gold/
[binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // A Hash_task computes the MD5 checksum of an array of char.
240 // It has a blocker on either side (i.e., the task cannot run until
241 // the first is unblocked, and it unblocks the second after running).
242
243 class Hash_task : public Task
244 {
245 public:
246 Hash_task(const unsigned char* src,
247 size_t size,
248 unsigned char* dst,
249 Task_token* build_id_blocker,
250 Task_token* final_blocker)
251 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
252 final_blocker_(final_blocker)
253 { }
254
255 void
256 run(Workqueue*)
257 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
258
259 Task_token*
260 is_runnable();
261
262 // Unblock FINAL_BLOCKER_ when done.
263 void
264 locks(Task_locker* tl)
265 { tl->add(this, this->final_blocker_); }
266
267 std::string
268 get_name() const
269 { return "Hash_task"; }
270
271 private:
272 const unsigned char* const src_;
273 const size_t size_;
274 unsigned char* const dst_;
275 Task_token* const build_id_blocker_;
276 Task_token* const final_blocker_;
277 };
278
279 Task_token*
280 Hash_task::is_runnable()
281 {
282 if (this->build_id_blocker_->is_blocked())
283 return this->build_id_blocker_;
284 return NULL;
285 }
286
287 // Layout::Relaxation_debug_check methods.
288
289 // Check that sections and special data are in reset states.
290 // We do not save states for Output_sections and special Output_data.
291 // So we check that they have not assigned any addresses or offsets.
292 // clean_up_after_relaxation simply resets their addresses and offsets.
293 void
294 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
295 const Layout::Section_list& sections,
296 const Layout::Data_list& special_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307 }
308
309 // Save information of SECTIONS for checking later.
310
311 void
312 Layout::Relaxation_debug_check::read_sections(
313 const Layout::Section_list& sections)
314 {
315 for(Layout::Section_list::const_iterator p = sections.begin();
316 p != sections.end();
317 ++p)
318 {
319 Output_section* os = *p;
320 Section_info info;
321 info.output_section = os;
322 info.address = os->is_address_valid() ? os->address() : 0;
323 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
324 info.offset = os->is_offset_valid()? os->offset() : -1 ;
325 this->section_infos_.push_back(info);
326 }
327 }
328
329 // Verify SECTIONS using previously recorded information.
330
331 void
332 Layout::Relaxation_debug_check::verify_sections(
333 const Layout::Section_list& sections)
334 {
335 size_t i = 0;
336 for(Layout::Section_list::const_iterator p = sections.begin();
337 p != sections.end();
338 ++p, ++i)
339 {
340 Output_section* os = *p;
341 uint64_t address = os->is_address_valid() ? os->address() : 0;
342 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
343 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
344
345 if (i >= this->section_infos_.size())
346 {
347 gold_fatal("Section_info of %s missing.\n", os->name());
348 }
349 const Section_info& info = this->section_infos_[i];
350 if (os != info.output_section)
351 gold_fatal("Section order changed. Expecting %s but see %s\n",
352 info.output_section->name(), os->name());
353 if (address != info.address
354 || data_size != info.data_size
355 || offset != info.offset)
356 gold_fatal("Section %s changed.\n", os->name());
357 }
358 }
359
360 // Layout_task_runner methods.
361
362 // Lay out the sections. This is called after all the input objects
363 // have been read.
364
365 void
366 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
367 {
368 // See if any of the input definitions violate the One Definition Rule.
369 // TODO: if this is too slow, do this as a task, rather than inline.
370 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
371
372 Layout* layout = this->layout_;
373 off_t file_size = layout->finalize(this->input_objects_,
374 this->symtab_,
375 this->target_,
376 task);
377
378 // Now we know the final size of the output file and we know where
379 // each piece of information goes.
380
381 if (this->mapfile_ != NULL)
382 {
383 this->mapfile_->print_discarded_sections(this->input_objects_);
384 layout->print_to_mapfile(this->mapfile_);
385 }
386
387 Output_file* of;
388 if (layout->incremental_base() == NULL)
389 {
390 of = new Output_file(parameters->options().output_file_name());
391 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
392 of->set_is_temporary();
393 of->open(file_size);
394 }
395 else
396 {
397 of = layout->incremental_base()->output_file();
398
399 // Apply the incremental relocations for symbols whose values
400 // have changed. We do this before we resize the file and start
401 // writing anything else to it, so that we can read the old
402 // incremental information from the file before (possibly)
403 // overwriting it.
404 if (parameters->incremental_update())
405 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
406 this->layout_,
407 of);
408
409 of->resize(file_size);
410 }
411
412 // Queue up the final set of tasks.
413 gold::queue_final_tasks(this->options_, this->input_objects_,
414 this->symtab_, layout, workqueue, of);
415 }
416
417 // Layout methods.
418
419 Layout::Layout(int number_of_input_files, Script_options* script_options)
420 : number_of_input_files_(number_of_input_files),
421 script_options_(script_options),
422 namepool_(),
423 sympool_(),
424 dynpool_(),
425 signatures_(),
426 section_name_map_(),
427 segment_list_(),
428 section_list_(),
429 unattached_section_list_(),
430 special_output_list_(),
431 section_headers_(NULL),
432 tls_segment_(NULL),
433 relro_segment_(NULL),
434 interp_segment_(NULL),
435 increase_relro_(0),
436 symtab_section_(NULL),
437 symtab_xindex_(NULL),
438 dynsym_section_(NULL),
439 dynsym_xindex_(NULL),
440 dynamic_section_(NULL),
441 dynamic_symbol_(NULL),
442 dynamic_data_(NULL),
443 eh_frame_section_(NULL),
444 eh_frame_data_(NULL),
445 added_eh_frame_data_(false),
446 eh_frame_hdr_section_(NULL),
447 gdb_index_data_(NULL),
448 build_id_note_(NULL),
449 array_of_hashes_(NULL),
450 size_of_array_of_hashes_(0),
451 input_view_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_()
478 {
479 // Make space for more than enough segments for a typical file.
480 // This is just for efficiency--it's OK if we wind up needing more.
481 this->segment_list_.reserve(12);
482
483 // We expect two unattached Output_data objects: the file header and
484 // the segment headers.
485 this->special_output_list_.reserve(2);
486
487 // Initialize structure needed for an incremental build.
488 if (parameters->incremental())
489 this->incremental_inputs_ = new Incremental_inputs;
490
491 // The section name pool is worth optimizing in all cases, because
492 // it is small, but there are often overlaps due to .rel sections.
493 this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501 this->incremental_base_ = base;
502 this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510 return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520 "abbrev",
521 "addr", // Fission extension
522 // "aranges", // not used by gdb as of 7.4
523 "frame",
524 "info",
525 "types",
526 "line",
527 "loc",
528 "macinfo",
529 "macro",
530 // "pubnames", // not used by gdb as of 7.4
531 // "pubtypes", // not used by gdb as of 7.4
532 "ranges",
533 "str",
534 };
535
536 // This is the minimum set of sections needed for line numbers.
537
538 static const char* lines_only_debug_sections[] =
539 {
540 "abbrev",
541 // "addr", // Fission extension
542 // "aranges", // not used by gdb as of 7.4
543 // "frame",
544 "info",
545 // "types",
546 "line",
547 // "loc",
548 // "macinfo",
549 // "macro",
550 // "pubnames", // not used by gdb as of 7.4
551 // "pubtypes", // not used by gdb as of 7.4
552 // "ranges",
553 "str",
554 };
555
556 // These sections are the DWARF fast-lookup tables, and are not needed
557 // when building a .gdb_index section.
558
559 static const char* gdb_fast_lookup_sections[] =
560 {
561 "aranges",
562 "pubnames",
563 "pubtypes",
564 };
565
566 // Returns whether the given debug section is in the list of
567 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
568 // portion of the name following ".debug_" or ".zdebug_".
569
570 static inline bool
571 is_gdb_debug_section(const char* suffix)
572 {
573 // We can do this faster: binary search or a hashtable. But why bother?
574 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
575 if (strcmp(suffix, gdb_sections[i]) == 0)
576 return true;
577 return false;
578 }
579
580 // Returns whether the given section is needed for lines-only debugging.
581
582 static inline bool
583 is_lines_only_debug_section(const char* suffix)
584 {
585 // We can do this faster: binary search or a hashtable. But why bother?
586 for (size_t i = 0;
587 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
588 ++i)
589 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
590 return true;
591 return false;
592 }
593
594 // Returns whether the given section is a fast-lookup section that
595 // will not be needed when building a .gdb_index section.
596
597 static inline bool
598 is_gdb_fast_lookup_section(const char* suffix)
599 {
600 // We can do this faster: binary search or a hashtable. But why bother?
601 for (size_t i = 0;
602 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
603 ++i)
604 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
605 return true;
606 return false;
607 }
608
609 // Sometimes we compress sections. This is typically done for
610 // sections that are not part of normal program execution (such as
611 // .debug_* sections), and where the readers of these sections know
612 // how to deal with compressed sections. This routine doesn't say for
613 // certain whether we'll compress -- it depends on commandline options
614 // as well -- just whether this section is a candidate for compression.
615 // (The Output_compressed_section class decides whether to compress
616 // a given section, and picks the name of the compressed section.)
617
618 static bool
619 is_compressible_debug_section(const char* secname)
620 {
621 return (is_prefix_of(".debug", secname));
622 }
623
624 // We may see compressed debug sections in input files. Return TRUE
625 // if this is the name of a compressed debug section.
626
627 bool
628 is_compressed_debug_section(const char* secname)
629 {
630 return (is_prefix_of(".zdebug", secname));
631 }
632
633 // Whether to include this section in the link.
634
635 template<int size, bool big_endian>
636 bool
637 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
638 const elfcpp::Shdr<size, big_endian>& shdr)
639 {
640 if (!parameters->options().relocatable()
641 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
642 return false;
643
644 switch (shdr.get_sh_type())
645 {
646 case elfcpp::SHT_NULL:
647 case elfcpp::SHT_SYMTAB:
648 case elfcpp::SHT_DYNSYM:
649 case elfcpp::SHT_HASH:
650 case elfcpp::SHT_DYNAMIC:
651 case elfcpp::SHT_SYMTAB_SHNDX:
652 return false;
653
654 case elfcpp::SHT_STRTAB:
655 // Discard the sections which have special meanings in the ELF
656 // ABI. Keep others (e.g., .stabstr). We could also do this by
657 // checking the sh_link fields of the appropriate sections.
658 return (strcmp(name, ".dynstr") != 0
659 && strcmp(name, ".strtab") != 0
660 && strcmp(name, ".shstrtab") != 0);
661
662 case elfcpp::SHT_RELA:
663 case elfcpp::SHT_REL:
664 case elfcpp::SHT_GROUP:
665 // If we are emitting relocations these should be handled
666 // elsewhere.
667 gold_assert(!parameters->options().relocatable());
668 return false;
669
670 case elfcpp::SHT_PROGBITS:
671 if (parameters->options().strip_debug()
672 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
673 {
674 if (is_debug_info_section(name))
675 return false;
676 }
677 if (parameters->options().strip_debug_non_line()
678 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
679 {
680 // Debugging sections can only be recognized by name.
681 if (is_prefix_of(".debug_", name)
682 && !is_lines_only_debug_section(name + 7))
683 return false;
684 if (is_prefix_of(".zdebug_", name)
685 && !is_lines_only_debug_section(name + 8))
686 return false;
687 }
688 if (parameters->options().strip_debug_gdb()
689 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
690 {
691 // Debugging sections can only be recognized by name.
692 if (is_prefix_of(".debug_", name)
693 && !is_gdb_debug_section(name + 7))
694 return false;
695 if (is_prefix_of(".zdebug_", name)
696 && !is_gdb_debug_section(name + 8))
697 return false;
698 }
699 if (parameters->options().gdb_index()
700 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
701 {
702 // When building .gdb_index, we can strip .debug_pubnames,
703 // .debug_pubtypes, and .debug_aranges sections.
704 if (is_prefix_of(".debug_", name)
705 && is_gdb_fast_lookup_section(name + 7))
706 return false;
707 if (is_prefix_of(".zdebug_", name)
708 && is_gdb_fast_lookup_section(name + 8))
709 return false;
710 }
711 if (parameters->options().strip_lto_sections()
712 && !parameters->options().relocatable()
713 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
714 {
715 // Ignore LTO sections containing intermediate code.
716 if (is_prefix_of(".gnu.lto_", name))
717 return false;
718 }
719 // The GNU linker strips .gnu_debuglink sections, so we do too.
720 // This is a feature used to keep debugging information in
721 // separate files.
722 if (strcmp(name, ".gnu_debuglink") == 0)
723 return false;
724 return true;
725
726 default:
727 return true;
728 }
729 }
730
731 // Return an output section named NAME, or NULL if there is none.
732
733 Output_section*
734 Layout::find_output_section(const char* name) const
735 {
736 for (Section_list::const_iterator p = this->section_list_.begin();
737 p != this->section_list_.end();
738 ++p)
739 if (strcmp((*p)->name(), name) == 0)
740 return *p;
741 return NULL;
742 }
743
744 // Return an output segment of type TYPE, with segment flags SET set
745 // and segment flags CLEAR clear. Return NULL if there is none.
746
747 Output_segment*
748 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
749 elfcpp::Elf_Word clear) const
750 {
751 for (Segment_list::const_iterator p = this->segment_list_.begin();
752 p != this->segment_list_.end();
753 ++p)
754 if (static_cast<elfcpp::PT>((*p)->type()) == type
755 && ((*p)->flags() & set) == set
756 && ((*p)->flags() & clear) == 0)
757 return *p;
758 return NULL;
759 }
760
761 // When we put a .ctors or .dtors section with more than one word into
762 // a .init_array or .fini_array section, we need to reverse the words
763 // in the .ctors/.dtors section. This is because .init_array executes
764 // constructors front to back, where .ctors executes them back to
765 // front, and vice-versa for .fini_array/.dtors. Although we do want
766 // to remap .ctors/.dtors into .init_array/.fini_array because it can
767 // be more efficient, we don't want to change the order in which
768 // constructors/destructors are run. This set just keeps track of
769 // these sections which need to be reversed. It is only changed by
770 // Layout::layout. It should be a private member of Layout, but that
771 // would require layout.h to #include object.h to get the definition
772 // of Section_id.
773 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
774
775 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
776 // .init_array/.fini_array section.
777
778 bool
779 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
780 {
781 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
782 != ctors_sections_in_init_array.end());
783 }
784
785 // Return the output section to use for section NAME with type TYPE
786 // and section flags FLAGS. NAME must be canonicalized in the string
787 // pool, and NAME_KEY is the key. ORDER is where this should appear
788 // in the output sections. IS_RELRO is true for a relro section.
789
790 Output_section*
791 Layout::get_output_section(const char* name, Stringpool::Key name_key,
792 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
793 Output_section_order order, bool is_relro)
794 {
795 elfcpp::Elf_Word lookup_type = type;
796
797 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
798 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
799 // .init_array, .fini_array, and .preinit_array sections by name
800 // whatever their type in the input file. We do this because the
801 // types are not always right in the input files.
802 if (lookup_type == elfcpp::SHT_INIT_ARRAY
803 || lookup_type == elfcpp::SHT_FINI_ARRAY
804 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
805 lookup_type = elfcpp::SHT_PROGBITS;
806
807 elfcpp::Elf_Xword lookup_flags = flags;
808
809 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
810 // read-write with read-only sections. Some other ELF linkers do
811 // not do this. FIXME: Perhaps there should be an option
812 // controlling this.
813 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
814
815 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
816 const std::pair<Key, Output_section*> v(key, NULL);
817 std::pair<Section_name_map::iterator, bool> ins(
818 this->section_name_map_.insert(v));
819
820 if (!ins.second)
821 return ins.first->second;
822 else
823 {
824 // This is the first time we've seen this name/type/flags
825 // combination. For compatibility with the GNU linker, we
826 // combine sections with contents and zero flags with sections
827 // with non-zero flags. This is a workaround for cases where
828 // assembler code forgets to set section flags. FIXME: Perhaps
829 // there should be an option to control this.
830 Output_section* os = NULL;
831
832 if (lookup_type == elfcpp::SHT_PROGBITS)
833 {
834 if (flags == 0)
835 {
836 Output_section* same_name = this->find_output_section(name);
837 if (same_name != NULL
838 && (same_name->type() == elfcpp::SHT_PROGBITS
839 || same_name->type() == elfcpp::SHT_INIT_ARRAY
840 || same_name->type() == elfcpp::SHT_FINI_ARRAY
841 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
842 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
843 os = same_name;
844 }
845 else if ((flags & elfcpp::SHF_TLS) == 0)
846 {
847 elfcpp::Elf_Xword zero_flags = 0;
848 const Key zero_key(name_key, std::make_pair(lookup_type,
849 zero_flags));
850 Section_name_map::iterator p =
851 this->section_name_map_.find(zero_key);
852 if (p != this->section_name_map_.end())
853 os = p->second;
854 }
855 }
856
857 if (os == NULL)
858 os = this->make_output_section(name, type, flags, order, is_relro);
859
860 ins.first->second = os;
861 return os;
862 }
863 }
864
865 // Returns TRUE iff NAME (an input section from RELOBJ) will
866 // be mapped to an output section that should be KEPT.
867
868 bool
869 Layout::keep_input_section(const Relobj* relobj, const char* name)
870 {
871 if (! this->script_options_->saw_sections_clause())
872 return false;
873
874 Script_sections* ss = this->script_options_->script_sections();
875 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
876 Output_section** output_section_slot;
877 Script_sections::Section_type script_section_type;
878 bool keep;
879
880 name = ss->output_section_name(file_name, name, &output_section_slot,
881 &script_section_type, &keep);
882 return name != NULL && keep;
883 }
884
885 // Clear the input section flags that should not be copied to the
886 // output section.
887
888 elfcpp::Elf_Xword
889 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
890 {
891 // Some flags in the input section should not be automatically
892 // copied to the output section.
893 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
894 | elfcpp::SHF_GROUP
895 | elfcpp::SHF_MERGE
896 | elfcpp::SHF_STRINGS);
897
898 // We only clear the SHF_LINK_ORDER flag in for
899 // a non-relocatable link.
900 if (!parameters->options().relocatable())
901 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
902
903 return input_section_flags;
904 }
905
906 // Pick the output section to use for section NAME, in input file
907 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
908 // linker created section. IS_INPUT_SECTION is true if we are
909 // choosing an output section for an input section found in a input
910 // file. ORDER is where this section should appear in the output
911 // sections. IS_RELRO is true for a relro section. This will return
912 // NULL if the input section should be discarded.
913
914 Output_section*
915 Layout::choose_output_section(const Relobj* relobj, const char* name,
916 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
917 bool is_input_section, Output_section_order order,
918 bool is_relro)
919 {
920 // We should not see any input sections after we have attached
921 // sections to segments.
922 gold_assert(!is_input_section || !this->sections_are_attached_);
923
924 flags = this->get_output_section_flags(flags);
925
926 if (this->script_options_->saw_sections_clause())
927 {
928 // We are using a SECTIONS clause, so the output section is
929 // chosen based only on the name.
930
931 Script_sections* ss = this->script_options_->script_sections();
932 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
933 Output_section** output_section_slot;
934 Script_sections::Section_type script_section_type;
935 const char* orig_name = name;
936 bool keep;
937 name = ss->output_section_name(file_name, name, &output_section_slot,
938 &script_section_type, &keep);
939
940 if (name == NULL)
941 {
942 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
943 "because it is not allowed by the "
944 "SECTIONS clause of the linker script"),
945 orig_name);
946 // The SECTIONS clause says to discard this input section.
947 return NULL;
948 }
949
950 // We can only handle script section types ST_NONE and ST_NOLOAD.
951 switch (script_section_type)
952 {
953 case Script_sections::ST_NONE:
954 break;
955 case Script_sections::ST_NOLOAD:
956 flags &= elfcpp::SHF_ALLOC;
957 break;
958 default:
959 gold_unreachable();
960 }
961
962 // If this is an orphan section--one not mentioned in the linker
963 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
964 // default processing below.
965
966 if (output_section_slot != NULL)
967 {
968 if (*output_section_slot != NULL)
969 {
970 (*output_section_slot)->update_flags_for_input_section(flags);
971 return *output_section_slot;
972 }
973
974 // We don't put sections found in the linker script into
975 // SECTION_NAME_MAP_. That keeps us from getting confused
976 // if an orphan section is mapped to a section with the same
977 // name as one in the linker script.
978
979 name = this->namepool_.add(name, false, NULL);
980
981 Output_section* os = this->make_output_section(name, type, flags,
982 order, is_relro);
983
984 os->set_found_in_sections_clause();
985
986 // Special handling for NOLOAD sections.
987 if (script_section_type == Script_sections::ST_NOLOAD)
988 {
989 os->set_is_noload();
990
991 // The constructor of Output_section sets addresses of non-ALLOC
992 // sections to 0 by default. We don't want that for NOLOAD
993 // sections even if they have no SHF_ALLOC flag.
994 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
995 && os->is_address_valid())
996 {
997 gold_assert(os->address() == 0
998 && !os->is_offset_valid()
999 && !os->is_data_size_valid());
1000 os->reset_address_and_file_offset();
1001 }
1002 }
1003
1004 *output_section_slot = os;
1005 return os;
1006 }
1007 }
1008
1009 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1010
1011 size_t len = strlen(name);
1012 char* uncompressed_name = NULL;
1013
1014 // Compressed debug sections should be mapped to the corresponding
1015 // uncompressed section.
1016 if (is_compressed_debug_section(name))
1017 {
1018 uncompressed_name = new char[len];
1019 uncompressed_name[0] = '.';
1020 gold_assert(name[0] == '.' && name[1] == 'z');
1021 strncpy(&uncompressed_name[1], &name[2], len - 2);
1022 uncompressed_name[len - 1] = '\0';
1023 len -= 1;
1024 name = uncompressed_name;
1025 }
1026
1027 // Turn NAME from the name of the input section into the name of the
1028 // output section.
1029 if (is_input_section
1030 && !this->script_options_->saw_sections_clause()
1031 && !parameters->options().relocatable())
1032 {
1033 const char *orig_name = name;
1034 name = parameters->target().output_section_name(relobj, name, &len);
1035 if (name == NULL)
1036 name = Layout::output_section_name(relobj, orig_name, &len);
1037 }
1038
1039 Stringpool::Key name_key;
1040 name = this->namepool_.add_with_length(name, len, true, &name_key);
1041
1042 if (uncompressed_name != NULL)
1043 delete[] uncompressed_name;
1044
1045 // Find or make the output section. The output section is selected
1046 // based on the section name, type, and flags.
1047 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1048 }
1049
1050 // For incremental links, record the initial fixed layout of a section
1051 // from the base file, and return a pointer to the Output_section.
1052
1053 template<int size, bool big_endian>
1054 Output_section*
1055 Layout::init_fixed_output_section(const char* name,
1056 elfcpp::Shdr<size, big_endian>& shdr)
1057 {
1058 unsigned int sh_type = shdr.get_sh_type();
1059
1060 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1061 // PRE_INIT_ARRAY, and NOTE sections.
1062 // All others will be created from scratch and reallocated.
1063 if (!can_incremental_update(sh_type))
1064 return NULL;
1065
1066 // If we're generating a .gdb_index section, we need to regenerate
1067 // it from scratch.
1068 if (parameters->options().gdb_index()
1069 && sh_type == elfcpp::SHT_PROGBITS
1070 && strcmp(name, ".gdb_index") == 0)
1071 return NULL;
1072
1073 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1074 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1075 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1076 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1077 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1078 shdr.get_sh_addralign();
1079
1080 // Make the output section.
1081 Stringpool::Key name_key;
1082 name = this->namepool_.add(name, true, &name_key);
1083 Output_section* os = this->get_output_section(name, name_key, sh_type,
1084 sh_flags, ORDER_INVALID, false);
1085 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1086 if (sh_type != elfcpp::SHT_NOBITS)
1087 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1088 return os;
1089 }
1090
1091 // Return the index by which an input section should be ordered. This
1092 // is used to sort some .text sections, for compatibility with GNU ld.
1093
1094 int
1095 Layout::special_ordering_of_input_section(const char* name)
1096 {
1097 // The GNU linker has some special handling for some sections that
1098 // wind up in the .text section. Sections that start with these
1099 // prefixes must appear first, and must appear in the order listed
1100 // here.
1101 static const char* const text_section_sort[] =
1102 {
1103 ".text.unlikely",
1104 ".text.exit",
1105 ".text.startup",
1106 ".text.hot"
1107 };
1108
1109 for (size_t i = 0;
1110 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1111 i++)
1112 if (is_prefix_of(text_section_sort[i], name))
1113 return i;
1114
1115 return -1;
1116 }
1117
1118 // Return the output section to use for input section SHNDX, with name
1119 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1120 // index of a relocation section which applies to this section, or 0
1121 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1122 // relocation section if there is one. Set *OFF to the offset of this
1123 // input section without the output section. Return NULL if the
1124 // section should be discarded. Set *OFF to -1 if the section
1125 // contents should not be written directly to the output file, but
1126 // will instead receive special handling.
1127
1128 template<int size, bool big_endian>
1129 Output_section*
1130 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1131 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1132 unsigned int reloc_shndx, unsigned int, off_t* off)
1133 {
1134 *off = 0;
1135
1136 if (!this->include_section(object, name, shdr))
1137 return NULL;
1138
1139 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1140
1141 // In a relocatable link a grouped section must not be combined with
1142 // any other sections.
1143 Output_section* os;
1144 if (parameters->options().relocatable()
1145 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1146 {
1147 name = this->namepool_.add(name, true, NULL);
1148 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1149 ORDER_INVALID, false);
1150 }
1151 else
1152 {
1153 // Plugins can choose to place one or more subsets of sections in
1154 // unique segments and this is done by mapping these section subsets
1155 // to unique output sections. Check if this section needs to be
1156 // remapped to a unique output section.
1157 Section_segment_map::iterator it
1158 = this->section_segment_map_.find(Const_section_id(object, shndx));
1159 if (it == this->section_segment_map_.end())
1160 {
1161 os = this->choose_output_section(object, name, sh_type,
1162 shdr.get_sh_flags(), true,
1163 ORDER_INVALID, false);
1164 }
1165 else
1166 {
1167 // We know the name of the output section, directly call
1168 // get_output_section here by-passing choose_output_section.
1169 elfcpp::Elf_Xword flags
1170 = this->get_output_section_flags(shdr.get_sh_flags());
1171
1172 const char* os_name = it->second->name;
1173 Stringpool::Key name_key;
1174 os_name = this->namepool_.add(os_name, true, &name_key);
1175 os = this->get_output_section(os_name, name_key, sh_type, flags,
1176 ORDER_INVALID, false);
1177 if (!os->is_unique_segment())
1178 {
1179 os->set_is_unique_segment();
1180 os->set_extra_segment_flags(it->second->flags);
1181 os->set_segment_alignment(it->second->align);
1182 }
1183 }
1184 if (os == NULL)
1185 return NULL;
1186 }
1187
1188 // By default the GNU linker sorts input sections whose names match
1189 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1190 // sections are sorted by name. This is used to implement
1191 // constructor priority ordering. We are compatible. When we put
1192 // .ctor sections in .init_array and .dtor sections in .fini_array,
1193 // we must also sort plain .ctor and .dtor sections.
1194 if (!this->script_options_->saw_sections_clause()
1195 && !parameters->options().relocatable()
1196 && (is_prefix_of(".ctors.", name)
1197 || is_prefix_of(".dtors.", name)
1198 || is_prefix_of(".init_array.", name)
1199 || is_prefix_of(".fini_array.", name)
1200 || (parameters->options().ctors_in_init_array()
1201 && (strcmp(name, ".ctors") == 0
1202 || strcmp(name, ".dtors") == 0))))
1203 os->set_must_sort_attached_input_sections();
1204
1205 // By default the GNU linker sorts some special text sections ahead
1206 // of others. We are compatible.
1207 if (parameters->options().text_reorder()
1208 && !this->script_options_->saw_sections_clause()
1209 && !this->is_section_ordering_specified()
1210 && !parameters->options().relocatable()
1211 && Layout::special_ordering_of_input_section(name) >= 0)
1212 os->set_must_sort_attached_input_sections();
1213
1214 // If this is a .ctors or .ctors.* section being mapped to a
1215 // .init_array section, or a .dtors or .dtors.* section being mapped
1216 // to a .fini_array section, we will need to reverse the words if
1217 // there is more than one. Record this section for later. See
1218 // ctors_sections_in_init_array above.
1219 if (!this->script_options_->saw_sections_clause()
1220 && !parameters->options().relocatable()
1221 && shdr.get_sh_size() > size / 8
1222 && (((strcmp(name, ".ctors") == 0
1223 || is_prefix_of(".ctors.", name))
1224 && strcmp(os->name(), ".init_array") == 0)
1225 || ((strcmp(name, ".dtors") == 0
1226 || is_prefix_of(".dtors.", name))
1227 && strcmp(os->name(), ".fini_array") == 0)))
1228 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1229
1230 // FIXME: Handle SHF_LINK_ORDER somewhere.
1231
1232 elfcpp::Elf_Xword orig_flags = os->flags();
1233
1234 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1235 this->script_options_->saw_sections_clause());
1236
1237 // If the flags changed, we may have to change the order.
1238 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1239 {
1240 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1241 elfcpp::Elf_Xword new_flags =
1242 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1243 if (orig_flags != new_flags)
1244 os->set_order(this->default_section_order(os, false));
1245 }
1246
1247 this->have_added_input_section_ = true;
1248
1249 return os;
1250 }
1251
1252 // Maps section SECN to SEGMENT s.
1253 void
1254 Layout::insert_section_segment_map(Const_section_id secn,
1255 Unique_segment_info *s)
1256 {
1257 gold_assert(this->unique_segment_for_sections_specified_);
1258 this->section_segment_map_[secn] = s;
1259 }
1260
1261 // Handle a relocation section when doing a relocatable link.
1262
1263 template<int size, bool big_endian>
1264 Output_section*
1265 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1266 unsigned int,
1267 const elfcpp::Shdr<size, big_endian>& shdr,
1268 Output_section* data_section,
1269 Relocatable_relocs* rr)
1270 {
1271 gold_assert(parameters->options().relocatable()
1272 || parameters->options().emit_relocs());
1273
1274 int sh_type = shdr.get_sh_type();
1275
1276 std::string name;
1277 if (sh_type == elfcpp::SHT_REL)
1278 name = ".rel";
1279 else if (sh_type == elfcpp::SHT_RELA)
1280 name = ".rela";
1281 else
1282 gold_unreachable();
1283 name += data_section->name();
1284
1285 // In a relocatable link relocs for a grouped section must not be
1286 // combined with other reloc sections.
1287 Output_section* os;
1288 if (!parameters->options().relocatable()
1289 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1290 os = this->choose_output_section(object, name.c_str(), sh_type,
1291 shdr.get_sh_flags(), false,
1292 ORDER_INVALID, false);
1293 else
1294 {
1295 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1296 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1297 ORDER_INVALID, false);
1298 }
1299
1300 os->set_should_link_to_symtab();
1301 os->set_info_section(data_section);
1302
1303 Output_section_data* posd;
1304 if (sh_type == elfcpp::SHT_REL)
1305 {
1306 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1307 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1308 size,
1309 big_endian>(rr);
1310 }
1311 else if (sh_type == elfcpp::SHT_RELA)
1312 {
1313 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1314 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1315 size,
1316 big_endian>(rr);
1317 }
1318 else
1319 gold_unreachable();
1320
1321 os->add_output_section_data(posd);
1322 rr->set_output_data(posd);
1323
1324 return os;
1325 }
1326
1327 // Handle a group section when doing a relocatable link.
1328
1329 template<int size, bool big_endian>
1330 void
1331 Layout::layout_group(Symbol_table* symtab,
1332 Sized_relobj_file<size, big_endian>* object,
1333 unsigned int,
1334 const char* group_section_name,
1335 const char* signature,
1336 const elfcpp::Shdr<size, big_endian>& shdr,
1337 elfcpp::Elf_Word flags,
1338 std::vector<unsigned int>* shndxes)
1339 {
1340 gold_assert(parameters->options().relocatable());
1341 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1342 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1343 Output_section* os = this->make_output_section(group_section_name,
1344 elfcpp::SHT_GROUP,
1345 shdr.get_sh_flags(),
1346 ORDER_INVALID, false);
1347
1348 // We need to find a symbol with the signature in the symbol table.
1349 // If we don't find one now, we need to look again later.
1350 Symbol* sym = symtab->lookup(signature, NULL);
1351 if (sym != NULL)
1352 os->set_info_symndx(sym);
1353 else
1354 {
1355 // Reserve some space to minimize reallocations.
1356 if (this->group_signatures_.empty())
1357 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1358
1359 // We will wind up using a symbol whose name is the signature.
1360 // So just put the signature in the symbol name pool to save it.
1361 signature = symtab->canonicalize_name(signature);
1362 this->group_signatures_.push_back(Group_signature(os, signature));
1363 }
1364
1365 os->set_should_link_to_symtab();
1366 os->set_entsize(4);
1367
1368 section_size_type entry_count =
1369 convert_to_section_size_type(shdr.get_sh_size() / 4);
1370 Output_section_data* posd =
1371 new Output_data_group<size, big_endian>(object, entry_count, flags,
1372 shndxes);
1373 os->add_output_section_data(posd);
1374 }
1375
1376 // Special GNU handling of sections name .eh_frame. They will
1377 // normally hold exception frame data as defined by the C++ ABI
1378 // (http://codesourcery.com/cxx-abi/).
1379
1380 template<int size, bool big_endian>
1381 Output_section*
1382 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1383 const unsigned char* symbols,
1384 off_t symbols_size,
1385 const unsigned char* symbol_names,
1386 off_t symbol_names_size,
1387 unsigned int shndx,
1388 const elfcpp::Shdr<size, big_endian>& shdr,
1389 unsigned int reloc_shndx, unsigned int reloc_type,
1390 off_t* off)
1391 {
1392 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1393 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1394 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1395
1396 Output_section* os = this->make_eh_frame_section(object);
1397 if (os == NULL)
1398 return NULL;
1399
1400 gold_assert(this->eh_frame_section_ == os);
1401
1402 elfcpp::Elf_Xword orig_flags = os->flags();
1403
1404 if (!parameters->incremental()
1405 && this->eh_frame_data_->add_ehframe_input_section(object,
1406 symbols,
1407 symbols_size,
1408 symbol_names,
1409 symbol_names_size,
1410 shndx,
1411 reloc_shndx,
1412 reloc_type))
1413 {
1414 os->update_flags_for_input_section(shdr.get_sh_flags());
1415
1416 // A writable .eh_frame section is a RELRO section.
1417 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1418 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1419 {
1420 os->set_is_relro();
1421 os->set_order(ORDER_RELRO);
1422 }
1423
1424 // We found a .eh_frame section we are going to optimize, so now
1425 // we can add the set of optimized sections to the output
1426 // section. We need to postpone adding this until we've found a
1427 // section we can optimize so that the .eh_frame section in
1428 // crtbegin.o winds up at the start of the output section.
1429 if (!this->added_eh_frame_data_)
1430 {
1431 os->add_output_section_data(this->eh_frame_data_);
1432 this->added_eh_frame_data_ = true;
1433 }
1434 *off = -1;
1435 }
1436 else
1437 {
1438 // We couldn't handle this .eh_frame section for some reason.
1439 // Add it as a normal section.
1440 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1441 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1442 reloc_shndx, saw_sections_clause);
1443 this->have_added_input_section_ = true;
1444
1445 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1446 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1447 os->set_order(this->default_section_order(os, false));
1448 }
1449
1450 return os;
1451 }
1452
1453 // Create and return the magic .eh_frame section. Create
1454 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1455 // input .eh_frame section; it may be NULL.
1456
1457 Output_section*
1458 Layout::make_eh_frame_section(const Relobj* object)
1459 {
1460 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1461 // SHT_PROGBITS.
1462 Output_section* os = this->choose_output_section(object, ".eh_frame",
1463 elfcpp::SHT_PROGBITS,
1464 elfcpp::SHF_ALLOC, false,
1465 ORDER_EHFRAME, false);
1466 if (os == NULL)
1467 return NULL;
1468
1469 if (this->eh_frame_section_ == NULL)
1470 {
1471 this->eh_frame_section_ = os;
1472 this->eh_frame_data_ = new Eh_frame();
1473
1474 // For incremental linking, we do not optimize .eh_frame sections
1475 // or create a .eh_frame_hdr section.
1476 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1477 {
1478 Output_section* hdr_os =
1479 this->choose_output_section(NULL, ".eh_frame_hdr",
1480 elfcpp::SHT_PROGBITS,
1481 elfcpp::SHF_ALLOC, false,
1482 ORDER_EHFRAME, false);
1483
1484 if (hdr_os != NULL)
1485 {
1486 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1487 this->eh_frame_data_);
1488 hdr_os->add_output_section_data(hdr_posd);
1489
1490 hdr_os->set_after_input_sections();
1491
1492 if (!this->script_options_->saw_phdrs_clause())
1493 {
1494 Output_segment* hdr_oseg;
1495 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1496 elfcpp::PF_R);
1497 hdr_oseg->add_output_section_to_nonload(hdr_os,
1498 elfcpp::PF_R);
1499 }
1500
1501 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1502 }
1503 }
1504 }
1505
1506 return os;
1507 }
1508
1509 // Add an exception frame for a PLT. This is called from target code.
1510
1511 void
1512 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1513 size_t cie_length, const unsigned char* fde_data,
1514 size_t fde_length)
1515 {
1516 if (parameters->incremental())
1517 {
1518 // FIXME: Maybe this could work some day....
1519 return;
1520 }
1521 Output_section* os = this->make_eh_frame_section(NULL);
1522 if (os == NULL)
1523 return;
1524 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1525 fde_data, fde_length);
1526 if (!this->added_eh_frame_data_)
1527 {
1528 os->add_output_section_data(this->eh_frame_data_);
1529 this->added_eh_frame_data_ = true;
1530 }
1531 }
1532
1533 // Scan a .debug_info or .debug_types section, and add summary
1534 // information to the .gdb_index section.
1535
1536 template<int size, bool big_endian>
1537 void
1538 Layout::add_to_gdb_index(bool is_type_unit,
1539 Sized_relobj<size, big_endian>* object,
1540 const unsigned char* symbols,
1541 off_t symbols_size,
1542 unsigned int shndx,
1543 unsigned int reloc_shndx,
1544 unsigned int reloc_type)
1545 {
1546 if (this->gdb_index_data_ == NULL)
1547 {
1548 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1549 elfcpp::SHT_PROGBITS, 0,
1550 false, ORDER_INVALID,
1551 false);
1552 if (os == NULL)
1553 return;
1554
1555 this->gdb_index_data_ = new Gdb_index(os);
1556 os->add_output_section_data(this->gdb_index_data_);
1557 os->set_after_input_sections();
1558 }
1559
1560 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1561 symbols_size, shndx, reloc_shndx,
1562 reloc_type);
1563 }
1564
1565 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1566 // the output section.
1567
1568 Output_section*
1569 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1570 elfcpp::Elf_Xword flags,
1571 Output_section_data* posd,
1572 Output_section_order order, bool is_relro)
1573 {
1574 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1575 false, order, is_relro);
1576 if (os != NULL)
1577 os->add_output_section_data(posd);
1578 return os;
1579 }
1580
1581 // Map section flags to segment flags.
1582
1583 elfcpp::Elf_Word
1584 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1585 {
1586 elfcpp::Elf_Word ret = elfcpp::PF_R;
1587 if ((flags & elfcpp::SHF_WRITE) != 0)
1588 ret |= elfcpp::PF_W;
1589 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1590 ret |= elfcpp::PF_X;
1591 return ret;
1592 }
1593
1594 // Make a new Output_section, and attach it to segments as
1595 // appropriate. ORDER is the order in which this section should
1596 // appear in the output segment. IS_RELRO is true if this is a relro
1597 // (read-only after relocations) section.
1598
1599 Output_section*
1600 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1601 elfcpp::Elf_Xword flags,
1602 Output_section_order order, bool is_relro)
1603 {
1604 Output_section* os;
1605 if ((flags & elfcpp::SHF_ALLOC) == 0
1606 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1607 && is_compressible_debug_section(name))
1608 os = new Output_compressed_section(&parameters->options(), name, type,
1609 flags);
1610 else if ((flags & elfcpp::SHF_ALLOC) == 0
1611 && parameters->options().strip_debug_non_line()
1612 && strcmp(".debug_abbrev", name) == 0)
1613 {
1614 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1615 name, type, flags);
1616 if (this->debug_info_)
1617 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1618 }
1619 else if ((flags & elfcpp::SHF_ALLOC) == 0
1620 && parameters->options().strip_debug_non_line()
1621 && strcmp(".debug_info", name) == 0)
1622 {
1623 os = this->debug_info_ = new Output_reduced_debug_info_section(
1624 name, type, flags);
1625 if (this->debug_abbrev_)
1626 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1627 }
1628 else
1629 {
1630 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1631 // not have correct section types. Force them here.
1632 if (type == elfcpp::SHT_PROGBITS)
1633 {
1634 if (is_prefix_of(".init_array", name))
1635 type = elfcpp::SHT_INIT_ARRAY;
1636 else if (is_prefix_of(".preinit_array", name))
1637 type = elfcpp::SHT_PREINIT_ARRAY;
1638 else if (is_prefix_of(".fini_array", name))
1639 type = elfcpp::SHT_FINI_ARRAY;
1640 }
1641
1642 // FIXME: const_cast is ugly.
1643 Target* target = const_cast<Target*>(&parameters->target());
1644 os = target->make_output_section(name, type, flags);
1645 }
1646
1647 // With -z relro, we have to recognize the special sections by name.
1648 // There is no other way.
1649 bool is_relro_local = false;
1650 if (!this->script_options_->saw_sections_clause()
1651 && parameters->options().relro()
1652 && (flags & elfcpp::SHF_ALLOC) != 0
1653 && (flags & elfcpp::SHF_WRITE) != 0)
1654 {
1655 if (type == elfcpp::SHT_PROGBITS)
1656 {
1657 if ((flags & elfcpp::SHF_TLS) != 0)
1658 is_relro = true;
1659 else if (strcmp(name, ".data.rel.ro") == 0)
1660 is_relro = true;
1661 else if (strcmp(name, ".data.rel.ro.local") == 0)
1662 {
1663 is_relro = true;
1664 is_relro_local = true;
1665 }
1666 else if (strcmp(name, ".ctors") == 0
1667 || strcmp(name, ".dtors") == 0
1668 || strcmp(name, ".jcr") == 0)
1669 is_relro = true;
1670 }
1671 else if (type == elfcpp::SHT_INIT_ARRAY
1672 || type == elfcpp::SHT_FINI_ARRAY
1673 || type == elfcpp::SHT_PREINIT_ARRAY)
1674 is_relro = true;
1675 }
1676
1677 if (is_relro)
1678 os->set_is_relro();
1679
1680 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1681 order = this->default_section_order(os, is_relro_local);
1682
1683 os->set_order(order);
1684
1685 parameters->target().new_output_section(os);
1686
1687 this->section_list_.push_back(os);
1688
1689 // The GNU linker by default sorts some sections by priority, so we
1690 // do the same. We need to know that this might happen before we
1691 // attach any input sections.
1692 if (!this->script_options_->saw_sections_clause()
1693 && !parameters->options().relocatable()
1694 && (strcmp(name, ".init_array") == 0
1695 || strcmp(name, ".fini_array") == 0
1696 || (!parameters->options().ctors_in_init_array()
1697 && (strcmp(name, ".ctors") == 0
1698 || strcmp(name, ".dtors") == 0))))
1699 os->set_may_sort_attached_input_sections();
1700
1701 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1702 // sections before other .text sections. We are compatible. We
1703 // need to know that this might happen before we attach any input
1704 // sections.
1705 if (parameters->options().text_reorder()
1706 && !this->script_options_->saw_sections_clause()
1707 && !this->is_section_ordering_specified()
1708 && !parameters->options().relocatable()
1709 && strcmp(name, ".text") == 0)
1710 os->set_may_sort_attached_input_sections();
1711
1712 // GNU linker sorts section by name with --sort-section=name.
1713 if (strcmp(parameters->options().sort_section(), "name") == 0)
1714 os->set_must_sort_attached_input_sections();
1715
1716 // Check for .stab*str sections, as .stab* sections need to link to
1717 // them.
1718 if (type == elfcpp::SHT_STRTAB
1719 && !this->have_stabstr_section_
1720 && strncmp(name, ".stab", 5) == 0
1721 && strcmp(name + strlen(name) - 3, "str") == 0)
1722 this->have_stabstr_section_ = true;
1723
1724 // During a full incremental link, we add patch space to most
1725 // PROGBITS and NOBITS sections. Flag those that may be
1726 // arbitrarily padded.
1727 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1728 && order != ORDER_INTERP
1729 && order != ORDER_INIT
1730 && order != ORDER_PLT
1731 && order != ORDER_FINI
1732 && order != ORDER_RELRO_LAST
1733 && order != ORDER_NON_RELRO_FIRST
1734 && strcmp(name, ".eh_frame") != 0
1735 && strcmp(name, ".ctors") != 0
1736 && strcmp(name, ".dtors") != 0
1737 && strcmp(name, ".jcr") != 0)
1738 {
1739 os->set_is_patch_space_allowed();
1740
1741 // Certain sections require "holes" to be filled with
1742 // specific fill patterns. These fill patterns may have
1743 // a minimum size, so we must prevent allocations from the
1744 // free list that leave a hole smaller than the minimum.
1745 if (strcmp(name, ".debug_info") == 0)
1746 os->set_free_space_fill(new Output_fill_debug_info(false));
1747 else if (strcmp(name, ".debug_types") == 0)
1748 os->set_free_space_fill(new Output_fill_debug_info(true));
1749 else if (strcmp(name, ".debug_line") == 0)
1750 os->set_free_space_fill(new Output_fill_debug_line());
1751 }
1752
1753 // If we have already attached the sections to segments, then we
1754 // need to attach this one now. This happens for sections created
1755 // directly by the linker.
1756 if (this->sections_are_attached_)
1757 this->attach_section_to_segment(&parameters->target(), os);
1758
1759 return os;
1760 }
1761
1762 // Return the default order in which a section should be placed in an
1763 // output segment. This function captures a lot of the ideas in
1764 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1765 // linker created section is normally set when the section is created;
1766 // this function is used for input sections.
1767
1768 Output_section_order
1769 Layout::default_section_order(Output_section* os, bool is_relro_local)
1770 {
1771 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1772 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1773 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1774 bool is_bss = false;
1775
1776 switch (os->type())
1777 {
1778 default:
1779 case elfcpp::SHT_PROGBITS:
1780 break;
1781 case elfcpp::SHT_NOBITS:
1782 is_bss = true;
1783 break;
1784 case elfcpp::SHT_RELA:
1785 case elfcpp::SHT_REL:
1786 if (!is_write)
1787 return ORDER_DYNAMIC_RELOCS;
1788 break;
1789 case elfcpp::SHT_HASH:
1790 case elfcpp::SHT_DYNAMIC:
1791 case elfcpp::SHT_SHLIB:
1792 case elfcpp::SHT_DYNSYM:
1793 case elfcpp::SHT_GNU_HASH:
1794 case elfcpp::SHT_GNU_verdef:
1795 case elfcpp::SHT_GNU_verneed:
1796 case elfcpp::SHT_GNU_versym:
1797 if (!is_write)
1798 return ORDER_DYNAMIC_LINKER;
1799 break;
1800 case elfcpp::SHT_NOTE:
1801 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1802 }
1803
1804 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1805 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1806
1807 if (!is_bss && !is_write)
1808 {
1809 if (is_execinstr)
1810 {
1811 if (strcmp(os->name(), ".init") == 0)
1812 return ORDER_INIT;
1813 else if (strcmp(os->name(), ".fini") == 0)
1814 return ORDER_FINI;
1815 }
1816 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1817 }
1818
1819 if (os->is_relro())
1820 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1821
1822 if (os->is_small_section())
1823 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1824 if (os->is_large_section())
1825 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1826
1827 return is_bss ? ORDER_BSS : ORDER_DATA;
1828 }
1829
1830 // Attach output sections to segments. This is called after we have
1831 // seen all the input sections.
1832
1833 void
1834 Layout::attach_sections_to_segments(const Target* target)
1835 {
1836 for (Section_list::iterator p = this->section_list_.begin();
1837 p != this->section_list_.end();
1838 ++p)
1839 this->attach_section_to_segment(target, *p);
1840
1841 this->sections_are_attached_ = true;
1842 }
1843
1844 // Attach an output section to a segment.
1845
1846 void
1847 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1848 {
1849 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1850 this->unattached_section_list_.push_back(os);
1851 else
1852 this->attach_allocated_section_to_segment(target, os);
1853 }
1854
1855 // Attach an allocated output section to a segment.
1856
1857 void
1858 Layout::attach_allocated_section_to_segment(const Target* target,
1859 Output_section* os)
1860 {
1861 elfcpp::Elf_Xword flags = os->flags();
1862 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1863
1864 if (parameters->options().relocatable())
1865 return;
1866
1867 // If we have a SECTIONS clause, we can't handle the attachment to
1868 // segments until after we've seen all the sections.
1869 if (this->script_options_->saw_sections_clause())
1870 return;
1871
1872 gold_assert(!this->script_options_->saw_phdrs_clause());
1873
1874 // This output section goes into a PT_LOAD segment.
1875
1876 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1877
1878 // If this output section's segment has extra flags that need to be set,
1879 // coming from a linker plugin, do that.
1880 seg_flags |= os->extra_segment_flags();
1881
1882 // Check for --section-start.
1883 uint64_t addr;
1884 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1885
1886 // In general the only thing we really care about for PT_LOAD
1887 // segments is whether or not they are writable or executable,
1888 // so that is how we search for them.
1889 // Large data sections also go into their own PT_LOAD segment.
1890 // People who need segments sorted on some other basis will
1891 // have to use a linker script.
1892
1893 Segment_list::const_iterator p;
1894 if (!os->is_unique_segment())
1895 {
1896 for (p = this->segment_list_.begin();
1897 p != this->segment_list_.end();
1898 ++p)
1899 {
1900 if ((*p)->type() != elfcpp::PT_LOAD)
1901 continue;
1902 if ((*p)->is_unique_segment())
1903 continue;
1904 if (!parameters->options().omagic()
1905 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1906 continue;
1907 if ((target->isolate_execinstr() || parameters->options().rosegment())
1908 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1909 continue;
1910 // If -Tbss was specified, we need to separate the data and BSS
1911 // segments.
1912 if (parameters->options().user_set_Tbss())
1913 {
1914 if ((os->type() == elfcpp::SHT_NOBITS)
1915 == (*p)->has_any_data_sections())
1916 continue;
1917 }
1918 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1919 continue;
1920
1921 if (is_address_set)
1922 {
1923 if ((*p)->are_addresses_set())
1924 continue;
1925
1926 (*p)->add_initial_output_data(os);
1927 (*p)->update_flags_for_output_section(seg_flags);
1928 (*p)->set_addresses(addr, addr);
1929 break;
1930 }
1931
1932 (*p)->add_output_section_to_load(this, os, seg_flags);
1933 break;
1934 }
1935 }
1936
1937 if (p == this->segment_list_.end()
1938 || os->is_unique_segment())
1939 {
1940 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1941 seg_flags);
1942 if (os->is_large_data_section())
1943 oseg->set_is_large_data_segment();
1944 oseg->add_output_section_to_load(this, os, seg_flags);
1945 if (is_address_set)
1946 oseg->set_addresses(addr, addr);
1947 // Check if segment should be marked unique. For segments marked
1948 // unique by linker plugins, set the new alignment if specified.
1949 if (os->is_unique_segment())
1950 {
1951 oseg->set_is_unique_segment();
1952 if (os->segment_alignment() != 0)
1953 oseg->set_minimum_p_align(os->segment_alignment());
1954 }
1955 }
1956
1957 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1958 // segment.
1959 if (os->type() == elfcpp::SHT_NOTE)
1960 {
1961 // See if we already have an equivalent PT_NOTE segment.
1962 for (p = this->segment_list_.begin();
1963 p != segment_list_.end();
1964 ++p)
1965 {
1966 if ((*p)->type() == elfcpp::PT_NOTE
1967 && (((*p)->flags() & elfcpp::PF_W)
1968 == (seg_flags & elfcpp::PF_W)))
1969 {
1970 (*p)->add_output_section_to_nonload(os, seg_flags);
1971 break;
1972 }
1973 }
1974
1975 if (p == this->segment_list_.end())
1976 {
1977 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1978 seg_flags);
1979 oseg->add_output_section_to_nonload(os, seg_flags);
1980 }
1981 }
1982
1983 // If we see a loadable SHF_TLS section, we create a PT_TLS
1984 // segment. There can only be one such segment.
1985 if ((flags & elfcpp::SHF_TLS) != 0)
1986 {
1987 if (this->tls_segment_ == NULL)
1988 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1989 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1990 }
1991
1992 // If -z relro is in effect, and we see a relro section, we create a
1993 // PT_GNU_RELRO segment. There can only be one such segment.
1994 if (os->is_relro() && parameters->options().relro())
1995 {
1996 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1997 if (this->relro_segment_ == NULL)
1998 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1999 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2000 }
2001
2002 // If we see a section named .interp, put it into a PT_INTERP
2003 // segment. This seems broken to me, but this is what GNU ld does,
2004 // and glibc expects it.
2005 if (strcmp(os->name(), ".interp") == 0
2006 && !this->script_options_->saw_phdrs_clause())
2007 {
2008 if (this->interp_segment_ == NULL)
2009 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2010 else
2011 gold_warning(_("multiple '.interp' sections in input files "
2012 "may cause confusing PT_INTERP segment"));
2013 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2014 }
2015 }
2016
2017 // Make an output section for a script.
2018
2019 Output_section*
2020 Layout::make_output_section_for_script(
2021 const char* name,
2022 Script_sections::Section_type section_type)
2023 {
2024 name = this->namepool_.add(name, false, NULL);
2025 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2026 if (section_type == Script_sections::ST_NOLOAD)
2027 sh_flags = 0;
2028 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2029 sh_flags, ORDER_INVALID,
2030 false);
2031 os->set_found_in_sections_clause();
2032 if (section_type == Script_sections::ST_NOLOAD)
2033 os->set_is_noload();
2034 return os;
2035 }
2036
2037 // Return the number of segments we expect to see.
2038
2039 size_t
2040 Layout::expected_segment_count() const
2041 {
2042 size_t ret = this->segment_list_.size();
2043
2044 // If we didn't see a SECTIONS clause in a linker script, we should
2045 // already have the complete list of segments. Otherwise we ask the
2046 // SECTIONS clause how many segments it expects, and add in the ones
2047 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2048
2049 if (!this->script_options_->saw_sections_clause())
2050 return ret;
2051 else
2052 {
2053 const Script_sections* ss = this->script_options_->script_sections();
2054 return ret + ss->expected_segment_count(this);
2055 }
2056 }
2057
2058 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2059 // is whether we saw a .note.GNU-stack section in the object file.
2060 // GNU_STACK_FLAGS is the section flags. The flags give the
2061 // protection required for stack memory. We record this in an
2062 // executable as a PT_GNU_STACK segment. If an object file does not
2063 // have a .note.GNU-stack segment, we must assume that it is an old
2064 // object. On some targets that will force an executable stack.
2065
2066 void
2067 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2068 const Object* obj)
2069 {
2070 if (!seen_gnu_stack)
2071 {
2072 this->input_without_gnu_stack_note_ = true;
2073 if (parameters->options().warn_execstack()
2074 && parameters->target().is_default_stack_executable())
2075 gold_warning(_("%s: missing .note.GNU-stack section"
2076 " implies executable stack"),
2077 obj->name().c_str());
2078 }
2079 else
2080 {
2081 this->input_with_gnu_stack_note_ = true;
2082 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2083 {
2084 this->input_requires_executable_stack_ = true;
2085 if (parameters->options().warn_execstack()
2086 || parameters->options().is_stack_executable())
2087 gold_warning(_("%s: requires executable stack"),
2088 obj->name().c_str());
2089 }
2090 }
2091 }
2092
2093 // Create automatic note sections.
2094
2095 void
2096 Layout::create_notes()
2097 {
2098 this->create_gold_note();
2099 this->create_executable_stack_info();
2100 this->create_build_id();
2101 }
2102
2103 // Create the dynamic sections which are needed before we read the
2104 // relocs.
2105
2106 void
2107 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2108 {
2109 if (parameters->doing_static_link())
2110 return;
2111
2112 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2113 elfcpp::SHT_DYNAMIC,
2114 (elfcpp::SHF_ALLOC
2115 | elfcpp::SHF_WRITE),
2116 false, ORDER_RELRO,
2117 true);
2118
2119 // A linker script may discard .dynamic, so check for NULL.
2120 if (this->dynamic_section_ != NULL)
2121 {
2122 this->dynamic_symbol_ =
2123 symtab->define_in_output_data("_DYNAMIC", NULL,
2124 Symbol_table::PREDEFINED,
2125 this->dynamic_section_, 0, 0,
2126 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2127 elfcpp::STV_HIDDEN, 0, false, false);
2128
2129 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2130
2131 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2132 }
2133 }
2134
2135 // For each output section whose name can be represented as C symbol,
2136 // define __start and __stop symbols for the section. This is a GNU
2137 // extension.
2138
2139 void
2140 Layout::define_section_symbols(Symbol_table* symtab)
2141 {
2142 for (Section_list::const_iterator p = this->section_list_.begin();
2143 p != this->section_list_.end();
2144 ++p)
2145 {
2146 const char* const name = (*p)->name();
2147 if (is_cident(name))
2148 {
2149 const std::string name_string(name);
2150 const std::string start_name(cident_section_start_prefix
2151 + name_string);
2152 const std::string stop_name(cident_section_stop_prefix
2153 + name_string);
2154
2155 symtab->define_in_output_data(start_name.c_str(),
2156 NULL, // version
2157 Symbol_table::PREDEFINED,
2158 *p,
2159 0, // value
2160 0, // symsize
2161 elfcpp::STT_NOTYPE,
2162 elfcpp::STB_GLOBAL,
2163 elfcpp::STV_DEFAULT,
2164 0, // nonvis
2165 false, // offset_is_from_end
2166 true); // only_if_ref
2167
2168 symtab->define_in_output_data(stop_name.c_str(),
2169 NULL, // version
2170 Symbol_table::PREDEFINED,
2171 *p,
2172 0, // value
2173 0, // symsize
2174 elfcpp::STT_NOTYPE,
2175 elfcpp::STB_GLOBAL,
2176 elfcpp::STV_DEFAULT,
2177 0, // nonvis
2178 true, // offset_is_from_end
2179 true); // only_if_ref
2180 }
2181 }
2182 }
2183
2184 // Define symbols for group signatures.
2185
2186 void
2187 Layout::define_group_signatures(Symbol_table* symtab)
2188 {
2189 for (Group_signatures::iterator p = this->group_signatures_.begin();
2190 p != this->group_signatures_.end();
2191 ++p)
2192 {
2193 Symbol* sym = symtab->lookup(p->signature, NULL);
2194 if (sym != NULL)
2195 p->section->set_info_symndx(sym);
2196 else
2197 {
2198 // Force the name of the group section to the group
2199 // signature, and use the group's section symbol as the
2200 // signature symbol.
2201 if (strcmp(p->section->name(), p->signature) != 0)
2202 {
2203 const char* name = this->namepool_.add(p->signature,
2204 true, NULL);
2205 p->section->set_name(name);
2206 }
2207 p->section->set_needs_symtab_index();
2208 p->section->set_info_section_symndx(p->section);
2209 }
2210 }
2211
2212 this->group_signatures_.clear();
2213 }
2214
2215 // Find the first read-only PT_LOAD segment, creating one if
2216 // necessary.
2217
2218 Output_segment*
2219 Layout::find_first_load_seg(const Target* target)
2220 {
2221 Output_segment* best = NULL;
2222 for (Segment_list::const_iterator p = this->segment_list_.begin();
2223 p != this->segment_list_.end();
2224 ++p)
2225 {
2226 if ((*p)->type() == elfcpp::PT_LOAD
2227 && ((*p)->flags() & elfcpp::PF_R) != 0
2228 && (parameters->options().omagic()
2229 || ((*p)->flags() & elfcpp::PF_W) == 0)
2230 && (!target->isolate_execinstr()
2231 || ((*p)->flags() & elfcpp::PF_X) == 0))
2232 {
2233 if (best == NULL || this->segment_precedes(*p, best))
2234 best = *p;
2235 }
2236 }
2237 if (best != NULL)
2238 return best;
2239
2240 gold_assert(!this->script_options_->saw_phdrs_clause());
2241
2242 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2243 elfcpp::PF_R);
2244 return load_seg;
2245 }
2246
2247 // Save states of all current output segments. Store saved states
2248 // in SEGMENT_STATES.
2249
2250 void
2251 Layout::save_segments(Segment_states* segment_states)
2252 {
2253 for (Segment_list::const_iterator p = this->segment_list_.begin();
2254 p != this->segment_list_.end();
2255 ++p)
2256 {
2257 Output_segment* segment = *p;
2258 // Shallow copy.
2259 Output_segment* copy = new Output_segment(*segment);
2260 (*segment_states)[segment] = copy;
2261 }
2262 }
2263
2264 // Restore states of output segments and delete any segment not found in
2265 // SEGMENT_STATES.
2266
2267 void
2268 Layout::restore_segments(const Segment_states* segment_states)
2269 {
2270 // Go through the segment list and remove any segment added in the
2271 // relaxation loop.
2272 this->tls_segment_ = NULL;
2273 this->relro_segment_ = NULL;
2274 Segment_list::iterator list_iter = this->segment_list_.begin();
2275 while (list_iter != this->segment_list_.end())
2276 {
2277 Output_segment* segment = *list_iter;
2278 Segment_states::const_iterator states_iter =
2279 segment_states->find(segment);
2280 if (states_iter != segment_states->end())
2281 {
2282 const Output_segment* copy = states_iter->second;
2283 // Shallow copy to restore states.
2284 *segment = *copy;
2285
2286 // Also fix up TLS and RELRO segment pointers as appropriate.
2287 if (segment->type() == elfcpp::PT_TLS)
2288 this->tls_segment_ = segment;
2289 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2290 this->relro_segment_ = segment;
2291
2292 ++list_iter;
2293 }
2294 else
2295 {
2296 list_iter = this->segment_list_.erase(list_iter);
2297 // This is a segment created during section layout. It should be
2298 // safe to remove it since we should have removed all pointers to it.
2299 delete segment;
2300 }
2301 }
2302 }
2303
2304 // Clean up after relaxation so that sections can be laid out again.
2305
2306 void
2307 Layout::clean_up_after_relaxation()
2308 {
2309 // Restore the segments to point state just prior to the relaxation loop.
2310 Script_sections* script_section = this->script_options_->script_sections();
2311 script_section->release_segments();
2312 this->restore_segments(this->segment_states_);
2313
2314 // Reset section addresses and file offsets
2315 for (Section_list::iterator p = this->section_list_.begin();
2316 p != this->section_list_.end();
2317 ++p)
2318 {
2319 (*p)->restore_states();
2320
2321 // If an input section changes size because of relaxation,
2322 // we need to adjust the section offsets of all input sections.
2323 // after such a section.
2324 if ((*p)->section_offsets_need_adjustment())
2325 (*p)->adjust_section_offsets();
2326
2327 (*p)->reset_address_and_file_offset();
2328 }
2329
2330 // Reset special output object address and file offsets.
2331 for (Data_list::iterator p = this->special_output_list_.begin();
2332 p != this->special_output_list_.end();
2333 ++p)
2334 (*p)->reset_address_and_file_offset();
2335
2336 // A linker script may have created some output section data objects.
2337 // They are useless now.
2338 for (Output_section_data_list::const_iterator p =
2339 this->script_output_section_data_list_.begin();
2340 p != this->script_output_section_data_list_.end();
2341 ++p)
2342 delete *p;
2343 this->script_output_section_data_list_.clear();
2344 }
2345
2346 // Prepare for relaxation.
2347
2348 void
2349 Layout::prepare_for_relaxation()
2350 {
2351 // Create an relaxation debug check if in debugging mode.
2352 if (is_debugging_enabled(DEBUG_RELAXATION))
2353 this->relaxation_debug_check_ = new Relaxation_debug_check();
2354
2355 // Save segment states.
2356 this->segment_states_ = new Segment_states();
2357 this->save_segments(this->segment_states_);
2358
2359 for(Section_list::const_iterator p = this->section_list_.begin();
2360 p != this->section_list_.end();
2361 ++p)
2362 (*p)->save_states();
2363
2364 if (is_debugging_enabled(DEBUG_RELAXATION))
2365 this->relaxation_debug_check_->check_output_data_for_reset_values(
2366 this->section_list_, this->special_output_list_);
2367
2368 // Also enable recording of output section data from scripts.
2369 this->record_output_section_data_from_script_ = true;
2370 }
2371
2372 // If the user set the address of the text segment, that may not be
2373 // compatible with putting the segment headers and file headers into
2374 // that segment. For isolate_execinstr() targets, it's the rodata
2375 // segment rather than text where we might put the headers.
2376 static inline bool
2377 load_seg_unusable_for_headers(const Target* target)
2378 {
2379 const General_options& options = parameters->options();
2380 if (target->isolate_execinstr())
2381 return (options.user_set_Trodata_segment()
2382 && options.Trodata_segment() % target->abi_pagesize() != 0);
2383 else
2384 return (options.user_set_Ttext()
2385 && options.Ttext() % target->abi_pagesize() != 0);
2386 }
2387
2388 // Relaxation loop body: If target has no relaxation, this runs only once
2389 // Otherwise, the target relaxation hook is called at the end of
2390 // each iteration. If the hook returns true, it means re-layout of
2391 // section is required.
2392 //
2393 // The number of segments created by a linking script without a PHDRS
2394 // clause may be affected by section sizes and alignments. There is
2395 // a remote chance that relaxation causes different number of PT_LOAD
2396 // segments are created and sections are attached to different segments.
2397 // Therefore, we always throw away all segments created during section
2398 // layout. In order to be able to restart the section layout, we keep
2399 // a copy of the segment list right before the relaxation loop and use
2400 // that to restore the segments.
2401 //
2402 // PASS is the current relaxation pass number.
2403 // SYMTAB is a symbol table.
2404 // PLOAD_SEG is the address of a pointer for the load segment.
2405 // PHDR_SEG is a pointer to the PHDR segment.
2406 // SEGMENT_HEADERS points to the output segment header.
2407 // FILE_HEADER points to the output file header.
2408 // PSHNDX is the address to store the output section index.
2409
2410 off_t inline
2411 Layout::relaxation_loop_body(
2412 int pass,
2413 Target* target,
2414 Symbol_table* symtab,
2415 Output_segment** pload_seg,
2416 Output_segment* phdr_seg,
2417 Output_segment_headers* segment_headers,
2418 Output_file_header* file_header,
2419 unsigned int* pshndx)
2420 {
2421 // If this is not the first iteration, we need to clean up after
2422 // relaxation so that we can lay out the sections again.
2423 if (pass != 0)
2424 this->clean_up_after_relaxation();
2425
2426 // If there is a SECTIONS clause, put all the input sections into
2427 // the required order.
2428 Output_segment* load_seg;
2429 if (this->script_options_->saw_sections_clause())
2430 load_seg = this->set_section_addresses_from_script(symtab);
2431 else if (parameters->options().relocatable())
2432 load_seg = NULL;
2433 else
2434 load_seg = this->find_first_load_seg(target);
2435
2436 if (parameters->options().oformat_enum()
2437 != General_options::OBJECT_FORMAT_ELF)
2438 load_seg = NULL;
2439
2440 if (load_seg_unusable_for_headers(target))
2441 {
2442 load_seg = NULL;
2443 phdr_seg = NULL;
2444 }
2445
2446 gold_assert(phdr_seg == NULL
2447 || load_seg != NULL
2448 || this->script_options_->saw_sections_clause());
2449
2450 // If the address of the load segment we found has been set by
2451 // --section-start rather than by a script, then adjust the VMA and
2452 // LMA downward if possible to include the file and section headers.
2453 uint64_t header_gap = 0;
2454 if (load_seg != NULL
2455 && load_seg->are_addresses_set()
2456 && !this->script_options_->saw_sections_clause()
2457 && !parameters->options().relocatable())
2458 {
2459 file_header->finalize_data_size();
2460 segment_headers->finalize_data_size();
2461 size_t sizeof_headers = (file_header->data_size()
2462 + segment_headers->data_size());
2463 const uint64_t abi_pagesize = target->abi_pagesize();
2464 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2465 hdr_paddr &= ~(abi_pagesize - 1);
2466 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2467 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2468 load_seg = NULL;
2469 else
2470 {
2471 load_seg->set_addresses(load_seg->vaddr() - subtract,
2472 load_seg->paddr() - subtract);
2473 header_gap = subtract - sizeof_headers;
2474 }
2475 }
2476
2477 // Lay out the segment headers.
2478 if (!parameters->options().relocatable())
2479 {
2480 gold_assert(segment_headers != NULL);
2481 if (header_gap != 0 && load_seg != NULL)
2482 {
2483 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2484 load_seg->add_initial_output_data(z);
2485 }
2486 if (load_seg != NULL)
2487 load_seg->add_initial_output_data(segment_headers);
2488 if (phdr_seg != NULL)
2489 phdr_seg->add_initial_output_data(segment_headers);
2490 }
2491
2492 // Lay out the file header.
2493 if (load_seg != NULL)
2494 load_seg->add_initial_output_data(file_header);
2495
2496 if (this->script_options_->saw_phdrs_clause()
2497 && !parameters->options().relocatable())
2498 {
2499 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2500 // clause in a linker script.
2501 Script_sections* ss = this->script_options_->script_sections();
2502 ss->put_headers_in_phdrs(file_header, segment_headers);
2503 }
2504
2505 // We set the output section indexes in set_segment_offsets and
2506 // set_section_indexes.
2507 *pshndx = 1;
2508
2509 // Set the file offsets of all the segments, and all the sections
2510 // they contain.
2511 off_t off;
2512 if (!parameters->options().relocatable())
2513 off = this->set_segment_offsets(target, load_seg, pshndx);
2514 else
2515 off = this->set_relocatable_section_offsets(file_header, pshndx);
2516
2517 // Verify that the dummy relaxation does not change anything.
2518 if (is_debugging_enabled(DEBUG_RELAXATION))
2519 {
2520 if (pass == 0)
2521 this->relaxation_debug_check_->read_sections(this->section_list_);
2522 else
2523 this->relaxation_debug_check_->verify_sections(this->section_list_);
2524 }
2525
2526 *pload_seg = load_seg;
2527 return off;
2528 }
2529
2530 // Search the list of patterns and find the postion of the given section
2531 // name in the output section. If the section name matches a glob
2532 // pattern and a non-glob name, then the non-glob position takes
2533 // precedence. Return 0 if no match is found.
2534
2535 unsigned int
2536 Layout::find_section_order_index(const std::string& section_name)
2537 {
2538 Unordered_map<std::string, unsigned int>::iterator map_it;
2539 map_it = this->input_section_position_.find(section_name);
2540 if (map_it != this->input_section_position_.end())
2541 return map_it->second;
2542
2543 // Absolute match failed. Linear search the glob patterns.
2544 std::vector<std::string>::iterator it;
2545 for (it = this->input_section_glob_.begin();
2546 it != this->input_section_glob_.end();
2547 ++it)
2548 {
2549 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2550 {
2551 map_it = this->input_section_position_.find(*it);
2552 gold_assert(map_it != this->input_section_position_.end());
2553 return map_it->second;
2554 }
2555 }
2556 return 0;
2557 }
2558
2559 // Read the sequence of input sections from the file specified with
2560 // option --section-ordering-file.
2561
2562 void
2563 Layout::read_layout_from_file()
2564 {
2565 const char* filename = parameters->options().section_ordering_file();
2566 std::ifstream in;
2567 std::string line;
2568
2569 in.open(filename);
2570 if (!in)
2571 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2572 filename, strerror(errno));
2573
2574 std::getline(in, line); // this chops off the trailing \n, if any
2575 unsigned int position = 1;
2576 this->set_section_ordering_specified();
2577
2578 while (in)
2579 {
2580 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2581 line.resize(line.length() - 1);
2582 // Ignore comments, beginning with '#'
2583 if (line[0] == '#')
2584 {
2585 std::getline(in, line);
2586 continue;
2587 }
2588 this->input_section_position_[line] = position;
2589 // Store all glob patterns in a vector.
2590 if (is_wildcard_string(line.c_str()))
2591 this->input_section_glob_.push_back(line);
2592 position++;
2593 std::getline(in, line);
2594 }
2595 }
2596
2597 // Finalize the layout. When this is called, we have created all the
2598 // output sections and all the output segments which are based on
2599 // input sections. We have several things to do, and we have to do
2600 // them in the right order, so that we get the right results correctly
2601 // and efficiently.
2602
2603 // 1) Finalize the list of output segments and create the segment
2604 // table header.
2605
2606 // 2) Finalize the dynamic symbol table and associated sections.
2607
2608 // 3) Determine the final file offset of all the output segments.
2609
2610 // 4) Determine the final file offset of all the SHF_ALLOC output
2611 // sections.
2612
2613 // 5) Create the symbol table sections and the section name table
2614 // section.
2615
2616 // 6) Finalize the symbol table: set symbol values to their final
2617 // value and make a final determination of which symbols are going
2618 // into the output symbol table.
2619
2620 // 7) Create the section table header.
2621
2622 // 8) Determine the final file offset of all the output sections which
2623 // are not SHF_ALLOC, including the section table header.
2624
2625 // 9) Finalize the ELF file header.
2626
2627 // This function returns the size of the output file.
2628
2629 off_t
2630 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2631 Target* target, const Task* task)
2632 {
2633 target->finalize_sections(this, input_objects, symtab);
2634
2635 this->count_local_symbols(task, input_objects);
2636
2637 this->link_stabs_sections();
2638
2639 Output_segment* phdr_seg = NULL;
2640 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2641 {
2642 // There was a dynamic object in the link. We need to create
2643 // some information for the dynamic linker.
2644
2645 // Create the PT_PHDR segment which will hold the program
2646 // headers.
2647 if (!this->script_options_->saw_phdrs_clause())
2648 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2649
2650 // Create the dynamic symbol table, including the hash table.
2651 Output_section* dynstr;
2652 std::vector<Symbol*> dynamic_symbols;
2653 unsigned int local_dynamic_count;
2654 Versions versions(*this->script_options()->version_script_info(),
2655 &this->dynpool_);
2656 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2657 &local_dynamic_count, &dynamic_symbols,
2658 &versions);
2659
2660 // Create the .interp section to hold the name of the
2661 // interpreter, and put it in a PT_INTERP segment. Don't do it
2662 // if we saw a .interp section in an input file.
2663 if ((!parameters->options().shared()
2664 || parameters->options().dynamic_linker() != NULL)
2665 && this->interp_segment_ == NULL)
2666 this->create_interp(target);
2667
2668 // Finish the .dynamic section to hold the dynamic data, and put
2669 // it in a PT_DYNAMIC segment.
2670 this->finish_dynamic_section(input_objects, symtab);
2671
2672 // We should have added everything we need to the dynamic string
2673 // table.
2674 this->dynpool_.set_string_offsets();
2675
2676 // Create the version sections. We can't do this until the
2677 // dynamic string table is complete.
2678 this->create_version_sections(&versions, symtab, local_dynamic_count,
2679 dynamic_symbols, dynstr);
2680
2681 // Set the size of the _DYNAMIC symbol. We can't do this until
2682 // after we call create_version_sections.
2683 this->set_dynamic_symbol_size(symtab);
2684 }
2685
2686 // Create segment headers.
2687 Output_segment_headers* segment_headers =
2688 (parameters->options().relocatable()
2689 ? NULL
2690 : new Output_segment_headers(this->segment_list_));
2691
2692 // Lay out the file header.
2693 Output_file_header* file_header = new Output_file_header(target, symtab,
2694 segment_headers);
2695
2696 this->special_output_list_.push_back(file_header);
2697 if (segment_headers != NULL)
2698 this->special_output_list_.push_back(segment_headers);
2699
2700 // Find approriate places for orphan output sections if we are using
2701 // a linker script.
2702 if (this->script_options_->saw_sections_clause())
2703 this->place_orphan_sections_in_script();
2704
2705 Output_segment* load_seg;
2706 off_t off;
2707 unsigned int shndx;
2708 int pass = 0;
2709
2710 // Take a snapshot of the section layout as needed.
2711 if (target->may_relax())
2712 this->prepare_for_relaxation();
2713
2714 // Run the relaxation loop to lay out sections.
2715 do
2716 {
2717 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2718 phdr_seg, segment_headers, file_header,
2719 &shndx);
2720 pass++;
2721 }
2722 while (target->may_relax()
2723 && target->relax(pass, input_objects, symtab, this, task));
2724
2725 // If there is a load segment that contains the file and program headers,
2726 // provide a symbol __ehdr_start pointing there.
2727 // A program can use this to examine itself robustly.
2728 if (load_seg != NULL)
2729 symtab->define_in_output_segment("__ehdr_start", NULL,
2730 Symbol_table::PREDEFINED, load_seg, 0, 0,
2731 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2732 elfcpp::STV_HIDDEN, 0,
2733 Symbol::SEGMENT_START, true);
2734
2735 // Set the file offsets of all the non-data sections we've seen so
2736 // far which don't have to wait for the input sections. We need
2737 // this in order to finalize local symbols in non-allocated
2738 // sections.
2739 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2740
2741 // Set the section indexes of all unallocated sections seen so far,
2742 // in case any of them are somehow referenced by a symbol.
2743 shndx = this->set_section_indexes(shndx);
2744
2745 // Create the symbol table sections.
2746 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2747 if (!parameters->doing_static_link())
2748 this->assign_local_dynsym_offsets(input_objects);
2749
2750 // Process any symbol assignments from a linker script. This must
2751 // be called after the symbol table has been finalized.
2752 this->script_options_->finalize_symbols(symtab, this);
2753
2754 // Create the incremental inputs sections.
2755 if (this->incremental_inputs_)
2756 {
2757 this->incremental_inputs_->finalize();
2758 this->create_incremental_info_sections(symtab);
2759 }
2760
2761 // Create the .shstrtab section.
2762 Output_section* shstrtab_section = this->create_shstrtab();
2763
2764 // Set the file offsets of the rest of the non-data sections which
2765 // don't have to wait for the input sections.
2766 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2767
2768 // Now that all sections have been created, set the section indexes
2769 // for any sections which haven't been done yet.
2770 shndx = this->set_section_indexes(shndx);
2771
2772 // Create the section table header.
2773 this->create_shdrs(shstrtab_section, &off);
2774
2775 // If there are no sections which require postprocessing, we can
2776 // handle the section names now, and avoid a resize later.
2777 if (!this->any_postprocessing_sections_)
2778 {
2779 off = this->set_section_offsets(off,
2780 POSTPROCESSING_SECTIONS_PASS);
2781 off =
2782 this->set_section_offsets(off,
2783 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2784 }
2785
2786 file_header->set_section_info(this->section_headers_, shstrtab_section);
2787
2788 // Now we know exactly where everything goes in the output file
2789 // (except for non-allocated sections which require postprocessing).
2790 Output_data::layout_complete();
2791
2792 this->output_file_size_ = off;
2793
2794 return off;
2795 }
2796
2797 // Create a note header following the format defined in the ELF ABI.
2798 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2799 // of the section to create, DESCSZ is the size of the descriptor.
2800 // ALLOCATE is true if the section should be allocated in memory.
2801 // This returns the new note section. It sets *TRAILING_PADDING to
2802 // the number of trailing zero bytes required.
2803
2804 Output_section*
2805 Layout::create_note(const char* name, int note_type,
2806 const char* section_name, size_t descsz,
2807 bool allocate, size_t* trailing_padding)
2808 {
2809 // Authorities all agree that the values in a .note field should
2810 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2811 // they differ on what the alignment is for 64-bit binaries.
2812 // The GABI says unambiguously they take 8-byte alignment:
2813 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2814 // Other documentation says alignment should always be 4 bytes:
2815 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2816 // GNU ld and GNU readelf both support the latter (at least as of
2817 // version 2.16.91), and glibc always generates the latter for
2818 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2819 // here.
2820 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2821 const int size = parameters->target().get_size();
2822 #else
2823 const int size = 32;
2824 #endif
2825
2826 // The contents of the .note section.
2827 size_t namesz = strlen(name) + 1;
2828 size_t aligned_namesz = align_address(namesz, size / 8);
2829 size_t aligned_descsz = align_address(descsz, size / 8);
2830
2831 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2832
2833 unsigned char* buffer = new unsigned char[notehdrsz];
2834 memset(buffer, 0, notehdrsz);
2835
2836 bool is_big_endian = parameters->target().is_big_endian();
2837
2838 if (size == 32)
2839 {
2840 if (!is_big_endian)
2841 {
2842 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2843 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2844 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2845 }
2846 else
2847 {
2848 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2849 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2850 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2851 }
2852 }
2853 else if (size == 64)
2854 {
2855 if (!is_big_endian)
2856 {
2857 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2858 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2859 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2860 }
2861 else
2862 {
2863 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2864 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2865 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2866 }
2867 }
2868 else
2869 gold_unreachable();
2870
2871 memcpy(buffer + 3 * (size / 8), name, namesz);
2872
2873 elfcpp::Elf_Xword flags = 0;
2874 Output_section_order order = ORDER_INVALID;
2875 if (allocate)
2876 {
2877 flags = elfcpp::SHF_ALLOC;
2878 order = ORDER_RO_NOTE;
2879 }
2880 Output_section* os = this->choose_output_section(NULL, section_name,
2881 elfcpp::SHT_NOTE,
2882 flags, false, order, false);
2883 if (os == NULL)
2884 return NULL;
2885
2886 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2887 size / 8,
2888 "** note header");
2889 os->add_output_section_data(posd);
2890
2891 *trailing_padding = aligned_descsz - descsz;
2892
2893 return os;
2894 }
2895
2896 // For an executable or shared library, create a note to record the
2897 // version of gold used to create the binary.
2898
2899 void
2900 Layout::create_gold_note()
2901 {
2902 if (parameters->options().relocatable()
2903 || parameters->incremental_update())
2904 return;
2905
2906 std::string desc = std::string("gold ") + gold::get_version_string();
2907
2908 size_t trailing_padding;
2909 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2910 ".note.gnu.gold-version", desc.size(),
2911 false, &trailing_padding);
2912 if (os == NULL)
2913 return;
2914
2915 Output_section_data* posd = new Output_data_const(desc, 4);
2916 os->add_output_section_data(posd);
2917
2918 if (trailing_padding > 0)
2919 {
2920 posd = new Output_data_zero_fill(trailing_padding, 0);
2921 os->add_output_section_data(posd);
2922 }
2923 }
2924
2925 // Record whether the stack should be executable. This can be set
2926 // from the command line using the -z execstack or -z noexecstack
2927 // options. Otherwise, if any input file has a .note.GNU-stack
2928 // section with the SHF_EXECINSTR flag set, the stack should be
2929 // executable. Otherwise, if at least one input file a
2930 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2931 // section, we use the target default for whether the stack should be
2932 // executable. Otherwise, we don't generate a stack note. When
2933 // generating a object file, we create a .note.GNU-stack section with
2934 // the appropriate marking. When generating an executable or shared
2935 // library, we create a PT_GNU_STACK segment.
2936
2937 void
2938 Layout::create_executable_stack_info()
2939 {
2940 bool is_stack_executable;
2941 if (parameters->options().is_execstack_set())
2942 is_stack_executable = parameters->options().is_stack_executable();
2943 else if (!this->input_with_gnu_stack_note_)
2944 return;
2945 else
2946 {
2947 if (this->input_requires_executable_stack_)
2948 is_stack_executable = true;
2949 else if (this->input_without_gnu_stack_note_)
2950 is_stack_executable =
2951 parameters->target().is_default_stack_executable();
2952 else
2953 is_stack_executable = false;
2954 }
2955
2956 if (parameters->options().relocatable())
2957 {
2958 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2959 elfcpp::Elf_Xword flags = 0;
2960 if (is_stack_executable)
2961 flags |= elfcpp::SHF_EXECINSTR;
2962 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2963 ORDER_INVALID, false);
2964 }
2965 else
2966 {
2967 if (this->script_options_->saw_phdrs_clause())
2968 return;
2969 int flags = elfcpp::PF_R | elfcpp::PF_W;
2970 if (is_stack_executable)
2971 flags |= elfcpp::PF_X;
2972 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2973 }
2974 }
2975
2976 // If --build-id was used, set up the build ID note.
2977
2978 void
2979 Layout::create_build_id()
2980 {
2981 if (!parameters->options().user_set_build_id())
2982 return;
2983
2984 const char* style = parameters->options().build_id();
2985 if (strcmp(style, "none") == 0)
2986 return;
2987
2988 // Set DESCSZ to the size of the note descriptor. When possible,
2989 // set DESC to the note descriptor contents.
2990 size_t descsz;
2991 std::string desc;
2992 if (strcmp(style, "md5") == 0)
2993 descsz = 128 / 8;
2994 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
2995 descsz = 160 / 8;
2996 else if (strcmp(style, "uuid") == 0)
2997 {
2998 const size_t uuidsz = 128 / 8;
2999
3000 char buffer[uuidsz];
3001 memset(buffer, 0, uuidsz);
3002
3003 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3004 if (descriptor < 0)
3005 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3006 strerror(errno));
3007 else
3008 {
3009 ssize_t got = ::read(descriptor, buffer, uuidsz);
3010 release_descriptor(descriptor, true);
3011 if (got < 0)
3012 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3013 else if (static_cast<size_t>(got) != uuidsz)
3014 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3015 uuidsz, got);
3016 }
3017
3018 desc.assign(buffer, uuidsz);
3019 descsz = uuidsz;
3020 }
3021 else if (strncmp(style, "0x", 2) == 0)
3022 {
3023 hex_init();
3024 const char* p = style + 2;
3025 while (*p != '\0')
3026 {
3027 if (hex_p(p[0]) && hex_p(p[1]))
3028 {
3029 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3030 desc += c;
3031 p += 2;
3032 }
3033 else if (*p == '-' || *p == ':')
3034 ++p;
3035 else
3036 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3037 style);
3038 }
3039 descsz = desc.size();
3040 }
3041 else
3042 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3043
3044 // Create the note.
3045 size_t trailing_padding;
3046 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3047 ".note.gnu.build-id", descsz, true,
3048 &trailing_padding);
3049 if (os == NULL)
3050 return;
3051
3052 if (!desc.empty())
3053 {
3054 // We know the value already, so we fill it in now.
3055 gold_assert(desc.size() == descsz);
3056
3057 Output_section_data* posd = new Output_data_const(desc, 4);
3058 os->add_output_section_data(posd);
3059
3060 if (trailing_padding != 0)
3061 {
3062 posd = new Output_data_zero_fill(trailing_padding, 0);
3063 os->add_output_section_data(posd);
3064 }
3065 }
3066 else
3067 {
3068 // We need to compute a checksum after we have completed the
3069 // link.
3070 gold_assert(trailing_padding == 0);
3071 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3072 os->add_output_section_data(this->build_id_note_);
3073 }
3074 }
3075
3076 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3077 // field of the former should point to the latter. I'm not sure who
3078 // started this, but the GNU linker does it, and some tools depend
3079 // upon it.
3080
3081 void
3082 Layout::link_stabs_sections()
3083 {
3084 if (!this->have_stabstr_section_)
3085 return;
3086
3087 for (Section_list::iterator p = this->section_list_.begin();
3088 p != this->section_list_.end();
3089 ++p)
3090 {
3091 if ((*p)->type() != elfcpp::SHT_STRTAB)
3092 continue;
3093
3094 const char* name = (*p)->name();
3095 if (strncmp(name, ".stab", 5) != 0)
3096 continue;
3097
3098 size_t len = strlen(name);
3099 if (strcmp(name + len - 3, "str") != 0)
3100 continue;
3101
3102 std::string stab_name(name, len - 3);
3103 Output_section* stab_sec;
3104 stab_sec = this->find_output_section(stab_name.c_str());
3105 if (stab_sec != NULL)
3106 stab_sec->set_link_section(*p);
3107 }
3108 }
3109
3110 // Create .gnu_incremental_inputs and related sections needed
3111 // for the next run of incremental linking to check what has changed.
3112
3113 void
3114 Layout::create_incremental_info_sections(Symbol_table* symtab)
3115 {
3116 Incremental_inputs* incr = this->incremental_inputs_;
3117
3118 gold_assert(incr != NULL);
3119
3120 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3121 incr->create_data_sections(symtab);
3122
3123 // Add the .gnu_incremental_inputs section.
3124 const char* incremental_inputs_name =
3125 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3126 Output_section* incremental_inputs_os =
3127 this->make_output_section(incremental_inputs_name,
3128 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3129 ORDER_INVALID, false);
3130 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3131
3132 // Add the .gnu_incremental_symtab section.
3133 const char* incremental_symtab_name =
3134 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3135 Output_section* incremental_symtab_os =
3136 this->make_output_section(incremental_symtab_name,
3137 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3138 ORDER_INVALID, false);
3139 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3140 incremental_symtab_os->set_entsize(4);
3141
3142 // Add the .gnu_incremental_relocs section.
3143 const char* incremental_relocs_name =
3144 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3145 Output_section* incremental_relocs_os =
3146 this->make_output_section(incremental_relocs_name,
3147 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3148 ORDER_INVALID, false);
3149 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3150 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3151
3152 // Add the .gnu_incremental_got_plt section.
3153 const char* incremental_got_plt_name =
3154 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3155 Output_section* incremental_got_plt_os =
3156 this->make_output_section(incremental_got_plt_name,
3157 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3158 ORDER_INVALID, false);
3159 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3160
3161 // Add the .gnu_incremental_strtab section.
3162 const char* incremental_strtab_name =
3163 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3164 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3165 elfcpp::SHT_STRTAB, 0,
3166 ORDER_INVALID, false);
3167 Output_data_strtab* strtab_data =
3168 new Output_data_strtab(incr->get_stringpool());
3169 incremental_strtab_os->add_output_section_data(strtab_data);
3170
3171 incremental_inputs_os->set_after_input_sections();
3172 incremental_symtab_os->set_after_input_sections();
3173 incremental_relocs_os->set_after_input_sections();
3174 incremental_got_plt_os->set_after_input_sections();
3175
3176 incremental_inputs_os->set_link_section(incremental_strtab_os);
3177 incremental_symtab_os->set_link_section(incremental_inputs_os);
3178 incremental_relocs_os->set_link_section(incremental_inputs_os);
3179 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3180 }
3181
3182 // Return whether SEG1 should be before SEG2 in the output file. This
3183 // is based entirely on the segment type and flags. When this is
3184 // called the segment addresses have normally not yet been set.
3185
3186 bool
3187 Layout::segment_precedes(const Output_segment* seg1,
3188 const Output_segment* seg2)
3189 {
3190 elfcpp::Elf_Word type1 = seg1->type();
3191 elfcpp::Elf_Word type2 = seg2->type();
3192
3193 // The single PT_PHDR segment is required to precede any loadable
3194 // segment. We simply make it always first.
3195 if (type1 == elfcpp::PT_PHDR)
3196 {
3197 gold_assert(type2 != elfcpp::PT_PHDR);
3198 return true;
3199 }
3200 if (type2 == elfcpp::PT_PHDR)
3201 return false;
3202
3203 // The single PT_INTERP segment is required to precede any loadable
3204 // segment. We simply make it always second.
3205 if (type1 == elfcpp::PT_INTERP)
3206 {
3207 gold_assert(type2 != elfcpp::PT_INTERP);
3208 return true;
3209 }
3210 if (type2 == elfcpp::PT_INTERP)
3211 return false;
3212
3213 // We then put PT_LOAD segments before any other segments.
3214 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3215 return true;
3216 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3217 return false;
3218
3219 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3220 // segment, because that is where the dynamic linker expects to find
3221 // it (this is just for efficiency; other positions would also work
3222 // correctly).
3223 if (type1 == elfcpp::PT_TLS
3224 && type2 != elfcpp::PT_TLS
3225 && type2 != elfcpp::PT_GNU_RELRO)
3226 return false;
3227 if (type2 == elfcpp::PT_TLS
3228 && type1 != elfcpp::PT_TLS
3229 && type1 != elfcpp::PT_GNU_RELRO)
3230 return true;
3231
3232 // We put the PT_GNU_RELRO segment last, because that is where the
3233 // dynamic linker expects to find it (as with PT_TLS, this is just
3234 // for efficiency).
3235 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3236 return false;
3237 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3238 return true;
3239
3240 const elfcpp::Elf_Word flags1 = seg1->flags();
3241 const elfcpp::Elf_Word flags2 = seg2->flags();
3242
3243 // The order of non-PT_LOAD segments is unimportant. We simply sort
3244 // by the numeric segment type and flags values. There should not
3245 // be more than one segment with the same type and flags, except
3246 // when a linker script specifies such.
3247 if (type1 != elfcpp::PT_LOAD)
3248 {
3249 if (type1 != type2)
3250 return type1 < type2;
3251 gold_assert(flags1 != flags2
3252 || this->script_options_->saw_phdrs_clause());
3253 return flags1 < flags2;
3254 }
3255
3256 // If the addresses are set already, sort by load address.
3257 if (seg1->are_addresses_set())
3258 {
3259 if (!seg2->are_addresses_set())
3260 return true;
3261
3262 unsigned int section_count1 = seg1->output_section_count();
3263 unsigned int section_count2 = seg2->output_section_count();
3264 if (section_count1 == 0 && section_count2 > 0)
3265 return true;
3266 if (section_count1 > 0 && section_count2 == 0)
3267 return false;
3268
3269 uint64_t paddr1 = (seg1->are_addresses_set()
3270 ? seg1->paddr()
3271 : seg1->first_section_load_address());
3272 uint64_t paddr2 = (seg2->are_addresses_set()
3273 ? seg2->paddr()
3274 : seg2->first_section_load_address());
3275
3276 if (paddr1 != paddr2)
3277 return paddr1 < paddr2;
3278 }
3279 else if (seg2->are_addresses_set())
3280 return false;
3281
3282 // A segment which holds large data comes after a segment which does
3283 // not hold large data.
3284 if (seg1->is_large_data_segment())
3285 {
3286 if (!seg2->is_large_data_segment())
3287 return false;
3288 }
3289 else if (seg2->is_large_data_segment())
3290 return true;
3291
3292 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3293 // segments come before writable segments. Then writable segments
3294 // with data come before writable segments without data. Then
3295 // executable segments come before non-executable segments. Then
3296 // the unlikely case of a non-readable segment comes before the
3297 // normal case of a readable segment. If there are multiple
3298 // segments with the same type and flags, we require that the
3299 // address be set, and we sort by virtual address and then physical
3300 // address.
3301 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3302 return (flags1 & elfcpp::PF_W) == 0;
3303 if ((flags1 & elfcpp::PF_W) != 0
3304 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3305 return seg1->has_any_data_sections();
3306 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3307 return (flags1 & elfcpp::PF_X) != 0;
3308 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3309 return (flags1 & elfcpp::PF_R) == 0;
3310
3311 // We shouldn't get here--we shouldn't create segments which we
3312 // can't distinguish. Unless of course we are using a weird linker
3313 // script or overlapping --section-start options. We could also get
3314 // here if plugins want unique segments for subsets of sections.
3315 gold_assert(this->script_options_->saw_phdrs_clause()
3316 || parameters->options().any_section_start()
3317 || this->is_unique_segment_for_sections_specified());
3318 return false;
3319 }
3320
3321 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3322
3323 static off_t
3324 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3325 {
3326 uint64_t unsigned_off = off;
3327 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3328 | (addr & (abi_pagesize - 1)));
3329 if (aligned_off < unsigned_off)
3330 aligned_off += abi_pagesize;
3331 return aligned_off;
3332 }
3333
3334 // On targets where the text segment contains only executable code,
3335 // a non-executable segment is never the text segment.
3336
3337 static inline bool
3338 is_text_segment(const Target* target, const Output_segment* seg)
3339 {
3340 elfcpp::Elf_Xword flags = seg->flags();
3341 if ((flags & elfcpp::PF_W) != 0)
3342 return false;
3343 if ((flags & elfcpp::PF_X) == 0)
3344 return !target->isolate_execinstr();
3345 return true;
3346 }
3347
3348 // Set the file offsets of all the segments, and all the sections they
3349 // contain. They have all been created. LOAD_SEG must be be laid out
3350 // first. Return the offset of the data to follow.
3351
3352 off_t
3353 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3354 unsigned int* pshndx)
3355 {
3356 // Sort them into the final order. We use a stable sort so that we
3357 // don't randomize the order of indistinguishable segments created
3358 // by linker scripts.
3359 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3360 Layout::Compare_segments(this));
3361
3362 // Find the PT_LOAD segments, and set their addresses and offsets
3363 // and their section's addresses and offsets.
3364 uint64_t start_addr;
3365 if (parameters->options().user_set_Ttext())
3366 start_addr = parameters->options().Ttext();
3367 else if (parameters->options().output_is_position_independent())
3368 start_addr = 0;
3369 else
3370 start_addr = target->default_text_segment_address();
3371
3372 uint64_t addr = start_addr;
3373 off_t off = 0;
3374
3375 // If LOAD_SEG is NULL, then the file header and segment headers
3376 // will not be loadable. But they still need to be at offset 0 in
3377 // the file. Set their offsets now.
3378 if (load_seg == NULL)
3379 {
3380 for (Data_list::iterator p = this->special_output_list_.begin();
3381 p != this->special_output_list_.end();
3382 ++p)
3383 {
3384 off = align_address(off, (*p)->addralign());
3385 (*p)->set_address_and_file_offset(0, off);
3386 off += (*p)->data_size();
3387 }
3388 }
3389
3390 unsigned int increase_relro = this->increase_relro_;
3391 if (this->script_options_->saw_sections_clause())
3392 increase_relro = 0;
3393
3394 const bool check_sections = parameters->options().check_sections();
3395 Output_segment* last_load_segment = NULL;
3396
3397 unsigned int shndx_begin = *pshndx;
3398 unsigned int shndx_load_seg = *pshndx;
3399
3400 for (Segment_list::iterator p = this->segment_list_.begin();
3401 p != this->segment_list_.end();
3402 ++p)
3403 {
3404 if ((*p)->type() == elfcpp::PT_LOAD)
3405 {
3406 if (target->isolate_execinstr())
3407 {
3408 // When we hit the segment that should contain the
3409 // file headers, reset the file offset so we place
3410 // it and subsequent segments appropriately.
3411 // We'll fix up the preceding segments below.
3412 if (load_seg == *p)
3413 {
3414 if (off == 0)
3415 load_seg = NULL;
3416 else
3417 {
3418 off = 0;
3419 shndx_load_seg = *pshndx;
3420 }
3421 }
3422 }
3423 else
3424 {
3425 // Verify that the file headers fall into the first segment.
3426 if (load_seg != NULL && load_seg != *p)
3427 gold_unreachable();
3428 load_seg = NULL;
3429 }
3430
3431 bool are_addresses_set = (*p)->are_addresses_set();
3432 if (are_addresses_set)
3433 {
3434 // When it comes to setting file offsets, we care about
3435 // the physical address.
3436 addr = (*p)->paddr();
3437 }
3438 else if (parameters->options().user_set_Ttext()
3439 && (parameters->options().omagic()
3440 || is_text_segment(target, *p)))
3441 {
3442 are_addresses_set = true;
3443 }
3444 else if (parameters->options().user_set_Trodata_segment()
3445 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3446 {
3447 addr = parameters->options().Trodata_segment();
3448 are_addresses_set = true;
3449 }
3450 else if (parameters->options().user_set_Tdata()
3451 && ((*p)->flags() & elfcpp::PF_W) != 0
3452 && (!parameters->options().user_set_Tbss()
3453 || (*p)->has_any_data_sections()))
3454 {
3455 addr = parameters->options().Tdata();
3456 are_addresses_set = true;
3457 }
3458 else if (parameters->options().user_set_Tbss()
3459 && ((*p)->flags() & elfcpp::PF_W) != 0
3460 && !(*p)->has_any_data_sections())
3461 {
3462 addr = parameters->options().Tbss();
3463 are_addresses_set = true;
3464 }
3465
3466 uint64_t orig_addr = addr;
3467 uint64_t orig_off = off;
3468
3469 uint64_t aligned_addr = 0;
3470 uint64_t abi_pagesize = target->abi_pagesize();
3471 uint64_t common_pagesize = target->common_pagesize();
3472
3473 if (!parameters->options().nmagic()
3474 && !parameters->options().omagic())
3475 (*p)->set_minimum_p_align(abi_pagesize);
3476
3477 if (!are_addresses_set)
3478 {
3479 // Skip the address forward one page, maintaining the same
3480 // position within the page. This lets us store both segments
3481 // overlapping on a single page in the file, but the loader will
3482 // put them on different pages in memory. We will revisit this
3483 // decision once we know the size of the segment.
3484
3485 addr = align_address(addr, (*p)->maximum_alignment());
3486 aligned_addr = addr;
3487
3488 if (load_seg == *p)
3489 {
3490 // This is the segment that will contain the file
3491 // headers, so its offset will have to be exactly zero.
3492 gold_assert(orig_off == 0);
3493
3494 // If the target wants a fixed minimum distance from the
3495 // text segment to the read-only segment, move up now.
3496 uint64_t min_addr =
3497 start_addr + (parameters->options().user_set_rosegment_gap()
3498 ? parameters->options().rosegment_gap()
3499 : target->rosegment_gap());
3500 if (addr < min_addr)
3501 addr = min_addr;
3502
3503 // But this is not the first segment! To make its
3504 // address congruent with its offset, that address better
3505 // be aligned to the ABI-mandated page size.
3506 addr = align_address(addr, abi_pagesize);
3507 aligned_addr = addr;
3508 }
3509 else
3510 {
3511 if ((addr & (abi_pagesize - 1)) != 0)
3512 addr = addr + abi_pagesize;
3513
3514 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3515 }
3516 }
3517
3518 if (!parameters->options().nmagic()
3519 && !parameters->options().omagic())
3520 {
3521 // Here we are also taking care of the case when
3522 // the maximum segment alignment is larger than the page size.
3523 off = align_file_offset(off, addr,
3524 std::max(abi_pagesize,
3525 (*p)->maximum_alignment()));
3526 }
3527 else
3528 {
3529 // This is -N or -n with a section script which prevents
3530 // us from using a load segment. We need to ensure that
3531 // the file offset is aligned to the alignment of the
3532 // segment. This is because the linker script
3533 // implicitly assumed a zero offset. If we don't align
3534 // here, then the alignment of the sections in the
3535 // linker script may not match the alignment of the
3536 // sections in the set_section_addresses call below,
3537 // causing an error about dot moving backward.
3538 off = align_address(off, (*p)->maximum_alignment());
3539 }
3540
3541 unsigned int shndx_hold = *pshndx;
3542 bool has_relro = false;
3543 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3544 &increase_relro,
3545 &has_relro,
3546 &off, pshndx);
3547
3548 // Now that we know the size of this segment, we may be able
3549 // to save a page in memory, at the cost of wasting some
3550 // file space, by instead aligning to the start of a new
3551 // page. Here we use the real machine page size rather than
3552 // the ABI mandated page size. If the segment has been
3553 // aligned so that the relro data ends at a page boundary,
3554 // we do not try to realign it.
3555
3556 if (!are_addresses_set
3557 && !has_relro
3558 && aligned_addr != addr
3559 && !parameters->incremental())
3560 {
3561 uint64_t first_off = (common_pagesize
3562 - (aligned_addr
3563 & (common_pagesize - 1)));
3564 uint64_t last_off = new_addr & (common_pagesize - 1);
3565 if (first_off > 0
3566 && last_off > 0
3567 && ((aligned_addr & ~ (common_pagesize - 1))
3568 != (new_addr & ~ (common_pagesize - 1)))
3569 && first_off + last_off <= common_pagesize)
3570 {
3571 *pshndx = shndx_hold;
3572 addr = align_address(aligned_addr, common_pagesize);
3573 addr = align_address(addr, (*p)->maximum_alignment());
3574 if ((addr & (abi_pagesize - 1)) != 0)
3575 addr = addr + abi_pagesize;
3576 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3577 off = align_file_offset(off, addr, abi_pagesize);
3578
3579 increase_relro = this->increase_relro_;
3580 if (this->script_options_->saw_sections_clause())
3581 increase_relro = 0;
3582 has_relro = false;
3583
3584 new_addr = (*p)->set_section_addresses(this, true, addr,
3585 &increase_relro,
3586 &has_relro,
3587 &off, pshndx);
3588 }
3589 }
3590
3591 addr = new_addr;
3592
3593 // Implement --check-sections. We know that the segments
3594 // are sorted by LMA.
3595 if (check_sections && last_load_segment != NULL)
3596 {
3597 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3598 if (last_load_segment->paddr() + last_load_segment->memsz()
3599 > (*p)->paddr())
3600 {
3601 unsigned long long lb1 = last_load_segment->paddr();
3602 unsigned long long le1 = lb1 + last_load_segment->memsz();
3603 unsigned long long lb2 = (*p)->paddr();
3604 unsigned long long le2 = lb2 + (*p)->memsz();
3605 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3606 "[0x%llx -> 0x%llx]"),
3607 lb1, le1, lb2, le2);
3608 }
3609 }
3610 last_load_segment = *p;
3611 }
3612 }
3613
3614 if (load_seg != NULL && target->isolate_execinstr())
3615 {
3616 // Process the early segments again, setting their file offsets
3617 // so they land after the segments starting at LOAD_SEG.
3618 off = align_file_offset(off, 0, target->abi_pagesize());
3619
3620 for (Segment_list::iterator p = this->segment_list_.begin();
3621 *p != load_seg;
3622 ++p)
3623 {
3624 if ((*p)->type() == elfcpp::PT_LOAD)
3625 {
3626 // We repeat the whole job of assigning addresses and
3627 // offsets, but we really only want to change the offsets and
3628 // must ensure that the addresses all come out the same as
3629 // they did the first time through.
3630 bool has_relro = false;
3631 const uint64_t old_addr = (*p)->vaddr();
3632 const uint64_t old_end = old_addr + (*p)->memsz();
3633 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3634 old_addr,
3635 &increase_relro,
3636 &has_relro,
3637 &off,
3638 &shndx_begin);
3639 gold_assert(new_addr == old_end);
3640 }
3641 }
3642
3643 gold_assert(shndx_begin == shndx_load_seg);
3644 }
3645
3646 // Handle the non-PT_LOAD segments, setting their offsets from their
3647 // section's offsets.
3648 for (Segment_list::iterator p = this->segment_list_.begin();
3649 p != this->segment_list_.end();
3650 ++p)
3651 {
3652 if ((*p)->type() != elfcpp::PT_LOAD)
3653 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3654 ? increase_relro
3655 : 0);
3656 }
3657
3658 // Set the TLS offsets for each section in the PT_TLS segment.
3659 if (this->tls_segment_ != NULL)
3660 this->tls_segment_->set_tls_offsets();
3661
3662 return off;
3663 }
3664
3665 // Set the offsets of all the allocated sections when doing a
3666 // relocatable link. This does the same jobs as set_segment_offsets,
3667 // only for a relocatable link.
3668
3669 off_t
3670 Layout::set_relocatable_section_offsets(Output_data* file_header,
3671 unsigned int* pshndx)
3672 {
3673 off_t off = 0;
3674
3675 file_header->set_address_and_file_offset(0, 0);
3676 off += file_header->data_size();
3677
3678 for (Section_list::iterator p = this->section_list_.begin();
3679 p != this->section_list_.end();
3680 ++p)
3681 {
3682 // We skip unallocated sections here, except that group sections
3683 // have to come first.
3684 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3685 && (*p)->type() != elfcpp::SHT_GROUP)
3686 continue;
3687
3688 off = align_address(off, (*p)->addralign());
3689
3690 // The linker script might have set the address.
3691 if (!(*p)->is_address_valid())
3692 (*p)->set_address(0);
3693 (*p)->set_file_offset(off);
3694 (*p)->finalize_data_size();
3695 if ((*p)->type() != elfcpp::SHT_NOBITS)
3696 off += (*p)->data_size();
3697
3698 (*p)->set_out_shndx(*pshndx);
3699 ++*pshndx;
3700 }
3701
3702 return off;
3703 }
3704
3705 // Set the file offset of all the sections not associated with a
3706 // segment.
3707
3708 off_t
3709 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3710 {
3711 off_t startoff = off;
3712 off_t maxoff = off;
3713
3714 for (Section_list::iterator p = this->unattached_section_list_.begin();
3715 p != this->unattached_section_list_.end();
3716 ++p)
3717 {
3718 // The symtab section is handled in create_symtab_sections.
3719 if (*p == this->symtab_section_)
3720 continue;
3721
3722 // If we've already set the data size, don't set it again.
3723 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3724 continue;
3725
3726 if (pass == BEFORE_INPUT_SECTIONS_PASS
3727 && (*p)->requires_postprocessing())
3728 {
3729 (*p)->create_postprocessing_buffer();
3730 this->any_postprocessing_sections_ = true;
3731 }
3732
3733 if (pass == BEFORE_INPUT_SECTIONS_PASS
3734 && (*p)->after_input_sections())
3735 continue;
3736 else if (pass == POSTPROCESSING_SECTIONS_PASS
3737 && (!(*p)->after_input_sections()
3738 || (*p)->type() == elfcpp::SHT_STRTAB))
3739 continue;
3740 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3741 && (!(*p)->after_input_sections()
3742 || (*p)->type() != elfcpp::SHT_STRTAB))
3743 continue;
3744
3745 if (!parameters->incremental_update())
3746 {
3747 off = align_address(off, (*p)->addralign());
3748 (*p)->set_file_offset(off);
3749 (*p)->finalize_data_size();
3750 }
3751 else
3752 {
3753 // Incremental update: allocate file space from free list.
3754 (*p)->pre_finalize_data_size();
3755 off_t current_size = (*p)->current_data_size();
3756 off = this->allocate(current_size, (*p)->addralign(), startoff);
3757 if (off == -1)
3758 {
3759 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3760 this->free_list_.dump();
3761 gold_assert((*p)->output_section() != NULL);
3762 gold_fallback(_("out of patch space for section %s; "
3763 "relink with --incremental-full"),
3764 (*p)->output_section()->name());
3765 }
3766 (*p)->set_file_offset(off);
3767 (*p)->finalize_data_size();
3768 if ((*p)->data_size() > current_size)
3769 {
3770 gold_assert((*p)->output_section() != NULL);
3771 gold_fallback(_("%s: section changed size; "
3772 "relink with --incremental-full"),
3773 (*p)->output_section()->name());
3774 }
3775 gold_debug(DEBUG_INCREMENTAL,
3776 "set_section_offsets: %08lx %08lx %s",
3777 static_cast<long>(off),
3778 static_cast<long>((*p)->data_size()),
3779 ((*p)->output_section() != NULL
3780 ? (*p)->output_section()->name() : "(special)"));
3781 }
3782
3783 off += (*p)->data_size();
3784 if (off > maxoff)
3785 maxoff = off;
3786
3787 // At this point the name must be set.
3788 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3789 this->namepool_.add((*p)->name(), false, NULL);
3790 }
3791 return maxoff;
3792 }
3793
3794 // Set the section indexes of all the sections not associated with a
3795 // segment.
3796
3797 unsigned int
3798 Layout::set_section_indexes(unsigned int shndx)
3799 {
3800 for (Section_list::iterator p = this->unattached_section_list_.begin();
3801 p != this->unattached_section_list_.end();
3802 ++p)
3803 {
3804 if (!(*p)->has_out_shndx())
3805 {
3806 (*p)->set_out_shndx(shndx);
3807 ++shndx;
3808 }
3809 }
3810 return shndx;
3811 }
3812
3813 // Set the section addresses according to the linker script. This is
3814 // only called when we see a SECTIONS clause. This returns the
3815 // program segment which should hold the file header and segment
3816 // headers, if any. It will return NULL if they should not be in a
3817 // segment.
3818
3819 Output_segment*
3820 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3821 {
3822 Script_sections* ss = this->script_options_->script_sections();
3823 gold_assert(ss->saw_sections_clause());
3824 return this->script_options_->set_section_addresses(symtab, this);
3825 }
3826
3827 // Place the orphan sections in the linker script.
3828
3829 void
3830 Layout::place_orphan_sections_in_script()
3831 {
3832 Script_sections* ss = this->script_options_->script_sections();
3833 gold_assert(ss->saw_sections_clause());
3834
3835 // Place each orphaned output section in the script.
3836 for (Section_list::iterator p = this->section_list_.begin();
3837 p != this->section_list_.end();
3838 ++p)
3839 {
3840 if (!(*p)->found_in_sections_clause())
3841 ss->place_orphan(*p);
3842 }
3843 }
3844
3845 // Count the local symbols in the regular symbol table and the dynamic
3846 // symbol table, and build the respective string pools.
3847
3848 void
3849 Layout::count_local_symbols(const Task* task,
3850 const Input_objects* input_objects)
3851 {
3852 // First, figure out an upper bound on the number of symbols we'll
3853 // be inserting into each pool. This helps us create the pools with
3854 // the right size, to avoid unnecessary hashtable resizing.
3855 unsigned int symbol_count = 0;
3856 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3857 p != input_objects->relobj_end();
3858 ++p)
3859 symbol_count += (*p)->local_symbol_count();
3860
3861 // Go from "upper bound" to "estimate." We overcount for two
3862 // reasons: we double-count symbols that occur in more than one
3863 // object file, and we count symbols that are dropped from the
3864 // output. Add it all together and assume we overcount by 100%.
3865 symbol_count /= 2;
3866
3867 // We assume all symbols will go into both the sympool and dynpool.
3868 this->sympool_.reserve(symbol_count);
3869 this->dynpool_.reserve(symbol_count);
3870
3871 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3872 p != input_objects->relobj_end();
3873 ++p)
3874 {
3875 Task_lock_obj<Object> tlo(task, *p);
3876 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3877 }
3878 }
3879
3880 // Create the symbol table sections. Here we also set the final
3881 // values of the symbols. At this point all the loadable sections are
3882 // fully laid out. SHNUM is the number of sections so far.
3883
3884 void
3885 Layout::create_symtab_sections(const Input_objects* input_objects,
3886 Symbol_table* symtab,
3887 unsigned int shnum,
3888 off_t* poff)
3889 {
3890 int symsize;
3891 unsigned int align;
3892 if (parameters->target().get_size() == 32)
3893 {
3894 symsize = elfcpp::Elf_sizes<32>::sym_size;
3895 align = 4;
3896 }
3897 else if (parameters->target().get_size() == 64)
3898 {
3899 symsize = elfcpp::Elf_sizes<64>::sym_size;
3900 align = 8;
3901 }
3902 else
3903 gold_unreachable();
3904
3905 // Compute file offsets relative to the start of the symtab section.
3906 off_t off = 0;
3907
3908 // Save space for the dummy symbol at the start of the section. We
3909 // never bother to write this out--it will just be left as zero.
3910 off += symsize;
3911 unsigned int local_symbol_index = 1;
3912
3913 // Add STT_SECTION symbols for each Output section which needs one.
3914 for (Section_list::iterator p = this->section_list_.begin();
3915 p != this->section_list_.end();
3916 ++p)
3917 {
3918 if (!(*p)->needs_symtab_index())
3919 (*p)->set_symtab_index(-1U);
3920 else
3921 {
3922 (*p)->set_symtab_index(local_symbol_index);
3923 ++local_symbol_index;
3924 off += symsize;
3925 }
3926 }
3927
3928 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3929 p != input_objects->relobj_end();
3930 ++p)
3931 {
3932 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3933 off, symtab);
3934 off += (index - local_symbol_index) * symsize;
3935 local_symbol_index = index;
3936 }
3937
3938 unsigned int local_symcount = local_symbol_index;
3939 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3940
3941 off_t dynoff;
3942 size_t dyn_global_index;
3943 size_t dyncount;
3944 if (this->dynsym_section_ == NULL)
3945 {
3946 dynoff = 0;
3947 dyn_global_index = 0;
3948 dyncount = 0;
3949 }
3950 else
3951 {
3952 dyn_global_index = this->dynsym_section_->info();
3953 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3954 dynoff = this->dynsym_section_->offset() + locsize;
3955 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3956 gold_assert(static_cast<off_t>(dyncount * symsize)
3957 == this->dynsym_section_->data_size() - locsize);
3958 }
3959
3960 off_t global_off = off;
3961 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3962 &this->sympool_, &local_symcount);
3963
3964 if (!parameters->options().strip_all())
3965 {
3966 this->sympool_.set_string_offsets();
3967
3968 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3969 Output_section* osymtab = this->make_output_section(symtab_name,
3970 elfcpp::SHT_SYMTAB,
3971 0, ORDER_INVALID,
3972 false);
3973 this->symtab_section_ = osymtab;
3974
3975 Output_section_data* pos = new Output_data_fixed_space(off, align,
3976 "** symtab");
3977 osymtab->add_output_section_data(pos);
3978
3979 // We generate a .symtab_shndx section if we have more than
3980 // SHN_LORESERVE sections. Technically it is possible that we
3981 // don't need one, because it is possible that there are no
3982 // symbols in any of sections with indexes larger than
3983 // SHN_LORESERVE. That is probably unusual, though, and it is
3984 // easier to always create one than to compute section indexes
3985 // twice (once here, once when writing out the symbols).
3986 if (shnum >= elfcpp::SHN_LORESERVE)
3987 {
3988 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3989 false, NULL);
3990 Output_section* osymtab_xindex =
3991 this->make_output_section(symtab_xindex_name,
3992 elfcpp::SHT_SYMTAB_SHNDX, 0,
3993 ORDER_INVALID, false);
3994
3995 size_t symcount = off / symsize;
3996 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3997
3998 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3999
4000 osymtab_xindex->set_link_section(osymtab);
4001 osymtab_xindex->set_addralign(4);
4002 osymtab_xindex->set_entsize(4);
4003
4004 osymtab_xindex->set_after_input_sections();
4005
4006 // This tells the driver code to wait until the symbol table
4007 // has written out before writing out the postprocessing
4008 // sections, including the .symtab_shndx section.
4009 this->any_postprocessing_sections_ = true;
4010 }
4011
4012 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4013 Output_section* ostrtab = this->make_output_section(strtab_name,
4014 elfcpp::SHT_STRTAB,
4015 0, ORDER_INVALID,
4016 false);
4017
4018 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4019 ostrtab->add_output_section_data(pstr);
4020
4021 off_t symtab_off;
4022 if (!parameters->incremental_update())
4023 symtab_off = align_address(*poff, align);
4024 else
4025 {
4026 symtab_off = this->allocate(off, align, *poff);
4027 if (off == -1)
4028 gold_fallback(_("out of patch space for symbol table; "
4029 "relink with --incremental-full"));
4030 gold_debug(DEBUG_INCREMENTAL,
4031 "create_symtab_sections: %08lx %08lx .symtab",
4032 static_cast<long>(symtab_off),
4033 static_cast<long>(off));
4034 }
4035
4036 symtab->set_file_offset(symtab_off + global_off);
4037 osymtab->set_file_offset(symtab_off);
4038 osymtab->finalize_data_size();
4039 osymtab->set_link_section(ostrtab);
4040 osymtab->set_info(local_symcount);
4041 osymtab->set_entsize(symsize);
4042
4043 if (symtab_off + off > *poff)
4044 *poff = symtab_off + off;
4045 }
4046 }
4047
4048 // Create the .shstrtab section, which holds the names of the
4049 // sections. At the time this is called, we have created all the
4050 // output sections except .shstrtab itself.
4051
4052 Output_section*
4053 Layout::create_shstrtab()
4054 {
4055 // FIXME: We don't need to create a .shstrtab section if we are
4056 // stripping everything.
4057
4058 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4059
4060 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4061 ORDER_INVALID, false);
4062
4063 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4064 {
4065 // We can't write out this section until we've set all the
4066 // section names, and we don't set the names of compressed
4067 // output sections until relocations are complete. FIXME: With
4068 // the current names we use, this is unnecessary.
4069 os->set_after_input_sections();
4070 }
4071
4072 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4073 os->add_output_section_data(posd);
4074
4075 return os;
4076 }
4077
4078 // Create the section headers. SIZE is 32 or 64. OFF is the file
4079 // offset.
4080
4081 void
4082 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4083 {
4084 Output_section_headers* oshdrs;
4085 oshdrs = new Output_section_headers(this,
4086 &this->segment_list_,
4087 &this->section_list_,
4088 &this->unattached_section_list_,
4089 &this->namepool_,
4090 shstrtab_section);
4091 off_t off;
4092 if (!parameters->incremental_update())
4093 off = align_address(*poff, oshdrs->addralign());
4094 else
4095 {
4096 oshdrs->pre_finalize_data_size();
4097 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4098 if (off == -1)
4099 gold_fallback(_("out of patch space for section header table; "
4100 "relink with --incremental-full"));
4101 gold_debug(DEBUG_INCREMENTAL,
4102 "create_shdrs: %08lx %08lx (section header table)",
4103 static_cast<long>(off),
4104 static_cast<long>(off + oshdrs->data_size()));
4105 }
4106 oshdrs->set_address_and_file_offset(0, off);
4107 off += oshdrs->data_size();
4108 if (off > *poff)
4109 *poff = off;
4110 this->section_headers_ = oshdrs;
4111 }
4112
4113 // Count the allocated sections.
4114
4115 size_t
4116 Layout::allocated_output_section_count() const
4117 {
4118 size_t section_count = 0;
4119 for (Segment_list::const_iterator p = this->segment_list_.begin();
4120 p != this->segment_list_.end();
4121 ++p)
4122 section_count += (*p)->output_section_count();
4123 return section_count;
4124 }
4125
4126 // Create the dynamic symbol table.
4127
4128 void
4129 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4130 Symbol_table* symtab,
4131 Output_section** pdynstr,
4132 unsigned int* plocal_dynamic_count,
4133 std::vector<Symbol*>* pdynamic_symbols,
4134 Versions* pversions)
4135 {
4136 // Count all the symbols in the dynamic symbol table, and set the
4137 // dynamic symbol indexes.
4138
4139 // Skip symbol 0, which is always all zeroes.
4140 unsigned int index = 1;
4141
4142 // Add STT_SECTION symbols for each Output section which needs one.
4143 for (Section_list::iterator p = this->section_list_.begin();
4144 p != this->section_list_.end();
4145 ++p)
4146 {
4147 if (!(*p)->needs_dynsym_index())
4148 (*p)->set_dynsym_index(-1U);
4149 else
4150 {
4151 (*p)->set_dynsym_index(index);
4152 ++index;
4153 }
4154 }
4155
4156 // Count the local symbols that need to go in the dynamic symbol table,
4157 // and set the dynamic symbol indexes.
4158 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4159 p != input_objects->relobj_end();
4160 ++p)
4161 {
4162 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4163 index = new_index;
4164 }
4165
4166 unsigned int local_symcount = index;
4167 *plocal_dynamic_count = local_symcount;
4168
4169 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4170 &this->dynpool_, pversions);
4171
4172 int symsize;
4173 unsigned int align;
4174 const int size = parameters->target().get_size();
4175 if (size == 32)
4176 {
4177 symsize = elfcpp::Elf_sizes<32>::sym_size;
4178 align = 4;
4179 }
4180 else if (size == 64)
4181 {
4182 symsize = elfcpp::Elf_sizes<64>::sym_size;
4183 align = 8;
4184 }
4185 else
4186 gold_unreachable();
4187
4188 // Create the dynamic symbol table section.
4189
4190 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4191 elfcpp::SHT_DYNSYM,
4192 elfcpp::SHF_ALLOC,
4193 false,
4194 ORDER_DYNAMIC_LINKER,
4195 false);
4196
4197 // Check for NULL as a linker script may discard .dynsym.
4198 if (dynsym != NULL)
4199 {
4200 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4201 align,
4202 "** dynsym");
4203 dynsym->add_output_section_data(odata);
4204
4205 dynsym->set_info(local_symcount);
4206 dynsym->set_entsize(symsize);
4207 dynsym->set_addralign(align);
4208
4209 this->dynsym_section_ = dynsym;
4210 }
4211
4212 Output_data_dynamic* const odyn = this->dynamic_data_;
4213 if (odyn != NULL)
4214 {
4215 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4216 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4217 }
4218
4219 // If there are more than SHN_LORESERVE allocated sections, we
4220 // create a .dynsym_shndx section. It is possible that we don't
4221 // need one, because it is possible that there are no dynamic
4222 // symbols in any of the sections with indexes larger than
4223 // SHN_LORESERVE. This is probably unusual, though, and at this
4224 // time we don't know the actual section indexes so it is
4225 // inconvenient to check.
4226 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4227 {
4228 Output_section* dynsym_xindex =
4229 this->choose_output_section(NULL, ".dynsym_shndx",
4230 elfcpp::SHT_SYMTAB_SHNDX,
4231 elfcpp::SHF_ALLOC,
4232 false, ORDER_DYNAMIC_LINKER, false);
4233
4234 if (dynsym_xindex != NULL)
4235 {
4236 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4237
4238 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4239
4240 dynsym_xindex->set_link_section(dynsym);
4241 dynsym_xindex->set_addralign(4);
4242 dynsym_xindex->set_entsize(4);
4243
4244 dynsym_xindex->set_after_input_sections();
4245
4246 // This tells the driver code to wait until the symbol table
4247 // has written out before writing out the postprocessing
4248 // sections, including the .dynsym_shndx section.
4249 this->any_postprocessing_sections_ = true;
4250 }
4251 }
4252
4253 // Create the dynamic string table section.
4254
4255 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4256 elfcpp::SHT_STRTAB,
4257 elfcpp::SHF_ALLOC,
4258 false,
4259 ORDER_DYNAMIC_LINKER,
4260 false);
4261 *pdynstr = dynstr;
4262 if (dynstr != NULL)
4263 {
4264 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4265 dynstr->add_output_section_data(strdata);
4266
4267 if (dynsym != NULL)
4268 dynsym->set_link_section(dynstr);
4269 if (this->dynamic_section_ != NULL)
4270 this->dynamic_section_->set_link_section(dynstr);
4271
4272 if (odyn != NULL)
4273 {
4274 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4275 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4276 }
4277 }
4278
4279 // Create the hash tables.
4280
4281 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4282 || strcmp(parameters->options().hash_style(), "both") == 0)
4283 {
4284 unsigned char* phash;
4285 unsigned int hashlen;
4286 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4287 &phash, &hashlen);
4288
4289 Output_section* hashsec =
4290 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4291 elfcpp::SHF_ALLOC, false,
4292 ORDER_DYNAMIC_LINKER, false);
4293
4294 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4295 hashlen,
4296 align,
4297 "** hash");
4298 if (hashsec != NULL && hashdata != NULL)
4299 hashsec->add_output_section_data(hashdata);
4300
4301 if (hashsec != NULL)
4302 {
4303 if (dynsym != NULL)
4304 hashsec->set_link_section(dynsym);
4305 hashsec->set_entsize(4);
4306 }
4307
4308 if (odyn != NULL)
4309 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4310 }
4311
4312 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4313 || strcmp(parameters->options().hash_style(), "both") == 0)
4314 {
4315 unsigned char* phash;
4316 unsigned int hashlen;
4317 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4318 &phash, &hashlen);
4319
4320 Output_section* hashsec =
4321 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4322 elfcpp::SHF_ALLOC, false,
4323 ORDER_DYNAMIC_LINKER, false);
4324
4325 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4326 hashlen,
4327 align,
4328 "** hash");
4329 if (hashsec != NULL && hashdata != NULL)
4330 hashsec->add_output_section_data(hashdata);
4331
4332 if (hashsec != NULL)
4333 {
4334 if (dynsym != NULL)
4335 hashsec->set_link_section(dynsym);
4336
4337 // For a 64-bit target, the entries in .gnu.hash do not have
4338 // a uniform size, so we only set the entry size for a
4339 // 32-bit target.
4340 if (parameters->target().get_size() == 32)
4341 hashsec->set_entsize(4);
4342
4343 if (odyn != NULL)
4344 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4345 }
4346 }
4347 }
4348
4349 // Assign offsets to each local portion of the dynamic symbol table.
4350
4351 void
4352 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4353 {
4354 Output_section* dynsym = this->dynsym_section_;
4355 if (dynsym == NULL)
4356 return;
4357
4358 off_t off = dynsym->offset();
4359
4360 // Skip the dummy symbol at the start of the section.
4361 off += dynsym->entsize();
4362
4363 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4364 p != input_objects->relobj_end();
4365 ++p)
4366 {
4367 unsigned int count = (*p)->set_local_dynsym_offset(off);
4368 off += count * dynsym->entsize();
4369 }
4370 }
4371
4372 // Create the version sections.
4373
4374 void
4375 Layout::create_version_sections(const Versions* versions,
4376 const Symbol_table* symtab,
4377 unsigned int local_symcount,
4378 const std::vector<Symbol*>& dynamic_symbols,
4379 const Output_section* dynstr)
4380 {
4381 if (!versions->any_defs() && !versions->any_needs())
4382 return;
4383
4384 switch (parameters->size_and_endianness())
4385 {
4386 #ifdef HAVE_TARGET_32_LITTLE
4387 case Parameters::TARGET_32_LITTLE:
4388 this->sized_create_version_sections<32, false>(versions, symtab,
4389 local_symcount,
4390 dynamic_symbols, dynstr);
4391 break;
4392 #endif
4393 #ifdef HAVE_TARGET_32_BIG
4394 case Parameters::TARGET_32_BIG:
4395 this->sized_create_version_sections<32, true>(versions, symtab,
4396 local_symcount,
4397 dynamic_symbols, dynstr);
4398 break;
4399 #endif
4400 #ifdef HAVE_TARGET_64_LITTLE
4401 case Parameters::TARGET_64_LITTLE:
4402 this->sized_create_version_sections<64, false>(versions, symtab,
4403 local_symcount,
4404 dynamic_symbols, dynstr);
4405 break;
4406 #endif
4407 #ifdef HAVE_TARGET_64_BIG
4408 case Parameters::TARGET_64_BIG:
4409 this->sized_create_version_sections<64, true>(versions, symtab,
4410 local_symcount,
4411 dynamic_symbols, dynstr);
4412 break;
4413 #endif
4414 default:
4415 gold_unreachable();
4416 }
4417 }
4418
4419 // Create the version sections, sized version.
4420
4421 template<int size, bool big_endian>
4422 void
4423 Layout::sized_create_version_sections(
4424 const Versions* versions,
4425 const Symbol_table* symtab,
4426 unsigned int local_symcount,
4427 const std::vector<Symbol*>& dynamic_symbols,
4428 const Output_section* dynstr)
4429 {
4430 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4431 elfcpp::SHT_GNU_versym,
4432 elfcpp::SHF_ALLOC,
4433 false,
4434 ORDER_DYNAMIC_LINKER,
4435 false);
4436
4437 // Check for NULL since a linker script may discard this section.
4438 if (vsec != NULL)
4439 {
4440 unsigned char* vbuf;
4441 unsigned int vsize;
4442 versions->symbol_section_contents<size, big_endian>(symtab,
4443 &this->dynpool_,
4444 local_symcount,
4445 dynamic_symbols,
4446 &vbuf, &vsize);
4447
4448 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4449 "** versions");
4450
4451 vsec->add_output_section_data(vdata);
4452 vsec->set_entsize(2);
4453 vsec->set_link_section(this->dynsym_section_);
4454 }
4455
4456 Output_data_dynamic* const odyn = this->dynamic_data_;
4457 if (odyn != NULL && vsec != NULL)
4458 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4459
4460 if (versions->any_defs())
4461 {
4462 Output_section* vdsec;
4463 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4464 elfcpp::SHT_GNU_verdef,
4465 elfcpp::SHF_ALLOC,
4466 false, ORDER_DYNAMIC_LINKER, false);
4467
4468 if (vdsec != NULL)
4469 {
4470 unsigned char* vdbuf;
4471 unsigned int vdsize;
4472 unsigned int vdentries;
4473 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4474 &vdbuf, &vdsize,
4475 &vdentries);
4476
4477 Output_section_data* vddata =
4478 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4479
4480 vdsec->add_output_section_data(vddata);
4481 vdsec->set_link_section(dynstr);
4482 vdsec->set_info(vdentries);
4483
4484 if (odyn != NULL)
4485 {
4486 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4487 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4488 }
4489 }
4490 }
4491
4492 if (versions->any_needs())
4493 {
4494 Output_section* vnsec;
4495 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4496 elfcpp::SHT_GNU_verneed,
4497 elfcpp::SHF_ALLOC,
4498 false, ORDER_DYNAMIC_LINKER, false);
4499
4500 if (vnsec != NULL)
4501 {
4502 unsigned char* vnbuf;
4503 unsigned int vnsize;
4504 unsigned int vnentries;
4505 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4506 &vnbuf, &vnsize,
4507 &vnentries);
4508
4509 Output_section_data* vndata =
4510 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4511
4512 vnsec->add_output_section_data(vndata);
4513 vnsec->set_link_section(dynstr);
4514 vnsec->set_info(vnentries);
4515
4516 if (odyn != NULL)
4517 {
4518 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4519 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4520 }
4521 }
4522 }
4523 }
4524
4525 // Create the .interp section and PT_INTERP segment.
4526
4527 void
4528 Layout::create_interp(const Target* target)
4529 {
4530 gold_assert(this->interp_segment_ == NULL);
4531
4532 const char* interp = parameters->options().dynamic_linker();
4533 if (interp == NULL)
4534 {
4535 interp = target->dynamic_linker();
4536 gold_assert(interp != NULL);
4537 }
4538
4539 size_t len = strlen(interp) + 1;
4540
4541 Output_section_data* odata = new Output_data_const(interp, len, 1);
4542
4543 Output_section* osec = this->choose_output_section(NULL, ".interp",
4544 elfcpp::SHT_PROGBITS,
4545 elfcpp::SHF_ALLOC,
4546 false, ORDER_INTERP,
4547 false);
4548 if (osec != NULL)
4549 osec->add_output_section_data(odata);
4550 }
4551
4552 // Add dynamic tags for the PLT and the dynamic relocs. This is
4553 // called by the target-specific code. This does nothing if not doing
4554 // a dynamic link.
4555
4556 // USE_REL is true for REL relocs rather than RELA relocs.
4557
4558 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4559
4560 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4561 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4562 // some targets have multiple reloc sections in PLT_REL.
4563
4564 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4565 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4566 // section.
4567
4568 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4569 // executable.
4570
4571 void
4572 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4573 const Output_data* plt_rel,
4574 const Output_data_reloc_generic* dyn_rel,
4575 bool add_debug, bool dynrel_includes_plt)
4576 {
4577 Output_data_dynamic* odyn = this->dynamic_data_;
4578 if (odyn == NULL)
4579 return;
4580
4581 if (plt_got != NULL && plt_got->output_section() != NULL)
4582 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4583
4584 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4585 {
4586 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4587 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4588 odyn->add_constant(elfcpp::DT_PLTREL,
4589 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4590 }
4591
4592 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4593 || (dynrel_includes_plt
4594 && plt_rel != NULL
4595 && plt_rel->output_section() != NULL))
4596 {
4597 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4598 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4599 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4600 (have_dyn_rel
4601 ? dyn_rel->output_section()
4602 : plt_rel->output_section()));
4603 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4604 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4605 odyn->add_section_size(size_tag,
4606 dyn_rel->output_section(),
4607 plt_rel->output_section());
4608 else if (have_dyn_rel)
4609 odyn->add_section_size(size_tag, dyn_rel->output_section());
4610 else
4611 odyn->add_section_size(size_tag, plt_rel->output_section());
4612 const int size = parameters->target().get_size();
4613 elfcpp::DT rel_tag;
4614 int rel_size;
4615 if (use_rel)
4616 {
4617 rel_tag = elfcpp::DT_RELENT;
4618 if (size == 32)
4619 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4620 else if (size == 64)
4621 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4622 else
4623 gold_unreachable();
4624 }
4625 else
4626 {
4627 rel_tag = elfcpp::DT_RELAENT;
4628 if (size == 32)
4629 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4630 else if (size == 64)
4631 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4632 else
4633 gold_unreachable();
4634 }
4635 odyn->add_constant(rel_tag, rel_size);
4636
4637 if (parameters->options().combreloc() && have_dyn_rel)
4638 {
4639 size_t c = dyn_rel->relative_reloc_count();
4640 if (c > 0)
4641 odyn->add_constant((use_rel
4642 ? elfcpp::DT_RELCOUNT
4643 : elfcpp::DT_RELACOUNT),
4644 c);
4645 }
4646 }
4647
4648 if (add_debug && !parameters->options().shared())
4649 {
4650 // The value of the DT_DEBUG tag is filled in by the dynamic
4651 // linker at run time, and used by the debugger.
4652 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4653 }
4654 }
4655
4656 // Finish the .dynamic section and PT_DYNAMIC segment.
4657
4658 void
4659 Layout::finish_dynamic_section(const Input_objects* input_objects,
4660 const Symbol_table* symtab)
4661 {
4662 if (!this->script_options_->saw_phdrs_clause()
4663 && this->dynamic_section_ != NULL)
4664 {
4665 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4666 (elfcpp::PF_R
4667 | elfcpp::PF_W));
4668 oseg->add_output_section_to_nonload(this->dynamic_section_,
4669 elfcpp::PF_R | elfcpp::PF_W);
4670 }
4671
4672 Output_data_dynamic* const odyn = this->dynamic_data_;
4673 if (odyn == NULL)
4674 return;
4675
4676 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4677 p != input_objects->dynobj_end();
4678 ++p)
4679 {
4680 if (!(*p)->is_needed() && (*p)->as_needed())
4681 {
4682 // This dynamic object was linked with --as-needed, but it
4683 // is not needed.
4684 continue;
4685 }
4686
4687 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4688 }
4689
4690 if (parameters->options().shared())
4691 {
4692 const char* soname = parameters->options().soname();
4693 if (soname != NULL)
4694 odyn->add_string(elfcpp::DT_SONAME, soname);
4695 }
4696
4697 Symbol* sym = symtab->lookup(parameters->options().init());
4698 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4699 odyn->add_symbol(elfcpp::DT_INIT, sym);
4700
4701 sym = symtab->lookup(parameters->options().fini());
4702 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4703 odyn->add_symbol(elfcpp::DT_FINI, sym);
4704
4705 // Look for .init_array, .preinit_array and .fini_array by checking
4706 // section types.
4707 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4708 p != this->section_list_.end();
4709 ++p)
4710 switch((*p)->type())
4711 {
4712 case elfcpp::SHT_FINI_ARRAY:
4713 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4714 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4715 break;
4716 case elfcpp::SHT_INIT_ARRAY:
4717 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4718 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4719 break;
4720 case elfcpp::SHT_PREINIT_ARRAY:
4721 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4722 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4723 break;
4724 default:
4725 break;
4726 }
4727
4728 // Add a DT_RPATH entry if needed.
4729 const General_options::Dir_list& rpath(parameters->options().rpath());
4730 if (!rpath.empty())
4731 {
4732 std::string rpath_val;
4733 for (General_options::Dir_list::const_iterator p = rpath.begin();
4734 p != rpath.end();
4735 ++p)
4736 {
4737 if (rpath_val.empty())
4738 rpath_val = p->name();
4739 else
4740 {
4741 // Eliminate duplicates.
4742 General_options::Dir_list::const_iterator q;
4743 for (q = rpath.begin(); q != p; ++q)
4744 if (q->name() == p->name())
4745 break;
4746 if (q == p)
4747 {
4748 rpath_val += ':';
4749 rpath_val += p->name();
4750 }
4751 }
4752 }
4753
4754 if (!parameters->options().enable_new_dtags())
4755 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4756 else
4757 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4758 }
4759
4760 // Look for text segments that have dynamic relocations.
4761 bool have_textrel = false;
4762 if (!this->script_options_->saw_sections_clause())
4763 {
4764 for (Segment_list::const_iterator p = this->segment_list_.begin();
4765 p != this->segment_list_.end();
4766 ++p)
4767 {
4768 if ((*p)->type() == elfcpp::PT_LOAD
4769 && ((*p)->flags() & elfcpp::PF_W) == 0
4770 && (*p)->has_dynamic_reloc())
4771 {
4772 have_textrel = true;
4773 break;
4774 }
4775 }
4776 }
4777 else
4778 {
4779 // We don't know the section -> segment mapping, so we are
4780 // conservative and just look for readonly sections with
4781 // relocations. If those sections wind up in writable segments,
4782 // then we have created an unnecessary DT_TEXTREL entry.
4783 for (Section_list::const_iterator p = this->section_list_.begin();
4784 p != this->section_list_.end();
4785 ++p)
4786 {
4787 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4788 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4789 && (*p)->has_dynamic_reloc())
4790 {
4791 have_textrel = true;
4792 break;
4793 }
4794 }
4795 }
4796
4797 if (parameters->options().filter() != NULL)
4798 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4799 if (parameters->options().any_auxiliary())
4800 {
4801 for (options::String_set::const_iterator p =
4802 parameters->options().auxiliary_begin();
4803 p != parameters->options().auxiliary_end();
4804 ++p)
4805 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4806 }
4807
4808 // Add a DT_FLAGS entry if necessary.
4809 unsigned int flags = 0;
4810 if (have_textrel)
4811 {
4812 // Add a DT_TEXTREL for compatibility with older loaders.
4813 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4814 flags |= elfcpp::DF_TEXTREL;
4815
4816 if (parameters->options().text())
4817 gold_error(_("read-only segment has dynamic relocations"));
4818 else if (parameters->options().warn_shared_textrel()
4819 && parameters->options().shared())
4820 gold_warning(_("shared library text segment is not shareable"));
4821 }
4822 if (parameters->options().shared() && this->has_static_tls())
4823 flags |= elfcpp::DF_STATIC_TLS;
4824 if (parameters->options().origin())
4825 flags |= elfcpp::DF_ORIGIN;
4826 if (parameters->options().Bsymbolic())
4827 {
4828 flags |= elfcpp::DF_SYMBOLIC;
4829 // Add DT_SYMBOLIC for compatibility with older loaders.
4830 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4831 }
4832 if (parameters->options().now())
4833 flags |= elfcpp::DF_BIND_NOW;
4834 if (flags != 0)
4835 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4836
4837 flags = 0;
4838 if (parameters->options().initfirst())
4839 flags |= elfcpp::DF_1_INITFIRST;
4840 if (parameters->options().interpose())
4841 flags |= elfcpp::DF_1_INTERPOSE;
4842 if (parameters->options().loadfltr())
4843 flags |= elfcpp::DF_1_LOADFLTR;
4844 if (parameters->options().nodefaultlib())
4845 flags |= elfcpp::DF_1_NODEFLIB;
4846 if (parameters->options().nodelete())
4847 flags |= elfcpp::DF_1_NODELETE;
4848 if (parameters->options().nodlopen())
4849 flags |= elfcpp::DF_1_NOOPEN;
4850 if (parameters->options().nodump())
4851 flags |= elfcpp::DF_1_NODUMP;
4852 if (!parameters->options().shared())
4853 flags &= ~(elfcpp::DF_1_INITFIRST
4854 | elfcpp::DF_1_NODELETE
4855 | elfcpp::DF_1_NOOPEN);
4856 if (parameters->options().origin())
4857 flags |= elfcpp::DF_1_ORIGIN;
4858 if (parameters->options().now())
4859 flags |= elfcpp::DF_1_NOW;
4860 if (parameters->options().Bgroup())
4861 flags |= elfcpp::DF_1_GROUP;
4862 if (flags != 0)
4863 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4864 }
4865
4866 // Set the size of the _DYNAMIC symbol table to be the size of the
4867 // dynamic data.
4868
4869 void
4870 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4871 {
4872 Output_data_dynamic* const odyn = this->dynamic_data_;
4873 if (odyn == NULL)
4874 return;
4875 odyn->finalize_data_size();
4876 if (this->dynamic_symbol_ == NULL)
4877 return;
4878 off_t data_size = odyn->data_size();
4879 const int size = parameters->target().get_size();
4880 if (size == 32)
4881 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4882 else if (size == 64)
4883 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4884 else
4885 gold_unreachable();
4886 }
4887
4888 // The mapping of input section name prefixes to output section names.
4889 // In some cases one prefix is itself a prefix of another prefix; in
4890 // such a case the longer prefix must come first. These prefixes are
4891 // based on the GNU linker default ELF linker script.
4892
4893 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4894 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4895 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4896 {
4897 MAPPING_INIT(".text.", ".text"),
4898 MAPPING_INIT(".rodata.", ".rodata"),
4899 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4900 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4901 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4902 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4903 MAPPING_INIT(".data.", ".data"),
4904 MAPPING_INIT(".bss.", ".bss"),
4905 MAPPING_INIT(".tdata.", ".tdata"),
4906 MAPPING_INIT(".tbss.", ".tbss"),
4907 MAPPING_INIT(".init_array.", ".init_array"),
4908 MAPPING_INIT(".fini_array.", ".fini_array"),
4909 MAPPING_INIT(".sdata.", ".sdata"),
4910 MAPPING_INIT(".sbss.", ".sbss"),
4911 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4912 // differently depending on whether it is creating a shared library.
4913 MAPPING_INIT(".sdata2.", ".sdata"),
4914 MAPPING_INIT(".sbss2.", ".sbss"),
4915 MAPPING_INIT(".lrodata.", ".lrodata"),
4916 MAPPING_INIT(".ldata.", ".ldata"),
4917 MAPPING_INIT(".lbss.", ".lbss"),
4918 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4919 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4920 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4921 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4922 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4923 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4924 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4925 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4926 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4927 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4928 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4929 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4930 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4931 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4932 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4933 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4934 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4935 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4936 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4937 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4938 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4939 };
4940 #undef MAPPING_INIT
4941 #undef MAPPING_INIT_EXACT
4942
4943 const int Layout::section_name_mapping_count =
4944 (sizeof(Layout::section_name_mapping)
4945 / sizeof(Layout::section_name_mapping[0]));
4946
4947 // Choose the output section name to use given an input section name.
4948 // Set *PLEN to the length of the name. *PLEN is initialized to the
4949 // length of NAME.
4950
4951 const char*
4952 Layout::output_section_name(const Relobj* relobj, const char* name,
4953 size_t* plen)
4954 {
4955 // gcc 4.3 generates the following sorts of section names when it
4956 // needs a section name specific to a function:
4957 // .text.FN
4958 // .rodata.FN
4959 // .sdata2.FN
4960 // .data.FN
4961 // .data.rel.FN
4962 // .data.rel.local.FN
4963 // .data.rel.ro.FN
4964 // .data.rel.ro.local.FN
4965 // .sdata.FN
4966 // .bss.FN
4967 // .sbss.FN
4968 // .tdata.FN
4969 // .tbss.FN
4970
4971 // The GNU linker maps all of those to the part before the .FN,
4972 // except that .data.rel.local.FN is mapped to .data, and
4973 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4974 // beginning with .data.rel.ro.local are grouped together.
4975
4976 // For an anonymous namespace, the string FN can contain a '.'.
4977
4978 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4979 // GNU linker maps to .rodata.
4980
4981 // The .data.rel.ro sections are used with -z relro. The sections
4982 // are recognized by name. We use the same names that the GNU
4983 // linker does for these sections.
4984
4985 // It is hard to handle this in a principled way, so we don't even
4986 // try. We use a table of mappings. If the input section name is
4987 // not found in the table, we simply use it as the output section
4988 // name.
4989
4990 const Section_name_mapping* psnm = section_name_mapping;
4991 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4992 {
4993 if (psnm->fromlen > 0)
4994 {
4995 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4996 {
4997 *plen = psnm->tolen;
4998 return psnm->to;
4999 }
5000 }
5001 else
5002 {
5003 if (strcmp(name, psnm->from) == 0)
5004 {
5005 *plen = psnm->tolen;
5006 return psnm->to;
5007 }
5008 }
5009 }
5010
5011 // As an additional complication, .ctors sections are output in
5012 // either .ctors or .init_array sections, and .dtors sections are
5013 // output in either .dtors or .fini_array sections.
5014 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5015 {
5016 if (parameters->options().ctors_in_init_array())
5017 {
5018 *plen = 11;
5019 return name[1] == 'c' ? ".init_array" : ".fini_array";
5020 }
5021 else
5022 {
5023 *plen = 6;
5024 return name[1] == 'c' ? ".ctors" : ".dtors";
5025 }
5026 }
5027 if (parameters->options().ctors_in_init_array()
5028 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5029 {
5030 // To make .init_array/.fini_array work with gcc we must exclude
5031 // .ctors and .dtors sections from the crtbegin and crtend
5032 // files.
5033 if (relobj == NULL
5034 || (!Layout::match_file_name(relobj, "crtbegin")
5035 && !Layout::match_file_name(relobj, "crtend")))
5036 {
5037 *plen = 11;
5038 return name[1] == 'c' ? ".init_array" : ".fini_array";
5039 }
5040 }
5041
5042 return name;
5043 }
5044
5045 // Return true if RELOBJ is an input file whose base name matches
5046 // FILE_NAME. The base name must have an extension of ".o", and must
5047 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5048 // to match crtbegin.o as well as crtbeginS.o without getting confused
5049 // by other possibilities. Overall matching the file name this way is
5050 // a dreadful hack, but the GNU linker does it in order to better
5051 // support gcc, and we need to be compatible.
5052
5053 bool
5054 Layout::match_file_name(const Relobj* relobj, const char* match)
5055 {
5056 const std::string& file_name(relobj->name());
5057 const char* base_name = lbasename(file_name.c_str());
5058 size_t match_len = strlen(match);
5059 if (strncmp(base_name, match, match_len) != 0)
5060 return false;
5061 size_t base_len = strlen(base_name);
5062 if (base_len != match_len + 2 && base_len != match_len + 3)
5063 return false;
5064 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5065 }
5066
5067 // Check if a comdat group or .gnu.linkonce section with the given
5068 // NAME is selected for the link. If there is already a section,
5069 // *KEPT_SECTION is set to point to the existing section and the
5070 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5071 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5072 // *KEPT_SECTION is set to the internal copy and the function returns
5073 // true.
5074
5075 bool
5076 Layout::find_or_add_kept_section(const std::string& name,
5077 Relobj* object,
5078 unsigned int shndx,
5079 bool is_comdat,
5080 bool is_group_name,
5081 Kept_section** kept_section)
5082 {
5083 // It's normal to see a couple of entries here, for the x86 thunk
5084 // sections. If we see more than a few, we're linking a C++
5085 // program, and we resize to get more space to minimize rehashing.
5086 if (this->signatures_.size() > 4
5087 && !this->resized_signatures_)
5088 {
5089 reserve_unordered_map(&this->signatures_,
5090 this->number_of_input_files_ * 64);
5091 this->resized_signatures_ = true;
5092 }
5093
5094 Kept_section candidate;
5095 std::pair<Signatures::iterator, bool> ins =
5096 this->signatures_.insert(std::make_pair(name, candidate));
5097
5098 if (kept_section != NULL)
5099 *kept_section = &ins.first->second;
5100 if (ins.second)
5101 {
5102 // This is the first time we've seen this signature.
5103 ins.first->second.set_object(object);
5104 ins.first->second.set_shndx(shndx);
5105 if (is_comdat)
5106 ins.first->second.set_is_comdat();
5107 if (is_group_name)
5108 ins.first->second.set_is_group_name();
5109 return true;
5110 }
5111
5112 // We have already seen this signature.
5113
5114 if (ins.first->second.is_group_name())
5115 {
5116 // We've already seen a real section group with this signature.
5117 // If the kept group is from a plugin object, and we're in the
5118 // replacement phase, accept the new one as a replacement.
5119 if (ins.first->second.object() == NULL
5120 && parameters->options().plugins()->in_replacement_phase())
5121 {
5122 ins.first->second.set_object(object);
5123 ins.first->second.set_shndx(shndx);
5124 return true;
5125 }
5126 return false;
5127 }
5128 else if (is_group_name)
5129 {
5130 // This is a real section group, and we've already seen a
5131 // linkonce section with this signature. Record that we've seen
5132 // a section group, and don't include this section group.
5133 ins.first->second.set_is_group_name();
5134 return false;
5135 }
5136 else
5137 {
5138 // We've already seen a linkonce section and this is a linkonce
5139 // section. These don't block each other--this may be the same
5140 // symbol name with different section types.
5141 return true;
5142 }
5143 }
5144
5145 // Store the allocated sections into the section list.
5146
5147 void
5148 Layout::get_allocated_sections(Section_list* section_list) const
5149 {
5150 for (Section_list::const_iterator p = this->section_list_.begin();
5151 p != this->section_list_.end();
5152 ++p)
5153 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5154 section_list->push_back(*p);
5155 }
5156
5157 // Store the executable sections into the section list.
5158
5159 void
5160 Layout::get_executable_sections(Section_list* section_list) const
5161 {
5162 for (Section_list::const_iterator p = this->section_list_.begin();
5163 p != this->section_list_.end();
5164 ++p)
5165 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5166 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5167 section_list->push_back(*p);
5168 }
5169
5170 // Create an output segment.
5171
5172 Output_segment*
5173 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5174 {
5175 gold_assert(!parameters->options().relocatable());
5176 Output_segment* oseg = new Output_segment(type, flags);
5177 this->segment_list_.push_back(oseg);
5178
5179 if (type == elfcpp::PT_TLS)
5180 this->tls_segment_ = oseg;
5181 else if (type == elfcpp::PT_GNU_RELRO)
5182 this->relro_segment_ = oseg;
5183 else if (type == elfcpp::PT_INTERP)
5184 this->interp_segment_ = oseg;
5185
5186 return oseg;
5187 }
5188
5189 // Return the file offset of the normal symbol table.
5190
5191 off_t
5192 Layout::symtab_section_offset() const
5193 {
5194 if (this->symtab_section_ != NULL)
5195 return this->symtab_section_->offset();
5196 return 0;
5197 }
5198
5199 // Return the section index of the normal symbol table. It may have
5200 // been stripped by the -s/--strip-all option.
5201
5202 unsigned int
5203 Layout::symtab_section_shndx() const
5204 {
5205 if (this->symtab_section_ != NULL)
5206 return this->symtab_section_->out_shndx();
5207 return 0;
5208 }
5209
5210 // Write out the Output_sections. Most won't have anything to write,
5211 // since most of the data will come from input sections which are
5212 // handled elsewhere. But some Output_sections do have Output_data.
5213
5214 void
5215 Layout::write_output_sections(Output_file* of) const
5216 {
5217 for (Section_list::const_iterator p = this->section_list_.begin();
5218 p != this->section_list_.end();
5219 ++p)
5220 {
5221 if (!(*p)->after_input_sections())
5222 (*p)->write(of);
5223 }
5224 }
5225
5226 // Write out data not associated with a section or the symbol table.
5227
5228 void
5229 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5230 {
5231 if (!parameters->options().strip_all())
5232 {
5233 const Output_section* symtab_section = this->symtab_section_;
5234 for (Section_list::const_iterator p = this->section_list_.begin();
5235 p != this->section_list_.end();
5236 ++p)
5237 {
5238 if ((*p)->needs_symtab_index())
5239 {
5240 gold_assert(symtab_section != NULL);
5241 unsigned int index = (*p)->symtab_index();
5242 gold_assert(index > 0 && index != -1U);
5243 off_t off = (symtab_section->offset()
5244 + index * symtab_section->entsize());
5245 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5246 }
5247 }
5248 }
5249
5250 const Output_section* dynsym_section = this->dynsym_section_;
5251 for (Section_list::const_iterator p = this->section_list_.begin();
5252 p != this->section_list_.end();
5253 ++p)
5254 {
5255 if ((*p)->needs_dynsym_index())
5256 {
5257 gold_assert(dynsym_section != NULL);
5258 unsigned int index = (*p)->dynsym_index();
5259 gold_assert(index > 0 && index != -1U);
5260 off_t off = (dynsym_section->offset()
5261 + index * dynsym_section->entsize());
5262 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5263 }
5264 }
5265
5266 // Write out the Output_data which are not in an Output_section.
5267 for (Data_list::const_iterator p = this->special_output_list_.begin();
5268 p != this->special_output_list_.end();
5269 ++p)
5270 (*p)->write(of);
5271 }
5272
5273 // Write out the Output_sections which can only be written after the
5274 // input sections are complete.
5275
5276 void
5277 Layout::write_sections_after_input_sections(Output_file* of)
5278 {
5279 // Determine the final section offsets, and thus the final output
5280 // file size. Note we finalize the .shstrab last, to allow the
5281 // after_input_section sections to modify their section-names before
5282 // writing.
5283 if (this->any_postprocessing_sections_)
5284 {
5285 off_t off = this->output_file_size_;
5286 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5287
5288 // Now that we've finalized the names, we can finalize the shstrab.
5289 off =
5290 this->set_section_offsets(off,
5291 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5292
5293 if (off > this->output_file_size_)
5294 {
5295 of->resize(off);
5296 this->output_file_size_ = off;
5297 }
5298 }
5299
5300 for (Section_list::const_iterator p = this->section_list_.begin();
5301 p != this->section_list_.end();
5302 ++p)
5303 {
5304 if ((*p)->after_input_sections())
5305 (*p)->write(of);
5306 }
5307
5308 this->section_headers_->write(of);
5309 }
5310
5311 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5312 // or as a "tree" where each chunk of the string is hashed and then those
5313 // hashes are put into a (much smaller) string which is hashed with sha1.
5314 // We compute a checksum over the entire file because that is simplest.
5315
5316 Task_token*
5317 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5318 Output_file* of)
5319 {
5320 const size_t filesize = (this->output_file_size() <= 0 ? 0
5321 : static_cast<size_t>(this->output_file_size()));
5322 if (this->build_id_note_ != NULL
5323 && strcmp(parameters->options().build_id(), "tree") == 0
5324 && parameters->options().build_id_chunk_size_for_treehash() > 0
5325 && filesize > 0
5326 && (filesize >=
5327 parameters->options().build_id_min_file_size_for_treehash()))
5328 {
5329 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5330 const size_t chunk_size =
5331 parameters->options().build_id_chunk_size_for_treehash();
5332 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5333 Task_token* post_hash_tasks_blocker = new Task_token(true);
5334 post_hash_tasks_blocker->add_blockers(num_hashes);
5335 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5336 const unsigned char* src = of->get_input_view(0, filesize);
5337 this->input_view_ = src;
5338 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5339 this->array_of_hashes_ = dst;
5340 for (size_t i = 0, src_offset = 0; i < num_hashes;
5341 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5342 {
5343 size_t size = std::min(chunk_size, filesize - src_offset);
5344 workqueue->queue(new Hash_task(src + src_offset,
5345 size,
5346 dst,
5347 build_id_blocker,
5348 post_hash_tasks_blocker));
5349 }
5350 return post_hash_tasks_blocker;
5351 }
5352 return build_id_blocker;
5353 }
5354
5355 // If a tree-style build ID was requested, the parallel part of that computation
5356 // is already done, and the final hash-of-hashes is computed here. For other
5357 // types of build IDs, all the work is done here.
5358
5359 void
5360 Layout::write_build_id(Output_file* of) const
5361 {
5362 if (this->build_id_note_ == NULL)
5363 return;
5364
5365 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5366 this->build_id_note_->data_size());
5367
5368 if (this->array_of_hashes_ == NULL)
5369 {
5370 const size_t output_file_size = this->output_file_size();
5371 const unsigned char* iv = of->get_input_view(0, output_file_size);
5372 const char* style = parameters->options().build_id();
5373
5374 // If we get here with style == "tree" then the output must be
5375 // too small for chunking, and we use SHA-1 in that case.
5376 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5377 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5378 else if (strcmp(style, "md5") == 0)
5379 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5380 else
5381 gold_unreachable();
5382
5383 of->free_input_view(0, output_file_size, iv);
5384 }
5385 else
5386 {
5387 // Non-overlapping substrings of the output file have been hashed.
5388 // Compute SHA-1 hash of the hashes.
5389 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5390 this->size_of_array_of_hashes_, ov);
5391 delete[] this->array_of_hashes_;
5392 of->free_input_view(0, this->output_file_size(), this->input_view_);
5393 }
5394
5395 of->write_output_view(this->build_id_note_->offset(),
5396 this->build_id_note_->data_size(),
5397 ov);
5398 }
5399
5400 // Write out a binary file. This is called after the link is
5401 // complete. IN is the temporary output file we used to generate the
5402 // ELF code. We simply walk through the segments, read them from
5403 // their file offset in IN, and write them to their load address in
5404 // the output file. FIXME: with a bit more work, we could support
5405 // S-records and/or Intel hex format here.
5406
5407 void
5408 Layout::write_binary(Output_file* in) const
5409 {
5410 gold_assert(parameters->options().oformat_enum()
5411 == General_options::OBJECT_FORMAT_BINARY);
5412
5413 // Get the size of the binary file.
5414 uint64_t max_load_address = 0;
5415 for (Segment_list::const_iterator p = this->segment_list_.begin();
5416 p != this->segment_list_.end();
5417 ++p)
5418 {
5419 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5420 {
5421 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5422 if (max_paddr > max_load_address)
5423 max_load_address = max_paddr;
5424 }
5425 }
5426
5427 Output_file out(parameters->options().output_file_name());
5428 out.open(max_load_address);
5429
5430 for (Segment_list::const_iterator p = this->segment_list_.begin();
5431 p != this->segment_list_.end();
5432 ++p)
5433 {
5434 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5435 {
5436 const unsigned char* vin = in->get_input_view((*p)->offset(),
5437 (*p)->filesz());
5438 unsigned char* vout = out.get_output_view((*p)->paddr(),
5439 (*p)->filesz());
5440 memcpy(vout, vin, (*p)->filesz());
5441 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5442 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5443 }
5444 }
5445
5446 out.close();
5447 }
5448
5449 // Print the output sections to the map file.
5450
5451 void
5452 Layout::print_to_mapfile(Mapfile* mapfile) const
5453 {
5454 for (Segment_list::const_iterator p = this->segment_list_.begin();
5455 p != this->segment_list_.end();
5456 ++p)
5457 (*p)->print_sections_to_mapfile(mapfile);
5458 }
5459
5460 // Print statistical information to stderr. This is used for --stats.
5461
5462 void
5463 Layout::print_stats() const
5464 {
5465 this->namepool_.print_stats("section name pool");
5466 this->sympool_.print_stats("output symbol name pool");
5467 this->dynpool_.print_stats("dynamic name pool");
5468
5469 for (Section_list::const_iterator p = this->section_list_.begin();
5470 p != this->section_list_.end();
5471 ++p)
5472 (*p)->print_merge_stats();
5473 }
5474
5475 // Write_sections_task methods.
5476
5477 // We can always run this task.
5478
5479 Task_token*
5480 Write_sections_task::is_runnable()
5481 {
5482 return NULL;
5483 }
5484
5485 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5486 // when finished.
5487
5488 void
5489 Write_sections_task::locks(Task_locker* tl)
5490 {
5491 tl->add(this, this->output_sections_blocker_);
5492 tl->add(this, this->final_blocker_);
5493 }
5494
5495 // Run the task--write out the data.
5496
5497 void
5498 Write_sections_task::run(Workqueue*)
5499 {
5500 this->layout_->write_output_sections(this->of_);
5501 }
5502
5503 // Write_data_task methods.
5504
5505 // We can always run this task.
5506
5507 Task_token*
5508 Write_data_task::is_runnable()
5509 {
5510 return NULL;
5511 }
5512
5513 // We need to unlock FINAL_BLOCKER when finished.
5514
5515 void
5516 Write_data_task::locks(Task_locker* tl)
5517 {
5518 tl->add(this, this->final_blocker_);
5519 }
5520
5521 // Run the task--write out the data.
5522
5523 void
5524 Write_data_task::run(Workqueue*)
5525 {
5526 this->layout_->write_data(this->symtab_, this->of_);
5527 }
5528
5529 // Write_symbols_task methods.
5530
5531 // We can always run this task.
5532
5533 Task_token*
5534 Write_symbols_task::is_runnable()
5535 {
5536 return NULL;
5537 }
5538
5539 // We need to unlock FINAL_BLOCKER when finished.
5540
5541 void
5542 Write_symbols_task::locks(Task_locker* tl)
5543 {
5544 tl->add(this, this->final_blocker_);
5545 }
5546
5547 // Run the task--write out the symbols.
5548
5549 void
5550 Write_symbols_task::run(Workqueue*)
5551 {
5552 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5553 this->layout_->symtab_xindex(),
5554 this->layout_->dynsym_xindex(), this->of_);
5555 }
5556
5557 // Write_after_input_sections_task methods.
5558
5559 // We can only run this task after the input sections have completed.
5560
5561 Task_token*
5562 Write_after_input_sections_task::is_runnable()
5563 {
5564 if (this->input_sections_blocker_->is_blocked())
5565 return this->input_sections_blocker_;
5566 return NULL;
5567 }
5568
5569 // We need to unlock FINAL_BLOCKER when finished.
5570
5571 void
5572 Write_after_input_sections_task::locks(Task_locker* tl)
5573 {
5574 tl->add(this, this->final_blocker_);
5575 }
5576
5577 // Run the task.
5578
5579 void
5580 Write_after_input_sections_task::run(Workqueue*)
5581 {
5582 this->layout_->write_sections_after_input_sections(this->of_);
5583 }
5584
5585 // Close_task_runner methods.
5586
5587 // Finish up the build ID computation, if necessary, and write a binary file,
5588 // if necessary. Then close the output file.
5589
5590 void
5591 Close_task_runner::run(Workqueue*, const Task*)
5592 {
5593 // At this point the multi-threaded part of the build ID computation,
5594 // if any, is done. See queue_build_id_tasks().
5595 this->layout_->write_build_id(this->of_);
5596
5597 // If we've been asked to create a binary file, we do so here.
5598 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5599 this->layout_->write_binary(this->of_);
5600
5601 this->of_->close();
5602 }
5603
5604 // Instantiate the templates we need. We could use the configure
5605 // script to restrict this to only the ones for implemented targets.
5606
5607 #ifdef HAVE_TARGET_32_LITTLE
5608 template
5609 Output_section*
5610 Layout::init_fixed_output_section<32, false>(
5611 const char* name,
5612 elfcpp::Shdr<32, false>& shdr);
5613 #endif
5614
5615 #ifdef HAVE_TARGET_32_BIG
5616 template
5617 Output_section*
5618 Layout::init_fixed_output_section<32, true>(
5619 const char* name,
5620 elfcpp::Shdr<32, true>& shdr);
5621 #endif
5622
5623 #ifdef HAVE_TARGET_64_LITTLE
5624 template
5625 Output_section*
5626 Layout::init_fixed_output_section<64, false>(
5627 const char* name,
5628 elfcpp::Shdr<64, false>& shdr);
5629 #endif
5630
5631 #ifdef HAVE_TARGET_64_BIG
5632 template
5633 Output_section*
5634 Layout::init_fixed_output_section<64, true>(
5635 const char* name,
5636 elfcpp::Shdr<64, true>& shdr);
5637 #endif
5638
5639 #ifdef HAVE_TARGET_32_LITTLE
5640 template
5641 Output_section*
5642 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5643 unsigned int shndx,
5644 const char* name,
5645 const elfcpp::Shdr<32, false>& shdr,
5646 unsigned int, unsigned int, off_t*);
5647 #endif
5648
5649 #ifdef HAVE_TARGET_32_BIG
5650 template
5651 Output_section*
5652 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5653 unsigned int shndx,
5654 const char* name,
5655 const elfcpp::Shdr<32, true>& shdr,
5656 unsigned int, unsigned int, off_t*);
5657 #endif
5658
5659 #ifdef HAVE_TARGET_64_LITTLE
5660 template
5661 Output_section*
5662 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5663 unsigned int shndx,
5664 const char* name,
5665 const elfcpp::Shdr<64, false>& shdr,
5666 unsigned int, unsigned int, off_t*);
5667 #endif
5668
5669 #ifdef HAVE_TARGET_64_BIG
5670 template
5671 Output_section*
5672 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5673 unsigned int shndx,
5674 const char* name,
5675 const elfcpp::Shdr<64, true>& shdr,
5676 unsigned int, unsigned int, off_t*);
5677 #endif
5678
5679 #ifdef HAVE_TARGET_32_LITTLE
5680 template
5681 Output_section*
5682 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5683 unsigned int reloc_shndx,
5684 const elfcpp::Shdr<32, false>& shdr,
5685 Output_section* data_section,
5686 Relocatable_relocs* rr);
5687 #endif
5688
5689 #ifdef HAVE_TARGET_32_BIG
5690 template
5691 Output_section*
5692 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5693 unsigned int reloc_shndx,
5694 const elfcpp::Shdr<32, true>& shdr,
5695 Output_section* data_section,
5696 Relocatable_relocs* rr);
5697 #endif
5698
5699 #ifdef HAVE_TARGET_64_LITTLE
5700 template
5701 Output_section*
5702 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5703 unsigned int reloc_shndx,
5704 const elfcpp::Shdr<64, false>& shdr,
5705 Output_section* data_section,
5706 Relocatable_relocs* rr);
5707 #endif
5708
5709 #ifdef HAVE_TARGET_64_BIG
5710 template
5711 Output_section*
5712 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5713 unsigned int reloc_shndx,
5714 const elfcpp::Shdr<64, true>& shdr,
5715 Output_section* data_section,
5716 Relocatable_relocs* rr);
5717 #endif
5718
5719 #ifdef HAVE_TARGET_32_LITTLE
5720 template
5721 void
5722 Layout::layout_group<32, false>(Symbol_table* symtab,
5723 Sized_relobj_file<32, false>* object,
5724 unsigned int,
5725 const char* group_section_name,
5726 const char* signature,
5727 const elfcpp::Shdr<32, false>& shdr,
5728 elfcpp::Elf_Word flags,
5729 std::vector<unsigned int>* shndxes);
5730 #endif
5731
5732 #ifdef HAVE_TARGET_32_BIG
5733 template
5734 void
5735 Layout::layout_group<32, true>(Symbol_table* symtab,
5736 Sized_relobj_file<32, true>* object,
5737 unsigned int,
5738 const char* group_section_name,
5739 const char* signature,
5740 const elfcpp::Shdr<32, true>& shdr,
5741 elfcpp::Elf_Word flags,
5742 std::vector<unsigned int>* shndxes);
5743 #endif
5744
5745 #ifdef HAVE_TARGET_64_LITTLE
5746 template
5747 void
5748 Layout::layout_group<64, false>(Symbol_table* symtab,
5749 Sized_relobj_file<64, false>* object,
5750 unsigned int,
5751 const char* group_section_name,
5752 const char* signature,
5753 const elfcpp::Shdr<64, false>& shdr,
5754 elfcpp::Elf_Word flags,
5755 std::vector<unsigned int>* shndxes);
5756 #endif
5757
5758 #ifdef HAVE_TARGET_64_BIG
5759 template
5760 void
5761 Layout::layout_group<64, true>(Symbol_table* symtab,
5762 Sized_relobj_file<64, true>* object,
5763 unsigned int,
5764 const char* group_section_name,
5765 const char* signature,
5766 const elfcpp::Shdr<64, true>& shdr,
5767 elfcpp::Elf_Word flags,
5768 std::vector<unsigned int>* shndxes);
5769 #endif
5770
5771 #ifdef HAVE_TARGET_32_LITTLE
5772 template
5773 Output_section*
5774 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5775 const unsigned char* symbols,
5776 off_t symbols_size,
5777 const unsigned char* symbol_names,
5778 off_t symbol_names_size,
5779 unsigned int shndx,
5780 const elfcpp::Shdr<32, false>& shdr,
5781 unsigned int reloc_shndx,
5782 unsigned int reloc_type,
5783 off_t* off);
5784 #endif
5785
5786 #ifdef HAVE_TARGET_32_BIG
5787 template
5788 Output_section*
5789 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5790 const unsigned char* symbols,
5791 off_t symbols_size,
5792 const unsigned char* symbol_names,
5793 off_t symbol_names_size,
5794 unsigned int shndx,
5795 const elfcpp::Shdr<32, true>& shdr,
5796 unsigned int reloc_shndx,
5797 unsigned int reloc_type,
5798 off_t* off);
5799 #endif
5800
5801 #ifdef HAVE_TARGET_64_LITTLE
5802 template
5803 Output_section*
5804 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5805 const unsigned char* symbols,
5806 off_t symbols_size,
5807 const unsigned char* symbol_names,
5808 off_t symbol_names_size,
5809 unsigned int shndx,
5810 const elfcpp::Shdr<64, false>& shdr,
5811 unsigned int reloc_shndx,
5812 unsigned int reloc_type,
5813 off_t* off);
5814 #endif
5815
5816 #ifdef HAVE_TARGET_64_BIG
5817 template
5818 Output_section*
5819 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5820 const unsigned char* symbols,
5821 off_t symbols_size,
5822 const unsigned char* symbol_names,
5823 off_t symbol_names_size,
5824 unsigned int shndx,
5825 const elfcpp::Shdr<64, true>& shdr,
5826 unsigned int reloc_shndx,
5827 unsigned int reloc_type,
5828 off_t* off);
5829 #endif
5830
5831 #ifdef HAVE_TARGET_32_LITTLE
5832 template
5833 void
5834 Layout::add_to_gdb_index(bool is_type_unit,
5835 Sized_relobj<32, false>* object,
5836 const unsigned char* symbols,
5837 off_t symbols_size,
5838 unsigned int shndx,
5839 unsigned int reloc_shndx,
5840 unsigned int reloc_type);
5841 #endif
5842
5843 #ifdef HAVE_TARGET_32_BIG
5844 template
5845 void
5846 Layout::add_to_gdb_index(bool is_type_unit,
5847 Sized_relobj<32, true>* object,
5848 const unsigned char* symbols,
5849 off_t symbols_size,
5850 unsigned int shndx,
5851 unsigned int reloc_shndx,
5852 unsigned int reloc_type);
5853 #endif
5854
5855 #ifdef HAVE_TARGET_64_LITTLE
5856 template
5857 void
5858 Layout::add_to_gdb_index(bool is_type_unit,
5859 Sized_relobj<64, false>* object,
5860 const unsigned char* symbols,
5861 off_t symbols_size,
5862 unsigned int shndx,
5863 unsigned int reloc_shndx,
5864 unsigned int reloc_type);
5865 #endif
5866
5867 #ifdef HAVE_TARGET_64_BIG
5868 template
5869 void
5870 Layout::add_to_gdb_index(bool is_type_unit,
5871 Sized_relobj<64, true>* object,
5872 const unsigned char* symbols,
5873 off_t symbols_size,
5874 unsigned int shndx,
5875 unsigned int reloc_shndx,
5876 unsigned int reloc_type);
5877 #endif
5878
5879 } // End namespace gold.