c0a20491f3c2d6a9a2bc6096736663c9cf8ed17b
[binutils-gdb.git] / gold / arm.cc
1 // arm.cc -- arm target support for gold.
2
3 // Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
8
9 // This file is part of gold.
10
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
15
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
20
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
25
26 #include "gold.h"
27
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
36
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
54
55 namespace
56 {
57
58 using namespace gold;
59
60 template<bool big_endian>
61 class Output_data_plt_arm;
62
63 template<bool big_endian>
64 class Stub_table;
65
66 template<bool big_endian>
67 class Arm_input_section;
68
69 class Arm_exidx_cantunwind;
70
71 class Arm_exidx_merged_section;
72
73 class Arm_exidx_fixup;
74
75 template<bool big_endian>
76 class Arm_output_section;
77
78 class Arm_exidx_input_section;
79
80 template<bool big_endian>
81 class Arm_relobj;
82
83 template<bool big_endian>
84 class Arm_relocate_functions;
85
86 template<bool big_endian>
87 class Arm_output_data_got;
88
89 template<bool big_endian>
90 class Target_arm;
91
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
105
106 // The arm target class.
107 //
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
110 //
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 // Thumb-2 and BE8.
115 // There are probably a lot more.
116
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will be very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
124 //
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
128
129 Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
133
134 class Insn_template
135 {
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
151 // Factory methods to create instruction templates in different formats.
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
207 // Return size of instruction template in bytes.
208 size_t
209 size() const;
210
211 // Return byte-alignment of instruction template.
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232 };
233
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
236
237 #define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
255
256 // Stub types.
257
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
275 arm_stub_type_last = arm_stub_v4_veneer_bx
276 } Stub_type;
277 #undef DEF_STUB
278
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
282
283 class Stub_template
284 {
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369 };
370
371 //
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
374 //
375
376 class Stub
377 {
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
431 // This may be overridden in the child class.
432 virtual void
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
440
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
447 private:
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457 };
458
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
461
462 class Reloc_stub : public Stub
463 {
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
511 {
512 if (symbol != NULL)
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
516 }
517 else
518 {
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj, in order to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640 };
641
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
644 //
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 // branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
650 //
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
659 //
660
661 class Cortex_a8_stub : public Stub
662 {
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
746 };
747
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
750 {
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804 };
805
806 // Stub factory class.
807
808 class Stub_factory
809 {
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862 };
863
864 // A class to hold stubs for the ARM target.
865
866 template<bool big_endian>
867 class Stub_table : public Output_data
868 {
869 public:
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
900 void
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
988 { return this->prev_addralign_; }
989
990 // Reset address and file offset.
991 void
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
994
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
1000 private:
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1035 };
1036
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1039
1040 class Arm_exidx_cantunwind : public Output_section_data
1041 {
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
1067 // Write to a map file.
1068 void
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
1072 private:
1073 // Implement do_write for a given endianness.
1074 template<bool big_endian>
1075 void inline
1076 do_fixed_endian_write(Output_file*);
1077
1078 // The object containing the section pointed by this.
1079 Relobj* relobj_;
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1082 };
1083
1084 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1085 // Offset map is used to map input section offset within the EXIDX section
1086 // to the output offset from the start of this EXIDX section.
1087
1088 typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1090
1091 // Arm_exidx_merged_section class. This represents an EXIDX input section
1092 // with some of its entries merged.
1093
1094 class Arm_exidx_merged_section : public Output_relaxed_input_section
1095 {
1096 public:
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1106
1107 // Build output contents.
1108 void
1109 build_contents(const unsigned char*, section_size_type);
1110
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1115
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1120
1121 protected:
1122 // Write merged section into file OF.
1123 void
1124 do_write(Output_file* of);
1125
1126 bool
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1129
1130 private:
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
1139 };
1140
1141 // A class to wrap an ordinary input section containing executable code.
1142
1143 template<bool big_endian>
1144 class Arm_input_section : public Output_relaxed_input_section
1145 {
1146 public:
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
1151 { }
1152
1153 ~Arm_input_section()
1154 { delete[] this->original_contents_; }
1155
1156 // Initialize.
1157 void
1158 init();
1159
1160 // Whether this is a stub table owner.
1161 bool
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1167 stub_table() const
1168 { return this->stub_table_; }
1169
1170 // Set the stub_table.
1171 void
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
1174
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
1181 // Return the original size of the section.
1182 uint32_t
1183 original_size() const
1184 { return this->original_size_; }
1185
1186 protected:
1187 // Write data to output file.
1188 void
1189 do_write(Output_file*);
1190
1191 // Return required alignment of this.
1192 uint64_t
1193 do_addralign() const
1194 {
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
1197 static_cast<uint64_t>(this->original_addralign_));
1198 else
1199 return this->original_addralign_;
1200 }
1201
1202 // Finalize data size.
1203 void
1204 set_final_data_size();
1205
1206 // Reset address and file offset.
1207 void
1208 do_reset_address_and_file_offset();
1209
1210 // Output offset.
1211 bool
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
1214 section_offset_type* poutput) const
1215 {
1216 if ((object == this->relobj())
1217 && (shndx == this->shndx())
1218 && (offset >= 0)
1219 && (offset <=
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221 {
1222 *poutput = offset;
1223 return true;
1224 }
1225 else
1226 return false;
1227 }
1228
1229 private:
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1233
1234 // Address alignment of the original input section.
1235 uint32_t original_addralign_;
1236 // Section size of the original input section.
1237 uint32_t original_size_;
1238 // Stub table.
1239 Stub_table<big_endian>* stub_table_;
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1242 // the contents.
1243 unsigned char* original_contents_;
1244 };
1245
1246 // Arm_exidx_fixup class. This is used to define a number of methods
1247 // and keep states for fixing up EXIDX coverage.
1248
1249 class Arm_exidx_fixup
1250 {
1251 public:
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
1258 { }
1259
1260 ~Arm_exidx_fixup()
1261 { delete this->section_offset_map_; }
1262
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
1268 // responsible for releasing it.
1269 template<bool big_endian>
1270 uint32_t
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
1274 Arm_exidx_section_offset_map** psection_offset_map);
1275
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1278 void
1279 add_exidx_cantunwind_as_needed();
1280
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1283 Output_section*
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1286
1287 private:
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292 // Type of EXIDX unwind entry.
1293 enum Unwind_type
1294 {
1295 // No type.
1296 UT_NONE,
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1299 // Inlined entry.
1300 UT_INLINED_ENTRY,
1301 // Normal entry.
1302 UT_NORMAL_ENTRY,
1303 };
1304
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1307 bool
1308 process_exidx_entry(uint32_t second_word);
1309
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1315 void
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1318
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
1326 const Arm_exidx_input_section* last_input_section_;
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
1329 // Output section for the text section which is linked to the first exidx
1330 // input in output.
1331 Output_section* first_output_text_section_;
1332
1333 bool merge_exidx_entries_;
1334 };
1335
1336 // Arm output section class. This is defined mainly to add a number of
1337 // stub generation methods.
1338
1339 template<bool big_endian>
1340 class Arm_output_section : public Output_section
1341 {
1342 public:
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1351 : flags))
1352 {
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1355 }
1356
1357 ~Arm_output_section()
1358 { }
1359
1360 // Group input sections for stub generation.
1361 void
1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1363
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
1370 // Append all input text sections in this into LIST.
1371 void
1372 append_text_sections_to_list(Text_section_list* list);
1373
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1377 void
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
1380 Symbol_table* symtab,
1381 bool merge_exidx_entries,
1382 const Task* task);
1383
1384 // Link an EXIDX section into its corresponding text section.
1385 void
1386 set_exidx_section_link();
1387
1388 private:
1389 // For convenience.
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1392
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
1398 std::vector<Output_relaxed_input_section*>*,
1399 const Task* task);
1400 };
1401
1402 // Arm_exidx_input_section class. This represents an EXIDX input section.
1403
1404 class Arm_exidx_input_section
1405 {
1406 public:
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1409
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
1415 { }
1416
1417 ~Arm_exidx_input_section()
1418 { }
1419
1420 // Accessors: This is a read-only class.
1421
1422 // Return the object containing this EXIDX input section.
1423 Relobj*
1424 relobj() const
1425 { return this->relobj_; }
1426
1427 // Return the section index of this EXIDX input section.
1428 unsigned int
1429 shndx() const
1430 { return this->shndx_; }
1431
1432 // Return the section index of linked text section in the same object.
1433 unsigned int
1434 link() const
1435 { return this->link_; }
1436
1437 // Return size of the EXIDX input section.
1438 uint32_t
1439 size() const
1440 { return this->size_; }
1441
1442 // Return address alignment of EXIDX input section.
1443 uint32_t
1444 addralign() const
1445 { return this->addralign_; }
1446
1447 // Return size of the associated text input section.
1448 uint32_t
1449 text_size() const
1450 { return this->text_size_; }
1451
1452 // Whether there are any errors in the EXIDX input section.
1453 bool
1454 has_errors() const
1455 { return this->has_errors_; }
1456
1457 // Set has-errors flag.
1458 void
1459 set_has_errors()
1460 { this->has_errors_ = true; }
1461
1462 private:
1463 // Object containing this.
1464 Relobj* relobj_;
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1468 unsigned int link_;
1469 // Size of this. For ARM 32-bit is sufficient.
1470 uint32_t size_;
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
1473 // Size of associated text section.
1474 uint32_t text_size_;
1475 // Whether this has any errors.
1476 bool has_errors_;
1477 };
1478
1479 // Arm_relobj class.
1480
1481 template<bool big_endian>
1482 class Arm_relobj : public Sized_relobj_file<32, big_endian>
1483 {
1484 public:
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490 stub_tables_(), local_symbol_is_thumb_function_(),
1491 attributes_section_data_(NULL), mapping_symbols_info_(),
1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
1495 { }
1496
1497 ~Arm_relobj()
1498 { delete this->attributes_section_data_; }
1499
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
1502 stub_table(unsigned int shndx) const
1503 {
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
1506 }
1507
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509 void
1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1511 {
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
1514 }
1515
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1518 bool
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1520 {
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1523 }
1524
1525 // Scan all relocation sections for stub generation.
1526 void
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528 const Layout*);
1529
1530 // Convert regular input section with index SHNDX to a relaxed section.
1531 void
1532 convert_input_section_to_relaxed_section(unsigned shndx)
1533 {
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
1536 this->set_section_offset(shndx, -1ULL);
1537 this->set_relocs_must_follow_section_writes();
1538 }
1539
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1545
1546 // Processor-specific flags in ELF file header. This is valid only after
1547 // reading symbols.
1548 elfcpp::Elf_Word
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1551
1552 // Attribute section data This is the contents of the .ARM.attribute section
1553 // if there is one.
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1557
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1563 {
1564 bool
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1567 {
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1570 }
1571 };
1572
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1577
1578 // Whether a section contains any Cortex-A8 workaround.
1579 bool
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1581 {
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584 }
1585
1586 // Mark a section that has Cortex-A8 workaround.
1587 void
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589 {
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594 }
1595
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1600 {
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1604 ? p->second
1605 : NULL);
1606 }
1607
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1611 {
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1615 ? p->second
1616 : NULL);
1617 }
1618
1619 // Whether output local symbol count needs updating.
1620 bool
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1623
1624 // Set output_local_symbol_count_needs_update flag to be true.
1625 void
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1628
1629 // Update output local symbol count at the end of relaxation.
1630 void
1631 update_output_local_symbol_count();
1632
1633 // Whether we want to merge processor-specific flags and attributes.
1634 bool
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1637
1638 // Export list of EXIDX section indices.
1639 void
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641 {
1642 list->clear();
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1645 ++p)
1646 {
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1649 }
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1652 }
1653
1654 protected:
1655 // Post constructor setup.
1656 void
1657 do_setup()
1658 {
1659 // Call parent's setup method.
1660 Sized_relobj_file<32, big_endian>::do_setup();
1661
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1665 }
1666
1667 // Count the local symbols.
1668 void
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1671
1672 void
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
1677
1678 // Read the symbol information.
1679 void
1680 do_read_symbols(Read_symbols_data* sd);
1681
1682 // Process relocs for garbage collection.
1683 void
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
1686 private:
1687
1688 // Whether a section needs to be scanned for relocation stubs.
1689 bool
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
1692 const Symbol_table*, const unsigned char*);
1693
1694 // Whether a section is a scannable text section.
1695 bool
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697 const Output_section*, const Symbol_table*);
1698
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700 bool
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
1703 const Symbol_table*);
1704
1705 // Scan a section for the Cortex-A8 erratum.
1706 void
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1710
1711 // Find the linked text section of an EXIDX section by looking at the
1712 // first relocation of the EXIDX section. PSHDR points to the section
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1716 bool
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1719
1720 //
1721 // Make a new Arm_exidx_input_section object for EXIDX section with
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
1724 void
1725 make_exidx_input_section(unsigned int shndx,
1726 const elfcpp::Shdr<32, big_endian>& shdr,
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
1729
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1732 Arm_address
1733 simple_input_section_output_address(unsigned int, Output_section*);
1734
1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737 Exidx_section_map;
1738
1739 // List of stub tables.
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
1756 // Whether we merge processor flags and attributes of this object to
1757 // output.
1758 bool merge_flags_and_attributes_;
1759 };
1760
1761 // Arm_dynobj class.
1762
1763 template<bool big_endian>
1764 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765 {
1766 public:
1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
1771 { }
1772
1773 ~Arm_dynobj()
1774 { delete this->attributes_section_data_; }
1775
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782 // Processor-specific flags in ELF file header. This is valid only after
1783 // reading symbols.
1784 elfcpp::Elf_Word
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1787
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1792
1793 protected:
1794 // Read the symbol information.
1795 void
1796 do_read_symbols(Read_symbols_data* sd);
1797
1798 private:
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
1803 };
1804
1805 // Functor to read reloc addends during stub generation.
1806
1807 template<int sh_type, bool big_endian>
1808 struct Stub_addend_reader
1809 {
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1814 operator()(
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
1818 32, big_endian>::Reloc& /* reloc */) const;
1819 };
1820
1821 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823 template<bool big_endian>
1824 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825 {
1826 elfcpp::Elf_types<32>::Elf_Swxword
1827 operator()(
1828 unsigned int,
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831 };
1832
1833 // Specialized Stub_addend_reader for RELA type relocation sections.
1834 // We currently do not handle RELA type relocation sections but it is trivial
1835 // to implement the addend reader. This is provided for completeness and to
1836 // make it easier to add support for RELA relocation sections in the future.
1837
1838 template<bool big_endian>
1839 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840 {
1841 elfcpp::Elf_types<32>::Elf_Swxword
1842 operator()(
1843 unsigned int,
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
1848 };
1849
1850 // Cortex_a8_reloc class. We keep record of relocation that may need
1851 // the Cortex-A8 erratum workaround.
1852
1853 class Cortex_a8_reloc
1854 {
1855 public:
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859 { }
1860
1861 ~Cortex_a8_reloc()
1862 { }
1863
1864 // Accessors: This is a read-only class.
1865
1866 // Return the relocation stub associated with this relocation if there is
1867 // one.
1868 const Reloc_stub*
1869 reloc_stub() const
1870 { return this->reloc_stub_; }
1871
1872 // Return the relocation type.
1873 unsigned int
1874 r_type() const
1875 { return this->r_type_; }
1876
1877 // Return the destination address of the relocation. LSB stores the THUMB
1878 // bit.
1879 Arm_address
1880 destination() const
1881 { return this->destination_; }
1882
1883 private:
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1886 // Relocation type.
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1889 // ARM/THUMB mode.
1890 Arm_address destination_;
1891 };
1892
1893 // Arm_output_data_got class. We derive this from Output_data_got to add
1894 // extra methods to handle TLS relocations in a static link.
1895
1896 template<bool big_endian>
1897 class Arm_output_data_got : public Output_data_got<32, big_endian>
1898 {
1899 public:
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902 { }
1903
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1907 void
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916 Sized_relobj_file<32, big_endian>* relobj,
1917 unsigned int index)
1918 {
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920 index));
1921 }
1922
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1928 void
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
1934 Sized_relobj_file<32, big_endian>* object,
1935 unsigned int index);
1936
1937 protected:
1938 // Write out the GOT table.
1939 void
1940 do_write(Output_file*);
1941
1942 private:
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1945 class Static_reloc
1946 {
1947 public:
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1951
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955 {
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1958 }
1959
1960 // Return the GOT offset.
1961 unsigned int
1962 got_offset() const
1963 { return this->got_offset_; }
1964
1965 // Relocation type.
1966 unsigned int
1967 r_type() const
1968 { return this->r_type_; }
1969
1970 // Whether the symbol is global or not.
1971 bool
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1974
1975 // For a relocation against a global symbol, the global symbol.
1976 Symbol*
1977 symbol() const
1978 {
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1981 }
1982
1983 // For a relocation against a local symbol, the defining object.
1984 Sized_relobj_file<32, big_endian>*
1985 relobj() const
1986 {
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1989 }
1990
1991 // For a relocation against a local symbol, the local symbol index.
1992 unsigned int
1993 index() const
1994 {
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
1997 }
1998
1999 private:
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2007 union
2008 {
2009 struct
2010 {
2011 // For a global symbol, the symbol itself.
2012 Symbol* symbol;
2013 } global;
2014 struct
2015 {
2016 // For a local symbol, the object defining object.
2017 Sized_relobj_file<32, big_endian>* relobj;
2018 // For a local symbol, the symbol index.
2019 unsigned int index;
2020 } local;
2021 } u_;
2022 };
2023
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2027 Layout* layout_;
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2030 };
2031
2032 // The ARM target has many relocation types with odd-sizes or noncontiguous
2033 // bits. The default handling of relocatable relocation cannot process these
2034 // relocations. So we have to extend the default code.
2035
2036 template<bool big_endian, int sh_type, typename Classify_reloc>
2037 class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039 {
2040 public:
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2045 {
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048 else
2049 {
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2052 {
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2056 }
2057
2058 switch(r_type)
2059 {
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2077 gold_unreachable();
2078 // Relocations that write full 32 bits.
2079 case elfcpp::R_ARM_ABS32:
2080 case elfcpp::R_ARM_REL32:
2081 case elfcpp::R_ARM_SBREL32:
2082 case elfcpp::R_ARM_GOTOFF32:
2083 case elfcpp::R_ARM_BASE_PREL:
2084 case elfcpp::R_ARM_GOT_BREL:
2085 case elfcpp::R_ARM_BASE_ABS:
2086 case elfcpp::R_ARM_ABS32_NOI:
2087 case elfcpp::R_ARM_REL32_NOI:
2088 case elfcpp::R_ARM_PLT32_ABS:
2089 case elfcpp::R_ARM_GOT_ABS:
2090 case elfcpp::R_ARM_GOT_PREL:
2091 case elfcpp::R_ARM_TLS_GD32:
2092 case elfcpp::R_ARM_TLS_LDM32:
2093 case elfcpp::R_ARM_TLS_LDO32:
2094 case elfcpp::R_ARM_TLS_IE32:
2095 case elfcpp::R_ARM_TLS_LE32:
2096 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2097 default:
2098 // For all other static relocations, return RELOC_SPECIAL.
2099 return Relocatable_relocs::RELOC_SPECIAL;
2100 }
2101 }
2102 }
2103 };
2104
2105 // Utilities for manipulating integers of up to 32-bits
2106
2107 namespace utils
2108 {
2109 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110 // an int32_t. NO_BITS must be between 1 to 32.
2111 template<int no_bits>
2112 static inline int32_t
2113 sign_extend(uint32_t bits)
2114 {
2115 gold_assert(no_bits >= 0 && no_bits <= 32);
2116 if (no_bits == 32)
2117 return static_cast<int32_t>(bits);
2118 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2119 bits &= mask;
2120 uint32_t top_bit = 1U << (no_bits - 1);
2121 int32_t as_signed = static_cast<int32_t>(bits);
2122 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2123 }
2124
2125 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126 template<int no_bits>
2127 static inline bool
2128 has_overflow(uint32_t bits)
2129 {
2130 gold_assert(no_bits >= 0 && no_bits <= 32);
2131 if (no_bits == 32)
2132 return false;
2133 int32_t max = (1 << (no_bits - 1)) - 1;
2134 int32_t min = -(1 << (no_bits - 1));
2135 int32_t as_signed = static_cast<int32_t>(bits);
2136 return as_signed > max || as_signed < min;
2137 }
2138
2139 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140 // fits in the given number of bits as either a signed or unsigned value.
2141 // For example, has_signed_unsigned_overflow<8> would check
2142 // -128 <= bits <= 255
2143 template<int no_bits>
2144 static inline bool
2145 has_signed_unsigned_overflow(uint32_t bits)
2146 {
2147 gold_assert(no_bits >= 2 && no_bits <= 32);
2148 if (no_bits == 32)
2149 return false;
2150 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151 int32_t min = -(1 << (no_bits - 1));
2152 int32_t as_signed = static_cast<int32_t>(bits);
2153 return as_signed > max || as_signed < min;
2154 }
2155
2156 // Select bits from A and B using bits in MASK. For each n in [0..31],
2157 // the n-th bit in the result is chosen from the n-th bits of A and B.
2158 // A zero selects A and a one selects B.
2159 static inline uint32_t
2160 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161 { return (a & ~mask) | (b & mask); }
2162 };
2163
2164 template<bool big_endian>
2165 class Target_arm : public Sized_target<32, big_endian>
2166 {
2167 public:
2168 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2169 Reloc_section;
2170
2171 // When were are relocating a stub, we pass this as the relocation number.
2172 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2173
2174 Target_arm()
2175 : Sized_target<32, big_endian>(&arm_info),
2176 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2177 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2178 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2180 should_force_pic_veneer_(false),
2181 arm_input_section_map_(), attributes_section_data_(NULL),
2182 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2183 { }
2184
2185 // Whether we force PCI branch veneers.
2186 bool
2187 should_force_pic_veneer() const
2188 { return this->should_force_pic_veneer_; }
2189
2190 // Set PIC veneer flag.
2191 void
2192 set_should_force_pic_veneer(bool value)
2193 { this->should_force_pic_veneer_ = value; }
2194
2195 // Whether we use THUMB-2 instructions.
2196 bool
2197 using_thumb2() const
2198 {
2199 Object_attribute* attr =
2200 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2201 int arch = attr->int_value();
2202 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2203 }
2204
2205 // Whether we use THUMB/THUMB-2 instructions only.
2206 bool
2207 using_thumb_only() const
2208 {
2209 Object_attribute* attr =
2210 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2211
2212 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2213 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2214 return true;
2215 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2216 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2217 return false;
2218 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2219 return attr->int_value() == 'M';
2220 }
2221
2222 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2223 bool
2224 may_use_arm_nop() const
2225 {
2226 Object_attribute* attr =
2227 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2228 int arch = attr->int_value();
2229 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2230 || arch == elfcpp::TAG_CPU_ARCH_V6K
2231 || arch == elfcpp::TAG_CPU_ARCH_V7
2232 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2233 }
2234
2235 // Whether we have THUMB-2 NOP.W instruction.
2236 bool
2237 may_use_thumb2_nop() const
2238 {
2239 Object_attribute* attr =
2240 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2241 int arch = attr->int_value();
2242 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2243 || arch == elfcpp::TAG_CPU_ARCH_V7
2244 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2245 }
2246
2247 // Whether we have v4T interworking instructions available.
2248 bool
2249 may_use_v4t_interworking() const
2250 {
2251 Object_attribute* attr =
2252 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2253 int arch = attr->int_value();
2254 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2255 && arch != elfcpp::TAG_CPU_ARCH_V4);
2256 }
2257
2258 // Whether we have v5T interworking instructions available.
2259 bool
2260 may_use_v5t_interworking() const
2261 {
2262 Object_attribute* attr =
2263 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2264 int arch = attr->int_value();
2265 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2266 && arch != elfcpp::TAG_CPU_ARCH_V4
2267 && arch != elfcpp::TAG_CPU_ARCH_V4T);
2268 }
2269
2270 // Process the relocations to determine unreferenced sections for
2271 // garbage collection.
2272 void
2273 gc_process_relocs(Symbol_table* symtab,
2274 Layout* layout,
2275 Sized_relobj_file<32, big_endian>* object,
2276 unsigned int data_shndx,
2277 unsigned int sh_type,
2278 const unsigned char* prelocs,
2279 size_t reloc_count,
2280 Output_section* output_section,
2281 bool needs_special_offset_handling,
2282 size_t local_symbol_count,
2283 const unsigned char* plocal_symbols);
2284
2285 // Scan the relocations to look for symbol adjustments.
2286 void
2287 scan_relocs(Symbol_table* symtab,
2288 Layout* layout,
2289 Sized_relobj_file<32, big_endian>* object,
2290 unsigned int data_shndx,
2291 unsigned int sh_type,
2292 const unsigned char* prelocs,
2293 size_t reloc_count,
2294 Output_section* output_section,
2295 bool needs_special_offset_handling,
2296 size_t local_symbol_count,
2297 const unsigned char* plocal_symbols);
2298
2299 // Finalize the sections.
2300 void
2301 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2302
2303 // Return the value to use for a dynamic symbol which requires special
2304 // treatment.
2305 uint64_t
2306 do_dynsym_value(const Symbol*) const;
2307
2308 // Relocate a section.
2309 void
2310 relocate_section(const Relocate_info<32, big_endian>*,
2311 unsigned int sh_type,
2312 const unsigned char* prelocs,
2313 size_t reloc_count,
2314 Output_section* output_section,
2315 bool needs_special_offset_handling,
2316 unsigned char* view,
2317 Arm_address view_address,
2318 section_size_type view_size,
2319 const Reloc_symbol_changes*);
2320
2321 // Scan the relocs during a relocatable link.
2322 void
2323 scan_relocatable_relocs(Symbol_table* symtab,
2324 Layout* layout,
2325 Sized_relobj_file<32, big_endian>* object,
2326 unsigned int data_shndx,
2327 unsigned int sh_type,
2328 const unsigned char* prelocs,
2329 size_t reloc_count,
2330 Output_section* output_section,
2331 bool needs_special_offset_handling,
2332 size_t local_symbol_count,
2333 const unsigned char* plocal_symbols,
2334 Relocatable_relocs*);
2335
2336 // Relocate a section during a relocatable link.
2337 void
2338 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2339 unsigned int sh_type,
2340 const unsigned char* prelocs,
2341 size_t reloc_count,
2342 Output_section* output_section,
2343 off_t offset_in_output_section,
2344 const Relocatable_relocs*,
2345 unsigned char* view,
2346 Arm_address view_address,
2347 section_size_type view_size,
2348 unsigned char* reloc_view,
2349 section_size_type reloc_view_size);
2350
2351 // Perform target-specific processing in a relocatable link. This is
2352 // only used if we use the relocation strategy RELOC_SPECIAL.
2353 void
2354 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2355 unsigned int sh_type,
2356 const unsigned char* preloc_in,
2357 size_t relnum,
2358 Output_section* output_section,
2359 off_t offset_in_output_section,
2360 unsigned char* view,
2361 typename elfcpp::Elf_types<32>::Elf_Addr
2362 view_address,
2363 section_size_type view_size,
2364 unsigned char* preloc_out);
2365
2366 // Return whether SYM is defined by the ABI.
2367 bool
2368 do_is_defined_by_abi(Symbol* sym) const
2369 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2370
2371 // Return whether there is a GOT section.
2372 bool
2373 has_got_section() const
2374 { return this->got_ != NULL; }
2375
2376 // Return the size of the GOT section.
2377 section_size_type
2378 got_size() const
2379 {
2380 gold_assert(this->got_ != NULL);
2381 return this->got_->data_size();
2382 }
2383
2384 // Return the number of entries in the GOT.
2385 unsigned int
2386 got_entry_count() const
2387 {
2388 if (!this->has_got_section())
2389 return 0;
2390 return this->got_size() / 4;
2391 }
2392
2393 // Return the number of entries in the PLT.
2394 unsigned int
2395 plt_entry_count() const;
2396
2397 // Return the offset of the first non-reserved PLT entry.
2398 unsigned int
2399 first_plt_entry_offset() const;
2400
2401 // Return the size of each PLT entry.
2402 unsigned int
2403 plt_entry_size() const;
2404
2405 // Map platform-specific reloc types
2406 static unsigned int
2407 get_real_reloc_type(unsigned int r_type);
2408
2409 //
2410 // Methods to support stub-generations.
2411 //
2412
2413 // Return the stub factory
2414 const Stub_factory&
2415 stub_factory() const
2416 { return this->stub_factory_; }
2417
2418 // Make a new Arm_input_section object.
2419 Arm_input_section<big_endian>*
2420 new_arm_input_section(Relobj*, unsigned int);
2421
2422 // Find the Arm_input_section object corresponding to the SHNDX-th input
2423 // section of RELOBJ.
2424 Arm_input_section<big_endian>*
2425 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2426
2427 // Make a new Stub_table
2428 Stub_table<big_endian>*
2429 new_stub_table(Arm_input_section<big_endian>*);
2430
2431 // Scan a section for stub generation.
2432 void
2433 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2434 const unsigned char*, size_t, Output_section*,
2435 bool, const unsigned char*, Arm_address,
2436 section_size_type);
2437
2438 // Relocate a stub.
2439 void
2440 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2441 Output_section*, unsigned char*, Arm_address,
2442 section_size_type);
2443
2444 // Get the default ARM target.
2445 static Target_arm<big_endian>*
2446 default_target()
2447 {
2448 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2449 && parameters->target().is_big_endian() == big_endian);
2450 return static_cast<Target_arm<big_endian>*>(
2451 parameters->sized_target<32, big_endian>());
2452 }
2453
2454 // Whether NAME belongs to a mapping symbol.
2455 static bool
2456 is_mapping_symbol_name(const char* name)
2457 {
2458 return (name
2459 && name[0] == '$'
2460 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2461 && (name[2] == '\0' || name[2] == '.'));
2462 }
2463
2464 // Whether we work around the Cortex-A8 erratum.
2465 bool
2466 fix_cortex_a8() const
2467 { return this->fix_cortex_a8_; }
2468
2469 // Whether we merge exidx entries in debuginfo.
2470 bool
2471 merge_exidx_entries() const
2472 { return parameters->options().merge_exidx_entries(); }
2473
2474 // Whether we fix R_ARM_V4BX relocation.
2475 // 0 - do not fix
2476 // 1 - replace with MOV instruction (armv4 target)
2477 // 2 - make interworking veneer (>= armv4t targets only)
2478 General_options::Fix_v4bx
2479 fix_v4bx() const
2480 { return parameters->options().fix_v4bx(); }
2481
2482 // Scan a span of THUMB code section for Cortex-A8 erratum.
2483 void
2484 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2485 section_size_type, section_size_type,
2486 const unsigned char*, Arm_address);
2487
2488 // Apply Cortex-A8 workaround to a branch.
2489 void
2490 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2491 unsigned char*, Arm_address);
2492
2493 protected:
2494 // Make an ELF object.
2495 Object*
2496 do_make_elf_object(const std::string&, Input_file*, off_t,
2497 const elfcpp::Ehdr<32, big_endian>& ehdr);
2498
2499 Object*
2500 do_make_elf_object(const std::string&, Input_file*, off_t,
2501 const elfcpp::Ehdr<32, !big_endian>&)
2502 { gold_unreachable(); }
2503
2504 Object*
2505 do_make_elf_object(const std::string&, Input_file*, off_t,
2506 const elfcpp::Ehdr<64, false>&)
2507 { gold_unreachable(); }
2508
2509 Object*
2510 do_make_elf_object(const std::string&, Input_file*, off_t,
2511 const elfcpp::Ehdr<64, true>&)
2512 { gold_unreachable(); }
2513
2514 // Make an output section.
2515 Output_section*
2516 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2517 elfcpp::Elf_Xword flags)
2518 { return new Arm_output_section<big_endian>(name, type, flags); }
2519
2520 void
2521 do_adjust_elf_header(unsigned char* view, int len) const;
2522
2523 // We only need to generate stubs, and hence perform relaxation if we are
2524 // not doing relocatable linking.
2525 bool
2526 do_may_relax() const
2527 { return !parameters->options().relocatable(); }
2528
2529 bool
2530 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2531
2532 // Determine whether an object attribute tag takes an integer, a
2533 // string or both.
2534 int
2535 do_attribute_arg_type(int tag) const;
2536
2537 // Reorder tags during output.
2538 int
2539 do_attributes_order(int num) const;
2540
2541 // This is called when the target is selected as the default.
2542 void
2543 do_select_as_default_target()
2544 {
2545 // No locking is required since there should only be one default target.
2546 // We cannot have both the big-endian and little-endian ARM targets
2547 // as the default.
2548 gold_assert(arm_reloc_property_table == NULL);
2549 arm_reloc_property_table = new Arm_reloc_property_table();
2550 }
2551
2552 // Virtual function which is set to return true by a target if
2553 // it can use relocation types to determine if a function's
2554 // pointer is taken.
2555 virtual bool
2556 do_can_check_for_function_pointers() const
2557 { return true; }
2558
2559 // Whether a section called SECTION_NAME may have function pointers to
2560 // sections not eligible for safe ICF folding.
2561 virtual bool
2562 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2563 {
2564 return (!is_prefix_of(".ARM.exidx", section_name)
2565 && !is_prefix_of(".ARM.extab", section_name)
2566 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2567 }
2568
2569 private:
2570 // The class which scans relocations.
2571 class Scan
2572 {
2573 public:
2574 Scan()
2575 : issued_non_pic_error_(false)
2576 { }
2577
2578 static inline int
2579 get_reference_flags(unsigned int r_type);
2580
2581 inline void
2582 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2583 Sized_relobj_file<32, big_endian>* object,
2584 unsigned int data_shndx,
2585 Output_section* output_section,
2586 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2587 const elfcpp::Sym<32, big_endian>& lsym);
2588
2589 inline void
2590 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2591 Sized_relobj_file<32, big_endian>* object,
2592 unsigned int data_shndx,
2593 Output_section* output_section,
2594 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2595 Symbol* gsym);
2596
2597 inline bool
2598 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2599 Sized_relobj_file<32, big_endian>* ,
2600 unsigned int ,
2601 Output_section* ,
2602 const elfcpp::Rel<32, big_endian>& ,
2603 unsigned int ,
2604 const elfcpp::Sym<32, big_endian>&);
2605
2606 inline bool
2607 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2608 Sized_relobj_file<32, big_endian>* ,
2609 unsigned int ,
2610 Output_section* ,
2611 const elfcpp::Rel<32, big_endian>& ,
2612 unsigned int , Symbol*);
2613
2614 private:
2615 static void
2616 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2617 unsigned int r_type);
2618
2619 static void
2620 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2621 unsigned int r_type, Symbol*);
2622
2623 void
2624 check_non_pic(Relobj*, unsigned int r_type);
2625
2626 // Almost identical to Symbol::needs_plt_entry except that it also
2627 // handles STT_ARM_TFUNC.
2628 static bool
2629 symbol_needs_plt_entry(const Symbol* sym)
2630 {
2631 // An undefined symbol from an executable does not need a PLT entry.
2632 if (sym->is_undefined() && !parameters->options().shared())
2633 return false;
2634
2635 return (!parameters->doing_static_link()
2636 && (sym->type() == elfcpp::STT_FUNC
2637 || sym->type() == elfcpp::STT_ARM_TFUNC)
2638 && (sym->is_from_dynobj()
2639 || sym->is_undefined()
2640 || sym->is_preemptible()));
2641 }
2642
2643 inline bool
2644 possible_function_pointer_reloc(unsigned int r_type);
2645
2646 // Whether we have issued an error about a non-PIC compilation.
2647 bool issued_non_pic_error_;
2648 };
2649
2650 // The class which implements relocation.
2651 class Relocate
2652 {
2653 public:
2654 Relocate()
2655 { }
2656
2657 ~Relocate()
2658 { }
2659
2660 // Return whether the static relocation needs to be applied.
2661 inline bool
2662 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2663 unsigned int r_type,
2664 bool is_32bit,
2665 Output_section* output_section);
2666
2667 // Do a relocation. Return false if the caller should not issue
2668 // any warnings about this relocation.
2669 inline bool
2670 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2671 Output_section*, size_t relnum,
2672 const elfcpp::Rel<32, big_endian>&,
2673 unsigned int r_type, const Sized_symbol<32>*,
2674 const Symbol_value<32>*,
2675 unsigned char*, Arm_address,
2676 section_size_type);
2677
2678 // Return whether we want to pass flag NON_PIC_REF for this
2679 // reloc. This means the relocation type accesses a symbol not via
2680 // GOT or PLT.
2681 static inline bool
2682 reloc_is_non_pic(unsigned int r_type)
2683 {
2684 switch (r_type)
2685 {
2686 // These relocation types reference GOT or PLT entries explicitly.
2687 case elfcpp::R_ARM_GOT_BREL:
2688 case elfcpp::R_ARM_GOT_ABS:
2689 case elfcpp::R_ARM_GOT_PREL:
2690 case elfcpp::R_ARM_GOT_BREL12:
2691 case elfcpp::R_ARM_PLT32_ABS:
2692 case elfcpp::R_ARM_TLS_GD32:
2693 case elfcpp::R_ARM_TLS_LDM32:
2694 case elfcpp::R_ARM_TLS_IE32:
2695 case elfcpp::R_ARM_TLS_IE12GP:
2696
2697 // These relocate types may use PLT entries.
2698 case elfcpp::R_ARM_CALL:
2699 case elfcpp::R_ARM_THM_CALL:
2700 case elfcpp::R_ARM_JUMP24:
2701 case elfcpp::R_ARM_THM_JUMP24:
2702 case elfcpp::R_ARM_THM_JUMP19:
2703 case elfcpp::R_ARM_PLT32:
2704 case elfcpp::R_ARM_THM_XPC22:
2705 case elfcpp::R_ARM_PREL31:
2706 case elfcpp::R_ARM_SBREL31:
2707 return false;
2708
2709 default:
2710 return true;
2711 }
2712 }
2713
2714 private:
2715 // Do a TLS relocation.
2716 inline typename Arm_relocate_functions<big_endian>::Status
2717 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2718 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2719 const Sized_symbol<32>*, const Symbol_value<32>*,
2720 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2721 section_size_type);
2722
2723 };
2724
2725 // A class which returns the size required for a relocation type,
2726 // used while scanning relocs during a relocatable link.
2727 class Relocatable_size_for_reloc
2728 {
2729 public:
2730 unsigned int
2731 get_size_for_reloc(unsigned int, Relobj*);
2732 };
2733
2734 // Adjust TLS relocation type based on the options and whether this
2735 // is a local symbol.
2736 static tls::Tls_optimization
2737 optimize_tls_reloc(bool is_final, int r_type);
2738
2739 // Get the GOT section, creating it if necessary.
2740 Arm_output_data_got<big_endian>*
2741 got_section(Symbol_table*, Layout*);
2742
2743 // Get the GOT PLT section.
2744 Output_data_space*
2745 got_plt_section() const
2746 {
2747 gold_assert(this->got_plt_ != NULL);
2748 return this->got_plt_;
2749 }
2750
2751 // Create a PLT entry for a global symbol.
2752 void
2753 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2754
2755 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2756 void
2757 define_tls_base_symbol(Symbol_table*, Layout*);
2758
2759 // Create a GOT entry for the TLS module index.
2760 unsigned int
2761 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2762 Sized_relobj_file<32, big_endian>* object);
2763
2764 // Get the PLT section.
2765 const Output_data_plt_arm<big_endian>*
2766 plt_section() const
2767 {
2768 gold_assert(this->plt_ != NULL);
2769 return this->plt_;
2770 }
2771
2772 // Get the dynamic reloc section, creating it if necessary.
2773 Reloc_section*
2774 rel_dyn_section(Layout*);
2775
2776 // Get the section to use for TLS_DESC relocations.
2777 Reloc_section*
2778 rel_tls_desc_section(Layout*) const;
2779
2780 // Return true if the symbol may need a COPY relocation.
2781 // References from an executable object to non-function symbols
2782 // defined in a dynamic object may need a COPY relocation.
2783 bool
2784 may_need_copy_reloc(Symbol* gsym)
2785 {
2786 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2787 && gsym->may_need_copy_reloc());
2788 }
2789
2790 // Add a potential copy relocation.
2791 void
2792 copy_reloc(Symbol_table* symtab, Layout* layout,
2793 Sized_relobj_file<32, big_endian>* object,
2794 unsigned int shndx, Output_section* output_section,
2795 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2796 {
2797 this->copy_relocs_.copy_reloc(symtab, layout,
2798 symtab->get_sized_symbol<32>(sym),
2799 object, shndx, output_section, reloc,
2800 this->rel_dyn_section(layout));
2801 }
2802
2803 // Whether two EABI versions are compatible.
2804 static bool
2805 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2806
2807 // Merge processor-specific flags from input object and those in the ELF
2808 // header of the output.
2809 void
2810 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2811
2812 // Get the secondary compatible architecture.
2813 static int
2814 get_secondary_compatible_arch(const Attributes_section_data*);
2815
2816 // Set the secondary compatible architecture.
2817 static void
2818 set_secondary_compatible_arch(Attributes_section_data*, int);
2819
2820 static int
2821 tag_cpu_arch_combine(const char*, int, int*, int, int);
2822
2823 // Helper to print AEABI enum tag value.
2824 static std::string
2825 aeabi_enum_name(unsigned int);
2826
2827 // Return string value for TAG_CPU_name.
2828 static std::string
2829 tag_cpu_name_value(unsigned int);
2830
2831 // Merge object attributes from input object and those in the output.
2832 void
2833 merge_object_attributes(const char*, const Attributes_section_data*);
2834
2835 // Helper to get an AEABI object attribute
2836 Object_attribute*
2837 get_aeabi_object_attribute(int tag) const
2838 {
2839 Attributes_section_data* pasd = this->attributes_section_data_;
2840 gold_assert(pasd != NULL);
2841 Object_attribute* attr =
2842 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2843 gold_assert(attr != NULL);
2844 return attr;
2845 }
2846
2847 //
2848 // Methods to support stub-generations.
2849 //
2850
2851 // Group input sections for stub generation.
2852 void
2853 group_sections(Layout*, section_size_type, bool, const Task*);
2854
2855 // Scan a relocation for stub generation.
2856 void
2857 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2858 const Sized_symbol<32>*, unsigned int,
2859 const Symbol_value<32>*,
2860 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2861
2862 // Scan a relocation section for stub.
2863 template<int sh_type>
2864 void
2865 scan_reloc_section_for_stubs(
2866 const Relocate_info<32, big_endian>* relinfo,
2867 const unsigned char* prelocs,
2868 size_t reloc_count,
2869 Output_section* output_section,
2870 bool needs_special_offset_handling,
2871 const unsigned char* view,
2872 elfcpp::Elf_types<32>::Elf_Addr view_address,
2873 section_size_type);
2874
2875 // Fix .ARM.exidx section coverage.
2876 void
2877 fix_exidx_coverage(Layout*, const Input_objects*,
2878 Arm_output_section<big_endian>*, Symbol_table*,
2879 const Task*);
2880
2881 // Functors for STL set.
2882 struct output_section_address_less_than
2883 {
2884 bool
2885 operator()(const Output_section* s1, const Output_section* s2) const
2886 { return s1->address() < s2->address(); }
2887 };
2888
2889 // Information about this specific target which we pass to the
2890 // general Target structure.
2891 static const Target::Target_info arm_info;
2892
2893 // The types of GOT entries needed for this platform.
2894 // These values are exposed to the ABI in an incremental link.
2895 // Do not renumber existing values without changing the version
2896 // number of the .gnu_incremental_inputs section.
2897 enum Got_type
2898 {
2899 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2900 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2901 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2902 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2903 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2904 };
2905
2906 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2907
2908 // Map input section to Arm_input_section.
2909 typedef Unordered_map<Section_id,
2910 Arm_input_section<big_endian>*,
2911 Section_id_hash>
2912 Arm_input_section_map;
2913
2914 // Map output addresses to relocs for Cortex-A8 erratum.
2915 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2916 Cortex_a8_relocs_info;
2917
2918 // The GOT section.
2919 Arm_output_data_got<big_endian>* got_;
2920 // The PLT section.
2921 Output_data_plt_arm<big_endian>* plt_;
2922 // The GOT PLT section.
2923 Output_data_space* got_plt_;
2924 // The dynamic reloc section.
2925 Reloc_section* rel_dyn_;
2926 // Relocs saved to avoid a COPY reloc.
2927 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2928 // Space for variables copied with a COPY reloc.
2929 Output_data_space* dynbss_;
2930 // Offset of the GOT entry for the TLS module index.
2931 unsigned int got_mod_index_offset_;
2932 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2933 bool tls_base_symbol_defined_;
2934 // Vector of Stub_tables created.
2935 Stub_table_list stub_tables_;
2936 // Stub factory.
2937 const Stub_factory &stub_factory_;
2938 // Whether we force PIC branch veneers.
2939 bool should_force_pic_veneer_;
2940 // Map for locating Arm_input_sections.
2941 Arm_input_section_map arm_input_section_map_;
2942 // Attributes section data in output.
2943 Attributes_section_data* attributes_section_data_;
2944 // Whether we want to fix code for Cortex-A8 erratum.
2945 bool fix_cortex_a8_;
2946 // Map addresses to relocs for Cortex-A8 erratum.
2947 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2948 };
2949
2950 template<bool big_endian>
2951 const Target::Target_info Target_arm<big_endian>::arm_info =
2952 {
2953 32, // size
2954 big_endian, // is_big_endian
2955 elfcpp::EM_ARM, // machine_code
2956 false, // has_make_symbol
2957 false, // has_resolve
2958 false, // has_code_fill
2959 true, // is_default_stack_executable
2960 false, // can_icf_inline_merge_sections
2961 '\0', // wrap_char
2962 "/usr/lib/libc.so.1", // dynamic_linker
2963 0x8000, // default_text_segment_address
2964 0x1000, // abi_pagesize (overridable by -z max-page-size)
2965 0x1000, // common_pagesize (overridable by -z common-page-size)
2966 elfcpp::SHN_UNDEF, // small_common_shndx
2967 elfcpp::SHN_UNDEF, // large_common_shndx
2968 0, // small_common_section_flags
2969 0, // large_common_section_flags
2970 ".ARM.attributes", // attributes_section
2971 "aeabi" // attributes_vendor
2972 };
2973
2974 // Arm relocate functions class
2975 //
2976
2977 template<bool big_endian>
2978 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2979 {
2980 public:
2981 typedef enum
2982 {
2983 STATUS_OKAY, // No error during relocation.
2984 STATUS_OVERFLOW, // Relocation overflow.
2985 STATUS_BAD_RELOC // Relocation cannot be applied.
2986 } Status;
2987
2988 private:
2989 typedef Relocate_functions<32, big_endian> Base;
2990 typedef Arm_relocate_functions<big_endian> This;
2991
2992 // Encoding of imm16 argument for movt and movw ARM instructions
2993 // from ARM ARM:
2994 //
2995 // imm16 := imm4 | imm12
2996 //
2997 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2998 // +-------+---------------+-------+-------+-----------------------+
2999 // | | |imm4 | |imm12 |
3000 // +-------+---------------+-------+-------+-----------------------+
3001
3002 // Extract the relocation addend from VAL based on the ARM
3003 // instruction encoding described above.
3004 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3005 extract_arm_movw_movt_addend(
3006 typename elfcpp::Swap<32, big_endian>::Valtype val)
3007 {
3008 // According to the Elf ABI for ARM Architecture the immediate
3009 // field is sign-extended to form the addend.
3010 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
3011 }
3012
3013 // Insert X into VAL based on the ARM instruction encoding described
3014 // above.
3015 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3016 insert_val_arm_movw_movt(
3017 typename elfcpp::Swap<32, big_endian>::Valtype val,
3018 typename elfcpp::Swap<32, big_endian>::Valtype x)
3019 {
3020 val &= 0xfff0f000;
3021 val |= x & 0x0fff;
3022 val |= (x & 0xf000) << 4;
3023 return val;
3024 }
3025
3026 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3027 // from ARM ARM:
3028 //
3029 // imm16 := imm4 | i | imm3 | imm8
3030 //
3031 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3032 // +---------+-+-----------+-------++-+-----+-------+---------------+
3033 // | |i| |imm4 || |imm3 | |imm8 |
3034 // +---------+-+-----------+-------++-+-----+-------+---------------+
3035
3036 // Extract the relocation addend from VAL based on the Thumb2
3037 // instruction encoding described above.
3038 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3039 extract_thumb_movw_movt_addend(
3040 typename elfcpp::Swap<32, big_endian>::Valtype val)
3041 {
3042 // According to the Elf ABI for ARM Architecture the immediate
3043 // field is sign-extended to form the addend.
3044 return utils::sign_extend<16>(((val >> 4) & 0xf000)
3045 | ((val >> 15) & 0x0800)
3046 | ((val >> 4) & 0x0700)
3047 | (val & 0x00ff));
3048 }
3049
3050 // Insert X into VAL based on the Thumb2 instruction encoding
3051 // described above.
3052 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3053 insert_val_thumb_movw_movt(
3054 typename elfcpp::Swap<32, big_endian>::Valtype val,
3055 typename elfcpp::Swap<32, big_endian>::Valtype x)
3056 {
3057 val &= 0xfbf08f00;
3058 val |= (x & 0xf000) << 4;
3059 val |= (x & 0x0800) << 15;
3060 val |= (x & 0x0700) << 4;
3061 val |= (x & 0x00ff);
3062 return val;
3063 }
3064
3065 // Calculate the smallest constant Kn for the specified residual.
3066 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3067 static uint32_t
3068 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3069 {
3070 int32_t msb;
3071
3072 if (residual == 0)
3073 return 0;
3074 // Determine the most significant bit in the residual and
3075 // align the resulting value to a 2-bit boundary.
3076 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3077 ;
3078 // The desired shift is now (msb - 6), or zero, whichever
3079 // is the greater.
3080 return (((msb - 6) < 0) ? 0 : (msb - 6));
3081 }
3082
3083 // Calculate the final residual for the specified group index.
3084 // If the passed group index is less than zero, the method will return
3085 // the value of the specified residual without any change.
3086 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3087 static typename elfcpp::Swap<32, big_endian>::Valtype
3088 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3089 const int group)
3090 {
3091 for (int n = 0; n <= group; n++)
3092 {
3093 // Calculate which part of the value to mask.
3094 uint32_t shift = calc_grp_kn(residual);
3095 // Calculate the residual for the next time around.
3096 residual &= ~(residual & (0xff << shift));
3097 }
3098
3099 return residual;
3100 }
3101
3102 // Calculate the value of Gn for the specified group index.
3103 // We return it in the form of an encoded constant-and-rotation.
3104 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3105 static typename elfcpp::Swap<32, big_endian>::Valtype
3106 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3107 const int group)
3108 {
3109 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3110 uint32_t shift = 0;
3111
3112 for (int n = 0; n <= group; n++)
3113 {
3114 // Calculate which part of the value to mask.
3115 shift = calc_grp_kn(residual);
3116 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3117 gn = residual & (0xff << shift);
3118 // Calculate the residual for the next time around.
3119 residual &= ~gn;
3120 }
3121 // Return Gn in the form of an encoded constant-and-rotation.
3122 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3123 }
3124
3125 public:
3126 // Handle ARM long branches.
3127 static typename This::Status
3128 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3129 unsigned char*, const Sized_symbol<32>*,
3130 const Arm_relobj<big_endian>*, unsigned int,
3131 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3132
3133 // Handle THUMB long branches.
3134 static typename This::Status
3135 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3136 unsigned char*, const Sized_symbol<32>*,
3137 const Arm_relobj<big_endian>*, unsigned int,
3138 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3139
3140
3141 // Return the branch offset of a 32-bit THUMB branch.
3142 static inline int32_t
3143 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3144 {
3145 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3146 // involving the J1 and J2 bits.
3147 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3148 uint32_t upper = upper_insn & 0x3ffU;
3149 uint32_t lower = lower_insn & 0x7ffU;
3150 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3151 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3152 uint32_t i1 = j1 ^ s ? 0 : 1;
3153 uint32_t i2 = j2 ^ s ? 0 : 1;
3154
3155 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3156 | (upper << 12) | (lower << 1));
3157 }
3158
3159 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3160 // UPPER_INSN is the original upper instruction of the branch. Caller is
3161 // responsible for overflow checking and BLX offset adjustment.
3162 static inline uint16_t
3163 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3164 {
3165 uint32_t s = offset < 0 ? 1 : 0;
3166 uint32_t bits = static_cast<uint32_t>(offset);
3167 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3168 }
3169
3170 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3171 // LOWER_INSN is the original lower instruction of the branch. Caller is
3172 // responsible for overflow checking and BLX offset adjustment.
3173 static inline uint16_t
3174 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3175 {
3176 uint32_t s = offset < 0 ? 1 : 0;
3177 uint32_t bits = static_cast<uint32_t>(offset);
3178 return ((lower_insn & ~0x2fffU)
3179 | ((((bits >> 23) & 1) ^ !s) << 13)
3180 | ((((bits >> 22) & 1) ^ !s) << 11)
3181 | ((bits >> 1) & 0x7ffU));
3182 }
3183
3184 // Return the branch offset of a 32-bit THUMB conditional branch.
3185 static inline int32_t
3186 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3187 {
3188 uint32_t s = (upper_insn & 0x0400U) >> 10;
3189 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3190 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3191 uint32_t lower = (lower_insn & 0x07ffU);
3192 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3193
3194 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3195 }
3196
3197 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3198 // instruction. UPPER_INSN is the original upper instruction of the branch.
3199 // Caller is responsible for overflow checking.
3200 static inline uint16_t
3201 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3202 {
3203 uint32_t s = offset < 0 ? 1 : 0;
3204 uint32_t bits = static_cast<uint32_t>(offset);
3205 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3206 }
3207
3208 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3209 // instruction. LOWER_INSN is the original lower instruction of the branch.
3210 // The caller is responsible for overflow checking.
3211 static inline uint16_t
3212 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3213 {
3214 uint32_t bits = static_cast<uint32_t>(offset);
3215 uint32_t j2 = (bits & 0x00080000U) >> 19;
3216 uint32_t j1 = (bits & 0x00040000U) >> 18;
3217 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3218
3219 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3220 }
3221
3222 // R_ARM_ABS8: S + A
3223 static inline typename This::Status
3224 abs8(unsigned char* view,
3225 const Sized_relobj_file<32, big_endian>* object,
3226 const Symbol_value<32>* psymval)
3227 {
3228 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3229 Valtype* wv = reinterpret_cast<Valtype*>(view);
3230 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3231 int32_t addend = utils::sign_extend<8>(val);
3232 Arm_address x = psymval->value(object, addend);
3233 val = utils::bit_select(val, x, 0xffU);
3234 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3235
3236 // R_ARM_ABS8 permits signed or unsigned results.
3237 int signed_x = static_cast<int32_t>(x);
3238 return ((signed_x < -128 || signed_x > 255)
3239 ? This::STATUS_OVERFLOW
3240 : This::STATUS_OKAY);
3241 }
3242
3243 // R_ARM_THM_ABS5: S + A
3244 static inline typename This::Status
3245 thm_abs5(unsigned char* view,
3246 const Sized_relobj_file<32, big_endian>* object,
3247 const Symbol_value<32>* psymval)
3248 {
3249 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3250 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3251 Valtype* wv = reinterpret_cast<Valtype*>(view);
3252 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3253 Reltype addend = (val & 0x7e0U) >> 6;
3254 Reltype x = psymval->value(object, addend);
3255 val = utils::bit_select(val, x << 6, 0x7e0U);
3256 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3257
3258 // R_ARM_ABS16 permits signed or unsigned results.
3259 int signed_x = static_cast<int32_t>(x);
3260 return ((signed_x < -32768 || signed_x > 65535)
3261 ? This::STATUS_OVERFLOW
3262 : This::STATUS_OKAY);
3263 }
3264
3265 // R_ARM_ABS12: S + A
3266 static inline typename This::Status
3267 abs12(unsigned char* view,
3268 const Sized_relobj_file<32, big_endian>* object,
3269 const Symbol_value<32>* psymval)
3270 {
3271 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3272 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3273 Valtype* wv = reinterpret_cast<Valtype*>(view);
3274 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3275 Reltype addend = val & 0x0fffU;
3276 Reltype x = psymval->value(object, addend);
3277 val = utils::bit_select(val, x, 0x0fffU);
3278 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3279 return (utils::has_overflow<12>(x)
3280 ? This::STATUS_OVERFLOW
3281 : This::STATUS_OKAY);
3282 }
3283
3284 // R_ARM_ABS16: S + A
3285 static inline typename This::Status
3286 abs16(unsigned char* view,
3287 const Sized_relobj_file<32, big_endian>* object,
3288 const Symbol_value<32>* psymval)
3289 {
3290 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
3291 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3292 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3293 int32_t addend = utils::sign_extend<16>(val);
3294 Arm_address x = psymval->value(object, addend);
3295 val = utils::bit_select(val, x, 0xffffU);
3296 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3297
3298 // R_ARM_ABS16 permits signed or unsigned results.
3299 int signed_x = static_cast<int32_t>(x);
3300 return ((signed_x < -32768 || signed_x > 65536)
3301 ? This::STATUS_OVERFLOW
3302 : This::STATUS_OKAY);
3303 }
3304
3305 // R_ARM_ABS32: (S + A) | T
3306 static inline typename This::Status
3307 abs32(unsigned char* view,
3308 const Sized_relobj_file<32, big_endian>* object,
3309 const Symbol_value<32>* psymval,
3310 Arm_address thumb_bit)
3311 {
3312 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3313 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3314 Valtype x = psymval->value(object, addend) | thumb_bit;
3315 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3316 return This::STATUS_OKAY;
3317 }
3318
3319 // R_ARM_REL32: (S + A) | T - P
3320 static inline typename This::Status
3321 rel32(unsigned char* view,
3322 const Sized_relobj_file<32, big_endian>* object,
3323 const Symbol_value<32>* psymval,
3324 Arm_address address,
3325 Arm_address thumb_bit)
3326 {
3327 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3328 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3329 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3330 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
3331 return This::STATUS_OKAY;
3332 }
3333
3334 // R_ARM_THM_JUMP24: (S + A) | T - P
3335 static typename This::Status
3336 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3337 const Symbol_value<32>* psymval, Arm_address address,
3338 Arm_address thumb_bit);
3339
3340 // R_ARM_THM_JUMP6: S + A – P
3341 static inline typename This::Status
3342 thm_jump6(unsigned char* view,
3343 const Sized_relobj_file<32, big_endian>* object,
3344 const Symbol_value<32>* psymval,
3345 Arm_address address)
3346 {
3347 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3348 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3349 Valtype* wv = reinterpret_cast<Valtype*>(view);
3350 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3351 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3352 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3353 Reltype x = (psymval->value(object, addend) - address);
3354 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3355 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3356 // CZB does only forward jumps.
3357 return ((x > 0x007e)
3358 ? This::STATUS_OVERFLOW
3359 : This::STATUS_OKAY);
3360 }
3361
3362 // R_ARM_THM_JUMP8: S + A – P
3363 static inline typename This::Status
3364 thm_jump8(unsigned char* view,
3365 const Sized_relobj_file<32, big_endian>* object,
3366 const Symbol_value<32>* psymval,
3367 Arm_address address)
3368 {
3369 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3370 Valtype* wv = reinterpret_cast<Valtype*>(view);
3371 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3372 int32_t addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3373 int32_t x = (psymval->value(object, addend) - address);
3374 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3375 | ((x & 0x01fe) >> 1)));
3376 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3377 return (utils::has_overflow<9>(x)
3378 ? This::STATUS_OVERFLOW
3379 : This::STATUS_OKAY);
3380 }
3381
3382 // R_ARM_THM_JUMP11: S + A – P
3383 static inline typename This::Status
3384 thm_jump11(unsigned char* view,
3385 const Sized_relobj_file<32, big_endian>* object,
3386 const Symbol_value<32>* psymval,
3387 Arm_address address)
3388 {
3389 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3390 Valtype* wv = reinterpret_cast<Valtype*>(view);
3391 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3392 int32_t addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3393 int32_t x = (psymval->value(object, addend) - address);
3394 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3395 | ((x & 0x0ffe) >> 1)));
3396 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3397 return (utils::has_overflow<12>(x)
3398 ? This::STATUS_OVERFLOW
3399 : This::STATUS_OKAY);
3400 }
3401
3402 // R_ARM_BASE_PREL: B(S) + A - P
3403 static inline typename This::Status
3404 base_prel(unsigned char* view,
3405 Arm_address origin,
3406 Arm_address address)
3407 {
3408 Base::rel32(view, origin - address);
3409 return STATUS_OKAY;
3410 }
3411
3412 // R_ARM_BASE_ABS: B(S) + A
3413 static inline typename This::Status
3414 base_abs(unsigned char* view,
3415 Arm_address origin)
3416 {
3417 Base::rel32(view, origin);
3418 return STATUS_OKAY;
3419 }
3420
3421 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3422 static inline typename This::Status
3423 got_brel(unsigned char* view,
3424 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3425 {
3426 Base::rel32(view, got_offset);
3427 return This::STATUS_OKAY;
3428 }
3429
3430 // R_ARM_GOT_PREL: GOT(S) + A - P
3431 static inline typename This::Status
3432 got_prel(unsigned char* view,
3433 Arm_address got_entry,
3434 Arm_address address)
3435 {
3436 Base::rel32(view, got_entry - address);
3437 return This::STATUS_OKAY;
3438 }
3439
3440 // R_ARM_PREL: (S + A) | T - P
3441 static inline typename This::Status
3442 prel31(unsigned char* view,
3443 const Sized_relobj_file<32, big_endian>* object,
3444 const Symbol_value<32>* psymval,
3445 Arm_address address,
3446 Arm_address thumb_bit)
3447 {
3448 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3449 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
3450 Valtype addend = utils::sign_extend<31>(val);
3451 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3452 val = utils::bit_select(val, x, 0x7fffffffU);
3453 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
3454 return (utils::has_overflow<31>(x) ?
3455 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3456 }
3457
3458 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3459 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3460 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3461 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3462 static inline typename This::Status
3463 movw(unsigned char* view,
3464 const Sized_relobj_file<32, big_endian>* object,
3465 const Symbol_value<32>* psymval,
3466 Arm_address relative_address_base,
3467 Arm_address thumb_bit,
3468 bool check_overflow)
3469 {
3470 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3471 Valtype* wv = reinterpret_cast<Valtype*>(view);
3472 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3473 Valtype addend = This::extract_arm_movw_movt_addend(val);
3474 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3475 - relative_address_base);
3476 val = This::insert_val_arm_movw_movt(val, x);
3477 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3478 return ((check_overflow && utils::has_overflow<16>(x))
3479 ? This::STATUS_OVERFLOW
3480 : This::STATUS_OKAY);
3481 }
3482
3483 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3484 // R_ARM_MOVT_PREL: S + A - P
3485 // R_ARM_MOVT_BREL: S + A - B(S)
3486 static inline typename This::Status
3487 movt(unsigned char* view,
3488 const Sized_relobj_file<32, big_endian>* object,
3489 const Symbol_value<32>* psymval,
3490 Arm_address relative_address_base)
3491 {
3492 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3493 Valtype* wv = reinterpret_cast<Valtype*>(view);
3494 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3495 Valtype addend = This::extract_arm_movw_movt_addend(val);
3496 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3497 val = This::insert_val_arm_movw_movt(val, x);
3498 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3499 // FIXME: IHI0044D says that we should check for overflow.
3500 return This::STATUS_OKAY;
3501 }
3502
3503 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3504 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3505 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3506 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3507 static inline typename This::Status
3508 thm_movw(unsigned char* view,
3509 const Sized_relobj_file<32, big_endian>* object,
3510 const Symbol_value<32>* psymval,
3511 Arm_address relative_address_base,
3512 Arm_address thumb_bit,
3513 bool check_overflow)
3514 {
3515 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3516 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3517 Valtype* wv = reinterpret_cast<Valtype*>(view);
3518 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3519 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3520 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3521 Reltype x =
3522 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3523 val = This::insert_val_thumb_movw_movt(val, x);
3524 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3525 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3526 return ((check_overflow && utils::has_overflow<16>(x))
3527 ? This::STATUS_OVERFLOW
3528 : This::STATUS_OKAY);
3529 }
3530
3531 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3532 // R_ARM_THM_MOVT_PREL: S + A - P
3533 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3534 static inline typename This::Status
3535 thm_movt(unsigned char* view,
3536 const Sized_relobj_file<32, big_endian>* object,
3537 const Symbol_value<32>* psymval,
3538 Arm_address relative_address_base)
3539 {
3540 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3541 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3542 Valtype* wv = reinterpret_cast<Valtype*>(view);
3543 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3544 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3545 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3546 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3547 val = This::insert_val_thumb_movw_movt(val, x);
3548 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3549 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3550 return This::STATUS_OKAY;
3551 }
3552
3553 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3554 static inline typename This::Status
3555 thm_alu11(unsigned char* view,
3556 const Sized_relobj_file<32, big_endian>* object,
3557 const Symbol_value<32>* psymval,
3558 Arm_address address,
3559 Arm_address thumb_bit)
3560 {
3561 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3562 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3563 Valtype* wv = reinterpret_cast<Valtype*>(view);
3564 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3565 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3566
3567 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3568 // -----------------------------------------------------------------------
3569 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3570 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3571 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3572 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3573 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3574 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3575
3576 // Determine a sign for the addend.
3577 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3578 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3579 // Thumb2 addend encoding:
3580 // imm12 := i | imm3 | imm8
3581 int32_t addend = (insn & 0xff)
3582 | ((insn & 0x00007000) >> 4)
3583 | ((insn & 0x04000000) >> 15);
3584 // Apply a sign to the added.
3585 addend *= sign;
3586
3587 int32_t x = (psymval->value(object, addend) | thumb_bit)
3588 - (address & 0xfffffffc);
3589 Reltype val = abs(x);
3590 // Mask out the value and a distinct part of the ADD/SUB opcode
3591 // (bits 7:5 of opword).
3592 insn = (insn & 0xfb0f8f00)
3593 | (val & 0xff)
3594 | ((val & 0x700) << 4)
3595 | ((val & 0x800) << 15);
3596 // Set the opcode according to whether the value to go in the
3597 // place is negative.
3598 if (x < 0)
3599 insn |= 0x00a00000;
3600
3601 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3602 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3603 return ((val > 0xfff) ?
3604 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3605 }
3606
3607 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3608 static inline typename This::Status
3609 thm_pc8(unsigned char* view,
3610 const Sized_relobj_file<32, big_endian>* object,
3611 const Symbol_value<32>* psymval,
3612 Arm_address address)
3613 {
3614 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3615 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3616 Valtype* wv = reinterpret_cast<Valtype*>(view);
3617 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3618 Reltype addend = ((insn & 0x00ff) << 2);
3619 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3620 Reltype val = abs(x);
3621 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3622
3623 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3624 return ((val > 0x03fc)
3625 ? This::STATUS_OVERFLOW
3626 : This::STATUS_OKAY);
3627 }
3628
3629 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3630 static inline typename This::Status
3631 thm_pc12(unsigned char* view,
3632 const Sized_relobj_file<32, big_endian>* object,
3633 const Symbol_value<32>* psymval,
3634 Arm_address address)
3635 {
3636 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3637 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3638 Valtype* wv = reinterpret_cast<Valtype*>(view);
3639 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3640 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3641 // Determine a sign for the addend (positive if the U bit is 1).
3642 const int sign = (insn & 0x00800000) ? 1 : -1;
3643 int32_t addend = (insn & 0xfff);
3644 // Apply a sign to the added.
3645 addend *= sign;
3646
3647 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3648 Reltype val = abs(x);
3649 // Mask out and apply the value and the U bit.
3650 insn = (insn & 0xff7ff000) | (val & 0xfff);
3651 // Set the U bit according to whether the value to go in the
3652 // place is positive.
3653 if (x >= 0)
3654 insn |= 0x00800000;
3655
3656 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3657 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3658 return ((val > 0xfff) ?
3659 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3660 }
3661
3662 // R_ARM_V4BX
3663 static inline typename This::Status
3664 v4bx(const Relocate_info<32, big_endian>* relinfo,
3665 unsigned char* view,
3666 const Arm_relobj<big_endian>* object,
3667 const Arm_address address,
3668 const bool is_interworking)
3669 {
3670
3671 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3672 Valtype* wv = reinterpret_cast<Valtype*>(view);
3673 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3674
3675 // Ensure that we have a BX instruction.
3676 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3677 const uint32_t reg = (val & 0xf);
3678 if (is_interworking && reg != 0xf)
3679 {
3680 Stub_table<big_endian>* stub_table =
3681 object->stub_table(relinfo->data_shndx);
3682 gold_assert(stub_table != NULL);
3683
3684 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3685 gold_assert(stub != NULL);
3686
3687 int32_t veneer_address =
3688 stub_table->address() + stub->offset() - 8 - address;
3689 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3690 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3691 // Replace with a branch to veneer (B <addr>)
3692 val = (val & 0xf0000000) | 0x0a000000
3693 | ((veneer_address >> 2) & 0x00ffffff);
3694 }
3695 else
3696 {
3697 // Preserve Rm (lowest four bits) and the condition code
3698 // (highest four bits). Other bits encode MOV PC,Rm.
3699 val = (val & 0xf000000f) | 0x01a0f000;
3700 }
3701 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3702 return This::STATUS_OKAY;
3703 }
3704
3705 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3706 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3707 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3708 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3709 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3710 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3711 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3712 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3713 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3714 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3715 static inline typename This::Status
3716 arm_grp_alu(unsigned char* view,
3717 const Sized_relobj_file<32, big_endian>* object,
3718 const Symbol_value<32>* psymval,
3719 const int group,
3720 Arm_address address,
3721 Arm_address thumb_bit,
3722 bool check_overflow)
3723 {
3724 gold_assert(group >= 0 && group < 3);
3725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3726 Valtype* wv = reinterpret_cast<Valtype*>(view);
3727 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3728
3729 // ALU group relocations are allowed only for the ADD/SUB instructions.
3730 // (0x00800000 - ADD, 0x00400000 - SUB)
3731 const Valtype opcode = insn & 0x01e00000;
3732 if (opcode != 0x00800000 && opcode != 0x00400000)
3733 return This::STATUS_BAD_RELOC;
3734
3735 // Determine a sign for the addend.
3736 const int sign = (opcode == 0x00800000) ? 1 : -1;
3737 // shifter = rotate_imm * 2
3738 const uint32_t shifter = (insn & 0xf00) >> 7;
3739 // Initial addend value.
3740 int32_t addend = insn & 0xff;
3741 // Rotate addend right by shifter.
3742 addend = (addend >> shifter) | (addend << (32 - shifter));
3743 // Apply a sign to the added.
3744 addend *= sign;
3745
3746 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3747 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3748 // Check for overflow if required
3749 if (check_overflow
3750 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3751 return This::STATUS_OVERFLOW;
3752
3753 // Mask out the value and the ADD/SUB part of the opcode; take care
3754 // not to destroy the S bit.
3755 insn &= 0xff1ff000;
3756 // Set the opcode according to whether the value to go in the
3757 // place is negative.
3758 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3759 // Encode the offset (encoded Gn).
3760 insn |= gn;
3761
3762 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3763 return This::STATUS_OKAY;
3764 }
3765
3766 // R_ARM_LDR_PC_G0: S + A - P
3767 // R_ARM_LDR_PC_G1: S + A - P
3768 // R_ARM_LDR_PC_G2: S + A - P
3769 // R_ARM_LDR_SB_G0: S + A - B(S)
3770 // R_ARM_LDR_SB_G1: S + A - B(S)
3771 // R_ARM_LDR_SB_G2: S + A - B(S)
3772 static inline typename This::Status
3773 arm_grp_ldr(unsigned char* view,
3774 const Sized_relobj_file<32, big_endian>* object,
3775 const Symbol_value<32>* psymval,
3776 const int group,
3777 Arm_address address)
3778 {
3779 gold_assert(group >= 0 && group < 3);
3780 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3781 Valtype* wv = reinterpret_cast<Valtype*>(view);
3782 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3783
3784 const int sign = (insn & 0x00800000) ? 1 : -1;
3785 int32_t addend = (insn & 0xfff) * sign;
3786 int32_t x = (psymval->value(object, addend) - address);
3787 // Calculate the relevant G(n-1) value to obtain this stage residual.
3788 Valtype residual =
3789 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3790 if (residual >= 0x1000)
3791 return This::STATUS_OVERFLOW;
3792
3793 // Mask out the value and U bit.
3794 insn &= 0xff7ff000;
3795 // Set the U bit for non-negative values.
3796 if (x >= 0)
3797 insn |= 0x00800000;
3798 insn |= residual;
3799
3800 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3801 return This::STATUS_OKAY;
3802 }
3803
3804 // R_ARM_LDRS_PC_G0: S + A - P
3805 // R_ARM_LDRS_PC_G1: S + A - P
3806 // R_ARM_LDRS_PC_G2: S + A - P
3807 // R_ARM_LDRS_SB_G0: S + A - B(S)
3808 // R_ARM_LDRS_SB_G1: S + A - B(S)
3809 // R_ARM_LDRS_SB_G2: S + A - B(S)
3810 static inline typename This::Status
3811 arm_grp_ldrs(unsigned char* view,
3812 const Sized_relobj_file<32, big_endian>* object,
3813 const Symbol_value<32>* psymval,
3814 const int group,
3815 Arm_address address)
3816 {
3817 gold_assert(group >= 0 && group < 3);
3818 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3819 Valtype* wv = reinterpret_cast<Valtype*>(view);
3820 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3821
3822 const int sign = (insn & 0x00800000) ? 1 : -1;
3823 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3824 int32_t x = (psymval->value(object, addend) - address);
3825 // Calculate the relevant G(n-1) value to obtain this stage residual.
3826 Valtype residual =
3827 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3828 if (residual >= 0x100)
3829 return This::STATUS_OVERFLOW;
3830
3831 // Mask out the value and U bit.
3832 insn &= 0xff7ff0f0;
3833 // Set the U bit for non-negative values.
3834 if (x >= 0)
3835 insn |= 0x00800000;
3836 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3837
3838 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3839 return This::STATUS_OKAY;
3840 }
3841
3842 // R_ARM_LDC_PC_G0: S + A - P
3843 // R_ARM_LDC_PC_G1: S + A - P
3844 // R_ARM_LDC_PC_G2: S + A - P
3845 // R_ARM_LDC_SB_G0: S + A - B(S)
3846 // R_ARM_LDC_SB_G1: S + A - B(S)
3847 // R_ARM_LDC_SB_G2: S + A - B(S)
3848 static inline typename This::Status
3849 arm_grp_ldc(unsigned char* view,
3850 const Sized_relobj_file<32, big_endian>* object,
3851 const Symbol_value<32>* psymval,
3852 const int group,
3853 Arm_address address)
3854 {
3855 gold_assert(group >= 0 && group < 3);
3856 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3857 Valtype* wv = reinterpret_cast<Valtype*>(view);
3858 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3859
3860 const int sign = (insn & 0x00800000) ? 1 : -1;
3861 int32_t addend = ((insn & 0xff) << 2) * sign;
3862 int32_t x = (psymval->value(object, addend) - address);
3863 // Calculate the relevant G(n-1) value to obtain this stage residual.
3864 Valtype residual =
3865 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3866 if ((residual & 0x3) != 0 || residual >= 0x400)
3867 return This::STATUS_OVERFLOW;
3868
3869 // Mask out the value and U bit.
3870 insn &= 0xff7fff00;
3871 // Set the U bit for non-negative values.
3872 if (x >= 0)
3873 insn |= 0x00800000;
3874 insn |= (residual >> 2);
3875
3876 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3877 return This::STATUS_OKAY;
3878 }
3879 };
3880
3881 // Relocate ARM long branches. This handles relocation types
3882 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3883 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3884 // undefined and we do not use PLT in this relocation. In such a case,
3885 // the branch is converted into an NOP.
3886
3887 template<bool big_endian>
3888 typename Arm_relocate_functions<big_endian>::Status
3889 Arm_relocate_functions<big_endian>::arm_branch_common(
3890 unsigned int r_type,
3891 const Relocate_info<32, big_endian>* relinfo,
3892 unsigned char* view,
3893 const Sized_symbol<32>* gsym,
3894 const Arm_relobj<big_endian>* object,
3895 unsigned int r_sym,
3896 const Symbol_value<32>* psymval,
3897 Arm_address address,
3898 Arm_address thumb_bit,
3899 bool is_weakly_undefined_without_plt)
3900 {
3901 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3902 Valtype* wv = reinterpret_cast<Valtype*>(view);
3903 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3904
3905 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3906 && ((val & 0x0f000000UL) == 0x0a000000UL);
3907 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3908 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3909 && ((val & 0x0f000000UL) == 0x0b000000UL);
3910 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3911 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3912
3913 // Check that the instruction is valid.
3914 if (r_type == elfcpp::R_ARM_CALL)
3915 {
3916 if (!insn_is_uncond_bl && !insn_is_blx)
3917 return This::STATUS_BAD_RELOC;
3918 }
3919 else if (r_type == elfcpp::R_ARM_JUMP24)
3920 {
3921 if (!insn_is_b && !insn_is_cond_bl)
3922 return This::STATUS_BAD_RELOC;
3923 }
3924 else if (r_type == elfcpp::R_ARM_PLT32)
3925 {
3926 if (!insn_is_any_branch)
3927 return This::STATUS_BAD_RELOC;
3928 }
3929 else if (r_type == elfcpp::R_ARM_XPC25)
3930 {
3931 // FIXME: AAELF document IH0044C does not say much about it other
3932 // than it being obsolete.
3933 if (!insn_is_any_branch)
3934 return This::STATUS_BAD_RELOC;
3935 }
3936 else
3937 gold_unreachable();
3938
3939 // A branch to an undefined weak symbol is turned into a jump to
3940 // the next instruction unless a PLT entry will be created.
3941 // Do the same for local undefined symbols.
3942 // The jump to the next instruction is optimized as a NOP depending
3943 // on the architecture.
3944 const Target_arm<big_endian>* arm_target =
3945 Target_arm<big_endian>::default_target();
3946 if (is_weakly_undefined_without_plt)
3947 {
3948 gold_assert(!parameters->options().relocatable());
3949 Valtype cond = val & 0xf0000000U;
3950 if (arm_target->may_use_arm_nop())
3951 val = cond | 0x0320f000;
3952 else
3953 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3954 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3955 return This::STATUS_OKAY;
3956 }
3957
3958 Valtype addend = utils::sign_extend<26>(val << 2);
3959 Valtype branch_target = psymval->value(object, addend);
3960 int32_t branch_offset = branch_target - address;
3961
3962 // We need a stub if the branch offset is too large or if we need
3963 // to switch mode.
3964 bool may_use_blx = arm_target->may_use_v5t_interworking();
3965 Reloc_stub* stub = NULL;
3966
3967 if (!parameters->options().relocatable()
3968 && (utils::has_overflow<26>(branch_offset)
3969 || ((thumb_bit != 0)
3970 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3971 {
3972 Valtype unadjusted_branch_target = psymval->value(object, 0);
3973
3974 Stub_type stub_type =
3975 Reloc_stub::stub_type_for_reloc(r_type, address,
3976 unadjusted_branch_target,
3977 (thumb_bit != 0));
3978 if (stub_type != arm_stub_none)
3979 {
3980 Stub_table<big_endian>* stub_table =
3981 object->stub_table(relinfo->data_shndx);
3982 gold_assert(stub_table != NULL);
3983
3984 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3985 stub = stub_table->find_reloc_stub(stub_key);
3986 gold_assert(stub != NULL);
3987 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3988 branch_target = stub_table->address() + stub->offset() + addend;
3989 branch_offset = branch_target - address;
3990 gold_assert(!utils::has_overflow<26>(branch_offset));
3991 }
3992 }
3993
3994 // At this point, if we still need to switch mode, the instruction
3995 // must either be a BLX or a BL that can be converted to a BLX.
3996 if (thumb_bit != 0)
3997 {
3998 // Turn BL to BLX.
3999 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4000 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4001 }
4002
4003 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
4004 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4005 return (utils::has_overflow<26>(branch_offset)
4006 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
4007 }
4008
4009 // Relocate THUMB long branches. This handles relocation types
4010 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4011 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4012 // undefined and we do not use PLT in this relocation. In such a case,
4013 // the branch is converted into an NOP.
4014
4015 template<bool big_endian>
4016 typename Arm_relocate_functions<big_endian>::Status
4017 Arm_relocate_functions<big_endian>::thumb_branch_common(
4018 unsigned int r_type,
4019 const Relocate_info<32, big_endian>* relinfo,
4020 unsigned char* view,
4021 const Sized_symbol<32>* gsym,
4022 const Arm_relobj<big_endian>* object,
4023 unsigned int r_sym,
4024 const Symbol_value<32>* psymval,
4025 Arm_address address,
4026 Arm_address thumb_bit,
4027 bool is_weakly_undefined_without_plt)
4028 {
4029 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4030 Valtype* wv = reinterpret_cast<Valtype*>(view);
4031 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4032 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4033
4034 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4035 // into account.
4036 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4037 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4038
4039 // Check that the instruction is valid.
4040 if (r_type == elfcpp::R_ARM_THM_CALL)
4041 {
4042 if (!is_bl_insn && !is_blx_insn)
4043 return This::STATUS_BAD_RELOC;
4044 }
4045 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4046 {
4047 // This cannot be a BLX.
4048 if (!is_bl_insn)
4049 return This::STATUS_BAD_RELOC;
4050 }
4051 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4052 {
4053 // Check for Thumb to Thumb call.
4054 if (!is_blx_insn)
4055 return This::STATUS_BAD_RELOC;
4056 if (thumb_bit != 0)
4057 {
4058 gold_warning(_("%s: Thumb BLX instruction targets "
4059 "thumb function '%s'."),
4060 object->name().c_str(),
4061 (gsym ? gsym->name() : "(local)"));
4062 // Convert BLX to BL.
4063 lower_insn |= 0x1000U;
4064 }
4065 }
4066 else
4067 gold_unreachable();
4068
4069 // A branch to an undefined weak symbol is turned into a jump to
4070 // the next instruction unless a PLT entry will be created.
4071 // The jump to the next instruction is optimized as a NOP.W for
4072 // Thumb-2 enabled architectures.
4073 const Target_arm<big_endian>* arm_target =
4074 Target_arm<big_endian>::default_target();
4075 if (is_weakly_undefined_without_plt)
4076 {
4077 gold_assert(!parameters->options().relocatable());
4078 if (arm_target->may_use_thumb2_nop())
4079 {
4080 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4081 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4082 }
4083 else
4084 {
4085 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4086 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4087 }
4088 return This::STATUS_OKAY;
4089 }
4090
4091 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4092 Arm_address branch_target = psymval->value(object, addend);
4093
4094 // For BLX, bit 1 of target address comes from bit 1 of base address.
4095 bool may_use_blx = arm_target->may_use_v5t_interworking();
4096 if (thumb_bit == 0 && may_use_blx)
4097 branch_target = utils::bit_select(branch_target, address, 0x2);
4098
4099 int32_t branch_offset = branch_target - address;
4100
4101 // We need a stub if the branch offset is too large or if we need
4102 // to switch mode.
4103 bool thumb2 = arm_target->using_thumb2();
4104 if (!parameters->options().relocatable()
4105 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4106 || (thumb2 && utils::has_overflow<25>(branch_offset))
4107 || ((thumb_bit == 0)
4108 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4109 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4110 {
4111 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4112
4113 Stub_type stub_type =
4114 Reloc_stub::stub_type_for_reloc(r_type, address,
4115 unadjusted_branch_target,
4116 (thumb_bit != 0));
4117
4118 if (stub_type != arm_stub_none)
4119 {
4120 Stub_table<big_endian>* stub_table =
4121 object->stub_table(relinfo->data_shndx);
4122 gold_assert(stub_table != NULL);
4123
4124 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4125 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4126 gold_assert(stub != NULL);
4127 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4128 branch_target = stub_table->address() + stub->offset() + addend;
4129 if (thumb_bit == 0 && may_use_blx)
4130 branch_target = utils::bit_select(branch_target, address, 0x2);
4131 branch_offset = branch_target - address;
4132 }
4133 }
4134
4135 // At this point, if we still need to switch mode, the instruction
4136 // must either be a BLX or a BL that can be converted to a BLX.
4137 if (thumb_bit == 0)
4138 {
4139 gold_assert(may_use_blx
4140 && (r_type == elfcpp::R_ARM_THM_CALL
4141 || r_type == elfcpp::R_ARM_THM_XPC22));
4142 // Make sure this is a BLX.
4143 lower_insn &= ~0x1000U;
4144 }
4145 else
4146 {
4147 // Make sure this is a BL.
4148 lower_insn |= 0x1000U;
4149 }
4150
4151 // For a BLX instruction, make sure that the relocation is rounded up
4152 // to a word boundary. This follows the semantics of the instruction
4153 // which specifies that bit 1 of the target address will come from bit
4154 // 1 of the base address.
4155 if ((lower_insn & 0x5000U) == 0x4000U)
4156 gold_assert((branch_offset & 3) == 0);
4157
4158 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4159 // We use the Thumb-2 encoding, which is safe even if dealing with
4160 // a Thumb-1 instruction by virtue of our overflow check above. */
4161 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4162 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4163
4164 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4165 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4166
4167 gold_assert(!utils::has_overflow<25>(branch_offset));
4168
4169 return ((thumb2
4170 ? utils::has_overflow<25>(branch_offset)
4171 : utils::has_overflow<23>(branch_offset))
4172 ? This::STATUS_OVERFLOW
4173 : This::STATUS_OKAY);
4174 }
4175
4176 // Relocate THUMB-2 long conditional branches.
4177 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4178 // undefined and we do not use PLT in this relocation. In such a case,
4179 // the branch is converted into an NOP.
4180
4181 template<bool big_endian>
4182 typename Arm_relocate_functions<big_endian>::Status
4183 Arm_relocate_functions<big_endian>::thm_jump19(
4184 unsigned char* view,
4185 const Arm_relobj<big_endian>* object,
4186 const Symbol_value<32>* psymval,
4187 Arm_address address,
4188 Arm_address thumb_bit)
4189 {
4190 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4191 Valtype* wv = reinterpret_cast<Valtype*>(view);
4192 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4193 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4194 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4195
4196 Arm_address branch_target = psymval->value(object, addend);
4197 int32_t branch_offset = branch_target - address;
4198
4199 // ??? Should handle interworking? GCC might someday try to
4200 // use this for tail calls.
4201 // FIXME: We do support thumb entry to PLT yet.
4202 if (thumb_bit == 0)
4203 {
4204 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4205 return This::STATUS_BAD_RELOC;
4206 }
4207
4208 // Put RELOCATION back into the insn.
4209 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4210 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4211
4212 // Put the relocated value back in the object file:
4213 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4214 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4215
4216 return (utils::has_overflow<21>(branch_offset)
4217 ? This::STATUS_OVERFLOW
4218 : This::STATUS_OKAY);
4219 }
4220
4221 // Get the GOT section, creating it if necessary.
4222
4223 template<bool big_endian>
4224 Arm_output_data_got<big_endian>*
4225 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4226 {
4227 if (this->got_ == NULL)
4228 {
4229 gold_assert(symtab != NULL && layout != NULL);
4230
4231 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4232
4233 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4234 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4235 this->got_, ORDER_DATA, false);
4236
4237 // The old GNU linker creates a .got.plt section. We just
4238 // create another set of data in the .got section. Note that we
4239 // always create a PLT if we create a GOT, although the PLT
4240 // might be empty.
4241 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4242 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4243 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4244 this->got_plt_, ORDER_DATA, false);
4245
4246 // The first three entries are reserved.
4247 this->got_plt_->set_current_data_size(3 * 4);
4248
4249 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4250 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4251 Symbol_table::PREDEFINED,
4252 this->got_plt_,
4253 0, 0, elfcpp::STT_OBJECT,
4254 elfcpp::STB_LOCAL,
4255 elfcpp::STV_HIDDEN, 0,
4256 false, false);
4257 }
4258 return this->got_;
4259 }
4260
4261 // Get the dynamic reloc section, creating it if necessary.
4262
4263 template<bool big_endian>
4264 typename Target_arm<big_endian>::Reloc_section*
4265 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4266 {
4267 if (this->rel_dyn_ == NULL)
4268 {
4269 gold_assert(layout != NULL);
4270 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4271 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4272 elfcpp::SHF_ALLOC, this->rel_dyn_,
4273 ORDER_DYNAMIC_RELOCS, false);
4274 }
4275 return this->rel_dyn_;
4276 }
4277
4278 // Insn_template methods.
4279
4280 // Return byte size of an instruction template.
4281
4282 size_t
4283 Insn_template::size() const
4284 {
4285 switch (this->type())
4286 {
4287 case THUMB16_TYPE:
4288 case THUMB16_SPECIAL_TYPE:
4289 return 2;
4290 case ARM_TYPE:
4291 case THUMB32_TYPE:
4292 case DATA_TYPE:
4293 return 4;
4294 default:
4295 gold_unreachable();
4296 }
4297 }
4298
4299 // Return alignment of an instruction template.
4300
4301 unsigned
4302 Insn_template::alignment() const
4303 {
4304 switch (this->type())
4305 {
4306 case THUMB16_TYPE:
4307 case THUMB16_SPECIAL_TYPE:
4308 case THUMB32_TYPE:
4309 return 2;
4310 case ARM_TYPE:
4311 case DATA_TYPE:
4312 return 4;
4313 default:
4314 gold_unreachable();
4315 }
4316 }
4317
4318 // Stub_template methods.
4319
4320 Stub_template::Stub_template(
4321 Stub_type type, const Insn_template* insns,
4322 size_t insn_count)
4323 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4324 entry_in_thumb_mode_(false), relocs_()
4325 {
4326 off_t offset = 0;
4327
4328 // Compute byte size and alignment of stub template.
4329 for (size_t i = 0; i < insn_count; i++)
4330 {
4331 unsigned insn_alignment = insns[i].alignment();
4332 size_t insn_size = insns[i].size();
4333 gold_assert((offset & (insn_alignment - 1)) == 0);
4334 this->alignment_ = std::max(this->alignment_, insn_alignment);
4335 switch (insns[i].type())
4336 {
4337 case Insn_template::THUMB16_TYPE:
4338 case Insn_template::THUMB16_SPECIAL_TYPE:
4339 if (i == 0)
4340 this->entry_in_thumb_mode_ = true;
4341 break;
4342
4343 case Insn_template::THUMB32_TYPE:
4344 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4345 this->relocs_.push_back(Reloc(i, offset));
4346 if (i == 0)
4347 this->entry_in_thumb_mode_ = true;
4348 break;
4349
4350 case Insn_template::ARM_TYPE:
4351 // Handle cases where the target is encoded within the
4352 // instruction.
4353 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4354 this->relocs_.push_back(Reloc(i, offset));
4355 break;
4356
4357 case Insn_template::DATA_TYPE:
4358 // Entry point cannot be data.
4359 gold_assert(i != 0);
4360 this->relocs_.push_back(Reloc(i, offset));
4361 break;
4362
4363 default:
4364 gold_unreachable();
4365 }
4366 offset += insn_size;
4367 }
4368 this->size_ = offset;
4369 }
4370
4371 // Stub methods.
4372
4373 // Template to implement do_write for a specific target endianness.
4374
4375 template<bool big_endian>
4376 void inline
4377 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4378 {
4379 const Stub_template* stub_template = this->stub_template();
4380 const Insn_template* insns = stub_template->insns();
4381
4382 // FIXME: We do not handle BE8 encoding yet.
4383 unsigned char* pov = view;
4384 for (size_t i = 0; i < stub_template->insn_count(); i++)
4385 {
4386 switch (insns[i].type())
4387 {
4388 case Insn_template::THUMB16_TYPE:
4389 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4390 break;
4391 case Insn_template::THUMB16_SPECIAL_TYPE:
4392 elfcpp::Swap<16, big_endian>::writeval(
4393 pov,
4394 this->thumb16_special(i));
4395 break;
4396 case Insn_template::THUMB32_TYPE:
4397 {
4398 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4399 uint32_t lo = insns[i].data() & 0xffff;
4400 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4401 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4402 }
4403 break;
4404 case Insn_template::ARM_TYPE:
4405 case Insn_template::DATA_TYPE:
4406 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4407 break;
4408 default:
4409 gold_unreachable();
4410 }
4411 pov += insns[i].size();
4412 }
4413 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4414 }
4415
4416 // Reloc_stub::Key methods.
4417
4418 // Dump a Key as a string for debugging.
4419
4420 std::string
4421 Reloc_stub::Key::name() const
4422 {
4423 if (this->r_sym_ == invalid_index)
4424 {
4425 // Global symbol key name
4426 // <stub-type>:<symbol name>:<addend>.
4427 const std::string sym_name = this->u_.symbol->name();
4428 // We need to print two hex number and two colons. So just add 100 bytes
4429 // to the symbol name size.
4430 size_t len = sym_name.size() + 100;
4431 char* buffer = new char[len];
4432 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4433 sym_name.c_str(), this->addend_);
4434 gold_assert(c > 0 && c < static_cast<int>(len));
4435 delete[] buffer;
4436 return std::string(buffer);
4437 }
4438 else
4439 {
4440 // local symbol key name
4441 // <stub-type>:<object>:<r_sym>:<addend>.
4442 const size_t len = 200;
4443 char buffer[len];
4444 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4445 this->u_.relobj, this->r_sym_, this->addend_);
4446 gold_assert(c > 0 && c < static_cast<int>(len));
4447 return std::string(buffer);
4448 }
4449 }
4450
4451 // Reloc_stub methods.
4452
4453 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4454 // LOCATION to DESTINATION.
4455 // This code is based on the arm_type_of_stub function in
4456 // bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
4457 // class simple.
4458
4459 Stub_type
4460 Reloc_stub::stub_type_for_reloc(
4461 unsigned int r_type,
4462 Arm_address location,
4463 Arm_address destination,
4464 bool target_is_thumb)
4465 {
4466 Stub_type stub_type = arm_stub_none;
4467
4468 // This is a bit ugly but we want to avoid using a templated class for
4469 // big and little endianities.
4470 bool may_use_blx;
4471 bool should_force_pic_veneer;
4472 bool thumb2;
4473 bool thumb_only;
4474 if (parameters->target().is_big_endian())
4475 {
4476 const Target_arm<true>* big_endian_target =
4477 Target_arm<true>::default_target();
4478 may_use_blx = big_endian_target->may_use_v5t_interworking();
4479 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4480 thumb2 = big_endian_target->using_thumb2();
4481 thumb_only = big_endian_target->using_thumb_only();
4482 }
4483 else
4484 {
4485 const Target_arm<false>* little_endian_target =
4486 Target_arm<false>::default_target();
4487 may_use_blx = little_endian_target->may_use_v5t_interworking();
4488 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4489 thumb2 = little_endian_target->using_thumb2();
4490 thumb_only = little_endian_target->using_thumb_only();
4491 }
4492
4493 int64_t branch_offset;
4494 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4495 {
4496 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4497 // base address (instruction address + 4).
4498 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4499 destination = utils::bit_select(destination, location, 0x2);
4500 branch_offset = static_cast<int64_t>(destination) - location;
4501
4502 // Handle cases where:
4503 // - this call goes too far (different Thumb/Thumb2 max
4504 // distance)
4505 // - it's a Thumb->Arm call and blx is not available, or it's a
4506 // Thumb->Arm branch (not bl). A stub is needed in this case.
4507 if ((!thumb2
4508 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4509 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4510 || (thumb2
4511 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4512 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4513 || ((!target_is_thumb)
4514 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4515 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4516 {
4517 if (target_is_thumb)
4518 {
4519 // Thumb to thumb.
4520 if (!thumb_only)
4521 {
4522 stub_type = (parameters->options().shared()
4523 || should_force_pic_veneer)
4524 // PIC stubs.
4525 ? ((may_use_blx
4526 && (r_type == elfcpp::R_ARM_THM_CALL))
4527 // V5T and above. Stub starts with ARM code, so
4528 // we must be able to switch mode before
4529 // reaching it, which is only possible for 'bl'
4530 // (ie R_ARM_THM_CALL relocation).
4531 ? arm_stub_long_branch_any_thumb_pic
4532 // On V4T, use Thumb code only.
4533 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4534
4535 // non-PIC stubs.
4536 : ((may_use_blx
4537 && (r_type == elfcpp::R_ARM_THM_CALL))
4538 ? arm_stub_long_branch_any_any // V5T and above.
4539 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4540 }
4541 else
4542 {
4543 stub_type = (parameters->options().shared()
4544 || should_force_pic_veneer)
4545 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4546 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4547 }
4548 }
4549 else
4550 {
4551 // Thumb to arm.
4552
4553 // FIXME: We should check that the input section is from an
4554 // object that has interwork enabled.
4555
4556 stub_type = (parameters->options().shared()
4557 || should_force_pic_veneer)
4558 // PIC stubs.
4559 ? ((may_use_blx
4560 && (r_type == elfcpp::R_ARM_THM_CALL))
4561 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4562 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4563
4564 // non-PIC stubs.
4565 : ((may_use_blx
4566 && (r_type == elfcpp::R_ARM_THM_CALL))
4567 ? arm_stub_long_branch_any_any // V5T and above.
4568 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4569
4570 // Handle v4t short branches.
4571 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4572 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4573 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4574 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4575 }
4576 }
4577 }
4578 else if (r_type == elfcpp::R_ARM_CALL
4579 || r_type == elfcpp::R_ARM_JUMP24
4580 || r_type == elfcpp::R_ARM_PLT32)
4581 {
4582 branch_offset = static_cast<int64_t>(destination) - location;
4583 if (target_is_thumb)
4584 {
4585 // Arm to thumb.
4586
4587 // FIXME: We should check that the input section is from an
4588 // object that has interwork enabled.
4589
4590 // We have an extra 2-bytes reach because of
4591 // the mode change (bit 24 (H) of BLX encoding).
4592 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4593 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4594 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4595 || (r_type == elfcpp::R_ARM_JUMP24)
4596 || (r_type == elfcpp::R_ARM_PLT32))
4597 {
4598 stub_type = (parameters->options().shared()
4599 || should_force_pic_veneer)
4600 // PIC stubs.
4601 ? (may_use_blx
4602 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4603 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4604
4605 // non-PIC stubs.
4606 : (may_use_blx
4607 ? arm_stub_long_branch_any_any // V5T and above.
4608 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4609 }
4610 }
4611 else
4612 {
4613 // Arm to arm.
4614 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4615 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4616 {
4617 stub_type = (parameters->options().shared()
4618 || should_force_pic_veneer)
4619 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4620 : arm_stub_long_branch_any_any; /// non-PIC.
4621 }
4622 }
4623 }
4624
4625 return stub_type;
4626 }
4627
4628 // Cortex_a8_stub methods.
4629
4630 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4631 // I is the position of the instruction template in the stub template.
4632
4633 uint16_t
4634 Cortex_a8_stub::do_thumb16_special(size_t i)
4635 {
4636 // The only use of this is to copy condition code from a conditional
4637 // branch being worked around to the corresponding conditional branch in
4638 // to the stub.
4639 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4640 && i == 0);
4641 uint16_t data = this->stub_template()->insns()[i].data();
4642 gold_assert((data & 0xff00U) == 0xd000U);
4643 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4644 return data;
4645 }
4646
4647 // Stub_factory methods.
4648
4649 Stub_factory::Stub_factory()
4650 {
4651 // The instruction template sequences are declared as static
4652 // objects and initialized first time the constructor runs.
4653
4654 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4655 // to reach the stub if necessary.
4656 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4657 {
4658 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4659 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4660 // dcd R_ARM_ABS32(X)
4661 };
4662
4663 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4664 // available.
4665 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4666 {
4667 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4668 Insn_template::arm_insn(0xe12fff1c), // bx ip
4669 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4670 // dcd R_ARM_ABS32(X)
4671 };
4672
4673 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4674 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4675 {
4676 Insn_template::thumb16_insn(0xb401), // push {r0}
4677 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4678 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4679 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4680 Insn_template::thumb16_insn(0x4760), // bx ip
4681 Insn_template::thumb16_insn(0xbf00), // nop
4682 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4683 // dcd R_ARM_ABS32(X)
4684 };
4685
4686 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4687 // allowed.
4688 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4689 {
4690 Insn_template::thumb16_insn(0x4778), // bx pc
4691 Insn_template::thumb16_insn(0x46c0), // nop
4692 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4693 Insn_template::arm_insn(0xe12fff1c), // bx ip
4694 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4695 // dcd R_ARM_ABS32(X)
4696 };
4697
4698 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4699 // available.
4700 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4701 {
4702 Insn_template::thumb16_insn(0x4778), // bx pc
4703 Insn_template::thumb16_insn(0x46c0), // nop
4704 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4705 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4706 // dcd R_ARM_ABS32(X)
4707 };
4708
4709 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4710 // one, when the destination is close enough.
4711 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4712 {
4713 Insn_template::thumb16_insn(0x4778), // bx pc
4714 Insn_template::thumb16_insn(0x46c0), // nop
4715 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4716 };
4717
4718 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4719 // blx to reach the stub if necessary.
4720 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4721 {
4722 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4723 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4724 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4725 // dcd R_ARM_REL32(X-4)
4726 };
4727
4728 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4729 // blx to reach the stub if necessary. We can not add into pc;
4730 // it is not guaranteed to mode switch (different in ARMv6 and
4731 // ARMv7).
4732 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4733 {
4734 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4735 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4736 Insn_template::arm_insn(0xe12fff1c), // bx ip
4737 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4738 // dcd R_ARM_REL32(X)
4739 };
4740
4741 // V4T ARM -> ARM long branch stub, PIC.
4742 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4743 {
4744 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4745 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4746 Insn_template::arm_insn(0xe12fff1c), // bx ip
4747 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4748 // dcd R_ARM_REL32(X)
4749 };
4750
4751 // V4T Thumb -> ARM long branch stub, PIC.
4752 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4753 {
4754 Insn_template::thumb16_insn(0x4778), // bx pc
4755 Insn_template::thumb16_insn(0x46c0), // nop
4756 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4757 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4758 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4759 // dcd R_ARM_REL32(X)
4760 };
4761
4762 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4763 // architectures.
4764 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4765 {
4766 Insn_template::thumb16_insn(0xb401), // push {r0}
4767 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4768 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4769 Insn_template::thumb16_insn(0x4484), // add ip, r0
4770 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4771 Insn_template::thumb16_insn(0x4760), // bx ip
4772 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4773 // dcd R_ARM_REL32(X)
4774 };
4775
4776 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4777 // allowed.
4778 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4779 {
4780 Insn_template::thumb16_insn(0x4778), // bx pc
4781 Insn_template::thumb16_insn(0x46c0), // nop
4782 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4783 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4784 Insn_template::arm_insn(0xe12fff1c), // bx ip
4785 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4786 // dcd R_ARM_REL32(X)
4787 };
4788
4789 // Cortex-A8 erratum-workaround stubs.
4790
4791 // Stub used for conditional branches (which may be beyond +/-1MB away,
4792 // so we can't use a conditional branch to reach this stub).
4793
4794 // original code:
4795 //
4796 // b<cond> X
4797 // after:
4798 //
4799 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4800 {
4801 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4802 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4803 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4804 // b.w X
4805 };
4806
4807 // Stub used for b.w and bl.w instructions.
4808
4809 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4810 {
4811 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4812 };
4813
4814 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4815 {
4816 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4817 };
4818
4819 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4820 // instruction (which switches to ARM mode) to point to this stub. Jump to
4821 // the real destination using an ARM-mode branch.
4822 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4823 {
4824 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4825 };
4826
4827 // Stub used to provide an interworking for R_ARM_V4BX relocation
4828 // (bx r[n] instruction).
4829 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4830 {
4831 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4832 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4833 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4834 };
4835
4836 // Fill in the stub template look-up table. Stub templates are constructed
4837 // per instance of Stub_factory for fast look-up without locking
4838 // in a thread-enabled environment.
4839
4840 this->stub_templates_[arm_stub_none] =
4841 new Stub_template(arm_stub_none, NULL, 0);
4842
4843 #define DEF_STUB(x) \
4844 do \
4845 { \
4846 size_t array_size \
4847 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4848 Stub_type type = arm_stub_##x; \
4849 this->stub_templates_[type] = \
4850 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4851 } \
4852 while (0);
4853
4854 DEF_STUBS
4855 #undef DEF_STUB
4856 }
4857
4858 // Stub_table methods.
4859
4860 // Remove all Cortex-A8 stub.
4861
4862 template<bool big_endian>
4863 void
4864 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4865 {
4866 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4867 p != this->cortex_a8_stubs_.end();
4868 ++p)
4869 delete p->second;
4870 this->cortex_a8_stubs_.clear();
4871 }
4872
4873 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4874
4875 template<bool big_endian>
4876 void
4877 Stub_table<big_endian>::relocate_stub(
4878 Stub* stub,
4879 const Relocate_info<32, big_endian>* relinfo,
4880 Target_arm<big_endian>* arm_target,
4881 Output_section* output_section,
4882 unsigned char* view,
4883 Arm_address address,
4884 section_size_type view_size)
4885 {
4886 const Stub_template* stub_template = stub->stub_template();
4887 if (stub_template->reloc_count() != 0)
4888 {
4889 // Adjust view to cover the stub only.
4890 section_size_type offset = stub->offset();
4891 section_size_type stub_size = stub_template->size();
4892 gold_assert(offset + stub_size <= view_size);
4893
4894 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4895 address + offset, stub_size);
4896 }
4897 }
4898
4899 // Relocate all stubs in this stub table.
4900
4901 template<bool big_endian>
4902 void
4903 Stub_table<big_endian>::relocate_stubs(
4904 const Relocate_info<32, big_endian>* relinfo,
4905 Target_arm<big_endian>* arm_target,
4906 Output_section* output_section,
4907 unsigned char* view,
4908 Arm_address address,
4909 section_size_type view_size)
4910 {
4911 // If we are passed a view bigger than the stub table's. we need to
4912 // adjust the view.
4913 gold_assert(address == this->address()
4914 && (view_size
4915 == static_cast<section_size_type>(this->data_size())));
4916
4917 // Relocate all relocation stubs.
4918 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4919 p != this->reloc_stubs_.end();
4920 ++p)
4921 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4922 address, view_size);
4923
4924 // Relocate all Cortex-A8 stubs.
4925 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4926 p != this->cortex_a8_stubs_.end();
4927 ++p)
4928 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4929 address, view_size);
4930
4931 // Relocate all ARM V4BX stubs.
4932 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4933 p != this->arm_v4bx_stubs_.end();
4934 ++p)
4935 {
4936 if (*p != NULL)
4937 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4938 address, view_size);
4939 }
4940 }
4941
4942 // Write out the stubs to file.
4943
4944 template<bool big_endian>
4945 void
4946 Stub_table<big_endian>::do_write(Output_file* of)
4947 {
4948 off_t offset = this->offset();
4949 const section_size_type oview_size =
4950 convert_to_section_size_type(this->data_size());
4951 unsigned char* const oview = of->get_output_view(offset, oview_size);
4952
4953 // Write relocation stubs.
4954 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4955 p != this->reloc_stubs_.end();
4956 ++p)
4957 {
4958 Reloc_stub* stub = p->second;
4959 Arm_address address = this->address() + stub->offset();
4960 gold_assert(address
4961 == align_address(address,
4962 stub->stub_template()->alignment()));
4963 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4964 big_endian);
4965 }
4966
4967 // Write Cortex-A8 stubs.
4968 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4969 p != this->cortex_a8_stubs_.end();
4970 ++p)
4971 {
4972 Cortex_a8_stub* stub = p->second;
4973 Arm_address address = this->address() + stub->offset();
4974 gold_assert(address
4975 == align_address(address,
4976 stub->stub_template()->alignment()));
4977 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4978 big_endian);
4979 }
4980
4981 // Write ARM V4BX relocation stubs.
4982 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4983 p != this->arm_v4bx_stubs_.end();
4984 ++p)
4985 {
4986 if (*p == NULL)
4987 continue;
4988
4989 Arm_address address = this->address() + (*p)->offset();
4990 gold_assert(address
4991 == align_address(address,
4992 (*p)->stub_template()->alignment()));
4993 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4994 big_endian);
4995 }
4996
4997 of->write_output_view(this->offset(), oview_size, oview);
4998 }
4999
5000 // Update the data size and address alignment of the stub table at the end
5001 // of a relaxation pass. Return true if either the data size or the
5002 // alignment changed in this relaxation pass.
5003
5004 template<bool big_endian>
5005 bool
5006 Stub_table<big_endian>::update_data_size_and_addralign()
5007 {
5008 // Go over all stubs in table to compute data size and address alignment.
5009 off_t size = this->reloc_stubs_size_;
5010 unsigned addralign = this->reloc_stubs_addralign_;
5011
5012 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5013 p != this->cortex_a8_stubs_.end();
5014 ++p)
5015 {
5016 const Stub_template* stub_template = p->second->stub_template();
5017 addralign = std::max(addralign, stub_template->alignment());
5018 size = (align_address(size, stub_template->alignment())
5019 + stub_template->size());
5020 }
5021
5022 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5023 p != this->arm_v4bx_stubs_.end();
5024 ++p)
5025 {
5026 if (*p == NULL)
5027 continue;
5028
5029 const Stub_template* stub_template = (*p)->stub_template();
5030 addralign = std::max(addralign, stub_template->alignment());
5031 size = (align_address(size, stub_template->alignment())
5032 + stub_template->size());
5033 }
5034
5035 // Check if either data size or alignment changed in this pass.
5036 // Update prev_data_size_ and prev_addralign_. These will be used
5037 // as the current data size and address alignment for the next pass.
5038 bool changed = size != this->prev_data_size_;
5039 this->prev_data_size_ = size;
5040
5041 if (addralign != this->prev_addralign_)
5042 changed = true;
5043 this->prev_addralign_ = addralign;
5044
5045 return changed;
5046 }
5047
5048 // Finalize the stubs. This sets the offsets of the stubs within the stub
5049 // table. It also marks all input sections needing Cortex-A8 workaround.
5050
5051 template<bool big_endian>
5052 void
5053 Stub_table<big_endian>::finalize_stubs()
5054 {
5055 off_t off = this->reloc_stubs_size_;
5056 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5057 p != this->cortex_a8_stubs_.end();
5058 ++p)
5059 {
5060 Cortex_a8_stub* stub = p->second;
5061 const Stub_template* stub_template = stub->stub_template();
5062 uint64_t stub_addralign = stub_template->alignment();
5063 off = align_address(off, stub_addralign);
5064 stub->set_offset(off);
5065 off += stub_template->size();
5066
5067 // Mark input section so that we can determine later if a code section
5068 // needs the Cortex-A8 workaround quickly.
5069 Arm_relobj<big_endian>* arm_relobj =
5070 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5071 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5072 }
5073
5074 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5075 p != this->arm_v4bx_stubs_.end();
5076 ++p)
5077 {
5078 if (*p == NULL)
5079 continue;
5080
5081 const Stub_template* stub_template = (*p)->stub_template();
5082 uint64_t stub_addralign = stub_template->alignment();
5083 off = align_address(off, stub_addralign);
5084 (*p)->set_offset(off);
5085 off += stub_template->size();
5086 }
5087
5088 gold_assert(off <= this->prev_data_size_);
5089 }
5090
5091 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5092 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5093 // of the address range seen by the linker.
5094
5095 template<bool big_endian>
5096 void
5097 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5098 Target_arm<big_endian>* arm_target,
5099 unsigned char* view,
5100 Arm_address view_address,
5101 section_size_type view_size)
5102 {
5103 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5104 for (Cortex_a8_stub_list::const_iterator p =
5105 this->cortex_a8_stubs_.lower_bound(view_address);
5106 ((p != this->cortex_a8_stubs_.end())
5107 && (p->first < (view_address + view_size)));
5108 ++p)
5109 {
5110 // We do not store the THUMB bit in the LSB of either the branch address
5111 // or the stub offset. There is no need to strip the LSB.
5112 Arm_address branch_address = p->first;
5113 const Cortex_a8_stub* stub = p->second;
5114 Arm_address stub_address = this->address() + stub->offset();
5115
5116 // Offset of the branch instruction relative to this view.
5117 section_size_type offset =
5118 convert_to_section_size_type(branch_address - view_address);
5119 gold_assert((offset + 4) <= view_size);
5120
5121 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5122 view + offset, branch_address);
5123 }
5124 }
5125
5126 // Arm_input_section methods.
5127
5128 // Initialize an Arm_input_section.
5129
5130 template<bool big_endian>
5131 void
5132 Arm_input_section<big_endian>::init()
5133 {
5134 Relobj* relobj = this->relobj();
5135 unsigned int shndx = this->shndx();
5136
5137 // We have to cache original size, alignment and contents to avoid locking
5138 // the original file.
5139 this->original_addralign_ =
5140 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5141
5142 // This is not efficient but we expect only a small number of relaxed
5143 // input sections for stubs.
5144 section_size_type section_size;
5145 const unsigned char* section_contents =
5146 relobj->section_contents(shndx, &section_size, false);
5147 this->original_size_ =
5148 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5149
5150 gold_assert(this->original_contents_ == NULL);
5151 this->original_contents_ = new unsigned char[section_size];
5152 memcpy(this->original_contents_, section_contents, section_size);
5153
5154 // We want to make this look like the original input section after
5155 // output sections are finalized.
5156 Output_section* os = relobj->output_section(shndx);
5157 off_t offset = relobj->output_section_offset(shndx);
5158 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5159 this->set_address(os->address() + offset);
5160 this->set_file_offset(os->offset() + offset);
5161
5162 this->set_current_data_size(this->original_size_);
5163 this->finalize_data_size();
5164 }
5165
5166 template<bool big_endian>
5167 void
5168 Arm_input_section<big_endian>::do_write(Output_file* of)
5169 {
5170 // We have to write out the original section content.
5171 gold_assert(this->original_contents_ != NULL);
5172 of->write(this->offset(), this->original_contents_,
5173 this->original_size_);
5174
5175 // If this owns a stub table and it is not empty, write it.
5176 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5177 this->stub_table_->write(of);
5178 }
5179
5180 // Finalize data size.
5181
5182 template<bool big_endian>
5183 void
5184 Arm_input_section<big_endian>::set_final_data_size()
5185 {
5186 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5187
5188 if (this->is_stub_table_owner())
5189 {
5190 this->stub_table_->finalize_data_size();
5191 off = align_address(off, this->stub_table_->addralign());
5192 off += this->stub_table_->data_size();
5193 }
5194 this->set_data_size(off);
5195 }
5196
5197 // Reset address and file offset.
5198
5199 template<bool big_endian>
5200 void
5201 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5202 {
5203 // Size of the original input section contents.
5204 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5205
5206 // If this is a stub table owner, account for the stub table size.
5207 if (this->is_stub_table_owner())
5208 {
5209 Stub_table<big_endian>* stub_table = this->stub_table_;
5210
5211 // Reset the stub table's address and file offset. The
5212 // current data size for child will be updated after that.
5213 stub_table_->reset_address_and_file_offset();
5214 off = align_address(off, stub_table_->addralign());
5215 off += stub_table->current_data_size();
5216 }
5217
5218 this->set_current_data_size(off);
5219 }
5220
5221 // Arm_exidx_cantunwind methods.
5222
5223 // Write this to Output file OF for a fixed endianness.
5224
5225 template<bool big_endian>
5226 void
5227 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5228 {
5229 off_t offset = this->offset();
5230 const section_size_type oview_size = 8;
5231 unsigned char* const oview = of->get_output_view(offset, oview_size);
5232
5233 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
5234
5235 Output_section* os = this->relobj_->output_section(this->shndx_);
5236 gold_assert(os != NULL);
5237
5238 Arm_relobj<big_endian>* arm_relobj =
5239 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5240 Arm_address output_offset =
5241 arm_relobj->get_output_section_offset(this->shndx_);
5242 Arm_address section_start;
5243 section_size_type section_size;
5244
5245 // Find out the end of the text section referred by this.
5246 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5247 {
5248 section_start = os->address() + output_offset;
5249 const Arm_exidx_input_section* exidx_input_section =
5250 arm_relobj->exidx_input_section_by_link(this->shndx_);
5251 gold_assert(exidx_input_section != NULL);
5252 section_size =
5253 convert_to_section_size_type(exidx_input_section->text_size());
5254 }
5255 else
5256 {
5257 // Currently this only happens for a relaxed section.
5258 const Output_relaxed_input_section* poris =
5259 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5260 gold_assert(poris != NULL);
5261 section_start = poris->address();
5262 section_size = convert_to_section_size_type(poris->data_size());
5263 }
5264
5265 // We always append this to the end of an EXIDX section.
5266 Arm_address output_address = section_start + section_size;
5267
5268 // Write out the entry. The first word either points to the beginning
5269 // or after the end of a text section. The second word is the special
5270 // EXIDX_CANTUNWIND value.
5271 uint32_t prel31_offset = output_address - this->address();
5272 if (utils::has_overflow<31>(offset))
5273 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5274 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5275 prel31_offset & 0x7fffffffU);
5276 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5277 elfcpp::EXIDX_CANTUNWIND);
5278
5279 of->write_output_view(this->offset(), oview_size, oview);
5280 }
5281
5282 // Arm_exidx_merged_section methods.
5283
5284 // Constructor for Arm_exidx_merged_section.
5285 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5286 // SECTION_OFFSET_MAP points to a section offset map describing how
5287 // parts of the input section are mapped to output. DELETED_BYTES is
5288 // the number of bytes deleted from the EXIDX input section.
5289
5290 Arm_exidx_merged_section::Arm_exidx_merged_section(
5291 const Arm_exidx_input_section& exidx_input_section,
5292 const Arm_exidx_section_offset_map& section_offset_map,
5293 uint32_t deleted_bytes)
5294 : Output_relaxed_input_section(exidx_input_section.relobj(),
5295 exidx_input_section.shndx(),
5296 exidx_input_section.addralign()),
5297 exidx_input_section_(exidx_input_section),
5298 section_offset_map_(section_offset_map)
5299 {
5300 // If we retain or discard the whole EXIDX input section, we would
5301 // not be here.
5302 gold_assert(deleted_bytes != 0
5303 && deleted_bytes != this->exidx_input_section_.size());
5304
5305 // Fix size here so that we do not need to implement set_final_data_size.
5306 uint32_t size = exidx_input_section.size() - deleted_bytes;
5307 this->set_data_size(size);
5308 this->fix_data_size();
5309
5310 // Allocate buffer for section contents and build contents.
5311 this->section_contents_ = new unsigned char[size];
5312 }
5313
5314 // Build the contents of a merged EXIDX output section.
5315
5316 void
5317 Arm_exidx_merged_section::build_contents(
5318 const unsigned char* original_contents,
5319 section_size_type original_size)
5320 {
5321 // Go over spans of input offsets and write only those that are not
5322 // discarded.
5323 section_offset_type in_start = 0;
5324 section_offset_type out_start = 0;
5325 section_offset_type in_max =
5326 convert_types<section_offset_type>(original_size);
5327 section_offset_type out_max =
5328 convert_types<section_offset_type>(this->data_size());
5329 for (Arm_exidx_section_offset_map::const_iterator p =
5330 this->section_offset_map_.begin();
5331 p != this->section_offset_map_.end();
5332 ++p)
5333 {
5334 section_offset_type in_end = p->first;
5335 gold_assert(in_end >= in_start);
5336 section_offset_type out_end = p->second;
5337 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5338 if (out_end != -1)
5339 {
5340 size_t out_chunk_size =
5341 convert_types<size_t>(out_end - out_start + 1);
5342
5343 gold_assert(out_chunk_size == in_chunk_size
5344 && in_end < in_max && out_end < out_max);
5345
5346 memcpy(this->section_contents_ + out_start,
5347 original_contents + in_start,
5348 out_chunk_size);
5349 out_start += out_chunk_size;
5350 }
5351 in_start += in_chunk_size;
5352 }
5353 }
5354
5355 // Given an input OBJECT, an input section index SHNDX within that
5356 // object, and an OFFSET relative to the start of that input
5357 // section, return whether or not the corresponding offset within
5358 // the output section is known. If this function returns true, it
5359 // sets *POUTPUT to the output offset. The value -1 indicates that
5360 // this input offset is being discarded.
5361
5362 bool
5363 Arm_exidx_merged_section::do_output_offset(
5364 const Relobj* relobj,
5365 unsigned int shndx,
5366 section_offset_type offset,
5367 section_offset_type* poutput) const
5368 {
5369 // We only handle offsets for the original EXIDX input section.
5370 if (relobj != this->exidx_input_section_.relobj()
5371 || shndx != this->exidx_input_section_.shndx())
5372 return false;
5373
5374 section_offset_type section_size =
5375 convert_types<section_offset_type>(this->exidx_input_section_.size());
5376 if (offset < 0 || offset >= section_size)
5377 // Input offset is out of valid range.
5378 *poutput = -1;
5379 else
5380 {
5381 // We need to look up the section offset map to determine the output
5382 // offset. Find the reference point in map that is first offset
5383 // bigger than or equal to this offset.
5384 Arm_exidx_section_offset_map::const_iterator p =
5385 this->section_offset_map_.lower_bound(offset);
5386
5387 // The section offset maps are build such that this should not happen if
5388 // input offset is in the valid range.
5389 gold_assert(p != this->section_offset_map_.end());
5390
5391 // We need to check if this is dropped.
5392 section_offset_type ref = p->first;
5393 section_offset_type mapped_ref = p->second;
5394
5395 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5396 // Offset is present in output.
5397 *poutput = mapped_ref + (offset - ref);
5398 else
5399 // Offset is discarded owing to EXIDX entry merging.
5400 *poutput = -1;
5401 }
5402
5403 return true;
5404 }
5405
5406 // Write this to output file OF.
5407
5408 void
5409 Arm_exidx_merged_section::do_write(Output_file* of)
5410 {
5411 off_t offset = this->offset();
5412 const section_size_type oview_size = this->data_size();
5413 unsigned char* const oview = of->get_output_view(offset, oview_size);
5414
5415 Output_section* os = this->relobj()->output_section(this->shndx());
5416 gold_assert(os != NULL);
5417
5418 memcpy(oview, this->section_contents_, oview_size);
5419 of->write_output_view(this->offset(), oview_size, oview);
5420 }
5421
5422 // Arm_exidx_fixup methods.
5423
5424 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5425 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5426 // points to the end of the last seen EXIDX section.
5427
5428 void
5429 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5430 {
5431 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5432 && this->last_input_section_ != NULL)
5433 {
5434 Relobj* relobj = this->last_input_section_->relobj();
5435 unsigned int text_shndx = this->last_input_section_->link();
5436 Arm_exidx_cantunwind* cantunwind =
5437 new Arm_exidx_cantunwind(relobj, text_shndx);
5438 this->exidx_output_section_->add_output_section_data(cantunwind);
5439 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5440 }
5441 }
5442
5443 // Process an EXIDX section entry in input. Return whether this entry
5444 // can be deleted in the output. SECOND_WORD in the second word of the
5445 // EXIDX entry.
5446
5447 bool
5448 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5449 {
5450 bool delete_entry;
5451 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5452 {
5453 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5454 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5455 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5456 }
5457 else if ((second_word & 0x80000000) != 0)
5458 {
5459 // Inlined unwinding data. Merge if equal to previous.
5460 delete_entry = (merge_exidx_entries_
5461 && this->last_unwind_type_ == UT_INLINED_ENTRY
5462 && this->last_inlined_entry_ == second_word);
5463 this->last_unwind_type_ = UT_INLINED_ENTRY;
5464 this->last_inlined_entry_ = second_word;
5465 }
5466 else
5467 {
5468 // Normal table entry. In theory we could merge these too,
5469 // but duplicate entries are likely to be much less common.
5470 delete_entry = false;
5471 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5472 }
5473 return delete_entry;
5474 }
5475
5476 // Update the current section offset map during EXIDX section fix-up.
5477 // If there is no map, create one. INPUT_OFFSET is the offset of a
5478 // reference point, DELETED_BYTES is the number of deleted by in the
5479 // section so far. If DELETE_ENTRY is true, the reference point and
5480 // all offsets after the previous reference point are discarded.
5481
5482 void
5483 Arm_exidx_fixup::update_offset_map(
5484 section_offset_type input_offset,
5485 section_size_type deleted_bytes,
5486 bool delete_entry)
5487 {
5488 if (this->section_offset_map_ == NULL)
5489 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5490 section_offset_type output_offset;
5491 if (delete_entry)
5492 output_offset = Arm_exidx_input_section::invalid_offset;
5493 else
5494 output_offset = input_offset - deleted_bytes;
5495 (*this->section_offset_map_)[input_offset] = output_offset;
5496 }
5497
5498 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5499 // bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5500 // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5501 // If some entries are merged, also store a pointer to a newly created
5502 // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5503 // owns the map and is responsible for releasing it after use.
5504
5505 template<bool big_endian>
5506 uint32_t
5507 Arm_exidx_fixup::process_exidx_section(
5508 const Arm_exidx_input_section* exidx_input_section,
5509 const unsigned char* section_contents,
5510 section_size_type section_size,
5511 Arm_exidx_section_offset_map** psection_offset_map)
5512 {
5513 Relobj* relobj = exidx_input_section->relobj();
5514 unsigned shndx = exidx_input_section->shndx();
5515
5516 if ((section_size % 8) != 0)
5517 {
5518 // Something is wrong with this section. Better not touch it.
5519 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5520 relobj->name().c_str(), shndx);
5521 this->last_input_section_ = exidx_input_section;
5522 this->last_unwind_type_ = UT_NONE;
5523 return 0;
5524 }
5525
5526 uint32_t deleted_bytes = 0;
5527 bool prev_delete_entry = false;
5528 gold_assert(this->section_offset_map_ == NULL);
5529
5530 for (section_size_type i = 0; i < section_size; i += 8)
5531 {
5532 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5533 const Valtype* wv =
5534 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5535 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5536
5537 bool delete_entry = this->process_exidx_entry(second_word);
5538
5539 // Entry deletion causes changes in output offsets. We use a std::map
5540 // to record these. And entry (x, y) means input offset x
5541 // is mapped to output offset y. If y is invalid_offset, then x is
5542 // dropped in the output. Because of the way std::map::lower_bound
5543 // works, we record the last offset in a region w.r.t to keeping or
5544 // dropping. If there is no entry (x0, y0) for an input offset x0,
5545 // the output offset y0 of it is determined by the output offset y1 of
5546 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5547 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
5548 // y0 is also -1.
5549 if (delete_entry != prev_delete_entry && i != 0)
5550 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5551
5552 // Update total deleted bytes for this entry.
5553 if (delete_entry)
5554 deleted_bytes += 8;
5555
5556 prev_delete_entry = delete_entry;
5557 }
5558
5559 // If section offset map is not NULL, make an entry for the end of
5560 // section.
5561 if (this->section_offset_map_ != NULL)
5562 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5563
5564 *psection_offset_map = this->section_offset_map_;
5565 this->section_offset_map_ = NULL;
5566 this->last_input_section_ = exidx_input_section;
5567
5568 // Set the first output text section so that we can link the EXIDX output
5569 // section to it. Ignore any EXIDX input section that is completely merged.
5570 if (this->first_output_text_section_ == NULL
5571 && deleted_bytes != section_size)
5572 {
5573 unsigned int link = exidx_input_section->link();
5574 Output_section* os = relobj->output_section(link);
5575 gold_assert(os != NULL);
5576 this->first_output_text_section_ = os;
5577 }
5578
5579 return deleted_bytes;
5580 }
5581
5582 // Arm_output_section methods.
5583
5584 // Create a stub group for input sections from BEGIN to END. OWNER
5585 // points to the input section to be the owner a new stub table.
5586
5587 template<bool big_endian>
5588 void
5589 Arm_output_section<big_endian>::create_stub_group(
5590 Input_section_list::const_iterator begin,
5591 Input_section_list::const_iterator end,
5592 Input_section_list::const_iterator owner,
5593 Target_arm<big_endian>* target,
5594 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5595 const Task* task)
5596 {
5597 // We use a different kind of relaxed section in an EXIDX section.
5598 // The static casting from Output_relaxed_input_section to
5599 // Arm_input_section is invalid in an EXIDX section. We are okay
5600 // because we should not be calling this for an EXIDX section.
5601 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5602
5603 // Currently we convert ordinary input sections into relaxed sections only
5604 // at this point but we may want to support creating relaxed input section
5605 // very early. So we check here to see if owner is already a relaxed
5606 // section.
5607
5608 Arm_input_section<big_endian>* arm_input_section;
5609 if (owner->is_relaxed_input_section())
5610 {
5611 arm_input_section =
5612 Arm_input_section<big_endian>::as_arm_input_section(
5613 owner->relaxed_input_section());
5614 }
5615 else
5616 {
5617 gold_assert(owner->is_input_section());
5618 // Create a new relaxed input section. We need to lock the original
5619 // file.
5620 Task_lock_obj<Object> tl(task, owner->relobj());
5621 arm_input_section =
5622 target->new_arm_input_section(owner->relobj(), owner->shndx());
5623 new_relaxed_sections->push_back(arm_input_section);
5624 }
5625
5626 // Create a stub table.
5627 Stub_table<big_endian>* stub_table =
5628 target->new_stub_table(arm_input_section);
5629
5630 arm_input_section->set_stub_table(stub_table);
5631
5632 Input_section_list::const_iterator p = begin;
5633 Input_section_list::const_iterator prev_p;
5634
5635 // Look for input sections or relaxed input sections in [begin ... end].
5636 do
5637 {
5638 if (p->is_input_section() || p->is_relaxed_input_section())
5639 {
5640 // The stub table information for input sections live
5641 // in their objects.
5642 Arm_relobj<big_endian>* arm_relobj =
5643 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5644 arm_relobj->set_stub_table(p->shndx(), stub_table);
5645 }
5646 prev_p = p++;
5647 }
5648 while (prev_p != end);
5649 }
5650
5651 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5652 // of stub groups. We grow a stub group by adding input section until the
5653 // size is just below GROUP_SIZE. The last input section will be converted
5654 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5655 // input section after the stub table, effectively double the group size.
5656 //
5657 // This is similar to the group_sections() function in elf32-arm.c but is
5658 // implemented differently.
5659
5660 template<bool big_endian>
5661 void
5662 Arm_output_section<big_endian>::group_sections(
5663 section_size_type group_size,
5664 bool stubs_always_after_branch,
5665 Target_arm<big_endian>* target,
5666 const Task* task)
5667 {
5668 // We only care about sections containing code.
5669 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5670 return;
5671
5672 // States for grouping.
5673 typedef enum
5674 {
5675 // No group is being built.
5676 NO_GROUP,
5677 // A group is being built but the stub table is not found yet.
5678 // We keep group a stub group until the size is just under GROUP_SIZE.
5679 // The last input section in the group will be used as the stub table.
5680 FINDING_STUB_SECTION,
5681 // A group is being built and we have already found a stub table.
5682 // We enter this state to grow a stub group by adding input section
5683 // after the stub table. This effectively doubles the group size.
5684 HAS_STUB_SECTION
5685 } State;
5686
5687 // Any newly created relaxed sections are stored here.
5688 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5689
5690 State state = NO_GROUP;
5691 section_size_type off = 0;
5692 section_size_type group_begin_offset = 0;
5693 section_size_type group_end_offset = 0;
5694 section_size_type stub_table_end_offset = 0;
5695 Input_section_list::const_iterator group_begin =
5696 this->input_sections().end();
5697 Input_section_list::const_iterator stub_table =
5698 this->input_sections().end();
5699 Input_section_list::const_iterator group_end = this->input_sections().end();
5700 for (Input_section_list::const_iterator p = this->input_sections().begin();
5701 p != this->input_sections().end();
5702 ++p)
5703 {
5704 section_size_type section_begin_offset =
5705 align_address(off, p->addralign());
5706 section_size_type section_end_offset =
5707 section_begin_offset + p->data_size();
5708
5709 // Check to see if we should group the previously seen sections.
5710 switch (state)
5711 {
5712 case NO_GROUP:
5713 break;
5714
5715 case FINDING_STUB_SECTION:
5716 // Adding this section makes the group larger than GROUP_SIZE.
5717 if (section_end_offset - group_begin_offset >= group_size)
5718 {
5719 if (stubs_always_after_branch)
5720 {
5721 gold_assert(group_end != this->input_sections().end());
5722 this->create_stub_group(group_begin, group_end, group_end,
5723 target, &new_relaxed_sections,
5724 task);
5725 state = NO_GROUP;
5726 }
5727 else
5728 {
5729 // But wait, there's more! Input sections up to
5730 // stub_group_size bytes after the stub table can be
5731 // handled by it too.
5732 state = HAS_STUB_SECTION;
5733 stub_table = group_end;
5734 stub_table_end_offset = group_end_offset;
5735 }
5736 }
5737 break;
5738
5739 case HAS_STUB_SECTION:
5740 // Adding this section makes the post stub-section group larger
5741 // than GROUP_SIZE.
5742 if (section_end_offset - stub_table_end_offset >= group_size)
5743 {
5744 gold_assert(group_end != this->input_sections().end());
5745 this->create_stub_group(group_begin, group_end, stub_table,
5746 target, &new_relaxed_sections, task);
5747 state = NO_GROUP;
5748 }
5749 break;
5750
5751 default:
5752 gold_unreachable();
5753 }
5754
5755 // If we see an input section and currently there is no group, start
5756 // a new one. Skip any empty sections. We look at the data size
5757 // instead of calling p->relobj()->section_size() to avoid locking.
5758 if ((p->is_input_section() || p->is_relaxed_input_section())
5759 && (p->data_size() != 0))
5760 {
5761 if (state == NO_GROUP)
5762 {
5763 state = FINDING_STUB_SECTION;
5764 group_begin = p;
5765 group_begin_offset = section_begin_offset;
5766 }
5767
5768 // Keep track of the last input section seen.
5769 group_end = p;
5770 group_end_offset = section_end_offset;
5771 }
5772
5773 off = section_end_offset;
5774 }
5775
5776 // Create a stub group for any ungrouped sections.
5777 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5778 {
5779 gold_assert(group_end != this->input_sections().end());
5780 this->create_stub_group(group_begin, group_end,
5781 (state == FINDING_STUB_SECTION
5782 ? group_end
5783 : stub_table),
5784 target, &new_relaxed_sections, task);
5785 }
5786
5787 // Convert input section into relaxed input section in a batch.
5788 if (!new_relaxed_sections.empty())
5789 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5790
5791 // Update the section offsets
5792 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5793 {
5794 Arm_relobj<big_endian>* arm_relobj =
5795 Arm_relobj<big_endian>::as_arm_relobj(
5796 new_relaxed_sections[i]->relobj());
5797 unsigned int shndx = new_relaxed_sections[i]->shndx();
5798 // Tell Arm_relobj that this input section is converted.
5799 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5800 }
5801 }
5802
5803 // Append non empty text sections in this to LIST in ascending
5804 // order of their position in this.
5805
5806 template<bool big_endian>
5807 void
5808 Arm_output_section<big_endian>::append_text_sections_to_list(
5809 Text_section_list* list)
5810 {
5811 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5812
5813 for (Input_section_list::const_iterator p = this->input_sections().begin();
5814 p != this->input_sections().end();
5815 ++p)
5816 {
5817 // We only care about plain or relaxed input sections. We also
5818 // ignore any merged sections.
5819 if (p->is_input_section() || p->is_relaxed_input_section())
5820 list->push_back(Text_section_list::value_type(p->relobj(),
5821 p->shndx()));
5822 }
5823 }
5824
5825 template<bool big_endian>
5826 void
5827 Arm_output_section<big_endian>::fix_exidx_coverage(
5828 Layout* layout,
5829 const Text_section_list& sorted_text_sections,
5830 Symbol_table* symtab,
5831 bool merge_exidx_entries,
5832 const Task* task)
5833 {
5834 // We should only do this for the EXIDX output section.
5835 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5836
5837 // We don't want the relaxation loop to undo these changes, so we discard
5838 // the current saved states and take another one after the fix-up.
5839 this->discard_states();
5840
5841 // Remove all input sections.
5842 uint64_t address = this->address();
5843 typedef std::list<Output_section::Input_section> Input_section_list;
5844 Input_section_list input_sections;
5845 this->reset_address_and_file_offset();
5846 this->get_input_sections(address, std::string(""), &input_sections);
5847
5848 if (!this->input_sections().empty())
5849 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5850
5851 // Go through all the known input sections and record them.
5852 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5853 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5854 Section_id_hash> Text_to_exidx_map;
5855 Text_to_exidx_map text_to_exidx_map;
5856 for (Input_section_list::const_iterator p = input_sections.begin();
5857 p != input_sections.end();
5858 ++p)
5859 {
5860 // This should never happen. At this point, we should only see
5861 // plain EXIDX input sections.
5862 gold_assert(!p->is_relaxed_input_section());
5863 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5864 }
5865
5866 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5867
5868 // Go over the sorted text sections.
5869 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5870 Section_id_set processed_input_sections;
5871 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5872 p != sorted_text_sections.end();
5873 ++p)
5874 {
5875 Relobj* relobj = p->first;
5876 unsigned int shndx = p->second;
5877
5878 Arm_relobj<big_endian>* arm_relobj =
5879 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5880 const Arm_exidx_input_section* exidx_input_section =
5881 arm_relobj->exidx_input_section_by_link(shndx);
5882
5883 // If this text section has no EXIDX section or if the EXIDX section
5884 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5885 // of the last seen EXIDX section.
5886 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5887 {
5888 exidx_fixup.add_exidx_cantunwind_as_needed();
5889 continue;
5890 }
5891
5892 Relobj* exidx_relobj = exidx_input_section->relobj();
5893 unsigned int exidx_shndx = exidx_input_section->shndx();
5894 Section_id sid(exidx_relobj, exidx_shndx);
5895 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5896 if (iter == text_to_exidx_map.end())
5897 {
5898 // This is odd. We have not seen this EXIDX input section before.
5899 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5900 // issue a warning instead. We assume the user knows what he
5901 // or she is doing. Otherwise, this is an error.
5902 if (layout->script_options()->saw_sections_clause())
5903 gold_warning(_("unwinding may not work because EXIDX input section"
5904 " %u of %s is not in EXIDX output section"),
5905 exidx_shndx, exidx_relobj->name().c_str());
5906 else
5907 gold_error(_("unwinding may not work because EXIDX input section"
5908 " %u of %s is not in EXIDX output section"),
5909 exidx_shndx, exidx_relobj->name().c_str());
5910
5911 exidx_fixup.add_exidx_cantunwind_as_needed();
5912 continue;
5913 }
5914
5915 // We need to access the contents of the EXIDX section, lock the
5916 // object here.
5917 Task_lock_obj<Object> tl(task, exidx_relobj);
5918 section_size_type exidx_size;
5919 const unsigned char* exidx_contents =
5920 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5921
5922 // Fix up coverage and append input section to output data list.
5923 Arm_exidx_section_offset_map* section_offset_map = NULL;
5924 uint32_t deleted_bytes =
5925 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5926 exidx_contents,
5927 exidx_size,
5928 &section_offset_map);
5929
5930 if (deleted_bytes == exidx_input_section->size())
5931 {
5932 // The whole EXIDX section got merged. Remove it from output.
5933 gold_assert(section_offset_map == NULL);
5934 exidx_relobj->set_output_section(exidx_shndx, NULL);
5935
5936 // All local symbols defined in this input section will be dropped.
5937 // We need to adjust output local symbol count.
5938 arm_relobj->set_output_local_symbol_count_needs_update();
5939 }
5940 else if (deleted_bytes > 0)
5941 {
5942 // Some entries are merged. We need to convert this EXIDX input
5943 // section into a relaxed section.
5944 gold_assert(section_offset_map != NULL);
5945
5946 Arm_exidx_merged_section* merged_section =
5947 new Arm_exidx_merged_section(*exidx_input_section,
5948 *section_offset_map, deleted_bytes);
5949 merged_section->build_contents(exidx_contents, exidx_size);
5950
5951 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5952 this->add_relaxed_input_section(layout, merged_section, secname);
5953 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5954
5955 // All local symbols defined in discarded portions of this input
5956 // section will be dropped. We need to adjust output local symbol
5957 // count.
5958 arm_relobj->set_output_local_symbol_count_needs_update();
5959 }
5960 else
5961 {
5962 // Just add back the EXIDX input section.
5963 gold_assert(section_offset_map == NULL);
5964 const Output_section::Input_section* pis = iter->second;
5965 gold_assert(pis->is_input_section());
5966 this->add_script_input_section(*pis);
5967 }
5968
5969 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5970 }
5971
5972 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5973 exidx_fixup.add_exidx_cantunwind_as_needed();
5974
5975 // Remove any known EXIDX input sections that are not processed.
5976 for (Input_section_list::const_iterator p = input_sections.begin();
5977 p != input_sections.end();
5978 ++p)
5979 {
5980 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5981 == processed_input_sections.end())
5982 {
5983 // We discard a known EXIDX section because its linked
5984 // text section has been folded by ICF. We also discard an
5985 // EXIDX section with error, the output does not matter in this
5986 // case. We do this to avoid triggering asserts.
5987 Arm_relobj<big_endian>* arm_relobj =
5988 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5989 const Arm_exidx_input_section* exidx_input_section =
5990 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5991 gold_assert(exidx_input_section != NULL);
5992 if (!exidx_input_section->has_errors())
5993 {
5994 unsigned int text_shndx = exidx_input_section->link();
5995 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5996 }
5997
5998 // Remove this from link. We also need to recount the
5999 // local symbols.
6000 p->relobj()->set_output_section(p->shndx(), NULL);
6001 arm_relobj->set_output_local_symbol_count_needs_update();
6002 }
6003 }
6004
6005 // Link exidx output section to the first seen output section and
6006 // set correct entry size.
6007 this->set_link_section(exidx_fixup.first_output_text_section());
6008 this->set_entsize(8);
6009
6010 // Make changes permanent.
6011 this->save_states();
6012 this->set_section_offsets_need_adjustment();
6013 }
6014
6015 // Link EXIDX output sections to text output sections.
6016
6017 template<bool big_endian>
6018 void
6019 Arm_output_section<big_endian>::set_exidx_section_link()
6020 {
6021 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6022 if (!this->input_sections().empty())
6023 {
6024 Input_section_list::const_iterator p = this->input_sections().begin();
6025 Arm_relobj<big_endian>* arm_relobj =
6026 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6027 unsigned exidx_shndx = p->shndx();
6028 const Arm_exidx_input_section* exidx_input_section =
6029 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6030 gold_assert(exidx_input_section != NULL);
6031 unsigned int text_shndx = exidx_input_section->link();
6032 Output_section* os = arm_relobj->output_section(text_shndx);
6033 this->set_link_section(os);
6034 }
6035 }
6036
6037 // Arm_relobj methods.
6038
6039 // Determine if an input section is scannable for stub processing. SHDR is
6040 // the header of the section and SHNDX is the section index. OS is the output
6041 // section for the input section and SYMTAB is the global symbol table used to
6042 // look up ICF information.
6043
6044 template<bool big_endian>
6045 bool
6046 Arm_relobj<big_endian>::section_is_scannable(
6047 const elfcpp::Shdr<32, big_endian>& shdr,
6048 unsigned int shndx,
6049 const Output_section* os,
6050 const Symbol_table* symtab)
6051 {
6052 // Skip any empty sections, unallocated sections or sections whose
6053 // type are not SHT_PROGBITS.
6054 if (shdr.get_sh_size() == 0
6055 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6056 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6057 return false;
6058
6059 // Skip any discarded or ICF'ed sections.
6060 if (os == NULL || symtab->is_section_folded(this, shndx))
6061 return false;
6062
6063 // If this requires special offset handling, check to see if it is
6064 // a relaxed section. If this is not, then it is a merged section that
6065 // we cannot handle.
6066 if (this->is_output_section_offset_invalid(shndx))
6067 {
6068 const Output_relaxed_input_section* poris =
6069 os->find_relaxed_input_section(this, shndx);
6070 if (poris == NULL)
6071 return false;
6072 }
6073
6074 return true;
6075 }
6076
6077 // Determine if we want to scan the SHNDX-th section for relocation stubs.
6078 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6079
6080 template<bool big_endian>
6081 bool
6082 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6083 const elfcpp::Shdr<32, big_endian>& shdr,
6084 const Relobj::Output_sections& out_sections,
6085 const Symbol_table* symtab,
6086 const unsigned char* pshdrs)
6087 {
6088 unsigned int sh_type = shdr.get_sh_type();
6089 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6090 return false;
6091
6092 // Ignore empty section.
6093 off_t sh_size = shdr.get_sh_size();
6094 if (sh_size == 0)
6095 return false;
6096
6097 // Ignore reloc section with unexpected symbol table. The
6098 // error will be reported in the final link.
6099 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6100 return false;
6101
6102 unsigned int reloc_size;
6103 if (sh_type == elfcpp::SHT_REL)
6104 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6105 else
6106 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6107
6108 // Ignore reloc section with unexpected entsize or uneven size.
6109 // The error will be reported in the final link.
6110 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6111 return false;
6112
6113 // Ignore reloc section with bad info. This error will be
6114 // reported in the final link.
6115 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6116 if (index >= this->shnum())
6117 return false;
6118
6119 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6120 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6121 return this->section_is_scannable(text_shdr, index,
6122 out_sections[index], symtab);
6123 }
6124
6125 // Return the output address of either a plain input section or a relaxed
6126 // input section. SHNDX is the section index. We define and use this
6127 // instead of calling Output_section::output_address because that is slow
6128 // for large output.
6129
6130 template<bool big_endian>
6131 Arm_address
6132 Arm_relobj<big_endian>::simple_input_section_output_address(
6133 unsigned int shndx,
6134 Output_section* os)
6135 {
6136 if (this->is_output_section_offset_invalid(shndx))
6137 {
6138 const Output_relaxed_input_section* poris =
6139 os->find_relaxed_input_section(this, shndx);
6140 // We do not handle merged sections here.
6141 gold_assert(poris != NULL);
6142 return poris->address();
6143 }
6144 else
6145 return os->address() + this->get_output_section_offset(shndx);
6146 }
6147
6148 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6149 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6150
6151 template<bool big_endian>
6152 bool
6153 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6154 const elfcpp::Shdr<32, big_endian>& shdr,
6155 unsigned int shndx,
6156 Output_section* os,
6157 const Symbol_table* symtab)
6158 {
6159 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6160 return false;
6161
6162 // If the section does not cross any 4K-boundaries, it does not need to
6163 // be scanned.
6164 Arm_address address = this->simple_input_section_output_address(shndx, os);
6165 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6166 return false;
6167
6168 return true;
6169 }
6170
6171 // Scan a section for Cortex-A8 workaround.
6172
6173 template<bool big_endian>
6174 void
6175 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6176 const elfcpp::Shdr<32, big_endian>& shdr,
6177 unsigned int shndx,
6178 Output_section* os,
6179 Target_arm<big_endian>* arm_target)
6180 {
6181 // Look for the first mapping symbol in this section. It should be
6182 // at (shndx, 0).
6183 Mapping_symbol_position section_start(shndx, 0);
6184 typename Mapping_symbols_info::const_iterator p =
6185 this->mapping_symbols_info_.lower_bound(section_start);
6186
6187 // There are no mapping symbols for this section. Treat it as a data-only
6188 // section. Issue a warning if section is marked as containing
6189 // instructions.
6190 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6191 {
6192 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6193 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6194 "erratum because it has no mapping symbols."),
6195 shndx, this->name().c_str());
6196 return;
6197 }
6198
6199 Arm_address output_address =
6200 this->simple_input_section_output_address(shndx, os);
6201
6202 // Get the section contents.
6203 section_size_type input_view_size = 0;
6204 const unsigned char* input_view =
6205 this->section_contents(shndx, &input_view_size, false);
6206
6207 // We need to go through the mapping symbols to determine what to
6208 // scan. There are two reasons. First, we should look at THUMB code and
6209 // THUMB code only. Second, we only want to look at the 4K-page boundary
6210 // to speed up the scanning.
6211
6212 while (p != this->mapping_symbols_info_.end()
6213 && p->first.first == shndx)
6214 {
6215 typename Mapping_symbols_info::const_iterator next =
6216 this->mapping_symbols_info_.upper_bound(p->first);
6217
6218 // Only scan part of a section with THUMB code.
6219 if (p->second == 't')
6220 {
6221 // Determine the end of this range.
6222 section_size_type span_start =
6223 convert_to_section_size_type(p->first.second);
6224 section_size_type span_end;
6225 if (next != this->mapping_symbols_info_.end()
6226 && next->first.first == shndx)
6227 span_end = convert_to_section_size_type(next->first.second);
6228 else
6229 span_end = convert_to_section_size_type(shdr.get_sh_size());
6230
6231 if (((span_start + output_address) & ~0xfffUL)
6232 != ((span_end + output_address - 1) & ~0xfffUL))
6233 {
6234 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6235 span_start, span_end,
6236 input_view,
6237 output_address);
6238 }
6239 }
6240
6241 p = next;
6242 }
6243 }
6244
6245 // Scan relocations for stub generation.
6246
6247 template<bool big_endian>
6248 void
6249 Arm_relobj<big_endian>::scan_sections_for_stubs(
6250 Target_arm<big_endian>* arm_target,
6251 const Symbol_table* symtab,
6252 const Layout* layout)
6253 {
6254 unsigned int shnum = this->shnum();
6255 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6256
6257 // Read the section headers.
6258 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6259 shnum * shdr_size,
6260 true, true);
6261
6262 // To speed up processing, we set up hash tables for fast lookup of
6263 // input offsets to output addresses.
6264 this->initialize_input_to_output_maps();
6265
6266 const Relobj::Output_sections& out_sections(this->output_sections());
6267
6268 Relocate_info<32, big_endian> relinfo;
6269 relinfo.symtab = symtab;
6270 relinfo.layout = layout;
6271 relinfo.object = this;
6272
6273 // Do relocation stubs scanning.
6274 const unsigned char* p = pshdrs + shdr_size;
6275 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6276 {
6277 const elfcpp::Shdr<32, big_endian> shdr(p);
6278 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6279 pshdrs))
6280 {
6281 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6282 Arm_address output_offset = this->get_output_section_offset(index);
6283 Arm_address output_address;
6284 if (output_offset != invalid_address)
6285 output_address = out_sections[index]->address() + output_offset;
6286 else
6287 {
6288 // Currently this only happens for a relaxed section.
6289 const Output_relaxed_input_section* poris =
6290 out_sections[index]->find_relaxed_input_section(this, index);
6291 gold_assert(poris != NULL);
6292 output_address = poris->address();
6293 }
6294
6295 // Get the relocations.
6296 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6297 shdr.get_sh_size(),
6298 true, false);
6299
6300 // Get the section contents. This does work for the case in which
6301 // we modify the contents of an input section. We need to pass the
6302 // output view under such circumstances.
6303 section_size_type input_view_size = 0;
6304 const unsigned char* input_view =
6305 this->section_contents(index, &input_view_size, false);
6306
6307 relinfo.reloc_shndx = i;
6308 relinfo.data_shndx = index;
6309 unsigned int sh_type = shdr.get_sh_type();
6310 unsigned int reloc_size;
6311 if (sh_type == elfcpp::SHT_REL)
6312 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6313 else
6314 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6315
6316 Output_section* os = out_sections[index];
6317 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6318 shdr.get_sh_size() / reloc_size,
6319 os,
6320 output_offset == invalid_address,
6321 input_view, output_address,
6322 input_view_size);
6323 }
6324 }
6325
6326 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6327 // after its relocation section, if there is one, is processed for
6328 // relocation stubs. Merging this loop with the one above would have been
6329 // complicated since we would have had to make sure that relocation stub
6330 // scanning is done first.
6331 if (arm_target->fix_cortex_a8())
6332 {
6333 const unsigned char* p = pshdrs + shdr_size;
6334 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6335 {
6336 const elfcpp::Shdr<32, big_endian> shdr(p);
6337 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6338 out_sections[i],
6339 symtab))
6340 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6341 arm_target);
6342 }
6343 }
6344
6345 // After we've done the relocations, we release the hash tables,
6346 // since we no longer need them.
6347 this->free_input_to_output_maps();
6348 }
6349
6350 // Count the local symbols. The ARM backend needs to know if a symbol
6351 // is a THUMB function or not. For global symbols, it is easy because
6352 // the Symbol object keeps the ELF symbol type. For local symbol it is
6353 // harder because we cannot access this information. So we override the
6354 // do_count_local_symbol in parent and scan local symbols to mark
6355 // THUMB functions. This is not the most efficient way but I do not want to
6356 // slow down other ports by calling a per symbol target hook inside
6357 // Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6358
6359 template<bool big_endian>
6360 void
6361 Arm_relobj<big_endian>::do_count_local_symbols(
6362 Stringpool_template<char>* pool,
6363 Stringpool_template<char>* dynpool)
6364 {
6365 // We need to fix-up the values of any local symbols whose type are
6366 // STT_ARM_TFUNC.
6367
6368 // Ask parent to count the local symbols.
6369 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6370 const unsigned int loccount = this->local_symbol_count();
6371 if (loccount == 0)
6372 return;
6373
6374 // Initialize the thumb function bit-vector.
6375 std::vector<bool> empty_vector(loccount, false);
6376 this->local_symbol_is_thumb_function_.swap(empty_vector);
6377
6378 // Read the symbol table section header.
6379 const unsigned int symtab_shndx = this->symtab_shndx();
6380 elfcpp::Shdr<32, big_endian>
6381 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6382 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6383
6384 // Read the local symbols.
6385 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6386 gold_assert(loccount == symtabshdr.get_sh_info());
6387 off_t locsize = loccount * sym_size;
6388 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6389 locsize, true, true);
6390
6391 // For mapping symbol processing, we need to read the symbol names.
6392 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6393 if (strtab_shndx >= this->shnum())
6394 {
6395 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6396 return;
6397 }
6398
6399 elfcpp::Shdr<32, big_endian>
6400 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6401 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6402 {
6403 this->error(_("symbol table name section has wrong type: %u"),
6404 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6405 return;
6406 }
6407 const char* pnames =
6408 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6409 strtabshdr.get_sh_size(),
6410 false, false));
6411
6412 // Loop over the local symbols and mark any local symbols pointing
6413 // to THUMB functions.
6414
6415 // Skip the first dummy symbol.
6416 psyms += sym_size;
6417 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6418 this->local_values();
6419 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6420 {
6421 elfcpp::Sym<32, big_endian> sym(psyms);
6422 elfcpp::STT st_type = sym.get_st_type();
6423 Symbol_value<32>& lv((*plocal_values)[i]);
6424 Arm_address input_value = lv.input_value();
6425
6426 // Check to see if this is a mapping symbol.
6427 const char* sym_name = pnames + sym.get_st_name();
6428 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6429 {
6430 bool is_ordinary;
6431 unsigned int input_shndx =
6432 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6433 gold_assert(is_ordinary);
6434
6435 // Strip of LSB in case this is a THUMB symbol.
6436 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6437 this->mapping_symbols_info_[msp] = sym_name[1];
6438 }
6439
6440 if (st_type == elfcpp::STT_ARM_TFUNC
6441 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6442 {
6443 // This is a THUMB function. Mark this and canonicalize the
6444 // symbol value by setting LSB.
6445 this->local_symbol_is_thumb_function_[i] = true;
6446 if ((input_value & 1) == 0)
6447 lv.set_input_value(input_value | 1);
6448 }
6449 }
6450 }
6451
6452 // Relocate sections.
6453 template<bool big_endian>
6454 void
6455 Arm_relobj<big_endian>::do_relocate_sections(
6456 const Symbol_table* symtab,
6457 const Layout* layout,
6458 const unsigned char* pshdrs,
6459 Output_file* of,
6460 typename Sized_relobj_file<32, big_endian>::Views* pviews)
6461 {
6462 // Call parent to relocate sections.
6463 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6464 pshdrs, of, pviews);
6465
6466 // We do not generate stubs if doing a relocatable link.
6467 if (parameters->options().relocatable())
6468 return;
6469
6470 // Relocate stub tables.
6471 unsigned int shnum = this->shnum();
6472
6473 Target_arm<big_endian>* arm_target =
6474 Target_arm<big_endian>::default_target();
6475
6476 Relocate_info<32, big_endian> relinfo;
6477 relinfo.symtab = symtab;
6478 relinfo.layout = layout;
6479 relinfo.object = this;
6480
6481 for (unsigned int i = 1; i < shnum; ++i)
6482 {
6483 Arm_input_section<big_endian>* arm_input_section =
6484 arm_target->find_arm_input_section(this, i);
6485
6486 if (arm_input_section != NULL
6487 && arm_input_section->is_stub_table_owner()
6488 && !arm_input_section->stub_table()->empty())
6489 {
6490 // We cannot discard a section if it owns a stub table.
6491 Output_section* os = this->output_section(i);
6492 gold_assert(os != NULL);
6493
6494 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6495 relinfo.reloc_shdr = NULL;
6496 relinfo.data_shndx = i;
6497 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6498
6499 gold_assert((*pviews)[i].view != NULL);
6500
6501 // We are passed the output section view. Adjust it to cover the
6502 // stub table only.
6503 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6504 gold_assert((stub_table->address() >= (*pviews)[i].address)
6505 && ((stub_table->address() + stub_table->data_size())
6506 <= (*pviews)[i].address + (*pviews)[i].view_size));
6507
6508 off_t offset = stub_table->address() - (*pviews)[i].address;
6509 unsigned char* view = (*pviews)[i].view + offset;
6510 Arm_address address = stub_table->address();
6511 section_size_type view_size = stub_table->data_size();
6512
6513 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6514 view_size);
6515 }
6516
6517 // Apply Cortex A8 workaround if applicable.
6518 if (this->section_has_cortex_a8_workaround(i))
6519 {
6520 unsigned char* view = (*pviews)[i].view;
6521 Arm_address view_address = (*pviews)[i].address;
6522 section_size_type view_size = (*pviews)[i].view_size;
6523 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6524
6525 // Adjust view to cover section.
6526 Output_section* os = this->output_section(i);
6527 gold_assert(os != NULL);
6528 Arm_address section_address =
6529 this->simple_input_section_output_address(i, os);
6530 uint64_t section_size = this->section_size(i);
6531
6532 gold_assert(section_address >= view_address
6533 && ((section_address + section_size)
6534 <= (view_address + view_size)));
6535
6536 unsigned char* section_view = view + (section_address - view_address);
6537
6538 // Apply the Cortex-A8 workaround to the output address range
6539 // corresponding to this input section.
6540 stub_table->apply_cortex_a8_workaround_to_address_range(
6541 arm_target,
6542 section_view,
6543 section_address,
6544 section_size);
6545 }
6546 }
6547 }
6548
6549 // Find the linked text section of an EXIDX section by looking at the first
6550 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6551 // must be linked to its associated code section via the sh_link field of
6552 // its section header. However, some tools are broken and the link is not
6553 // always set. LD just drops such an EXIDX section silently, causing the
6554 // associated code not unwindabled. Here we try a little bit harder to
6555 // discover the linked code section.
6556 //
6557 // PSHDR points to the section header of a relocation section of an EXIDX
6558 // section. If we can find a linked text section, return true and
6559 // store the text section index in the location PSHNDX. Otherwise
6560 // return false.
6561
6562 template<bool big_endian>
6563 bool
6564 Arm_relobj<big_endian>::find_linked_text_section(
6565 const unsigned char* pshdr,
6566 const unsigned char* psyms,
6567 unsigned int* pshndx)
6568 {
6569 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6570
6571 // If there is no relocation, we cannot find the linked text section.
6572 size_t reloc_size;
6573 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6574 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6575 else
6576 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6577 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6578
6579 // Get the relocations.
6580 const unsigned char* prelocs =
6581 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6582
6583 // Find the REL31 relocation for the first word of the first EXIDX entry.
6584 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6585 {
6586 Arm_address r_offset;
6587 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6588 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6589 {
6590 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6591 r_info = reloc.get_r_info();
6592 r_offset = reloc.get_r_offset();
6593 }
6594 else
6595 {
6596 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6597 r_info = reloc.get_r_info();
6598 r_offset = reloc.get_r_offset();
6599 }
6600
6601 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6602 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6603 continue;
6604
6605 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6606 if (r_sym == 0
6607 || r_sym >= this->local_symbol_count()
6608 || r_offset != 0)
6609 continue;
6610
6611 // This is the relocation for the first word of the first EXIDX entry.
6612 // We expect to see a local section symbol.
6613 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6614 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6615 if (sym.get_st_type() == elfcpp::STT_SECTION)
6616 {
6617 bool is_ordinary;
6618 *pshndx =
6619 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6620 gold_assert(is_ordinary);
6621 return true;
6622 }
6623 else
6624 return false;
6625 }
6626
6627 return false;
6628 }
6629
6630 // Make an EXIDX input section object for an EXIDX section whose index is
6631 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6632 // is the section index of the linked text section.
6633
6634 template<bool big_endian>
6635 void
6636 Arm_relobj<big_endian>::make_exidx_input_section(
6637 unsigned int shndx,
6638 const elfcpp::Shdr<32, big_endian>& shdr,
6639 unsigned int text_shndx,
6640 const elfcpp::Shdr<32, big_endian>& text_shdr)
6641 {
6642 // Create an Arm_exidx_input_section object for this EXIDX section.
6643 Arm_exidx_input_section* exidx_input_section =
6644 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6645 shdr.get_sh_addralign(),
6646 text_shdr.get_sh_size());
6647
6648 gold_assert(this->exidx_section_map_[shndx] == NULL);
6649 this->exidx_section_map_[shndx] = exidx_input_section;
6650
6651 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6652 {
6653 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6654 this->section_name(shndx).c_str(), shndx, text_shndx,
6655 this->name().c_str());
6656 exidx_input_section->set_has_errors();
6657 }
6658 else if (this->exidx_section_map_[text_shndx] != NULL)
6659 {
6660 unsigned other_exidx_shndx =
6661 this->exidx_section_map_[text_shndx]->shndx();
6662 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6663 "%s(%u) in %s"),
6664 this->section_name(shndx).c_str(), shndx,
6665 this->section_name(other_exidx_shndx).c_str(),
6666 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6667 text_shndx, this->name().c_str());
6668 exidx_input_section->set_has_errors();
6669 }
6670 else
6671 this->exidx_section_map_[text_shndx] = exidx_input_section;
6672
6673 // Check section flags of text section.
6674 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6675 {
6676 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6677 " in %s"),
6678 this->section_name(shndx).c_str(), shndx,
6679 this->section_name(text_shndx).c_str(), text_shndx,
6680 this->name().c_str());
6681 exidx_input_section->set_has_errors();
6682 }
6683 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6684 // I would like to make this an error but currently ld just ignores
6685 // this.
6686 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6687 "%s(%u) in %s"),
6688 this->section_name(shndx).c_str(), shndx,
6689 this->section_name(text_shndx).c_str(), text_shndx,
6690 this->name().c_str());
6691 }
6692
6693 // Read the symbol information.
6694
6695 template<bool big_endian>
6696 void
6697 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6698 {
6699 // Call parent class to read symbol information.
6700 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6701
6702 // If this input file is a binary file, it has no processor
6703 // specific flags and attributes section.
6704 Input_file::Format format = this->input_file()->format();
6705 if (format != Input_file::FORMAT_ELF)
6706 {
6707 gold_assert(format == Input_file::FORMAT_BINARY);
6708 this->merge_flags_and_attributes_ = false;
6709 return;
6710 }
6711
6712 // Read processor-specific flags in ELF file header.
6713 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6714 elfcpp::Elf_sizes<32>::ehdr_size,
6715 true, false);
6716 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6717 this->processor_specific_flags_ = ehdr.get_e_flags();
6718
6719 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6720 // sections.
6721 std::vector<unsigned int> deferred_exidx_sections;
6722 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6723 const unsigned char* pshdrs = sd->section_headers->data();
6724 const unsigned char* ps = pshdrs + shdr_size;
6725 bool must_merge_flags_and_attributes = false;
6726 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6727 {
6728 elfcpp::Shdr<32, big_endian> shdr(ps);
6729
6730 // Sometimes an object has no contents except the section name string
6731 // table and an empty symbol table with the undefined symbol. We
6732 // don't want to merge processor-specific flags from such an object.
6733 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6734 {
6735 // Symbol table is not empty.
6736 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6737 elfcpp::Elf_sizes<32>::sym_size;
6738 if (shdr.get_sh_size() > sym_size)
6739 must_merge_flags_and_attributes = true;
6740 }
6741 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6742 // If this is neither an empty symbol table nor a string table,
6743 // be conservative.
6744 must_merge_flags_and_attributes = true;
6745
6746 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6747 {
6748 gold_assert(this->attributes_section_data_ == NULL);
6749 section_offset_type section_offset = shdr.get_sh_offset();
6750 section_size_type section_size =
6751 convert_to_section_size_type(shdr.get_sh_size());
6752 const unsigned char* view =
6753 this->get_view(section_offset, section_size, true, false);
6754 this->attributes_section_data_ =
6755 new Attributes_section_data(view, section_size);
6756 }
6757 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6758 {
6759 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6760 if (text_shndx == elfcpp::SHN_UNDEF)
6761 deferred_exidx_sections.push_back(i);
6762 else
6763 {
6764 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6765 + text_shndx * shdr_size);
6766 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6767 }
6768 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6769 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6770 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6771 this->section_name(i).c_str(), this->name().c_str());
6772 }
6773 }
6774
6775 // This is rare.
6776 if (!must_merge_flags_and_attributes)
6777 {
6778 gold_assert(deferred_exidx_sections.empty());
6779 this->merge_flags_and_attributes_ = false;
6780 return;
6781 }
6782
6783 // Some tools are broken and they do not set the link of EXIDX sections.
6784 // We look at the first relocation to figure out the linked sections.
6785 if (!deferred_exidx_sections.empty())
6786 {
6787 // We need to go over the section headers again to find the mapping
6788 // from sections being relocated to their relocation sections. This is
6789 // a bit inefficient as we could do that in the loop above. However,
6790 // we do not expect any deferred EXIDX sections normally. So we do not
6791 // want to slow down the most common path.
6792 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6793 Reloc_map reloc_map;
6794 ps = pshdrs + shdr_size;
6795 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6796 {
6797 elfcpp::Shdr<32, big_endian> shdr(ps);
6798 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6799 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6800 {
6801 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6802 if (info_shndx >= this->shnum())
6803 gold_error(_("relocation section %u has invalid info %u"),
6804 i, info_shndx);
6805 Reloc_map::value_type value(info_shndx, i);
6806 std::pair<Reloc_map::iterator, bool> result =
6807 reloc_map.insert(value);
6808 if (!result.second)
6809 gold_error(_("section %u has multiple relocation sections "
6810 "%u and %u"),
6811 info_shndx, i, reloc_map[info_shndx]);
6812 }
6813 }
6814
6815 // Read the symbol table section header.
6816 const unsigned int symtab_shndx = this->symtab_shndx();
6817 elfcpp::Shdr<32, big_endian>
6818 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6819 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6820
6821 // Read the local symbols.
6822 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6823 const unsigned int loccount = this->local_symbol_count();
6824 gold_assert(loccount == symtabshdr.get_sh_info());
6825 off_t locsize = loccount * sym_size;
6826 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6827 locsize, true, true);
6828
6829 // Process the deferred EXIDX sections.
6830 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6831 {
6832 unsigned int shndx = deferred_exidx_sections[i];
6833 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6834 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6835 Reloc_map::const_iterator it = reloc_map.find(shndx);
6836 if (it != reloc_map.end())
6837 find_linked_text_section(pshdrs + it->second * shdr_size,
6838 psyms, &text_shndx);
6839 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6840 + text_shndx * shdr_size);
6841 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6842 }
6843 }
6844 }
6845
6846 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6847 // sections for unwinding. These sections are referenced implicitly by
6848 // text sections linked in the section headers. If we ignore these implicit
6849 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6850 // will be garbage-collected incorrectly. Hence we override the same function
6851 // in the base class to handle these implicit references.
6852
6853 template<bool big_endian>
6854 void
6855 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6856 Layout* layout,
6857 Read_relocs_data* rd)
6858 {
6859 // First, call base class method to process relocations in this object.
6860 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6861
6862 // If --gc-sections is not specified, there is nothing more to do.
6863 // This happens when --icf is used but --gc-sections is not.
6864 if (!parameters->options().gc_sections())
6865 return;
6866
6867 unsigned int shnum = this->shnum();
6868 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6869 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6870 shnum * shdr_size,
6871 true, true);
6872
6873 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6874 // to these from the linked text sections.
6875 const unsigned char* ps = pshdrs + shdr_size;
6876 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6877 {
6878 elfcpp::Shdr<32, big_endian> shdr(ps);
6879 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6880 {
6881 // Found an .ARM.exidx section, add it to the set of reachable
6882 // sections from its linked text section.
6883 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6884 symtab->gc()->add_reference(this, text_shndx, this, i);
6885 }
6886 }
6887 }
6888
6889 // Update output local symbol count. Owing to EXIDX entry merging, some local
6890 // symbols will be removed in output. Adjust output local symbol count
6891 // accordingly. We can only changed the static output local symbol count. It
6892 // is too late to change the dynamic symbols.
6893
6894 template<bool big_endian>
6895 void
6896 Arm_relobj<big_endian>::update_output_local_symbol_count()
6897 {
6898 // Caller should check that this needs updating. We want caller checking
6899 // because output_local_symbol_count_needs_update() is most likely inlined.
6900 gold_assert(this->output_local_symbol_count_needs_update_);
6901
6902 gold_assert(this->symtab_shndx() != -1U);
6903 if (this->symtab_shndx() == 0)
6904 {
6905 // This object has no symbols. Weird but legal.
6906 return;
6907 }
6908
6909 // Read the symbol table section header.
6910 const unsigned int symtab_shndx = this->symtab_shndx();
6911 elfcpp::Shdr<32, big_endian>
6912 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6913 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6914
6915 // Read the local symbols.
6916 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6917 const unsigned int loccount = this->local_symbol_count();
6918 gold_assert(loccount == symtabshdr.get_sh_info());
6919 off_t locsize = loccount * sym_size;
6920 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6921 locsize, true, true);
6922
6923 // Loop over the local symbols.
6924
6925 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6926 Output_sections;
6927 const Output_sections& out_sections(this->output_sections());
6928 unsigned int shnum = this->shnum();
6929 unsigned int count = 0;
6930 // Skip the first, dummy, symbol.
6931 psyms += sym_size;
6932 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6933 {
6934 elfcpp::Sym<32, big_endian> sym(psyms);
6935
6936 Symbol_value<32>& lv((*this->local_values())[i]);
6937
6938 // This local symbol was already discarded by do_count_local_symbols.
6939 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6940 continue;
6941
6942 bool is_ordinary;
6943 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6944 &is_ordinary);
6945
6946 if (shndx < shnum)
6947 {
6948 Output_section* os = out_sections[shndx];
6949
6950 // This local symbol no longer has an output section. Discard it.
6951 if (os == NULL)
6952 {
6953 lv.set_no_output_symtab_entry();
6954 continue;
6955 }
6956
6957 // Currently we only discard parts of EXIDX input sections.
6958 // We explicitly check for a merged EXIDX input section to avoid
6959 // calling Output_section_data::output_offset unless necessary.
6960 if ((this->get_output_section_offset(shndx) == invalid_address)
6961 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6962 {
6963 section_offset_type output_offset =
6964 os->output_offset(this, shndx, lv.input_value());
6965 if (output_offset == -1)
6966 {
6967 // This symbol is defined in a part of an EXIDX input section
6968 // that is discarded due to entry merging.
6969 lv.set_no_output_symtab_entry();
6970 continue;
6971 }
6972 }
6973 }
6974
6975 ++count;
6976 }
6977
6978 this->set_output_local_symbol_count(count);
6979 this->output_local_symbol_count_needs_update_ = false;
6980 }
6981
6982 // Arm_dynobj methods.
6983
6984 // Read the symbol information.
6985
6986 template<bool big_endian>
6987 void
6988 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6989 {
6990 // Call parent class to read symbol information.
6991 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6992
6993 // Read processor-specific flags in ELF file header.
6994 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6995 elfcpp::Elf_sizes<32>::ehdr_size,
6996 true, false);
6997 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6998 this->processor_specific_flags_ = ehdr.get_e_flags();
6999
7000 // Read the attributes section if there is one.
7001 // We read from the end because gas seems to put it near the end of
7002 // the section headers.
7003 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
7004 const unsigned char* ps =
7005 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7006 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7007 {
7008 elfcpp::Shdr<32, big_endian> shdr(ps);
7009 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7010 {
7011 section_offset_type section_offset = shdr.get_sh_offset();
7012 section_size_type section_size =
7013 convert_to_section_size_type(shdr.get_sh_size());
7014 const unsigned char* view =
7015 this->get_view(section_offset, section_size, true, false);
7016 this->attributes_section_data_ =
7017 new Attributes_section_data(view, section_size);
7018 break;
7019 }
7020 }
7021 }
7022
7023 // Stub_addend_reader methods.
7024
7025 // Read the addend of a REL relocation of type R_TYPE at VIEW.
7026
7027 template<bool big_endian>
7028 elfcpp::Elf_types<32>::Elf_Swxword
7029 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7030 unsigned int r_type,
7031 const unsigned char* view,
7032 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7033 {
7034 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7035
7036 switch (r_type)
7037 {
7038 case elfcpp::R_ARM_CALL:
7039 case elfcpp::R_ARM_JUMP24:
7040 case elfcpp::R_ARM_PLT32:
7041 {
7042 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7043 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7044 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7045 return utils::sign_extend<26>(val << 2);
7046 }
7047
7048 case elfcpp::R_ARM_THM_CALL:
7049 case elfcpp::R_ARM_THM_JUMP24:
7050 case elfcpp::R_ARM_THM_XPC22:
7051 {
7052 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7053 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7054 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7055 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7056 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7057 }
7058
7059 case elfcpp::R_ARM_THM_JUMP19:
7060 {
7061 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7062 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7063 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7064 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7065 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7066 }
7067
7068 default:
7069 gold_unreachable();
7070 }
7071 }
7072
7073 // Arm_output_data_got methods.
7074
7075 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7076 // The first one is initialized to be 1, which is the module index for
7077 // the main executable and the second one 0. A reloc of the type
7078 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7079 // be applied by gold. GSYM is a global symbol.
7080 //
7081 template<bool big_endian>
7082 void
7083 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7084 unsigned int got_type,
7085 Symbol* gsym)
7086 {
7087 if (gsym->has_got_offset(got_type))
7088 return;
7089
7090 // We are doing a static link. Just mark it as belong to module 1,
7091 // the executable.
7092 unsigned int got_offset = this->add_constant(1);
7093 gsym->set_got_offset(got_type, got_offset);
7094 got_offset = this->add_constant(0);
7095 this->static_relocs_.push_back(Static_reloc(got_offset,
7096 elfcpp::R_ARM_TLS_DTPOFF32,
7097 gsym));
7098 }
7099
7100 // Same as the above but for a local symbol.
7101
7102 template<bool big_endian>
7103 void
7104 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7105 unsigned int got_type,
7106 Sized_relobj_file<32, big_endian>* object,
7107 unsigned int index)
7108 {
7109 if (object->local_has_got_offset(index, got_type))
7110 return;
7111
7112 // We are doing a static link. Just mark it as belong to module 1,
7113 // the executable.
7114 unsigned int got_offset = this->add_constant(1);
7115 object->set_local_got_offset(index, got_type, got_offset);
7116 got_offset = this->add_constant(0);
7117 this->static_relocs_.push_back(Static_reloc(got_offset,
7118 elfcpp::R_ARM_TLS_DTPOFF32,
7119 object, index));
7120 }
7121
7122 template<bool big_endian>
7123 void
7124 Arm_output_data_got<big_endian>::do_write(Output_file* of)
7125 {
7126 // Call parent to write out GOT.
7127 Output_data_got<32, big_endian>::do_write(of);
7128
7129 // We are done if there is no fix up.
7130 if (this->static_relocs_.empty())
7131 return;
7132
7133 gold_assert(parameters->doing_static_link());
7134
7135 const off_t offset = this->offset();
7136 const section_size_type oview_size =
7137 convert_to_section_size_type(this->data_size());
7138 unsigned char* const oview = of->get_output_view(offset, oview_size);
7139
7140 Output_segment* tls_segment = this->layout_->tls_segment();
7141 gold_assert(tls_segment != NULL);
7142
7143 // The thread pointer $tp points to the TCB, which is followed by the
7144 // TLS. So we need to adjust $tp relative addressing by this amount.
7145 Arm_address aligned_tcb_size =
7146 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7147
7148 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7149 {
7150 Static_reloc& reloc(this->static_relocs_[i]);
7151
7152 Arm_address value;
7153 if (!reloc.symbol_is_global())
7154 {
7155 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7156 const Symbol_value<32>* psymval =
7157 reloc.relobj()->local_symbol(reloc.index());
7158
7159 // We are doing static linking. Issue an error and skip this
7160 // relocation if the symbol is undefined or in a discarded_section.
7161 bool is_ordinary;
7162 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7163 if ((shndx == elfcpp::SHN_UNDEF)
7164 || (is_ordinary
7165 && shndx != elfcpp::SHN_UNDEF
7166 && !object->is_section_included(shndx)
7167 && !this->symbol_table_->is_section_folded(object, shndx)))
7168 {
7169 gold_error(_("undefined or discarded local symbol %u from "
7170 " object %s in GOT"),
7171 reloc.index(), reloc.relobj()->name().c_str());
7172 continue;
7173 }
7174
7175 value = psymval->value(object, 0);
7176 }
7177 else
7178 {
7179 const Symbol* gsym = reloc.symbol();
7180 gold_assert(gsym != NULL);
7181 if (gsym->is_forwarder())
7182 gsym = this->symbol_table_->resolve_forwards(gsym);
7183
7184 // We are doing static linking. Issue an error and skip this
7185 // relocation if the symbol is undefined or in a discarded_section
7186 // unless it is a weakly_undefined symbol.
7187 if ((gsym->is_defined_in_discarded_section()
7188 || gsym->is_undefined())
7189 && !gsym->is_weak_undefined())
7190 {
7191 gold_error(_("undefined or discarded symbol %s in GOT"),
7192 gsym->name());
7193 continue;
7194 }
7195
7196 if (!gsym->is_weak_undefined())
7197 {
7198 const Sized_symbol<32>* sym =
7199 static_cast<const Sized_symbol<32>*>(gsym);
7200 value = sym->value();
7201 }
7202 else
7203 value = 0;
7204 }
7205
7206 unsigned got_offset = reloc.got_offset();
7207 gold_assert(got_offset < oview_size);
7208
7209 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7210 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7211 Valtype x;
7212 switch (reloc.r_type())
7213 {
7214 case elfcpp::R_ARM_TLS_DTPOFF32:
7215 x = value;
7216 break;
7217 case elfcpp::R_ARM_TLS_TPOFF32:
7218 x = value + aligned_tcb_size;
7219 break;
7220 default:
7221 gold_unreachable();
7222 }
7223 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7224 }
7225
7226 of->write_output_view(offset, oview_size, oview);
7227 }
7228
7229 // A class to handle the PLT data.
7230
7231 template<bool big_endian>
7232 class Output_data_plt_arm : public Output_section_data
7233 {
7234 public:
7235 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7236 Reloc_section;
7237
7238 Output_data_plt_arm(Layout*, Output_data_space*);
7239
7240 // Add an entry to the PLT.
7241 void
7242 add_entry(Symbol* gsym);
7243
7244 // Return the .rel.plt section data.
7245 const Reloc_section*
7246 rel_plt() const
7247 { return this->rel_; }
7248
7249 // Return the number of PLT entries.
7250 unsigned int
7251 entry_count() const
7252 { return this->count_; }
7253
7254 // Return the offset of the first non-reserved PLT entry.
7255 static unsigned int
7256 first_plt_entry_offset()
7257 { return sizeof(first_plt_entry); }
7258
7259 // Return the size of a PLT entry.
7260 static unsigned int
7261 get_plt_entry_size()
7262 { return sizeof(plt_entry); }
7263
7264 protected:
7265 void
7266 do_adjust_output_section(Output_section* os);
7267
7268 // Write to a map file.
7269 void
7270 do_print_to_mapfile(Mapfile* mapfile) const
7271 { mapfile->print_output_data(this, _("** PLT")); }
7272
7273 private:
7274 // Template for the first PLT entry.
7275 static const uint32_t first_plt_entry[5];
7276
7277 // Template for subsequent PLT entries.
7278 static const uint32_t plt_entry[3];
7279
7280 // Set the final size.
7281 void
7282 set_final_data_size()
7283 {
7284 this->set_data_size(sizeof(first_plt_entry)
7285 + this->count_ * sizeof(plt_entry));
7286 }
7287
7288 // Write out the PLT data.
7289 void
7290 do_write(Output_file*);
7291
7292 // The reloc section.
7293 Reloc_section* rel_;
7294 // The .got.plt section.
7295 Output_data_space* got_plt_;
7296 // The number of PLT entries.
7297 unsigned int count_;
7298 };
7299
7300 // Create the PLT section. The ordinary .got section is an argument,
7301 // since we need to refer to the start. We also create our own .got
7302 // section just for PLT entries.
7303
7304 template<bool big_endian>
7305 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7306 Output_data_space* got_plt)
7307 : Output_section_data(4), got_plt_(got_plt), count_(0)
7308 {
7309 this->rel_ = new Reloc_section(false);
7310 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7311 elfcpp::SHF_ALLOC, this->rel_,
7312 ORDER_DYNAMIC_PLT_RELOCS, false);
7313 }
7314
7315 template<bool big_endian>
7316 void
7317 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7318 {
7319 os->set_entsize(0);
7320 }
7321
7322 // Add an entry to the PLT.
7323
7324 template<bool big_endian>
7325 void
7326 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7327 {
7328 gold_assert(!gsym->has_plt_offset());
7329
7330 // Note that when setting the PLT offset we skip the initial
7331 // reserved PLT entry.
7332 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7333 + sizeof(first_plt_entry));
7334
7335 ++this->count_;
7336
7337 section_offset_type got_offset = this->got_plt_->current_data_size();
7338
7339 // Every PLT entry needs a GOT entry which points back to the PLT
7340 // entry (this will be changed by the dynamic linker, normally
7341 // lazily when the function is called).
7342 this->got_plt_->set_current_data_size(got_offset + 4);
7343
7344 // Every PLT entry needs a reloc.
7345 gsym->set_needs_dynsym_entry();
7346 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7347 got_offset);
7348
7349 // Note that we don't need to save the symbol. The contents of the
7350 // PLT are independent of which symbols are used. The symbols only
7351 // appear in the relocations.
7352 }
7353
7354 // ARM PLTs.
7355 // FIXME: This is not very flexible. Right now this has only been tested
7356 // on armv5te. If we are to support additional architecture features like
7357 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7358
7359 // The first entry in the PLT.
7360 template<bool big_endian>
7361 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7362 {
7363 0xe52de004, // str lr, [sp, #-4]!
7364 0xe59fe004, // ldr lr, [pc, #4]
7365 0xe08fe00e, // add lr, pc, lr
7366 0xe5bef008, // ldr pc, [lr, #8]!
7367 0x00000000, // &GOT[0] - .
7368 };
7369
7370 // Subsequent entries in the PLT.
7371
7372 template<bool big_endian>
7373 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7374 {
7375 0xe28fc600, // add ip, pc, #0xNN00000
7376 0xe28cca00, // add ip, ip, #0xNN000
7377 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7378 };
7379
7380 // Write out the PLT. This uses the hand-coded instructions above,
7381 // and adjusts them as needed. This is all specified by the arm ELF
7382 // Processor Supplement.
7383
7384 template<bool big_endian>
7385 void
7386 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7387 {
7388 const off_t offset = this->offset();
7389 const section_size_type oview_size =
7390 convert_to_section_size_type(this->data_size());
7391 unsigned char* const oview = of->get_output_view(offset, oview_size);
7392
7393 const off_t got_file_offset = this->got_plt_->offset();
7394 const section_size_type got_size =
7395 convert_to_section_size_type(this->got_plt_->data_size());
7396 unsigned char* const got_view = of->get_output_view(got_file_offset,
7397 got_size);
7398 unsigned char* pov = oview;
7399
7400 Arm_address plt_address = this->address();
7401 Arm_address got_address = this->got_plt_->address();
7402
7403 // Write first PLT entry. All but the last word are constants.
7404 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7405 / sizeof(plt_entry[0]));
7406 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7407 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7408 // Last word in first PLT entry is &GOT[0] - .
7409 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7410 got_address - (plt_address + 16));
7411 pov += sizeof(first_plt_entry);
7412
7413 unsigned char* got_pov = got_view;
7414
7415 memset(got_pov, 0, 12);
7416 got_pov += 12;
7417
7418 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7419 unsigned int plt_offset = sizeof(first_plt_entry);
7420 unsigned int plt_rel_offset = 0;
7421 unsigned int got_offset = 12;
7422 const unsigned int count = this->count_;
7423 for (unsigned int i = 0;
7424 i < count;
7425 ++i,
7426 pov += sizeof(plt_entry),
7427 got_pov += 4,
7428 plt_offset += sizeof(plt_entry),
7429 plt_rel_offset += rel_size,
7430 got_offset += 4)
7431 {
7432 // Set and adjust the PLT entry itself.
7433 int32_t offset = ((got_address + got_offset)
7434 - (plt_address + plt_offset + 8));
7435
7436 gold_assert(offset >= 0 && offset < 0x0fffffff);
7437 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7438 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7439 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7440 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7441 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7442 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7443
7444 // Set the entry in the GOT.
7445 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7446 }
7447
7448 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7449 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7450
7451 of->write_output_view(offset, oview_size, oview);
7452 of->write_output_view(got_file_offset, got_size, got_view);
7453 }
7454
7455 // Create a PLT entry for a global symbol.
7456
7457 template<bool big_endian>
7458 void
7459 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7460 Symbol* gsym)
7461 {
7462 if (gsym->has_plt_offset())
7463 return;
7464
7465 if (this->plt_ == NULL)
7466 {
7467 // Create the GOT sections first.
7468 this->got_section(symtab, layout);
7469
7470 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7471 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7472 (elfcpp::SHF_ALLOC
7473 | elfcpp::SHF_EXECINSTR),
7474 this->plt_, ORDER_PLT, false);
7475 }
7476 this->plt_->add_entry(gsym);
7477 }
7478
7479 // Return the number of entries in the PLT.
7480
7481 template<bool big_endian>
7482 unsigned int
7483 Target_arm<big_endian>::plt_entry_count() const
7484 {
7485 if (this->plt_ == NULL)
7486 return 0;
7487 return this->plt_->entry_count();
7488 }
7489
7490 // Return the offset of the first non-reserved PLT entry.
7491
7492 template<bool big_endian>
7493 unsigned int
7494 Target_arm<big_endian>::first_plt_entry_offset() const
7495 {
7496 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7497 }
7498
7499 // Return the size of each PLT entry.
7500
7501 template<bool big_endian>
7502 unsigned int
7503 Target_arm<big_endian>::plt_entry_size() const
7504 {
7505 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7506 }
7507
7508 // Get the section to use for TLS_DESC relocations.
7509
7510 template<bool big_endian>
7511 typename Target_arm<big_endian>::Reloc_section*
7512 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7513 {
7514 return this->plt_section()->rel_tls_desc(layout);
7515 }
7516
7517 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7518
7519 template<bool big_endian>
7520 void
7521 Target_arm<big_endian>::define_tls_base_symbol(
7522 Symbol_table* symtab,
7523 Layout* layout)
7524 {
7525 if (this->tls_base_symbol_defined_)
7526 return;
7527
7528 Output_segment* tls_segment = layout->tls_segment();
7529 if (tls_segment != NULL)
7530 {
7531 bool is_exec = parameters->options().output_is_executable();
7532 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7533 Symbol_table::PREDEFINED,
7534 tls_segment, 0, 0,
7535 elfcpp::STT_TLS,
7536 elfcpp::STB_LOCAL,
7537 elfcpp::STV_HIDDEN, 0,
7538 (is_exec
7539 ? Symbol::SEGMENT_END
7540 : Symbol::SEGMENT_START),
7541 true);
7542 }
7543 this->tls_base_symbol_defined_ = true;
7544 }
7545
7546 // Create a GOT entry for the TLS module index.
7547
7548 template<bool big_endian>
7549 unsigned int
7550 Target_arm<big_endian>::got_mod_index_entry(
7551 Symbol_table* symtab,
7552 Layout* layout,
7553 Sized_relobj_file<32, big_endian>* object)
7554 {
7555 if (this->got_mod_index_offset_ == -1U)
7556 {
7557 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7558 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7559 unsigned int got_offset;
7560 if (!parameters->doing_static_link())
7561 {
7562 got_offset = got->add_constant(0);
7563 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7564 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7565 got_offset);
7566 }
7567 else
7568 {
7569 // We are doing a static link. Just mark it as belong to module 1,
7570 // the executable.
7571 got_offset = got->add_constant(1);
7572 }
7573
7574 got->add_constant(0);
7575 this->got_mod_index_offset_ = got_offset;
7576 }
7577 return this->got_mod_index_offset_;
7578 }
7579
7580 // Optimize the TLS relocation type based on what we know about the
7581 // symbol. IS_FINAL is true if the final address of this symbol is
7582 // known at link time.
7583
7584 template<bool big_endian>
7585 tls::Tls_optimization
7586 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7587 {
7588 // FIXME: Currently we do not do any TLS optimization.
7589 return tls::TLSOPT_NONE;
7590 }
7591
7592 // Get the Reference_flags for a particular relocation.
7593
7594 template<bool big_endian>
7595 int
7596 Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7597 {
7598 switch (r_type)
7599 {
7600 case elfcpp::R_ARM_NONE:
7601 case elfcpp::R_ARM_V4BX:
7602 case elfcpp::R_ARM_GNU_VTENTRY:
7603 case elfcpp::R_ARM_GNU_VTINHERIT:
7604 // No symbol reference.
7605 return 0;
7606
7607 case elfcpp::R_ARM_ABS32:
7608 case elfcpp::R_ARM_ABS16:
7609 case elfcpp::R_ARM_ABS12:
7610 case elfcpp::R_ARM_THM_ABS5:
7611 case elfcpp::R_ARM_ABS8:
7612 case elfcpp::R_ARM_BASE_ABS:
7613 case elfcpp::R_ARM_MOVW_ABS_NC:
7614 case elfcpp::R_ARM_MOVT_ABS:
7615 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7616 case elfcpp::R_ARM_THM_MOVT_ABS:
7617 case elfcpp::R_ARM_ABS32_NOI:
7618 return Symbol::ABSOLUTE_REF;
7619
7620 case elfcpp::R_ARM_REL32:
7621 case elfcpp::R_ARM_LDR_PC_G0:
7622 case elfcpp::R_ARM_SBREL32:
7623 case elfcpp::R_ARM_THM_PC8:
7624 case elfcpp::R_ARM_BASE_PREL:
7625 case elfcpp::R_ARM_MOVW_PREL_NC:
7626 case elfcpp::R_ARM_MOVT_PREL:
7627 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7628 case elfcpp::R_ARM_THM_MOVT_PREL:
7629 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7630 case elfcpp::R_ARM_THM_PC12:
7631 case elfcpp::R_ARM_REL32_NOI:
7632 case elfcpp::R_ARM_ALU_PC_G0_NC:
7633 case elfcpp::R_ARM_ALU_PC_G0:
7634 case elfcpp::R_ARM_ALU_PC_G1_NC:
7635 case elfcpp::R_ARM_ALU_PC_G1:
7636 case elfcpp::R_ARM_ALU_PC_G2:
7637 case elfcpp::R_ARM_LDR_PC_G1:
7638 case elfcpp::R_ARM_LDR_PC_G2:
7639 case elfcpp::R_ARM_LDRS_PC_G0:
7640 case elfcpp::R_ARM_LDRS_PC_G1:
7641 case elfcpp::R_ARM_LDRS_PC_G2:
7642 case elfcpp::R_ARM_LDC_PC_G0:
7643 case elfcpp::R_ARM_LDC_PC_G1:
7644 case elfcpp::R_ARM_LDC_PC_G2:
7645 case elfcpp::R_ARM_ALU_SB_G0_NC:
7646 case elfcpp::R_ARM_ALU_SB_G0:
7647 case elfcpp::R_ARM_ALU_SB_G1_NC:
7648 case elfcpp::R_ARM_ALU_SB_G1:
7649 case elfcpp::R_ARM_ALU_SB_G2:
7650 case elfcpp::R_ARM_LDR_SB_G0:
7651 case elfcpp::R_ARM_LDR_SB_G1:
7652 case elfcpp::R_ARM_LDR_SB_G2:
7653 case elfcpp::R_ARM_LDRS_SB_G0:
7654 case elfcpp::R_ARM_LDRS_SB_G1:
7655 case elfcpp::R_ARM_LDRS_SB_G2:
7656 case elfcpp::R_ARM_LDC_SB_G0:
7657 case elfcpp::R_ARM_LDC_SB_G1:
7658 case elfcpp::R_ARM_LDC_SB_G2:
7659 case elfcpp::R_ARM_MOVW_BREL_NC:
7660 case elfcpp::R_ARM_MOVT_BREL:
7661 case elfcpp::R_ARM_MOVW_BREL:
7662 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7663 case elfcpp::R_ARM_THM_MOVT_BREL:
7664 case elfcpp::R_ARM_THM_MOVW_BREL:
7665 case elfcpp::R_ARM_GOTOFF32:
7666 case elfcpp::R_ARM_GOTOFF12:
7667 case elfcpp::R_ARM_SBREL31:
7668 return Symbol::RELATIVE_REF;
7669
7670 case elfcpp::R_ARM_PLT32:
7671 case elfcpp::R_ARM_CALL:
7672 case elfcpp::R_ARM_JUMP24:
7673 case elfcpp::R_ARM_THM_CALL:
7674 case elfcpp::R_ARM_THM_JUMP24:
7675 case elfcpp::R_ARM_THM_JUMP19:
7676 case elfcpp::R_ARM_THM_JUMP6:
7677 case elfcpp::R_ARM_THM_JUMP11:
7678 case elfcpp::R_ARM_THM_JUMP8:
7679 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7680 // in unwind tables. It may point to functions via PLTs.
7681 // So we treat it like call/jump relocations above.
7682 case elfcpp::R_ARM_PREL31:
7683 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7684
7685 case elfcpp::R_ARM_GOT_BREL:
7686 case elfcpp::R_ARM_GOT_ABS:
7687 case elfcpp::R_ARM_GOT_PREL:
7688 // Absolute in GOT.
7689 return Symbol::ABSOLUTE_REF;
7690
7691 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7692 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7693 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7694 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7695 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7696 return Symbol::TLS_REF;
7697
7698 case elfcpp::R_ARM_TARGET1:
7699 case elfcpp::R_ARM_TARGET2:
7700 case elfcpp::R_ARM_COPY:
7701 case elfcpp::R_ARM_GLOB_DAT:
7702 case elfcpp::R_ARM_JUMP_SLOT:
7703 case elfcpp::R_ARM_RELATIVE:
7704 case elfcpp::R_ARM_PC24:
7705 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7706 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7707 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7708 default:
7709 // Not expected. We will give an error later.
7710 return 0;
7711 }
7712 }
7713
7714 // Report an unsupported relocation against a local symbol.
7715
7716 template<bool big_endian>
7717 void
7718 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7719 Sized_relobj_file<32, big_endian>* object,
7720 unsigned int r_type)
7721 {
7722 gold_error(_("%s: unsupported reloc %u against local symbol"),
7723 object->name().c_str(), r_type);
7724 }
7725
7726 // We are about to emit a dynamic relocation of type R_TYPE. If the
7727 // dynamic linker does not support it, issue an error. The GNU linker
7728 // only issues a non-PIC error for an allocated read-only section.
7729 // Here we know the section is allocated, but we don't know that it is
7730 // read-only. But we check for all the relocation types which the
7731 // glibc dynamic linker supports, so it seems appropriate to issue an
7732 // error even if the section is not read-only.
7733
7734 template<bool big_endian>
7735 void
7736 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7737 unsigned int r_type)
7738 {
7739 switch (r_type)
7740 {
7741 // These are the relocation types supported by glibc for ARM.
7742 case elfcpp::R_ARM_RELATIVE:
7743 case elfcpp::R_ARM_COPY:
7744 case elfcpp::R_ARM_GLOB_DAT:
7745 case elfcpp::R_ARM_JUMP_SLOT:
7746 case elfcpp::R_ARM_ABS32:
7747 case elfcpp::R_ARM_ABS32_NOI:
7748 case elfcpp::R_ARM_PC24:
7749 // FIXME: The following 3 types are not supported by Android's dynamic
7750 // linker.
7751 case elfcpp::R_ARM_TLS_DTPMOD32:
7752 case elfcpp::R_ARM_TLS_DTPOFF32:
7753 case elfcpp::R_ARM_TLS_TPOFF32:
7754 return;
7755
7756 default:
7757 {
7758 // This prevents us from issuing more than one error per reloc
7759 // section. But we can still wind up issuing more than one
7760 // error per object file.
7761 if (this->issued_non_pic_error_)
7762 return;
7763 const Arm_reloc_property* reloc_property =
7764 arm_reloc_property_table->get_reloc_property(r_type);
7765 gold_assert(reloc_property != NULL);
7766 object->error(_("requires unsupported dynamic reloc %s; "
7767 "recompile with -fPIC"),
7768 reloc_property->name().c_str());
7769 this->issued_non_pic_error_ = true;
7770 return;
7771 }
7772
7773 case elfcpp::R_ARM_NONE:
7774 gold_unreachable();
7775 }
7776 }
7777
7778 // Scan a relocation for a local symbol.
7779 // FIXME: This only handles a subset of relocation types used by Android
7780 // on ARM v5te devices.
7781
7782 template<bool big_endian>
7783 inline void
7784 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7785 Layout* layout,
7786 Target_arm* target,
7787 Sized_relobj_file<32, big_endian>* object,
7788 unsigned int data_shndx,
7789 Output_section* output_section,
7790 const elfcpp::Rel<32, big_endian>& reloc,
7791 unsigned int r_type,
7792 const elfcpp::Sym<32, big_endian>& lsym)
7793 {
7794 r_type = get_real_reloc_type(r_type);
7795 switch (r_type)
7796 {
7797 case elfcpp::R_ARM_NONE:
7798 case elfcpp::R_ARM_V4BX:
7799 case elfcpp::R_ARM_GNU_VTENTRY:
7800 case elfcpp::R_ARM_GNU_VTINHERIT:
7801 break;
7802
7803 case elfcpp::R_ARM_ABS32:
7804 case elfcpp::R_ARM_ABS32_NOI:
7805 // If building a shared library (or a position-independent
7806 // executable), we need to create a dynamic relocation for
7807 // this location. The relocation applied at link time will
7808 // apply the link-time value, so we flag the location with
7809 // an R_ARM_RELATIVE relocation so the dynamic loader can
7810 // relocate it easily.
7811 if (parameters->options().output_is_position_independent())
7812 {
7813 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7814 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7815 // If we are to add more other reloc types than R_ARM_ABS32,
7816 // we need to add check_non_pic(object, r_type) here.
7817 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7818 output_section, data_shndx,
7819 reloc.get_r_offset());
7820 }
7821 break;
7822
7823 case elfcpp::R_ARM_ABS16:
7824 case elfcpp::R_ARM_ABS12:
7825 case elfcpp::R_ARM_THM_ABS5:
7826 case elfcpp::R_ARM_ABS8:
7827 case elfcpp::R_ARM_BASE_ABS:
7828 case elfcpp::R_ARM_MOVW_ABS_NC:
7829 case elfcpp::R_ARM_MOVT_ABS:
7830 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7831 case elfcpp::R_ARM_THM_MOVT_ABS:
7832 // If building a shared library (or a position-independent
7833 // executable), we need to create a dynamic relocation for
7834 // this location. Because the addend needs to remain in the
7835 // data section, we need to be careful not to apply this
7836 // relocation statically.
7837 if (parameters->options().output_is_position_independent())
7838 {
7839 check_non_pic(object, r_type);
7840 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7841 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7842 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7843 rel_dyn->add_local(object, r_sym, r_type, output_section,
7844 data_shndx, reloc.get_r_offset());
7845 else
7846 {
7847 gold_assert(lsym.get_st_value() == 0);
7848 unsigned int shndx = lsym.get_st_shndx();
7849 bool is_ordinary;
7850 shndx = object->adjust_sym_shndx(r_sym, shndx,
7851 &is_ordinary);
7852 if (!is_ordinary)
7853 object->error(_("section symbol %u has bad shndx %u"),
7854 r_sym, shndx);
7855 else
7856 rel_dyn->add_local_section(object, shndx,
7857 r_type, output_section,
7858 data_shndx, reloc.get_r_offset());
7859 }
7860 }
7861 break;
7862
7863 case elfcpp::R_ARM_REL32:
7864 case elfcpp::R_ARM_LDR_PC_G0:
7865 case elfcpp::R_ARM_SBREL32:
7866 case elfcpp::R_ARM_THM_CALL:
7867 case elfcpp::R_ARM_THM_PC8:
7868 case elfcpp::R_ARM_BASE_PREL:
7869 case elfcpp::R_ARM_PLT32:
7870 case elfcpp::R_ARM_CALL:
7871 case elfcpp::R_ARM_JUMP24:
7872 case elfcpp::R_ARM_THM_JUMP24:
7873 case elfcpp::R_ARM_SBREL31:
7874 case elfcpp::R_ARM_PREL31:
7875 case elfcpp::R_ARM_MOVW_PREL_NC:
7876 case elfcpp::R_ARM_MOVT_PREL:
7877 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7878 case elfcpp::R_ARM_THM_MOVT_PREL:
7879 case elfcpp::R_ARM_THM_JUMP19:
7880 case elfcpp::R_ARM_THM_JUMP6:
7881 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7882 case elfcpp::R_ARM_THM_PC12:
7883 case elfcpp::R_ARM_REL32_NOI:
7884 case elfcpp::R_ARM_ALU_PC_G0_NC:
7885 case elfcpp::R_ARM_ALU_PC_G0:
7886 case elfcpp::R_ARM_ALU_PC_G1_NC:
7887 case elfcpp::R_ARM_ALU_PC_G1:
7888 case elfcpp::R_ARM_ALU_PC_G2:
7889 case elfcpp::R_ARM_LDR_PC_G1:
7890 case elfcpp::R_ARM_LDR_PC_G2:
7891 case elfcpp::R_ARM_LDRS_PC_G0:
7892 case elfcpp::R_ARM_LDRS_PC_G1:
7893 case elfcpp::R_ARM_LDRS_PC_G2:
7894 case elfcpp::R_ARM_LDC_PC_G0:
7895 case elfcpp::R_ARM_LDC_PC_G1:
7896 case elfcpp::R_ARM_LDC_PC_G2:
7897 case elfcpp::R_ARM_ALU_SB_G0_NC:
7898 case elfcpp::R_ARM_ALU_SB_G0:
7899 case elfcpp::R_ARM_ALU_SB_G1_NC:
7900 case elfcpp::R_ARM_ALU_SB_G1:
7901 case elfcpp::R_ARM_ALU_SB_G2:
7902 case elfcpp::R_ARM_LDR_SB_G0:
7903 case elfcpp::R_ARM_LDR_SB_G1:
7904 case elfcpp::R_ARM_LDR_SB_G2:
7905 case elfcpp::R_ARM_LDRS_SB_G0:
7906 case elfcpp::R_ARM_LDRS_SB_G1:
7907 case elfcpp::R_ARM_LDRS_SB_G2:
7908 case elfcpp::R_ARM_LDC_SB_G0:
7909 case elfcpp::R_ARM_LDC_SB_G1:
7910 case elfcpp::R_ARM_LDC_SB_G2:
7911 case elfcpp::R_ARM_MOVW_BREL_NC:
7912 case elfcpp::R_ARM_MOVT_BREL:
7913 case elfcpp::R_ARM_MOVW_BREL:
7914 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7915 case elfcpp::R_ARM_THM_MOVT_BREL:
7916 case elfcpp::R_ARM_THM_MOVW_BREL:
7917 case elfcpp::R_ARM_THM_JUMP11:
7918 case elfcpp::R_ARM_THM_JUMP8:
7919 // We don't need to do anything for a relative addressing relocation
7920 // against a local symbol if it does not reference the GOT.
7921 break;
7922
7923 case elfcpp::R_ARM_GOTOFF32:
7924 case elfcpp::R_ARM_GOTOFF12:
7925 // We need a GOT section:
7926 target->got_section(symtab, layout);
7927 break;
7928
7929 case elfcpp::R_ARM_GOT_BREL:
7930 case elfcpp::R_ARM_GOT_PREL:
7931 {
7932 // The symbol requires a GOT entry.
7933 Arm_output_data_got<big_endian>* got =
7934 target->got_section(symtab, layout);
7935 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7936 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7937 {
7938 // If we are generating a shared object, we need to add a
7939 // dynamic RELATIVE relocation for this symbol's GOT entry.
7940 if (parameters->options().output_is_position_independent())
7941 {
7942 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7943 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7944 rel_dyn->add_local_relative(
7945 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7946 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7947 }
7948 }
7949 }
7950 break;
7951
7952 case elfcpp::R_ARM_TARGET1:
7953 case elfcpp::R_ARM_TARGET2:
7954 // This should have been mapped to another type already.
7955 // Fall through.
7956 case elfcpp::R_ARM_COPY:
7957 case elfcpp::R_ARM_GLOB_DAT:
7958 case elfcpp::R_ARM_JUMP_SLOT:
7959 case elfcpp::R_ARM_RELATIVE:
7960 // These are relocations which should only be seen by the
7961 // dynamic linker, and should never be seen here.
7962 gold_error(_("%s: unexpected reloc %u in object file"),
7963 object->name().c_str(), r_type);
7964 break;
7965
7966
7967 // These are initial TLS relocs, which are expected when
7968 // linking.
7969 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7970 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7971 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7972 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7973 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7974 {
7975 bool output_is_shared = parameters->options().shared();
7976 const tls::Tls_optimization optimized_type
7977 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7978 r_type);
7979 switch (r_type)
7980 {
7981 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7982 if (optimized_type == tls::TLSOPT_NONE)
7983 {
7984 // Create a pair of GOT entries for the module index and
7985 // dtv-relative offset.
7986 Arm_output_data_got<big_endian>* got
7987 = target->got_section(symtab, layout);
7988 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7989 unsigned int shndx = lsym.get_st_shndx();
7990 bool is_ordinary;
7991 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7992 if (!is_ordinary)
7993 {
7994 object->error(_("local symbol %u has bad shndx %u"),
7995 r_sym, shndx);
7996 break;
7997 }
7998
7999 if (!parameters->doing_static_link())
8000 got->add_local_pair_with_rel(object, r_sym, shndx,
8001 GOT_TYPE_TLS_PAIR,
8002 target->rel_dyn_section(layout),
8003 elfcpp::R_ARM_TLS_DTPMOD32, 0);
8004 else
8005 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8006 object, r_sym);
8007 }
8008 else
8009 // FIXME: TLS optimization not supported yet.
8010 gold_unreachable();
8011 break;
8012
8013 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8014 if (optimized_type == tls::TLSOPT_NONE)
8015 {
8016 // Create a GOT entry for the module index.
8017 target->got_mod_index_entry(symtab, layout, object);
8018 }
8019 else
8020 // FIXME: TLS optimization not supported yet.
8021 gold_unreachable();
8022 break;
8023
8024 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8025 break;
8026
8027 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8028 layout->set_has_static_tls();
8029 if (optimized_type == tls::TLSOPT_NONE)
8030 {
8031 // Create a GOT entry for the tp-relative offset.
8032 Arm_output_data_got<big_endian>* got
8033 = target->got_section(symtab, layout);
8034 unsigned int r_sym =
8035 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8036 if (!parameters->doing_static_link())
8037 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8038 target->rel_dyn_section(layout),
8039 elfcpp::R_ARM_TLS_TPOFF32);
8040 else if (!object->local_has_got_offset(r_sym,
8041 GOT_TYPE_TLS_OFFSET))
8042 {
8043 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8044 unsigned int got_offset =
8045 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8046 got->add_static_reloc(got_offset,
8047 elfcpp::R_ARM_TLS_TPOFF32, object,
8048 r_sym);
8049 }
8050 }
8051 else
8052 // FIXME: TLS optimization not supported yet.
8053 gold_unreachable();
8054 break;
8055
8056 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8057 layout->set_has_static_tls();
8058 if (output_is_shared)
8059 {
8060 // We need to create a dynamic relocation.
8061 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8062 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8063 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8064 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8065 output_section, data_shndx,
8066 reloc.get_r_offset());
8067 }
8068 break;
8069
8070 default:
8071 gold_unreachable();
8072 }
8073 }
8074 break;
8075
8076 case elfcpp::R_ARM_PC24:
8077 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8078 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8079 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8080 default:
8081 unsupported_reloc_local(object, r_type);
8082 break;
8083 }
8084 }
8085
8086 // Report an unsupported relocation against a global symbol.
8087
8088 template<bool big_endian>
8089 void
8090 Target_arm<big_endian>::Scan::unsupported_reloc_global(
8091 Sized_relobj_file<32, big_endian>* object,
8092 unsigned int r_type,
8093 Symbol* gsym)
8094 {
8095 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8096 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8097 }
8098
8099 template<bool big_endian>
8100 inline bool
8101 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8102 unsigned int r_type)
8103 {
8104 switch (r_type)
8105 {
8106 case elfcpp::R_ARM_PC24:
8107 case elfcpp::R_ARM_THM_CALL:
8108 case elfcpp::R_ARM_PLT32:
8109 case elfcpp::R_ARM_CALL:
8110 case elfcpp::R_ARM_JUMP24:
8111 case elfcpp::R_ARM_THM_JUMP24:
8112 case elfcpp::R_ARM_SBREL31:
8113 case elfcpp::R_ARM_PREL31:
8114 case elfcpp::R_ARM_THM_JUMP19:
8115 case elfcpp::R_ARM_THM_JUMP6:
8116 case elfcpp::R_ARM_THM_JUMP11:
8117 case elfcpp::R_ARM_THM_JUMP8:
8118 // All the relocations above are branches except SBREL31 and PREL31.
8119 return false;
8120
8121 default:
8122 // Be conservative and assume this is a function pointer.
8123 return true;
8124 }
8125 }
8126
8127 template<bool big_endian>
8128 inline bool
8129 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8130 Symbol_table*,
8131 Layout*,
8132 Target_arm<big_endian>* target,
8133 Sized_relobj_file<32, big_endian>*,
8134 unsigned int,
8135 Output_section*,
8136 const elfcpp::Rel<32, big_endian>&,
8137 unsigned int r_type,
8138 const elfcpp::Sym<32, big_endian>&)
8139 {
8140 r_type = target->get_real_reloc_type(r_type);
8141 return possible_function_pointer_reloc(r_type);
8142 }
8143
8144 template<bool big_endian>
8145 inline bool
8146 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8147 Symbol_table*,
8148 Layout*,
8149 Target_arm<big_endian>* target,
8150 Sized_relobj_file<32, big_endian>*,
8151 unsigned int,
8152 Output_section*,
8153 const elfcpp::Rel<32, big_endian>&,
8154 unsigned int r_type,
8155 Symbol* gsym)
8156 {
8157 // GOT is not a function.
8158 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8159 return false;
8160
8161 r_type = target->get_real_reloc_type(r_type);
8162 return possible_function_pointer_reloc(r_type);
8163 }
8164
8165 // Scan a relocation for a global symbol.
8166
8167 template<bool big_endian>
8168 inline void
8169 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8170 Layout* layout,
8171 Target_arm* target,
8172 Sized_relobj_file<32, big_endian>* object,
8173 unsigned int data_shndx,
8174 Output_section* output_section,
8175 const elfcpp::Rel<32, big_endian>& reloc,
8176 unsigned int r_type,
8177 Symbol* gsym)
8178 {
8179 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8180 // section. We check here to avoid creating a dynamic reloc against
8181 // _GLOBAL_OFFSET_TABLE_.
8182 if (!target->has_got_section()
8183 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8184 target->got_section(symtab, layout);
8185
8186 r_type = get_real_reloc_type(r_type);
8187 switch (r_type)
8188 {
8189 case elfcpp::R_ARM_NONE:
8190 case elfcpp::R_ARM_V4BX:
8191 case elfcpp::R_ARM_GNU_VTENTRY:
8192 case elfcpp::R_ARM_GNU_VTINHERIT:
8193 break;
8194
8195 case elfcpp::R_ARM_ABS32:
8196 case elfcpp::R_ARM_ABS16:
8197 case elfcpp::R_ARM_ABS12:
8198 case elfcpp::R_ARM_THM_ABS5:
8199 case elfcpp::R_ARM_ABS8:
8200 case elfcpp::R_ARM_BASE_ABS:
8201 case elfcpp::R_ARM_MOVW_ABS_NC:
8202 case elfcpp::R_ARM_MOVT_ABS:
8203 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8204 case elfcpp::R_ARM_THM_MOVT_ABS:
8205 case elfcpp::R_ARM_ABS32_NOI:
8206 // Absolute addressing relocations.
8207 {
8208 // Make a PLT entry if necessary.
8209 if (this->symbol_needs_plt_entry(gsym))
8210 {
8211 target->make_plt_entry(symtab, layout, gsym);
8212 // Since this is not a PC-relative relocation, we may be
8213 // taking the address of a function. In that case we need to
8214 // set the entry in the dynamic symbol table to the address of
8215 // the PLT entry.
8216 if (gsym->is_from_dynobj() && !parameters->options().shared())
8217 gsym->set_needs_dynsym_value();
8218 }
8219 // Make a dynamic relocation if necessary.
8220 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8221 {
8222 if (gsym->may_need_copy_reloc())
8223 {
8224 target->copy_reloc(symtab, layout, object,
8225 data_shndx, output_section, gsym, reloc);
8226 }
8227 else if ((r_type == elfcpp::R_ARM_ABS32
8228 || r_type == elfcpp::R_ARM_ABS32_NOI)
8229 && gsym->can_use_relative_reloc(false))
8230 {
8231 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8232 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8233 output_section, object,
8234 data_shndx, reloc.get_r_offset());
8235 }
8236 else
8237 {
8238 check_non_pic(object, r_type);
8239 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8240 rel_dyn->add_global(gsym, r_type, output_section, object,
8241 data_shndx, reloc.get_r_offset());
8242 }
8243 }
8244 }
8245 break;
8246
8247 case elfcpp::R_ARM_GOTOFF32:
8248 case elfcpp::R_ARM_GOTOFF12:
8249 // We need a GOT section.
8250 target->got_section(symtab, layout);
8251 break;
8252
8253 case elfcpp::R_ARM_REL32:
8254 case elfcpp::R_ARM_LDR_PC_G0:
8255 case elfcpp::R_ARM_SBREL32:
8256 case elfcpp::R_ARM_THM_PC8:
8257 case elfcpp::R_ARM_BASE_PREL:
8258 case elfcpp::R_ARM_MOVW_PREL_NC:
8259 case elfcpp::R_ARM_MOVT_PREL:
8260 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8261 case elfcpp::R_ARM_THM_MOVT_PREL:
8262 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8263 case elfcpp::R_ARM_THM_PC12:
8264 case elfcpp::R_ARM_REL32_NOI:
8265 case elfcpp::R_ARM_ALU_PC_G0_NC:
8266 case elfcpp::R_ARM_ALU_PC_G0:
8267 case elfcpp::R_ARM_ALU_PC_G1_NC:
8268 case elfcpp::R_ARM_ALU_PC_G1:
8269 case elfcpp::R_ARM_ALU_PC_G2:
8270 case elfcpp::R_ARM_LDR_PC_G1:
8271 case elfcpp::R_ARM_LDR_PC_G2:
8272 case elfcpp::R_ARM_LDRS_PC_G0:
8273 case elfcpp::R_ARM_LDRS_PC_G1:
8274 case elfcpp::R_ARM_LDRS_PC_G2:
8275 case elfcpp::R_ARM_LDC_PC_G0:
8276 case elfcpp::R_ARM_LDC_PC_G1:
8277 case elfcpp::R_ARM_LDC_PC_G2:
8278 case elfcpp::R_ARM_ALU_SB_G0_NC:
8279 case elfcpp::R_ARM_ALU_SB_G0:
8280 case elfcpp::R_ARM_ALU_SB_G1_NC:
8281 case elfcpp::R_ARM_ALU_SB_G1:
8282 case elfcpp::R_ARM_ALU_SB_G2:
8283 case elfcpp::R_ARM_LDR_SB_G0:
8284 case elfcpp::R_ARM_LDR_SB_G1:
8285 case elfcpp::R_ARM_LDR_SB_G2:
8286 case elfcpp::R_ARM_LDRS_SB_G0:
8287 case elfcpp::R_ARM_LDRS_SB_G1:
8288 case elfcpp::R_ARM_LDRS_SB_G2:
8289 case elfcpp::R_ARM_LDC_SB_G0:
8290 case elfcpp::R_ARM_LDC_SB_G1:
8291 case elfcpp::R_ARM_LDC_SB_G2:
8292 case elfcpp::R_ARM_MOVW_BREL_NC:
8293 case elfcpp::R_ARM_MOVT_BREL:
8294 case elfcpp::R_ARM_MOVW_BREL:
8295 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8296 case elfcpp::R_ARM_THM_MOVT_BREL:
8297 case elfcpp::R_ARM_THM_MOVW_BREL:
8298 // Relative addressing relocations.
8299 {
8300 // Make a dynamic relocation if necessary.
8301 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8302 {
8303 if (target->may_need_copy_reloc(gsym))
8304 {
8305 target->copy_reloc(symtab, layout, object,
8306 data_shndx, output_section, gsym, reloc);
8307 }
8308 else
8309 {
8310 check_non_pic(object, r_type);
8311 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8312 rel_dyn->add_global(gsym, r_type, output_section, object,
8313 data_shndx, reloc.get_r_offset());
8314 }
8315 }
8316 }
8317 break;
8318
8319 case elfcpp::R_ARM_THM_CALL:
8320 case elfcpp::R_ARM_PLT32:
8321 case elfcpp::R_ARM_CALL:
8322 case elfcpp::R_ARM_JUMP24:
8323 case elfcpp::R_ARM_THM_JUMP24:
8324 case elfcpp::R_ARM_SBREL31:
8325 case elfcpp::R_ARM_PREL31:
8326 case elfcpp::R_ARM_THM_JUMP19:
8327 case elfcpp::R_ARM_THM_JUMP6:
8328 case elfcpp::R_ARM_THM_JUMP11:
8329 case elfcpp::R_ARM_THM_JUMP8:
8330 // All the relocation above are branches except for the PREL31 ones.
8331 // A PREL31 relocation can point to a personality function in a shared
8332 // library. In that case we want to use a PLT because we want to
8333 // call the personality routine and the dynamic linkers we care about
8334 // do not support dynamic PREL31 relocations. An REL31 relocation may
8335 // point to a function whose unwinding behaviour is being described but
8336 // we will not mistakenly generate a PLT for that because we should use
8337 // a local section symbol.
8338
8339 // If the symbol is fully resolved, this is just a relative
8340 // local reloc. Otherwise we need a PLT entry.
8341 if (gsym->final_value_is_known())
8342 break;
8343 // If building a shared library, we can also skip the PLT entry
8344 // if the symbol is defined in the output file and is protected
8345 // or hidden.
8346 if (gsym->is_defined()
8347 && !gsym->is_from_dynobj()
8348 && !gsym->is_preemptible())
8349 break;
8350 target->make_plt_entry(symtab, layout, gsym);
8351 break;
8352
8353 case elfcpp::R_ARM_GOT_BREL:
8354 case elfcpp::R_ARM_GOT_ABS:
8355 case elfcpp::R_ARM_GOT_PREL:
8356 {
8357 // The symbol requires a GOT entry.
8358 Arm_output_data_got<big_endian>* got =
8359 target->got_section(symtab, layout);
8360 if (gsym->final_value_is_known())
8361 got->add_global(gsym, GOT_TYPE_STANDARD);
8362 else
8363 {
8364 // If this symbol is not fully resolved, we need to add a
8365 // GOT entry with a dynamic relocation.
8366 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8367 if (gsym->is_from_dynobj()
8368 || gsym->is_undefined()
8369 || gsym->is_preemptible())
8370 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8371 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8372 else
8373 {
8374 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8375 rel_dyn->add_global_relative(
8376 gsym, elfcpp::R_ARM_RELATIVE, got,
8377 gsym->got_offset(GOT_TYPE_STANDARD));
8378 }
8379 }
8380 }
8381 break;
8382
8383 case elfcpp::R_ARM_TARGET1:
8384 case elfcpp::R_ARM_TARGET2:
8385 // These should have been mapped to other types already.
8386 // Fall through.
8387 case elfcpp::R_ARM_COPY:
8388 case elfcpp::R_ARM_GLOB_DAT:
8389 case elfcpp::R_ARM_JUMP_SLOT:
8390 case elfcpp::R_ARM_RELATIVE:
8391 // These are relocations which should only be seen by the
8392 // dynamic linker, and should never be seen here.
8393 gold_error(_("%s: unexpected reloc %u in object file"),
8394 object->name().c_str(), r_type);
8395 break;
8396
8397 // These are initial tls relocs, which are expected when
8398 // linking.
8399 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8400 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8401 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8402 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8403 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8404 {
8405 const bool is_final = gsym->final_value_is_known();
8406 const tls::Tls_optimization optimized_type
8407 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8408 switch (r_type)
8409 {
8410 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8411 if (optimized_type == tls::TLSOPT_NONE)
8412 {
8413 // Create a pair of GOT entries for the module index and
8414 // dtv-relative offset.
8415 Arm_output_data_got<big_endian>* got
8416 = target->got_section(symtab, layout);
8417 if (!parameters->doing_static_link())
8418 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8419 target->rel_dyn_section(layout),
8420 elfcpp::R_ARM_TLS_DTPMOD32,
8421 elfcpp::R_ARM_TLS_DTPOFF32);
8422 else
8423 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8424 }
8425 else
8426 // FIXME: TLS optimization not supported yet.
8427 gold_unreachable();
8428 break;
8429
8430 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8431 if (optimized_type == tls::TLSOPT_NONE)
8432 {
8433 // Create a GOT entry for the module index.
8434 target->got_mod_index_entry(symtab, layout, object);
8435 }
8436 else
8437 // FIXME: TLS optimization not supported yet.
8438 gold_unreachable();
8439 break;
8440
8441 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8442 break;
8443
8444 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8445 layout->set_has_static_tls();
8446 if (optimized_type == tls::TLSOPT_NONE)
8447 {
8448 // Create a GOT entry for the tp-relative offset.
8449 Arm_output_data_got<big_endian>* got
8450 = target->got_section(symtab, layout);
8451 if (!parameters->doing_static_link())
8452 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8453 target->rel_dyn_section(layout),
8454 elfcpp::R_ARM_TLS_TPOFF32);
8455 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8456 {
8457 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8458 unsigned int got_offset =
8459 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8460 got->add_static_reloc(got_offset,
8461 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8462 }
8463 }
8464 else
8465 // FIXME: TLS optimization not supported yet.
8466 gold_unreachable();
8467 break;
8468
8469 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8470 layout->set_has_static_tls();
8471 if (parameters->options().shared())
8472 {
8473 // We need to create a dynamic relocation.
8474 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8475 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8476 output_section, object,
8477 data_shndx, reloc.get_r_offset());
8478 }
8479 break;
8480
8481 default:
8482 gold_unreachable();
8483 }
8484 }
8485 break;
8486
8487 case elfcpp::R_ARM_PC24:
8488 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8489 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8490 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8491 default:
8492 unsupported_reloc_global(object, r_type, gsym);
8493 break;
8494 }
8495 }
8496
8497 // Process relocations for gc.
8498
8499 template<bool big_endian>
8500 void
8501 Target_arm<big_endian>::gc_process_relocs(
8502 Symbol_table* symtab,
8503 Layout* layout,
8504 Sized_relobj_file<32, big_endian>* object,
8505 unsigned int data_shndx,
8506 unsigned int,
8507 const unsigned char* prelocs,
8508 size_t reloc_count,
8509 Output_section* output_section,
8510 bool needs_special_offset_handling,
8511 size_t local_symbol_count,
8512 const unsigned char* plocal_symbols)
8513 {
8514 typedef Target_arm<big_endian> Arm;
8515 typedef typename Target_arm<big_endian>::Scan Scan;
8516
8517 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8518 typename Target_arm::Relocatable_size_for_reloc>(
8519 symtab,
8520 layout,
8521 this,
8522 object,
8523 data_shndx,
8524 prelocs,
8525 reloc_count,
8526 output_section,
8527 needs_special_offset_handling,
8528 local_symbol_count,
8529 plocal_symbols);
8530 }
8531
8532 // Scan relocations for a section.
8533
8534 template<bool big_endian>
8535 void
8536 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8537 Layout* layout,
8538 Sized_relobj_file<32, big_endian>* object,
8539 unsigned int data_shndx,
8540 unsigned int sh_type,
8541 const unsigned char* prelocs,
8542 size_t reloc_count,
8543 Output_section* output_section,
8544 bool needs_special_offset_handling,
8545 size_t local_symbol_count,
8546 const unsigned char* plocal_symbols)
8547 {
8548 typedef typename Target_arm<big_endian>::Scan Scan;
8549 if (sh_type == elfcpp::SHT_RELA)
8550 {
8551 gold_error(_("%s: unsupported RELA reloc section"),
8552 object->name().c_str());
8553 return;
8554 }
8555
8556 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8557 symtab,
8558 layout,
8559 this,
8560 object,
8561 data_shndx,
8562 prelocs,
8563 reloc_count,
8564 output_section,
8565 needs_special_offset_handling,
8566 local_symbol_count,
8567 plocal_symbols);
8568 }
8569
8570 // Finalize the sections.
8571
8572 template<bool big_endian>
8573 void
8574 Target_arm<big_endian>::do_finalize_sections(
8575 Layout* layout,
8576 const Input_objects* input_objects,
8577 Symbol_table* symtab)
8578 {
8579 bool merged_any_attributes = false;
8580 // Merge processor-specific flags.
8581 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8582 p != input_objects->relobj_end();
8583 ++p)
8584 {
8585 Arm_relobj<big_endian>* arm_relobj =
8586 Arm_relobj<big_endian>::as_arm_relobj(*p);
8587 if (arm_relobj->merge_flags_and_attributes())
8588 {
8589 this->merge_processor_specific_flags(
8590 arm_relobj->name(),
8591 arm_relobj->processor_specific_flags());
8592 this->merge_object_attributes(arm_relobj->name().c_str(),
8593 arm_relobj->attributes_section_data());
8594 merged_any_attributes = true;
8595 }
8596 }
8597
8598 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8599 p != input_objects->dynobj_end();
8600 ++p)
8601 {
8602 Arm_dynobj<big_endian>* arm_dynobj =
8603 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8604 this->merge_processor_specific_flags(
8605 arm_dynobj->name(),
8606 arm_dynobj->processor_specific_flags());
8607 this->merge_object_attributes(arm_dynobj->name().c_str(),
8608 arm_dynobj->attributes_section_data());
8609 merged_any_attributes = true;
8610 }
8611
8612 // Create an empty uninitialized attribute section if we still don't have it
8613 // at this moment. This happens if there is no attributes sections in all
8614 // inputs.
8615 if (this->attributes_section_data_ == NULL)
8616 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8617
8618 const Object_attribute* cpu_arch_attr =
8619 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8620 // Check if we need to use Cortex-A8 workaround.
8621 if (parameters->options().user_set_fix_cortex_a8())
8622 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8623 else
8624 {
8625 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8626 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8627 // profile.
8628 const Object_attribute* cpu_arch_profile_attr =
8629 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8630 this->fix_cortex_a8_ =
8631 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8632 && (cpu_arch_profile_attr->int_value() == 'A'
8633 || cpu_arch_profile_attr->int_value() == 0));
8634 }
8635
8636 // Check if we can use V4BX interworking.
8637 // The V4BX interworking stub contains BX instruction,
8638 // which is not specified for some profiles.
8639 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8640 && !this->may_use_v4t_interworking())
8641 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8642 "the target profile does not support BX instruction"));
8643
8644 // Fill in some more dynamic tags.
8645 const Reloc_section* rel_plt = (this->plt_ == NULL
8646 ? NULL
8647 : this->plt_->rel_plt());
8648 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8649 this->rel_dyn_, true, false);
8650
8651 // Emit any relocs we saved in an attempt to avoid generating COPY
8652 // relocs.
8653 if (this->copy_relocs_.any_saved_relocs())
8654 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8655
8656 // Handle the .ARM.exidx section.
8657 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8658
8659 if (!parameters->options().relocatable())
8660 {
8661 if (exidx_section != NULL
8662 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8663 {
8664 // Create __exidx_start and __exidx_end symbols.
8665 symtab->define_in_output_data("__exidx_start", NULL,
8666 Symbol_table::PREDEFINED,
8667 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8668 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8669 0, false, true);
8670 symtab->define_in_output_data("__exidx_end", NULL,
8671 Symbol_table::PREDEFINED,
8672 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8673 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8674 0, true, true);
8675
8676 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8677 // the .ARM.exidx section.
8678 if (!layout->script_options()->saw_phdrs_clause())
8679 {
8680 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8681 0)
8682 == NULL);
8683 Output_segment* exidx_segment =
8684 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8685 exidx_segment->add_output_section_to_nonload(exidx_section,
8686 elfcpp::PF_R);
8687 }
8688 }
8689 else
8690 {
8691 symtab->define_as_constant("__exidx_start", NULL,
8692 Symbol_table::PREDEFINED,
8693 0, 0, elfcpp::STT_OBJECT,
8694 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8695 true, false);
8696 symtab->define_as_constant("__exidx_end", NULL,
8697 Symbol_table::PREDEFINED,
8698 0, 0, elfcpp::STT_OBJECT,
8699 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8700 true, false);
8701 }
8702 }
8703
8704 // Create an .ARM.attributes section if we have merged any attributes
8705 // from inputs.
8706 if (merged_any_attributes)
8707 {
8708 Output_attributes_section_data* attributes_section =
8709 new Output_attributes_section_data(*this->attributes_section_data_);
8710 layout->add_output_section_data(".ARM.attributes",
8711 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8712 attributes_section, ORDER_INVALID,
8713 false);
8714 }
8715
8716 // Fix up links in section EXIDX headers.
8717 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8718 p != layout->section_list().end();
8719 ++p)
8720 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8721 {
8722 Arm_output_section<big_endian>* os =
8723 Arm_output_section<big_endian>::as_arm_output_section(*p);
8724 os->set_exidx_section_link();
8725 }
8726 }
8727
8728 // Return whether a direct absolute static relocation needs to be applied.
8729 // In cases where Scan::local() or Scan::global() has created
8730 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8731 // of the relocation is carried in the data, and we must not
8732 // apply the static relocation.
8733
8734 template<bool big_endian>
8735 inline bool
8736 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8737 const Sized_symbol<32>* gsym,
8738 unsigned int r_type,
8739 bool is_32bit,
8740 Output_section* output_section)
8741 {
8742 // If the output section is not allocated, then we didn't call
8743 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8744 // the reloc here.
8745 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8746 return true;
8747
8748 int ref_flags = Scan::get_reference_flags(r_type);
8749
8750 // For local symbols, we will have created a non-RELATIVE dynamic
8751 // relocation only if (a) the output is position independent,
8752 // (b) the relocation is absolute (not pc- or segment-relative), and
8753 // (c) the relocation is not 32 bits wide.
8754 if (gsym == NULL)
8755 return !(parameters->options().output_is_position_independent()
8756 && (ref_flags & Symbol::ABSOLUTE_REF)
8757 && !is_32bit);
8758
8759 // For global symbols, we use the same helper routines used in the
8760 // scan pass. If we did not create a dynamic relocation, or if we
8761 // created a RELATIVE dynamic relocation, we should apply the static
8762 // relocation.
8763 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8764 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8765 && gsym->can_use_relative_reloc(ref_flags
8766 & Symbol::FUNCTION_CALL);
8767 return !has_dyn || is_rel;
8768 }
8769
8770 // Perform a relocation.
8771
8772 template<bool big_endian>
8773 inline bool
8774 Target_arm<big_endian>::Relocate::relocate(
8775 const Relocate_info<32, big_endian>* relinfo,
8776 Target_arm* target,
8777 Output_section* output_section,
8778 size_t relnum,
8779 const elfcpp::Rel<32, big_endian>& rel,
8780 unsigned int r_type,
8781 const Sized_symbol<32>* gsym,
8782 const Symbol_value<32>* psymval,
8783 unsigned char* view,
8784 Arm_address address,
8785 section_size_type view_size)
8786 {
8787 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8788
8789 r_type = get_real_reloc_type(r_type);
8790 const Arm_reloc_property* reloc_property =
8791 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8792 if (reloc_property == NULL)
8793 {
8794 std::string reloc_name =
8795 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8796 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8797 _("cannot relocate %s in object file"),
8798 reloc_name.c_str());
8799 return true;
8800 }
8801
8802 const Arm_relobj<big_endian>* object =
8803 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8804
8805 // If the final branch target of a relocation is THUMB instruction, this
8806 // is 1. Otherwise it is 0.
8807 Arm_address thumb_bit = 0;
8808 Symbol_value<32> symval;
8809 bool is_weakly_undefined_without_plt = false;
8810 bool have_got_offset = false;
8811 unsigned int got_offset = 0;
8812
8813 // If the relocation uses the GOT entry of a symbol instead of the symbol
8814 // itself, we don't care about whether the symbol is defined or what kind
8815 // of symbol it is.
8816 if (reloc_property->uses_got_entry())
8817 {
8818 // Get the GOT offset.
8819 // The GOT pointer points to the end of the GOT section.
8820 // We need to subtract the size of the GOT section to get
8821 // the actual offset to use in the relocation.
8822 // TODO: We should move GOT offset computing code in TLS relocations
8823 // to here.
8824 switch (r_type)
8825 {
8826 case elfcpp::R_ARM_GOT_BREL:
8827 case elfcpp::R_ARM_GOT_PREL:
8828 if (gsym != NULL)
8829 {
8830 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8831 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8832 - target->got_size());
8833 }
8834 else
8835 {
8836 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8837 gold_assert(object->local_has_got_offset(r_sym,
8838 GOT_TYPE_STANDARD));
8839 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8840 - target->got_size());
8841 }
8842 have_got_offset = true;
8843 break;
8844
8845 default:
8846 break;
8847 }
8848 }
8849 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8850 {
8851 if (gsym != NULL)
8852 {
8853 // This is a global symbol. Determine if we use PLT and if the
8854 // final target is THUMB.
8855 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8856 {
8857 // This uses a PLT, change the symbol value.
8858 symval.set_output_value(target->plt_section()->address()
8859 + gsym->plt_offset());
8860 psymval = &symval;
8861 }
8862 else if (gsym->is_weak_undefined())
8863 {
8864 // This is a weakly undefined symbol and we do not use PLT
8865 // for this relocation. A branch targeting this symbol will
8866 // be converted into an NOP.
8867 is_weakly_undefined_without_plt = true;
8868 }
8869 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8870 {
8871 // This relocation uses the symbol value but the symbol is
8872 // undefined. Exit early and have the caller reporting an
8873 // error.
8874 return true;
8875 }
8876 else
8877 {
8878 // Set thumb bit if symbol:
8879 // -Has type STT_ARM_TFUNC or
8880 // -Has type STT_FUNC, is defined and with LSB in value set.
8881 thumb_bit =
8882 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8883 || (gsym->type() == elfcpp::STT_FUNC
8884 && !gsym->is_undefined()
8885 && ((psymval->value(object, 0) & 1) != 0)))
8886 ? 1
8887 : 0);
8888 }
8889 }
8890 else
8891 {
8892 // This is a local symbol. Determine if the final target is THUMB.
8893 // We saved this information when all the local symbols were read.
8894 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8895 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8896 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8897 }
8898 }
8899 else
8900 {
8901 // This is a fake relocation synthesized for a stub. It does not have
8902 // a real symbol. We just look at the LSB of the symbol value to
8903 // determine if the target is THUMB or not.
8904 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8905 }
8906
8907 // Strip LSB if this points to a THUMB target.
8908 if (thumb_bit != 0
8909 && reloc_property->uses_thumb_bit()
8910 && ((psymval->value(object, 0) & 1) != 0))
8911 {
8912 Arm_address stripped_value =
8913 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8914 symval.set_output_value(stripped_value);
8915 psymval = &symval;
8916 }
8917
8918 // To look up relocation stubs, we need to pass the symbol table index of
8919 // a local symbol.
8920 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8921
8922 // Get the addressing origin of the output segment defining the
8923 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8924 Arm_address sym_origin = 0;
8925 if (reloc_property->uses_symbol_base())
8926 {
8927 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8928 // R_ARM_BASE_ABS with the NULL symbol will give the
8929 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8930 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8931 sym_origin = target->got_plt_section()->address();
8932 else if (gsym == NULL)
8933 sym_origin = 0;
8934 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8935 sym_origin = gsym->output_segment()->vaddr();
8936 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8937 sym_origin = gsym->output_data()->address();
8938
8939 // TODO: Assumes the segment base to be zero for the global symbols
8940 // till the proper support for the segment-base-relative addressing
8941 // will be implemented. This is consistent with GNU ld.
8942 }
8943
8944 // For relative addressing relocation, find out the relative address base.
8945 Arm_address relative_address_base = 0;
8946 switch(reloc_property->relative_address_base())
8947 {
8948 case Arm_reloc_property::RAB_NONE:
8949 // Relocations with relative address bases RAB_TLS and RAB_tp are
8950 // handled by relocate_tls. So we do not need to do anything here.
8951 case Arm_reloc_property::RAB_TLS:
8952 case Arm_reloc_property::RAB_tp:
8953 break;
8954 case Arm_reloc_property::RAB_B_S:
8955 relative_address_base = sym_origin;
8956 break;
8957 case Arm_reloc_property::RAB_GOT_ORG:
8958 relative_address_base = target->got_plt_section()->address();
8959 break;
8960 case Arm_reloc_property::RAB_P:
8961 relative_address_base = address;
8962 break;
8963 case Arm_reloc_property::RAB_Pa:
8964 relative_address_base = address & 0xfffffffcU;
8965 break;
8966 default:
8967 gold_unreachable();
8968 }
8969
8970 typename Arm_relocate_functions::Status reloc_status =
8971 Arm_relocate_functions::STATUS_OKAY;
8972 bool check_overflow = reloc_property->checks_overflow();
8973 switch (r_type)
8974 {
8975 case elfcpp::R_ARM_NONE:
8976 break;
8977
8978 case elfcpp::R_ARM_ABS8:
8979 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8980 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8981 break;
8982
8983 case elfcpp::R_ARM_ABS12:
8984 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8985 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8986 break;
8987
8988 case elfcpp::R_ARM_ABS16:
8989 if (should_apply_static_reloc(gsym, r_type, false, output_section))
8990 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8991 break;
8992
8993 case elfcpp::R_ARM_ABS32:
8994 if (should_apply_static_reloc(gsym, r_type, true, output_section))
8995 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8996 thumb_bit);
8997 break;
8998
8999 case elfcpp::R_ARM_ABS32_NOI:
9000 if (should_apply_static_reloc(gsym, r_type, true, output_section))
9001 // No thumb bit for this relocation: (S + A)
9002 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
9003 0);
9004 break;
9005
9006 case elfcpp::R_ARM_MOVW_ABS_NC:
9007 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9008 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9009 0, thumb_bit,
9010 check_overflow);
9011 break;
9012
9013 case elfcpp::R_ARM_MOVT_ABS:
9014 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9015 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9016 break;
9017
9018 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9019 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9020 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9021 0, thumb_bit, false);
9022 break;
9023
9024 case elfcpp::R_ARM_THM_MOVT_ABS:
9025 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9026 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9027 psymval, 0);
9028 break;
9029
9030 case elfcpp::R_ARM_MOVW_PREL_NC:
9031 case elfcpp::R_ARM_MOVW_BREL_NC:
9032 case elfcpp::R_ARM_MOVW_BREL:
9033 reloc_status =
9034 Arm_relocate_functions::movw(view, object, psymval,
9035 relative_address_base, thumb_bit,
9036 check_overflow);
9037 break;
9038
9039 case elfcpp::R_ARM_MOVT_PREL:
9040 case elfcpp::R_ARM_MOVT_BREL:
9041 reloc_status =
9042 Arm_relocate_functions::movt(view, object, psymval,
9043 relative_address_base);
9044 break;
9045
9046 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9047 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9048 case elfcpp::R_ARM_THM_MOVW_BREL:
9049 reloc_status =
9050 Arm_relocate_functions::thm_movw(view, object, psymval,
9051 relative_address_base,
9052 thumb_bit, check_overflow);
9053 break;
9054
9055 case elfcpp::R_ARM_THM_MOVT_PREL:
9056 case elfcpp::R_ARM_THM_MOVT_BREL:
9057 reloc_status =
9058 Arm_relocate_functions::thm_movt(view, object, psymval,
9059 relative_address_base);
9060 break;
9061
9062 case elfcpp::R_ARM_REL32:
9063 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9064 address, thumb_bit);
9065 break;
9066
9067 case elfcpp::R_ARM_THM_ABS5:
9068 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9069 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9070 break;
9071
9072 // Thumb long branches.
9073 case elfcpp::R_ARM_THM_CALL:
9074 case elfcpp::R_ARM_THM_XPC22:
9075 case elfcpp::R_ARM_THM_JUMP24:
9076 reloc_status =
9077 Arm_relocate_functions::thumb_branch_common(
9078 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9079 thumb_bit, is_weakly_undefined_without_plt);
9080 break;
9081
9082 case elfcpp::R_ARM_GOTOFF32:
9083 {
9084 Arm_address got_origin;
9085 got_origin = target->got_plt_section()->address();
9086 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9087 got_origin, thumb_bit);
9088 }
9089 break;
9090
9091 case elfcpp::R_ARM_BASE_PREL:
9092 gold_assert(gsym != NULL);
9093 reloc_status =
9094 Arm_relocate_functions::base_prel(view, sym_origin, address);
9095 break;
9096
9097 case elfcpp::R_ARM_BASE_ABS:
9098 if (should_apply_static_reloc(gsym, r_type, false, output_section))
9099 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9100 break;
9101
9102 case elfcpp::R_ARM_GOT_BREL:
9103 gold_assert(have_got_offset);
9104 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9105 break;
9106
9107 case elfcpp::R_ARM_GOT_PREL:
9108 gold_assert(have_got_offset);
9109 // Get the address origin for GOT PLT, which is allocated right
9110 // after the GOT section, to calculate an absolute address of
9111 // the symbol GOT entry (got_origin + got_offset).
9112 Arm_address got_origin;
9113 got_origin = target->got_plt_section()->address();
9114 reloc_status = Arm_relocate_functions::got_prel(view,
9115 got_origin + got_offset,
9116 address);
9117 break;
9118
9119 case elfcpp::R_ARM_PLT32:
9120 case elfcpp::R_ARM_CALL:
9121 case elfcpp::R_ARM_JUMP24:
9122 case elfcpp::R_ARM_XPC25:
9123 gold_assert(gsym == NULL
9124 || gsym->has_plt_offset()
9125 || gsym->final_value_is_known()
9126 || (gsym->is_defined()
9127 && !gsym->is_from_dynobj()
9128 && !gsym->is_preemptible()));
9129 reloc_status =
9130 Arm_relocate_functions::arm_branch_common(
9131 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9132 thumb_bit, is_weakly_undefined_without_plt);
9133 break;
9134
9135 case elfcpp::R_ARM_THM_JUMP19:
9136 reloc_status =
9137 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9138 thumb_bit);
9139 break;
9140
9141 case elfcpp::R_ARM_THM_JUMP6:
9142 reloc_status =
9143 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9144 break;
9145
9146 case elfcpp::R_ARM_THM_JUMP8:
9147 reloc_status =
9148 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9149 break;
9150
9151 case elfcpp::R_ARM_THM_JUMP11:
9152 reloc_status =
9153 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9154 break;
9155
9156 case elfcpp::R_ARM_PREL31:
9157 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9158 address, thumb_bit);
9159 break;
9160
9161 case elfcpp::R_ARM_V4BX:
9162 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9163 {
9164 const bool is_v4bx_interworking =
9165 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9166 reloc_status =
9167 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9168 is_v4bx_interworking);
9169 }
9170 break;
9171
9172 case elfcpp::R_ARM_THM_PC8:
9173 reloc_status =
9174 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9175 break;
9176
9177 case elfcpp::R_ARM_THM_PC12:
9178 reloc_status =
9179 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9180 break;
9181
9182 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9183 reloc_status =
9184 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9185 thumb_bit);
9186 break;
9187
9188 case elfcpp::R_ARM_ALU_PC_G0_NC:
9189 case elfcpp::R_ARM_ALU_PC_G0:
9190 case elfcpp::R_ARM_ALU_PC_G1_NC:
9191 case elfcpp::R_ARM_ALU_PC_G1:
9192 case elfcpp::R_ARM_ALU_PC_G2:
9193 case elfcpp::R_ARM_ALU_SB_G0_NC:
9194 case elfcpp::R_ARM_ALU_SB_G0:
9195 case elfcpp::R_ARM_ALU_SB_G1_NC:
9196 case elfcpp::R_ARM_ALU_SB_G1:
9197 case elfcpp::R_ARM_ALU_SB_G2:
9198 reloc_status =
9199 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9200 reloc_property->group_index(),
9201 relative_address_base,
9202 thumb_bit, check_overflow);
9203 break;
9204
9205 case elfcpp::R_ARM_LDR_PC_G0:
9206 case elfcpp::R_ARM_LDR_PC_G1:
9207 case elfcpp::R_ARM_LDR_PC_G2:
9208 case elfcpp::R_ARM_LDR_SB_G0:
9209 case elfcpp::R_ARM_LDR_SB_G1:
9210 case elfcpp::R_ARM_LDR_SB_G2:
9211 reloc_status =
9212 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9213 reloc_property->group_index(),
9214 relative_address_base);
9215 break;
9216
9217 case elfcpp::R_ARM_LDRS_PC_G0:
9218 case elfcpp::R_ARM_LDRS_PC_G1:
9219 case elfcpp::R_ARM_LDRS_PC_G2:
9220 case elfcpp::R_ARM_LDRS_SB_G0:
9221 case elfcpp::R_ARM_LDRS_SB_G1:
9222 case elfcpp::R_ARM_LDRS_SB_G2:
9223 reloc_status =
9224 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9225 reloc_property->group_index(),
9226 relative_address_base);
9227 break;
9228
9229 case elfcpp::R_ARM_LDC_PC_G0:
9230 case elfcpp::R_ARM_LDC_PC_G1:
9231 case elfcpp::R_ARM_LDC_PC_G2:
9232 case elfcpp::R_ARM_LDC_SB_G0:
9233 case elfcpp::R_ARM_LDC_SB_G1:
9234 case elfcpp::R_ARM_LDC_SB_G2:
9235 reloc_status =
9236 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9237 reloc_property->group_index(),
9238 relative_address_base);
9239 break;
9240
9241 // These are initial tls relocs, which are expected when
9242 // linking.
9243 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9244 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9245 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9246 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9247 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9248 reloc_status =
9249 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9250 view, address, view_size);
9251 break;
9252
9253 // The known and unknown unsupported and/or deprecated relocations.
9254 case elfcpp::R_ARM_PC24:
9255 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9256 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9257 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9258 default:
9259 // Just silently leave the method. We should get an appropriate error
9260 // message in the scan methods.
9261 break;
9262 }
9263
9264 // Report any errors.
9265 switch (reloc_status)
9266 {
9267 case Arm_relocate_functions::STATUS_OKAY:
9268 break;
9269 case Arm_relocate_functions::STATUS_OVERFLOW:
9270 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9271 _("relocation overflow in %s"),
9272 reloc_property->name().c_str());
9273 break;
9274 case Arm_relocate_functions::STATUS_BAD_RELOC:
9275 gold_error_at_location(
9276 relinfo,
9277 relnum,
9278 rel.get_r_offset(),
9279 _("unexpected opcode while processing relocation %s"),
9280 reloc_property->name().c_str());
9281 break;
9282 default:
9283 gold_unreachable();
9284 }
9285
9286 return true;
9287 }
9288
9289 // Perform a TLS relocation.
9290
9291 template<bool big_endian>
9292 inline typename Arm_relocate_functions<big_endian>::Status
9293 Target_arm<big_endian>::Relocate::relocate_tls(
9294 const Relocate_info<32, big_endian>* relinfo,
9295 Target_arm<big_endian>* target,
9296 size_t relnum,
9297 const elfcpp::Rel<32, big_endian>& rel,
9298 unsigned int r_type,
9299 const Sized_symbol<32>* gsym,
9300 const Symbol_value<32>* psymval,
9301 unsigned char* view,
9302 elfcpp::Elf_types<32>::Elf_Addr address,
9303 section_size_type /*view_size*/ )
9304 {
9305 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9306 typedef Relocate_functions<32, big_endian> RelocFuncs;
9307 Output_segment* tls_segment = relinfo->layout->tls_segment();
9308
9309 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9310
9311 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9312
9313 const bool is_final = (gsym == NULL
9314 ? !parameters->options().shared()
9315 : gsym->final_value_is_known());
9316 const tls::Tls_optimization optimized_type
9317 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9318 switch (r_type)
9319 {
9320 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9321 {
9322 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9323 unsigned int got_offset;
9324 if (gsym != NULL)
9325 {
9326 gold_assert(gsym->has_got_offset(got_type));
9327 got_offset = gsym->got_offset(got_type) - target->got_size();
9328 }
9329 else
9330 {
9331 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9332 gold_assert(object->local_has_got_offset(r_sym, got_type));
9333 got_offset = (object->local_got_offset(r_sym, got_type)
9334 - target->got_size());
9335 }
9336 if (optimized_type == tls::TLSOPT_NONE)
9337 {
9338 Arm_address got_entry =
9339 target->got_plt_section()->address() + got_offset;
9340
9341 // Relocate the field with the PC relative offset of the pair of
9342 // GOT entries.
9343 RelocFuncs::pcrel32(view, got_entry, address);
9344 return ArmRelocFuncs::STATUS_OKAY;
9345 }
9346 }
9347 break;
9348
9349 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9350 if (optimized_type == tls::TLSOPT_NONE)
9351 {
9352 // Relocate the field with the offset of the GOT entry for
9353 // the module index.
9354 unsigned int got_offset;
9355 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9356 - target->got_size());
9357 Arm_address got_entry =
9358 target->got_plt_section()->address() + got_offset;
9359
9360 // Relocate the field with the PC relative offset of the pair of
9361 // GOT entries.
9362 RelocFuncs::pcrel32(view, got_entry, address);
9363 return ArmRelocFuncs::STATUS_OKAY;
9364 }
9365 break;
9366
9367 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9368 RelocFuncs::rel32(view, value);
9369 return ArmRelocFuncs::STATUS_OKAY;
9370
9371 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9372 if (optimized_type == tls::TLSOPT_NONE)
9373 {
9374 // Relocate the field with the offset of the GOT entry for
9375 // the tp-relative offset of the symbol.
9376 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9377 unsigned int got_offset;
9378 if (gsym != NULL)
9379 {
9380 gold_assert(gsym->has_got_offset(got_type));
9381 got_offset = gsym->got_offset(got_type);
9382 }
9383 else
9384 {
9385 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9386 gold_assert(object->local_has_got_offset(r_sym, got_type));
9387 got_offset = object->local_got_offset(r_sym, got_type);
9388 }
9389
9390 // All GOT offsets are relative to the end of the GOT.
9391 got_offset -= target->got_size();
9392
9393 Arm_address got_entry =
9394 target->got_plt_section()->address() + got_offset;
9395
9396 // Relocate the field with the PC relative offset of the GOT entry.
9397 RelocFuncs::pcrel32(view, got_entry, address);
9398 return ArmRelocFuncs::STATUS_OKAY;
9399 }
9400 break;
9401
9402 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9403 // If we're creating a shared library, a dynamic relocation will
9404 // have been created for this location, so do not apply it now.
9405 if (!parameters->options().shared())
9406 {
9407 gold_assert(tls_segment != NULL);
9408
9409 // $tp points to the TCB, which is followed by the TLS, so we
9410 // need to add TCB size to the offset.
9411 Arm_address aligned_tcb_size =
9412 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9413 RelocFuncs::rel32(view, value + aligned_tcb_size);
9414
9415 }
9416 return ArmRelocFuncs::STATUS_OKAY;
9417
9418 default:
9419 gold_unreachable();
9420 }
9421
9422 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9423 _("unsupported reloc %u"),
9424 r_type);
9425 return ArmRelocFuncs::STATUS_BAD_RELOC;
9426 }
9427
9428 // Relocate section data.
9429
9430 template<bool big_endian>
9431 void
9432 Target_arm<big_endian>::relocate_section(
9433 const Relocate_info<32, big_endian>* relinfo,
9434 unsigned int sh_type,
9435 const unsigned char* prelocs,
9436 size_t reloc_count,
9437 Output_section* output_section,
9438 bool needs_special_offset_handling,
9439 unsigned char* view,
9440 Arm_address address,
9441 section_size_type view_size,
9442 const Reloc_symbol_changes* reloc_symbol_changes)
9443 {
9444 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9445 gold_assert(sh_type == elfcpp::SHT_REL);
9446
9447 // See if we are relocating a relaxed input section. If so, the view
9448 // covers the whole output section and we need to adjust accordingly.
9449 if (needs_special_offset_handling)
9450 {
9451 const Output_relaxed_input_section* poris =
9452 output_section->find_relaxed_input_section(relinfo->object,
9453 relinfo->data_shndx);
9454 if (poris != NULL)
9455 {
9456 Arm_address section_address = poris->address();
9457 section_size_type section_size = poris->data_size();
9458
9459 gold_assert((section_address >= address)
9460 && ((section_address + section_size)
9461 <= (address + view_size)));
9462
9463 off_t offset = section_address - address;
9464 view += offset;
9465 address += offset;
9466 view_size = section_size;
9467 }
9468 }
9469
9470 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9471 Arm_relocate>(
9472 relinfo,
9473 this,
9474 prelocs,
9475 reloc_count,
9476 output_section,
9477 needs_special_offset_handling,
9478 view,
9479 address,
9480 view_size,
9481 reloc_symbol_changes);
9482 }
9483
9484 // Return the size of a relocation while scanning during a relocatable
9485 // link.
9486
9487 template<bool big_endian>
9488 unsigned int
9489 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9490 unsigned int r_type,
9491 Relobj* object)
9492 {
9493 r_type = get_real_reloc_type(r_type);
9494 const Arm_reloc_property* arp =
9495 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9496 if (arp != NULL)
9497 return arp->size();
9498 else
9499 {
9500 std::string reloc_name =
9501 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9502 gold_error(_("%s: unexpected %s in object file"),
9503 object->name().c_str(), reloc_name.c_str());
9504 return 0;
9505 }
9506 }
9507
9508 // Scan the relocs during a relocatable link.
9509
9510 template<bool big_endian>
9511 void
9512 Target_arm<big_endian>::scan_relocatable_relocs(
9513 Symbol_table* symtab,
9514 Layout* layout,
9515 Sized_relobj_file<32, big_endian>* object,
9516 unsigned int data_shndx,
9517 unsigned int sh_type,
9518 const unsigned char* prelocs,
9519 size_t reloc_count,
9520 Output_section* output_section,
9521 bool needs_special_offset_handling,
9522 size_t local_symbol_count,
9523 const unsigned char* plocal_symbols,
9524 Relocatable_relocs* rr)
9525 {
9526 gold_assert(sh_type == elfcpp::SHT_REL);
9527
9528 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9529 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9530
9531 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9532 Scan_relocatable_relocs>(
9533 symtab,
9534 layout,
9535 object,
9536 data_shndx,
9537 prelocs,
9538 reloc_count,
9539 output_section,
9540 needs_special_offset_handling,
9541 local_symbol_count,
9542 plocal_symbols,
9543 rr);
9544 }
9545
9546 // Relocate a section during a relocatable link.
9547
9548 template<bool big_endian>
9549 void
9550 Target_arm<big_endian>::relocate_for_relocatable(
9551 const Relocate_info<32, big_endian>* relinfo,
9552 unsigned int sh_type,
9553 const unsigned char* prelocs,
9554 size_t reloc_count,
9555 Output_section* output_section,
9556 off_t offset_in_output_section,
9557 const Relocatable_relocs* rr,
9558 unsigned char* view,
9559 Arm_address view_address,
9560 section_size_type view_size,
9561 unsigned char* reloc_view,
9562 section_size_type reloc_view_size)
9563 {
9564 gold_assert(sh_type == elfcpp::SHT_REL);
9565
9566 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9567 relinfo,
9568 prelocs,
9569 reloc_count,
9570 output_section,
9571 offset_in_output_section,
9572 rr,
9573 view,
9574 view_address,
9575 view_size,
9576 reloc_view,
9577 reloc_view_size);
9578 }
9579
9580 // Perform target-specific processing in a relocatable link. This is
9581 // only used if we use the relocation strategy RELOC_SPECIAL.
9582
9583 template<bool big_endian>
9584 void
9585 Target_arm<big_endian>::relocate_special_relocatable(
9586 const Relocate_info<32, big_endian>* relinfo,
9587 unsigned int sh_type,
9588 const unsigned char* preloc_in,
9589 size_t relnum,
9590 Output_section* output_section,
9591 off_t offset_in_output_section,
9592 unsigned char* view,
9593 elfcpp::Elf_types<32>::Elf_Addr view_address,
9594 section_size_type,
9595 unsigned char* preloc_out)
9596 {
9597 // We can only handle REL type relocation sections.
9598 gold_assert(sh_type == elfcpp::SHT_REL);
9599
9600 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9601 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9602 Reltype_write;
9603 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9604
9605 const Arm_relobj<big_endian>* object =
9606 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9607 const unsigned int local_count = object->local_symbol_count();
9608
9609 Reltype reloc(preloc_in);
9610 Reltype_write reloc_write(preloc_out);
9611
9612 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9613 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9614 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9615
9616 const Arm_reloc_property* arp =
9617 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9618 gold_assert(arp != NULL);
9619
9620 // Get the new symbol index.
9621 // We only use RELOC_SPECIAL strategy in local relocations.
9622 gold_assert(r_sym < local_count);
9623
9624 // We are adjusting a section symbol. We need to find
9625 // the symbol table index of the section symbol for
9626 // the output section corresponding to input section
9627 // in which this symbol is defined.
9628 bool is_ordinary;
9629 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9630 gold_assert(is_ordinary);
9631 Output_section* os = object->output_section(shndx);
9632 gold_assert(os != NULL);
9633 gold_assert(os->needs_symtab_index());
9634 unsigned int new_symndx = os->symtab_index();
9635
9636 // Get the new offset--the location in the output section where
9637 // this relocation should be applied.
9638
9639 Arm_address offset = reloc.get_r_offset();
9640 Arm_address new_offset;
9641 if (offset_in_output_section != invalid_address)
9642 new_offset = offset + offset_in_output_section;
9643 else
9644 {
9645 section_offset_type sot_offset =
9646 convert_types<section_offset_type, Arm_address>(offset);
9647 section_offset_type new_sot_offset =
9648 output_section->output_offset(object, relinfo->data_shndx,
9649 sot_offset);
9650 gold_assert(new_sot_offset != -1);
9651 new_offset = new_sot_offset;
9652 }
9653
9654 // In an object file, r_offset is an offset within the section.
9655 // In an executable or dynamic object, generated by
9656 // --emit-relocs, r_offset is an absolute address.
9657 if (!parameters->options().relocatable())
9658 {
9659 new_offset += view_address;
9660 if (offset_in_output_section != invalid_address)
9661 new_offset -= offset_in_output_section;
9662 }
9663
9664 reloc_write.put_r_offset(new_offset);
9665 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9666
9667 // Handle the reloc addend.
9668 // The relocation uses a section symbol in the input file.
9669 // We are adjusting it to use a section symbol in the output
9670 // file. The input section symbol refers to some address in
9671 // the input section. We need the relocation in the output
9672 // file to refer to that same address. This adjustment to
9673 // the addend is the same calculation we use for a simple
9674 // absolute relocation for the input section symbol.
9675
9676 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9677
9678 // Handle THUMB bit.
9679 Symbol_value<32> symval;
9680 Arm_address thumb_bit =
9681 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9682 if (thumb_bit != 0
9683 && arp->uses_thumb_bit()
9684 && ((psymval->value(object, 0) & 1) != 0))
9685 {
9686 Arm_address stripped_value =
9687 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9688 symval.set_output_value(stripped_value);
9689 psymval = &symval;
9690 }
9691
9692 unsigned char* paddend = view + offset;
9693 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9694 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9695 switch (r_type)
9696 {
9697 case elfcpp::R_ARM_ABS8:
9698 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9699 psymval);
9700 break;
9701
9702 case elfcpp::R_ARM_ABS12:
9703 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9704 psymval);
9705 break;
9706
9707 case elfcpp::R_ARM_ABS16:
9708 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9709 psymval);
9710 break;
9711
9712 case elfcpp::R_ARM_THM_ABS5:
9713 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9714 object,
9715 psymval);
9716 break;
9717
9718 case elfcpp::R_ARM_MOVW_ABS_NC:
9719 case elfcpp::R_ARM_MOVW_PREL_NC:
9720 case elfcpp::R_ARM_MOVW_BREL_NC:
9721 case elfcpp::R_ARM_MOVW_BREL:
9722 reloc_status = Arm_relocate_functions<big_endian>::movw(
9723 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9724 break;
9725
9726 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9727 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9728 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9729 case elfcpp::R_ARM_THM_MOVW_BREL:
9730 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9731 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9732 break;
9733
9734 case elfcpp::R_ARM_THM_CALL:
9735 case elfcpp::R_ARM_THM_XPC22:
9736 case elfcpp::R_ARM_THM_JUMP24:
9737 reloc_status =
9738 Arm_relocate_functions<big_endian>::thumb_branch_common(
9739 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9740 false);
9741 break;
9742
9743 case elfcpp::R_ARM_PLT32:
9744 case elfcpp::R_ARM_CALL:
9745 case elfcpp::R_ARM_JUMP24:
9746 case elfcpp::R_ARM_XPC25:
9747 reloc_status =
9748 Arm_relocate_functions<big_endian>::arm_branch_common(
9749 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9750 false);
9751 break;
9752
9753 case elfcpp::R_ARM_THM_JUMP19:
9754 reloc_status =
9755 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9756 psymval, 0, thumb_bit);
9757 break;
9758
9759 case elfcpp::R_ARM_THM_JUMP6:
9760 reloc_status =
9761 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9762 0);
9763 break;
9764
9765 case elfcpp::R_ARM_THM_JUMP8:
9766 reloc_status =
9767 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9768 0);
9769 break;
9770
9771 case elfcpp::R_ARM_THM_JUMP11:
9772 reloc_status =
9773 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9774 0);
9775 break;
9776
9777 case elfcpp::R_ARM_PREL31:
9778 reloc_status =
9779 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9780 thumb_bit);
9781 break;
9782
9783 case elfcpp::R_ARM_THM_PC8:
9784 reloc_status =
9785 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9786 0);
9787 break;
9788
9789 case elfcpp::R_ARM_THM_PC12:
9790 reloc_status =
9791 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9792 0);
9793 break;
9794
9795 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9796 reloc_status =
9797 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9798 0, thumb_bit);
9799 break;
9800
9801 // These relocation truncate relocation results so we cannot handle them
9802 // in a relocatable link.
9803 case elfcpp::R_ARM_MOVT_ABS:
9804 case elfcpp::R_ARM_THM_MOVT_ABS:
9805 case elfcpp::R_ARM_MOVT_PREL:
9806 case elfcpp::R_ARM_MOVT_BREL:
9807 case elfcpp::R_ARM_THM_MOVT_PREL:
9808 case elfcpp::R_ARM_THM_MOVT_BREL:
9809 case elfcpp::R_ARM_ALU_PC_G0_NC:
9810 case elfcpp::R_ARM_ALU_PC_G0:
9811 case elfcpp::R_ARM_ALU_PC_G1_NC:
9812 case elfcpp::R_ARM_ALU_PC_G1:
9813 case elfcpp::R_ARM_ALU_PC_G2:
9814 case elfcpp::R_ARM_ALU_SB_G0_NC:
9815 case elfcpp::R_ARM_ALU_SB_G0:
9816 case elfcpp::R_ARM_ALU_SB_G1_NC:
9817 case elfcpp::R_ARM_ALU_SB_G1:
9818 case elfcpp::R_ARM_ALU_SB_G2:
9819 case elfcpp::R_ARM_LDR_PC_G0:
9820 case elfcpp::R_ARM_LDR_PC_G1:
9821 case elfcpp::R_ARM_LDR_PC_G2:
9822 case elfcpp::R_ARM_LDR_SB_G0:
9823 case elfcpp::R_ARM_LDR_SB_G1:
9824 case elfcpp::R_ARM_LDR_SB_G2:
9825 case elfcpp::R_ARM_LDRS_PC_G0:
9826 case elfcpp::R_ARM_LDRS_PC_G1:
9827 case elfcpp::R_ARM_LDRS_PC_G2:
9828 case elfcpp::R_ARM_LDRS_SB_G0:
9829 case elfcpp::R_ARM_LDRS_SB_G1:
9830 case elfcpp::R_ARM_LDRS_SB_G2:
9831 case elfcpp::R_ARM_LDC_PC_G0:
9832 case elfcpp::R_ARM_LDC_PC_G1:
9833 case elfcpp::R_ARM_LDC_PC_G2:
9834 case elfcpp::R_ARM_LDC_SB_G0:
9835 case elfcpp::R_ARM_LDC_SB_G1:
9836 case elfcpp::R_ARM_LDC_SB_G2:
9837 gold_error(_("cannot handle %s in a relocatable link"),
9838 arp->name().c_str());
9839 break;
9840
9841 default:
9842 gold_unreachable();
9843 }
9844
9845 // Report any errors.
9846 switch (reloc_status)
9847 {
9848 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9849 break;
9850 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9851 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9852 _("relocation overflow in %s"),
9853 arp->name().c_str());
9854 break;
9855 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9856 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9857 _("unexpected opcode while processing relocation %s"),
9858 arp->name().c_str());
9859 break;
9860 default:
9861 gold_unreachable();
9862 }
9863 }
9864
9865 // Return the value to use for a dynamic symbol which requires special
9866 // treatment. This is how we support equality comparisons of function
9867 // pointers across shared library boundaries, as described in the
9868 // processor specific ABI supplement.
9869
9870 template<bool big_endian>
9871 uint64_t
9872 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9873 {
9874 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9875 return this->plt_section()->address() + gsym->plt_offset();
9876 }
9877
9878 // Map platform-specific relocs to real relocs
9879 //
9880 template<bool big_endian>
9881 unsigned int
9882 Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9883 {
9884 switch (r_type)
9885 {
9886 case elfcpp::R_ARM_TARGET1:
9887 // This is either R_ARM_ABS32 or R_ARM_REL32;
9888 return elfcpp::R_ARM_ABS32;
9889
9890 case elfcpp::R_ARM_TARGET2:
9891 // This can be any reloc type but usually is R_ARM_GOT_PREL
9892 return elfcpp::R_ARM_GOT_PREL;
9893
9894 default:
9895 return r_type;
9896 }
9897 }
9898
9899 // Whether if two EABI versions V1 and V2 are compatible.
9900
9901 template<bool big_endian>
9902 bool
9903 Target_arm<big_endian>::are_eabi_versions_compatible(
9904 elfcpp::Elf_Word v1,
9905 elfcpp::Elf_Word v2)
9906 {
9907 // v4 and v5 are the same spec before and after it was released,
9908 // so allow mixing them.
9909 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9910 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9911 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9912 return true;
9913
9914 return v1 == v2;
9915 }
9916
9917 // Combine FLAGS from an input object called NAME and the processor-specific
9918 // flags in the ELF header of the output. Much of this is adapted from the
9919 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9920 // in bfd/elf32-arm.c.
9921
9922 template<bool big_endian>
9923 void
9924 Target_arm<big_endian>::merge_processor_specific_flags(
9925 const std::string& name,
9926 elfcpp::Elf_Word flags)
9927 {
9928 if (this->are_processor_specific_flags_set())
9929 {
9930 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9931
9932 // Nothing to merge if flags equal to those in output.
9933 if (flags == out_flags)
9934 return;
9935
9936 // Complain about various flag mismatches.
9937 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9938 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9939 if (!this->are_eabi_versions_compatible(version1, version2)
9940 && parameters->options().warn_mismatch())
9941 gold_error(_("Source object %s has EABI version %d but output has "
9942 "EABI version %d."),
9943 name.c_str(),
9944 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9945 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9946 }
9947 else
9948 {
9949 // If the input is the default architecture and had the default
9950 // flags then do not bother setting the flags for the output
9951 // architecture, instead allow future merges to do this. If no
9952 // future merges ever set these flags then they will retain their
9953 // uninitialised values, which surprise surprise, correspond
9954 // to the default values.
9955 if (flags == 0)
9956 return;
9957
9958 // This is the first time, just copy the flags.
9959 // We only copy the EABI version for now.
9960 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9961 }
9962 }
9963
9964 // Adjust ELF file header.
9965 template<bool big_endian>
9966 void
9967 Target_arm<big_endian>::do_adjust_elf_header(
9968 unsigned char* view,
9969 int len) const
9970 {
9971 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9972
9973 elfcpp::Ehdr<32, big_endian> ehdr(view);
9974 unsigned char e_ident[elfcpp::EI_NIDENT];
9975 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9976
9977 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9978 == elfcpp::EF_ARM_EABI_UNKNOWN)
9979 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9980 else
9981 e_ident[elfcpp::EI_OSABI] = 0;
9982 e_ident[elfcpp::EI_ABIVERSION] = 0;
9983
9984 // FIXME: Do EF_ARM_BE8 adjustment.
9985
9986 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9987 oehdr.put_e_ident(e_ident);
9988 }
9989
9990 // do_make_elf_object to override the same function in the base class.
9991 // We need to use a target-specific sub-class of
9992 // Sized_relobj_file<32, big_endian> to store ARM specific information.
9993 // Hence we need to have our own ELF object creation.
9994
9995 template<bool big_endian>
9996 Object*
9997 Target_arm<big_endian>::do_make_elf_object(
9998 const std::string& name,
9999 Input_file* input_file,
10000 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
10001 {
10002 int et = ehdr.get_e_type();
10003 if (et == elfcpp::ET_REL)
10004 {
10005 Arm_relobj<big_endian>* obj =
10006 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
10007 obj->setup();
10008 return obj;
10009 }
10010 else if (et == elfcpp::ET_DYN)
10011 {
10012 Sized_dynobj<32, big_endian>* obj =
10013 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10014 obj->setup();
10015 return obj;
10016 }
10017 else
10018 {
10019 gold_error(_("%s: unsupported ELF file type %d"),
10020 name.c_str(), et);
10021 return NULL;
10022 }
10023 }
10024
10025 // Read the architecture from the Tag_also_compatible_with attribute, if any.
10026 // Returns -1 if no architecture could be read.
10027 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10028
10029 template<bool big_endian>
10030 int
10031 Target_arm<big_endian>::get_secondary_compatible_arch(
10032 const Attributes_section_data* pasd)
10033 {
10034 const Object_attribute* known_attributes =
10035 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10036
10037 // Note: the tag and its argument below are uleb128 values, though
10038 // currently-defined values fit in one byte for each.
10039 const std::string& sv =
10040 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10041 if (sv.size() == 2
10042 && sv.data()[0] == elfcpp::Tag_CPU_arch
10043 && (sv.data()[1] & 128) != 128)
10044 return sv.data()[1];
10045
10046 // This tag is "safely ignorable", so don't complain if it looks funny.
10047 return -1;
10048 }
10049
10050 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10051 // The tag is removed if ARCH is -1.
10052 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10053
10054 template<bool big_endian>
10055 void
10056 Target_arm<big_endian>::set_secondary_compatible_arch(
10057 Attributes_section_data* pasd,
10058 int arch)
10059 {
10060 Object_attribute* known_attributes =
10061 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10062
10063 if (arch == -1)
10064 {
10065 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10066 return;
10067 }
10068
10069 // Note: the tag and its argument below are uleb128 values, though
10070 // currently-defined values fit in one byte for each.
10071 char sv[3];
10072 sv[0] = elfcpp::Tag_CPU_arch;
10073 gold_assert(arch != 0);
10074 sv[1] = arch;
10075 sv[2] = '\0';
10076
10077 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10078 }
10079
10080 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10081 // into account.
10082 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10083
10084 template<bool big_endian>
10085 int
10086 Target_arm<big_endian>::tag_cpu_arch_combine(
10087 const char* name,
10088 int oldtag,
10089 int* secondary_compat_out,
10090 int newtag,
10091 int secondary_compat)
10092 {
10093 #define T(X) elfcpp::TAG_CPU_ARCH_##X
10094 static const int v6t2[] =
10095 {
10096 T(V6T2), // PRE_V4.
10097 T(V6T2), // V4.
10098 T(V6T2), // V4T.
10099 T(V6T2), // V5T.
10100 T(V6T2), // V5TE.
10101 T(V6T2), // V5TEJ.
10102 T(V6T2), // V6.
10103 T(V7), // V6KZ.
10104 T(V6T2) // V6T2.
10105 };
10106 static const int v6k[] =
10107 {
10108 T(V6K), // PRE_V4.
10109 T(V6K), // V4.
10110 T(V6K), // V4T.
10111 T(V6K), // V5T.
10112 T(V6K), // V5TE.
10113 T(V6K), // V5TEJ.
10114 T(V6K), // V6.
10115 T(V6KZ), // V6KZ.
10116 T(V7), // V6T2.
10117 T(V6K) // V6K.
10118 };
10119 static const int v7[] =
10120 {
10121 T(V7), // PRE_V4.
10122 T(V7), // V4.
10123 T(V7), // V4T.
10124 T(V7), // V5T.
10125 T(V7), // V5TE.
10126 T(V7), // V5TEJ.
10127 T(V7), // V6.
10128 T(V7), // V6KZ.
10129 T(V7), // V6T2.
10130 T(V7), // V6K.
10131 T(V7) // V7.
10132 };
10133 static const int v6_m[] =
10134 {
10135 -1, // PRE_V4.
10136 -1, // V4.
10137 T(V6K), // V4T.
10138 T(V6K), // V5T.
10139 T(V6K), // V5TE.
10140 T(V6K), // V5TEJ.
10141 T(V6K), // V6.
10142 T(V6KZ), // V6KZ.
10143 T(V7), // V6T2.
10144 T(V6K), // V6K.
10145 T(V7), // V7.
10146 T(V6_M) // V6_M.
10147 };
10148 static const int v6s_m[] =
10149 {
10150 -1, // PRE_V4.
10151 -1, // V4.
10152 T(V6K), // V4T.
10153 T(V6K), // V5T.
10154 T(V6K), // V5TE.
10155 T(V6K), // V5TEJ.
10156 T(V6K), // V6.
10157 T(V6KZ), // V6KZ.
10158 T(V7), // V6T2.
10159 T(V6K), // V6K.
10160 T(V7), // V7.
10161 T(V6S_M), // V6_M.
10162 T(V6S_M) // V6S_M.
10163 };
10164 static const int v7e_m[] =
10165 {
10166 -1, // PRE_V4.
10167 -1, // V4.
10168 T(V7E_M), // V4T.
10169 T(V7E_M), // V5T.
10170 T(V7E_M), // V5TE.
10171 T(V7E_M), // V5TEJ.
10172 T(V7E_M), // V6.
10173 T(V7E_M), // V6KZ.
10174 T(V7E_M), // V6T2.
10175 T(V7E_M), // V6K.
10176 T(V7E_M), // V7.
10177 T(V7E_M), // V6_M.
10178 T(V7E_M), // V6S_M.
10179 T(V7E_M) // V7E_M.
10180 };
10181 static const int v4t_plus_v6_m[] =
10182 {
10183 -1, // PRE_V4.
10184 -1, // V4.
10185 T(V4T), // V4T.
10186 T(V5T), // V5T.
10187 T(V5TE), // V5TE.
10188 T(V5TEJ), // V5TEJ.
10189 T(V6), // V6.
10190 T(V6KZ), // V6KZ.
10191 T(V6T2), // V6T2.
10192 T(V6K), // V6K.
10193 T(V7), // V7.
10194 T(V6_M), // V6_M.
10195 T(V6S_M), // V6S_M.
10196 T(V7E_M), // V7E_M.
10197 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10198 };
10199 static const int* comb[] =
10200 {
10201 v6t2,
10202 v6k,
10203 v7,
10204 v6_m,
10205 v6s_m,
10206 v7e_m,
10207 // Pseudo-architecture.
10208 v4t_plus_v6_m
10209 };
10210
10211 // Check we've not got a higher architecture than we know about.
10212
10213 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10214 {
10215 gold_error(_("%s: unknown CPU architecture"), name);
10216 return -1;
10217 }
10218
10219 // Override old tag if we have a Tag_also_compatible_with on the output.
10220
10221 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10222 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10223 oldtag = T(V4T_PLUS_V6_M);
10224
10225 // And override the new tag if we have a Tag_also_compatible_with on the
10226 // input.
10227
10228 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10229 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10230 newtag = T(V4T_PLUS_V6_M);
10231
10232 // Architectures before V6KZ add features monotonically.
10233 int tagh = std::max(oldtag, newtag);
10234 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10235 return tagh;
10236
10237 int tagl = std::min(oldtag, newtag);
10238 int result = comb[tagh - T(V6T2)][tagl];
10239
10240 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10241 // as the canonical version.
10242 if (result == T(V4T_PLUS_V6_M))
10243 {
10244 result = T(V4T);
10245 *secondary_compat_out = T(V6_M);
10246 }
10247 else
10248 *secondary_compat_out = -1;
10249
10250 if (result == -1)
10251 {
10252 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10253 name, oldtag, newtag);
10254 return -1;
10255 }
10256
10257 return result;
10258 #undef T
10259 }
10260
10261 // Helper to print AEABI enum tag value.
10262
10263 template<bool big_endian>
10264 std::string
10265 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10266 {
10267 static const char* aeabi_enum_names[] =
10268 { "", "variable-size", "32-bit", "" };
10269 const size_t aeabi_enum_names_size =
10270 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10271
10272 if (value < aeabi_enum_names_size)
10273 return std::string(aeabi_enum_names[value]);
10274 else
10275 {
10276 char buffer[100];
10277 sprintf(buffer, "<unknown value %u>", value);
10278 return std::string(buffer);
10279 }
10280 }
10281
10282 // Return the string value to store in TAG_CPU_name.
10283
10284 template<bool big_endian>
10285 std::string
10286 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10287 {
10288 static const char* name_table[] = {
10289 // These aren't real CPU names, but we can't guess
10290 // that from the architecture version alone.
10291 "Pre v4",
10292 "ARM v4",
10293 "ARM v4T",
10294 "ARM v5T",
10295 "ARM v5TE",
10296 "ARM v5TEJ",
10297 "ARM v6",
10298 "ARM v6KZ",
10299 "ARM v6T2",
10300 "ARM v6K",
10301 "ARM v7",
10302 "ARM v6-M",
10303 "ARM v6S-M",
10304 "ARM v7E-M"
10305 };
10306 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10307
10308 if (value < name_table_size)
10309 return std::string(name_table[value]);
10310 else
10311 {
10312 char buffer[100];
10313 sprintf(buffer, "<unknown CPU value %u>", value);
10314 return std::string(buffer);
10315 }
10316 }
10317
10318 // Merge object attributes from input file called NAME with those of the
10319 // output. The input object attributes are in the object pointed by PASD.
10320
10321 template<bool big_endian>
10322 void
10323 Target_arm<big_endian>::merge_object_attributes(
10324 const char* name,
10325 const Attributes_section_data* pasd)
10326 {
10327 // Return if there is no attributes section data.
10328 if (pasd == NULL)
10329 return;
10330
10331 // If output has no object attributes, just copy.
10332 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10333 if (this->attributes_section_data_ == NULL)
10334 {
10335 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10336 Object_attribute* out_attr =
10337 this->attributes_section_data_->known_attributes(vendor);
10338
10339 // We do not output objects with Tag_MPextension_use_legacy - we move
10340 // the attribute's value to Tag_MPextension_use. */
10341 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10342 {
10343 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10344 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10345 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10346 {
10347 gold_error(_("%s has both the current and legacy "
10348 "Tag_MPextension_use attributes"),
10349 name);
10350 }
10351
10352 out_attr[elfcpp::Tag_MPextension_use] =
10353 out_attr[elfcpp::Tag_MPextension_use_legacy];
10354 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10355 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10356 }
10357
10358 return;
10359 }
10360
10361 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10362 Object_attribute* out_attr =
10363 this->attributes_section_data_->known_attributes(vendor);
10364
10365 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10366 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10367 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10368 {
10369 // Ignore mismatches if the object doesn't use floating point. */
10370 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10371 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10372 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10373 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10374 && parameters->options().warn_mismatch())
10375 gold_error(_("%s uses VFP register arguments, output does not"),
10376 name);
10377 }
10378
10379 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10380 {
10381 // Merge this attribute with existing attributes.
10382 switch (i)
10383 {
10384 case elfcpp::Tag_CPU_raw_name:
10385 case elfcpp::Tag_CPU_name:
10386 // These are merged after Tag_CPU_arch.
10387 break;
10388
10389 case elfcpp::Tag_ABI_optimization_goals:
10390 case elfcpp::Tag_ABI_FP_optimization_goals:
10391 // Use the first value seen.
10392 break;
10393
10394 case elfcpp::Tag_CPU_arch:
10395 {
10396 unsigned int saved_out_attr = out_attr->int_value();
10397 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10398 int secondary_compat =
10399 this->get_secondary_compatible_arch(pasd);
10400 int secondary_compat_out =
10401 this->get_secondary_compatible_arch(
10402 this->attributes_section_data_);
10403 out_attr[i].set_int_value(
10404 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10405 &secondary_compat_out,
10406 in_attr[i].int_value(),
10407 secondary_compat));
10408 this->set_secondary_compatible_arch(this->attributes_section_data_,
10409 secondary_compat_out);
10410
10411 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10412 if (out_attr[i].int_value() == saved_out_attr)
10413 ; // Leave the names alone.
10414 else if (out_attr[i].int_value() == in_attr[i].int_value())
10415 {
10416 // The output architecture has been changed to match the
10417 // input architecture. Use the input names.
10418 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10419 in_attr[elfcpp::Tag_CPU_name].string_value());
10420 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10421 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10422 }
10423 else
10424 {
10425 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10426 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10427 }
10428
10429 // If we still don't have a value for Tag_CPU_name,
10430 // make one up now. Tag_CPU_raw_name remains blank.
10431 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10432 {
10433 const std::string cpu_name =
10434 this->tag_cpu_name_value(out_attr[i].int_value());
10435 // FIXME: If we see an unknown CPU, this will be set
10436 // to "<unknown CPU n>", where n is the attribute value.
10437 // This is different from BFD, which leaves the name alone.
10438 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10439 }
10440 }
10441 break;
10442
10443 case elfcpp::Tag_ARM_ISA_use:
10444 case elfcpp::Tag_THUMB_ISA_use:
10445 case elfcpp::Tag_WMMX_arch:
10446 case elfcpp::Tag_Advanced_SIMD_arch:
10447 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10448 case elfcpp::Tag_ABI_FP_rounding:
10449 case elfcpp::Tag_ABI_FP_exceptions:
10450 case elfcpp::Tag_ABI_FP_user_exceptions:
10451 case elfcpp::Tag_ABI_FP_number_model:
10452 case elfcpp::Tag_VFP_HP_extension:
10453 case elfcpp::Tag_CPU_unaligned_access:
10454 case elfcpp::Tag_T2EE_use:
10455 case elfcpp::Tag_Virtualization_use:
10456 case elfcpp::Tag_MPextension_use:
10457 // Use the largest value specified.
10458 if (in_attr[i].int_value() > out_attr[i].int_value())
10459 out_attr[i].set_int_value(in_attr[i].int_value());
10460 break;
10461
10462 case elfcpp::Tag_ABI_align8_preserved:
10463 case elfcpp::Tag_ABI_PCS_RO_data:
10464 // Use the smallest value specified.
10465 if (in_attr[i].int_value() < out_attr[i].int_value())
10466 out_attr[i].set_int_value(in_attr[i].int_value());
10467 break;
10468
10469 case elfcpp::Tag_ABI_align8_needed:
10470 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10471 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10472 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10473 == 0)))
10474 {
10475 // This error message should be enabled once all non-conforming
10476 // binaries in the toolchain have had the attributes set
10477 // properly.
10478 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10479 // name);
10480 }
10481 // Fall through.
10482 case elfcpp::Tag_ABI_FP_denormal:
10483 case elfcpp::Tag_ABI_PCS_GOT_use:
10484 {
10485 // These tags have 0 = don't care, 1 = strong requirement,
10486 // 2 = weak requirement.
10487 static const int order_021[3] = {0, 2, 1};
10488
10489 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10490 // value if greater than 2 (for future-proofing).
10491 if ((in_attr[i].int_value() > 2
10492 && in_attr[i].int_value() > out_attr[i].int_value())
10493 || (in_attr[i].int_value() <= 2
10494 && out_attr[i].int_value() <= 2
10495 && (order_021[in_attr[i].int_value()]
10496 > order_021[out_attr[i].int_value()])))
10497 out_attr[i].set_int_value(in_attr[i].int_value());
10498 }
10499 break;
10500
10501 case elfcpp::Tag_CPU_arch_profile:
10502 if (out_attr[i].int_value() != in_attr[i].int_value())
10503 {
10504 // 0 will merge with anything.
10505 // 'A' and 'S' merge to 'A'.
10506 // 'R' and 'S' merge to 'R'.
10507 // 'M' and 'A|R|S' is an error.
10508 if (out_attr[i].int_value() == 0
10509 || (out_attr[i].int_value() == 'S'
10510 && (in_attr[i].int_value() == 'A'
10511 || in_attr[i].int_value() == 'R')))
10512 out_attr[i].set_int_value(in_attr[i].int_value());
10513 else if (in_attr[i].int_value() == 0
10514 || (in_attr[i].int_value() == 'S'
10515 && (out_attr[i].int_value() == 'A'
10516 || out_attr[i].int_value() == 'R')))
10517 ; // Do nothing.
10518 else if (parameters->options().warn_mismatch())
10519 {
10520 gold_error
10521 (_("conflicting architecture profiles %c/%c"),
10522 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10523 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10524 }
10525 }
10526 break;
10527 case elfcpp::Tag_VFP_arch:
10528 {
10529 static const struct
10530 {
10531 int ver;
10532 int regs;
10533 } vfp_versions[7] =
10534 {
10535 {0, 0},
10536 {1, 16},
10537 {2, 16},
10538 {3, 32},
10539 {3, 16},
10540 {4, 32},
10541 {4, 16}
10542 };
10543
10544 // Values greater than 6 aren't defined, so just pick the
10545 // biggest.
10546 if (in_attr[i].int_value() > 6
10547 && in_attr[i].int_value() > out_attr[i].int_value())
10548 {
10549 *out_attr = *in_attr;
10550 break;
10551 }
10552 // The output uses the superset of input features
10553 // (ISA version) and registers.
10554 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10555 vfp_versions[out_attr[i].int_value()].ver);
10556 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10557 vfp_versions[out_attr[i].int_value()].regs);
10558 // This assumes all possible supersets are also a valid
10559 // options.
10560 int newval;
10561 for (newval = 6; newval > 0; newval--)
10562 {
10563 if (regs == vfp_versions[newval].regs
10564 && ver == vfp_versions[newval].ver)
10565 break;
10566 }
10567 out_attr[i].set_int_value(newval);
10568 }
10569 break;
10570 case elfcpp::Tag_PCS_config:
10571 if (out_attr[i].int_value() == 0)
10572 out_attr[i].set_int_value(in_attr[i].int_value());
10573 else if (in_attr[i].int_value() != 0
10574 && out_attr[i].int_value() != 0
10575 && parameters->options().warn_mismatch())
10576 {
10577 // It's sometimes ok to mix different configs, so this is only
10578 // a warning.
10579 gold_warning(_("%s: conflicting platform configuration"), name);
10580 }
10581 break;
10582 case elfcpp::Tag_ABI_PCS_R9_use:
10583 if (in_attr[i].int_value() != out_attr[i].int_value()
10584 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10585 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10586 && parameters->options().warn_mismatch())
10587 {
10588 gold_error(_("%s: conflicting use of R9"), name);
10589 }
10590 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10591 out_attr[i].set_int_value(in_attr[i].int_value());
10592 break;
10593 case elfcpp::Tag_ABI_PCS_RW_data:
10594 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10595 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10596 != elfcpp::AEABI_R9_SB)
10597 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10598 != elfcpp::AEABI_R9_unused)
10599 && parameters->options().warn_mismatch())
10600 {
10601 gold_error(_("%s: SB relative addressing conflicts with use "
10602 "of R9"),
10603 name);
10604 }
10605 // Use the smallest value specified.
10606 if (in_attr[i].int_value() < out_attr[i].int_value())
10607 out_attr[i].set_int_value(in_attr[i].int_value());
10608 break;
10609 case elfcpp::Tag_ABI_PCS_wchar_t:
10610 if (out_attr[i].int_value()
10611 && in_attr[i].int_value()
10612 && out_attr[i].int_value() != in_attr[i].int_value()
10613 && parameters->options().warn_mismatch()
10614 && parameters->options().wchar_size_warning())
10615 {
10616 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10617 "use %u-byte wchar_t; use of wchar_t values "
10618 "across objects may fail"),
10619 name, in_attr[i].int_value(),
10620 out_attr[i].int_value());
10621 }
10622 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10623 out_attr[i].set_int_value(in_attr[i].int_value());
10624 break;
10625 case elfcpp::Tag_ABI_enum_size:
10626 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10627 {
10628 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10629 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10630 {
10631 // The existing object is compatible with anything.
10632 // Use whatever requirements the new object has.
10633 out_attr[i].set_int_value(in_attr[i].int_value());
10634 }
10635 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10636 && out_attr[i].int_value() != in_attr[i].int_value()
10637 && parameters->options().warn_mismatch()
10638 && parameters->options().enum_size_warning())
10639 {
10640 unsigned int in_value = in_attr[i].int_value();
10641 unsigned int out_value = out_attr[i].int_value();
10642 gold_warning(_("%s uses %s enums yet the output is to use "
10643 "%s enums; use of enum values across objects "
10644 "may fail"),
10645 name,
10646 this->aeabi_enum_name(in_value).c_str(),
10647 this->aeabi_enum_name(out_value).c_str());
10648 }
10649 }
10650 break;
10651 case elfcpp::Tag_ABI_VFP_args:
10652 // Already done.
10653 break;
10654 case elfcpp::Tag_ABI_WMMX_args:
10655 if (in_attr[i].int_value() != out_attr[i].int_value()
10656 && parameters->options().warn_mismatch())
10657 {
10658 gold_error(_("%s uses iWMMXt register arguments, output does "
10659 "not"),
10660 name);
10661 }
10662 break;
10663 case Object_attribute::Tag_compatibility:
10664 // Merged in target-independent code.
10665 break;
10666 case elfcpp::Tag_ABI_HardFP_use:
10667 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10668 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10669 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10670 out_attr[i].set_int_value(3);
10671 else if (in_attr[i].int_value() > out_attr[i].int_value())
10672 out_attr[i].set_int_value(in_attr[i].int_value());
10673 break;
10674 case elfcpp::Tag_ABI_FP_16bit_format:
10675 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10676 {
10677 if (in_attr[i].int_value() != out_attr[i].int_value()
10678 && parameters->options().warn_mismatch())
10679 gold_error(_("fp16 format mismatch between %s and output"),
10680 name);
10681 }
10682 if (in_attr[i].int_value() != 0)
10683 out_attr[i].set_int_value(in_attr[i].int_value());
10684 break;
10685
10686 case elfcpp::Tag_DIV_use:
10687 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10688 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10689 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10690 // CPU. We will merge as follows: If the input attribute's value
10691 // is one then the output attribute's value remains unchanged. If
10692 // the input attribute's value is zero or two then if the output
10693 // attribute's value is one the output value is set to the input
10694 // value, otherwise the output value must be the same as the
10695 // inputs. */
10696 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10697 {
10698 if (in_attr[i].int_value() != out_attr[i].int_value())
10699 {
10700 gold_error(_("DIV usage mismatch between %s and output"),
10701 name);
10702 }
10703 }
10704
10705 if (in_attr[i].int_value() != 1)
10706 out_attr[i].set_int_value(in_attr[i].int_value());
10707
10708 break;
10709
10710 case elfcpp::Tag_MPextension_use_legacy:
10711 // We don't output objects with Tag_MPextension_use_legacy - we
10712 // move the value to Tag_MPextension_use.
10713 if (in_attr[i].int_value() != 0
10714 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10715 {
10716 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10717 != in_attr[i].int_value())
10718 {
10719 gold_error(_("%s has has both the current and legacy "
10720 "Tag_MPextension_use attributes"),
10721 name);
10722 }
10723 }
10724
10725 if (in_attr[i].int_value()
10726 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10727 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10728
10729 break;
10730
10731 case elfcpp::Tag_nodefaults:
10732 // This tag is set if it exists, but the value is unused (and is
10733 // typically zero). We don't actually need to do anything here -
10734 // the merge happens automatically when the type flags are merged
10735 // below.
10736 break;
10737 case elfcpp::Tag_also_compatible_with:
10738 // Already done in Tag_CPU_arch.
10739 break;
10740 case elfcpp::Tag_conformance:
10741 // Keep the attribute if it matches. Throw it away otherwise.
10742 // No attribute means no claim to conform.
10743 if (in_attr[i].string_value() != out_attr[i].string_value())
10744 out_attr[i].set_string_value("");
10745 break;
10746
10747 default:
10748 {
10749 const char* err_object = NULL;
10750
10751 // The "known_obj_attributes" table does contain some undefined
10752 // attributes. Ensure that there are unused.
10753 if (out_attr[i].int_value() != 0
10754 || out_attr[i].string_value() != "")
10755 err_object = "output";
10756 else if (in_attr[i].int_value() != 0
10757 || in_attr[i].string_value() != "")
10758 err_object = name;
10759
10760 if (err_object != NULL
10761 && parameters->options().warn_mismatch())
10762 {
10763 // Attribute numbers >=64 (mod 128) can be safely ignored.
10764 if ((i & 127) < 64)
10765 gold_error(_("%s: unknown mandatory EABI object attribute "
10766 "%d"),
10767 err_object, i);
10768 else
10769 gold_warning(_("%s: unknown EABI object attribute %d"),
10770 err_object, i);
10771 }
10772
10773 // Only pass on attributes that match in both inputs.
10774 if (!in_attr[i].matches(out_attr[i]))
10775 {
10776 out_attr[i].set_int_value(0);
10777 out_attr[i].set_string_value("");
10778 }
10779 }
10780 }
10781
10782 // If out_attr was copied from in_attr then it won't have a type yet.
10783 if (in_attr[i].type() && !out_attr[i].type())
10784 out_attr[i].set_type(in_attr[i].type());
10785 }
10786
10787 // Merge Tag_compatibility attributes and any common GNU ones.
10788 this->attributes_section_data_->merge(name, pasd);
10789
10790 // Check for any attributes not known on ARM.
10791 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10792 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10793 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10794 Other_attributes* out_other_attributes =
10795 this->attributes_section_data_->other_attributes(vendor);
10796 Other_attributes::iterator out_iter = out_other_attributes->begin();
10797
10798 while (in_iter != in_other_attributes->end()
10799 || out_iter != out_other_attributes->end())
10800 {
10801 const char* err_object = NULL;
10802 int err_tag = 0;
10803
10804 // The tags for each list are in numerical order.
10805 // If the tags are equal, then merge.
10806 if (out_iter != out_other_attributes->end()
10807 && (in_iter == in_other_attributes->end()
10808 || in_iter->first > out_iter->first))
10809 {
10810 // This attribute only exists in output. We can't merge, and we
10811 // don't know what the tag means, so delete it.
10812 err_object = "output";
10813 err_tag = out_iter->first;
10814 int saved_tag = out_iter->first;
10815 delete out_iter->second;
10816 out_other_attributes->erase(out_iter);
10817 out_iter = out_other_attributes->upper_bound(saved_tag);
10818 }
10819 else if (in_iter != in_other_attributes->end()
10820 && (out_iter != out_other_attributes->end()
10821 || in_iter->first < out_iter->first))
10822 {
10823 // This attribute only exists in input. We can't merge, and we
10824 // don't know what the tag means, so ignore it.
10825 err_object = name;
10826 err_tag = in_iter->first;
10827 ++in_iter;
10828 }
10829 else // The tags are equal.
10830 {
10831 // As present, all attributes in the list are unknown, and
10832 // therefore can't be merged meaningfully.
10833 err_object = "output";
10834 err_tag = out_iter->first;
10835
10836 // Only pass on attributes that match in both inputs.
10837 if (!in_iter->second->matches(*(out_iter->second)))
10838 {
10839 // No match. Delete the attribute.
10840 int saved_tag = out_iter->first;
10841 delete out_iter->second;
10842 out_other_attributes->erase(out_iter);
10843 out_iter = out_other_attributes->upper_bound(saved_tag);
10844 }
10845 else
10846 {
10847 // Matched. Keep the attribute and move to the next.
10848 ++out_iter;
10849 ++in_iter;
10850 }
10851 }
10852
10853 if (err_object && parameters->options().warn_mismatch())
10854 {
10855 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10856 if ((err_tag & 127) < 64)
10857 {
10858 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10859 err_object, err_tag);
10860 }
10861 else
10862 {
10863 gold_warning(_("%s: unknown EABI object attribute %d"),
10864 err_object, err_tag);
10865 }
10866 }
10867 }
10868 }
10869
10870 // Stub-generation methods for Target_arm.
10871
10872 // Make a new Arm_input_section object.
10873
10874 template<bool big_endian>
10875 Arm_input_section<big_endian>*
10876 Target_arm<big_endian>::new_arm_input_section(
10877 Relobj* relobj,
10878 unsigned int shndx)
10879 {
10880 Section_id sid(relobj, shndx);
10881
10882 Arm_input_section<big_endian>* arm_input_section =
10883 new Arm_input_section<big_endian>(relobj, shndx);
10884 arm_input_section->init();
10885
10886 // Register new Arm_input_section in map for look-up.
10887 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10888 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10889
10890 // Make sure that it we have not created another Arm_input_section
10891 // for this input section already.
10892 gold_assert(ins.second);
10893
10894 return arm_input_section;
10895 }
10896
10897 // Find the Arm_input_section object corresponding to the SHNDX-th input
10898 // section of RELOBJ.
10899
10900 template<bool big_endian>
10901 Arm_input_section<big_endian>*
10902 Target_arm<big_endian>::find_arm_input_section(
10903 Relobj* relobj,
10904 unsigned int shndx) const
10905 {
10906 Section_id sid(relobj, shndx);
10907 typename Arm_input_section_map::const_iterator p =
10908 this->arm_input_section_map_.find(sid);
10909 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10910 }
10911
10912 // Make a new stub table.
10913
10914 template<bool big_endian>
10915 Stub_table<big_endian>*
10916 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10917 {
10918 Stub_table<big_endian>* stub_table =
10919 new Stub_table<big_endian>(owner);
10920 this->stub_tables_.push_back(stub_table);
10921
10922 stub_table->set_address(owner->address() + owner->data_size());
10923 stub_table->set_file_offset(owner->offset() + owner->data_size());
10924 stub_table->finalize_data_size();
10925
10926 return stub_table;
10927 }
10928
10929 // Scan a relocation for stub generation.
10930
10931 template<bool big_endian>
10932 void
10933 Target_arm<big_endian>::scan_reloc_for_stub(
10934 const Relocate_info<32, big_endian>* relinfo,
10935 unsigned int r_type,
10936 const Sized_symbol<32>* gsym,
10937 unsigned int r_sym,
10938 const Symbol_value<32>* psymval,
10939 elfcpp::Elf_types<32>::Elf_Swxword addend,
10940 Arm_address address)
10941 {
10942 typedef typename Target_arm<big_endian>::Relocate Relocate;
10943
10944 const Arm_relobj<big_endian>* arm_relobj =
10945 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10946
10947 bool target_is_thumb;
10948 Symbol_value<32> symval;
10949 if (gsym != NULL)
10950 {
10951 // This is a global symbol. Determine if we use PLT and if the
10952 // final target is THUMB.
10953 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10954 {
10955 // This uses a PLT, change the symbol value.
10956 symval.set_output_value(this->plt_section()->address()
10957 + gsym->plt_offset());
10958 psymval = &symval;
10959 target_is_thumb = false;
10960 }
10961 else if (gsym->is_undefined())
10962 // There is no need to generate a stub symbol is undefined.
10963 return;
10964 else
10965 {
10966 target_is_thumb =
10967 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10968 || (gsym->type() == elfcpp::STT_FUNC
10969 && !gsym->is_undefined()
10970 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10971 }
10972 }
10973 else
10974 {
10975 // This is a local symbol. Determine if the final target is THUMB.
10976 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10977 }
10978
10979 // Strip LSB if this points to a THUMB target.
10980 const Arm_reloc_property* reloc_property =
10981 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10982 gold_assert(reloc_property != NULL);
10983 if (target_is_thumb
10984 && reloc_property->uses_thumb_bit()
10985 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10986 {
10987 Arm_address stripped_value =
10988 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10989 symval.set_output_value(stripped_value);
10990 psymval = &symval;
10991 }
10992
10993 // Get the symbol value.
10994 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10995
10996 // Owing to pipelining, the PC relative branches below actually skip
10997 // two instructions when the branch offset is 0.
10998 Arm_address destination;
10999 switch (r_type)
11000 {
11001 case elfcpp::R_ARM_CALL:
11002 case elfcpp::R_ARM_JUMP24:
11003 case elfcpp::R_ARM_PLT32:
11004 // ARM branches.
11005 destination = value + addend + 8;
11006 break;
11007 case elfcpp::R_ARM_THM_CALL:
11008 case elfcpp::R_ARM_THM_XPC22:
11009 case elfcpp::R_ARM_THM_JUMP24:
11010 case elfcpp::R_ARM_THM_JUMP19:
11011 // THUMB branches.
11012 destination = value + addend + 4;
11013 break;
11014 default:
11015 gold_unreachable();
11016 }
11017
11018 Reloc_stub* stub = NULL;
11019 Stub_type stub_type =
11020 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11021 target_is_thumb);
11022 if (stub_type != arm_stub_none)
11023 {
11024 // Try looking up an existing stub from a stub table.
11025 Stub_table<big_endian>* stub_table =
11026 arm_relobj->stub_table(relinfo->data_shndx);
11027 gold_assert(stub_table != NULL);
11028
11029 // Locate stub by destination.
11030 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11031
11032 // Create a stub if there is not one already
11033 stub = stub_table->find_reloc_stub(stub_key);
11034 if (stub == NULL)
11035 {
11036 // create a new stub and add it to stub table.
11037 stub = this->stub_factory().make_reloc_stub(stub_type);
11038 stub_table->add_reloc_stub(stub, stub_key);
11039 }
11040
11041 // Record the destination address.
11042 stub->set_destination_address(destination
11043 | (target_is_thumb ? 1 : 0));
11044 }
11045
11046 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11047 if (this->fix_cortex_a8_
11048 && (r_type == elfcpp::R_ARM_THM_JUMP24
11049 || r_type == elfcpp::R_ARM_THM_JUMP19
11050 || r_type == elfcpp::R_ARM_THM_CALL
11051 || r_type == elfcpp::R_ARM_THM_XPC22)
11052 && (address & 0xfffU) == 0xffeU)
11053 {
11054 // Found a candidate. Note we haven't checked the destination is
11055 // within 4K here: if we do so (and don't create a record) we can't
11056 // tell that a branch should have been relocated when scanning later.
11057 this->cortex_a8_relocs_info_[address] =
11058 new Cortex_a8_reloc(stub, r_type,
11059 destination | (target_is_thumb ? 1 : 0));
11060 }
11061 }
11062
11063 // This function scans a relocation sections for stub generation.
11064 // The template parameter Relocate must be a class type which provides
11065 // a single function, relocate(), which implements the machine
11066 // specific part of a relocation.
11067
11068 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11069 // SHT_REL or SHT_RELA.
11070
11071 // PRELOCS points to the relocation data. RELOC_COUNT is the number
11072 // of relocs. OUTPUT_SECTION is the output section.
11073 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11074 // mapped to output offsets.
11075
11076 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
11077 // VIEW_SIZE is the size. These refer to the input section, unless
11078 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11079 // the output section.
11080
11081 template<bool big_endian>
11082 template<int sh_type>
11083 void inline
11084 Target_arm<big_endian>::scan_reloc_section_for_stubs(
11085 const Relocate_info<32, big_endian>* relinfo,
11086 const unsigned char* prelocs,
11087 size_t reloc_count,
11088 Output_section* output_section,
11089 bool needs_special_offset_handling,
11090 const unsigned char* view,
11091 elfcpp::Elf_types<32>::Elf_Addr view_address,
11092 section_size_type)
11093 {
11094 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11095 const int reloc_size =
11096 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11097
11098 Arm_relobj<big_endian>* arm_object =
11099 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11100 unsigned int local_count = arm_object->local_symbol_count();
11101
11102 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11103
11104 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11105 {
11106 Reltype reloc(prelocs);
11107
11108 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11109 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11110 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11111
11112 r_type = this->get_real_reloc_type(r_type);
11113
11114 // Only a few relocation types need stubs.
11115 if ((r_type != elfcpp::R_ARM_CALL)
11116 && (r_type != elfcpp::R_ARM_JUMP24)
11117 && (r_type != elfcpp::R_ARM_PLT32)
11118 && (r_type != elfcpp::R_ARM_THM_CALL)
11119 && (r_type != elfcpp::R_ARM_THM_XPC22)
11120 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11121 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11122 && (r_type != elfcpp::R_ARM_V4BX))
11123 continue;
11124
11125 section_offset_type offset =
11126 convert_to_section_size_type(reloc.get_r_offset());
11127
11128 if (needs_special_offset_handling)
11129 {
11130 offset = output_section->output_offset(relinfo->object,
11131 relinfo->data_shndx,
11132 offset);
11133 if (offset == -1)
11134 continue;
11135 }
11136
11137 // Create a v4bx stub if --fix-v4bx-interworking is used.
11138 if (r_type == elfcpp::R_ARM_V4BX)
11139 {
11140 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11141 {
11142 // Get the BX instruction.
11143 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11144 const Valtype* wv =
11145 reinterpret_cast<const Valtype*>(view + offset);
11146 elfcpp::Elf_types<32>::Elf_Swxword insn =
11147 elfcpp::Swap<32, big_endian>::readval(wv);
11148 const uint32_t reg = (insn & 0xf);
11149
11150 if (reg < 0xf)
11151 {
11152 // Try looking up an existing stub from a stub table.
11153 Stub_table<big_endian>* stub_table =
11154 arm_object->stub_table(relinfo->data_shndx);
11155 gold_assert(stub_table != NULL);
11156
11157 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11158 {
11159 // create a new stub and add it to stub table.
11160 Arm_v4bx_stub* stub =
11161 this->stub_factory().make_arm_v4bx_stub(reg);
11162 gold_assert(stub != NULL);
11163 stub_table->add_arm_v4bx_stub(stub);
11164 }
11165 }
11166 }
11167 continue;
11168 }
11169
11170 // Get the addend.
11171 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11172 elfcpp::Elf_types<32>::Elf_Swxword addend =
11173 stub_addend_reader(r_type, view + offset, reloc);
11174
11175 const Sized_symbol<32>* sym;
11176
11177 Symbol_value<32> symval;
11178 const Symbol_value<32> *psymval;
11179 bool is_defined_in_discarded_section;
11180 unsigned int shndx;
11181 if (r_sym < local_count)
11182 {
11183 sym = NULL;
11184 psymval = arm_object->local_symbol(r_sym);
11185
11186 // If the local symbol belongs to a section we are discarding,
11187 // and that section is a debug section, try to find the
11188 // corresponding kept section and map this symbol to its
11189 // counterpart in the kept section. The symbol must not
11190 // correspond to a section we are folding.
11191 bool is_ordinary;
11192 shndx = psymval->input_shndx(&is_ordinary);
11193 is_defined_in_discarded_section =
11194 (is_ordinary
11195 && shndx != elfcpp::SHN_UNDEF
11196 && !arm_object->is_section_included(shndx)
11197 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11198
11199 // We need to compute the would-be final value of this local
11200 // symbol.
11201 if (!is_defined_in_discarded_section)
11202 {
11203 typedef Sized_relobj_file<32, big_endian> ObjType;
11204 typename ObjType::Compute_final_local_value_status status =
11205 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11206 relinfo->symtab);
11207 if (status == ObjType::CFLV_OK)
11208 {
11209 // Currently we cannot handle a branch to a target in
11210 // a merged section. If this is the case, issue an error
11211 // and also free the merge symbol value.
11212 if (!symval.has_output_value())
11213 {
11214 const std::string& section_name =
11215 arm_object->section_name(shndx);
11216 arm_object->error(_("cannot handle branch to local %u "
11217 "in a merged section %s"),
11218 r_sym, section_name.c_str());
11219 }
11220 psymval = &symval;
11221 }
11222 else
11223 {
11224 // We cannot determine the final value.
11225 continue;
11226 }
11227 }
11228 }
11229 else
11230 {
11231 const Symbol* gsym;
11232 gsym = arm_object->global_symbol(r_sym);
11233 gold_assert(gsym != NULL);
11234 if (gsym->is_forwarder())
11235 gsym = relinfo->symtab->resolve_forwards(gsym);
11236
11237 sym = static_cast<const Sized_symbol<32>*>(gsym);
11238 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11239 symval.set_output_symtab_index(sym->symtab_index());
11240 else
11241 symval.set_no_output_symtab_entry();
11242
11243 // We need to compute the would-be final value of this global
11244 // symbol.
11245 const Symbol_table* symtab = relinfo->symtab;
11246 const Sized_symbol<32>* sized_symbol =
11247 symtab->get_sized_symbol<32>(gsym);
11248 Symbol_table::Compute_final_value_status status;
11249 Arm_address value =
11250 symtab->compute_final_value<32>(sized_symbol, &status);
11251
11252 // Skip this if the symbol has not output section.
11253 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11254 continue;
11255 symval.set_output_value(value);
11256
11257 if (gsym->type() == elfcpp::STT_TLS)
11258 symval.set_is_tls_symbol();
11259 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11260 symval.set_is_ifunc_symbol();
11261 psymval = &symval;
11262
11263 is_defined_in_discarded_section =
11264 (gsym->is_defined_in_discarded_section()
11265 && gsym->is_undefined());
11266 shndx = 0;
11267 }
11268
11269 Symbol_value<32> symval2;
11270 if (is_defined_in_discarded_section)
11271 {
11272 if (comdat_behavior == CB_UNDETERMINED)
11273 {
11274 std::string name = arm_object->section_name(relinfo->data_shndx);
11275 comdat_behavior = get_comdat_behavior(name.c_str());
11276 }
11277 if (comdat_behavior == CB_PRETEND)
11278 {
11279 // FIXME: This case does not work for global symbols.
11280 // We have no place to store the original section index.
11281 // Fortunately this does not matter for comdat sections,
11282 // only for sections explicitly discarded by a linker
11283 // script.
11284 bool found;
11285 typename elfcpp::Elf_types<32>::Elf_Addr value =
11286 arm_object->map_to_kept_section(shndx, &found);
11287 if (found)
11288 symval2.set_output_value(value + psymval->input_value());
11289 else
11290 symval2.set_output_value(0);
11291 }
11292 else
11293 {
11294 if (comdat_behavior == CB_WARNING)
11295 gold_warning_at_location(relinfo, i, offset,
11296 _("relocation refers to discarded "
11297 "section"));
11298 symval2.set_output_value(0);
11299 }
11300 symval2.set_no_output_symtab_entry();
11301 psymval = &symval2;
11302 }
11303
11304 // If symbol is a section symbol, we don't know the actual type of
11305 // destination. Give up.
11306 if (psymval->is_section_symbol())
11307 continue;
11308
11309 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11310 addend, view_address + offset);
11311 }
11312 }
11313
11314 // Scan an input section for stub generation.
11315
11316 template<bool big_endian>
11317 void
11318 Target_arm<big_endian>::scan_section_for_stubs(
11319 const Relocate_info<32, big_endian>* relinfo,
11320 unsigned int sh_type,
11321 const unsigned char* prelocs,
11322 size_t reloc_count,
11323 Output_section* output_section,
11324 bool needs_special_offset_handling,
11325 const unsigned char* view,
11326 Arm_address view_address,
11327 section_size_type view_size)
11328 {
11329 if (sh_type == elfcpp::SHT_REL)
11330 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11331 relinfo,
11332 prelocs,
11333 reloc_count,
11334 output_section,
11335 needs_special_offset_handling,
11336 view,
11337 view_address,
11338 view_size);
11339 else if (sh_type == elfcpp::SHT_RELA)
11340 // We do not support RELA type relocations yet. This is provided for
11341 // completeness.
11342 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11343 relinfo,
11344 prelocs,
11345 reloc_count,
11346 output_section,
11347 needs_special_offset_handling,
11348 view,
11349 view_address,
11350 view_size);
11351 else
11352 gold_unreachable();
11353 }
11354
11355 // Group input sections for stub generation.
11356 //
11357 // We group input sections in an output section so that the total size,
11358 // including any padding space due to alignment is smaller than GROUP_SIZE
11359 // unless the only input section in group is bigger than GROUP_SIZE already.
11360 // Then an ARM stub table is created to follow the last input section
11361 // in group. For each group an ARM stub table is created an is placed
11362 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
11363 // extend the group after the stub table.
11364
11365 template<bool big_endian>
11366 void
11367 Target_arm<big_endian>::group_sections(
11368 Layout* layout,
11369 section_size_type group_size,
11370 bool stubs_always_after_branch,
11371 const Task* task)
11372 {
11373 // Group input sections and insert stub table
11374 Layout::Section_list section_list;
11375 layout->get_allocated_sections(&section_list);
11376 for (Layout::Section_list::const_iterator p = section_list.begin();
11377 p != section_list.end();
11378 ++p)
11379 {
11380 Arm_output_section<big_endian>* output_section =
11381 Arm_output_section<big_endian>::as_arm_output_section(*p);
11382 output_section->group_sections(group_size, stubs_always_after_branch,
11383 this, task);
11384 }
11385 }
11386
11387 // Relaxation hook. This is where we do stub generation.
11388
11389 template<bool big_endian>
11390 bool
11391 Target_arm<big_endian>::do_relax(
11392 int pass,
11393 const Input_objects* input_objects,
11394 Symbol_table* symtab,
11395 Layout* layout,
11396 const Task* task)
11397 {
11398 // No need to generate stubs if this is a relocatable link.
11399 gold_assert(!parameters->options().relocatable());
11400
11401 // If this is the first pass, we need to group input sections into
11402 // stub groups.
11403 bool done_exidx_fixup = false;
11404 typedef typename Stub_table_list::iterator Stub_table_iterator;
11405 if (pass == 1)
11406 {
11407 // Determine the stub group size. The group size is the absolute
11408 // value of the parameter --stub-group-size. If --stub-group-size
11409 // is passed a negative value, we restrict stubs to be always after
11410 // the stubbed branches.
11411 int32_t stub_group_size_param =
11412 parameters->options().stub_group_size();
11413 bool stubs_always_after_branch = stub_group_size_param < 0;
11414 section_size_type stub_group_size = abs(stub_group_size_param);
11415
11416 if (stub_group_size == 1)
11417 {
11418 // Default value.
11419 // Thumb branch range is +-4MB has to be used as the default
11420 // maximum size (a given section can contain both ARM and Thumb
11421 // code, so the worst case has to be taken into account). If we are
11422 // fixing cortex-a8 errata, the branch range has to be even smaller,
11423 // since wide conditional branch has a range of +-1MB only.
11424 //
11425 // This value is 48K less than that, which allows for 4096
11426 // 12-byte stubs. If we exceed that, then we will fail to link.
11427 // The user will have to relink with an explicit group size
11428 // option.
11429 stub_group_size = 4145152;
11430 }
11431
11432 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11433 // page as the first half of a 32-bit branch straddling two 4K pages.
11434 // This is a crude way of enforcing that. In addition, long conditional
11435 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11436 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11437 // cortex-A8 stubs from long conditional branches.
11438 if (this->fix_cortex_a8_)
11439 {
11440 stubs_always_after_branch = true;
11441 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11442 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11443 }
11444
11445 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11446
11447 // Also fix .ARM.exidx section coverage.
11448 Arm_output_section<big_endian>* exidx_output_section = NULL;
11449 for (Layout::Section_list::const_iterator p =
11450 layout->section_list().begin();
11451 p != layout->section_list().end();
11452 ++p)
11453 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11454 {
11455 if (exidx_output_section == NULL)
11456 exidx_output_section =
11457 Arm_output_section<big_endian>::as_arm_output_section(*p);
11458 else
11459 // We cannot handle this now.
11460 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11461 "non-relocatable link"),
11462 exidx_output_section->name(),
11463 (*p)->name());
11464 }
11465
11466 if (exidx_output_section != NULL)
11467 {
11468 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11469 symtab, task);
11470 done_exidx_fixup = true;
11471 }
11472 }
11473 else
11474 {
11475 // If this is not the first pass, addresses and file offsets have
11476 // been reset at this point, set them here.
11477 for (Stub_table_iterator sp = this->stub_tables_.begin();
11478 sp != this->stub_tables_.end();
11479 ++sp)
11480 {
11481 Arm_input_section<big_endian>* owner = (*sp)->owner();
11482 off_t off = align_address(owner->original_size(),
11483 (*sp)->addralign());
11484 (*sp)->set_address_and_file_offset(owner->address() + off,
11485 owner->offset() + off);
11486 }
11487 }
11488
11489 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11490 // beginning of each relaxation pass, just blow away all the stubs.
11491 // Alternatively, we could selectively remove only the stubs and reloc
11492 // information for code sections that have moved since the last pass.
11493 // That would require more book-keeping.
11494 if (this->fix_cortex_a8_)
11495 {
11496 // Clear all Cortex-A8 reloc information.
11497 for (typename Cortex_a8_relocs_info::const_iterator p =
11498 this->cortex_a8_relocs_info_.begin();
11499 p != this->cortex_a8_relocs_info_.end();
11500 ++p)
11501 delete p->second;
11502 this->cortex_a8_relocs_info_.clear();
11503
11504 // Remove all Cortex-A8 stubs.
11505 for (Stub_table_iterator sp = this->stub_tables_.begin();
11506 sp != this->stub_tables_.end();
11507 ++sp)
11508 (*sp)->remove_all_cortex_a8_stubs();
11509 }
11510
11511 // Scan relocs for relocation stubs
11512 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11513 op != input_objects->relobj_end();
11514 ++op)
11515 {
11516 Arm_relobj<big_endian>* arm_relobj =
11517 Arm_relobj<big_endian>::as_arm_relobj(*op);
11518 // Lock the object so we can read from it. This is only called
11519 // single-threaded from Layout::finalize, so it is OK to lock.
11520 Task_lock_obj<Object> tl(task, arm_relobj);
11521 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11522 }
11523
11524 // Check all stub tables to see if any of them have their data sizes
11525 // or addresses alignments changed. These are the only things that
11526 // matter.
11527 bool any_stub_table_changed = false;
11528 Unordered_set<const Output_section*> sections_needing_adjustment;
11529 for (Stub_table_iterator sp = this->stub_tables_.begin();
11530 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11531 ++sp)
11532 {
11533 if ((*sp)->update_data_size_and_addralign())
11534 {
11535 // Update data size of stub table owner.
11536 Arm_input_section<big_endian>* owner = (*sp)->owner();
11537 uint64_t address = owner->address();
11538 off_t offset = owner->offset();
11539 owner->reset_address_and_file_offset();
11540 owner->set_address_and_file_offset(address, offset);
11541
11542 sections_needing_adjustment.insert(owner->output_section());
11543 any_stub_table_changed = true;
11544 }
11545 }
11546
11547 // Output_section_data::output_section() returns a const pointer but we
11548 // need to update output sections, so we record all output sections needing
11549 // update above and scan the sections here to find out what sections need
11550 // to be updated.
11551 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11552 p != layout->section_list().end();
11553 ++p)
11554 {
11555 if (sections_needing_adjustment.find(*p)
11556 != sections_needing_adjustment.end())
11557 (*p)->set_section_offsets_need_adjustment();
11558 }
11559
11560 // Stop relaxation if no EXIDX fix-up and no stub table change.
11561 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11562
11563 // Finalize the stubs in the last relaxation pass.
11564 if (!continue_relaxation)
11565 {
11566 for (Stub_table_iterator sp = this->stub_tables_.begin();
11567 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11568 ++sp)
11569 (*sp)->finalize_stubs();
11570
11571 // Update output local symbol counts of objects if necessary.
11572 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11573 op != input_objects->relobj_end();
11574 ++op)
11575 {
11576 Arm_relobj<big_endian>* arm_relobj =
11577 Arm_relobj<big_endian>::as_arm_relobj(*op);
11578
11579 // Update output local symbol counts. We need to discard local
11580 // symbols defined in parts of input sections that are discarded by
11581 // relaxation.
11582 if (arm_relobj->output_local_symbol_count_needs_update())
11583 {
11584 // We need to lock the object's file to update it.
11585 Task_lock_obj<Object> tl(task, arm_relobj);
11586 arm_relobj->update_output_local_symbol_count();
11587 }
11588 }
11589 }
11590
11591 return continue_relaxation;
11592 }
11593
11594 // Relocate a stub.
11595
11596 template<bool big_endian>
11597 void
11598 Target_arm<big_endian>::relocate_stub(
11599 Stub* stub,
11600 const Relocate_info<32, big_endian>* relinfo,
11601 Output_section* output_section,
11602 unsigned char* view,
11603 Arm_address address,
11604 section_size_type view_size)
11605 {
11606 Relocate relocate;
11607 const Stub_template* stub_template = stub->stub_template();
11608 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11609 {
11610 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11611 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11612
11613 unsigned int r_type = insn->r_type();
11614 section_size_type reloc_offset = stub_template->reloc_offset(i);
11615 section_size_type reloc_size = insn->size();
11616 gold_assert(reloc_offset + reloc_size <= view_size);
11617
11618 // This is the address of the stub destination.
11619 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11620 Symbol_value<32> symval;
11621 symval.set_output_value(target);
11622
11623 // Synthesize a fake reloc just in case. We don't have a symbol so
11624 // we use 0.
11625 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11626 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11627 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11628 reloc_write.put_r_offset(reloc_offset);
11629 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11630 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11631
11632 relocate.relocate(relinfo, this, output_section,
11633 this->fake_relnum_for_stubs, rel, r_type,
11634 NULL, &symval, view + reloc_offset,
11635 address + reloc_offset, reloc_size);
11636 }
11637 }
11638
11639 // Determine whether an object attribute tag takes an integer, a
11640 // string or both.
11641
11642 template<bool big_endian>
11643 int
11644 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11645 {
11646 if (tag == Object_attribute::Tag_compatibility)
11647 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11648 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11649 else if (tag == elfcpp::Tag_nodefaults)
11650 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11651 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11652 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11653 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11654 else if (tag < 32)
11655 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11656 else
11657 return ((tag & 1) != 0
11658 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11659 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11660 }
11661
11662 // Reorder attributes.
11663 //
11664 // The ABI defines that Tag_conformance should be emitted first, and that
11665 // Tag_nodefaults should be second (if either is defined). This sets those
11666 // two positions, and bumps up the position of all the remaining tags to
11667 // compensate.
11668
11669 template<bool big_endian>
11670 int
11671 Target_arm<big_endian>::do_attributes_order(int num) const
11672 {
11673 // Reorder the known object attributes in output. We want to move
11674 // Tag_conformance to position 4 and Tag_conformance to position 5
11675 // and shift everything between 4 .. Tag_conformance - 1 to make room.
11676 if (num == 4)
11677 return elfcpp::Tag_conformance;
11678 if (num == 5)
11679 return elfcpp::Tag_nodefaults;
11680 if ((num - 2) < elfcpp::Tag_nodefaults)
11681 return num - 2;
11682 if ((num - 1) < elfcpp::Tag_conformance)
11683 return num - 1;
11684 return num;
11685 }
11686
11687 // Scan a span of THUMB code for Cortex-A8 erratum.
11688
11689 template<bool big_endian>
11690 void
11691 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11692 Arm_relobj<big_endian>* arm_relobj,
11693 unsigned int shndx,
11694 section_size_type span_start,
11695 section_size_type span_end,
11696 const unsigned char* view,
11697 Arm_address address)
11698 {
11699 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11700 //
11701 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11702 // The branch target is in the same 4KB region as the
11703 // first half of the branch.
11704 // The instruction before the branch is a 32-bit
11705 // length non-branch instruction.
11706 section_size_type i = span_start;
11707 bool last_was_32bit = false;
11708 bool last_was_branch = false;
11709 while (i < span_end)
11710 {
11711 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11712 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11713 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11714 bool is_blx = false, is_b = false;
11715 bool is_bl = false, is_bcc = false;
11716
11717 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11718 if (insn_32bit)
11719 {
11720 // Load the rest of the insn (in manual-friendly order).
11721 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11722
11723 // Encoding T4: B<c>.W.
11724 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11725 // Encoding T1: BL<c>.W.
11726 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11727 // Encoding T2: BLX<c>.W.
11728 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11729 // Encoding T3: B<c>.W (not permitted in IT block).
11730 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11731 && (insn & 0x07f00000U) != 0x03800000U);
11732 }
11733
11734 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11735
11736 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11737 // page boundary and it follows 32-bit non-branch instruction,
11738 // we need to work around.
11739 if (is_32bit_branch
11740 && ((address + i) & 0xfffU) == 0xffeU
11741 && last_was_32bit
11742 && !last_was_branch)
11743 {
11744 // Check to see if there is a relocation stub for this branch.
11745 bool force_target_arm = false;
11746 bool force_target_thumb = false;
11747 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11748 Cortex_a8_relocs_info::const_iterator p =
11749 this->cortex_a8_relocs_info_.find(address + i);
11750
11751 if (p != this->cortex_a8_relocs_info_.end())
11752 {
11753 cortex_a8_reloc = p->second;
11754 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11755
11756 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11757 && !target_is_thumb)
11758 force_target_arm = true;
11759 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11760 && target_is_thumb)
11761 force_target_thumb = true;
11762 }
11763
11764 off_t offset;
11765 Stub_type stub_type = arm_stub_none;
11766
11767 // Check if we have an offending branch instruction.
11768 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11769 uint16_t lower_insn = insn & 0xffffU;
11770 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11771
11772 if (cortex_a8_reloc != NULL
11773 && cortex_a8_reloc->reloc_stub() != NULL)
11774 // We've already made a stub for this instruction, e.g.
11775 // it's a long branch or a Thumb->ARM stub. Assume that
11776 // stub will suffice to work around the A8 erratum (see
11777 // setting of always_after_branch above).
11778 ;
11779 else if (is_bcc)
11780 {
11781 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11782 lower_insn);
11783 stub_type = arm_stub_a8_veneer_b_cond;
11784 }
11785 else if (is_b || is_bl || is_blx)
11786 {
11787 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11788 lower_insn);
11789 if (is_blx)
11790 offset &= ~3;
11791
11792 stub_type = (is_blx
11793 ? arm_stub_a8_veneer_blx
11794 : (is_bl
11795 ? arm_stub_a8_veneer_bl
11796 : arm_stub_a8_veneer_b));
11797 }
11798
11799 if (stub_type != arm_stub_none)
11800 {
11801 Arm_address pc_for_insn = address + i + 4;
11802
11803 // The original instruction is a BL, but the target is
11804 // an ARM instruction. If we were not making a stub,
11805 // the BL would have been converted to a BLX. Use the
11806 // BLX stub instead in that case.
11807 if (this->may_use_v5t_interworking() && force_target_arm
11808 && stub_type == arm_stub_a8_veneer_bl)
11809 {
11810 stub_type = arm_stub_a8_veneer_blx;
11811 is_blx = true;
11812 is_bl = false;
11813 }
11814 // Conversely, if the original instruction was
11815 // BLX but the target is Thumb mode, use the BL stub.
11816 else if (force_target_thumb
11817 && stub_type == arm_stub_a8_veneer_blx)
11818 {
11819 stub_type = arm_stub_a8_veneer_bl;
11820 is_blx = false;
11821 is_bl = true;
11822 }
11823
11824 if (is_blx)
11825 pc_for_insn &= ~3;
11826
11827 // If we found a relocation, use the proper destination,
11828 // not the offset in the (unrelocated) instruction.
11829 // Note this is always done if we switched the stub type above.
11830 if (cortex_a8_reloc != NULL)
11831 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11832
11833 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11834
11835 // Add a new stub if destination address in in the same page.
11836 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11837 {
11838 Cortex_a8_stub* stub =
11839 this->stub_factory_.make_cortex_a8_stub(stub_type,
11840 arm_relobj, shndx,
11841 address + i,
11842 target, insn);
11843 Stub_table<big_endian>* stub_table =
11844 arm_relobj->stub_table(shndx);
11845 gold_assert(stub_table != NULL);
11846 stub_table->add_cortex_a8_stub(address + i, stub);
11847 }
11848 }
11849 }
11850
11851 i += insn_32bit ? 4 : 2;
11852 last_was_32bit = insn_32bit;
11853 last_was_branch = is_32bit_branch;
11854 }
11855 }
11856
11857 // Apply the Cortex-A8 workaround.
11858
11859 template<bool big_endian>
11860 void
11861 Target_arm<big_endian>::apply_cortex_a8_workaround(
11862 const Cortex_a8_stub* stub,
11863 Arm_address stub_address,
11864 unsigned char* insn_view,
11865 Arm_address insn_address)
11866 {
11867 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11868 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11869 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11870 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11871 off_t branch_offset = stub_address - (insn_address + 4);
11872
11873 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11874 switch (stub->stub_template()->type())
11875 {
11876 case arm_stub_a8_veneer_b_cond:
11877 // For a conditional branch, we re-write it to be an unconditional
11878 // branch to the stub. We use the THUMB-2 encoding here.
11879 upper_insn = 0xf000U;
11880 lower_insn = 0xb800U;
11881 // Fall through
11882 case arm_stub_a8_veneer_b:
11883 case arm_stub_a8_veneer_bl:
11884 case arm_stub_a8_veneer_blx:
11885 if ((lower_insn & 0x5000U) == 0x4000U)
11886 // For a BLX instruction, make sure that the relocation is
11887 // rounded up to a word boundary. This follows the semantics of
11888 // the instruction which specifies that bit 1 of the target
11889 // address will come from bit 1 of the base address.
11890 branch_offset = (branch_offset + 2) & ~3;
11891
11892 // Put BRANCH_OFFSET back into the insn.
11893 gold_assert(!utils::has_overflow<25>(branch_offset));
11894 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11895 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11896 break;
11897
11898 default:
11899 gold_unreachable();
11900 }
11901
11902 // Put the relocated value back in the object file:
11903 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11904 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11905 }
11906
11907 template<bool big_endian>
11908 class Target_selector_arm : public Target_selector
11909 {
11910 public:
11911 Target_selector_arm()
11912 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11913 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11914 (big_endian ? "armelfb" : "armelf"))
11915 { }
11916
11917 Target*
11918 do_instantiate_target()
11919 { return new Target_arm<big_endian>(); }
11920 };
11921
11922 // Fix .ARM.exidx section coverage.
11923
11924 template<bool big_endian>
11925 void
11926 Target_arm<big_endian>::fix_exidx_coverage(
11927 Layout* layout,
11928 const Input_objects* input_objects,
11929 Arm_output_section<big_endian>* exidx_section,
11930 Symbol_table* symtab,
11931 const Task* task)
11932 {
11933 // We need to look at all the input sections in output in ascending
11934 // order of of output address. We do that by building a sorted list
11935 // of output sections by addresses. Then we looks at the output sections
11936 // in order. The input sections in an output section are already sorted
11937 // by addresses within the output section.
11938
11939 typedef std::set<Output_section*, output_section_address_less_than>
11940 Sorted_output_section_list;
11941 Sorted_output_section_list sorted_output_sections;
11942
11943 // Find out all the output sections of input sections pointed by
11944 // EXIDX input sections.
11945 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11946 p != input_objects->relobj_end();
11947 ++p)
11948 {
11949 Arm_relobj<big_endian>* arm_relobj =
11950 Arm_relobj<big_endian>::as_arm_relobj(*p);
11951 std::vector<unsigned int> shndx_list;
11952 arm_relobj->get_exidx_shndx_list(&shndx_list);
11953 for (size_t i = 0; i < shndx_list.size(); ++i)
11954 {
11955 const Arm_exidx_input_section* exidx_input_section =
11956 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11957 gold_assert(exidx_input_section != NULL);
11958 if (!exidx_input_section->has_errors())
11959 {
11960 unsigned int text_shndx = exidx_input_section->link();
11961 Output_section* os = arm_relobj->output_section(text_shndx);
11962 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11963 sorted_output_sections.insert(os);
11964 }
11965 }
11966 }
11967
11968 // Go over the output sections in ascending order of output addresses.
11969 typedef typename Arm_output_section<big_endian>::Text_section_list
11970 Text_section_list;
11971 Text_section_list sorted_text_sections;
11972 for (typename Sorted_output_section_list::iterator p =
11973 sorted_output_sections.begin();
11974 p != sorted_output_sections.end();
11975 ++p)
11976 {
11977 Arm_output_section<big_endian>* arm_output_section =
11978 Arm_output_section<big_endian>::as_arm_output_section(*p);
11979 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11980 }
11981
11982 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11983 merge_exidx_entries(), task);
11984 }
11985
11986 Target_selector_arm<false> target_selector_arm;
11987 Target_selector_arm<true> target_selector_armbe;
11988
11989 } // End anonymous namespace.