Handle PLT32 against local symbols.
[binutils-gdb.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 // http://people.redhat.com/drepper/tls.pdf
50 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54 public:
55 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57 Target_i386()
58 : Sized_target<32, false>(&i386_info),
59 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60 copy_relocs_(NULL), dynbss_(NULL)
61 { }
62
63 // Scan the relocations to look for symbol adjustments.
64 void
65 scan_relocs(const General_options& options,
66 Symbol_table* symtab,
67 Layout* layout,
68 Sized_relobj<32, false>* object,
69 unsigned int data_shndx,
70 unsigned int sh_type,
71 const unsigned char* prelocs,
72 size_t reloc_count,
73 size_t local_symbol_count,
74 const unsigned char* plocal_symbols,
75 Symbol** global_symbols);
76
77 // Finalize the sections.
78 void
79 do_finalize_sections(Layout*);
80
81 // Return the value to use for a dynamic which requires special
82 // treatment.
83 uint64_t
84 do_dynsym_value(const Symbol*) const;
85
86 // Relocate a section.
87 void
88 relocate_section(const Relocate_info<32, false>*,
89 unsigned int sh_type,
90 const unsigned char* prelocs,
91 size_t reloc_count,
92 unsigned char* view,
93 elfcpp::Elf_types<32>::Elf_Addr view_address,
94 off_t view_size);
95
96 // Return a string used to fill a code section with nops.
97 std::string
98 do_code_fill(off_t length);
99
100 private:
101 // The class which scans relocations.
102 struct Scan
103 {
104 inline void
105 local(const General_options& options, Symbol_table* symtab,
106 Layout* layout, Target_i386* target,
107 Sized_relobj<32, false>* object,
108 unsigned int data_shndx,
109 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
110 const elfcpp::Sym<32, false>& lsym);
111
112 inline void
113 global(const General_options& options, Symbol_table* symtab,
114 Layout* layout, Target_i386* target,
115 Sized_relobj<32, false>* object,
116 unsigned int data_shndx,
117 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
118 Symbol* gsym);
119
120 static void
121 unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
122
123 static void
124 unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
125 Symbol*);
126 };
127
128 // The class which implements relocation.
129 class Relocate
130 {
131 public:
132 Relocate()
133 : skip_call_tls_get_addr_(false),
134 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
135 { }
136
137 ~Relocate()
138 {
139 if (this->skip_call_tls_get_addr_)
140 {
141 // FIXME: This needs to specify the location somehow.
142 gold_error(_("missing expected TLS relocation"));
143 }
144 }
145
146 // Do a relocation. Return false if the caller should not issue
147 // any warnings about this relocation.
148 inline bool
149 relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
150 const elfcpp::Rel<32, false>&,
151 unsigned int r_type, const Sized_symbol<32>*,
152 const Symbol_value<32>*,
153 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
154 off_t);
155
156 private:
157 // Do a TLS relocation.
158 inline void
159 relocate_tls(const Relocate_info<32, false>*, size_t relnum,
160 const elfcpp::Rel<32, false>&,
161 unsigned int r_type, const Sized_symbol<32>*,
162 const Symbol_value<32>*,
163 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
164
165 // Do a TLS Initial-Exec to Local-Exec transition.
166 static inline void
167 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
168 Output_segment* tls_segment,
169 const elfcpp::Rel<32, false>&, unsigned int r_type,
170 elfcpp::Elf_types<32>::Elf_Addr value,
171 unsigned char* view,
172 off_t view_size);
173
174 // Do a TLS General-Dynamic to Local-Exec transition.
175 inline void
176 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
177 Output_segment* tls_segment,
178 const elfcpp::Rel<32, false>&, unsigned int r_type,
179 elfcpp::Elf_types<32>::Elf_Addr value,
180 unsigned char* view,
181 off_t view_size);
182
183 // Do a TLS Local-Dynamic to Local-Exec transition.
184 inline void
185 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
186 Output_segment* tls_segment,
187 const elfcpp::Rel<32, false>&, unsigned int r_type,
188 elfcpp::Elf_types<32>::Elf_Addr value,
189 unsigned char* view,
190 off_t view_size);
191
192 // We need to keep track of which type of local dynamic relocation
193 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
194 enum Local_dynamic_type
195 {
196 LOCAL_DYNAMIC_NONE,
197 LOCAL_DYNAMIC_SUN,
198 LOCAL_DYNAMIC_GNU
199 };
200
201 // This is set if we should skip the next reloc, which should be a
202 // PLT32 reloc against ___tls_get_addr.
203 bool skip_call_tls_get_addr_;
204 // The type of local dynamic relocation we have seen in the section
205 // being relocated, if any.
206 Local_dynamic_type local_dynamic_type_;
207 };
208
209 // Adjust TLS relocation type based on the options and whether this
210 // is a local symbol.
211 static tls::Tls_optimization
212 optimize_tls_reloc(bool is_final, int r_type);
213
214 // Get the GOT section, creating it if necessary.
215 Output_data_got<32, false>*
216 got_section(Symbol_table*, Layout*);
217
218 // Create a PLT entry for a global symbol.
219 void
220 make_plt_entry(Symbol_table*, Layout*, Symbol*);
221
222 // Get the PLT section.
223 const Output_data_plt_i386*
224 plt_section() const
225 {
226 gold_assert(this->plt_ != NULL);
227 return this->plt_;
228 }
229
230 // Get the dynamic reloc section, creating it if necessary.
231 Reloc_section*
232 rel_dyn_section(Layout*);
233
234 // Copy a relocation against a global symbol.
235 void
236 copy_reloc(const General_options*, Symbol_table*, Layout*,
237 Sized_relobj<32, false>*, unsigned int,
238 Symbol*, const elfcpp::Rel<32, false>&);
239
240 // Information about this specific target which we pass to the
241 // general Target structure.
242 static const Target::Target_info i386_info;
243
244 // The GOT section.
245 Output_data_got<32, false>* got_;
246 // The PLT section.
247 Output_data_plt_i386* plt_;
248 // The GOT PLT section.
249 Output_data_space* got_plt_;
250 // The dynamic reloc section.
251 Reloc_section* rel_dyn_;
252 // Relocs saved to avoid a COPY reloc.
253 Copy_relocs<32, false>* copy_relocs_;
254 // Space for variables copied with a COPY reloc.
255 Output_data_space* dynbss_;
256 };
257
258 const Target::Target_info Target_i386::i386_info =
259 {
260 32, // size
261 false, // is_big_endian
262 elfcpp::EM_386, // machine_code
263 false, // has_make_symbol
264 false, // has_resolve
265 true, // has_code_fill
266 "/usr/lib/libc.so.1", // dynamic_linker
267 0x08048000, // default_text_segment_address
268 0x1000, // abi_pagesize
269 0x1000 // common_pagesize
270 };
271
272 // Get the GOT section, creating it if necessary.
273
274 Output_data_got<32, false>*
275 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
276 {
277 if (this->got_ == NULL)
278 {
279 gold_assert(symtab != NULL && layout != NULL);
280
281 this->got_ = new Output_data_got<32, false>();
282
283 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
284 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
285 this->got_);
286
287 // The old GNU linker creates a .got.plt section. We just
288 // create another set of data in the .got section. Note that we
289 // always create a PLT if we create a GOT, although the PLT
290 // might be empty.
291 this->got_plt_ = new Output_data_space(4);
292 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
293 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
294 this->got_plt_);
295
296 // The first three entries are reserved.
297 this->got_plt_->set_space_size(3 * 4);
298
299 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
300 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
301 this->got_plt_,
302 0, 0, elfcpp::STT_OBJECT,
303 elfcpp::STB_LOCAL,
304 elfcpp::STV_HIDDEN, 0,
305 false, false);
306 }
307
308 return this->got_;
309 }
310
311 // Get the dynamic reloc section, creating it if necessary.
312
313 Target_i386::Reloc_section*
314 Target_i386::rel_dyn_section(Layout* layout)
315 {
316 if (this->rel_dyn_ == NULL)
317 {
318 gold_assert(layout != NULL);
319 this->rel_dyn_ = new Reloc_section();
320 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
321 elfcpp::SHF_ALLOC, this->rel_dyn_);
322 }
323 return this->rel_dyn_;
324 }
325
326 // A class to handle the PLT data.
327
328 class Output_data_plt_i386 : public Output_section_data
329 {
330 public:
331 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
332
333 Output_data_plt_i386(Layout*, Output_data_space*);
334
335 // Add an entry to the PLT.
336 void
337 add_entry(Symbol* gsym);
338
339 // Return the .rel.plt section data.
340 const Reloc_section*
341 rel_plt() const
342 { return this->rel_; }
343
344 protected:
345 void
346 do_adjust_output_section(Output_section* os);
347
348 private:
349 // The size of an entry in the PLT.
350 static const int plt_entry_size = 16;
351
352 // The first entry in the PLT for an executable.
353 static unsigned char exec_first_plt_entry[plt_entry_size];
354
355 // The first entry in the PLT for a shared object.
356 static unsigned char dyn_first_plt_entry[plt_entry_size];
357
358 // Other entries in the PLT for an executable.
359 static unsigned char exec_plt_entry[plt_entry_size];
360
361 // Other entries in the PLT for a shared object.
362 static unsigned char dyn_plt_entry[plt_entry_size];
363
364 // Set the final size.
365 void
366 do_set_address(uint64_t, off_t)
367 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
368
369 // Write out the PLT data.
370 void
371 do_write(Output_file*);
372
373 // The reloc section.
374 Reloc_section* rel_;
375 // The .got.plt section.
376 Output_data_space* got_plt_;
377 // The number of PLT entries.
378 unsigned int count_;
379 };
380
381 // Create the PLT section. The ordinary .got section is an argument,
382 // since we need to refer to the start. We also create our own .got
383 // section just for PLT entries.
384
385 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
386 Output_data_space* got_plt)
387 : Output_section_data(4), got_plt_(got_plt), count_(0)
388 {
389 this->rel_ = new Reloc_section();
390 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
391 elfcpp::SHF_ALLOC, this->rel_);
392 }
393
394 void
395 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
396 {
397 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
398 // linker, and so do we.
399 os->set_entsize(4);
400 }
401
402 // Add an entry to the PLT.
403
404 void
405 Output_data_plt_i386::add_entry(Symbol* gsym)
406 {
407 gold_assert(!gsym->has_plt_offset());
408
409 // Note that when setting the PLT offset we skip the initial
410 // reserved PLT entry.
411 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
412
413 ++this->count_;
414
415 off_t got_offset = this->got_plt_->data_size();
416
417 // Every PLT entry needs a GOT entry which points back to the PLT
418 // entry (this will be changed by the dynamic linker, normally
419 // lazily when the function is called).
420 this->got_plt_->set_space_size(got_offset + 4);
421
422 // Every PLT entry needs a reloc.
423 gsym->set_needs_dynsym_entry();
424 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
425 got_offset);
426
427 // Note that we don't need to save the symbol. The contents of the
428 // PLT are independent of which symbols are used. The symbols only
429 // appear in the relocations.
430 }
431
432 // The first entry in the PLT for an executable.
433
434 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
435 {
436 0xff, 0x35, // pushl contents of memory address
437 0, 0, 0, 0, // replaced with address of .got + 4
438 0xff, 0x25, // jmp indirect
439 0, 0, 0, 0, // replaced with address of .got + 8
440 0, 0, 0, 0 // unused
441 };
442
443 // The first entry in the PLT for a shared object.
444
445 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
446 {
447 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
448 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
449 0, 0, 0, 0 // unused
450 };
451
452 // Subsequent entries in the PLT for an executable.
453
454 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
455 {
456 0xff, 0x25, // jmp indirect
457 0, 0, 0, 0, // replaced with address of symbol in .got
458 0x68, // pushl immediate
459 0, 0, 0, 0, // replaced with offset into relocation table
460 0xe9, // jmp relative
461 0, 0, 0, 0 // replaced with offset to start of .plt
462 };
463
464 // Subsequent entries in the PLT for a shared object.
465
466 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
467 {
468 0xff, 0xa3, // jmp *offset(%ebx)
469 0, 0, 0, 0, // replaced with offset of symbol in .got
470 0x68, // pushl immediate
471 0, 0, 0, 0, // replaced with offset into relocation table
472 0xe9, // jmp relative
473 0, 0, 0, 0 // replaced with offset to start of .plt
474 };
475
476 // Write out the PLT. This uses the hand-coded instructions above,
477 // and adjusts them as needed. This is all specified by the i386 ELF
478 // Processor Supplement.
479
480 void
481 Output_data_plt_i386::do_write(Output_file* of)
482 {
483 const off_t offset = this->offset();
484 const off_t oview_size = this->data_size();
485 unsigned char* const oview = of->get_output_view(offset, oview_size);
486
487 const off_t got_file_offset = this->got_plt_->offset();
488 const off_t got_size = this->got_plt_->data_size();
489 unsigned char* const got_view = of->get_output_view(got_file_offset,
490 got_size);
491
492 unsigned char* pov = oview;
493
494 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
495 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
496
497 if (parameters->output_is_shared())
498 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
499 else
500 {
501 memcpy(pov, exec_first_plt_entry, plt_entry_size);
502 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
503 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
504 }
505 pov += plt_entry_size;
506
507 unsigned char* got_pov = got_view;
508
509 memset(got_pov, 0, 12);
510 got_pov += 12;
511
512 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
513
514 unsigned int plt_offset = plt_entry_size;
515 unsigned int plt_rel_offset = 0;
516 unsigned int got_offset = 12;
517 const unsigned int count = this->count_;
518 for (unsigned int i = 0;
519 i < count;
520 ++i,
521 pov += plt_entry_size,
522 got_pov += 4,
523 plt_offset += plt_entry_size,
524 plt_rel_offset += rel_size,
525 got_offset += 4)
526 {
527 // Set and adjust the PLT entry itself.
528
529 if (parameters->output_is_shared())
530 {
531 memcpy(pov, dyn_plt_entry, plt_entry_size);
532 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
533 }
534 else
535 {
536 memcpy(pov, exec_plt_entry, plt_entry_size);
537 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
538 (got_address
539 + got_offset));
540 }
541
542 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
543 elfcpp::Swap<32, false>::writeval(pov + 12,
544 - (plt_offset + plt_entry_size));
545
546 // Set the entry in the GOT.
547 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
548 }
549
550 gold_assert(pov - oview == oview_size);
551 gold_assert(got_pov - got_view == got_size);
552
553 of->write_output_view(offset, oview_size, oview);
554 of->write_output_view(got_file_offset, got_size, got_view);
555 }
556
557 // Create a PLT entry for a global symbol.
558
559 void
560 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
561 {
562 if (gsym->has_plt_offset())
563 return;
564
565 if (this->plt_ == NULL)
566 {
567 // Create the GOT sections first.
568 this->got_section(symtab, layout);
569
570 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
571 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
572 (elfcpp::SHF_ALLOC
573 | elfcpp::SHF_EXECINSTR),
574 this->plt_);
575 }
576
577 this->plt_->add_entry(gsym);
578 }
579
580 // Handle a relocation against a non-function symbol defined in a
581 // dynamic object. The traditional way to handle this is to generate
582 // a COPY relocation to copy the variable at runtime from the shared
583 // object into the executable's data segment. However, this is
584 // undesirable in general, as if the size of the object changes in the
585 // dynamic object, the executable will no longer work correctly. If
586 // this relocation is in a writable section, then we can create a
587 // dynamic reloc and the dynamic linker will resolve it to the correct
588 // address at runtime. However, we do not want do that if the
589 // relocation is in a read-only section, as it would prevent the
590 // readonly segment from being shared. And if we have to eventually
591 // generate a COPY reloc, then any dynamic relocations will be
592 // useless. So this means that if this is a writable section, we need
593 // to save the relocation until we see whether we have to create a
594 // COPY relocation for this symbol for any other relocation.
595
596 void
597 Target_i386::copy_reloc(const General_options* options,
598 Symbol_table* symtab,
599 Layout* layout,
600 Sized_relobj<32, false>* object,
601 unsigned int data_shndx, Symbol* gsym,
602 const elfcpp::Rel<32, false>& rel)
603 {
604 Sized_symbol<32>* ssym;
605 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
606 SELECT_SIZE(32));
607
608 if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
609 data_shndx, ssym))
610 {
611 // So far we do not need a COPY reloc. Save this relocation.
612 // If it turns out that we never need a COPY reloc for this
613 // symbol, then we will emit the relocation.
614 if (this->copy_relocs_ == NULL)
615 this->copy_relocs_ = new Copy_relocs<32, false>();
616 this->copy_relocs_->save(ssym, object, data_shndx, rel);
617 }
618 else
619 {
620 // Allocate space for this symbol in the .bss section.
621
622 elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
623
624 // There is no defined way to determine the required alignment
625 // of the symbol. We pick the alignment based on the size. We
626 // set an arbitrary maximum of 256.
627 unsigned int align;
628 for (align = 1; align < 512; align <<= 1)
629 if ((symsize & align) != 0)
630 break;
631
632 if (this->dynbss_ == NULL)
633 {
634 this->dynbss_ = new Output_data_space(align);
635 layout->add_output_section_data(".bss",
636 elfcpp::SHT_NOBITS,
637 (elfcpp::SHF_ALLOC
638 | elfcpp::SHF_WRITE),
639 this->dynbss_);
640 }
641
642 Output_data_space* dynbss = this->dynbss_;
643
644 if (align > dynbss->addralign())
645 dynbss->set_space_alignment(align);
646
647 off_t dynbss_size = dynbss->data_size();
648 dynbss_size = align_address(dynbss_size, align);
649 off_t offset = dynbss_size;
650 dynbss->set_space_size(dynbss_size + symsize);
651
652 // Define the symbol in the .dynbss section.
653 symtab->define_in_output_data(this, ssym->name(), ssym->version(),
654 dynbss, offset, symsize, ssym->type(),
655 ssym->binding(), ssym->visibility(),
656 ssym->nonvis(), false, false);
657
658 // Add the COPY reloc.
659 ssym->set_needs_dynsym_entry();
660 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
661 rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
662 }
663 }
664
665 // Optimize the TLS relocation type based on what we know about the
666 // symbol. IS_FINAL is true if the final address of this symbol is
667 // known at link time.
668
669 tls::Tls_optimization
670 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
671 {
672 // If we are generating a shared library, then we can't do anything
673 // in the linker.
674 if (parameters->output_is_shared())
675 return tls::TLSOPT_NONE;
676
677 switch (r_type)
678 {
679 case elfcpp::R_386_TLS_GD:
680 case elfcpp::R_386_TLS_GOTDESC:
681 case elfcpp::R_386_TLS_DESC_CALL:
682 // These are General-Dynamic which permits fully general TLS
683 // access. Since we know that we are generating an executable,
684 // we can convert this to Initial-Exec. If we also know that
685 // this is a local symbol, we can further switch to Local-Exec.
686 if (is_final)
687 return tls::TLSOPT_TO_LE;
688 return tls::TLSOPT_TO_IE;
689
690 case elfcpp::R_386_TLS_LDM:
691 // This is Local-Dynamic, which refers to a local symbol in the
692 // dynamic TLS block. Since we know that we generating an
693 // executable, we can switch to Local-Exec.
694 return tls::TLSOPT_TO_LE;
695
696 case elfcpp::R_386_TLS_LDO_32:
697 // Another type of Local-Dynamic relocation.
698 return tls::TLSOPT_TO_LE;
699
700 case elfcpp::R_386_TLS_IE:
701 case elfcpp::R_386_TLS_GOTIE:
702 case elfcpp::R_386_TLS_IE_32:
703 // These are Initial-Exec relocs which get the thread offset
704 // from the GOT. If we know that we are linking against the
705 // local symbol, we can switch to Local-Exec, which links the
706 // thread offset into the instruction.
707 if (is_final)
708 return tls::TLSOPT_TO_LE;
709 return tls::TLSOPT_NONE;
710
711 case elfcpp::R_386_TLS_LE:
712 case elfcpp::R_386_TLS_LE_32:
713 // When we already have Local-Exec, there is nothing further we
714 // can do.
715 return tls::TLSOPT_NONE;
716
717 default:
718 gold_unreachable();
719 }
720 }
721
722 // Report an unsupported relocation against a local symbol.
723
724 void
725 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
726 unsigned int r_type)
727 {
728 gold_error(_("%s: unsupported reloc %u against local symbol"),
729 object->name().c_str(), r_type);
730 }
731
732 // Scan a relocation for a local symbol.
733
734 inline void
735 Target_i386::Scan::local(const General_options&,
736 Symbol_table* symtab,
737 Layout* layout,
738 Target_i386* target,
739 Sized_relobj<32, false>* object,
740 unsigned int data_shndx,
741 const elfcpp::Rel<32, false>& reloc,
742 unsigned int r_type,
743 const elfcpp::Sym<32, false>&)
744 {
745 switch (r_type)
746 {
747 case elfcpp::R_386_NONE:
748 case elfcpp::R_386_GNU_VTINHERIT:
749 case elfcpp::R_386_GNU_VTENTRY:
750 break;
751
752 case elfcpp::R_386_32:
753 case elfcpp::R_386_16:
754 case elfcpp::R_386_8:
755 // If building a shared library (or a position-independent
756 // executable), we need to create a dynamic relocation for
757 // this location. The relocation applied at link time will
758 // apply the link-time value, so we flag the location with
759 // an R_386_RELATIVE relocation so the dynamic loader can
760 // relocate it easily.
761 if (parameters->output_is_position_independent())
762 {
763 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
764 rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE, data_shndx,
765 reloc.get_r_offset());
766 }
767 break;
768
769 case elfcpp::R_386_PC32:
770 case elfcpp::R_386_PC16:
771 case elfcpp::R_386_PC8:
772 break;
773
774 case elfcpp::R_386_PLT32:
775 // Since we know this is a local symbol, we can handle this as a
776 // PC32 reloc.
777 break;
778
779 case elfcpp::R_386_GOTOFF:
780 case elfcpp::R_386_GOTPC:
781 // We need a GOT section.
782 target->got_section(symtab, layout);
783 break;
784
785 case elfcpp::R_386_GOT32:
786 {
787 // The symbol requires a GOT entry.
788 Output_data_got<32, false>* got = target->got_section(symtab, layout);
789 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
790 if (got->add_local(object, r_sym))
791 {
792 // If we are generating a shared object, we need to add a
793 // dynamic RELATIVE relocation for this symbol.
794 if (parameters->output_is_position_independent())
795 {
796 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
797 rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE,
798 data_shndx, reloc.get_r_offset());
799 }
800 }
801 }
802 break;
803
804 // These are relocations which should only be seen by the
805 // dynamic linker, and should never be seen here.
806 case elfcpp::R_386_COPY:
807 case elfcpp::R_386_GLOB_DAT:
808 case elfcpp::R_386_JUMP_SLOT:
809 case elfcpp::R_386_RELATIVE:
810 case elfcpp::R_386_TLS_TPOFF:
811 case elfcpp::R_386_TLS_DTPMOD32:
812 case elfcpp::R_386_TLS_DTPOFF32:
813 case elfcpp::R_386_TLS_TPOFF32:
814 case elfcpp::R_386_TLS_DESC:
815 gold_error(_("%s: unexpected reloc %u in object file"),
816 object->name().c_str(), r_type);
817 break;
818
819 // These are initial TLS relocs, which are expected when
820 // linking.
821 case elfcpp::R_386_TLS_IE:
822 case elfcpp::R_386_TLS_GOTIE:
823 case elfcpp::R_386_TLS_LE:
824 case elfcpp::R_386_TLS_GD:
825 case elfcpp::R_386_TLS_LDM:
826 case elfcpp::R_386_TLS_LDO_32:
827 case elfcpp::R_386_TLS_IE_32:
828 case elfcpp::R_386_TLS_LE_32:
829 case elfcpp::R_386_TLS_GOTDESC:
830 case elfcpp::R_386_TLS_DESC_CALL:
831 {
832 bool output_is_shared = parameters->output_is_shared();
833 const tls::Tls_optimization optimized_type
834 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
835 switch (r_type)
836 {
837 case elfcpp::R_386_TLS_LE:
838 case elfcpp::R_386_TLS_LE_32:
839 // FIXME: If generating a shared object, we need to copy
840 // this relocation into the object.
841 gold_assert(!output_is_shared);
842 break;
843
844 case elfcpp::R_386_TLS_IE:
845 case elfcpp::R_386_TLS_IE_32:
846 case elfcpp::R_386_TLS_GOTIE:
847 // FIXME: If not relaxing to LE, we need to generate a
848 // TPOFF or TPOFF32 reloc.
849 if (optimized_type != tls::TLSOPT_TO_LE)
850 unsupported_reloc_local(object, r_type);
851 break;
852
853 case elfcpp::R_386_TLS_LDM:
854 // FIXME: If not relaxing to LE, we need to generate a
855 // DTPMOD32 reloc.
856 if (optimized_type != tls::TLSOPT_TO_LE)
857 unsupported_reloc_local(object, r_type);
858 break;
859
860 case elfcpp::R_386_TLS_LDO_32:
861 break;
862
863 case elfcpp::R_386_TLS_GD:
864 case elfcpp::R_386_TLS_GOTDESC:
865 case elfcpp::R_386_TLS_DESC_CALL:
866 // FIXME: If not relaxing to LE, we need to generate
867 // DTPMOD32 and DTPOFF32 relocs.
868 if (optimized_type != tls::TLSOPT_TO_LE)
869 unsupported_reloc_local(object, r_type);
870 break;
871
872 default:
873 gold_unreachable();
874 }
875 }
876 break;
877
878 case elfcpp::R_386_32PLT:
879 case elfcpp::R_386_TLS_GD_32:
880 case elfcpp::R_386_TLS_GD_PUSH:
881 case elfcpp::R_386_TLS_GD_CALL:
882 case elfcpp::R_386_TLS_GD_POP:
883 case elfcpp::R_386_TLS_LDM_32:
884 case elfcpp::R_386_TLS_LDM_PUSH:
885 case elfcpp::R_386_TLS_LDM_CALL:
886 case elfcpp::R_386_TLS_LDM_POP:
887 case elfcpp::R_386_USED_BY_INTEL_200:
888 default:
889 unsupported_reloc_local(object, r_type);
890 break;
891 }
892 }
893
894 // Report an unsupported relocation against a global symbol.
895
896 void
897 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
898 unsigned int r_type,
899 Symbol* gsym)
900 {
901 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
902 object->name().c_str(), r_type, gsym->name());
903 }
904
905 // Scan a relocation for a global symbol.
906
907 inline void
908 Target_i386::Scan::global(const General_options& options,
909 Symbol_table* symtab,
910 Layout* layout,
911 Target_i386* target,
912 Sized_relobj<32, false>* object,
913 unsigned int data_shndx,
914 const elfcpp::Rel<32, false>& reloc,
915 unsigned int r_type,
916 Symbol* gsym)
917 {
918 switch (r_type)
919 {
920 case elfcpp::R_386_NONE:
921 case elfcpp::R_386_GNU_VTINHERIT:
922 case elfcpp::R_386_GNU_VTENTRY:
923 break;
924
925 case elfcpp::R_386_32:
926 case elfcpp::R_386_PC32:
927 case elfcpp::R_386_16:
928 case elfcpp::R_386_PC16:
929 case elfcpp::R_386_8:
930 case elfcpp::R_386_PC8:
931 if (gsym->is_from_dynobj()
932 || (parameters->output_is_shared()
933 && gsym->is_preemptible()))
934 {
935 // (a) This symbol is defined in a dynamic object. If it is a
936 // function, we make a PLT entry. Otherwise we need to
937 // either generate a COPY reloc or copy this reloc.
938 // (b) We are building a shared object and this symbol is
939 // preemptible. If it is a function, we make a PLT entry.
940 // Otherwise, we copy the reloc. We do not make COPY relocs
941 // in shared objects.
942 if (gsym->type() == elfcpp::STT_FUNC)
943 {
944 target->make_plt_entry(symtab, layout, gsym);
945
946 // If this is not a PC relative reference, then we may
947 // be taking the address of the function. In that case
948 // we need to set the entry in the dynamic symbol table
949 // to the address of the PLT entry.
950 if (r_type != elfcpp::R_386_PC32
951 && r_type != elfcpp::R_386_PC16
952 && r_type != elfcpp::R_386_PC8
953 && gsym->is_from_dynobj())
954 gsym->set_needs_dynsym_value();
955 }
956 else if (parameters->output_is_shared())
957 {
958 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
959 rel_dyn->add_global(gsym, r_type, object, data_shndx,
960 reloc.get_r_offset());
961 }
962 else
963 target->copy_reloc(&options, symtab, layout, object, data_shndx,
964 gsym, reloc);
965 }
966
967 break;
968
969 case elfcpp::R_386_GOT32:
970 {
971 // The symbol requires a GOT entry.
972 Output_data_got<32, false>* got = target->got_section(symtab, layout);
973 if (got->add_global(gsym))
974 {
975 // If this symbol is not fully resolved, we need to add a
976 // dynamic relocation for it.
977 if (!gsym->final_value_is_known())
978 {
979 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
980 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
981 gsym->got_offset());
982 }
983 }
984 }
985 break;
986
987 case elfcpp::R_386_PLT32:
988 // If the symbol is fully resolved, this is just a PC32 reloc.
989 // Otherwise we need a PLT entry.
990 if (gsym->final_value_is_known())
991 break;
992 // If building a shared library, we can also skip the PLT entry
993 // if the symbol is defined in the output file and is protected
994 // or hidden.
995 if (gsym->is_defined()
996 && !gsym->is_from_dynobj()
997 && !gsym->is_preemptible())
998 break;
999 target->make_plt_entry(symtab, layout, gsym);
1000 break;
1001
1002 case elfcpp::R_386_GOTOFF:
1003 case elfcpp::R_386_GOTPC:
1004 // We need a GOT section.
1005 target->got_section(symtab, layout);
1006 break;
1007
1008 // These are relocations which should only be seen by the
1009 // dynamic linker, and should never be seen here.
1010 case elfcpp::R_386_COPY:
1011 case elfcpp::R_386_GLOB_DAT:
1012 case elfcpp::R_386_JUMP_SLOT:
1013 case elfcpp::R_386_RELATIVE:
1014 case elfcpp::R_386_TLS_TPOFF:
1015 case elfcpp::R_386_TLS_DTPMOD32:
1016 case elfcpp::R_386_TLS_DTPOFF32:
1017 case elfcpp::R_386_TLS_TPOFF32:
1018 case elfcpp::R_386_TLS_DESC:
1019 gold_error(_("%s: unexpected reloc %u in object file"),
1020 object->name().c_str(), r_type);
1021 break;
1022
1023 // These are initial tls relocs, which are expected when
1024 // linking.
1025 case elfcpp::R_386_TLS_IE:
1026 case elfcpp::R_386_TLS_GOTIE:
1027 case elfcpp::R_386_TLS_LE:
1028 case elfcpp::R_386_TLS_GD:
1029 case elfcpp::R_386_TLS_LDM:
1030 case elfcpp::R_386_TLS_LDO_32:
1031 case elfcpp::R_386_TLS_IE_32:
1032 case elfcpp::R_386_TLS_LE_32:
1033 case elfcpp::R_386_TLS_GOTDESC:
1034 case elfcpp::R_386_TLS_DESC_CALL:
1035 {
1036 const bool is_final = gsym->final_value_is_known();
1037 const tls::Tls_optimization optimized_type
1038 = Target_i386::optimize_tls_reloc(is_final, r_type);
1039 switch (r_type)
1040 {
1041 case elfcpp::R_386_TLS_LE:
1042 case elfcpp::R_386_TLS_LE_32:
1043 // FIXME: If generating a shared object, we need to copy
1044 // this relocation into the object.
1045 gold_assert(!parameters->output_is_shared());
1046 break;
1047
1048 case elfcpp::R_386_TLS_IE:
1049 case elfcpp::R_386_TLS_IE_32:
1050 case elfcpp::R_386_TLS_GOTIE:
1051 // FIXME: If not relaxing to LE, we need to generate a
1052 // TPOFF or TPOFF32 reloc.
1053 if (optimized_type != tls::TLSOPT_TO_LE)
1054 unsupported_reloc_global(object, r_type, gsym);
1055 break;
1056
1057 case elfcpp::R_386_TLS_LDM:
1058 // FIXME: If not relaxing to LE, we need to generate a
1059 // DTPMOD32 reloc.
1060 if (optimized_type != tls::TLSOPT_TO_LE)
1061 unsupported_reloc_global(object, r_type, gsym);
1062 break;
1063
1064 case elfcpp::R_386_TLS_LDO_32:
1065 break;
1066
1067 case elfcpp::R_386_TLS_GD:
1068 case elfcpp::R_386_TLS_GOTDESC:
1069 case elfcpp::R_386_TLS_DESC_CALL:
1070 // FIXME: If not relaxing to LE, we need to generate
1071 // DTPMOD32 and DTPOFF32 relocs.
1072 if (optimized_type != tls::TLSOPT_TO_LE)
1073 unsupported_reloc_global(object, r_type, gsym);
1074 break;
1075
1076 default:
1077 gold_unreachable();
1078 }
1079 }
1080 break;
1081
1082 case elfcpp::R_386_32PLT:
1083 case elfcpp::R_386_TLS_GD_32:
1084 case elfcpp::R_386_TLS_GD_PUSH:
1085 case elfcpp::R_386_TLS_GD_CALL:
1086 case elfcpp::R_386_TLS_GD_POP:
1087 case elfcpp::R_386_TLS_LDM_32:
1088 case elfcpp::R_386_TLS_LDM_PUSH:
1089 case elfcpp::R_386_TLS_LDM_CALL:
1090 case elfcpp::R_386_TLS_LDM_POP:
1091 case elfcpp::R_386_USED_BY_INTEL_200:
1092 default:
1093 unsupported_reloc_global(object, r_type, gsym);
1094 break;
1095 }
1096 }
1097
1098 // Scan relocations for a section.
1099
1100 void
1101 Target_i386::scan_relocs(const General_options& options,
1102 Symbol_table* symtab,
1103 Layout* layout,
1104 Sized_relobj<32, false>* object,
1105 unsigned int data_shndx,
1106 unsigned int sh_type,
1107 const unsigned char* prelocs,
1108 size_t reloc_count,
1109 size_t local_symbol_count,
1110 const unsigned char* plocal_symbols,
1111 Symbol** global_symbols)
1112 {
1113 if (sh_type == elfcpp::SHT_RELA)
1114 {
1115 gold_error(_("%s: unsupported RELA reloc section"),
1116 object->name().c_str());
1117 return;
1118 }
1119
1120 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1121 Target_i386::Scan>(
1122 options,
1123 symtab,
1124 layout,
1125 this,
1126 object,
1127 data_shndx,
1128 prelocs,
1129 reloc_count,
1130 local_symbol_count,
1131 plocal_symbols,
1132 global_symbols);
1133 }
1134
1135 // Finalize the sections.
1136
1137 void
1138 Target_i386::do_finalize_sections(Layout* layout)
1139 {
1140 // Fill in some more dynamic tags.
1141 Output_data_dynamic* const odyn = layout->dynamic_data();
1142 if (odyn != NULL)
1143 {
1144 if (this->got_plt_ != NULL)
1145 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1146
1147 if (this->plt_ != NULL)
1148 {
1149 const Output_data* od = this->plt_->rel_plt();
1150 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1151 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1152 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1153 }
1154
1155 if (this->rel_dyn_ != NULL)
1156 {
1157 const Output_data* od = this->rel_dyn_;
1158 odyn->add_section_address(elfcpp::DT_REL, od);
1159 odyn->add_section_size(elfcpp::DT_RELSZ, od);
1160 odyn->add_constant(elfcpp::DT_RELENT,
1161 elfcpp::Elf_sizes<32>::rel_size);
1162 }
1163
1164 if (!parameters->output_is_shared())
1165 {
1166 // The value of the DT_DEBUG tag is filled in by the dynamic
1167 // linker at run time, and used by the debugger.
1168 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1169 }
1170 }
1171
1172 // Emit any relocs we saved in an attempt to avoid generating COPY
1173 // relocs.
1174 if (this->copy_relocs_ == NULL)
1175 return;
1176 if (this->copy_relocs_->any_to_emit())
1177 {
1178 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1179 this->copy_relocs_->emit(rel_dyn);
1180 }
1181 delete this->copy_relocs_;
1182 this->copy_relocs_ = NULL;
1183 }
1184
1185 // Perform a relocation.
1186
1187 inline bool
1188 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1189 Target_i386* target,
1190 size_t relnum,
1191 const elfcpp::Rel<32, false>& rel,
1192 unsigned int r_type,
1193 const Sized_symbol<32>* gsym,
1194 const Symbol_value<32>* psymval,
1195 unsigned char* view,
1196 elfcpp::Elf_types<32>::Elf_Addr address,
1197 off_t view_size)
1198 {
1199 if (this->skip_call_tls_get_addr_)
1200 {
1201 if (r_type != elfcpp::R_386_PLT32
1202 || gsym == NULL
1203 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1204 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1205 _("missing expected TLS relocation"));
1206 else
1207 {
1208 this->skip_call_tls_get_addr_ = false;
1209 return false;
1210 }
1211 }
1212
1213 // Pick the value to use for symbols defined in shared objects.
1214 Symbol_value<32> symval;
1215 if (gsym != NULL
1216 && (gsym->is_from_dynobj()
1217 || (parameters->output_is_shared()
1218 && gsym->is_preemptible()))
1219 && gsym->has_plt_offset())
1220 {
1221 symval.set_output_value(target->plt_section()->address()
1222 + gsym->plt_offset());
1223 psymval = &symval;
1224 }
1225
1226 const Sized_relobj<32, false>* object = relinfo->object;
1227
1228 // Get the GOT offset if needed.
1229 bool have_got_offset = false;
1230 unsigned int got_offset = 0;
1231 switch (r_type)
1232 {
1233 case elfcpp::R_386_GOT32:
1234 if (gsym != NULL)
1235 {
1236 gold_assert(gsym->has_got_offset());
1237 got_offset = gsym->got_offset();
1238 }
1239 else
1240 {
1241 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1242 got_offset = object->local_got_offset(r_sym);
1243 }
1244 have_got_offset = true;
1245 break;
1246
1247 default:
1248 break;
1249 }
1250
1251 switch (r_type)
1252 {
1253 case elfcpp::R_386_NONE:
1254 case elfcpp::R_386_GNU_VTINHERIT:
1255 case elfcpp::R_386_GNU_VTENTRY:
1256 break;
1257
1258 case elfcpp::R_386_32:
1259 Relocate_functions<32, false>::rel32(view, object, psymval);
1260 break;
1261
1262 case elfcpp::R_386_PC32:
1263 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1264 break;
1265
1266 case elfcpp::R_386_16:
1267 Relocate_functions<32, false>::rel16(view, object, psymval);
1268 break;
1269
1270 case elfcpp::R_386_PC16:
1271 Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1272 break;
1273
1274 case elfcpp::R_386_8:
1275 Relocate_functions<32, false>::rel8(view, object, psymval);
1276 break;
1277
1278 case elfcpp::R_386_PC8:
1279 Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1280 break;
1281
1282 case elfcpp::R_386_PLT32:
1283 gold_assert(gsym == NULL
1284 || gsym->has_plt_offset()
1285 || gsym->final_value_is_known());
1286 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1287 break;
1288
1289 case elfcpp::R_386_GOT32:
1290 gold_assert(have_got_offset);
1291 Relocate_functions<32, false>::rel32(view, got_offset);
1292 break;
1293
1294 case elfcpp::R_386_GOTOFF:
1295 {
1296 elfcpp::Elf_types<32>::Elf_Addr value;
1297 value = (psymval->value(object, 0)
1298 - target->got_section(NULL, NULL)->address());
1299 Relocate_functions<32, false>::rel32(view, value);
1300 }
1301 break;
1302
1303 case elfcpp::R_386_GOTPC:
1304 {
1305 elfcpp::Elf_types<32>::Elf_Addr value;
1306 value = target->got_section(NULL, NULL)->address();
1307 Relocate_functions<32, false>::pcrel32(view, value, address);
1308 }
1309 break;
1310
1311 case elfcpp::R_386_COPY:
1312 case elfcpp::R_386_GLOB_DAT:
1313 case elfcpp::R_386_JUMP_SLOT:
1314 case elfcpp::R_386_RELATIVE:
1315 // These are outstanding tls relocs, which are unexpected when
1316 // linking.
1317 case elfcpp::R_386_TLS_TPOFF:
1318 case elfcpp::R_386_TLS_DTPMOD32:
1319 case elfcpp::R_386_TLS_DTPOFF32:
1320 case elfcpp::R_386_TLS_TPOFF32:
1321 case elfcpp::R_386_TLS_DESC:
1322 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1323 _("unexpected reloc %u in object file"),
1324 r_type);
1325 break;
1326
1327 // These are initial tls relocs, which are expected when
1328 // linking.
1329 case elfcpp::R_386_TLS_IE:
1330 case elfcpp::R_386_TLS_GOTIE:
1331 case elfcpp::R_386_TLS_LE:
1332 case elfcpp::R_386_TLS_GD:
1333 case elfcpp::R_386_TLS_LDM:
1334 case elfcpp::R_386_TLS_LDO_32:
1335 case elfcpp::R_386_TLS_IE_32:
1336 case elfcpp::R_386_TLS_LE_32:
1337 case elfcpp::R_386_TLS_GOTDESC:
1338 case elfcpp::R_386_TLS_DESC_CALL:
1339 this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1340 address, view_size);
1341 break;
1342
1343 case elfcpp::R_386_32PLT:
1344 case elfcpp::R_386_TLS_GD_32:
1345 case elfcpp::R_386_TLS_GD_PUSH:
1346 case elfcpp::R_386_TLS_GD_CALL:
1347 case elfcpp::R_386_TLS_GD_POP:
1348 case elfcpp::R_386_TLS_LDM_32:
1349 case elfcpp::R_386_TLS_LDM_PUSH:
1350 case elfcpp::R_386_TLS_LDM_CALL:
1351 case elfcpp::R_386_TLS_LDM_POP:
1352 case elfcpp::R_386_USED_BY_INTEL_200:
1353 default:
1354 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1355 _("unsupported reloc %u"),
1356 r_type);
1357 break;
1358 }
1359
1360 return true;
1361 }
1362
1363 // Perform a TLS relocation.
1364
1365 inline void
1366 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1367 size_t relnum,
1368 const elfcpp::Rel<32, false>& rel,
1369 unsigned int r_type,
1370 const Sized_symbol<32>* gsym,
1371 const Symbol_value<32>* psymval,
1372 unsigned char* view,
1373 elfcpp::Elf_types<32>::Elf_Addr,
1374 off_t view_size)
1375 {
1376 Output_segment* tls_segment = relinfo->layout->tls_segment();
1377 if (tls_segment == NULL)
1378 {
1379 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1380 _("TLS reloc but no TLS segment"));
1381 return;
1382 }
1383
1384 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1385
1386 const bool is_final = (gsym == NULL
1387 ? !parameters->output_is_position_independent()
1388 : gsym->final_value_is_known());
1389 const tls::Tls_optimization optimized_type
1390 = Target_i386::optimize_tls_reloc(is_final, r_type);
1391 switch (r_type)
1392 {
1393 case elfcpp::R_386_TLS_LE_32:
1394 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1395 Relocate_functions<32, false>::rel32(view, value);
1396 break;
1397
1398 case elfcpp::R_386_TLS_LE:
1399 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1400 Relocate_functions<32, false>::rel32(view, value);
1401 break;
1402
1403 case elfcpp::R_386_TLS_IE:
1404 case elfcpp::R_386_TLS_GOTIE:
1405 case elfcpp::R_386_TLS_IE_32:
1406 if (optimized_type == tls::TLSOPT_TO_LE)
1407 {
1408 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1409 rel, r_type, value, view,
1410 view_size);
1411 break;
1412 }
1413 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1414 _("unsupported reloc %u"),
1415 r_type);
1416 break;
1417
1418 case elfcpp::R_386_TLS_GD:
1419 if (optimized_type == tls::TLSOPT_TO_LE)
1420 {
1421 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1422 rel, r_type, value, view,
1423 view_size);
1424 break;
1425 }
1426 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1427 _("unsupported reloc %u"),
1428 r_type);
1429 break;
1430
1431 case elfcpp::R_386_TLS_LDM:
1432 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1433 {
1434 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1435 _("both SUN and GNU model "
1436 "TLS relocations"));
1437 break;
1438 }
1439 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1440 if (optimized_type == tls::TLSOPT_TO_LE)
1441 {
1442 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1443 value, view, view_size);
1444 break;
1445 }
1446 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1447 _("unsupported reloc %u"),
1448 r_type);
1449 break;
1450
1451 case elfcpp::R_386_TLS_LDO_32:
1452 // This reloc can appear in debugging sections, in which case we
1453 // won't see the TLS_LDM reloc. The local_dynamic_type field
1454 // tells us this.
1455 if (optimized_type != tls::TLSOPT_TO_LE
1456 || this->local_dynamic_type_ == LOCAL_DYNAMIC_NONE)
1457 value = value - tls_segment->vaddr();
1458 else if (this->local_dynamic_type_ == LOCAL_DYNAMIC_GNU)
1459 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1460 else
1461 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1462 Relocate_functions<32, false>::rel32(view, value);
1463 break;
1464
1465 case elfcpp::R_386_TLS_GOTDESC:
1466 case elfcpp::R_386_TLS_DESC_CALL:
1467 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1468 _("unsupported reloc %u"),
1469 r_type);
1470 break;
1471 }
1472 }
1473
1474 // Do a relocation in which we convert a TLS Initial-Exec to a
1475 // Local-Exec.
1476
1477 inline void
1478 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1479 size_t relnum,
1480 Output_segment* tls_segment,
1481 const elfcpp::Rel<32, false>& rel,
1482 unsigned int r_type,
1483 elfcpp::Elf_types<32>::Elf_Addr value,
1484 unsigned char* view,
1485 off_t view_size)
1486 {
1487 // We have to actually change the instructions, which means that we
1488 // need to examine the opcodes to figure out which instruction we
1489 // are looking at.
1490 if (r_type == elfcpp::R_386_TLS_IE)
1491 {
1492 // movl %gs:XX,%eax ==> movl $YY,%eax
1493 // movl %gs:XX,%reg ==> movl $YY,%reg
1494 // addl %gs:XX,%reg ==> addl $YY,%reg
1495 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
1496 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1497
1498 unsigned char op1 = view[-1];
1499 if (op1 == 0xa1)
1500 {
1501 // movl XX,%eax ==> movl $YY,%eax
1502 view[-1] = 0xb8;
1503 }
1504 else
1505 {
1506 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1507
1508 unsigned char op2 = view[-2];
1509 if (op2 == 0x8b)
1510 {
1511 // movl XX,%reg ==> movl $YY,%reg
1512 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1513 (op1 & 0xc7) == 0x05);
1514 view[-2] = 0xc7;
1515 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1516 }
1517 else if (op2 == 0x03)
1518 {
1519 // addl XX,%reg ==> addl $YY,%reg
1520 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1521 (op1 & 0xc7) == 0x05);
1522 view[-2] = 0x81;
1523 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1524 }
1525 else
1526 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1527 }
1528 }
1529 else
1530 {
1531 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
1532 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
1533 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
1534 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1535 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1536
1537 unsigned char op1 = view[-1];
1538 unsigned char op2 = view[-2];
1539 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1540 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1541 if (op2 == 0x8b)
1542 {
1543 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
1544 view[-2] = 0xc7;
1545 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1546 }
1547 else if (op2 == 0x2b)
1548 {
1549 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
1550 view[-2] = 0x81;
1551 view[-1] = 0xe8 | ((op1 >> 3) & 7);
1552 }
1553 else if (op2 == 0x03)
1554 {
1555 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
1556 view[-2] = 0x81;
1557 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1558 }
1559 else
1560 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1561 }
1562
1563 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1564 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1565 value = - value;
1566
1567 Relocate_functions<32, false>::rel32(view, value);
1568 }
1569
1570 // Do a relocation in which we convert a TLS General-Dynamic to a
1571 // Local-Exec.
1572
1573 inline void
1574 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1575 size_t relnum,
1576 Output_segment* tls_segment,
1577 const elfcpp::Rel<32, false>& rel,
1578 unsigned int,
1579 elfcpp::Elf_types<32>::Elf_Addr value,
1580 unsigned char* view,
1581 off_t view_size)
1582 {
1583 // leal foo(,%reg,1),%eax; call ___tls_get_addr
1584 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1585 // leal foo(%reg),%eax; call ___tls_get_addr
1586 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1587
1588 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1589 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1590
1591 unsigned char op1 = view[-1];
1592 unsigned char op2 = view[-2];
1593
1594 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1595 op2 == 0x8d || op2 == 0x04);
1596 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1597
1598 int roff = 5;
1599
1600 if (op2 == 0x04)
1601 {
1602 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1603 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1604 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1605 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1606 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1607 }
1608 else
1609 {
1610 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1611 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1612 if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1613 && view[9] == 0x90)
1614 {
1615 // There is a trailing nop. Use the size byte subl.
1616 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1617 roff = 6;
1618 }
1619 else
1620 {
1621 // Use the five byte subl.
1622 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1623 }
1624 }
1625
1626 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1627 Relocate_functions<32, false>::rel32(view + roff, value);
1628
1629 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1630 // We can skip it.
1631 this->skip_call_tls_get_addr_ = true;
1632 }
1633
1634 // Do a relocation in which we convert a TLS Local-Dynamic to a
1635 // Local-Exec.
1636
1637 inline void
1638 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
1639 size_t relnum,
1640 Output_segment*,
1641 const elfcpp::Rel<32, false>& rel,
1642 unsigned int,
1643 elfcpp::Elf_types<32>::Elf_Addr,
1644 unsigned char* view,
1645 off_t view_size)
1646 {
1647 // leal foo(%reg), %eax; call ___tls_get_addr
1648 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
1649
1650 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1651 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1652
1653 // FIXME: Does this test really always pass?
1654 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1655 view[-2] == 0x8d && view[-1] == 0x83);
1656
1657 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1658
1659 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
1660
1661 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1662 // We can skip it.
1663 this->skip_call_tls_get_addr_ = true;
1664 }
1665
1666 // Relocate section data.
1667
1668 void
1669 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1670 unsigned int sh_type,
1671 const unsigned char* prelocs,
1672 size_t reloc_count,
1673 unsigned char* view,
1674 elfcpp::Elf_types<32>::Elf_Addr address,
1675 off_t view_size)
1676 {
1677 gold_assert(sh_type == elfcpp::SHT_REL);
1678
1679 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1680 Target_i386::Relocate>(
1681 relinfo,
1682 this,
1683 prelocs,
1684 reloc_count,
1685 view,
1686 address,
1687 view_size);
1688 }
1689
1690 // Return the value to use for a dynamic which requires special
1691 // treatment. This is how we support equality comparisons of function
1692 // pointers across shared library boundaries, as described in the
1693 // processor specific ABI supplement.
1694
1695 uint64_t
1696 Target_i386::do_dynsym_value(const Symbol* gsym) const
1697 {
1698 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1699 return this->plt_section()->address() + gsym->plt_offset();
1700 }
1701
1702 // Return a string used to fill a code section with nops to take up
1703 // the specified length.
1704
1705 std::string
1706 Target_i386::do_code_fill(off_t length)
1707 {
1708 if (length >= 16)
1709 {
1710 // Build a jmp instruction to skip over the bytes.
1711 unsigned char jmp[5];
1712 jmp[0] = 0xe9;
1713 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1714 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1715 + std::string(length - 5, '\0'));
1716 }
1717
1718 // Nop sequences of various lengths.
1719 const char nop1[1] = { 0x90 }; // nop
1720 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1721 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1722 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1723 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1724 0x00 }; // leal 0(%esi,1),%esi
1725 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1726 0x00, 0x00 };
1727 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1728 0x00, 0x00, 0x00 };
1729 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1730 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1731 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1732 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1733 0x00 };
1734 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1735 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1736 0x00, 0x00 };
1737 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1738 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1739 0x00, 0x00, 0x00 };
1740 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1741 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1742 0x00, 0x00, 0x00, 0x00 };
1743 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1744 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1745 0x27, 0x00, 0x00, 0x00,
1746 0x00 };
1747 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1748 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1749 0xbc, 0x27, 0x00, 0x00,
1750 0x00, 0x00 };
1751 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1752 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1753 0x90, 0x90, 0x90, 0x90,
1754 0x90, 0x90, 0x90 };
1755
1756 const char* nops[16] = {
1757 NULL,
1758 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1759 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1760 };
1761
1762 return std::string(nops[length], length);
1763 }
1764
1765 // The selector for i386 object files.
1766
1767 class Target_selector_i386 : public Target_selector
1768 {
1769 public:
1770 Target_selector_i386()
1771 : Target_selector(elfcpp::EM_386, 32, false)
1772 { }
1773
1774 Target*
1775 recognize(int machine, int osabi, int abiversion);
1776
1777 private:
1778 Target_i386* target_;
1779 };
1780
1781 // Recognize an i386 object file when we already know that the machine
1782 // number is EM_386.
1783
1784 Target*
1785 Target_selector_i386::recognize(int, int, int)
1786 {
1787 if (this->target_ == NULL)
1788 this->target_ = new Target_i386();
1789 return this->target_;
1790 }
1791
1792 Target_selector_i386 target_selector_i386;
1793
1794 } // End anonymous namespace.