4421 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4422 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4423 // dcd R_ARM_ABS32(X)
4424 };
4425
4426 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4427 // available.
4428 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4429 {
4430 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4431 Insn_template::arm_insn(0xe12fff1c), // bx ip
4432 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4433 // dcd R_ARM_ABS32(X)
4434 };
4435
4436 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4437 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4438 {
4439 Insn_template::thumb16_insn(0xb401), // push {r0}
4440 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4441 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4442 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4443 Insn_template::thumb16_insn(0x4760), // bx ip
4444 Insn_template::thumb16_insn(0xbf00), // nop
4445 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4446 // dcd R_ARM_ABS32(X)
4447 };
4448
4449 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4450 // allowed.
4451 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4452 {
4453 Insn_template::thumb16_insn(0x4778), // bx pc
4454 Insn_template::thumb16_insn(0x46c0), // nop
4455 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4456 Insn_template::arm_insn(0xe12fff1c), // bx ip
4457 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4458 // dcd R_ARM_ABS32(X)
4459 };
4460
4461 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4462 // available.
4463 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4464 {
4465 Insn_template::thumb16_insn(0x4778), // bx pc
4466 Insn_template::thumb16_insn(0x46c0), // nop
4467 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4468 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4469 // dcd R_ARM_ABS32(X)
4470 };
4471
4472 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4473 // one, when the destination is close enough.
4474 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4475 {
4476 Insn_template::thumb16_insn(0x4778), // bx pc
4477 Insn_template::thumb16_insn(0x46c0), // nop
4478 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4479 };
4480
4481 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4482 // blx to reach the stub if necessary.
4483 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4484 {
4485 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4486 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4487 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4488 // dcd R_ARM_REL32(X-4)
4489 };
4490
4491 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4492 // blx to reach the stub if necessary. We can not add into pc;
4493 // it is not guaranteed to mode switch (different in ARMv6 and
4494 // ARMv7).
4495 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4496 {
4497 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4498 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4499 Insn_template::arm_insn(0xe12fff1c), // bx ip
4500 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4501 // dcd R_ARM_REL32(X)
4502 };
4503
4504 // V4T ARM -> ARM long branch stub, PIC.
4505 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4506 {
4507 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4508 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4509 Insn_template::arm_insn(0xe12fff1c), // bx ip
4510 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4511 // dcd R_ARM_REL32(X)
4512 };
4513
4514 // V4T Thumb -> ARM long branch stub, PIC.
4515 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4516 {
4517 Insn_template::thumb16_insn(0x4778), // bx pc
4518 Insn_template::thumb16_insn(0x46c0), // nop
4519 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4520 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4521 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4522 // dcd R_ARM_REL32(X)
4523 };
4524
4525 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4526 // architectures.
4527 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4528 {
4529 Insn_template::thumb16_insn(0xb401), // push {r0}
4530 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4531 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4532 Insn_template::thumb16_insn(0x4484), // add ip, r0
4533 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4534 Insn_template::thumb16_insn(0x4760), // bx ip
4535 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4536 // dcd R_ARM_REL32(X)
4537 };
4538
4539 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4540 // allowed.
4541 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4542 {
4543 Insn_template::thumb16_insn(0x4778), // bx pc
4544 Insn_template::thumb16_insn(0x46c0), // nop
4545 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4546 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4547 Insn_template::arm_insn(0xe12fff1c), // bx ip
4548 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4549 // dcd R_ARM_REL32(X)
4550 };
4551
4552 // Cortex-A8 erratum-workaround stubs.
4553
4554 // Stub used for conditional branches (which may be beyond +/-1MB away,
4555 // so we can't use a conditional branch to reach this stub).
4556
4557 // original code:
4558 //
4559 // b<cond> X
4560 // after:
4561 //
4562 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4563 {
4564 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4565 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4566 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4567 // b.w X
4568 };
4569
4570 // Stub used for b.w and bl.w instructions.
4571
4572 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4573 {
4574 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4575 };
4576
4577 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4578 {
4579 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4580 };
4581
4582 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4583 // instruction (which switches to ARM mode) to point to this stub. Jump to
4584 // the real destination using an ARM-mode branch.
4585 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4586 {
4587 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4588 };
4589
4590 // Stub used to provide an interworking for R_ARM_V4BX relocation
4591 // (bx r[n] instruction).
4592 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4593 {
4594 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4595 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4596 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4597 };
4598
4599 // Fill in the stub template look-up table. Stub templates are constructed
4600 // per instance of Stub_factory for fast look-up without locking
4601 // in a thread-enabled environment.
4602
4603 this->stub_templates_[arm_stub_none] =
4604 new Stub_template(arm_stub_none, NULL, 0);
4605
4606 #define DEF_STUB(x) \
4607 do \
4608 { \
4609 size_t array_size \
4610 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4611 Stub_type type = arm_stub_##x; \
4612 this->stub_templates_[type] = \
4613 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4614 } \
4615 while (0);
4616
4617 DEF_STUBS
4618 #undef DEF_STUB
4619 }
4620
4621 // Stub_table methods.
4622
4623 // Removel all Cortex-A8 stub.
4624
4625 template<bool big_endian>
4626 void
4627 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4628 {
4629 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4630 p != this->cortex_a8_stubs_.end();
4631 ++p)
4632 delete p->second;
4633 this->cortex_a8_stubs_.clear();
4634 }
4635
4636 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4637
4638 template<bool big_endian>
4639 void
4640 Stub_table<big_endian>::relocate_stub(
4641 Stub* stub,
4642 const Relocate_info<32, big_endian>* relinfo,
4643 Target_arm<big_endian>* arm_target,
4644 Output_section* output_section,
4645 unsigned char* view,
4646 Arm_address address,
4647 section_size_type view_size)
4648 {
4649 const Stub_template* stub_template = stub->stub_template();
4650 if (stub_template->reloc_count() != 0)
4651 {
4652 // Adjust view to cover the stub only.
4653 section_size_type offset = stub->offset();
4654 section_size_type stub_size = stub_template->size();
4655 gold_assert(offset + stub_size <= view_size);
4656
4657 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4658 address + offset, stub_size);
4659 }
4660 }
4661
4662 // Relocate all stubs in this stub table.
4663
4664 template<bool big_endian>
4665 void
4666 Stub_table<big_endian>::relocate_stubs(
4667 const Relocate_info<32, big_endian>* relinfo,
4668 Target_arm<big_endian>* arm_target,
4669 Output_section* output_section,
4670 unsigned char* view,
4671 Arm_address address,
4672 section_size_type view_size)
4673 {
4674 // If we are passed a view bigger than the stub table's. we need to
4675 // adjust the view.
4676 gold_assert(address == this->address()
4677 && (view_size
4678 == static_cast<section_size_type>(this->data_size())));
4679
4680 // Relocate all relocation stubs.
4681 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4682 p != this->reloc_stubs_.end();
4683 ++p)
4684 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4685 address, view_size);
4686
4687 // Relocate all Cortex-A8 stubs.
4688 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4689 p != this->cortex_a8_stubs_.end();
4690 ++p)
4691 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4692 address, view_size);
4693
4694 // Relocate all ARM V4BX stubs.
4695 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4696 p != this->arm_v4bx_stubs_.end();
4697 ++p)
4698 {
4699 if (*p != NULL)
4700 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4701 address, view_size);
4702 }
4703 }
4704
4705 // Write out the stubs to file.
4706
4707 template<bool big_endian>
4708 void
4709 Stub_table<big_endian>::do_write(Output_file* of)
4710 {
4711 off_t offset = this->offset();
4712 const section_size_type oview_size =
4713 convert_to_section_size_type(this->data_size());
4714 unsigned char* const oview = of->get_output_view(offset, oview_size);
4715
4716 // Write relocation stubs.
4717 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4718 p != this->reloc_stubs_.end();
4719 ++p)
4720 {
4721 Reloc_stub* stub = p->second;
4722 Arm_address address = this->address() + stub->offset();
4723 gold_assert(address
4724 == align_address(address,
4725 stub->stub_template()->alignment()));
4726 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4727 big_endian);
4728 }
4729
4730 // Write Cortex-A8 stubs.
4731 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4732 p != this->cortex_a8_stubs_.end();
4733 ++p)
4734 {
4735 Cortex_a8_stub* stub = p->second;
4736 Arm_address address = this->address() + stub->offset();
4737 gold_assert(address
4738 == align_address(address,
4739 stub->stub_template()->alignment()));
4740 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4741 big_endian);
4742 }
4743
4744 // Write ARM V4BX relocation stubs.
4745 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4746 p != this->arm_v4bx_stubs_.end();
4747 ++p)
4748 {
4749 if (*p == NULL)
4750 continue;
4751
4752 Arm_address address = this->address() + (*p)->offset();
4753 gold_assert(address
4754 == align_address(address,
4755 (*p)->stub_template()->alignment()));
4756 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4757 big_endian);
4758 }
4759
4760 of->write_output_view(this->offset(), oview_size, oview);
4761 }
4762
4763 // Update the data size and address alignment of the stub table at the end
4764 // of a relaxation pass. Return true if either the data size or the
4765 // alignment changed in this relaxation pass.
4766
4767 template<bool big_endian>
4768 bool
4769 Stub_table<big_endian>::update_data_size_and_addralign()
4770 {
4771 // Go over all stubs in table to compute data size and address alignment.
4772 off_t size = this->reloc_stubs_size_;
4773 unsigned addralign = this->reloc_stubs_addralign_;
4774
4775 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4776 p != this->cortex_a8_stubs_.end();
4777 ++p)
4778 {
4779 const Stub_template* stub_template = p->second->stub_template();
4780 addralign = std::max(addralign, stub_template->alignment());
4781 size = (align_address(size, stub_template->alignment())
4782 + stub_template->size());
4783 }
4784
4785 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4786 p != this->arm_v4bx_stubs_.end();
4787 ++p)
4788 {
4789 if (*p == NULL)
4790 continue;
4791
4792 const Stub_template* stub_template = (*p)->stub_template();
4793 addralign = std::max(addralign, stub_template->alignment());
4794 size = (align_address(size, stub_template->alignment())
4795 + stub_template->size());
4796 }
4797
4798 // Check if either data size or alignment changed in this pass.
4799 // Update prev_data_size_ and prev_addralign_. These will be used
4800 // as the current data size and address alignment for the next pass.
4801 bool changed = size != this->prev_data_size_;
4802 this->prev_data_size_ = size;
4803
4804 if (addralign != this->prev_addralign_)
4805 changed = true;
4806 this->prev_addralign_ = addralign;
4807
4808 return changed;
4809 }
4810
4811 // Finalize the stubs. This sets the offsets of the stubs within the stub
4812 // table. It also marks all input sections needing Cortex-A8 workaround.
4813
4814 template<bool big_endian>
4815 void
4816 Stub_table<big_endian>::finalize_stubs()
4817 {
4818 off_t off = this->reloc_stubs_size_;
4819 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4820 p != this->cortex_a8_stubs_.end();
4821 ++p)
4822 {
4823 Cortex_a8_stub* stub = p->second;
4824 const Stub_template* stub_template = stub->stub_template();
4825 uint64_t stub_addralign = stub_template->alignment();
4826 off = align_address(off, stub_addralign);
4827 stub->set_offset(off);
4828 off += stub_template->size();
4829
4830 // Mark input section so that we can determine later if a code section
4831 // needs the Cortex-A8 workaround quickly.
4832 Arm_relobj<big_endian>* arm_relobj =
4833 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4834 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4835 }
4836
4837 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4838 p != this->arm_v4bx_stubs_.end();
4839 ++p)
4840 {
4841 if (*p == NULL)
4842 continue;
4843
4844 const Stub_template* stub_template = (*p)->stub_template();
4845 uint64_t stub_addralign = stub_template->alignment();
4846 off = align_address(off, stub_addralign);
4847 (*p)->set_offset(off);
4848 off += stub_template->size();
4849 }
4850
4851 gold_assert(off <= this->prev_data_size_);
4852 }
4853
4854 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4855 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
4856 // of the address range seen by the linker.
4857
4858 template<bool big_endian>
4859 void
4860 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4861 Target_arm<big_endian>* arm_target,
4862 unsigned char* view,
4863 Arm_address view_address,
4864 section_size_type view_size)
4865 {
4866 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4867 for (Cortex_a8_stub_list::const_iterator p =
4868 this->cortex_a8_stubs_.lower_bound(view_address);
4869 ((p != this->cortex_a8_stubs_.end())
4870 && (p->first < (view_address + view_size)));
4871 ++p)
4872 {
4873 // We do not store the THUMB bit in the LSB of either the branch address
4874 // or the stub offset. There is no need to strip the LSB.
4875 Arm_address branch_address = p->first;
4876 const Cortex_a8_stub* stub = p->second;
4877 Arm_address stub_address = this->address() + stub->offset();
4878
4879 // Offset of the branch instruction relative to this view.
4880 section_size_type offset =
4881 convert_to_section_size_type(branch_address - view_address);
4882 gold_assert((offset + 4) <= view_size);
4883
4884 arm_target->apply_cortex_a8_workaround(stub, stub_address,
4885 view + offset, branch_address);
4886 }
4887 }
4888
4889 // Arm_input_section methods.
4890
4891 // Initialize an Arm_input_section.
4892
4893 template<bool big_endian>
4894 void
4895 Arm_input_section<big_endian>::init()
4896 {
4897 Relobj* relobj = this->relobj();
4898 unsigned int shndx = this->shndx();
4899
4900 // Cache these to speed up size and alignment queries. It is too slow
4901 // to call section_addraglin and section_size every time.
4902 this->original_addralign_ = relobj->section_addralign(shndx);
4903 this->original_size_ = relobj->section_size(shndx);
4904
4905 // We want to make this look like the original input section after
4906 // output sections are finalized.
4907 Output_section* os = relobj->output_section(shndx);
4908 off_t offset = relobj->output_section_offset(shndx);
4909 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
4910 this->set_address(os->address() + offset);
4911 this->set_file_offset(os->offset() + offset);
4912
4913 this->set_current_data_size(this->original_size_);
4914 this->finalize_data_size();
4915 }
4916
4917 template<bool big_endian>
4918 void
4919 Arm_input_section<big_endian>::do_write(Output_file* of)
4920 {
4921 // We have to write out the original section content.
4922 section_size_type section_size;
4923 const unsigned char* section_contents =
4924 this->relobj()->section_contents(this->shndx(), &section_size, false);
4925 of->write(this->offset(), section_contents, section_size);
4926
4927 // If this owns a stub table and it is not empty, write it.
4928 if (this->is_stub_table_owner() && !this->stub_table_->empty())
4929 this->stub_table_->write(of);
4930 }
4931
4932 // Finalize data size.
4933
4934 template<bool big_endian>
4935 void
4936 Arm_input_section<big_endian>::set_final_data_size()
4937 {
4938 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
4939
4940 if (this->is_stub_table_owner())
4941 {
4942 // The stub table comes after the original section contents.
4943 off = align_address(off, this->stub_table_->addralign());
4944 this->stub_table_->set_address_and_file_offset(this->address() + off,
4945 this->offset() + off);
4946 off += this->stub_table_->data_size();
4947 }
4948 this->set_data_size(off);
4949 }
4950
4951 // Reset address and file offset.
4952
4953 template<bool big_endian>
4954 void
4955 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
4956 {
4957 // Size of the original input section contents.
4958 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
4959
4960 // If this is a stub table owner, account for the stub table size.
4961 if (this->is_stub_table_owner())
4962 {
4963 Stub_table<big_endian>* stub_table = this->stub_table_;
4964
4965 // Reset the stub table's address and file offset. The
4966 // current data size for child will be updated after that.
4967 stub_table_->reset_address_and_file_offset();
4968 off = align_address(off, stub_table_->addralign());
4969 off += stub_table->current_data_size();
4970 }
4971
4972 this->set_current_data_size(off);
4973 }
4974
4975 // Arm_exidx_cantunwind methods.
4976
4977 // Write this to Output file OF for a fixed endianness.
4978
4979 template<bool big_endian>
4980 void
4981 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
4982 {
4983 off_t offset = this->offset();
4984 const section_size_type oview_size = 8;
4985 unsigned char* const oview = of->get_output_view(offset, oview_size);
4986
4987 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4988 Valtype* wv = reinterpret_cast<Valtype*>(oview);
4989
4990 Output_section* os = this->relobj_->output_section(this->shndx_);
4991 gold_assert(os != NULL);
4992
4993 Arm_relobj<big_endian>* arm_relobj =
4994 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
4995 Arm_address output_offset =
4996 arm_relobj->get_output_section_offset(this->shndx_);
4997 Arm_address section_start;
4998 if (output_offset != Arm_relobj<big_endian>::invalid_address)
4999 section_start = os->address() + output_offset;
5000 else
5001 {
5002 // Currently this only happens for a relaxed section.
5003 const Output_relaxed_input_section* poris =
5004 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5005 gold_assert(poris != NULL);
5006 section_start = poris->address();
5007 }
5008
5009 // We always append this to the end of an EXIDX section.
5010 Arm_address output_address =
5011 section_start + this->relobj_->section_size(this->shndx_);
5012
5013 // Write out the entry. The first word either points to the beginning
5014 // or after the end of a text section. The second word is the special
5015 // EXIDX_CANTUNWIND value.
5016 uint32_t prel31_offset = output_address - this->address();
5017 if (utils::has_overflow<31>(offset))
5018 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5019 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5020 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5021
5022 of->write_output_view(this->offset(), oview_size, oview);
5023 }
5024
5025 // Arm_exidx_merged_section methods.
5026
5027 // Constructor for Arm_exidx_merged_section.
5028 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5029 // SECTION_OFFSET_MAP points to a section offset map describing how
5030 // parts of the input section are mapped to output. DELETED_BYTES is
5031 // the number of bytes deleted from the EXIDX input section.
5032
5033 Arm_exidx_merged_section::Arm_exidx_merged_section(
5034 const Arm_exidx_input_section& exidx_input_section,
5035 const Arm_exidx_section_offset_map& section_offset_map,
5036 uint32_t deleted_bytes)
5037 : Output_relaxed_input_section(exidx_input_section.relobj(),
5038 exidx_input_section.shndx(),
5039 exidx_input_section.addralign()),
5040 exidx_input_section_(exidx_input_section),
5041 section_offset_map_(section_offset_map)
5042 {
5043 // Fix size here so that we do not need to implement set_final_data_size.
5044 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5045 this->fix_data_size();
5046 }
5047
5048 // Given an input OBJECT, an input section index SHNDX within that
5049 // object, and an OFFSET relative to the start of that input
5050 // section, return whether or not the corresponding offset within
5051 // the output section is known. If this function returns true, it
5052 // sets *POUTPUT to the output offset. The value -1 indicates that
5053 // this input offset is being discarded.
5054
5055 bool
5056 Arm_exidx_merged_section::do_output_offset(
5057 const Relobj* relobj,
5058 unsigned int shndx,
5059 section_offset_type offset,
5060 section_offset_type* poutput) const
5061 {
5062 // We only handle offsets for the original EXIDX input section.
5063 if (relobj != this->exidx_input_section_.relobj()
5064 || shndx != this->exidx_input_section_.shndx())
5065 return false;
5066
5067 section_offset_type section_size =
5068 convert_types<section_offset_type>(this->exidx_input_section_.size());
5069 if (offset < 0 || offset >= section_size)
5070 // Input offset is out of valid range.
5071 *poutput = -1;
5072 else
5073 {
5074 // We need to look up the section offset map to determine the output
5075 // offset. Find the reference point in map that is first offset
5076 // bigger than or equal to this offset.
5077 Arm_exidx_section_offset_map::const_iterator p =
5078 this->section_offset_map_.lower_bound(offset);
5079
5080 // The section offset maps are build such that this should not happen if
5081 // input offset is in the valid range.
5082 gold_assert(p != this->section_offset_map_.end());
5083
5084 // We need to check if this is dropped.
5085 section_offset_type ref = p->first;
5086 section_offset_type mapped_ref = p->second;
5087
5088 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5089 // Offset is present in output.
5090 *poutput = mapped_ref + (offset - ref);
5091 else
5092 // Offset is discarded owing to EXIDX entry merging.
5093 *poutput = -1;
5094 }
5095
5096 return true;
5097 }
5098
5099 // Write this to output file OF.
5100
5101 void
5102 Arm_exidx_merged_section::do_write(Output_file* of)
5103 {
5104 // If we retain or discard the whole EXIDX input section, we would
5105 // not be here.
5106 gold_assert(this->data_size() != this->exidx_input_section_.size()
5107 && this->data_size() != 0);
5108
5109 off_t offset = this->offset();
5110 const section_size_type oview_size = this->data_size();
5111 unsigned char* const oview = of->get_output_view(offset, oview_size);
5112
5113 Output_section* os = this->relobj()->output_section(this->shndx());
5114 gold_assert(os != NULL);
5115
5116 // Get contents of EXIDX input section.
5117 section_size_type section_size;
5118 const unsigned char* section_contents =
5119 this->relobj()->section_contents(this->shndx(), &section_size, false);
5120 gold_assert(section_size == this->exidx_input_section_.size());
5121
5122 // Go over spans of input offsets and write only those that are not
5123 // discarded.
5124 section_offset_type in_start = 0;
5125 section_offset_type out_start = 0;
5126 for(Arm_exidx_section_offset_map::const_iterator p =
5127 this->section_offset_map_.begin();
5128 p != this->section_offset_map_.end();
5129 ++p)
5130 {
5131 section_offset_type in_end = p->first;
5132 gold_assert(in_end >= in_start);
5133 section_offset_type out_end = p->second;
5134 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5135 if (out_end != -1)
5136 {
5137 size_t out_chunk_size =
5138 convert_types<size_t>(out_end - out_start + 1);
5139 gold_assert(out_chunk_size == in_chunk_size);
5140 memcpy(oview + out_start, section_contents + in_start,
5141 out_chunk_size);
5142 out_start += out_chunk_size;
5143 }
5144 in_start += in_chunk_size;
5145 }
5146
5147 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5148 of->write_output_view(this->offset(), oview_size, oview);
5149 }
5150
5151 // Arm_exidx_fixup methods.
5152
5153 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5154 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5155 // points to the end of the last seen EXIDX section.
5156
5157 void
5158 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5159 {
5160 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5161 && this->last_input_section_ != NULL)
5162 {
5163 Relobj* relobj = this->last_input_section_->relobj();
5164 unsigned int text_shndx = this->last_input_section_->link();
5165 Arm_exidx_cantunwind* cantunwind =
5166 new Arm_exidx_cantunwind(relobj, text_shndx);
5167 this->exidx_output_section_->add_output_section_data(cantunwind);
5168 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5169 }
5170 }
5171
5172 // Process an EXIDX section entry in input. Return whether this entry
5173 // can be deleted in the output. SECOND_WORD in the second word of the
5174 // EXIDX entry.
5175
5176 bool
5177 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5178 {
5179 bool delete_entry;
5180 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5181 {
5182 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5183 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5184 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5185 }
5186 else if ((second_word & 0x80000000) != 0)
5187 {
5188 // Inlined unwinding data. Merge if equal to previous.
5189 delete_entry = (this->last_unwind_type_ == UT_INLINED_ENTRY
5190 && this->last_inlined_entry_ == second_word);
5191 this->last_unwind_type_ = UT_INLINED_ENTRY;
5192 this->last_inlined_entry_ = second_word;
5193 }
5194 else
5195 {
5196 // Normal table entry. In theory we could merge these too,
5197 // but duplicate entries are likely to be much less common.
5198 delete_entry = false;
5199 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5200 }
5201 return delete_entry;
5202 }
5203
5204 // Update the current section offset map during EXIDX section fix-up.
5205 // If there is no map, create one. INPUT_OFFSET is the offset of a
5206 // reference point, DELETED_BYTES is the number of deleted by in the
5207 // section so far. If DELETE_ENTRY is true, the reference point and
5208 // all offsets after the previous reference point are discarded.
5209
5210 void
5211 Arm_exidx_fixup::update_offset_map(
5212 section_offset_type input_offset,
5213 section_size_type deleted_bytes,
5214 bool delete_entry)
5215 {
5216 if (this->section_offset_map_ == NULL)
5217 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5218 section_offset_type output_offset;
5219 if (delete_entry)
5220 output_offset = Arm_exidx_input_section::invalid_offset;
5221 else
5222 output_offset = input_offset - deleted_bytes;
5223 (*this->section_offset_map_)[input_offset] = output_offset;
5224 }
5225
5226 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5227 // bytes deleted. If some entries are merged, also store a pointer to a newly
5228 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5229 // caller owns the map and is responsible for releasing it after use.
5230
5231 template<bool big_endian>
5232 uint32_t
5233 Arm_exidx_fixup::process_exidx_section(
5234 const Arm_exidx_input_section* exidx_input_section,
5235 Arm_exidx_section_offset_map** psection_offset_map)
5236 {
5237 Relobj* relobj = exidx_input_section->relobj();
5238 unsigned shndx = exidx_input_section->shndx();
5239 section_size_type section_size;
5240 const unsigned char* section_contents =
5241 relobj->section_contents(shndx, &section_size, false);
5242
5243 if ((section_size % 8) != 0)
5244 {
5245 // Something is wrong with this section. Better not touch it.
5246 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5247 relobj->name().c_str(), shndx);
5248 this->last_input_section_ = exidx_input_section;
5249 this->last_unwind_type_ = UT_NONE;
5250 return 0;
5251 }
5252
5253 uint32_t deleted_bytes = 0;
5254 bool prev_delete_entry = false;
5255 gold_assert(this->section_offset_map_ == NULL);
5256
5257 for (section_size_type i = 0; i < section_size; i += 8)
5258 {
5259 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5260 const Valtype* wv =
5261 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5262 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5263
5264 bool delete_entry = this->process_exidx_entry(second_word);
5265
5266 // Entry deletion causes changes in output offsets. We use a std::map
5267 // to record these. And entry (x, y) means input offset x
5268 // is mapped to output offset y. If y is invalid_offset, then x is
5269 // dropped in the output. Because of the way std::map::lower_bound
5270 // works, we record the last offset in a region w.r.t to keeping or
5271 // dropping. If there is no entry (x0, y0) for an input offset x0,
5272 // the output offset y0 of it is determined by the output offset y1 of
5273 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5274 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5275 // y0 is also -1.
5276 if (delete_entry != prev_delete_entry && i != 0)
5277 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5278
5279 // Update total deleted bytes for this entry.
5280 if (delete_entry)
5281 deleted_bytes += 8;
5282
5283 prev_delete_entry = delete_entry;
5284 }
5285
5286 // If section offset map is not NULL, make an entry for the end of
5287 // section.
5288 if (this->section_offset_map_ != NULL)
5289 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5290
5291 *psection_offset_map = this->section_offset_map_;
5292 this->section_offset_map_ = NULL;
5293 this->last_input_section_ = exidx_input_section;
5294
5295 // Set the first output text section so that we can link the EXIDX output
5296 // section to it. Ignore any EXIDX input section that is completely merged.
5297 if (this->first_output_text_section_ == NULL
5298 && deleted_bytes != section_size)
5299 {
5300 unsigned int link = exidx_input_section->link();
5301 Output_section* os = relobj->output_section(link);
5302 gold_assert(os != NULL);
5303 this->first_output_text_section_ = os;
5304 }
5305
5306 return deleted_bytes;
5307 }
5308
5309 // Arm_output_section methods.
5310
5311 // Create a stub group for input sections from BEGIN to END. OWNER
5312 // points to the input section to be the owner a new stub table.
5313
5314 template<bool big_endian>
5315 void
5316 Arm_output_section<big_endian>::create_stub_group(
5317 Input_section_list::const_iterator begin,
5318 Input_section_list::const_iterator end,
5319 Input_section_list::const_iterator owner,
5320 Target_arm<big_endian>* target,
5321 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5322 {
5323 // We use a different kind of relaxed section in an EXIDX section.
5324 // The static casting from Output_relaxed_input_section to
5325 // Arm_input_section is invalid in an EXIDX section. We are okay
5326 // because we should not be calling this for an EXIDX section.
5327 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5328
5329 // Currently we convert ordinary input sections into relaxed sections only
5330 // at this point but we may want to support creating relaxed input section
5331 // very early. So we check here to see if owner is already a relaxed
5332 // section.
5333
5334 Arm_input_section<big_endian>* arm_input_section;
5335 if (owner->is_relaxed_input_section())
5336 {
5337 arm_input_section =
5338 Arm_input_section<big_endian>::as_arm_input_section(
5339 owner->relaxed_input_section());
5340 }
5341 else
5342 {
5343 gold_assert(owner->is_input_section());
5344 // Create a new relaxed input section.
5345 arm_input_section =
5346 target->new_arm_input_section(owner->relobj(), owner->shndx());
5347 new_relaxed_sections->push_back(arm_input_section);
5348 }
5349
5350 // Create a stub table.
5351 Stub_table<big_endian>* stub_table =
5352 target->new_stub_table(arm_input_section);
5353
5354 arm_input_section->set_stub_table(stub_table);
5355
5356 Input_section_list::const_iterator p = begin;
5357 Input_section_list::const_iterator prev_p;
5358
5359 // Look for input sections or relaxed input sections in [begin ... end].
5360 do
5361 {
5362 if (p->is_input_section() || p->is_relaxed_input_section())
5363 {
5364 // The stub table information for input sections live
5365 // in their objects.
5366 Arm_relobj<big_endian>* arm_relobj =
5367 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5368 arm_relobj->set_stub_table(p->shndx(), stub_table);
5369 }
5370 prev_p = p++;
5371 }
5372 while (prev_p != end);
5373 }
5374
5375 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5376 // of stub groups. We grow a stub group by adding input section until the
5377 // size is just below GROUP_SIZE. The last input section will be converted
5378 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5379 // input section after the stub table, effectively double the group size.
5380 //
5381 // This is similar to the group_sections() function in elf32-arm.c but is
5382 // implemented differently.
5383
5384 template<bool big_endian>
5385 void
5386 Arm_output_section<big_endian>::group_sections(
5387 section_size_type group_size,
5388 bool stubs_always_after_branch,
5389 Target_arm<big_endian>* target)
5390 {
5391 // We only care about sections containing code.
5392 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5393 return;
5394
5395 // States for grouping.
5396 typedef enum
5397 {
5398 // No group is being built.
5399 NO_GROUP,
5400 // A group is being built but the stub table is not found yet.
5401 // We keep group a stub group until the size is just under GROUP_SIZE.
5402 // The last input section in the group will be used as the stub table.
5403 FINDING_STUB_SECTION,
5404 // A group is being built and we have already found a stub table.
5405 // We enter this state to grow a stub group by adding input section
5406 // after the stub table. This effectively doubles the group size.
5407 HAS_STUB_SECTION
5408 } State;
5409
5410 // Any newly created relaxed sections are stored here.
5411 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5412
5413 State state = NO_GROUP;
5414 section_size_type off = 0;
5415 section_size_type group_begin_offset = 0;
5416 section_size_type group_end_offset = 0;
5417 section_size_type stub_table_end_offset = 0;
5418 Input_section_list::const_iterator group_begin =
5419 this->input_sections().end();
5420 Input_section_list::const_iterator stub_table =
5421 this->input_sections().end();
5422 Input_section_list::const_iterator group_end = this->input_sections().end();
5423 for (Input_section_list::const_iterator p = this->input_sections().begin();
5424 p != this->input_sections().end();
5425 ++p)
5426 {
5427 section_size_type section_begin_offset =
5428 align_address(off, p->addralign());
5429 section_size_type section_end_offset =
5430 section_begin_offset + p->data_size();
5431
5432 // Check to see if we should group the previously seens sections.
5433 switch (state)
5434 {
5435 case NO_GROUP:
5436 break;
5437
5438 case FINDING_STUB_SECTION:
5439 // Adding this section makes the group larger than GROUP_SIZE.
5440 if (section_end_offset - group_begin_offset >= group_size)
5441 {
5442 if (stubs_always_after_branch)
5443 {
5444 gold_assert(group_end != this->input_sections().end());
5445 this->create_stub_group(group_begin, group_end, group_end,
5446 target, &new_relaxed_sections);
5447 state = NO_GROUP;
5448 }
5449 else
5450 {
5451 // But wait, there's more! Input sections up to
5452 // stub_group_size bytes after the stub table can be
5453 // handled by it too.
5454 state = HAS_STUB_SECTION;
5455 stub_table = group_end;
5456 stub_table_end_offset = group_end_offset;
5457 }
5458 }
5459 break;
5460
5461 case HAS_STUB_SECTION:
5462 // Adding this section makes the post stub-section group larger
5463 // than GROUP_SIZE.
5464 if (section_end_offset - stub_table_end_offset >= group_size)
5465 {
5466 gold_assert(group_end != this->input_sections().end());
5467 this->create_stub_group(group_begin, group_end, stub_table,
5468 target, &new_relaxed_sections);
5469 state = NO_GROUP;
5470 }
5471 break;
5472
5473 default:
5474 gold_unreachable();
5475 }
5476
5477 // If we see an input section and currently there is no group, start
5478 // a new one. Skip any empty sections.
5479 if ((p->is_input_section() || p->is_relaxed_input_section())
5480 && (p->relobj()->section_size(p->shndx()) != 0))
5481 {
5482 if (state == NO_GROUP)
5483 {
5484 state = FINDING_STUB_SECTION;
5485 group_begin = p;
5486 group_begin_offset = section_begin_offset;
5487 }
5488
5489 // Keep track of the last input section seen.
5490 group_end = p;
5491 group_end_offset = section_end_offset;
5492 }
5493
5494 off = section_end_offset;
5495 }
5496
5497 // Create a stub group for any ungrouped sections.
5498 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5499 {
5500 gold_assert(group_end != this->input_sections().end());
5501 this->create_stub_group(group_begin, group_end,
5502 (state == FINDING_STUB_SECTION
5503 ? group_end
5504 : stub_table),
5505 target, &new_relaxed_sections);
5506 }
5507
5508 // Convert input section into relaxed input section in a batch.
5509 if (!new_relaxed_sections.empty())
5510 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5511
5512 // Update the section offsets
5513 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5514 {
5515 Arm_relobj<big_endian>* arm_relobj =
5516 Arm_relobj<big_endian>::as_arm_relobj(
5517 new_relaxed_sections[i]->relobj());
5518 unsigned int shndx = new_relaxed_sections[i]->shndx();
5519 // Tell Arm_relobj that this input section is converted.
5520 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5521 }
5522 }
5523
5524 // Append non empty text sections in this to LIST in ascending
5525 // order of their position in this.
5526
5527 template<bool big_endian>
5528 void
5529 Arm_output_section<big_endian>::append_text_sections_to_list(
5530 Text_section_list* list)
5531 {
5532 // We only care about text sections.
5533 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5534 return;
5535
5536 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5537
5538 for (Input_section_list::const_iterator p = this->input_sections().begin();
5539 p != this->input_sections().end();
5540 ++p)
5541 {
5542 // We only care about plain or relaxed input sections. We also
5543 // ignore any merged sections.
5544 if ((p->is_input_section() || p->is_relaxed_input_section())
5545 && p->data_size() != 0)
5546 list->push_back(Text_section_list::value_type(p->relobj(),
5547 p->shndx()));
5548 }
5549 }
5550
5551 template<bool big_endian>
5552 void
5553 Arm_output_section<big_endian>::fix_exidx_coverage(
5554 Layout* layout,
5555 const Text_section_list& sorted_text_sections,
5556 Symbol_table* symtab)
5557 {
5558 // We should only do this for the EXIDX output section.
5559 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5560
5561 // We don't want the relaxation loop to undo these changes, so we discard
5562 // the current saved states and take another one after the fix-up.
5563 this->discard_states();
5564
5565 // Remove all input sections.
5566 uint64_t address = this->address();
5567 typedef std::list<Simple_input_section> Simple_input_section_list;
5568 Simple_input_section_list input_sections;
5569 this->reset_address_and_file_offset();
5570 this->get_input_sections(address, std::string(""), &input_sections);
5571
5572 if (!this->input_sections().empty())
5573 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5574
5575 // Go through all the known input sections and record them.
5576 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5577 Section_id_set known_input_sections;
5578 for (Simple_input_section_list::const_iterator p = input_sections.begin();
5579 p != input_sections.end();
5580 ++p)
5581 {
5582 // This should never happen. At this point, we should only see
5583 // plain EXIDX input sections.
5584 gold_assert(!p->is_relaxed_input_section());
5585 known_input_sections.insert(Section_id(p->relobj(), p->shndx()));
5586 }
5587
5588 Arm_exidx_fixup exidx_fixup(this);
5589
5590 // Go over the sorted text sections.
5591 Section_id_set processed_input_sections;
5592 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5593 p != sorted_text_sections.end();
5594 ++p)
5595 {
5596 Relobj* relobj = p->first;
5597 unsigned int shndx = p->second;
5598
5599 Arm_relobj<big_endian>* arm_relobj =
5600 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5601 const Arm_exidx_input_section* exidx_input_section =
5602 arm_relobj->exidx_input_section_by_link(shndx);
5603
5604 // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5605 // entry pointing to the end of the last seen EXIDX section.
5606 if (exidx_input_section == NULL)
5607 {
5608 exidx_fixup.add_exidx_cantunwind_as_needed();
5609 continue;
5610 }
5611
5612 Relobj* exidx_relobj = exidx_input_section->relobj();
5613 unsigned int exidx_shndx = exidx_input_section->shndx();
5614 Section_id sid(exidx_relobj, exidx_shndx);
5615 if (known_input_sections.find(sid) == known_input_sections.end())
5616 {
5617 // This is odd. We have not seen this EXIDX input section before.
5618 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5619 // issue a warning instead. We assume the user knows what he
5620 // or she is doing. Otherwise, this is an error.
5621 if (layout->script_options()->saw_sections_clause())
5622 gold_warning(_("unwinding may not work because EXIDX input section"
5623 " %u of %s is not in EXIDX output section"),
5624 exidx_shndx, exidx_relobj->name().c_str());
5625 else
5626 gold_error(_("unwinding may not work because EXIDX input section"
5627 " %u of %s is not in EXIDX output section"),
5628 exidx_shndx, exidx_relobj->name().c_str());
5629
5630 exidx_fixup.add_exidx_cantunwind_as_needed();
5631 continue;
5632 }
5633
5634 // Fix up coverage and append input section to output data list.
5635 Arm_exidx_section_offset_map* section_offset_map = NULL;
5636 uint32_t deleted_bytes =
5637 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5638 &section_offset_map);
5639
5640 if (deleted_bytes == exidx_input_section->size())
5641 {
5642 // The whole EXIDX section got merged. Remove it from output.
5643 gold_assert(section_offset_map == NULL);
5644 exidx_relobj->set_output_section(exidx_shndx, NULL);
5645
5646 // All local symbols defined in this input section will be dropped.
5647 // We need to adjust output local symbol count.
5648 arm_relobj->set_output_local_symbol_count_needs_update();
5649 }
5650 else if (deleted_bytes > 0)
5651 {
5652 // Some entries are merged. We need to convert this EXIDX input
5653 // section into a relaxed section.
5654 gold_assert(section_offset_map != NULL);
5655 Arm_exidx_merged_section* merged_section =
5656 new Arm_exidx_merged_section(*exidx_input_section,
5657 *section_offset_map, deleted_bytes);
5658 this->add_relaxed_input_section(merged_section);
5659 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5660
5661 // All local symbols defined in discarded portions of this input
5662 // section will be dropped. We need to adjust output local symbol
5663 // count.
5664 arm_relobj->set_output_local_symbol_count_needs_update();
5665 }
5666 else
5667 {
5668 // Just add back the EXIDX input section.
5669 gold_assert(section_offset_map == NULL);
5670 Output_section::Simple_input_section sis(exidx_relobj, exidx_shndx);
5671 this->add_simple_input_section(sis, exidx_input_section->size(),
5672 exidx_input_section->addralign());
5673 }
5674
5675 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5676 }
5677
5678 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5679 exidx_fixup.add_exidx_cantunwind_as_needed();
5680
5681 // Remove any known EXIDX input sections that are not processed.
5682 for (Simple_input_section_list::const_iterator p = input_sections.begin();
5683 p != input_sections.end();
5684 ++p)
5685 {
5686 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5687 == processed_input_sections.end())
5688 {
5689 // We only discard a known EXIDX section because its linked
5690 // text section has been folded by ICF.
5691 Arm_relobj<big_endian>* arm_relobj =
5692 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5693 const Arm_exidx_input_section* exidx_input_section =
5694 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5695 gold_assert(exidx_input_section != NULL);
5696 unsigned int text_shndx = exidx_input_section->link();
5697 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5698
5699 // Remove this from link. We also need to recount the
5700 // local symbols.
5701 p->relobj()->set_output_section(p->shndx(), NULL);
5702 arm_relobj->set_output_local_symbol_count_needs_update();
5703 }
5704 }
5705
5706 // Link exidx output section to the first seen output section and
5707 // set correct entry size.
5708 this->set_link_section(exidx_fixup.first_output_text_section());
5709 this->set_entsize(8);
5710
5711 // Make changes permanent.
5712 this->save_states();
5713 this->set_section_offsets_need_adjustment();
5714 }
5715
5716 // Arm_relobj methods.
5717
5718 // Determine if an input section is scannable for stub processing. SHDR is
5719 // the header of the section and SHNDX is the section index. OS is the output
5720 // section for the input section and SYMTAB is the global symbol table used to
5721 // look up ICF information.
5722
5723 template<bool big_endian>
5724 bool
5725 Arm_relobj<big_endian>::section_is_scannable(
5726 const elfcpp::Shdr<32, big_endian>& shdr,
5727 unsigned int shndx,
5728 const Output_section* os,
5729 const Symbol_table *symtab)
5730 {
5731 // Skip any empty sections, unallocated sections or sections whose
5732 // type are not SHT_PROGBITS.
5733 if (shdr.get_sh_size() == 0
5734 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5735 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5736 return false;
5737
5738 // Skip any discarded or ICF'ed sections.
5739 if (os == NULL || symtab->is_section_folded(this, shndx))
5740 return false;
5741
5742 // If this requires special offset handling, check to see if it is
5743 // a relaxed section. If this is not, then it is a merged section that
5744 // we cannot handle.
5745 if (this->is_output_section_offset_invalid(shndx))
5746 {
5747 const Output_relaxed_input_section* poris =
5748 os->find_relaxed_input_section(this, shndx);
5749 if (poris == NULL)
5750 return false;
5751 }
5752
5753 return true;
5754 }
5755
5756 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5757 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5758
5759 template<bool big_endian>
5760 bool
5761 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5762 const elfcpp::Shdr<32, big_endian>& shdr,
5763 const Relobj::Output_sections& out_sections,
5764 const Symbol_table *symtab,
5765 const unsigned char* pshdrs)
5766 {
5767 unsigned int sh_type = shdr.get_sh_type();
5768 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5769 return false;
5770
5771 // Ignore empty section.
5772 off_t sh_size = shdr.get_sh_size();
5773 if (sh_size == 0)
5774 return false;
5775
5776 // Ignore reloc section with unexpected symbol table. The
5777 // error will be reported in the final link.
5778 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5779 return false;
5780
5781 unsigned int reloc_size;
5782 if (sh_type == elfcpp::SHT_REL)
5783 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5784 else
5785 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5786
5787 // Ignore reloc section with unexpected entsize or uneven size.
5788 // The error will be reported in the final link.
5789 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5790 return false;
5791
5792 // Ignore reloc section with bad info. This error will be
5793 // reported in the final link.
5794 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5795 if (index >= this->shnum())
5796 return false;
5797
5798 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5799 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5800 return this->section_is_scannable(text_shdr, index,
5801 out_sections[index], symtab);
5802 }
5803
5804 // Return the output address of either a plain input section or a relaxed
5805 // input section. SHNDX is the section index. We define and use this
5806 // instead of calling Output_section::output_address because that is slow
5807 // for large output.
5808
5809 template<bool big_endian>
5810 Arm_address
5811 Arm_relobj<big_endian>::simple_input_section_output_address(
5812 unsigned int shndx,
5813 Output_section* os)
5814 {
5815 if (this->is_output_section_offset_invalid(shndx))
5816 {
5817 const Output_relaxed_input_section* poris =
5818 os->find_relaxed_input_section(this, shndx);
5819 // We do not handle merged sections here.
5820 gold_assert(poris != NULL);
5821 return poris->address();
5822 }
5823 else
5824 return os->address() + this->get_output_section_offset(shndx);
5825 }
5826
5827 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5828 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5829
5830 template<bool big_endian>
5831 bool
5832 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5833 const elfcpp::Shdr<32, big_endian>& shdr,
5834 unsigned int shndx,
5835 Output_section* os,
5836 const Symbol_table* symtab)
5837 {
5838 if (!this->section_is_scannable(shdr, shndx, os, symtab))
5839 return false;
5840
5841 // If the section does not cross any 4K-boundaries, it does not need to
5842 // be scanned.
5843 Arm_address address = this->simple_input_section_output_address(shndx, os);
5844 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5845 return false;
5846
5847 return true;
5848 }
5849
5850 // Scan a section for Cortex-A8 workaround.
5851
5852 template<bool big_endian>
5853 void
5854 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5855 const elfcpp::Shdr<32, big_endian>& shdr,
5856 unsigned int shndx,
5857 Output_section* os,
5858 Target_arm<big_endian>* arm_target)
5859 {
5860 // Look for the first mapping symbol in this section. It should be
5861 // at (shndx, 0).
5862 Mapping_symbol_position section_start(shndx, 0);
5863 typename Mapping_symbols_info::const_iterator p =
5864 this->mapping_symbols_info_.lower_bound(section_start);
5865
5866 // There are no mapping symbols for this section. Treat it as a data-only
5867 // section. Issue a warning if section is marked as containing
5868 // instructions.
5869 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
5870 {
5871 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
5872 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
5873 "erratum because it has no mapping symbols."),
5874 shndx, this->name().c_str());
5875 return;
5876 }
5877
5878 Arm_address output_address =
5879 this->simple_input_section_output_address(shndx, os);
5880
5881 // Get the section contents.
5882 section_size_type input_view_size = 0;
5883 const unsigned char* input_view =
5884 this->section_contents(shndx, &input_view_size, false);
5885
5886 // We need to go through the mapping symbols to determine what to
5887 // scan. There are two reasons. First, we should look at THUMB code and
5888 // THUMB code only. Second, we only want to look at the 4K-page boundary
5889 // to speed up the scanning.
5890
5891 while (p != this->mapping_symbols_info_.end()
5892 && p->first.first == shndx)
5893 {
5894 typename Mapping_symbols_info::const_iterator next =
5895 this->mapping_symbols_info_.upper_bound(p->first);
5896
5897 // Only scan part of a section with THUMB code.
5898 if (p->second == 't')
5899 {
5900 // Determine the end of this range.
5901 section_size_type span_start =
5902 convert_to_section_size_type(p->first.second);
5903 section_size_type span_end;
5904 if (next != this->mapping_symbols_info_.end()
5905 && next->first.first == shndx)
5906 span_end = convert_to_section_size_type(next->first.second);
5907 else
5908 span_end = convert_to_section_size_type(shdr.get_sh_size());
5909
5910 if (((span_start + output_address) & ~0xfffUL)
5911 != ((span_end + output_address - 1) & ~0xfffUL))
5912 {
5913 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
5914 span_start, span_end,
5915 input_view,
5916 output_address);
5917 }
5918 }
5919
5920 p = next;
5921 }
5922 }
5923
5924 // Scan relocations for stub generation.
5925
5926 template<bool big_endian>
5927 void
5928 Arm_relobj<big_endian>::scan_sections_for_stubs(
5929 Target_arm<big_endian>* arm_target,
5930 const Symbol_table* symtab,
5931 const Layout* layout)
5932 {
5933 unsigned int shnum = this->shnum();
5934 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5935
5936 // Read the section headers.
5937 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
5938 shnum * shdr_size,
5939 true, true);
5940
5941 // To speed up processing, we set up hash tables for fast lookup of
5942 // input offsets to output addresses.
5943 this->initialize_input_to_output_maps();
5944
5945 const Relobj::Output_sections& out_sections(this->output_sections());
5946
5947 Relocate_info<32, big_endian> relinfo;
5948 relinfo.symtab = symtab;
5949 relinfo.layout = layout;
5950 relinfo.object = this;
5951
5952 // Do relocation stubs scanning.
5953 const unsigned char* p = pshdrs + shdr_size;
5954 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
5955 {
5956 const elfcpp::Shdr<32, big_endian> shdr(p);
5957 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
5958 pshdrs))
5959 {
5960 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5961 Arm_address output_offset = this->get_output_section_offset(index);
5962 Arm_address output_address;
5963 if (output_offset != invalid_address)
5964 output_address = out_sections[index]->address() + output_offset;
5965 else
5966 {
5967 // Currently this only happens for a relaxed section.
5968 const Output_relaxed_input_section* poris =
5969 out_sections[index]->find_relaxed_input_section(this, index);
5970 gold_assert(poris != NULL);
5971 output_address = poris->address();
5972 }
5973
5974 // Get the relocations.
5975 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
5976 shdr.get_sh_size(),
5977 true, false);
5978
5979 // Get the section contents. This does work for the case in which
5980 // we modify the contents of an input section. We need to pass the
5981 // output view under such circumstances.
5982 section_size_type input_view_size = 0;
5983 const unsigned char* input_view =
5984 this->section_contents(index, &input_view_size, false);
5985
5986 relinfo.reloc_shndx = i;
5987 relinfo.data_shndx = index;
5988 unsigned int sh_type = shdr.get_sh_type();
5989 unsigned int reloc_size;
5990 if (sh_type == elfcpp::SHT_REL)
5991 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5992 else
5993 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5994
5995 Output_section* os = out_sections[index];
5996 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
5997 shdr.get_sh_size() / reloc_size,
5998 os,
5999 output_offset == invalid_address,
6000 input_view, output_address,
6001 input_view_size);
6002 }
6003 }
6004
6005 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6006 // after its relocation section, if there is one, is processed for
6007 // relocation stubs. Merging this loop with the one above would have been
6008 // complicated since we would have had to make sure that relocation stub
6009 // scanning is done first.
6010 if (arm_target->fix_cortex_a8())
6011 {
6012 const unsigned char* p = pshdrs + shdr_size;
6013 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6014 {
6015 const elfcpp::Shdr<32, big_endian> shdr(p);
6016 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6017 out_sections[i],
6018 symtab))
6019 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6020 arm_target);
6021 }
6022 }
6023
6024 // After we've done the relocations, we release the hash tables,
6025 // since we no longer need them.
6026 this->free_input_to_output_maps();
6027 }
6028
6029 // Count the local symbols. The ARM backend needs to know if a symbol
6030 // is a THUMB function or not. For global symbols, it is easy because
6031 // the Symbol object keeps the ELF symbol type. For local symbol it is
6032 // harder because we cannot access this information. So we override the
6033 // do_count_local_symbol in parent and scan local symbols to mark
6034 // THUMB functions. This is not the most efficient way but I do not want to
6035 // slow down other ports by calling a per symbol targer hook inside
6036 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6037
6038 template<bool big_endian>
6039 void
6040 Arm_relobj<big_endian>::do_count_local_symbols(
6041 Stringpool_template<char>* pool,
6042 Stringpool_template<char>* dynpool)
6043 {
6044 // We need to fix-up the values of any local symbols whose type are
6045 // STT_ARM_TFUNC.
6046
6047 // Ask parent to count the local symbols.
6048 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6049 const unsigned int loccount = this->local_symbol_count();
6050 if (loccount == 0)
6051 return;
6052
6053 // Intialize the thumb function bit-vector.
6054 std::vector<bool> empty_vector(loccount, false);
6055 this->local_symbol_is_thumb_function_.swap(empty_vector);
6056
6057 // Read the symbol table section header.
6058 const unsigned int symtab_shndx = this->symtab_shndx();
6059 elfcpp::Shdr<32, big_endian>
6060 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6061 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6062
6063 // Read the local symbols.
6064 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6065 gold_assert(loccount == symtabshdr.get_sh_info());
6066 off_t locsize = loccount * sym_size;
6067 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6068 locsize, true, true);
6069
6070 // For mapping symbol processing, we need to read the symbol names.
6071 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6072 if (strtab_shndx >= this->shnum())
6073 {
6074 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6075 return;
6076 }
6077
6078 elfcpp::Shdr<32, big_endian>
6079 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6080 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6081 {
6082 this->error(_("symbol table name section has wrong type: %u"),
6083 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6084 return;
6085 }
6086 const char* pnames =
6087 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6088 strtabshdr.get_sh_size(),
6089 false, false));
6090
6091 // Loop over the local symbols and mark any local symbols pointing
6092 // to THUMB functions.
6093
6094 // Skip the first dummy symbol.
6095 psyms += sym_size;
6096 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6097 this->local_values();
6098 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6099 {
6100 elfcpp::Sym<32, big_endian> sym(psyms);
6101 elfcpp::STT st_type = sym.get_st_type();
6102 Symbol_value<32>& lv((*plocal_values)[i]);
6103 Arm_address input_value = lv.input_value();
6104
6105 // Check to see if this is a mapping symbol.
6106 const char* sym_name = pnames + sym.get_st_name();
6107 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6108 {
6109 bool is_ordinary;
6110 unsigned int input_shndx =
6111 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6112 gold_assert(is_ordinary);
6113
6114 // Strip of LSB in case this is a THUMB symbol.
6115 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6116 this->mapping_symbols_info_[msp] = sym_name[1];
6117 }
6118
6119 if (st_type == elfcpp::STT_ARM_TFUNC
6120 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6121 {
6122 // This is a THUMB function. Mark this and canonicalize the
6123 // symbol value by setting LSB.
6124 this->local_symbol_is_thumb_function_[i] = true;
6125 if ((input_value & 1) == 0)
6126 lv.set_input_value(input_value | 1);
6127 }
6128 }
6129 }
6130
6131 // Relocate sections.
6132 template<bool big_endian>
6133 void
6134 Arm_relobj<big_endian>::do_relocate_sections(
6135 const Symbol_table* symtab,
6136 const Layout* layout,
6137 const unsigned char* pshdrs,
6138 typename Sized_relobj<32, big_endian>::Views* pviews)
6139 {
6140 // Call parent to relocate sections.
6141 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6142 pviews);
6143
6144 // We do not generate stubs if doing a relocatable link.
6145 if (parameters->options().relocatable())
6146 return;
6147
6148 // Relocate stub tables.
6149 unsigned int shnum = this->shnum();
6150
6151 Target_arm<big_endian>* arm_target =
6152 Target_arm<big_endian>::default_target();
6153
6154 Relocate_info<32, big_endian> relinfo;
6155 relinfo.symtab = symtab;
6156 relinfo.layout = layout;
6157 relinfo.object = this;
6158
6159 for (unsigned int i = 1; i < shnum; ++i)
6160 {
6161 Arm_input_section<big_endian>* arm_input_section =
6162 arm_target->find_arm_input_section(this, i);
6163
6164 if (arm_input_section != NULL
6165 && arm_input_section->is_stub_table_owner()
6166 && !arm_input_section->stub_table()->empty())
6167 {
6168 // We cannot discard a section if it owns a stub table.
6169 Output_section* os = this->output_section(i);
6170 gold_assert(os != NULL);
6171
6172 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6173 relinfo.reloc_shdr = NULL;
6174 relinfo.data_shndx = i;
6175 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6176
6177 gold_assert((*pviews)[i].view != NULL);
6178
6179 // We are passed the output section view. Adjust it to cover the
6180 // stub table only.
6181 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6182 gold_assert((stub_table->address() >= (*pviews)[i].address)
6183 && ((stub_table->address() + stub_table->data_size())
6184 <= (*pviews)[i].address + (*pviews)[i].view_size));
6185
6186 off_t offset = stub_table->address() - (*pviews)[i].address;
6187 unsigned char* view = (*pviews)[i].view + offset;
6188 Arm_address address = stub_table->address();
6189 section_size_type view_size = stub_table->data_size();
6190
6191 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6192 view_size);
6193 }
6194
6195 // Apply Cortex A8 workaround if applicable.
6196 if (this->section_has_cortex_a8_workaround(i))
6197 {
6198 unsigned char* view = (*pviews)[i].view;
6199 Arm_address view_address = (*pviews)[i].address;
6200 section_size_type view_size = (*pviews)[i].view_size;
6201 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6202
6203 // Adjust view to cover section.
6204 Output_section* os = this->output_section(i);
6205 gold_assert(os != NULL);
6206 Arm_address section_address =
6207 this->simple_input_section_output_address(i, os);
6208 uint64_t section_size = this->section_size(i);
6209
6210 gold_assert(section_address >= view_address
6211 && ((section_address + section_size)
6212 <= (view_address + view_size)));
6213
6214 unsigned char* section_view = view + (section_address - view_address);
6215
6216 // Apply the Cortex-A8 workaround to the output address range
6217 // corresponding to this input section.
6218 stub_table->apply_cortex_a8_workaround_to_address_range(
6219 arm_target,
6220 section_view,
6221 section_address,
6222 section_size);
6223 }
6224 }
6225 }
6226
6227 // Find the linked text section of an EXIDX section by looking the the first
6228 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6229 // must be linked to to its associated code section via the sh_link field of
6230 // its section header. However, some tools are broken and the link is not
6231 // always set. LD just drops such an EXIDX section silently, causing the
6232 // associated code not unwindabled. Here we try a little bit harder to
6233 // discover the linked code section.
6234 //
6235 // PSHDR points to the section header of a relocation section of an EXIDX
6236 // section. If we can find a linked text section, return true and
6237 // store the text section index in the location PSHNDX. Otherwise
6238 // return false.
6239
6240 template<bool big_endian>
6241 bool
6242 Arm_relobj<big_endian>::find_linked_text_section(
6243 const unsigned char* pshdr,
6244 const unsigned char* psyms,
6245 unsigned int* pshndx)
6246 {
6247 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6248
6249 // If there is no relocation, we cannot find the linked text section.
6250 size_t reloc_size;
6251 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6252 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6253 else
6254 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6255 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6256
6257 // Get the relocations.
6258 const unsigned char* prelocs =
6259 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6260
6261 // Find the REL31 relocation for the first word of the first EXIDX entry.
6262 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6263 {
6264 Arm_address r_offset;
6265 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6266 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6267 {
6268 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6269 r_info = reloc.get_r_info();
6270 r_offset = reloc.get_r_offset();
6271 }
6272 else
6273 {
6274 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6275 r_info = reloc.get_r_info();
6276 r_offset = reloc.get_r_offset();
6277 }
6278
6279 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6280 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6281 continue;
6282
6283 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6284 if (r_sym == 0
6285 || r_sym >= this->local_symbol_count()
6286 || r_offset != 0)
6287 continue;
6288
6289 // This is the relocation for the first word of the first EXIDX entry.
6290 // We expect to see a local section symbol.
6291 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6292 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6293 if (sym.get_st_type() == elfcpp::STT_SECTION)
6294 {
6295 bool is_ordinary;
6296 *pshndx =
6297 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6298 gold_assert(is_ordinary);
6299 return true;
6300 }
6301 else
6302 return false;
6303 }
6304
6305 return false;
6306 }
6307
6308 // Make an EXIDX input section object for an EXIDX section whose index is
6309 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6310 // is the section index of the linked text section.
6311
6312 template<bool big_endian>
6313 void
6314 Arm_relobj<big_endian>::make_exidx_input_section(
6315 unsigned int shndx,
6316 const elfcpp::Shdr<32, big_endian>& shdr,
6317 unsigned int text_shndx)
6318 {
6319 // Issue an error and ignore this EXIDX section if it points to a text
6320 // section already has an EXIDX section.
6321 if (this->exidx_section_map_[text_shndx] != NULL)
6322 {
6323 gold_error(_("EXIDX sections %u and %u both link to text section %u "
6324 "in %s"),
6325 shndx, this->exidx_section_map_[text_shndx]->shndx(),
6326 text_shndx, this->name().c_str());
6327 return;
6328 }
6329
6330 // Create an Arm_exidx_input_section object for this EXIDX section.
6331 Arm_exidx_input_section* exidx_input_section =
6332 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6333 shdr.get_sh_addralign());
6334 this->exidx_section_map_[text_shndx] = exidx_input_section;
6335
6336 // Also map the EXIDX section index to this.
6337 gold_assert(this->exidx_section_map_[shndx] == NULL);
6338 this->exidx_section_map_[shndx] = exidx_input_section;
6339 }
6340
6341 // Read the symbol information.
6342
6343 template<bool big_endian>
6344 void
6345 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6346 {
6347 // Call parent class to read symbol information.
6348 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6349
6350 // If this input file is a binary file, it has no processor
6351 // specific flags and attributes section.
6352 Input_file::Format format = this->input_file()->format();
6353 if (format != Input_file::FORMAT_ELF)
6354 {
6355 gold_assert(format == Input_file::FORMAT_BINARY);
6356 this->merge_flags_and_attributes_ = false;
6357 return;
6358 }
6359
6360 // Read processor-specific flags in ELF file header.
6361 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6362 elfcpp::Elf_sizes<32>::ehdr_size,
6363 true, false);
6364 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6365 this->processor_specific_flags_ = ehdr.get_e_flags();
6366
6367 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6368 // sections.
6369 std::vector<unsigned int> deferred_exidx_sections;
6370 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6371 const unsigned char* pshdrs = sd->section_headers->data();
6372 const unsigned char *ps = pshdrs + shdr_size;
6373 bool must_merge_flags_and_attributes = false;
6374 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6375 {
6376 elfcpp::Shdr<32, big_endian> shdr(ps);
6377
6378 // Sometimes an object has no contents except the section name string
6379 // table and an empty symbol table with the undefined symbol. We
6380 // don't want to merge processor-specific flags from such an object.
6381 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6382 {
6383 // Symbol table is not empty.
6384 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6385 elfcpp::Elf_sizes<32>::sym_size;
6386 if (shdr.get_sh_size() > sym_size)
6387 must_merge_flags_and_attributes = true;
6388 }
6389 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6390 // If this is neither an empty symbol table nor a string table,
6391 // be conservative.
6392 must_merge_flags_and_attributes = true;
6393
6394 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6395 {
6396 gold_assert(this->attributes_section_data_ == NULL);
6397 section_offset_type section_offset = shdr.get_sh_offset();
6398 section_size_type section_size =
6399 convert_to_section_size_type(shdr.get_sh_size());
6400 File_view* view = this->get_lasting_view(section_offset,
6401 section_size, true, false);
6402 this->attributes_section_data_ =
6403 new Attributes_section_data(view->data(), section_size);
6404 }
6405 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6406 {
6407 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6408 if (text_shndx >= this->shnum())
6409 gold_error(_("EXIDX section %u linked to invalid section %u"),
6410 i, text_shndx);
6411 else if (text_shndx == elfcpp::SHN_UNDEF)
6412 deferred_exidx_sections.push_back(i);
6413 else
6414 this->make_exidx_input_section(i, shdr, text_shndx);
6415 }
6416 }
6417
6418 // This is rare.
6419 if (!must_merge_flags_and_attributes)
6420 {
6421 this->merge_flags_and_attributes_ = false;
6422 return;
6423 }
6424
6425 // Some tools are broken and they do not set the link of EXIDX sections.
6426 // We look at the first relocation to figure out the linked sections.
6427 if (!deferred_exidx_sections.empty())
6428 {
6429 // We need to go over the section headers again to find the mapping
6430 // from sections being relocated to their relocation sections. This is
6431 // a bit inefficient as we could do that in the loop above. However,
6432 // we do not expect any deferred EXIDX sections normally. So we do not
6433 // want to slow down the most common path.
6434 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6435 Reloc_map reloc_map;
6436 ps = pshdrs + shdr_size;
6437 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6438 {
6439 elfcpp::Shdr<32, big_endian> shdr(ps);
6440 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6441 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6442 {
6443 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6444 if (info_shndx >= this->shnum())
6445 gold_error(_("relocation section %u has invalid info %u"),
6446 i, info_shndx);
6447 Reloc_map::value_type value(info_shndx, i);
6448 std::pair<Reloc_map::iterator, bool> result =
6449 reloc_map.insert(value);
6450 if (!result.second)
6451 gold_error(_("section %u has multiple relocation sections "
6452 "%u and %u"),
6453 info_shndx, i, reloc_map[info_shndx]);
6454 }
6455 }
6456
6457 // Read the symbol table section header.
6458 const unsigned int symtab_shndx = this->symtab_shndx();
6459 elfcpp::Shdr<32, big_endian>
6460 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6461 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6462
6463 // Read the local symbols.
6464 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6465 const unsigned int loccount = this->local_symbol_count();
6466 gold_assert(loccount == symtabshdr.get_sh_info());
6467 off_t locsize = loccount * sym_size;
6468 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6469 locsize, true, true);
6470
6471 // Process the deferred EXIDX sections.
6472 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6473 {
6474 unsigned int shndx = deferred_exidx_sections[i];
6475 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6476 unsigned int text_shndx;
6477 Reloc_map::const_iterator it = reloc_map.find(shndx);
6478 if (it != reloc_map.end()
6479 && find_linked_text_section(pshdrs + it->second * shdr_size,
6480 psyms, &text_shndx))
6481 this->make_exidx_input_section(shndx, shdr, text_shndx);
6482 else
6483 gold_error(_("EXIDX section %u has no linked text section."),
6484 shndx);
6485 }
6486 }
6487 }
6488
6489 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6490 // sections for unwinding. These sections are referenced implicitly by
6491 // text sections linked in the section headers. If we ignore these implict
6492 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6493 // will be garbage-collected incorrectly. Hence we override the same function
6494 // in the base class to handle these implicit references.
6495
6496 template<bool big_endian>
6497 void
6498 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6499 Layout* layout,
6500 Read_relocs_data* rd)
6501 {
6502 // First, call base class method to process relocations in this object.
6503 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6504
6505 // If --gc-sections is not specified, there is nothing more to do.
6506 // This happens when --icf is used but --gc-sections is not.
6507 if (!parameters->options().gc_sections())
6508 return;
6509
6510 unsigned int shnum = this->shnum();
6511 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6512 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6513 shnum * shdr_size,
6514 true, true);
6515
6516 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6517 // to these from the linked text sections.
6518 const unsigned char* ps = pshdrs + shdr_size;
6519 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6520 {
6521 elfcpp::Shdr<32, big_endian> shdr(ps);
6522 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6523 {
6524 // Found an .ARM.exidx section, add it to the set of reachable
6525 // sections from its linked text section.
6526 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6527 symtab->gc()->add_reference(this, text_shndx, this, i);
6528 }
6529 }
6530 }
6531
6532 // Update output local symbol count. Owing to EXIDX entry merging, some local
6533 // symbols will be removed in output. Adjust output local symbol count
6534 // accordingly. We can only changed the static output local symbol count. It
6535 // is too late to change the dynamic symbols.
6536
6537 template<bool big_endian>
6538 void
6539 Arm_relobj<big_endian>::update_output_local_symbol_count()
6540 {
6541 // Caller should check that this needs updating. We want caller checking
6542 // because output_local_symbol_count_needs_update() is most likely inlined.
6543 gold_assert(this->output_local_symbol_count_needs_update_);
6544
6545 gold_assert(this->symtab_shndx() != -1U);
6546 if (this->symtab_shndx() == 0)
6547 {
6548 // This object has no symbols. Weird but legal.
6549 return;
6550 }
6551
6552 // Read the symbol table section header.
6553 const unsigned int symtab_shndx = this->symtab_shndx();
6554 elfcpp::Shdr<32, big_endian>
6555 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6556 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6557
6558 // Read the local symbols.
6559 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6560 const unsigned int loccount = this->local_symbol_count();
6561 gold_assert(loccount == symtabshdr.get_sh_info());
6562 off_t locsize = loccount * sym_size;
6563 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6564 locsize, true, true);
6565
6566 // Loop over the local symbols.
6567
6568 typedef typename Sized_relobj<32, big_endian>::Output_sections
6569 Output_sections;
6570 const Output_sections& out_sections(this->output_sections());
6571 unsigned int shnum = this->shnum();
6572 unsigned int count = 0;
6573 // Skip the first, dummy, symbol.
6574 psyms += sym_size;
6575 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6576 {
6577 elfcpp::Sym<32, big_endian> sym(psyms);
6578
6579 Symbol_value<32>& lv((*this->local_values())[i]);
6580
6581 // This local symbol was already discarded by do_count_local_symbols.
6582 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6583 continue;
6584
6585 bool is_ordinary;
6586 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6587 &is_ordinary);
6588
6589 if (shndx < shnum)
6590 {
6591 Output_section* os = out_sections[shndx];
6592
6593 // This local symbol no longer has an output section. Discard it.
6594 if (os == NULL)
6595 {
6596 lv.set_no_output_symtab_entry();
6597 continue;
6598 }
6599
6600 // Currently we only discard parts of EXIDX input sections.
6601 // We explicitly check for a merged EXIDX input section to avoid
6602 // calling Output_section_data::output_offset unless necessary.
6603 if ((this->get_output_section_offset(shndx) == invalid_address)
6604 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6605 {
6606 section_offset_type output_offset =
6607 os->output_offset(this, shndx, lv.input_value());
6608 if (output_offset == -1)
6609 {
6610 // This symbol is defined in a part of an EXIDX input section
6611 // that is discarded due to entry merging.
6612 lv.set_no_output_symtab_entry();
6613 continue;
6614 }
6615 }
6616 }
6617
6618 ++count;
6619 }
6620
6621 this->set_output_local_symbol_count(count);
6622 this->output_local_symbol_count_needs_update_ = false;
6623 }
6624
6625 // Arm_dynobj methods.
6626
6627 // Read the symbol information.
6628
6629 template<bool big_endian>
6630 void
6631 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6632 {
6633 // Call parent class to read symbol information.
6634 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6635
6636 // Read processor-specific flags in ELF file header.
6637 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6638 elfcpp::Elf_sizes<32>::ehdr_size,
6639 true, false);
6640 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6641 this->processor_specific_flags_ = ehdr.get_e_flags();
6642
6643 // Read the attributes section if there is one.
6644 // We read from the end because gas seems to put it near the end of
6645 // the section headers.
6646 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6647 const unsigned char *ps =
6648 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6649 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6650 {
6651 elfcpp::Shdr<32, big_endian> shdr(ps);
6652 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6653 {
6654 section_offset_type section_offset = shdr.get_sh_offset();
6655 section_size_type section_size =
6656 convert_to_section_size_type(shdr.get_sh_size());
6657 File_view* view = this->get_lasting_view(section_offset,
6658 section_size, true, false);
6659 this->attributes_section_data_ =
6660 new Attributes_section_data(view->data(), section_size);
6661 break;
6662 }
6663 }
6664 }
6665
6666 // Stub_addend_reader methods.
6667
6668 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6669
6670 template<bool big_endian>
6671 elfcpp::Elf_types<32>::Elf_Swxword
6672 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6673 unsigned int r_type,
6674 const unsigned char* view,
6675 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6676 {
6677 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6678
6679 switch (r_type)
6680 {
6681 case elfcpp::R_ARM_CALL:
6682 case elfcpp::R_ARM_JUMP24:
6683 case elfcpp::R_ARM_PLT32:
6684 {
6685 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6686 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6687 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6688 return utils::sign_extend<26>(val << 2);
6689 }
6690
6691 case elfcpp::R_ARM_THM_CALL:
6692 case elfcpp::R_ARM_THM_JUMP24:
6693 case elfcpp::R_ARM_THM_XPC22:
6694 {
6695 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6696 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6697 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6698 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6699 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6700 }
6701
6702 case elfcpp::R_ARM_THM_JUMP19:
6703 {
6704 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6705 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6706 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6707 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6708 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6709 }
6710
6711 default:
6712 gold_unreachable();
6713 }
6714 }
6715
6716 // Arm_output_data_got methods.
6717
6718 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6719 // The first one is initialized to be 1, which is the module index for
6720 // the main executable and the second one 0. A reloc of the type
6721 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6722 // be applied by gold. GSYM is a global symbol.
6723 //
6724 template<bool big_endian>
6725 void
6726 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6727 unsigned int got_type,
6728 Symbol* gsym)
6729 {
6730 if (gsym->has_got_offset(got_type))
6731 return;
6732
6733 // We are doing a static link. Just mark it as belong to module 1,
6734 // the executable.
6735 unsigned int got_offset = this->add_constant(1);
6736 gsym->set_got_offset(got_type, got_offset);
6737 got_offset = this->add_constant(0);
6738 this->static_relocs_.push_back(Static_reloc(got_offset,
6739 elfcpp::R_ARM_TLS_DTPOFF32,
6740 gsym));
6741 }
6742
6743 // Same as the above but for a local symbol.
6744
6745 template<bool big_endian>
6746 void
6747 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6748 unsigned int got_type,
6749 Sized_relobj<32, big_endian>* object,
6750 unsigned int index)
6751 {
6752 if (object->local_has_got_offset(index, got_type))
6753 return;
6754
6755 // We are doing a static link. Just mark it as belong to module 1,
6756 // the executable.
6757 unsigned int got_offset = this->add_constant(1);
6758 object->set_local_got_offset(index, got_type, got_offset);
6759 got_offset = this->add_constant(0);
6760 this->static_relocs_.push_back(Static_reloc(got_offset,
6761 elfcpp::R_ARM_TLS_DTPOFF32,
6762 object, index));
6763 }
6764
6765 template<bool big_endian>
6766 void
6767 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6768 {
6769 // Call parent to write out GOT.
6770 Output_data_got<32, big_endian>::do_write(of);
6771
6772 // We are done if there is no fix up.
6773 if (this->static_relocs_.empty())
6774 return;
6775
6776 gold_assert(parameters->doing_static_link());
6777
6778 const off_t offset = this->offset();
6779 const section_size_type oview_size =
6780 convert_to_section_size_type(this->data_size());
6781 unsigned char* const oview = of->get_output_view(offset, oview_size);
6782
6783 Output_segment* tls_segment = this->layout_->tls_segment();
6784 gold_assert(tls_segment != NULL);
6785
6786 // The thread pointer $tp points to the TCB, which is followed by the
6787 // TLS. So we need to adjust $tp relative addressing by this amount.
6788 Arm_address aligned_tcb_size =
6789 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6790
6791 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6792 {
6793 Static_reloc& reloc(this->static_relocs_[i]);
6794
6795 Arm_address value;
6796 if (!reloc.symbol_is_global())
6797 {
6798 Sized_relobj<32, big_endian>* object = reloc.relobj();
6799 const Symbol_value<32>* psymval =
6800 reloc.relobj()->local_symbol(reloc.index());
6801
6802 // We are doing static linking. Issue an error and skip this
6803 // relocation if the symbol is undefined or in a discarded_section.
6804 bool is_ordinary;
6805 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6806 if ((shndx == elfcpp::SHN_UNDEF)
6807 || (is_ordinary
6808 && shndx != elfcpp::SHN_UNDEF
6809 && !object->is_section_included(shndx)
6810 && !this->symbol_table_->is_section_folded(object, shndx)))
6811 {
6812 gold_error(_("undefined or discarded local symbol %u from "
6813 " object %s in GOT"),
6814 reloc.index(), reloc.relobj()->name().c_str());
6815 continue;
6816 }
6817
6818 value = psymval->value(object, 0);
6819 }
6820 else
6821 {
6822 const Symbol* gsym = reloc.symbol();
6823 gold_assert(gsym != NULL);
6824 if (gsym->is_forwarder())
6825 gsym = this->symbol_table_->resolve_forwards(gsym);
6826
6827 // We are doing static linking. Issue an error and skip this
6828 // relocation if the symbol is undefined or in a discarded_section
6829 // unless it is a weakly_undefined symbol.
6830 if ((gsym->is_defined_in_discarded_section()
6831 || gsym->is_undefined())
6832 && !gsym->is_weak_undefined())
6833 {
6834 gold_error(_("undefined or discarded symbol %s in GOT"),
6835 gsym->name());
6836 continue;
6837 }
6838
6839 if (!gsym->is_weak_undefined())
6840 {
6841 const Sized_symbol<32>* sym =
6842 static_cast<const Sized_symbol<32>*>(gsym);
6843 value = sym->value();
6844 }
6845 else
6846 value = 0;
6847 }
6848
6849 unsigned got_offset = reloc.got_offset();
6850 gold_assert(got_offset < oview_size);
6851
6852 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6853 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6854 Valtype x;
6855 switch (reloc.r_type())
6856 {
6857 case elfcpp::R_ARM_TLS_DTPOFF32:
6858 x = value;
6859 break;
6860 case elfcpp::R_ARM_TLS_TPOFF32:
6861 x = value + aligned_tcb_size;
6862 break;
6863 default:
6864 gold_unreachable();
6865 }
6866 elfcpp::Swap<32, big_endian>::writeval(wv, x);
6867 }
6868
6869 of->write_output_view(offset, oview_size, oview);
6870 }
6871
6872 // A class to handle the PLT data.
6873
6874 template<bool big_endian>
6875 class Output_data_plt_arm : public Output_section_data
6876 {
6877 public:
6878 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
6879 Reloc_section;
6880
6881 Output_data_plt_arm(Layout*, Output_data_space*);
6882
6883 // Add an entry to the PLT.
6884 void
6885 add_entry(Symbol* gsym);
6886
6887 // Return the .rel.plt section data.
6888 const Reloc_section*
6889 rel_plt() const
6890 { return this->rel_; }
6891
6892 protected:
6893 void
6894 do_adjust_output_section(Output_section* os);
6895
6896 // Write to a map file.
6897 void
6898 do_print_to_mapfile(Mapfile* mapfile) const
6899 { mapfile->print_output_data(this, _("** PLT")); }
6900
6901 private:
6902 // Template for the first PLT entry.
6903 static const uint32_t first_plt_entry[5];
6904
6905 // Template for subsequent PLT entries.
6906 static const uint32_t plt_entry[3];
6907
6908 // Set the final size.
6909 void
6910 set_final_data_size()
6911 {
6912 this->set_data_size(sizeof(first_plt_entry)
6913 + this->count_ * sizeof(plt_entry));
6914 }
6915
6916 // Write out the PLT data.
6917 void
6918 do_write(Output_file*);
6919
6920 // The reloc section.
6921 Reloc_section* rel_;
6922 // The .got.plt section.
6923 Output_data_space* got_plt_;
6924 // The number of PLT entries.
6925 unsigned int count_;
6926 };
6927
6928 // Create the PLT section. The ordinary .got section is an argument,
6929 // since we need to refer to the start. We also create our own .got
6930 // section just for PLT entries.
6931
6932 template<bool big_endian>
6933 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
6934 Output_data_space* got_plt)
6935 : Output_section_data(4), got_plt_(got_plt), count_(0)
6936 {
6937 this->rel_ = new Reloc_section(false);
6938 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
6939 elfcpp::SHF_ALLOC, this->rel_, true, false,
6940 false, false);
6941 }
6942
6943 template<bool big_endian>
6944 void
6945 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
6946 {
6947 os->set_entsize(0);
6948 }
6949
6950 // Add an entry to the PLT.
6951
6952 template<bool big_endian>
6953 void
6954 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
6955 {
6956 gold_assert(!gsym->has_plt_offset());
6957
6958 // Note that when setting the PLT offset we skip the initial
6959 // reserved PLT entry.
6960 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
6961 + sizeof(first_plt_entry));
6962
6963 ++this->count_;
6964
6965 section_offset_type got_offset = this->got_plt_->current_data_size();
6966
6967 // Every PLT entry needs a GOT entry which points back to the PLT
6968 // entry (this will be changed by the dynamic linker, normally
6969 // lazily when the function is called).
6970 this->got_plt_->set_current_data_size(got_offset + 4);
6971
6972 // Every PLT entry needs a reloc.
6973 gsym->set_needs_dynsym_entry();
6974 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
6975 got_offset);
6976
6977 // Note that we don't need to save the symbol. The contents of the
6978 // PLT are independent of which symbols are used. The symbols only
6979 // appear in the relocations.
6980 }
6981
6982 // ARM PLTs.
6983 // FIXME: This is not very flexible. Right now this has only been tested
6984 // on armv5te. If we are to support additional architecture features like
6985 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
6986
6987 // The first entry in the PLT.
6988 template<bool big_endian>
6989 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
6990 {
6991 0xe52de004, // str lr, [sp, #-4]!
6992 0xe59fe004, // ldr lr, [pc, #4]
6993 0xe08fe00e, // add lr, pc, lr
6994 0xe5bef008, // ldr pc, [lr, #8]!
6995 0x00000000, // &GOT[0] - .
6996 };
6997
6998 // Subsequent entries in the PLT.
6999
7000 template<bool big_endian>
7001 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7002 {
7003 0xe28fc600, // add ip, pc, #0xNN00000
7004 0xe28cca00, // add ip, ip, #0xNN000
7005 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7006 };
7007
7008 // Write out the PLT. This uses the hand-coded instructions above,
7009 // and adjusts them as needed. This is all specified by the arm ELF
7010 // Processor Supplement.
7011
7012 template<bool big_endian>
7013 void
7014 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7015 {
7016 const off_t offset = this->offset();
7017 const section_size_type oview_size =
7018 convert_to_section_size_type(this->data_size());
7019 unsigned char* const oview = of->get_output_view(offset, oview_size);
7020
7021 const off_t got_file_offset = this->got_plt_->offset();
7022 const section_size_type got_size =
7023 convert_to_section_size_type(this->got_plt_->data_size());
7024 unsigned char* const got_view = of->get_output_view(got_file_offset,
7025 got_size);
7026 unsigned char* pov = oview;
7027
7028 Arm_address plt_address = this->address();
7029 Arm_address got_address = this->got_plt_->address();
7030
7031 // Write first PLT entry. All but the last word are constants.
7032 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7033 / sizeof(plt_entry[0]));
7034 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7035 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7036 // Last word in first PLT entry is &GOT[0] - .
7037 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7038 got_address - (plt_address + 16));
7039 pov += sizeof(first_plt_entry);
7040
7041 unsigned char* got_pov = got_view;
7042
7043 memset(got_pov, 0, 12);
7044 got_pov += 12;
7045
7046 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7047 unsigned int plt_offset = sizeof(first_plt_entry);
7048 unsigned int plt_rel_offset = 0;
7049 unsigned int got_offset = 12;
7050 const unsigned int count = this->count_;
7051 for (unsigned int i = 0;
7052 i < count;
7053 ++i,
7054 pov += sizeof(plt_entry),
7055 got_pov += 4,
7056 plt_offset += sizeof(plt_entry),
7057 plt_rel_offset += rel_size,
7058 got_offset += 4)
7059 {
7060 // Set and adjust the PLT entry itself.
7061 int32_t offset = ((got_address + got_offset)
7062 - (plt_address + plt_offset + 8));
7063
7064 gold_assert(offset >= 0 && offset < 0x0fffffff);
7065 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7066 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7067 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7068 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7069 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7070 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7071
7072 // Set the entry in the GOT.
7073 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7074 }
7075
7076 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7077 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7078
7079 of->write_output_view(offset, oview_size, oview);
7080 of->write_output_view(got_file_offset, got_size, got_view);
7081 }
7082
7083 // Create a PLT entry for a global symbol.
7084
7085 template<bool big_endian>
7086 void
7087 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7088 Symbol* gsym)
7089 {
7090 if (gsym->has_plt_offset())
7091 return;
7092
7093 if (this->plt_ == NULL)
7094 {
7095 // Create the GOT sections first.
7096 this->got_section(symtab, layout);
7097
7098 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7099 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7100 (elfcpp::SHF_ALLOC
7101 | elfcpp::SHF_EXECINSTR),
7102 this->plt_, false, false, false, false);
7103 }
7104 this->plt_->add_entry(gsym);
7105 }
7106
7107 // Get the section to use for TLS_DESC relocations.
7108
7109 template<bool big_endian>
7110 typename Target_arm<big_endian>::Reloc_section*
7111 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7112 {
7113 return this->plt_section()->rel_tls_desc(layout);
7114 }
7115
7116 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7117
7118 template<bool big_endian>
7119 void
7120 Target_arm<big_endian>::define_tls_base_symbol(
7121 Symbol_table* symtab,
7122 Layout* layout)
7123 {
7124 if (this->tls_base_symbol_defined_)
7125 return;
7126
7127 Output_segment* tls_segment = layout->tls_segment();
7128 if (tls_segment != NULL)
7129 {
7130 bool is_exec = parameters->options().output_is_executable();
7131 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7132 Symbol_table::PREDEFINED,
7133 tls_segment, 0, 0,
7134 elfcpp::STT_TLS,
7135 elfcpp::STB_LOCAL,
7136 elfcpp::STV_HIDDEN, 0,
7137 (is_exec
7138 ? Symbol::SEGMENT_END
7139 : Symbol::SEGMENT_START),
7140 true);
7141 }
7142 this->tls_base_symbol_defined_ = true;
7143 }
7144
7145 // Create a GOT entry for the TLS module index.
7146
7147 template<bool big_endian>
7148 unsigned int
7149 Target_arm<big_endian>::got_mod_index_entry(
7150 Symbol_table* symtab,
7151 Layout* layout,
7152 Sized_relobj<32, big_endian>* object)
7153 {
7154 if (this->got_mod_index_offset_ == -1U)
7155 {
7156 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7157 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7158 unsigned int got_offset;
7159 if (!parameters->doing_static_link())
7160 {
7161 got_offset = got->add_constant(0);
7162 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7163 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7164 got_offset);
7165 }
7166 else
7167 {
7168 // We are doing a static link. Just mark it as belong to module 1,
7169 // the executable.
7170 got_offset = got->add_constant(1);
7171 }
7172
7173 got->add_constant(0);
7174 this->got_mod_index_offset_ = got_offset;
7175 }
7176 return this->got_mod_index_offset_;
7177 }
7178
7179 // Optimize the TLS relocation type based on what we know about the
7180 // symbol. IS_FINAL is true if the final address of this symbol is
7181 // known at link time.
7182
7183 template<bool big_endian>
7184 tls::Tls_optimization
7185 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7186 {
7187 // FIXME: Currently we do not do any TLS optimization.
7188 return tls::TLSOPT_NONE;
7189 }
7190
7191 // Report an unsupported relocation against a local symbol.
7192
7193 template<bool big_endian>
7194 void
7195 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7196 Sized_relobj<32, big_endian>* object,
7197 unsigned int r_type)
7198 {
7199 gold_error(_("%s: unsupported reloc %u against local symbol"),
7200 object->name().c_str(), r_type);
7201 }
7202
7203 // We are about to emit a dynamic relocation of type R_TYPE. If the
7204 // dynamic linker does not support it, issue an error. The GNU linker
7205 // only issues a non-PIC error for an allocated read-only section.
7206 // Here we know the section is allocated, but we don't know that it is
7207 // read-only. But we check for all the relocation types which the
7208 // glibc dynamic linker supports, so it seems appropriate to issue an
7209 // error even if the section is not read-only.
7210
7211 template<bool big_endian>
7212 void
7213 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7214 unsigned int r_type)
7215 {
7216 switch (r_type)
7217 {
7218 // These are the relocation types supported by glibc for ARM.
7219 case elfcpp::R_ARM_RELATIVE:
7220 case elfcpp::R_ARM_COPY:
7221 case elfcpp::R_ARM_GLOB_DAT:
7222 case elfcpp::R_ARM_JUMP_SLOT:
7223 case elfcpp::R_ARM_ABS32:
7224 case elfcpp::R_ARM_ABS32_NOI:
7225 case elfcpp::R_ARM_PC24:
7226 // FIXME: The following 3 types are not supported by Android's dynamic
7227 // linker.
7228 case elfcpp::R_ARM_TLS_DTPMOD32:
7229 case elfcpp::R_ARM_TLS_DTPOFF32:
7230 case elfcpp::R_ARM_TLS_TPOFF32:
7231 return;
7232
7233 default:
7234 {
7235 // This prevents us from issuing more than one error per reloc
7236 // section. But we can still wind up issuing more than one
7237 // error per object file.
7238 if (this->issued_non_pic_error_)
7239 return;
7240 const Arm_reloc_property* reloc_property =
7241 arm_reloc_property_table->get_reloc_property(r_type);
7242 gold_assert(reloc_property != NULL);
7243 object->error(_("requires unsupported dynamic reloc %s; "
7244 "recompile with -fPIC"),
7245 reloc_property->name().c_str());
7246 this->issued_non_pic_error_ = true;
7247 return;
7248 }
7249
7250 case elfcpp::R_ARM_NONE:
7251 gold_unreachable();
7252 }
7253 }
7254
7255 // Scan a relocation for a local symbol.
7256 // FIXME: This only handles a subset of relocation types used by Android
7257 // on ARM v5te devices.
7258
7259 template<bool big_endian>
7260 inline void
7261 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7262 Layout* layout,
7263 Target_arm* target,
7264 Sized_relobj<32, big_endian>* object,
7265 unsigned int data_shndx,
7266 Output_section* output_section,
7267 const elfcpp::Rel<32, big_endian>& reloc,
7268 unsigned int r_type,
7269 const elfcpp::Sym<32, big_endian>& lsym)
7270 {
7271 r_type = get_real_reloc_type(r_type);
7272 switch (r_type)
7273 {
7274 case elfcpp::R_ARM_NONE:
7275 case elfcpp::R_ARM_V4BX:
7276 case elfcpp::R_ARM_GNU_VTENTRY:
7277 case elfcpp::R_ARM_GNU_VTINHERIT:
7278 break;
7279
7280 case elfcpp::R_ARM_ABS32:
7281 case elfcpp::R_ARM_ABS32_NOI:
7282 // If building a shared library (or a position-independent
7283 // executable), we need to create a dynamic relocation for
7284 // this location. The relocation applied at link time will
7285 // apply the link-time value, so we flag the location with
7286 // an R_ARM_RELATIVE relocation so the dynamic loader can
7287 // relocate it easily.
7288 if (parameters->options().output_is_position_independent())
7289 {
7290 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7291 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7292 // If we are to add more other reloc types than R_ARM_ABS32,
7293 // we need to add check_non_pic(object, r_type) here.
7294 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7295 output_section, data_shndx,
7296 reloc.get_r_offset());
7297 }
7298 break;
7299
7300 case elfcpp::R_ARM_ABS16:
7301 case elfcpp::R_ARM_ABS12:
7302 case elfcpp::R_ARM_THM_ABS5:
7303 case elfcpp::R_ARM_ABS8:
7304 case elfcpp::R_ARM_BASE_ABS:
7305 case elfcpp::R_ARM_MOVW_ABS_NC:
7306 case elfcpp::R_ARM_MOVT_ABS:
7307 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7308 case elfcpp::R_ARM_THM_MOVT_ABS:
7309 // If building a shared library (or a position-independent
7310 // executable), we need to create a dynamic relocation for
7311 // this location. Because the addend needs to remain in the
7312 // data section, we need to be careful not to apply this
7313 // relocation statically.
7314 if (parameters->options().output_is_position_independent())
7315 {
7316 check_non_pic(object, r_type);
7317 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7318 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7319 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7320 rel_dyn->add_local(object, r_sym, r_type, output_section,
7321 data_shndx, reloc.get_r_offset());
7322 else
7323 {
7324 gold_assert(lsym.get_st_value() == 0);
7325 unsigned int shndx = lsym.get_st_shndx();
7326 bool is_ordinary;
7327 shndx = object->adjust_sym_shndx(r_sym, shndx,
7328 &is_ordinary);
7329 if (!is_ordinary)
7330 object->error(_("section symbol %u has bad shndx %u"),
7331 r_sym, shndx);
7332 else
7333 rel_dyn->add_local_section(object, shndx,
7334 r_type, output_section,
7335 data_shndx, reloc.get_r_offset());
7336 }
7337 }
7338 break;
7339
7340 case elfcpp::R_ARM_PC24:
7341 case elfcpp::R_ARM_REL32:
7342 case elfcpp::R_ARM_LDR_PC_G0:
7343 case elfcpp::R_ARM_SBREL32:
7344 case elfcpp::R_ARM_THM_CALL:
7345 case elfcpp::R_ARM_THM_PC8:
7346 case elfcpp::R_ARM_BASE_PREL:
7347 case elfcpp::R_ARM_PLT32:
7348 case elfcpp::R_ARM_CALL:
7349 case elfcpp::R_ARM_JUMP24:
7350 case elfcpp::R_ARM_THM_JUMP24:
7351 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7352 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7353 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7354 case elfcpp::R_ARM_SBREL31:
7355 case elfcpp::R_ARM_PREL31:
7356 case elfcpp::R_ARM_MOVW_PREL_NC:
7357 case elfcpp::R_ARM_MOVT_PREL:
7358 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7359 case elfcpp::R_ARM_THM_MOVT_PREL:
7360 case elfcpp::R_ARM_THM_JUMP19:
7361 case elfcpp::R_ARM_THM_JUMP6:
7362 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7363 case elfcpp::R_ARM_THM_PC12:
7364 case elfcpp::R_ARM_REL32_NOI:
7365 case elfcpp::R_ARM_ALU_PC_G0_NC:
7366 case elfcpp::R_ARM_ALU_PC_G0:
7367 case elfcpp::R_ARM_ALU_PC_G1_NC:
7368 case elfcpp::R_ARM_ALU_PC_G1:
7369 case elfcpp::R_ARM_ALU_PC_G2:
7370 case elfcpp::R_ARM_LDR_PC_G1:
7371 case elfcpp::R_ARM_LDR_PC_G2:
7372 case elfcpp::R_ARM_LDRS_PC_G0:
7373 case elfcpp::R_ARM_LDRS_PC_G1:
7374 case elfcpp::R_ARM_LDRS_PC_G2:
7375 case elfcpp::R_ARM_LDC_PC_G0:
7376 case elfcpp::R_ARM_LDC_PC_G1:
7377 case elfcpp::R_ARM_LDC_PC_G2:
7378 case elfcpp::R_ARM_ALU_SB_G0_NC:
7379 case elfcpp::R_ARM_ALU_SB_G0:
7380 case elfcpp::R_ARM_ALU_SB_G1_NC:
7381 case elfcpp::R_ARM_ALU_SB_G1:
7382 case elfcpp::R_ARM_ALU_SB_G2:
7383 case elfcpp::R_ARM_LDR_SB_G0:
7384 case elfcpp::R_ARM_LDR_SB_G1:
7385 case elfcpp::R_ARM_LDR_SB_G2:
7386 case elfcpp::R_ARM_LDRS_SB_G0:
7387 case elfcpp::R_ARM_LDRS_SB_G1:
7388 case elfcpp::R_ARM_LDRS_SB_G2:
7389 case elfcpp::R_ARM_LDC_SB_G0:
7390 case elfcpp::R_ARM_LDC_SB_G1:
7391 case elfcpp::R_ARM_LDC_SB_G2:
7392 case elfcpp::R_ARM_MOVW_BREL_NC:
7393 case elfcpp::R_ARM_MOVT_BREL:
7394 case elfcpp::R_ARM_MOVW_BREL:
7395 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7396 case elfcpp::R_ARM_THM_MOVT_BREL:
7397 case elfcpp::R_ARM_THM_MOVW_BREL:
7398 case elfcpp::R_ARM_THM_JUMP11:
7399 case elfcpp::R_ARM_THM_JUMP8:
7400 // We don't need to do anything for a relative addressing relocation
7401 // against a local symbol if it does not reference the GOT.
7402 break;
7403
7404 case elfcpp::R_ARM_GOTOFF32:
7405 case elfcpp::R_ARM_GOTOFF12:
7406 // We need a GOT section:
7407 target->got_section(symtab, layout);
7408 break;
7409
7410 case elfcpp::R_ARM_GOT_BREL:
7411 case elfcpp::R_ARM_GOT_PREL:
7412 {
7413 // The symbol requires a GOT entry.
7414 Arm_output_data_got<big_endian>* got =
7415 target->got_section(symtab, layout);
7416 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7417 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7418 {
7419 // If we are generating a shared object, we need to add a
7420 // dynamic RELATIVE relocation for this symbol's GOT entry.
7421 if (parameters->options().output_is_position_independent())
7422 {
7423 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7424 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7425 rel_dyn->add_local_relative(
7426 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7427 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7428 }
7429 }
7430 }
7431 break;
7432
7433 case elfcpp::R_ARM_TARGET1:
7434 case elfcpp::R_ARM_TARGET2:
7435 // This should have been mapped to another type already.
7436 // Fall through.
7437 case elfcpp::R_ARM_COPY:
7438 case elfcpp::R_ARM_GLOB_DAT:
7439 case elfcpp::R_ARM_JUMP_SLOT:
7440 case elfcpp::R_ARM_RELATIVE:
7441 // These are relocations which should only be seen by the
7442 // dynamic linker, and should never be seen here.
7443 gold_error(_("%s: unexpected reloc %u in object file"),
7444 object->name().c_str(), r_type);
7445 break;
7446
7447
7448 // These are initial TLS relocs, which are expected when
7449 // linking.
7450 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7451 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7452 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7453 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7454 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7455 {
7456 bool output_is_shared = parameters->options().shared();
7457 const tls::Tls_optimization optimized_type
7458 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7459 r_type);
7460 switch (r_type)
7461 {
7462 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7463 if (optimized_type == tls::TLSOPT_NONE)
7464 {
7465 // Create a pair of GOT entries for the module index and
7466 // dtv-relative offset.
7467 Arm_output_data_got<big_endian>* got
7468 = target->got_section(symtab, layout);
7469 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7470 unsigned int shndx = lsym.get_st_shndx();
7471 bool is_ordinary;
7472 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7473 if (!is_ordinary)
7474 {
7475 object->error(_("local symbol %u has bad shndx %u"),
7476 r_sym, shndx);
7477 break;
7478 }
7479
7480 if (!parameters->doing_static_link())
7481 got->add_local_pair_with_rel(object, r_sym, shndx,
7482 GOT_TYPE_TLS_PAIR,
7483 target->rel_dyn_section(layout),
7484 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7485 else
7486 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7487 object, r_sym);
7488 }
7489 else
7490 // FIXME: TLS optimization not supported yet.
7491 gold_unreachable();
7492 break;
7493
7494 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7495 if (optimized_type == tls::TLSOPT_NONE)
7496 {
7497 // Create a GOT entry for the module index.
7498 target->got_mod_index_entry(symtab, layout, object);
7499 }
7500 else
7501 // FIXME: TLS optimization not supported yet.
7502 gold_unreachable();
7503 break;
7504
7505 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7506 break;
7507
7508 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7509 layout->set_has_static_tls();
7510 if (optimized_type == tls::TLSOPT_NONE)
7511 {
7512 // Create a GOT entry for the tp-relative offset.
7513 Arm_output_data_got<big_endian>* got
7514 = target->got_section(symtab, layout);
7515 unsigned int r_sym =
7516 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7517 if (!parameters->doing_static_link())
7518 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7519 target->rel_dyn_section(layout),
7520 elfcpp::R_ARM_TLS_TPOFF32);
7521 else if (!object->local_has_got_offset(r_sym,
7522 GOT_TYPE_TLS_OFFSET))
7523 {
7524 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7525 unsigned int got_offset =
7526 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7527 got->add_static_reloc(got_offset,
7528 elfcpp::R_ARM_TLS_TPOFF32, object,
7529 r_sym);
7530 }
7531 }
7532 else
7533 // FIXME: TLS optimization not supported yet.
7534 gold_unreachable();
7535 break;
7536
7537 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7538 layout->set_has_static_tls();
7539 if (output_is_shared)
7540 {
7541 // We need to create a dynamic relocation.
7542 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7543 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7544 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7545 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7546 output_section, data_shndx,
7547 reloc.get_r_offset());
7548 }
7549 break;
7550
7551 default:
7552 gold_unreachable();
7553 }
7554 }
7555 break;
7556
7557 default:
7558 unsupported_reloc_local(object, r_type);
7559 break;
7560 }
7561 }
7562
7563 // Report an unsupported relocation against a global symbol.
7564
7565 template<bool big_endian>
7566 void
7567 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7568 Sized_relobj<32, big_endian>* object,
7569 unsigned int r_type,
7570 Symbol* gsym)
7571 {
7572 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7573 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7574 }
7575
7576 // Scan a relocation for a global symbol.
7577
7578 template<bool big_endian>
7579 inline void
7580 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7581 Layout* layout,
7582 Target_arm* target,
7583 Sized_relobj<32, big_endian>* object,
7584 unsigned int data_shndx,
7585 Output_section* output_section,
7586 const elfcpp::Rel<32, big_endian>& reloc,
7587 unsigned int r_type,
7588 Symbol* gsym)
7589 {
7590 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7591 // section. We check here to avoid creating a dynamic reloc against
7592 // _GLOBAL_OFFSET_TABLE_.
7593 if (!target->has_got_section()
7594 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7595 target->got_section(symtab, layout);
7596
7597 r_type = get_real_reloc_type(r_type);
7598 switch (r_type)
7599 {
7600 case elfcpp::R_ARM_NONE:
7601 case elfcpp::R_ARM_V4BX:
7602 case elfcpp::R_ARM_GNU_VTENTRY:
7603 case elfcpp::R_ARM_GNU_VTINHERIT:
7604 break;
7605
7606 case elfcpp::R_ARM_ABS32:
7607 case elfcpp::R_ARM_ABS16:
7608 case elfcpp::R_ARM_ABS12:
7609 case elfcpp::R_ARM_THM_ABS5:
7610 case elfcpp::R_ARM_ABS8:
7611 case elfcpp::R_ARM_BASE_ABS:
7612 case elfcpp::R_ARM_MOVW_ABS_NC:
7613 case elfcpp::R_ARM_MOVT_ABS:
7614 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7615 case elfcpp::R_ARM_THM_MOVT_ABS:
7616 case elfcpp::R_ARM_ABS32_NOI:
7617 // Absolute addressing relocations.
7618 {
7619 // Make a PLT entry if necessary.
7620 if (this->symbol_needs_plt_entry(gsym))
7621 {
7622 target->make_plt_entry(symtab, layout, gsym);
7623 // Since this is not a PC-relative relocation, we may be
7624 // taking the address of a function. In that case we need to
7625 // set the entry in the dynamic symbol table to the address of
7626 // the PLT entry.
7627 if (gsym->is_from_dynobj() && !parameters->options().shared())
7628 gsym->set_needs_dynsym_value();
7629 }
7630 // Make a dynamic relocation if necessary.
7631 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7632 {
7633 if (gsym->may_need_copy_reloc())
7634 {
7635 target->copy_reloc(symtab, layout, object,
7636 data_shndx, output_section, gsym, reloc);
7637 }
7638 else if ((r_type == elfcpp::R_ARM_ABS32
7639 || r_type == elfcpp::R_ARM_ABS32_NOI)
7640 && gsym->can_use_relative_reloc(false))
7641 {
7642 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7643 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7644 output_section, object,
7645 data_shndx, reloc.get_r_offset());
7646 }
7647 else
7648 {
7649 check_non_pic(object, r_type);
7650 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7651 rel_dyn->add_global(gsym, r_type, output_section, object,
7652 data_shndx, reloc.get_r_offset());
7653 }
7654 }
7655 }
7656 break;
7657
7658 case elfcpp::R_ARM_GOTOFF32:
7659 case elfcpp::R_ARM_GOTOFF12:
7660 // We need a GOT section.
7661 target->got_section(symtab, layout);
7662 break;
7663
7664 case elfcpp::R_ARM_REL32:
7665 case elfcpp::R_ARM_LDR_PC_G0:
7666 case elfcpp::R_ARM_SBREL32:
7667 case elfcpp::R_ARM_THM_PC8:
7668 case elfcpp::R_ARM_BASE_PREL:
7669 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7670 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7671 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7672 case elfcpp::R_ARM_MOVW_PREL_NC:
7673 case elfcpp::R_ARM_MOVT_PREL:
7674 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7675 case elfcpp::R_ARM_THM_MOVT_PREL:
7676 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7677 case elfcpp::R_ARM_THM_PC12:
7678 case elfcpp::R_ARM_REL32_NOI:
7679 case elfcpp::R_ARM_ALU_PC_G0_NC:
7680 case elfcpp::R_ARM_ALU_PC_G0:
7681 case elfcpp::R_ARM_ALU_PC_G1_NC:
7682 case elfcpp::R_ARM_ALU_PC_G1:
7683 case elfcpp::R_ARM_ALU_PC_G2:
7684 case elfcpp::R_ARM_LDR_PC_G1:
7685 case elfcpp::R_ARM_LDR_PC_G2:
7686 case elfcpp::R_ARM_LDRS_PC_G0:
7687 case elfcpp::R_ARM_LDRS_PC_G1:
7688 case elfcpp::R_ARM_LDRS_PC_G2:
7689 case elfcpp::R_ARM_LDC_PC_G0:
7690 case elfcpp::R_ARM_LDC_PC_G1:
7691 case elfcpp::R_ARM_LDC_PC_G2:
7692 case elfcpp::R_ARM_ALU_SB_G0_NC:
7693 case elfcpp::R_ARM_ALU_SB_G0:
7694 case elfcpp::R_ARM_ALU_SB_G1_NC:
7695 case elfcpp::R_ARM_ALU_SB_G1:
7696 case elfcpp::R_ARM_ALU_SB_G2:
7697 case elfcpp::R_ARM_LDR_SB_G0:
7698 case elfcpp::R_ARM_LDR_SB_G1:
7699 case elfcpp::R_ARM_LDR_SB_G2:
7700 case elfcpp::R_ARM_LDRS_SB_G0:
7701 case elfcpp::R_ARM_LDRS_SB_G1:
7702 case elfcpp::R_ARM_LDRS_SB_G2:
7703 case elfcpp::R_ARM_LDC_SB_G0:
7704 case elfcpp::R_ARM_LDC_SB_G1:
7705 case elfcpp::R_ARM_LDC_SB_G2:
7706 case elfcpp::R_ARM_MOVW_BREL_NC:
7707 case elfcpp::R_ARM_MOVT_BREL:
7708 case elfcpp::R_ARM_MOVW_BREL:
7709 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7710 case elfcpp::R_ARM_THM_MOVT_BREL:
7711 case elfcpp::R_ARM_THM_MOVW_BREL:
7712 // Relative addressing relocations.
7713 {
7714 // Make a dynamic relocation if necessary.
7715 int flags = Symbol::NON_PIC_REF;
7716 if (gsym->needs_dynamic_reloc(flags))
7717 {
7718 if (target->may_need_copy_reloc(gsym))
7719 {
7720 target->copy_reloc(symtab, layout, object,
7721 data_shndx, output_section, gsym, reloc);
7722 }
7723 else
7724 {
7725 check_non_pic(object, r_type);
7726 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7727 rel_dyn->add_global(gsym, r_type, output_section, object,
7728 data_shndx, reloc.get_r_offset());
7729 }
7730 }
7731 }
7732 break;
7733
7734 case elfcpp::R_ARM_PC24:
7735 case elfcpp::R_ARM_THM_CALL:
7736 case elfcpp::R_ARM_PLT32:
7737 case elfcpp::R_ARM_CALL:
7738 case elfcpp::R_ARM_JUMP24:
7739 case elfcpp::R_ARM_THM_JUMP24:
7740 case elfcpp::R_ARM_SBREL31:
7741 case elfcpp::R_ARM_PREL31:
7742 case elfcpp::R_ARM_THM_JUMP19:
7743 case elfcpp::R_ARM_THM_JUMP6:
7744 case elfcpp::R_ARM_THM_JUMP11:
7745 case elfcpp::R_ARM_THM_JUMP8:
7746 // All the relocation above are branches except for the PREL31 ones.
7747 // A PREL31 relocation can point to a personality function in a shared
7748 // library. In that case we want to use a PLT because we want to
7749 // call the personality routine and the dyanmic linkers we care about
7750 // do not support dynamic PREL31 relocations. An REL31 relocation may
7751 // point to a function whose unwinding behaviour is being described but
7752 // we will not mistakenly generate a PLT for that because we should use
7753 // a local section symbol.
7754
7755 // If the symbol is fully resolved, this is just a relative
7756 // local reloc. Otherwise we need a PLT entry.
7757 if (gsym->final_value_is_known())
7758 break;
7759 // If building a shared library, we can also skip the PLT entry
7760 // if the symbol is defined in the output file and is protected
7761 // or hidden.
7762 if (gsym->is_defined()
7763 && !gsym->is_from_dynobj()
7764 && !gsym->is_preemptible())
7765 break;
7766 target->make_plt_entry(symtab, layout, gsym);
7767 break;
7768
7769 case elfcpp::R_ARM_GOT_BREL:
7770 case elfcpp::R_ARM_GOT_ABS:
7771 case elfcpp::R_ARM_GOT_PREL:
7772 {
7773 // The symbol requires a GOT entry.
7774 Arm_output_data_got<big_endian>* got =
7775 target->got_section(symtab, layout);
7776 if (gsym->final_value_is_known())
7777 got->add_global(gsym, GOT_TYPE_STANDARD);
7778 else
7779 {
7780 // If this symbol is not fully resolved, we need to add a
7781 // GOT entry with a dynamic relocation.
7782 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7783 if (gsym->is_from_dynobj()
7784 || gsym->is_undefined()
7785 || gsym->is_preemptible())
7786 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7787 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7788 else
7789 {
7790 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7791 rel_dyn->add_global_relative(
7792 gsym, elfcpp::R_ARM_RELATIVE, got,
7793 gsym->got_offset(GOT_TYPE_STANDARD));
7794 }
7795 }
7796 }
7797 break;
7798
7799 case elfcpp::R_ARM_TARGET1:
7800 case elfcpp::R_ARM_TARGET2:
7801 // These should have been mapped to other types already.
7802 // Fall through.
7803 case elfcpp::R_ARM_COPY:
7804 case elfcpp::R_ARM_GLOB_DAT:
7805 case elfcpp::R_ARM_JUMP_SLOT:
7806 case elfcpp::R_ARM_RELATIVE:
7807 // These are relocations which should only be seen by the
7808 // dynamic linker, and should never be seen here.
7809 gold_error(_("%s: unexpected reloc %u in object file"),
7810 object->name().c_str(), r_type);
7811 break;
7812
7813 // These are initial tls relocs, which are expected when
7814 // linking.
7815 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7816 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7817 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7818 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7819 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7820 {
7821 const bool is_final = gsym->final_value_is_known();
7822 const tls::Tls_optimization optimized_type
7823 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
7824 switch (r_type)
7825 {
7826 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7827 if (optimized_type == tls::TLSOPT_NONE)
7828 {
7829 // Create a pair of GOT entries for the module index and
7830 // dtv-relative offset.
7831 Arm_output_data_got<big_endian>* got
7832 = target->got_section(symtab, layout);
7833 if (!parameters->doing_static_link())
7834 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
7835 target->rel_dyn_section(layout),
7836 elfcpp::R_ARM_TLS_DTPMOD32,
7837 elfcpp::R_ARM_TLS_DTPOFF32);
7838 else
7839 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
7840 }
7841 else
7842 // FIXME: TLS optimization not supported yet.
7843 gold_unreachable();
7844 break;
7845
7846 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7847 if (optimized_type == tls::TLSOPT_NONE)
7848 {
7849 // Create a GOT entry for the module index.
7850 target->got_mod_index_entry(symtab, layout, object);
7851 }
7852 else
7853 // FIXME: TLS optimization not supported yet.
7854 gold_unreachable();
7855 break;
7856
7857 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7858 break;
7859
7860 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7861 layout->set_has_static_tls();
7862 if (optimized_type == tls::TLSOPT_NONE)
7863 {
7864 // Create a GOT entry for the tp-relative offset.
7865 Arm_output_data_got<big_endian>* got
7866 = target->got_section(symtab, layout);
7867 if (!parameters->doing_static_link())
7868 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
7869 target->rel_dyn_section(layout),
7870 elfcpp::R_ARM_TLS_TPOFF32);
7871 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
7872 {
7873 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
7874 unsigned int got_offset =
7875 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
7876 got->add_static_reloc(got_offset,
7877 elfcpp::R_ARM_TLS_TPOFF32, gsym);
7878 }
7879 }
7880 else
7881 // FIXME: TLS optimization not supported yet.
7882 gold_unreachable();
7883 break;
7884
7885 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7886 layout->set_has_static_tls();
7887 if (parameters->options().shared())
7888 {
7889 // We need to create a dynamic relocation.
7890 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7891 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
7892 output_section, object,
7893 data_shndx, reloc.get_r_offset());
7894 }
7895 break;
7896
7897 default:
7898 gold_unreachable();
7899 }
7900 }
7901 break;
7902
7903 default:
7904 unsupported_reloc_global(object, r_type, gsym);
7905 break;
7906 }
7907 }
7908
7909 // Process relocations for gc.
7910
7911 template<bool big_endian>
7912 void
7913 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
7914 Layout* layout,
7915 Sized_relobj<32, big_endian>* object,
7916 unsigned int data_shndx,
7917 unsigned int,
7918 const unsigned char* prelocs,
7919 size_t reloc_count,
7920 Output_section* output_section,
7921 bool needs_special_offset_handling,
7922 size_t local_symbol_count,
7923 const unsigned char* plocal_symbols)
7924 {
7925 typedef Target_arm<big_endian> Arm;
7926 typedef typename Target_arm<big_endian>::Scan Scan;
7927
7928 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
7929 symtab,
7930 layout,
7931 this,
7932 object,
7933 data_shndx,
7934 prelocs,
7935 reloc_count,
7936 output_section,
7937 needs_special_offset_handling,
7938 local_symbol_count,
7939 plocal_symbols);
7940 }
7941
7942 // Scan relocations for a section.
7943
7944 template<bool big_endian>
7945 void
7946 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
7947 Layout* layout,
7948 Sized_relobj<32, big_endian>* object,
7949 unsigned int data_shndx,
7950 unsigned int sh_type,
7951 const unsigned char* prelocs,
7952 size_t reloc_count,
7953 Output_section* output_section,
7954 bool needs_special_offset_handling,
7955 size_t local_symbol_count,
7956 const unsigned char* plocal_symbols)
7957 {
7958 typedef typename Target_arm<big_endian>::Scan Scan;
7959 if (sh_type == elfcpp::SHT_RELA)
7960 {
7961 gold_error(_("%s: unsupported RELA reloc section"),
7962 object->name().c_str());
7963 return;
7964 }
7965
7966 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
7967 symtab,
7968 layout,
7969 this,
7970 object,
7971 data_shndx,
7972 prelocs,
7973 reloc_count,
7974 output_section,
7975 needs_special_offset_handling,
7976 local_symbol_count,
7977 plocal_symbols);
7978 }
7979
7980 // Finalize the sections.
7981
7982 template<bool big_endian>
7983 void
7984 Target_arm<big_endian>::do_finalize_sections(
7985 Layout* layout,
7986 const Input_objects* input_objects,
7987 Symbol_table* symtab)
7988 {
7989 // Create an empty uninitialized attribute section if we still don't have it
7990 // at this moment.
7991 if (this->attributes_section_data_ == NULL)
7992 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
7993
7994 // Merge processor-specific flags.
7995 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7996 p != input_objects->relobj_end();
7997 ++p)
7998 {
7999 Arm_relobj<big_endian>* arm_relobj =
8000 Arm_relobj<big_endian>::as_arm_relobj(*p);
8001 if (arm_relobj->merge_flags_and_attributes())
8002 {
8003 this->merge_processor_specific_flags(
8004 arm_relobj->name(),
8005 arm_relobj->processor_specific_flags());
8006 this->merge_object_attributes(arm_relobj->name().c_str(),
8007 arm_relobj->attributes_section_data());
8008 }
8009 }
8010
8011 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8012 p != input_objects->dynobj_end();
8013 ++p)
8014 {
8015 Arm_dynobj<big_endian>* arm_dynobj =
8016 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8017 this->merge_processor_specific_flags(
8018 arm_dynobj->name(),
8019 arm_dynobj->processor_specific_flags());
8020 this->merge_object_attributes(arm_dynobj->name().c_str(),
8021 arm_dynobj->attributes_section_data());
8022 }
8023
8024 // Check BLX use.
8025 const Object_attribute* cpu_arch_attr =
8026 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8027 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8028 this->set_may_use_blx(true);
8029
8030 // Check if we need to use Cortex-A8 workaround.
8031 if (parameters->options().user_set_fix_cortex_a8())
8032 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8033 else
8034 {
8035 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8036 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8037 // profile.
8038 const Object_attribute* cpu_arch_profile_attr =
8039 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8040 this->fix_cortex_a8_ =
8041 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8042 && (cpu_arch_profile_attr->int_value() == 'A'
8043 || cpu_arch_profile_attr->int_value() == 0));
8044 }
8045
8046 // Check if we can use V4BX interworking.
8047 // The V4BX interworking stub contains BX instruction,
8048 // which is not specified for some profiles.
8049 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8050 && !this->may_use_blx())
8051 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8052 "the target profile does not support BX instruction"));
8053
8054 // Fill in some more dynamic tags.
8055 const Reloc_section* rel_plt = (this->plt_ == NULL
8056 ? NULL
8057 : this->plt_->rel_plt());
8058 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8059 this->rel_dyn_, true, false);
8060
8061 // Emit any relocs we saved in an attempt to avoid generating COPY
8062 // relocs.
8063 if (this->copy_relocs_.any_saved_relocs())
8064 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8065
8066 // Handle the .ARM.exidx section.
8067 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8068 if (exidx_section != NULL
8069 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8070 && !parameters->options().relocatable())
8071 {
8072 // Create __exidx_start and __exdix_end symbols.
8073 symtab->define_in_output_data("__exidx_start", NULL,
8074 Symbol_table::PREDEFINED,
8075 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8076 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8077 false, true);
8078 symtab->define_in_output_data("__exidx_end", NULL,
8079 Symbol_table::PREDEFINED,
8080 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8081 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8082 true, true);
8083
8084 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8085 // the .ARM.exidx section.
8086 if (!layout->script_options()->saw_phdrs_clause())
8087 {
8088 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8089 == NULL);
8090 Output_segment* exidx_segment =
8091 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8092 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8093 false);
8094 }
8095 }
8096
8097 // Create an .ARM.attributes section unless we have no regular input
8098 // object. In that case the output will be empty.
8099 if (input_objects->number_of_relobjs() != 0)
8100 {
8101 Output_attributes_section_data* attributes_section =
8102 new Output_attributes_section_data(*this->attributes_section_data_);
8103 layout->add_output_section_data(".ARM.attributes",
8104 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8105 attributes_section, false, false, false,
8106 false);
8107 }
8108 }
8109
8110 // Return whether a direct absolute static relocation needs to be applied.
8111 // In cases where Scan::local() or Scan::global() has created
8112 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8113 // of the relocation is carried in the data, and we must not
8114 // apply the static relocation.
8115
8116 template<bool big_endian>
8117 inline bool
8118 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8119 const Sized_symbol<32>* gsym,
8120 int ref_flags,
8121 bool is_32bit,
8122 Output_section* output_section)
8123 {
8124 // If the output section is not allocated, then we didn't call
8125 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8126 // the reloc here.
8127 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8128 return true;
8129
8130 // For local symbols, we will have created a non-RELATIVE dynamic
8131 // relocation only if (a) the output is position independent,
8132 // (b) the relocation is absolute (not pc- or segment-relative), and
8133 // (c) the relocation is not 32 bits wide.
8134 if (gsym == NULL)
8135 return !(parameters->options().output_is_position_independent()
8136 && (ref_flags & Symbol::ABSOLUTE_REF)
8137 && !is_32bit);
8138
8139 // For global symbols, we use the same helper routines used in the
8140 // scan pass. If we did not create a dynamic relocation, or if we
8141 // created a RELATIVE dynamic relocation, we should apply the static
8142 // relocation.
8143 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8144 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8145 && gsym->can_use_relative_reloc(ref_flags
8146 & Symbol::FUNCTION_CALL);
8147 return !has_dyn || is_rel;
8148 }
8149
8150 // Perform a relocation.
8151
8152 template<bool big_endian>
8153 inline bool
8154 Target_arm<big_endian>::Relocate::relocate(
8155 const Relocate_info<32, big_endian>* relinfo,
8156 Target_arm* target,
8157 Output_section *output_section,
8158 size_t relnum,
8159 const elfcpp::Rel<32, big_endian>& rel,
8160 unsigned int r_type,
8161 const Sized_symbol<32>* gsym,
8162 const Symbol_value<32>* psymval,
8163 unsigned char* view,
8164 Arm_address address,
8165 section_size_type view_size)
8166 {
8167 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8168
8169 r_type = get_real_reloc_type(r_type);
8170 const Arm_reloc_property* reloc_property =
8171 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8172 if (reloc_property == NULL)
8173 {
8174 std::string reloc_name =
8175 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8176 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8177 _("cannot relocate %s in object file"),
8178 reloc_name.c_str());
8179 return true;
8180 }
8181
8182 const Arm_relobj<big_endian>* object =
8183 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8184
8185 // If the final branch target of a relocation is THUMB instruction, this
8186 // is 1. Otherwise it is 0.
8187 Arm_address thumb_bit = 0;
8188 Symbol_value<32> symval;
8189 bool is_weakly_undefined_without_plt = false;
8190 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8191 {
8192 if (gsym != NULL)
8193 {
8194 // This is a global symbol. Determine if we use PLT and if the
8195 // final target is THUMB.
8196 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8197 {
8198 // This uses a PLT, change the symbol value.
8199 symval.set_output_value(target->plt_section()->address()
8200 + gsym->plt_offset());
8201 psymval = &symval;
8202 }
8203 else if (gsym->is_weak_undefined())
8204 {
8205 // This is a weakly undefined symbol and we do not use PLT
8206 // for this relocation. A branch targeting this symbol will
8207 // be converted into an NOP.
8208 is_weakly_undefined_without_plt = true;
8209 }
8210 else
8211 {
8212 // Set thumb bit if symbol:
8213 // -Has type STT_ARM_TFUNC or
8214 // -Has type STT_FUNC, is defined and with LSB in value set.
8215 thumb_bit =
8216 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8217 || (gsym->type() == elfcpp::STT_FUNC
8218 && !gsym->is_undefined()
8219 && ((psymval->value(object, 0) & 1) != 0)))
8220 ? 1
8221 : 0);
8222 }
8223 }
8224 else
8225 {
8226 // This is a local symbol. Determine if the final target is THUMB.
8227 // We saved this information when all the local symbols were read.
8228 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8229 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8230 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8231 }
8232 }
8233 else
8234 {
8235 // This is a fake relocation synthesized for a stub. It does not have
8236 // a real symbol. We just look at the LSB of the symbol value to
8237 // determine if the target is THUMB or not.
8238 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8239 }
8240
8241 // Strip LSB if this points to a THUMB target.
8242 if (thumb_bit != 0
8243 && reloc_property->uses_thumb_bit()
8244 && ((psymval->value(object, 0) & 1) != 0))
8245 {
8246 Arm_address stripped_value =
8247 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8248 symval.set_output_value(stripped_value);
8249 psymval = &symval;
8250 }
8251
8252 // Get the GOT offset if needed.
8253 // The GOT pointer points to the end of the GOT section.
8254 // We need to subtract the size of the GOT section to get
8255 // the actual offset to use in the relocation.
8256 bool have_got_offset = false;
8257 unsigned int got_offset = 0;
8258 switch (r_type)
8259 {
8260 case elfcpp::R_ARM_GOT_BREL:
8261 case elfcpp::R_ARM_GOT_PREL:
8262 if (gsym != NULL)
8263 {
8264 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8265 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8266 - target->got_size());
8267 }
8268 else
8269 {
8270 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8271 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8272 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8273 - target->got_size());
8274 }
8275 have_got_offset = true;
8276 break;
8277
8278 default:
8279 break;
8280 }
8281
8282 // To look up relocation stubs, we need to pass the symbol table index of
8283 // a local symbol.
8284 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8285
8286 // Get the addressing origin of the output segment defining the
8287 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8288 Arm_address sym_origin = 0;
8289 if (reloc_property->uses_symbol_base())
8290 {
8291 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8292 // R_ARM_BASE_ABS with the NULL symbol will give the
8293 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8294 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8295 sym_origin = target->got_plt_section()->address();
8296 else if (gsym == NULL)
8297 sym_origin = 0;
8298 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8299 sym_origin = gsym->output_segment()->vaddr();
8300 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8301 sym_origin = gsym->output_data()->address();
8302
8303 // TODO: Assumes the segment base to be zero for the global symbols
8304 // till the proper support for the segment-base-relative addressing
8305 // will be implemented. This is consistent with GNU ld.
8306 }
8307
8308 // For relative addressing relocation, find out the relative address base.
8309 Arm_address relative_address_base = 0;
8310 switch(reloc_property->relative_address_base())
8311 {
8312 case Arm_reloc_property::RAB_NONE:
8313 // Relocations with relative address bases RAB_TLS and RAB_tp are
8314 // handled by relocate_tls. So we do not need to do anything here.
8315 case Arm_reloc_property::RAB_TLS:
8316 case Arm_reloc_property::RAB_tp:
8317 break;
8318 case Arm_reloc_property::RAB_B_S:
8319 relative_address_base = sym_origin;
8320 break;
8321 case Arm_reloc_property::RAB_GOT_ORG:
8322 relative_address_base = target->got_plt_section()->address();
8323 break;
8324 case Arm_reloc_property::RAB_P:
8325 relative_address_base = address;
8326 break;
8327 case Arm_reloc_property::RAB_Pa:
8328 relative_address_base = address & 0xfffffffcU;
8329 break;
8330 default:
8331 gold_unreachable();
8332 }
8333
8334 typename Arm_relocate_functions::Status reloc_status =
8335 Arm_relocate_functions::STATUS_OKAY;
8336 bool check_overflow = reloc_property->checks_overflow();
8337 switch (r_type)
8338 {
8339 case elfcpp::R_ARM_NONE:
8340 break;
8341
8342 case elfcpp::R_ARM_ABS8:
8343 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8344 output_section))
8345 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8346 break;
8347
8348 case elfcpp::R_ARM_ABS12:
8349 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8350 output_section))
8351 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8352 break;
8353
8354 case elfcpp::R_ARM_ABS16:
8355 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8356 output_section))
8357 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8358 break;
8359
8360 case elfcpp::R_ARM_ABS32:
8361 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8362 output_section))
8363 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8364 thumb_bit);
8365 break;
8366
8367 case elfcpp::R_ARM_ABS32_NOI:
8368 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8369 output_section))
8370 // No thumb bit for this relocation: (S + A)
8371 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8372 0);
8373 break;
8374
8375 case elfcpp::R_ARM_MOVW_ABS_NC:
8376 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8377 output_section))
8378 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8379 0, thumb_bit,
8380 check_overflow);
8381 break;
8382
8383 case elfcpp::R_ARM_MOVT_ABS:
8384 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8385 output_section))
8386 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8387 break;
8388
8389 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8390 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8391 output_section))
8392 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8393 0, thumb_bit, false);
8394 break;
8395
8396 case elfcpp::R_ARM_THM_MOVT_ABS:
8397 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8398 output_section))
8399 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8400 psymval, 0);
8401 break;
8402
8403 case elfcpp::R_ARM_MOVW_PREL_NC:
8404 case elfcpp::R_ARM_MOVW_BREL_NC:
8405 case elfcpp::R_ARM_MOVW_BREL:
8406 reloc_status =
8407 Arm_relocate_functions::movw(view, object, psymval,
8408 relative_address_base, thumb_bit,
8409 check_overflow);
8410 break;
8411
8412 case elfcpp::R_ARM_MOVT_PREL:
8413 case elfcpp::R_ARM_MOVT_BREL:
8414 reloc_status =
8415 Arm_relocate_functions::movt(view, object, psymval,
8416 relative_address_base);
8417 break;
8418
8419 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8420 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8421 case elfcpp::R_ARM_THM_MOVW_BREL:
8422 reloc_status =
8423 Arm_relocate_functions::thm_movw(view, object, psymval,
8424 relative_address_base,
8425 thumb_bit, check_overflow);
8426 break;
8427
8428 case elfcpp::R_ARM_THM_MOVT_PREL:
8429 case elfcpp::R_ARM_THM_MOVT_BREL:
8430 reloc_status =
8431 Arm_relocate_functions::thm_movt(view, object, psymval,
8432 relative_address_base);
8433 break;
8434
8435 case elfcpp::R_ARM_REL32:
8436 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8437 address, thumb_bit);
8438 break;
8439
8440 case elfcpp::R_ARM_THM_ABS5:
8441 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8442 output_section))
8443 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8444 break;
8445
8446 // Thumb long branches.
8447 case elfcpp::R_ARM_THM_CALL:
8448 case elfcpp::R_ARM_THM_XPC22:
8449 case elfcpp::R_ARM_THM_JUMP24:
8450 reloc_status =
8451 Arm_relocate_functions::thumb_branch_common(
8452 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8453 thumb_bit, is_weakly_undefined_without_plt);
8454 break;
8455
8456 case elfcpp::R_ARM_GOTOFF32:
8457 {
8458 Arm_address got_origin;
8459 got_origin = target->got_plt_section()->address();
8460 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8461 got_origin, thumb_bit);
8462 }
8463 break;
8464
8465 case elfcpp::R_ARM_BASE_PREL:
8466 gold_assert(gsym != NULL);
8467 reloc_status =
8468 Arm_relocate_functions::base_prel(view, sym_origin, address);
8469 break;
8470
8471 case elfcpp::R_ARM_BASE_ABS:
8472 {
8473 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8474 output_section))
8475 break;
8476
8477 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8478 }
8479 break;
8480
8481 case elfcpp::R_ARM_GOT_BREL:
8482 gold_assert(have_got_offset);
8483 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8484 break;
8485
8486 case elfcpp::R_ARM_GOT_PREL:
8487 gold_assert(have_got_offset);
8488 // Get the address origin for GOT PLT, which is allocated right
8489 // after the GOT section, to calculate an absolute address of
8490 // the symbol GOT entry (got_origin + got_offset).
8491 Arm_address got_origin;
8492 got_origin = target->got_plt_section()->address();
8493 reloc_status = Arm_relocate_functions::got_prel(view,
8494 got_origin + got_offset,
8495 address);
8496 break;
8497
8498 case elfcpp::R_ARM_PLT32:
8499 case elfcpp::R_ARM_CALL:
8500 case elfcpp::R_ARM_JUMP24:
8501 case elfcpp::R_ARM_XPC25:
8502 gold_assert(gsym == NULL
8503 || gsym->has_plt_offset()
8504 || gsym->final_value_is_known()
8505 || (gsym->is_defined()
8506 && !gsym->is_from_dynobj()
8507 && !gsym->is_preemptible()));
8508 reloc_status =
8509 Arm_relocate_functions::arm_branch_common(
8510 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8511 thumb_bit, is_weakly_undefined_without_plt);
8512 break;
8513
8514 case elfcpp::R_ARM_THM_JUMP19:
8515 reloc_status =
8516 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8517 thumb_bit);
8518 break;
8519
8520 case elfcpp::R_ARM_THM_JUMP6:
8521 reloc_status =
8522 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8523 break;
8524
8525 case elfcpp::R_ARM_THM_JUMP8:
8526 reloc_status =
8527 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8528 break;
8529
8530 case elfcpp::R_ARM_THM_JUMP11:
8531 reloc_status =
8532 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8533 break;
8534
8535 case elfcpp::R_ARM_PREL31:
8536 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8537 address, thumb_bit);
8538 break;
8539
8540 case elfcpp::R_ARM_V4BX:
8541 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8542 {
8543 const bool is_v4bx_interworking =
8544 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8545 reloc_status =
8546 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8547 is_v4bx_interworking);
8548 }
8549 break;
8550
8551 case elfcpp::R_ARM_THM_PC8:
8552 reloc_status =
8553 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8554 break;
8555
8556 case elfcpp::R_ARM_THM_PC12:
8557 reloc_status =
8558 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8559 break;
8560
8561 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8562 reloc_status =
8563 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8564 thumb_bit);
8565 break;
8566
8567 case elfcpp::R_ARM_ALU_PC_G0_NC:
8568 case elfcpp::R_ARM_ALU_PC_G0:
8569 case elfcpp::R_ARM_ALU_PC_G1_NC:
8570 case elfcpp::R_ARM_ALU_PC_G1:
8571 case elfcpp::R_ARM_ALU_PC_G2:
8572 case elfcpp::R_ARM_ALU_SB_G0_NC:
8573 case elfcpp::R_ARM_ALU_SB_G0:
8574 case elfcpp::R_ARM_ALU_SB_G1_NC:
8575 case elfcpp::R_ARM_ALU_SB_G1:
8576 case elfcpp::R_ARM_ALU_SB_G2:
8577 reloc_status =
8578 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8579 reloc_property->group_index(),
8580 relative_address_base,
8581 thumb_bit, check_overflow);
8582 break;
8583
8584 case elfcpp::R_ARM_LDR_PC_G0:
8585 case elfcpp::R_ARM_LDR_PC_G1:
8586 case elfcpp::R_ARM_LDR_PC_G2:
8587 case elfcpp::R_ARM_LDR_SB_G0:
8588 case elfcpp::R_ARM_LDR_SB_G1:
8589 case elfcpp::R_ARM_LDR_SB_G2:
8590 reloc_status =
8591 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8592 reloc_property->group_index(),
8593 relative_address_base);
8594 break;
8595
8596 case elfcpp::R_ARM_LDRS_PC_G0:
8597 case elfcpp::R_ARM_LDRS_PC_G1:
8598 case elfcpp::R_ARM_LDRS_PC_G2:
8599 case elfcpp::R_ARM_LDRS_SB_G0:
8600 case elfcpp::R_ARM_LDRS_SB_G1:
8601 case elfcpp::R_ARM_LDRS_SB_G2:
8602 reloc_status =
8603 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8604 reloc_property->group_index(),
8605 relative_address_base);
8606 break;
8607
8608 case elfcpp::R_ARM_LDC_PC_G0:
8609 case elfcpp::R_ARM_LDC_PC_G1:
8610 case elfcpp::R_ARM_LDC_PC_G2:
8611 case elfcpp::R_ARM_LDC_SB_G0:
8612 case elfcpp::R_ARM_LDC_SB_G1:
8613 case elfcpp::R_ARM_LDC_SB_G2:
8614 reloc_status =
8615 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8616 reloc_property->group_index(),
8617 relative_address_base);
8618 break;
8619
8620 // These are initial tls relocs, which are expected when
8621 // linking.
8622 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8623 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8624 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8625 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8626 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8627 reloc_status =
8628 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8629 view, address, view_size);
8630 break;
8631
8632 default:
8633 gold_unreachable();
8634 }
8635
8636 // Report any errors.
8637 switch (reloc_status)
8638 {
8639 case Arm_relocate_functions::STATUS_OKAY:
8640 break;
8641 case Arm_relocate_functions::STATUS_OVERFLOW:
8642 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8643 _("relocation overflow in %s"),
8644 reloc_property->name().c_str());
8645 break;
8646 case Arm_relocate_functions::STATUS_BAD_RELOC:
8647 gold_error_at_location(
8648 relinfo,
8649 relnum,
8650 rel.get_r_offset(),
8651 _("unexpected opcode while processing relocation %s"),
8652 reloc_property->name().c_str());
8653 break;
8654 default:
8655 gold_unreachable();
8656 }
8657
8658 return true;
8659 }
8660
8661 // Perform a TLS relocation.
8662
8663 template<bool big_endian>
8664 inline typename Arm_relocate_functions<big_endian>::Status
8665 Target_arm<big_endian>::Relocate::relocate_tls(
8666 const Relocate_info<32, big_endian>* relinfo,
8667 Target_arm<big_endian>* target,
8668 size_t relnum,
8669 const elfcpp::Rel<32, big_endian>& rel,
8670 unsigned int r_type,
8671 const Sized_symbol<32>* gsym,
8672 const Symbol_value<32>* psymval,
8673 unsigned char* view,
8674 elfcpp::Elf_types<32>::Elf_Addr address,
8675 section_size_type /*view_size*/ )
8676 {
8677 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8678 typedef Relocate_functions<32, big_endian> RelocFuncs;
8679 Output_segment* tls_segment = relinfo->layout->tls_segment();
8680
8681 const Sized_relobj<32, big_endian>* object = relinfo->object;
8682
8683 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8684
8685 const bool is_final = (gsym == NULL
8686 ? !parameters->options().shared()
8687 : gsym->final_value_is_known());
8688 const tls::Tls_optimization optimized_type
8689 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8690 switch (r_type)
8691 {
8692 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8693 {
8694 unsigned int got_type = GOT_TYPE_TLS_PAIR;
8695 unsigned int got_offset;
8696 if (gsym != NULL)
8697 {
8698 gold_assert(gsym->has_got_offset(got_type));
8699 got_offset = gsym->got_offset(got_type) - target->got_size();
8700 }
8701 else
8702 {
8703 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8704 gold_assert(object->local_has_got_offset(r_sym, got_type));
8705 got_offset = (object->local_got_offset(r_sym, got_type)
8706 - target->got_size());
8707 }
8708 if (optimized_type == tls::TLSOPT_NONE)
8709 {
8710 Arm_address got_entry =
8711 target->got_plt_section()->address() + got_offset;
8712
8713 // Relocate the field with the PC relative offset of the pair of
8714 // GOT entries.
8715 RelocFuncs::pcrel32(view, got_entry, address);
8716 return ArmRelocFuncs::STATUS_OKAY;
8717 }
8718 }
8719 break;
8720
8721 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8722 if (optimized_type == tls::TLSOPT_NONE)
8723 {
8724 // Relocate the field with the offset of the GOT entry for
8725 // the module index.
8726 unsigned int got_offset;
8727 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8728 - target->got_size());
8729 Arm_address got_entry =
8730 target->got_plt_section()->address() + got_offset;
8731
8732 // Relocate the field with the PC relative offset of the pair of
8733 // GOT entries.
8734 RelocFuncs::pcrel32(view, got_entry, address);
8735 return ArmRelocFuncs::STATUS_OKAY;
8736 }
8737 break;
8738
8739 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8740 RelocFuncs::rel32(view, value);
8741 return ArmRelocFuncs::STATUS_OKAY;
8742
8743 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8744 if (optimized_type == tls::TLSOPT_NONE)
8745 {
8746 // Relocate the field with the offset of the GOT entry for
8747 // the tp-relative offset of the symbol.
8748 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8749 unsigned int got_offset;
8750 if (gsym != NULL)
8751 {
8752 gold_assert(gsym->has_got_offset(got_type));
8753 got_offset = gsym->got_offset(got_type);
8754 }
8755 else
8756 {
8757 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8758 gold_assert(object->local_has_got_offset(r_sym, got_type));
8759 got_offset = object->local_got_offset(r_sym, got_type);
8760 }
8761
8762 // All GOT offsets are relative to the end of the GOT.
8763 got_offset -= target->got_size();
8764
8765 Arm_address got_entry =
8766 target->got_plt_section()->address() + got_offset;
8767
8768 // Relocate the field with the PC relative offset of the GOT entry.
8769 RelocFuncs::pcrel32(view, got_entry, address);
8770 return ArmRelocFuncs::STATUS_OKAY;
8771 }
8772 break;
8773
8774 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8775 // If we're creating a shared library, a dynamic relocation will
8776 // have been created for this location, so do not apply it now.
8777 if (!parameters->options().shared())
8778 {
8779 gold_assert(tls_segment != NULL);
8780
8781 // $tp points to the TCB, which is followed by the TLS, so we
8782 // need to add TCB size to the offset.
8783 Arm_address aligned_tcb_size =
8784 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8785 RelocFuncs::rel32(view, value + aligned_tcb_size);
8786
8787 }
8788 return ArmRelocFuncs::STATUS_OKAY;
8789
8790 default:
8791 gold_unreachable();
8792 }
8793
8794 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8795 _("unsupported reloc %u"),
8796 r_type);
8797 return ArmRelocFuncs::STATUS_BAD_RELOC;
8798 }
8799
8800 // Relocate section data.
8801
8802 template<bool big_endian>
8803 void
8804 Target_arm<big_endian>::relocate_section(
8805 const Relocate_info<32, big_endian>* relinfo,
8806 unsigned int sh_type,
8807 const unsigned char* prelocs,
8808 size_t reloc_count,
8809 Output_section* output_section,
8810 bool needs_special_offset_handling,
8811 unsigned char* view,
8812 Arm_address address,
8813 section_size_type view_size,
8814 const Reloc_symbol_changes* reloc_symbol_changes)
8815 {
8816 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
8817 gold_assert(sh_type == elfcpp::SHT_REL);
8818
8819 // See if we are relocating a relaxed input section. If so, the view
8820 // covers the whole output section and we need to adjust accordingly.
8821 if (needs_special_offset_handling)
8822 {
8823 const Output_relaxed_input_section* poris =
8824 output_section->find_relaxed_input_section(relinfo->object,
8825 relinfo->data_shndx);
8826 if (poris != NULL)
8827 {
8828 Arm_address section_address = poris->address();
8829 section_size_type section_size = poris->data_size();
8830
8831 gold_assert((section_address >= address)
8832 && ((section_address + section_size)
8833 <= (address + view_size)));
8834
8835 off_t offset = section_address - address;
8836 view += offset;
8837 address += offset;
8838 view_size = section_size;
8839 }
8840 }
8841
8842 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
8843 Arm_relocate>(
8844 relinfo,
8845 this,
8846 prelocs,
8847 reloc_count,
8848 output_section,
8849 needs_special_offset_handling,
8850 view,
8851 address,
8852 view_size,
8853 reloc_symbol_changes);
8854 }
8855
8856 // Return the size of a relocation while scanning during a relocatable
8857 // link.
8858
8859 template<bool big_endian>
8860 unsigned int
8861 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8862 unsigned int r_type,
8863 Relobj* object)
8864 {
8865 r_type = get_real_reloc_type(r_type);
8866 const Arm_reloc_property* arp =
8867 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8868 if (arp != NULL)
8869 return arp->size();
8870 else
8871 {
8872 std::string reloc_name =
8873 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8874 gold_error(_("%s: unexpected %s in object file"),
8875 object->name().c_str(), reloc_name.c_str());
8876 return 0;
8877 }
8878 }
8879
8880 // Scan the relocs during a relocatable link.
8881
8882 template<bool big_endian>
8883 void
8884 Target_arm<big_endian>::scan_relocatable_relocs(
8885 Symbol_table* symtab,
8886 Layout* layout,
8887 Sized_relobj<32, big_endian>* object,
8888 unsigned int data_shndx,
8889 unsigned int sh_type,
8890 const unsigned char* prelocs,
8891 size_t reloc_count,
8892 Output_section* output_section,
8893 bool needs_special_offset_handling,
8894 size_t local_symbol_count,
8895 const unsigned char* plocal_symbols,
8896 Relocatable_relocs* rr)
8897 {
8898 gold_assert(sh_type == elfcpp::SHT_REL);
8899
8900 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
8901 Relocatable_size_for_reloc> Scan_relocatable_relocs;
8902
8903 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
8904 Scan_relocatable_relocs>(
8905 symtab,
8906 layout,
8907 object,
8908 data_shndx,
8909 prelocs,
8910 reloc_count,
8911 output_section,
8912 needs_special_offset_handling,
8913 local_symbol_count,
8914 plocal_symbols,
8915 rr);
8916 }
8917
8918 // Relocate a section during a relocatable link.
8919
8920 template<bool big_endian>
8921 void
8922 Target_arm<big_endian>::relocate_for_relocatable(
8923 const Relocate_info<32, big_endian>* relinfo,
8924 unsigned int sh_type,
8925 const unsigned char* prelocs,
8926 size_t reloc_count,
8927 Output_section* output_section,
8928 off_t offset_in_output_section,
8929 const Relocatable_relocs* rr,
8930 unsigned char* view,
8931 Arm_address view_address,
8932 section_size_type view_size,
8933 unsigned char* reloc_view,
8934 section_size_type reloc_view_size)
8935 {
8936 gold_assert(sh_type == elfcpp::SHT_REL);
8937
8938 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
8939 relinfo,
8940 prelocs,
8941 reloc_count,
8942 output_section,
8943 offset_in_output_section,
8944 rr,
8945 view,
8946 view_address,
8947 view_size,
8948 reloc_view,
8949 reloc_view_size);
8950 }
8951
8952 // Return the value to use for a dynamic symbol which requires special
8953 // treatment. This is how we support equality comparisons of function
8954 // pointers across shared library boundaries, as described in the
8955 // processor specific ABI supplement.
8956
8957 template<bool big_endian>
8958 uint64_t
8959 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
8960 {
8961 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8962 return this->plt_section()->address() + gsym->plt_offset();
8963 }
8964
8965 // Map platform-specific relocs to real relocs
8966 //
8967 template<bool big_endian>
8968 unsigned int
8969 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
8970 {
8971 switch (r_type)
8972 {
8973 case elfcpp::R_ARM_TARGET1:
8974 // This is either R_ARM_ABS32 or R_ARM_REL32;
8975 return elfcpp::R_ARM_ABS32;
8976
8977 case elfcpp::R_ARM_TARGET2:
8978 // This can be any reloc type but ususally is R_ARM_GOT_PREL
8979 return elfcpp::R_ARM_GOT_PREL;
8980
8981 default:
8982 return r_type;
8983 }
8984 }
8985
8986 // Whether if two EABI versions V1 and V2 are compatible.
8987
8988 template<bool big_endian>
8989 bool
8990 Target_arm<big_endian>::are_eabi_versions_compatible(
8991 elfcpp::Elf_Word v1,
8992 elfcpp::Elf_Word v2)
8993 {
8994 // v4 and v5 are the same spec before and after it was released,
8995 // so allow mixing them.
8996 if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
8997 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
8998 return true;
8999
9000 return v1 == v2;
9001 }
9002
9003 // Combine FLAGS from an input object called NAME and the processor-specific
9004 // flags in the ELF header of the output. Much of this is adapted from the
9005 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9006 // in bfd/elf32-arm.c.
9007
9008 template<bool big_endian>
9009 void
9010 Target_arm<big_endian>::merge_processor_specific_flags(
9011 const std::string& name,
9012 elfcpp::Elf_Word flags)
9013 {
9014 if (this->are_processor_specific_flags_set())
9015 {
9016 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9017
9018 // Nothing to merge if flags equal to those in output.
9019 if (flags == out_flags)
9020 return;
9021
9022 // Complain about various flag mismatches.
9023 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9024 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9025 if (!this->are_eabi_versions_compatible(version1, version2)
9026 && parameters->options().warn_mismatch())
9027 gold_error(_("Source object %s has EABI version %d but output has "
9028 "EABI version %d."),
9029 name.c_str(),
9030 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9031 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9032 }
9033 else
9034 {
9035 // If the input is the default architecture and had the default
9036 // flags then do not bother setting the flags for the output
9037 // architecture, instead allow future merges to do this. If no
9038 // future merges ever set these flags then they will retain their
9039 // uninitialised values, which surprise surprise, correspond
9040 // to the default values.
9041 if (flags == 0)
9042 return;
9043
9044 // This is the first time, just copy the flags.
9045 // We only copy the EABI version for now.
9046 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9047 }
9048 }
9049
9050 // Adjust ELF file header.
9051 template<bool big_endian>
9052 void
9053 Target_arm<big_endian>::do_adjust_elf_header(
9054 unsigned char* view,
9055 int len) const
9056 {
9057 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9058
9059 elfcpp::Ehdr<32, big_endian> ehdr(view);
9060 unsigned char e_ident[elfcpp::EI_NIDENT];
9061 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9062
9063 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9064 == elfcpp::EF_ARM_EABI_UNKNOWN)
9065 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9066 else
9067 e_ident[elfcpp::EI_OSABI] = 0;
9068 e_ident[elfcpp::EI_ABIVERSION] = 0;
9069
9070 // FIXME: Do EF_ARM_BE8 adjustment.
9071
9072 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9073 oehdr.put_e_ident(e_ident);
9074 }
9075
9076 // do_make_elf_object to override the same function in the base class.
9077 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9078 // to store ARM specific information. Hence we need to have our own
9079 // ELF object creation.
9080
9081 template<bool big_endian>
9082 Object*
9083 Target_arm<big_endian>::do_make_elf_object(
9084 const std::string& name,
9085 Input_file* input_file,
9086 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9087 {
9088 int et = ehdr.get_e_type();
9089 if (et == elfcpp::ET_REL)
9090 {
9091 Arm_relobj<big_endian>* obj =
9092 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9093 obj->setup();
9094 return obj;
9095 }
9096 else if (et == elfcpp::ET_DYN)
9097 {
9098 Sized_dynobj<32, big_endian>* obj =
9099 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9100 obj->setup();
9101 return obj;
9102 }
9103 else
9104 {
9105 gold_error(_("%s: unsupported ELF file type %d"),
9106 name.c_str(), et);
9107 return NULL;
9108 }
9109 }
9110
9111 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9112 // Returns -1 if no architecture could be read.
9113 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9114
9115 template<bool big_endian>
9116 int
9117 Target_arm<big_endian>::get_secondary_compatible_arch(
9118 const Attributes_section_data* pasd)
9119 {
9120 const Object_attribute *known_attributes =
9121 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9122
9123 // Note: the tag and its argument below are uleb128 values, though
9124 // currently-defined values fit in one byte for each.
9125 const std::string& sv =
9126 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9127 if (sv.size() == 2
9128 && sv.data()[0] == elfcpp::Tag_CPU_arch
9129 && (sv.data()[1] & 128) != 128)
9130 return sv.data()[1];
9131
9132 // This tag is "safely ignorable", so don't complain if it looks funny.
9133 return -1;
9134 }
9135
9136 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9137 // The tag is removed if ARCH is -1.
9138 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9139
9140 template<bool big_endian>
9141 void
9142 Target_arm<big_endian>::set_secondary_compatible_arch(
9143 Attributes_section_data* pasd,
9144 int arch)
9145 {
9146 Object_attribute *known_attributes =
9147 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9148
9149 if (arch == -1)
9150 {
9151 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9152 return;
9153 }
9154
9155 // Note: the tag and its argument below are uleb128 values, though
9156 // currently-defined values fit in one byte for each.
9157 char sv[3];
9158 sv[0] = elfcpp::Tag_CPU_arch;
9159 gold_assert(arch != 0);
9160 sv[1] = arch;
9161 sv[2] = '\0';
9162
9163 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9164 }
9165
9166 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9167 // into account.
9168 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9169
9170 template<bool big_endian>
9171 int
9172 Target_arm<big_endian>::tag_cpu_arch_combine(
9173 const char* name,
9174 int oldtag,
9175 int* secondary_compat_out,
9176 int newtag,
9177 int secondary_compat)
9178 {
9179 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9180 static const int v6t2[] =
9181 {
9182 T(V6T2), // PRE_V4.
9183 T(V6T2), // V4.
9184 T(V6T2), // V4T.
9185 T(V6T2), // V5T.
9186 T(V6T2), // V5TE.
9187 T(V6T2), // V5TEJ.
9188 T(V6T2), // V6.
9189 T(V7), // V6KZ.
9190 T(V6T2) // V6T2.
9191 };
9192 static const int v6k[] =
9193 {
9194 T(V6K), // PRE_V4.
9195 T(V6K), // V4.
9196 T(V6K), // V4T.
9197 T(V6K), // V5T.
9198 T(V6K), // V5TE.
9199 T(V6K), // V5TEJ.
9200 T(V6K), // V6.
9201 T(V6KZ), // V6KZ.
9202 T(V7), // V6T2.
9203 T(V6K) // V6K.
9204 };
9205 static const int v7[] =
9206 {
9207 T(V7), // PRE_V4.
9208 T(V7), // V4.
9209 T(V7), // V4T.
9210 T(V7), // V5T.
9211 T(V7), // V5TE.
9212 T(V7), // V5TEJ.
9213 T(V7), // V6.
9214 T(V7), // V6KZ.
9215 T(V7), // V6T2.
9216 T(V7), // V6K.
9217 T(V7) // V7.
9218 };
9219 static const int v6_m[] =
9220 {
9221 -1, // PRE_V4.
9222 -1, // V4.
9223 T(V6K), // V4T.
9224 T(V6K), // V5T.
9225 T(V6K), // V5TE.
9226 T(V6K), // V5TEJ.
9227 T(V6K), // V6.
9228 T(V6KZ), // V6KZ.
9229 T(V7), // V6T2.
9230 T(V6K), // V6K.
9231 T(V7), // V7.
9232 T(V6_M) // V6_M.
9233 };
9234 static const int v6s_m[] =
9235 {
9236 -1, // PRE_V4.
9237 -1, // V4.
9238 T(V6K), // V4T.
9239 T(V6K), // V5T.
9240 T(V6K), // V5TE.
9241 T(V6K), // V5TEJ.
9242 T(V6K), // V6.
9243 T(V6KZ), // V6KZ.
9244 T(V7), // V6T2.
9245 T(V6K), // V6K.
9246 T(V7), // V7.
9247 T(V6S_M), // V6_M.
9248 T(V6S_M) // V6S_M.
9249 };
9250 static const int v7e_m[] =
9251 {
9252 -1, // PRE_V4.
9253 -1, // V4.
9254 T(V7E_M), // V4T.
9255 T(V7E_M), // V5T.
9256 T(V7E_M), // V5TE.
9257 T(V7E_M), // V5TEJ.
9258 T(V7E_M), // V6.
9259 T(V7E_M), // V6KZ.
9260 T(V7E_M), // V6T2.
9261 T(V7E_M), // V6K.
9262 T(V7E_M), // V7.
9263 T(V7E_M), // V6_M.
9264 T(V7E_M), // V6S_M.
9265 T(V7E_M) // V7E_M.
9266 };
9267 static const int v4t_plus_v6_m[] =
9268 {
9269 -1, // PRE_V4.
9270 -1, // V4.
9271 T(V4T), // V4T.
9272 T(V5T), // V5T.
9273 T(V5TE), // V5TE.
9274 T(V5TEJ), // V5TEJ.
9275 T(V6), // V6.
9276 T(V6KZ), // V6KZ.
9277 T(V6T2), // V6T2.
9278 T(V6K), // V6K.
9279 T(V7), // V7.
9280 T(V6_M), // V6_M.
9281 T(V6S_M), // V6S_M.
9282 T(V7E_M), // V7E_M.
9283 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9284 };
9285 static const int *comb[] =
9286 {
9287 v6t2,
9288 v6k,
9289 v7,
9290 v6_m,
9291 v6s_m,
9292 v7e_m,
9293 // Pseudo-architecture.
9294 v4t_plus_v6_m
9295 };
9296
9297 // Check we've not got a higher architecture than we know about.
9298
9299 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9300 {
9301 gold_error(_("%s: unknown CPU architecture"), name);
9302 return -1;
9303 }
9304
9305 // Override old tag if we have a Tag_also_compatible_with on the output.
9306
9307 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9308 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9309 oldtag = T(V4T_PLUS_V6_M);
9310
9311 // And override the new tag if we have a Tag_also_compatible_with on the
9312 // input.
9313
9314 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9315 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9316 newtag = T(V4T_PLUS_V6_M);
9317
9318 // Architectures before V6KZ add features monotonically.
9319 int tagh = std::max(oldtag, newtag);
9320 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9321 return tagh;
9322
9323 int tagl = std::min(oldtag, newtag);
9324 int result = comb[tagh - T(V6T2)][tagl];
9325
9326 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9327 // as the canonical version.
9328 if (result == T(V4T_PLUS_V6_M))
9329 {
9330 result = T(V4T);
9331 *secondary_compat_out = T(V6_M);
9332 }
9333 else
9334 *secondary_compat_out = -1;
9335
9336 if (result == -1)
9337 {
9338 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9339 name, oldtag, newtag);
9340 return -1;
9341 }
9342
9343 return result;
9344 #undef T
9345 }
9346
9347 // Helper to print AEABI enum tag value.
9348
9349 template<bool big_endian>
9350 std::string
9351 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9352 {
9353 static const char *aeabi_enum_names[] =
9354 { "", "variable-size", "32-bit", "" };
9355 const size_t aeabi_enum_names_size =
9356 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9357
9358 if (value < aeabi_enum_names_size)
9359 return std::string(aeabi_enum_names[value]);
9360 else
9361 {
9362 char buffer[100];
9363 sprintf(buffer, "<unknown value %u>", value);
9364 return std::string(buffer);
9365 }
9366 }
9367
9368 // Return the string value to store in TAG_CPU_name.
9369
9370 template<bool big_endian>
9371 std::string
9372 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9373 {
9374 static const char *name_table[] = {
9375 // These aren't real CPU names, but we can't guess
9376 // that from the architecture version alone.
9377 "Pre v4",
9378 "ARM v4",
9379 "ARM v4T",
9380 "ARM v5T",
9381 "ARM v5TE",
9382 "ARM v5TEJ",
9383 "ARM v6",
9384 "ARM v6KZ",
9385 "ARM v6T2",
9386 "ARM v6K",
9387 "ARM v7",
9388 "ARM v6-M",
9389 "ARM v6S-M",
9390 "ARM v7E-M"
9391 };
9392 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9393
9394 if (value < name_table_size)
9395 return std::string(name_table[value]);
9396 else
9397 {
9398 char buffer[100];
9399 sprintf(buffer, "<unknown CPU value %u>", value);
9400 return std::string(buffer);
9401 }
9402 }
9403
9404 // Merge object attributes from input file called NAME with those of the
9405 // output. The input object attributes are in the object pointed by PASD.
9406
9407 template<bool big_endian>
9408 void
9409 Target_arm<big_endian>::merge_object_attributes(
9410 const char* name,
9411 const Attributes_section_data* pasd)
9412 {
9413 // Return if there is no attributes section data.
9414 if (pasd == NULL)
9415 return;
9416
9417 // If output has no object attributes, just copy.
9418 if (this->attributes_section_data_ == NULL)
9419 {
9420 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9421 return;
9422 }
9423
9424 const int vendor = Object_attribute::OBJ_ATTR_PROC;
9425 const Object_attribute* in_attr = pasd->known_attributes(vendor);
9426 Object_attribute* out_attr =
9427 this->attributes_section_data_->known_attributes(vendor);
9428
9429 // This needs to happen before Tag_ABI_FP_number_model is merged. */
9430 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9431 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9432 {
9433 // Ignore mismatches if the object doesn't use floating point. */
9434 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9435 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9436 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
9437 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
9438 && parameters->options().warn_mismatch())
9439 gold_error(_("%s uses VFP register arguments, output does not"),
9440 name);
9441 }
9442
9443 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9444 {
9445 // Merge this attribute with existing attributes.
9446 switch (i)
9447 {
9448 case elfcpp::Tag_CPU_raw_name:
9449 case elfcpp::Tag_CPU_name:
9450 // These are merged after Tag_CPU_arch.
9451 break;
9452
9453 case elfcpp::Tag_ABI_optimization_goals:
9454 case elfcpp::Tag_ABI_FP_optimization_goals:
9455 // Use the first value seen.
9456 break;
9457
9458 case elfcpp::Tag_CPU_arch:
9459 {
9460 unsigned int saved_out_attr = out_attr->int_value();
9461 // Merge Tag_CPU_arch and Tag_also_compatible_with.
9462 int secondary_compat =
9463 this->get_secondary_compatible_arch(pasd);
9464 int secondary_compat_out =
9465 this->get_secondary_compatible_arch(
9466 this->attributes_section_data_);
9467 out_attr[i].set_int_value(
9468 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9469 &secondary_compat_out,
9470 in_attr[i].int_value(),
9471 secondary_compat));
9472 this->set_secondary_compatible_arch(this->attributes_section_data_,
9473 secondary_compat_out);
9474
9475 // Merge Tag_CPU_name and Tag_CPU_raw_name.
9476 if (out_attr[i].int_value() == saved_out_attr)
9477 ; // Leave the names alone.
9478 else if (out_attr[i].int_value() == in_attr[i].int_value())
9479 {
9480 // The output architecture has been changed to match the
9481 // input architecture. Use the input names.
9482 out_attr[elfcpp::Tag_CPU_name].set_string_value(
9483 in_attr[elfcpp::Tag_CPU_name].string_value());
9484 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
9485 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
9486 }
9487 else
9488 {
9489 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
9490 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
9491 }
9492
9493 // If we still don't have a value for Tag_CPU_name,
9494 // make one up now. Tag_CPU_raw_name remains blank.
9495 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
9496 {
9497 const std::string cpu_name =
9498 this->tag_cpu_name_value(out_attr[i].int_value());
9499 // FIXME: If we see an unknown CPU, this will be set
9500 // to "<unknown CPU n>", where n is the attribute value.
9501 // This is different from BFD, which leaves the name alone.
9502 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
9503 }
9504 }
9505 break;
9506
9507 case elfcpp::Tag_ARM_ISA_use:
9508 case elfcpp::Tag_THUMB_ISA_use:
9509 case elfcpp::Tag_WMMX_arch:
9510 case elfcpp::Tag_Advanced_SIMD_arch:
9511 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
9512 case elfcpp::Tag_ABI_FP_rounding:
9513 case elfcpp::Tag_ABI_FP_exceptions:
9514 case elfcpp::Tag_ABI_FP_user_exceptions:
9515 case elfcpp::Tag_ABI_FP_number_model:
9516 case elfcpp::Tag_VFP_HP_extension:
9517 case elfcpp::Tag_CPU_unaligned_access:
9518 case elfcpp::Tag_T2EE_use:
9519 case elfcpp::Tag_Virtualization_use:
9520 case elfcpp::Tag_MPextension_use:
9521 // Use the largest value specified.
9522 if (in_attr[i].int_value() > out_attr[i].int_value())
9523 out_attr[i].set_int_value(in_attr[i].int_value());
9524 break;
9525
9526 case elfcpp::Tag_ABI_align8_preserved:
9527 case elfcpp::Tag_ABI_PCS_RO_data:
9528 // Use the smallest value specified.
9529 if (in_attr[i].int_value() < out_attr[i].int_value())
9530 out_attr[i].set_int_value(in_attr[i].int_value());
9531 break;
9532
9533 case elfcpp::Tag_ABI_align8_needed:
9534 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
9535 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
9536 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
9537 == 0)))
9538 {
9539 // This error message should be enabled once all non-conformant
9540 // binaries in the toolchain have had the attributes set
9541 // properly.
9542 // gold_error(_("output 8-byte data alignment conflicts with %s"),
9543 // name);
9544 }
9545 // Fall through.
9546 case elfcpp::Tag_ABI_FP_denormal:
9547 case elfcpp::Tag_ABI_PCS_GOT_use:
9548 {
9549 // These tags have 0 = don't care, 1 = strong requirement,
9550 // 2 = weak requirement.
9551 static const int order_021[3] = {0, 2, 1};
9552
9553 // Use the "greatest" from the sequence 0, 2, 1, or the largest
9554 // value if greater than 2 (for future-proofing).
9555 if ((in_attr[i].int_value() > 2
9556 && in_attr[i].int_value() > out_attr[i].int_value())
9557 || (in_attr[i].int_value() <= 2
9558 && out_attr[i].int_value() <= 2
9559 && (order_021[in_attr[i].int_value()]
9560 > order_021[out_attr[i].int_value()])))
9561 out_attr[i].set_int_value(in_attr[i].int_value());
9562 }
9563 break;
9564
9565 case elfcpp::Tag_CPU_arch_profile:
9566 if (out_attr[i].int_value() != in_attr[i].int_value())
9567 {
9568 // 0 will merge with anything.
9569 // 'A' and 'S' merge to 'A'.
9570 // 'R' and 'S' merge to 'R'.
9571 // 'M' and 'A|R|S' is an error.
9572 if (out_attr[i].int_value() == 0
9573 || (out_attr[i].int_value() == 'S'
9574 && (in_attr[i].int_value() == 'A'
9575 || in_attr[i].int_value() == 'R')))
9576 out_attr[i].set_int_value(in_attr[i].int_value());
9577 else if (in_attr[i].int_value() == 0
9578 || (in_attr[i].int_value() == 'S'
9579 && (out_attr[i].int_value() == 'A'
9580 || out_attr[i].int_value() == 'R')))
9581 ; // Do nothing.
9582 else if (parameters->options().warn_mismatch())
9583 {
9584 gold_error
9585 (_("conflicting architecture profiles %c/%c"),
9586 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
9587 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
9588 }
9589 }
9590 break;
9591 case elfcpp::Tag_VFP_arch:
9592 {
9593 static const struct
9594 {
9595 int ver;
9596 int regs;
9597 } vfp_versions[7] =
9598 {
9599 {0, 0},
9600 {1, 16},
9601 {2, 16},
9602 {3, 32},
9603 {3, 16},
9604 {4, 32},
9605 {4, 16}
9606 };
9607
9608 // Values greater than 6 aren't defined, so just pick the
9609 // biggest.
9610 if (in_attr[i].int_value() > 6
9611 && in_attr[i].int_value() > out_attr[i].int_value())
9612 {
9613 *out_attr = *in_attr;
9614 break;
9615 }
9616 // The output uses the superset of input features
9617 // (ISA version) and registers.
9618 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
9619 vfp_versions[out_attr[i].int_value()].ver);
9620 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
9621 vfp_versions[out_attr[i].int_value()].regs);
9622 // This assumes all possible supersets are also a valid
9623 // options.
9624 int newval;
9625 for (newval = 6; newval > 0; newval--)
9626 {
9627 if (regs == vfp_versions[newval].regs
9628 && ver == vfp_versions[newval].ver)
9629 break;
9630 }
9631 out_attr[i].set_int_value(newval);
9632 }
9633 break;
9634 case elfcpp::Tag_PCS_config:
9635 if (out_attr[i].int_value() == 0)
9636 out_attr[i].set_int_value(in_attr[i].int_value());
9637 else if (in_attr[i].int_value() != 0
9638 && out_attr[i].int_value() != 0
9639 && parameters->options().warn_mismatch())
9640 {
9641 // It's sometimes ok to mix different configs, so this is only
9642 // a warning.
9643 gold_warning(_("%s: conflicting platform configuration"), name);
9644 }
9645 break;
9646 case elfcpp::Tag_ABI_PCS_R9_use:
9647 if (in_attr[i].int_value() != out_attr[i].int_value()
9648 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
9649 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
9650 && parameters->options().warn_mismatch())
9651 {
9652 gold_error(_("%s: conflicting use of R9"), name);
9653 }
9654 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
9655 out_attr[i].set_int_value(in_attr[i].int_value());
9656 break;
9657 case elfcpp::Tag_ABI_PCS_RW_data:
9658 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
9659 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9660 != elfcpp::AEABI_R9_SB)
9661 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9662 != elfcpp::AEABI_R9_unused)
9663 && parameters->options().warn_mismatch())
9664 {
9665 gold_error(_("%s: SB relative addressing conflicts with use "
9666 "of R9"),
9667 name);
9668 }
9669 // Use the smallest value specified.
9670 if (in_attr[i].int_value() < out_attr[i].int_value())
9671 out_attr[i].set_int_value(in_attr[i].int_value());
9672 break;
9673 case elfcpp::Tag_ABI_PCS_wchar_t:
9674 // FIXME: Make it possible to turn off this warning.
9675 if (out_attr[i].int_value()
9676 && in_attr[i].int_value()
9677 && out_attr[i].int_value() != in_attr[i].int_value()
9678 && parameters->options().warn_mismatch())
9679 {
9680 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
9681 "use %u-byte wchar_t; use of wchar_t values "
9682 "across objects may fail"),
9683 name, in_attr[i].int_value(),
9684 out_attr[i].int_value());
9685 }
9686 else if (in_attr[i].int_value() && !out_attr[i].int_value())
9687 out_attr[i].set_int_value(in_attr[i].int_value());
9688 break;
9689 case elfcpp::Tag_ABI_enum_size:
9690 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
9691 {
9692 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
9693 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
9694 {
9695 // The existing object is compatible with anything.
9696 // Use whatever requirements the new object has.
9697 out_attr[i].set_int_value(in_attr[i].int_value());
9698 }
9699 // FIXME: Make it possible to turn off this warning.
9700 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
9701 && out_attr[i].int_value() != in_attr[i].int_value()
9702 && parameters->options().warn_mismatch())
9703 {
9704 unsigned int in_value = in_attr[i].int_value();
9705 unsigned int out_value = out_attr[i].int_value();
9706 gold_warning(_("%s uses %s enums yet the output is to use "
9707 "%s enums; use of enum values across objects "
9708 "may fail"),
9709 name,
9710 this->aeabi_enum_name(in_value).c_str(),
9711 this->aeabi_enum_name(out_value).c_str());
9712 }
9713 }
9714 break;
9715 case elfcpp::Tag_ABI_VFP_args:
9716 // Aready done.
9717 break;
9718 case elfcpp::Tag_ABI_WMMX_args:
9719 if (in_attr[i].int_value() != out_attr[i].int_value()
9720 && parameters->options().warn_mismatch())
9721 {
9722 gold_error(_("%s uses iWMMXt register arguments, output does "
9723 "not"),
9724 name);
9725 }
9726 break;
9727 case Object_attribute::Tag_compatibility:
9728 // Merged in target-independent code.
9729 break;
9730 case elfcpp::Tag_ABI_HardFP_use:
9731 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
9732 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
9733 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
9734 out_attr[i].set_int_value(3);
9735 else if (in_attr[i].int_value() > out_attr[i].int_value())
9736 out_attr[i].set_int_value(in_attr[i].int_value());
9737 break;
9738 case elfcpp::Tag_ABI_FP_16bit_format:
9739 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9740 {
9741 if (in_attr[i].int_value() != out_attr[i].int_value()
9742 && parameters->options().warn_mismatch())
9743 gold_error(_("fp16 format mismatch between %s and output"),
9744 name);
9745 }
9746 if (in_attr[i].int_value() != 0)
9747 out_attr[i].set_int_value(in_attr[i].int_value());
9748 break;
9749
9750 case elfcpp::Tag_nodefaults:
9751 // This tag is set if it exists, but the value is unused (and is
9752 // typically zero). We don't actually need to do anything here -
9753 // the merge happens automatically when the type flags are merged
9754 // below.
9755 break;
9756 case elfcpp::Tag_also_compatible_with:
9757 // Already done in Tag_CPU_arch.
9758 break;
9759 case elfcpp::Tag_conformance:
9760 // Keep the attribute if it matches. Throw it away otherwise.
9761 // No attribute means no claim to conform.
9762 if (in_attr[i].string_value() != out_attr[i].string_value())
9763 out_attr[i].set_string_value("");
9764 break;
9765
9766 default:
9767 {
9768 const char* err_object = NULL;
9769
9770 // The "known_obj_attributes" table does contain some undefined
9771 // attributes. Ensure that there are unused.
9772 if (out_attr[i].int_value() != 0
9773 || out_attr[i].string_value() != "")
9774 err_object = "output";
9775 else if (in_attr[i].int_value() != 0
9776 || in_attr[i].string_value() != "")
9777 err_object = name;
9778
9779 if (err_object != NULL
9780 && parameters->options().warn_mismatch())
9781 {
9782 // Attribute numbers >=64 (mod 128) can be safely ignored.
9783 if ((i & 127) < 64)
9784 gold_error(_("%s: unknown mandatory EABI object attribute "
9785 "%d"),
9786 err_object, i);
9787 else
9788 gold_warning(_("%s: unknown EABI object attribute %d"),
9789 err_object, i);
9790 }
9791
9792 // Only pass on attributes that match in both inputs.
9793 if (!in_attr[i].matches(out_attr[i]))
9794 {
9795 out_attr[i].set_int_value(0);
9796 out_attr[i].set_string_value("");
9797 }
9798 }
9799 }
9800
9801 // If out_attr was copied from in_attr then it won't have a type yet.
9802 if (in_attr[i].type() && !out_attr[i].type())
9803 out_attr[i].set_type(in_attr[i].type());
9804 }
9805
9806 // Merge Tag_compatibility attributes and any common GNU ones.
9807 this->attributes_section_data_->merge(name, pasd);
9808
9809 // Check for any attributes not known on ARM.
9810 typedef Vendor_object_attributes::Other_attributes Other_attributes;
9811 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
9812 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
9813 Other_attributes* out_other_attributes =
9814 this->attributes_section_data_->other_attributes(vendor);
9815 Other_attributes::iterator out_iter = out_other_attributes->begin();
9816
9817 while (in_iter != in_other_attributes->end()
9818 || out_iter != out_other_attributes->end())
9819 {
9820 const char* err_object = NULL;
9821 int err_tag = 0;
9822
9823 // The tags for each list are in numerical order.
9824 // If the tags are equal, then merge.
9825 if (out_iter != out_other_attributes->end()
9826 && (in_iter == in_other_attributes->end()
9827 || in_iter->first > out_iter->first))
9828 {
9829 // This attribute only exists in output. We can't merge, and we
9830 // don't know what the tag means, so delete it.
9831 err_object = "output";
9832 err_tag = out_iter->first;
9833 int saved_tag = out_iter->first;
9834 delete out_iter->second;
9835 out_other_attributes->erase(out_iter);
9836 out_iter = out_other_attributes->upper_bound(saved_tag);
9837 }
9838 else if (in_iter != in_other_attributes->end()
9839 && (out_iter != out_other_attributes->end()
9840 || in_iter->first < out_iter->first))
9841 {
9842 // This attribute only exists in input. We can't merge, and we
9843 // don't know what the tag means, so ignore it.
9844 err_object = name;
9845 err_tag = in_iter->first;
9846 ++in_iter;
9847 }
9848 else // The tags are equal.
9849 {
9850 // As present, all attributes in the list are unknown, and
9851 // therefore can't be merged meaningfully.
9852 err_object = "output";
9853 err_tag = out_iter->first;
9854
9855 // Only pass on attributes that match in both inputs.
9856 if (!in_iter->second->matches(*(out_iter->second)))
9857 {
9858 // No match. Delete the attribute.
9859 int saved_tag = out_iter->first;
9860 delete out_iter->second;
9861 out_other_attributes->erase(out_iter);
9862 out_iter = out_other_attributes->upper_bound(saved_tag);
9863 }
9864 else
9865 {
9866 // Matched. Keep the attribute and move to the next.
9867 ++out_iter;
9868 ++in_iter;
9869 }
9870 }
9871
9872 if (err_object && parameters->options().warn_mismatch())
9873 {
9874 // Attribute numbers >=64 (mod 128) can be safely ignored. */
9875 if ((err_tag & 127) < 64)
9876 {
9877 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
9878 err_object, err_tag);
9879 }
9880 else
9881 {
9882 gold_warning(_("%s: unknown EABI object attribute %d"),
9883 err_object, err_tag);
9884 }
9885 }
9886 }
9887 }
9888
9889 // Stub-generation methods for Target_arm.
9890
9891 // Make a new Arm_input_section object.
9892
9893 template<bool big_endian>
9894 Arm_input_section<big_endian>*
9895 Target_arm<big_endian>::new_arm_input_section(
9896 Relobj* relobj,
9897 unsigned int shndx)
9898 {
9899 Section_id sid(relobj, shndx);
9900
9901 Arm_input_section<big_endian>* arm_input_section =
9902 new Arm_input_section<big_endian>(relobj, shndx);
9903 arm_input_section->init();
9904
9905 // Register new Arm_input_section in map for look-up.
9906 std::pair<typename Arm_input_section_map::iterator, bool> ins =
9907 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
9908
9909 // Make sure that it we have not created another Arm_input_section
9910 // for this input section already.
9911 gold_assert(ins.second);
9912
9913 return arm_input_section;
9914 }
9915
9916 // Find the Arm_input_section object corresponding to the SHNDX-th input
9917 // section of RELOBJ.
9918
9919 template<bool big_endian>
9920 Arm_input_section<big_endian>*
9921 Target_arm<big_endian>::find_arm_input_section(
9922 Relobj* relobj,
9923 unsigned int shndx) const
9924 {
9925 Section_id sid(relobj, shndx);
9926 typename Arm_input_section_map::const_iterator p =
9927 this->arm_input_section_map_.find(sid);
9928 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
9929 }
9930
9931 // Make a new stub table.
9932
9933 template<bool big_endian>
9934 Stub_table<big_endian>*
9935 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
9936 {
9937 Stub_table<big_endian>* stub_table =
9938 new Stub_table<big_endian>(owner);
9939 this->stub_tables_.push_back(stub_table);
9940
9941 stub_table->set_address(owner->address() + owner->data_size());
9942 stub_table->set_file_offset(owner->offset() + owner->data_size());
9943 stub_table->finalize_data_size();
9944
9945 return stub_table;
9946 }
9947
9948 // Scan a relocation for stub generation.
9949
9950 template<bool big_endian>
9951 void
9952 Target_arm<big_endian>::scan_reloc_for_stub(
9953 const Relocate_info<32, big_endian>* relinfo,
9954 unsigned int r_type,
9955 const Sized_symbol<32>* gsym,
9956 unsigned int r_sym,
9957 const Symbol_value<32>* psymval,
9958 elfcpp::Elf_types<32>::Elf_Swxword addend,
9959 Arm_address address)
9960 {
9961 typedef typename Target_arm<big_endian>::Relocate Relocate;
9962
9963 const Arm_relobj<big_endian>* arm_relobj =
9964 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9965
9966 bool target_is_thumb;
9967 Symbol_value<32> symval;
9968 if (gsym != NULL)
9969 {
9970 // This is a global symbol. Determine if we use PLT and if the
9971 // final target is THUMB.
9972 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
9973 {
9974 // This uses a PLT, change the symbol value.
9975 symval.set_output_value(this->plt_section()->address()
9976 + gsym->plt_offset());
9977 psymval = &symval;
9978 target_is_thumb = false;
9979 }
9980 else if (gsym->is_undefined())
9981 // There is no need to generate a stub symbol is undefined.
9982 return;
9983 else
9984 {
9985 target_is_thumb =
9986 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
9987 || (gsym->type() == elfcpp::STT_FUNC
9988 && !gsym->is_undefined()
9989 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
9990 }
9991 }
9992 else
9993 {
9994 // This is a local symbol. Determine if the final target is THUMB.
9995 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
9996 }
9997
9998 // Strip LSB if this points to a THUMB target.
9999 const Arm_reloc_property* reloc_property =
10000 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10001 gold_assert(reloc_property != NULL);
10002 if (target_is_thumb
10003 && reloc_property->uses_thumb_bit()
10004 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10005 {
10006 Arm_address stripped_value =
10007 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10008 symval.set_output_value(stripped_value);
10009 psymval = &symval;
10010 }
10011
10012 // Get the symbol value.
10013 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10014
10015 // Owing to pipelining, the PC relative branches below actually skip
10016 // two instructions when the branch offset is 0.
10017 Arm_address destination;
10018 switch (r_type)
10019 {
10020 case elfcpp::R_ARM_CALL:
10021 case elfcpp::R_ARM_JUMP24:
10022 case elfcpp::R_ARM_PLT32:
10023 // ARM branches.
10024 destination = value + addend + 8;
10025 break;
10026 case elfcpp::R_ARM_THM_CALL:
10027 case elfcpp::R_ARM_THM_XPC22:
10028 case elfcpp::R_ARM_THM_JUMP24:
10029 case elfcpp::R_ARM_THM_JUMP19:
10030 // THUMB branches.
10031 destination = value + addend + 4;
10032 break;
10033 default:
10034 gold_unreachable();
10035 }
10036
10037 Reloc_stub* stub = NULL;
10038 Stub_type stub_type =
10039 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10040 target_is_thumb);
10041 if (stub_type != arm_stub_none)
10042 {
10043 // Try looking up an existing stub from a stub table.
10044 Stub_table<big_endian>* stub_table =
10045 arm_relobj->stub_table(relinfo->data_shndx);
10046 gold_assert(stub_table != NULL);
10047
10048 // Locate stub by destination.
10049 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10050
10051 // Create a stub if there is not one already
10052 stub = stub_table->find_reloc_stub(stub_key);
10053 if (stub == NULL)
10054 {
10055 // create a new stub and add it to stub table.
10056 stub = this->stub_factory().make_reloc_stub(stub_type);
10057 stub_table->add_reloc_stub(stub, stub_key);
10058 }
10059
10060 // Record the destination address.
10061 stub->set_destination_address(destination
10062 | (target_is_thumb ? 1 : 0));
10063 }
10064
10065 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10066 if (this->fix_cortex_a8_
10067 && (r_type == elfcpp::R_ARM_THM_JUMP24
10068 || r_type == elfcpp::R_ARM_THM_JUMP19
10069 || r_type == elfcpp::R_ARM_THM_CALL
10070 || r_type == elfcpp::R_ARM_THM_XPC22)
10071 && (address & 0xfffU) == 0xffeU)
10072 {
10073 // Found a candidate. Note we haven't checked the destination is
10074 // within 4K here: if we do so (and don't create a record) we can't
10075 // tell that a branch should have been relocated when scanning later.
10076 this->cortex_a8_relocs_info_[address] =
10077 new Cortex_a8_reloc(stub, r_type,
10078 destination | (target_is_thumb ? 1 : 0));
10079 }
10080 }
10081
10082 // This function scans a relocation sections for stub generation.
10083 // The template parameter Relocate must be a class type which provides
10084 // a single function, relocate(), which implements the machine
10085 // specific part of a relocation.
10086
10087 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10088 // SHT_REL or SHT_RELA.
10089
10090 // PRELOCS points to the relocation data. RELOC_COUNT is the number
10091 // of relocs. OUTPUT_SECTION is the output section.
10092 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10093 // mapped to output offsets.
10094
10095 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10096 // VIEW_SIZE is the size. These refer to the input section, unless
10097 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10098 // the output section.
10099
10100 template<bool big_endian>
10101 template<int sh_type>
10102 void inline
10103 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10104 const Relocate_info<32, big_endian>* relinfo,
10105 const unsigned char* prelocs,
10106 size_t reloc_count,
10107 Output_section* output_section,
10108 bool needs_special_offset_handling,
10109 const unsigned char* view,
10110 elfcpp::Elf_types<32>::Elf_Addr view_address,
10111 section_size_type)
10112 {
10113 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10114 const int reloc_size =
10115 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10116
10117 Arm_relobj<big_endian>* arm_object =
10118 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10119 unsigned int local_count = arm_object->local_symbol_count();
10120
10121 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10122
10123 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10124 {
10125 Reltype reloc(prelocs);
10126
10127 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10128 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10129 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10130
10131 r_type = this->get_real_reloc_type(r_type);
10132
10133 // Only a few relocation types need stubs.
10134 if ((r_type != elfcpp::R_ARM_CALL)
10135 && (r_type != elfcpp::R_ARM_JUMP24)
10136 && (r_type != elfcpp::R_ARM_PLT32)
10137 && (r_type != elfcpp::R_ARM_THM_CALL)
10138 && (r_type != elfcpp::R_ARM_THM_XPC22)
10139 && (r_type != elfcpp::R_ARM_THM_JUMP24)
10140 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10141 && (r_type != elfcpp::R_ARM_V4BX))
10142 continue;
10143
10144 section_offset_type offset =
10145 convert_to_section_size_type(reloc.get_r_offset());
10146
10147 if (needs_special_offset_handling)
10148 {
10149 offset = output_section->output_offset(relinfo->object,
10150 relinfo->data_shndx,
10151 offset);
10152 if (offset == -1)
10153 continue;
10154 }
10155
10156 // Create a v4bx stub if --fix-v4bx-interworking is used.
10157 if (r_type == elfcpp::R_ARM_V4BX)
10158 {
10159 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10160 {
10161 // Get the BX instruction.
10162 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10163 const Valtype* wv =
10164 reinterpret_cast<const Valtype*>(view + offset);
10165 elfcpp::Elf_types<32>::Elf_Swxword insn =
10166 elfcpp::Swap<32, big_endian>::readval(wv);
10167 const uint32_t reg = (insn & 0xf);
10168
10169 if (reg < 0xf)
10170 {
10171 // Try looking up an existing stub from a stub table.
10172 Stub_table<big_endian>* stub_table =
10173 arm_object->stub_table(relinfo->data_shndx);
10174 gold_assert(stub_table != NULL);
10175
10176 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10177 {
10178 // create a new stub and add it to stub table.
10179 Arm_v4bx_stub* stub =
10180 this->stub_factory().make_arm_v4bx_stub(reg);
10181 gold_assert(stub != NULL);
10182 stub_table->add_arm_v4bx_stub(stub);
10183 }
10184 }
10185 }
10186 continue;
10187 }
10188
10189 // Get the addend.
10190 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10191 elfcpp::Elf_types<32>::Elf_Swxword addend =
10192 stub_addend_reader(r_type, view + offset, reloc);
10193
10194 const Sized_symbol<32>* sym;
10195
10196 Symbol_value<32> symval;
10197 const Symbol_value<32> *psymval;
10198 if (r_sym < local_count)
10199 {
10200 sym = NULL;
10201 psymval = arm_object->local_symbol(r_sym);
10202
10203 // If the local symbol belongs to a section we are discarding,
10204 // and that section is a debug section, try to find the
10205 // corresponding kept section and map this symbol to its
10206 // counterpart in the kept section. The symbol must not
10207 // correspond to a section we are folding.
10208 bool is_ordinary;
10209 unsigned int shndx = psymval->input_shndx(&is_ordinary);
10210 if (is_ordinary
10211 && shndx != elfcpp::SHN_UNDEF
10212 && !arm_object->is_section_included(shndx)
10213 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10214 {
10215 if (comdat_behavior == CB_UNDETERMINED)
10216 {
10217 std::string name =
10218 arm_object->section_name(relinfo->data_shndx);
10219 comdat_behavior = get_comdat_behavior(name.c_str());
10220 }
10221 if (comdat_behavior == CB_PRETEND)
10222 {
10223 bool found;
10224 typename elfcpp::Elf_types<32>::Elf_Addr value =
10225 arm_object->map_to_kept_section(shndx, &found);
10226 if (found)
10227 symval.set_output_value(value + psymval->input_value());
10228 else
10229 symval.set_output_value(0);
10230 }
10231 else
10232 {
10233 symval.set_output_value(0);
10234 }
10235 symval.set_no_output_symtab_entry();
10236 psymval = &symval;
10237 }
10238 }
10239 else
10240 {
10241 const Symbol* gsym = arm_object->global_symbol(r_sym);
10242 gold_assert(gsym != NULL);
10243 if (gsym->is_forwarder())
10244 gsym = relinfo->symtab->resolve_forwards(gsym);
10245
10246 sym = static_cast<const Sized_symbol<32>*>(gsym);
10247 if (sym->has_symtab_index())
10248 symval.set_output_symtab_index(sym->symtab_index());
10249 else
10250 symval.set_no_output_symtab_entry();
10251
10252 // We need to compute the would-be final value of this global
10253 // symbol.
10254 const Symbol_table* symtab = relinfo->symtab;
10255 const Sized_symbol<32>* sized_symbol =
10256 symtab->get_sized_symbol<32>(gsym);
10257 Symbol_table::Compute_final_value_status status;
10258 Arm_address value =
10259 symtab->compute_final_value<32>(sized_symbol, &status);
10260
10261 // Skip this if the symbol has not output section.
10262 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10263 continue;
10264
10265 symval.set_output_value(value);
10266 psymval = &symval;
10267 }
10268
10269 // If symbol is a section symbol, we don't know the actual type of
10270 // destination. Give up.
10271 if (psymval->is_section_symbol())
10272 continue;
10273
10274 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10275 addend, view_address + offset);
10276 }
10277 }
10278
10279 // Scan an input section for stub generation.
10280
10281 template<bool big_endian>
10282 void
10283 Target_arm<big_endian>::scan_section_for_stubs(
10284 const Relocate_info<32, big_endian>* relinfo,
10285 unsigned int sh_type,
10286 const unsigned char* prelocs,
10287 size_t reloc_count,
10288 Output_section* output_section,
10289 bool needs_special_offset_handling,
10290 const unsigned char* view,
10291 Arm_address view_address,
10292 section_size_type view_size)
10293 {
10294 if (sh_type == elfcpp::SHT_REL)
10295 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10296 relinfo,
10297 prelocs,
10298 reloc_count,
10299 output_section,
10300 needs_special_offset_handling,
10301 view,
10302 view_address,
10303 view_size);
10304 else if (sh_type == elfcpp::SHT_RELA)
10305 // We do not support RELA type relocations yet. This is provided for
10306 // completeness.
10307 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10308 relinfo,
10309 prelocs,
10310 reloc_count,
10311 output_section,
10312 needs_special_offset_handling,
10313 view,
10314 view_address,
10315 view_size);
10316 else
10317 gold_unreachable();
10318 }
10319
10320 // Group input sections for stub generation.
10321 //
10322 // We goup input sections in an output sections so that the total size,
10323 // including any padding space due to alignment is smaller than GROUP_SIZE
10324 // unless the only input section in group is bigger than GROUP_SIZE already.
10325 // Then an ARM stub table is created to follow the last input section
10326 // in group. For each group an ARM stub table is created an is placed
10327 // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10328 // extend the group after the stub table.
10329
10330 template<bool big_endian>
10331 void
10332 Target_arm<big_endian>::group_sections(
10333 Layout* layout,
10334 section_size_type group_size,
10335 bool stubs_always_after_branch)
10336 {
10337 // Group input sections and insert stub table
10338 Layout::Section_list section_list;
10339 layout->get_allocated_sections(&section_list);
10340 for (Layout::Section_list::const_iterator p = section_list.begin();
10341 p != section_list.end();
10342 ++p)
10343 {
10344 Arm_output_section<big_endian>* output_section =
10345 Arm_output_section<big_endian>::as_arm_output_section(*p);
10346 output_section->group_sections(group_size, stubs_always_after_branch,
10347 this);
10348 }
10349 }
10350
10351 // Relaxation hook. This is where we do stub generation.
10352
10353 template<bool big_endian>
10354 bool
10355 Target_arm<big_endian>::do_relax(
10356 int pass,
10357 const Input_objects* input_objects,
10358 Symbol_table* symtab,
10359 Layout* layout)
10360 {
10361 // No need to generate stubs if this is a relocatable link.
10362 gold_assert(!parameters->options().relocatable());
10363
10364 // If this is the first pass, we need to group input sections into
10365 // stub groups.
10366 bool done_exidx_fixup = false;
10367 if (pass == 1)
10368 {
10369 // Determine the stub group size. The group size is the absolute
10370 // value of the parameter --stub-group-size. If --stub-group-size
10371 // is passed a negative value, we restict stubs to be always after
10372 // the stubbed branches.
10373 int32_t stub_group_size_param =
10374 parameters->options().stub_group_size();
10375 bool stubs_always_after_branch = stub_group_size_param < 0;
10376 section_size_type stub_group_size = abs(stub_group_size_param);
10377
10378 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10379 // page as the first half of a 32-bit branch straddling two 4K pages.
10380 // This is a crude way of enforcing that.
10381 if (this->fix_cortex_a8_)
10382 stubs_always_after_branch = true;
10383
10384 if (stub_group_size == 1)
10385 {
10386 // Default value.
10387 // Thumb branch range is +-4MB has to be used as the default
10388 // maximum size (a given section can contain both ARM and Thumb
10389 // code, so the worst case has to be taken into account). If we are
10390 // fixing cortex-a8 errata, the branch range has to be even smaller,
10391 // since wide conditional branch has a range of +-1MB only.
10392 //
10393 // This value is 24K less than that, which allows for 2025
10394 // 12-byte stubs. If we exceed that, then we will fail to link.
10395 // The user will have to relink with an explicit group size
10396 // option.
10397 if (this->fix_cortex_a8_)
10398 stub_group_size = 1024276;
10399 else
10400 stub_group_size = 4170000;
10401 }
10402
10403 group_sections(layout, stub_group_size, stubs_always_after_branch);
10404
10405 // Also fix .ARM.exidx section coverage.
10406 Output_section* os = layout->find_output_section(".ARM.exidx");
10407 if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10408 {
10409 Arm_output_section<big_endian>* exidx_output_section =
10410 Arm_output_section<big_endian>::as_arm_output_section(os);
10411 this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10412 done_exidx_fixup = true;
10413 }
10414 }
10415
10416 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
10417 // beginning of each relaxation pass, just blow away all the stubs.
10418 // Alternatively, we could selectively remove only the stubs and reloc
10419 // information for code sections that have moved since the last pass.
10420 // That would require more book-keeping.
10421 typedef typename Stub_table_list::iterator Stub_table_iterator;
10422 if (this->fix_cortex_a8_)
10423 {
10424 // Clear all Cortex-A8 reloc information.
10425 for (typename Cortex_a8_relocs_info::const_iterator p =
10426 this->cortex_a8_relocs_info_.begin();
10427 p != this->cortex_a8_relocs_info_.end();
10428 ++p)
10429 delete p->second;
10430 this->cortex_a8_relocs_info_.clear();
10431
10432 // Remove all Cortex-A8 stubs.
10433 for (Stub_table_iterator sp = this->stub_tables_.begin();
10434 sp != this->stub_tables_.end();
10435 ++sp)
10436 (*sp)->remove_all_cortex_a8_stubs();
10437 }
10438
10439 // Scan relocs for relocation stubs
10440 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10441 op != input_objects->relobj_end();
10442 ++op)
10443 {
10444 Arm_relobj<big_endian>* arm_relobj =
10445 Arm_relobj<big_endian>::as_arm_relobj(*op);
10446 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
10447 }
10448
10449 // Check all stub tables to see if any of them have their data sizes
10450 // or addresses alignments changed. These are the only things that
10451 // matter.
10452 bool any_stub_table_changed = false;
10453 Unordered_set<const Output_section*> sections_needing_adjustment;
10454 for (Stub_table_iterator sp = this->stub_tables_.begin();
10455 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10456 ++sp)
10457 {
10458 if ((*sp)->update_data_size_and_addralign())
10459 {
10460 // Update data size of stub table owner.
10461 Arm_input_section<big_endian>* owner = (*sp)->owner();
10462 uint64_t address = owner->address();
10463 off_t offset = owner->offset();
10464 owner->reset_address_and_file_offset();
10465 owner->set_address_and_file_offset(address, offset);
10466
10467 sections_needing_adjustment.insert(owner->output_section());
10468 any_stub_table_changed = true;
10469 }
10470 }
10471
10472 // Output_section_data::output_section() returns a const pointer but we
10473 // need to update output sections, so we record all output sections needing
10474 // update above and scan the sections here to find out what sections need
10475 // to be updated.
10476 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
10477 p != layout->section_list().end();
10478 ++p)
10479 {
10480 if (sections_needing_adjustment.find(*p)
10481 != sections_needing_adjustment.end())
10482 (*p)->set_section_offsets_need_adjustment();
10483 }
10484
10485 // Stop relaxation if no EXIDX fix-up and no stub table change.
10486 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
10487
10488 // Finalize the stubs in the last relaxation pass.
10489 if (!continue_relaxation)
10490 {
10491 for (Stub_table_iterator sp = this->stub_tables_.begin();
10492 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10493 ++sp)
10494 (*sp)->finalize_stubs();
10495
10496 // Update output local symbol counts of objects if necessary.
10497 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10498 op != input_objects->relobj_end();
10499 ++op)
10500 {
10501 Arm_relobj<big_endian>* arm_relobj =
10502 Arm_relobj<big_endian>::as_arm_relobj(*op);
10503
10504 // Update output local symbol counts. We need to discard local
10505 // symbols defined in parts of input sections that are discarded by
10506 // relaxation.
10507 if (arm_relobj->output_local_symbol_count_needs_update())
10508 arm_relobj->update_output_local_symbol_count();
10509 }
10510 }
10511
10512 return continue_relaxation;
10513 }
10514
10515 // Relocate a stub.
10516
10517 template<bool big_endian>
10518 void
10519 Target_arm<big_endian>::relocate_stub(
10520 Stub* stub,
10521 const Relocate_info<32, big_endian>* relinfo,
10522 Output_section* output_section,
10523 unsigned char* view,
10524 Arm_address address,
10525 section_size_type view_size)
10526 {
10527 Relocate relocate;
10528 const Stub_template* stub_template = stub->stub_template();
10529 for (size_t i = 0; i < stub_template->reloc_count(); i++)
10530 {
10531 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
10532 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
10533
10534 unsigned int r_type = insn->r_type();
10535 section_size_type reloc_offset = stub_template->reloc_offset(i);
10536 section_size_type reloc_size = insn->size();
10537 gold_assert(reloc_offset + reloc_size <= view_size);
10538
10539 // This is the address of the stub destination.
10540 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
10541 Symbol_value<32> symval;
10542 symval.set_output_value(target);
10543
10544 // Synthesize a fake reloc just in case. We don't have a symbol so
10545 // we use 0.
10546 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
10547 memset(reloc_buffer, 0, sizeof(reloc_buffer));
10548 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
10549 reloc_write.put_r_offset(reloc_offset);
10550 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
10551 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
10552
10553 relocate.relocate(relinfo, this, output_section,
10554 this->fake_relnum_for_stubs, rel, r_type,
10555 NULL, &symval, view + reloc_offset,
10556 address + reloc_offset, reloc_size);
10557 }
10558 }
10559
10560 // Determine whether an object attribute tag takes an integer, a
10561 // string or both.
10562
10563 template<bool big_endian>
10564 int
10565 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
10566 {
10567 if (tag == Object_attribute::Tag_compatibility)
10568 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10569 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
10570 else if (tag == elfcpp::Tag_nodefaults)
10571 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10572 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
10573 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
10574 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
10575 else if (tag < 32)
10576 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
10577 else
10578 return ((tag & 1) != 0
10579 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
10580 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10581 }
10582
10583 // Reorder attributes.
10584 //
10585 // The ABI defines that Tag_conformance should be emitted first, and that
10586 // Tag_nodefaults should be second (if either is defined). This sets those
10587 // two positions, and bumps up the position of all the remaining tags to
10588 // compensate.
10589
10590 template<bool big_endian>
10591 int
10592 Target_arm<big_endian>::do_attributes_order(int num) const
10593 {
10594 // Reorder the known object attributes in output. We want to move
10595 // Tag_conformance to position 4 and Tag_conformance to position 5
10596 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
10597 if (num == 4)
10598 return elfcpp::Tag_conformance;
10599 if (num == 5)
10600 return elfcpp::Tag_nodefaults;
10601 if ((num - 2) < elfcpp::Tag_nodefaults)
10602 return num - 2;
10603 if ((num - 1) < elfcpp::Tag_conformance)
10604 return num - 1;
10605 return num;
10606 }
10607
10608 // Scan a span of THUMB code for Cortex-A8 erratum.
10609
10610 template<bool big_endian>
10611 void
10612 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
10613 Arm_relobj<big_endian>* arm_relobj,
10614 unsigned int shndx,
10615 section_size_type span_start,
10616 section_size_type span_end,
10617 const unsigned char* view,
10618 Arm_address address)
10619 {
10620 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
10621 //
10622 // The opcode is BLX.W, BL.W, B.W, Bcc.W
10623 // The branch target is in the same 4KB region as the
10624 // first half of the branch.
10625 // The instruction before the branch is a 32-bit
10626 // length non-branch instruction.
10627 section_size_type i = span_start;
10628 bool last_was_32bit = false;
10629 bool last_was_branch = false;
10630 while (i < span_end)
10631 {
10632 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10633 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
10634 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
10635 bool is_blx = false, is_b = false;
10636 bool is_bl = false, is_bcc = false;
10637
10638 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
10639 if (insn_32bit)
10640 {
10641 // Load the rest of the insn (in manual-friendly order).
10642 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
10643
10644 // Encoding T4: B<c>.W.
10645 is_b = (insn & 0xf800d000U) == 0xf0009000U;
10646 // Encoding T1: BL<c>.W.
10647 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
10648 // Encoding T2: BLX<c>.W.
10649 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
10650 // Encoding T3: B<c>.W (not permitted in IT block).
10651 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
10652 && (insn & 0x07f00000U) != 0x03800000U);
10653 }
10654
10655 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
10656
10657 // If this instruction is a 32-bit THUMB branch that crosses a 4K
10658 // page boundary and it follows 32-bit non-branch instruction,
10659 // we need to work around.
10660 if (is_32bit_branch
10661 && ((address + i) & 0xfffU) == 0xffeU
10662 && last_was_32bit
10663 && !last_was_branch)
10664 {
10665 // Check to see if there is a relocation stub for this branch.
10666 bool force_target_arm = false;
10667 bool force_target_thumb = false;
10668 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
10669 Cortex_a8_relocs_info::const_iterator p =
10670 this->cortex_a8_relocs_info_.find(address + i);
10671
10672 if (p != this->cortex_a8_relocs_info_.end())
10673 {
10674 cortex_a8_reloc = p->second;
10675 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
10676
10677 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10678 && !target_is_thumb)
10679 force_target_arm = true;
10680 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10681 && target_is_thumb)
10682 force_target_thumb = true;
10683 }
10684
10685 off_t offset;
10686 Stub_type stub_type = arm_stub_none;
10687
10688 // Check if we have an offending branch instruction.
10689 uint16_t upper_insn = (insn >> 16) & 0xffffU;
10690 uint16_t lower_insn = insn & 0xffffU;
10691 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10692
10693 if (cortex_a8_reloc != NULL
10694 && cortex_a8_reloc->reloc_stub() != NULL)
10695 // We've already made a stub for this instruction, e.g.
10696 // it's a long branch or a Thumb->ARM stub. Assume that
10697 // stub will suffice to work around the A8 erratum (see
10698 // setting of always_after_branch above).
10699 ;
10700 else if (is_bcc)
10701 {
10702 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
10703 lower_insn);
10704 stub_type = arm_stub_a8_veneer_b_cond;
10705 }
10706 else if (is_b || is_bl || is_blx)
10707 {
10708 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
10709 lower_insn);
10710 if (is_blx)
10711 offset &= ~3;
10712
10713 stub_type = (is_blx
10714 ? arm_stub_a8_veneer_blx
10715 : (is_bl
10716 ? arm_stub_a8_veneer_bl
10717 : arm_stub_a8_veneer_b));
10718 }
10719
10720 if (stub_type != arm_stub_none)
10721 {
10722 Arm_address pc_for_insn = address + i + 4;
10723
10724 // The original instruction is a BL, but the target is
10725 // an ARM instruction. If we were not making a stub,
10726 // the BL would have been converted to a BLX. Use the
10727 // BLX stub instead in that case.
10728 if (this->may_use_blx() && force_target_arm
10729 && stub_type == arm_stub_a8_veneer_bl)
10730 {
10731 stub_type = arm_stub_a8_veneer_blx;
10732 is_blx = true;
10733 is_bl = false;
10734 }
10735 // Conversely, if the original instruction was
10736 // BLX but the target is Thumb mode, use the BL stub.
10737 else if (force_target_thumb
10738 && stub_type == arm_stub_a8_veneer_blx)
10739 {
10740 stub_type = arm_stub_a8_veneer_bl;
10741 is_blx = false;
10742 is_bl = true;
10743 }
10744
10745 if (is_blx)
10746 pc_for_insn &= ~3;
10747
10748 // If we found a relocation, use the proper destination,
10749 // not the offset in the (unrelocated) instruction.
10750 // Note this is always done if we switched the stub type above.
10751 if (cortex_a8_reloc != NULL)
10752 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
10753
10754 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
10755
10756 // Add a new stub if destination address in in the same page.
10757 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
10758 {
10759 Cortex_a8_stub* stub =
10760 this->stub_factory_.make_cortex_a8_stub(stub_type,
10761 arm_relobj, shndx,
10762 address + i,
10763 target, insn);
10764 Stub_table<big_endian>* stub_table =
10765 arm_relobj->stub_table(shndx);
10766 gold_assert(stub_table != NULL);
10767 stub_table->add_cortex_a8_stub(address + i, stub);
10768 }
10769 }
10770 }
10771
10772 i += insn_32bit ? 4 : 2;
10773 last_was_32bit = insn_32bit;
10774 last_was_branch = is_32bit_branch;
10775 }
10776 }
10777
10778 // Apply the Cortex-A8 workaround.
10779
10780 template<bool big_endian>
10781 void
10782 Target_arm<big_endian>::apply_cortex_a8_workaround(
10783 const Cortex_a8_stub* stub,
10784 Arm_address stub_address,
10785 unsigned char* insn_view,
10786 Arm_address insn_address)
10787 {
10788 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10789 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
10790 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
10791 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
10792 off_t branch_offset = stub_address - (insn_address + 4);
10793
10794 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10795 switch (stub->stub_template()->type())
10796 {
10797 case arm_stub_a8_veneer_b_cond:
10798 gold_assert(!utils::has_overflow<21>(branch_offset));
10799 upper_insn = RelocFuncs::thumb32_cond_branch_upper(upper_insn,
10800 branch_offset);
10801 lower_insn = RelocFuncs::thumb32_cond_branch_lower(lower_insn,
10802 branch_offset);
10803 break;
10804
10805 case arm_stub_a8_veneer_b:
10806 case arm_stub_a8_veneer_bl:
10807 case arm_stub_a8_veneer_blx:
10808 if ((lower_insn & 0x5000U) == 0x4000U)
10809 // For a BLX instruction, make sure that the relocation is
10810 // rounded up to a word boundary. This follows the semantics of
10811 // the instruction which specifies that bit 1 of the target
10812 // address will come from bit 1 of the base address.
10813 branch_offset = (branch_offset + 2) & ~3;
10814
10815 // Put BRANCH_OFFSET back into the insn.
10816 gold_assert(!utils::has_overflow<25>(branch_offset));
10817 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
10818 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
10819 break;
10820
10821 default:
10822 gold_unreachable();
10823 }
10824
10825 // Put the relocated value back in the object file:
10826 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
10827 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
10828 }
10829
10830 template<bool big_endian>
10831 class Target_selector_arm : public Target_selector
10832 {
10833 public:
10834 Target_selector_arm()
10835 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
10836 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
10837 { }
10838
10839 Target*
10840 do_instantiate_target()
10841 { return new Target_arm<big_endian>(); }
10842 };
10843
10844 // Fix .ARM.exidx section coverage.
10845
10846 template<bool big_endian>
10847 void
10848 Target_arm<big_endian>::fix_exidx_coverage(
10849 Layout* layout,
10850 Arm_output_section<big_endian>* exidx_section,
10851 Symbol_table* symtab)
10852 {
10853 // We need to look at all the input sections in output in ascending
10854 // order of of output address. We do that by building a sorted list
10855 // of output sections by addresses. Then we looks at the output sections
10856 // in order. The input sections in an output section are already sorted
10857 // by addresses within the output section.
10858
10859 typedef std::set<Output_section*, output_section_address_less_than>
10860 Sorted_output_section_list;
10861 Sorted_output_section_list sorted_output_sections;
10862 Layout::Section_list section_list;
10863 layout->get_allocated_sections(&section_list);
10864 for (Layout::Section_list::const_iterator p = section_list.begin();
10865 p != section_list.end();
10866 ++p)
10867 {
10868 // We only care about output sections that contain executable code.
10869 if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
10870 sorted_output_sections.insert(*p);
10871 }
10872
10873 // Go over the output sections in ascending order of output addresses.
10874 typedef typename Arm_output_section<big_endian>::Text_section_list
10875 Text_section_list;
10876 Text_section_list sorted_text_sections;
10877 for(typename Sorted_output_section_list::iterator p =
10878 sorted_output_sections.begin();
10879 p != sorted_output_sections.end();
10880 ++p)
10881 {
10882 Arm_output_section<big_endian>* arm_output_section =
10883 Arm_output_section<big_endian>::as_arm_output_section(*p);
10884 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
10885 }
10886
10887 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab);
10888 }
10889
10890 Target_selector_arm<false> target_selector_arm;
10891 Target_selector_arm<true> target_selector_armbe;
10892
10893 } // End anonymous namespace.