Automatic date update in version.in
[binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2022 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41 #ifdef HAVE_JANSSON
42 #include <jansson.h>
43 #endif
44
45 #include "parameters.h"
46 #include "options.h"
47 #include "mapfile.h"
48 #include "script.h"
49 #include "script-sections.h"
50 #include "output.h"
51 #include "symtab.h"
52 #include "dynobj.h"
53 #include "ehframe.h"
54 #include "gdb-index.h"
55 #include "compressed_output.h"
56 #include "reduced_debug_output.h"
57 #include "object.h"
58 #include "reloc.h"
59 #include "descriptors.h"
60 #include "plugin.h"
61 #include "incremental.h"
62 #include "layout.h"
63
64 namespace gold
65 {
66
67 // Class Free_list.
68
69 // The total number of free lists used.
70 unsigned int Free_list::num_lists = 0;
71 // The total number of free list nodes used.
72 unsigned int Free_list::num_nodes = 0;
73 // The total number of calls to Free_list::remove.
74 unsigned int Free_list::num_removes = 0;
75 // The total number of nodes visited during calls to Free_list::remove.
76 unsigned int Free_list::num_remove_visits = 0;
77 // The total number of calls to Free_list::allocate.
78 unsigned int Free_list::num_allocates = 0;
79 // The total number of nodes visited during calls to Free_list::allocate.
80 unsigned int Free_list::num_allocate_visits = 0;
81
82 // Initialize the free list. Creates a single free list node that
83 // describes the entire region of length LEN. If EXTEND is true,
84 // allocate() is allowed to extend the region beyond its initial
85 // length.
86
87 void
88 Free_list::init(off_t len, bool extend)
89 {
90 this->list_.push_front(Free_list_node(0, len));
91 this->last_remove_ = this->list_.begin();
92 this->extend_ = extend;
93 this->length_ = len;
94 ++Free_list::num_lists;
95 ++Free_list::num_nodes;
96 }
97
98 // Remove a chunk from the free list. Because we start with a single
99 // node that covers the entire section, and remove chunks from it one
100 // at a time, we do not need to coalesce chunks or handle cases that
101 // span more than one free node. We expect to remove chunks from the
102 // free list in order, and we expect to have only a few chunks of free
103 // space left (corresponding to files that have changed since the last
104 // incremental link), so a simple linear list should provide sufficient
105 // performance.
106
107 void
108 Free_list::remove(off_t start, off_t end)
109 {
110 if (start == end)
111 return;
112 gold_assert(start < end);
113
114 ++Free_list::num_removes;
115
116 Iterator p = this->last_remove_;
117 if (p->start_ > start)
118 p = this->list_.begin();
119
120 for (; p != this->list_.end(); ++p)
121 {
122 ++Free_list::num_remove_visits;
123 // Find a node that wholly contains the indicated region.
124 if (p->start_ <= start && p->end_ >= end)
125 {
126 // Case 1: the indicated region spans the whole node.
127 // Add some fuzz to avoid creating tiny free chunks.
128 if (p->start_ + 3 >= start && p->end_ <= end + 3)
129 p = this->list_.erase(p);
130 // Case 2: remove a chunk from the start of the node.
131 else if (p->start_ + 3 >= start)
132 p->start_ = end;
133 // Case 3: remove a chunk from the end of the node.
134 else if (p->end_ <= end + 3)
135 p->end_ = start;
136 // Case 4: remove a chunk from the middle, and split
137 // the node into two.
138 else
139 {
140 Free_list_node newnode(p->start_, start);
141 p->start_ = end;
142 this->list_.insert(p, newnode);
143 ++Free_list::num_nodes;
144 }
145 this->last_remove_ = p;
146 return;
147 }
148 }
149
150 // Did not find a node containing the given chunk. This could happen
151 // because a small chunk was already removed due to the fuzz.
152 gold_debug(DEBUG_INCREMENTAL,
153 "Free_list::remove(%d,%d) not found",
154 static_cast<int>(start), static_cast<int>(end));
155 }
156
157 // Allocate a chunk of size LEN from the free list. Returns -1ULL
158 // if a sufficiently large chunk of free space is not found.
159 // We use a simple first-fit algorithm.
160
161 off_t
162 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
163 {
164 gold_debug(DEBUG_INCREMENTAL,
165 "Free_list::allocate(%08lx, %d, %08lx)",
166 static_cast<long>(len), static_cast<int>(align),
167 static_cast<long>(minoff));
168 if (len == 0)
169 return align_address(minoff, align);
170
171 ++Free_list::num_allocates;
172
173 // We usually want to drop free chunks smaller than 4 bytes.
174 // If we need to guarantee a minimum hole size, though, we need
175 // to keep track of all free chunks.
176 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
177
178 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
179 {
180 ++Free_list::num_allocate_visits;
181 off_t start = p->start_ > minoff ? p->start_ : minoff;
182 start = align_address(start, align);
183 off_t end = start + len;
184 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
185 {
186 this->length_ = end;
187 p->end_ = end;
188 }
189 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
190 {
191 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
192 this->list_.erase(p);
193 else if (p->start_ + fuzz >= start)
194 p->start_ = end;
195 else if (p->end_ <= end + fuzz)
196 p->end_ = start;
197 else
198 {
199 Free_list_node newnode(p->start_, start);
200 p->start_ = end;
201 this->list_.insert(p, newnode);
202 ++Free_list::num_nodes;
203 }
204 return start;
205 }
206 }
207 if (this->extend_)
208 {
209 off_t start = align_address(this->length_, align);
210 this->length_ = start + len;
211 return start;
212 }
213 return -1;
214 }
215
216 // Dump the free list (for debugging).
217 void
218 Free_list::dump()
219 {
220 gold_info("Free list:\n start end length\n");
221 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
222 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
223 static_cast<long>(p->end_),
224 static_cast<long>(p->end_ - p->start_));
225 }
226
227 // Print the statistics for the free lists.
228 void
229 Free_list::print_stats()
230 {
231 fprintf(stderr, _("%s: total free lists: %u\n"),
232 program_name, Free_list::num_lists);
233 fprintf(stderr, _("%s: total free list nodes: %u\n"),
234 program_name, Free_list::num_nodes);
235 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
236 program_name, Free_list::num_removes);
237 fprintf(stderr, _("%s: nodes visited: %u\n"),
238 program_name, Free_list::num_remove_visits);
239 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
240 program_name, Free_list::num_allocates);
241 fprintf(stderr, _("%s: nodes visited: %u\n"),
242 program_name, Free_list::num_allocate_visits);
243 }
244
245 // A Hash_task computes the MD5 checksum of an array of char.
246
247 class Hash_task : public Task
248 {
249 public:
250 Hash_task(Output_file* of,
251 size_t offset,
252 size_t size,
253 unsigned char* dst,
254 Task_token* final_blocker)
255 : of_(of), offset_(offset), size_(size), dst_(dst),
256 final_blocker_(final_blocker)
257 { }
258
259 void
260 run(Workqueue*)
261 {
262 const unsigned char* iv =
263 this->of_->get_input_view(this->offset_, this->size_);
264 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
265 this->of_->free_input_view(this->offset_, this->size_, iv);
266 }
267
268 Task_token*
269 is_runnable()
270 { return NULL; }
271
272 // Unblock FINAL_BLOCKER_ when done.
273 void
274 locks(Task_locker* tl)
275 { tl->add(this, this->final_blocker_); }
276
277 std::string
278 get_name() const
279 { return "Hash_task"; }
280
281 private:
282 Output_file* of_;
283 const size_t offset_;
284 const size_t size_;
285 unsigned char* const dst_;
286 Task_token* const final_blocker_;
287 };
288
289 // Layout::Relaxation_debug_check methods.
290
291 // Check that sections and special data are in reset states.
292 // We do not save states for Output_sections and special Output_data.
293 // So we check that they have not assigned any addresses or offsets.
294 // clean_up_after_relaxation simply resets their addresses and offsets.
295 void
296 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
297 const Layout::Section_list& sections,
298 const Layout::Data_list& special_outputs,
299 const Layout::Data_list& relax_outputs)
300 {
301 for(Layout::Section_list::const_iterator p = sections.begin();
302 p != sections.end();
303 ++p)
304 gold_assert((*p)->address_and_file_offset_have_reset_values());
305
306 for(Layout::Data_list::const_iterator p = special_outputs.begin();
307 p != special_outputs.end();
308 ++p)
309 gold_assert((*p)->address_and_file_offset_have_reset_values());
310
311 gold_assert(relax_outputs.empty());
312 }
313
314 // Save information of SECTIONS for checking later.
315
316 void
317 Layout::Relaxation_debug_check::read_sections(
318 const Layout::Section_list& sections)
319 {
320 for(Layout::Section_list::const_iterator p = sections.begin();
321 p != sections.end();
322 ++p)
323 {
324 Output_section* os = *p;
325 Section_info info;
326 info.output_section = os;
327 info.address = os->is_address_valid() ? os->address() : 0;
328 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
329 info.offset = os->is_offset_valid()? os->offset() : -1 ;
330 this->section_infos_.push_back(info);
331 }
332 }
333
334 // Verify SECTIONS using previously recorded information.
335
336 void
337 Layout::Relaxation_debug_check::verify_sections(
338 const Layout::Section_list& sections)
339 {
340 size_t i = 0;
341 for(Layout::Section_list::const_iterator p = sections.begin();
342 p != sections.end();
343 ++p, ++i)
344 {
345 Output_section* os = *p;
346 uint64_t address = os->is_address_valid() ? os->address() : 0;
347 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
348 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
349
350 if (i >= this->section_infos_.size())
351 {
352 gold_fatal("Section_info of %s missing.\n", os->name());
353 }
354 const Section_info& info = this->section_infos_[i];
355 if (os != info.output_section)
356 gold_fatal("Section order changed. Expecting %s but see %s\n",
357 info.output_section->name(), os->name());
358 if (address != info.address
359 || data_size != info.data_size
360 || offset != info.offset)
361 gold_fatal("Section %s changed.\n", os->name());
362 }
363 }
364
365 // Layout_task_runner methods.
366
367 // Lay out the sections. This is called after all the input objects
368 // have been read.
369
370 void
371 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
372 {
373 // See if any of the input definitions violate the One Definition Rule.
374 // TODO: if this is too slow, do this as a task, rather than inline.
375 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
376
377 Layout* layout = this->layout_;
378 off_t file_size = layout->finalize(this->input_objects_,
379 this->symtab_,
380 this->target_,
381 task);
382
383 // Now we know the final size of the output file and we know where
384 // each piece of information goes.
385
386 if (this->mapfile_ != NULL)
387 {
388 this->mapfile_->print_discarded_sections(this->input_objects_);
389 layout->print_to_mapfile(this->mapfile_);
390 }
391
392 Output_file* of;
393 if (layout->incremental_base() == NULL)
394 {
395 of = new Output_file(parameters->options().output_file_name());
396 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
397 of->set_is_temporary();
398 of->open(file_size);
399 }
400 else
401 {
402 of = layout->incremental_base()->output_file();
403
404 // Apply the incremental relocations for symbols whose values
405 // have changed. We do this before we resize the file and start
406 // writing anything else to it, so that we can read the old
407 // incremental information from the file before (possibly)
408 // overwriting it.
409 if (parameters->incremental_update())
410 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
411 this->layout_,
412 of);
413
414 of->resize(file_size);
415 }
416
417 // Queue up the final set of tasks.
418 gold::queue_final_tasks(this->options_, this->input_objects_,
419 this->symtab_, layout, workqueue, of);
420 }
421
422 // Layout methods.
423
424 Layout::Layout(int number_of_input_files, Script_options* script_options)
425 : number_of_input_files_(number_of_input_files),
426 script_options_(script_options),
427 namepool_(),
428 sympool_(),
429 dynpool_(),
430 signatures_(),
431 section_name_map_(),
432 segment_list_(),
433 section_list_(),
434 unattached_section_list_(),
435 special_output_list_(),
436 relax_output_list_(),
437 section_headers_(NULL),
438 tls_segment_(NULL),
439 relro_segment_(NULL),
440 interp_segment_(NULL),
441 increase_relro_(0),
442 symtab_section_(NULL),
443 symtab_xindex_(NULL),
444 dynsym_section_(NULL),
445 dynsym_xindex_(NULL),
446 dynamic_section_(NULL),
447 dynamic_symbol_(NULL),
448 dynamic_data_(NULL),
449 eh_frame_section_(NULL),
450 eh_frame_data_(NULL),
451 added_eh_frame_data_(false),
452 eh_frame_hdr_section_(NULL),
453 gdb_index_data_(NULL),
454 build_id_note_(NULL),
455 debug_abbrev_(NULL),
456 debug_info_(NULL),
457 group_signatures_(),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL),
471 record_output_section_data_from_script_(false),
472 lto_slim_object_(false),
473 script_output_section_data_list_(),
474 segment_states_(NULL),
475 relaxation_debug_check_(NULL),
476 section_order_map_(),
477 section_segment_map_(),
478 input_section_position_(),
479 input_section_glob_(),
480 incremental_base_(NULL),
481 free_list_(),
482 gnu_properties_()
483 {
484 // Make space for more than enough segments for a typical file.
485 // This is just for efficiency--it's OK if we wind up needing more.
486 this->segment_list_.reserve(12);
487
488 // We expect two unattached Output_data objects: the file header and
489 // the segment headers.
490 this->special_output_list_.reserve(2);
491
492 // Initialize structure needed for an incremental build.
493 if (parameters->incremental())
494 this->incremental_inputs_ = new Incremental_inputs;
495
496 // The section name pool is worth optimizing in all cases, because
497 // it is small, but there are often overlaps due to .rel sections.
498 this->namepool_.set_optimize();
499 }
500
501 // For incremental links, record the base file to be modified.
502
503 void
504 Layout::set_incremental_base(Incremental_binary* base)
505 {
506 this->incremental_base_ = base;
507 this->free_list_.init(base->output_file()->filesize(), true);
508 }
509
510 // Hash a key we use to look up an output section mapping.
511
512 size_t
513 Layout::Hash_key::operator()(const Layout::Key& k) const
514 {
515 return k.first + k.second.first + k.second.second;
516 }
517
518 // These are the debug sections that are actually used by gdb.
519 // Currently, we've checked versions of gdb up to and including 7.4.
520 // We only check the part of the name that follows ".debug_" or
521 // ".zdebug_".
522
523 static const char* gdb_sections[] =
524 {
525 "abbrev",
526 "addr", // Fission extension
527 // "aranges", // not used by gdb as of 7.4
528 "frame",
529 "gdb_scripts",
530 "info",
531 "types",
532 "line",
533 "loc",
534 "macinfo",
535 "macro",
536 // "pubnames", // not used by gdb as of 7.4
537 // "pubtypes", // not used by gdb as of 7.4
538 // "gnu_pubnames", // Fission extension
539 // "gnu_pubtypes", // Fission extension
540 "ranges",
541 "str",
542 "str_offsets",
543 };
544
545 // This is the minimum set of sections needed for line numbers.
546
547 static const char* lines_only_debug_sections[] =
548 {
549 "abbrev",
550 // "addr", // Fission extension
551 // "aranges", // not used by gdb as of 7.4
552 // "frame",
553 // "gdb_scripts",
554 "info",
555 // "types",
556 "line",
557 // "loc",
558 // "macinfo",
559 // "macro",
560 // "pubnames", // not used by gdb as of 7.4
561 // "pubtypes", // not used by gdb as of 7.4
562 // "gnu_pubnames", // Fission extension
563 // "gnu_pubtypes", // Fission extension
564 // "ranges",
565 "str",
566 "str_offsets", // Fission extension
567 };
568
569 // These sections are the DWARF fast-lookup tables, and are not needed
570 // when building a .gdb_index section.
571
572 static const char* gdb_fast_lookup_sections[] =
573 {
574 "aranges",
575 "pubnames",
576 "gnu_pubnames",
577 "pubtypes",
578 "gnu_pubtypes",
579 };
580
581 // Returns whether the given debug section is in the list of
582 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
583 // portion of the name following ".debug_" or ".zdebug_".
584
585 static inline bool
586 is_gdb_debug_section(const char* suffix)
587 {
588 // We can do this faster: binary search or a hashtable. But why bother?
589 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
590 if (strcmp(suffix, gdb_sections[i]) == 0)
591 return true;
592 return false;
593 }
594
595 // Returns whether the given section is needed for lines-only debugging.
596
597 static inline bool
598 is_lines_only_debug_section(const char* suffix)
599 {
600 // We can do this faster: binary search or a hashtable. But why bother?
601 for (size_t i = 0;
602 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
603 ++i)
604 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
605 return true;
606 return false;
607 }
608
609 // Returns whether the given section is a fast-lookup section that
610 // will not be needed when building a .gdb_index section.
611
612 static inline bool
613 is_gdb_fast_lookup_section(const char* suffix)
614 {
615 // We can do this faster: binary search or a hashtable. But why bother?
616 for (size_t i = 0;
617 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
618 ++i)
619 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
620 return true;
621 return false;
622 }
623
624 // Sometimes we compress sections. This is typically done for
625 // sections that are not part of normal program execution (such as
626 // .debug_* sections), and where the readers of these sections know
627 // how to deal with compressed sections. This routine doesn't say for
628 // certain whether we'll compress -- it depends on commandline options
629 // as well -- just whether this section is a candidate for compression.
630 // (The Output_compressed_section class decides whether to compress
631 // a given section, and picks the name of the compressed section.)
632
633 static bool
634 is_compressible_debug_section(const char* secname)
635 {
636 return (is_prefix_of(".debug", secname));
637 }
638
639 // We may see compressed debug sections in input files. Return TRUE
640 // if this is the name of a compressed debug section.
641
642 bool
643 is_compressed_debug_section(const char* secname)
644 {
645 return (is_prefix_of(".zdebug", secname));
646 }
647
648 std::string
649 corresponding_uncompressed_section_name(std::string secname)
650 {
651 gold_assert(secname[0] == '.' && secname[1] == 'z');
652 std::string ret(".");
653 ret.append(secname, 2, std::string::npos);
654 return ret;
655 }
656
657 // Whether to include this section in the link.
658
659 template<int size, bool big_endian>
660 bool
661 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
662 const elfcpp::Shdr<size, big_endian>& shdr)
663 {
664 if (!parameters->options().relocatable()
665 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
666 return false;
667
668 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
669
670 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
671 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
672 return parameters->target().should_include_section(sh_type);
673
674 switch (sh_type)
675 {
676 case elfcpp::SHT_NULL:
677 case elfcpp::SHT_SYMTAB:
678 case elfcpp::SHT_DYNSYM:
679 case elfcpp::SHT_HASH:
680 case elfcpp::SHT_DYNAMIC:
681 case elfcpp::SHT_SYMTAB_SHNDX:
682 return false;
683
684 case elfcpp::SHT_STRTAB:
685 // Discard the sections which have special meanings in the ELF
686 // ABI. Keep others (e.g., .stabstr). We could also do this by
687 // checking the sh_link fields of the appropriate sections.
688 return (strcmp(name, ".dynstr") != 0
689 && strcmp(name, ".strtab") != 0
690 && strcmp(name, ".shstrtab") != 0);
691
692 case elfcpp::SHT_RELA:
693 case elfcpp::SHT_REL:
694 case elfcpp::SHT_GROUP:
695 // If we are emitting relocations these should be handled
696 // elsewhere.
697 gold_assert(!parameters->options().relocatable());
698 return false;
699
700 case elfcpp::SHT_PROGBITS:
701 if (parameters->options().strip_debug()
702 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
703 {
704 if (is_debug_info_section(name))
705 return false;
706 }
707 if (parameters->options().strip_debug_non_line()
708 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
709 {
710 // Debugging sections can only be recognized by name.
711 if (is_prefix_of(".debug_", name)
712 && !is_lines_only_debug_section(name + 7))
713 return false;
714 if (is_prefix_of(".zdebug_", name)
715 && !is_lines_only_debug_section(name + 8))
716 return false;
717 }
718 if (parameters->options().strip_debug_gdb()
719 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
720 {
721 // Debugging sections can only be recognized by name.
722 if (is_prefix_of(".debug_", name)
723 && !is_gdb_debug_section(name + 7))
724 return false;
725 if (is_prefix_of(".zdebug_", name)
726 && !is_gdb_debug_section(name + 8))
727 return false;
728 }
729 if (parameters->options().gdb_index()
730 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
731 {
732 // When building .gdb_index, we can strip .debug_pubnames,
733 // .debug_pubtypes, and .debug_aranges sections.
734 if (is_prefix_of(".debug_", name)
735 && is_gdb_fast_lookup_section(name + 7))
736 return false;
737 if (is_prefix_of(".zdebug_", name)
738 && is_gdb_fast_lookup_section(name + 8))
739 return false;
740 }
741 if (parameters->options().strip_lto_sections()
742 && !parameters->options().relocatable()
743 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
744 {
745 // Ignore LTO sections containing intermediate code.
746 if (is_prefix_of(".gnu.lto_", name))
747 return false;
748 }
749 // The GNU linker strips .gnu_debuglink sections, so we do too.
750 // This is a feature used to keep debugging information in
751 // separate files.
752 if (strcmp(name, ".gnu_debuglink") == 0)
753 return false;
754 return true;
755
756 default:
757 return true;
758 }
759 }
760
761 // Return an output section named NAME, or NULL if there is none.
762
763 Output_section*
764 Layout::find_output_section(const char* name) const
765 {
766 for (Section_list::const_iterator p = this->section_list_.begin();
767 p != this->section_list_.end();
768 ++p)
769 if (strcmp((*p)->name(), name) == 0)
770 return *p;
771 return NULL;
772 }
773
774 // Return an output segment of type TYPE, with segment flags SET set
775 // and segment flags CLEAR clear. Return NULL if there is none.
776
777 Output_segment*
778 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
779 elfcpp::Elf_Word clear) const
780 {
781 for (Segment_list::const_iterator p = this->segment_list_.begin();
782 p != this->segment_list_.end();
783 ++p)
784 if (static_cast<elfcpp::PT>((*p)->type()) == type
785 && ((*p)->flags() & set) == set
786 && ((*p)->flags() & clear) == 0)
787 return *p;
788 return NULL;
789 }
790
791 // When we put a .ctors or .dtors section with more than one word into
792 // a .init_array or .fini_array section, we need to reverse the words
793 // in the .ctors/.dtors section. This is because .init_array executes
794 // constructors front to back, where .ctors executes them back to
795 // front, and vice-versa for .fini_array/.dtors. Although we do want
796 // to remap .ctors/.dtors into .init_array/.fini_array because it can
797 // be more efficient, we don't want to change the order in which
798 // constructors/destructors are run. This set just keeps track of
799 // these sections which need to be reversed. It is only changed by
800 // Layout::layout. It should be a private member of Layout, but that
801 // would require layout.h to #include object.h to get the definition
802 // of Section_id.
803 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
804
805 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
806 // .init_array/.fini_array section.
807
808 bool
809 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
810 {
811 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
812 != ctors_sections_in_init_array.end());
813 }
814
815 // Return the output section to use for section NAME with type TYPE
816 // and section flags FLAGS. NAME must be canonicalized in the string
817 // pool, and NAME_KEY is the key. ORDER is where this should appear
818 // in the output sections. IS_RELRO is true for a relro section.
819
820 Output_section*
821 Layout::get_output_section(const char* name, Stringpool::Key name_key,
822 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
823 Output_section_order order, bool is_relro)
824 {
825 elfcpp::Elf_Word lookup_type = type;
826
827 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
828 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
829 // .init_array, .fini_array, and .preinit_array sections by name
830 // whatever their type in the input file. We do this because the
831 // types are not always right in the input files.
832 if (lookup_type == elfcpp::SHT_INIT_ARRAY
833 || lookup_type == elfcpp::SHT_FINI_ARRAY
834 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
835 lookup_type = elfcpp::SHT_PROGBITS;
836
837 elfcpp::Elf_Xword lookup_flags = flags;
838
839 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
840 // read-write with read-only sections. Some other ELF linkers do
841 // not do this. FIXME: Perhaps there should be an option
842 // controlling this.
843 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
844
845 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
846 const std::pair<Key, Output_section*> v(key, NULL);
847 std::pair<Section_name_map::iterator, bool> ins(
848 this->section_name_map_.insert(v));
849
850 if (!ins.second)
851 return ins.first->second;
852 else
853 {
854 // This is the first time we've seen this name/type/flags
855 // combination. For compatibility with the GNU linker, we
856 // combine sections with contents and zero flags with sections
857 // with non-zero flags. This is a workaround for cases where
858 // assembler code forgets to set section flags. FIXME: Perhaps
859 // there should be an option to control this.
860 Output_section* os = NULL;
861
862 if (lookup_type == elfcpp::SHT_PROGBITS)
863 {
864 if (flags == 0)
865 {
866 Output_section* same_name = this->find_output_section(name);
867 if (same_name != NULL
868 && (same_name->type() == elfcpp::SHT_PROGBITS
869 || same_name->type() == elfcpp::SHT_INIT_ARRAY
870 || same_name->type() == elfcpp::SHT_FINI_ARRAY
871 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
872 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
873 os = same_name;
874 }
875 else if ((flags & elfcpp::SHF_TLS) == 0)
876 {
877 elfcpp::Elf_Xword zero_flags = 0;
878 const Key zero_key(name_key, std::make_pair(lookup_type,
879 zero_flags));
880 Section_name_map::iterator p =
881 this->section_name_map_.find(zero_key);
882 if (p != this->section_name_map_.end())
883 os = p->second;
884 }
885 }
886
887 if (os == NULL)
888 os = this->make_output_section(name, type, flags, order, is_relro);
889
890 ins.first->second = os;
891 return os;
892 }
893 }
894
895 // Returns TRUE iff NAME (an input section from RELOBJ) will
896 // be mapped to an output section that should be KEPT.
897
898 bool
899 Layout::keep_input_section(const Relobj* relobj, const char* name)
900 {
901 if (! this->script_options_->saw_sections_clause())
902 return false;
903
904 Script_sections* ss = this->script_options_->script_sections();
905 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
906 Output_section** output_section_slot;
907 Script_sections::Section_type script_section_type;
908 bool keep;
909
910 name = ss->output_section_name(file_name, name, &output_section_slot,
911 &script_section_type, &keep, true);
912 return name != NULL && keep;
913 }
914
915 // Clear the input section flags that should not be copied to the
916 // output section.
917
918 elfcpp::Elf_Xword
919 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
920 {
921 // Some flags in the input section should not be automatically
922 // copied to the output section.
923 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
924 | elfcpp::SHF_GROUP
925 | elfcpp::SHF_COMPRESSED
926 | elfcpp::SHF_MERGE
927 | elfcpp::SHF_STRINGS);
928
929 // We only clear the SHF_LINK_ORDER flag in for
930 // a non-relocatable link.
931 if (!parameters->options().relocatable())
932 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
933
934 return input_section_flags;
935 }
936
937 // Pick the output section to use for section NAME, in input file
938 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
939 // linker created section. IS_INPUT_SECTION is true if we are
940 // choosing an output section for an input section found in a input
941 // file. ORDER is where this section should appear in the output
942 // sections. IS_RELRO is true for a relro section. This will return
943 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
944 // is true if the section name should be matched against input specs
945 // in a linker script.
946
947 Output_section*
948 Layout::choose_output_section(const Relobj* relobj, const char* name,
949 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
950 bool is_input_section, Output_section_order order,
951 bool is_relro, bool is_reloc,
952 bool match_input_spec)
953 {
954 // We should not see any input sections after we have attached
955 // sections to segments.
956 gold_assert(!is_input_section || !this->sections_are_attached_);
957
958 flags = this->get_output_section_flags(flags);
959
960 if (this->script_options_->saw_sections_clause() && !is_reloc)
961 {
962 // We are using a SECTIONS clause, so the output section is
963 // chosen based only on the name.
964
965 Script_sections* ss = this->script_options_->script_sections();
966 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
967 Output_section** output_section_slot;
968 Script_sections::Section_type script_section_type;
969 const char* orig_name = name;
970 bool keep;
971 name = ss->output_section_name(file_name, name, &output_section_slot,
972 &script_section_type, &keep,
973 match_input_spec);
974
975 if (name == NULL)
976 {
977 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
978 "because it is not allowed by the "
979 "SECTIONS clause of the linker script"),
980 orig_name);
981 // The SECTIONS clause says to discard this input section.
982 return NULL;
983 }
984
985 // We can only handle script section types ST_NONE and ST_NOLOAD.
986 switch (script_section_type)
987 {
988 case Script_sections::ST_NONE:
989 break;
990 case Script_sections::ST_NOLOAD:
991 flags &= elfcpp::SHF_ALLOC;
992 break;
993 default:
994 gold_unreachable();
995 }
996
997 // If this is an orphan section--one not mentioned in the linker
998 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
999 // default processing below.
1000
1001 if (output_section_slot != NULL)
1002 {
1003 if (*output_section_slot != NULL)
1004 {
1005 (*output_section_slot)->update_flags_for_input_section(flags);
1006 return *output_section_slot;
1007 }
1008
1009 // We don't put sections found in the linker script into
1010 // SECTION_NAME_MAP_. That keeps us from getting confused
1011 // if an orphan section is mapped to a section with the same
1012 // name as one in the linker script.
1013
1014 name = this->namepool_.add(name, false, NULL);
1015
1016 Output_section* os = this->make_output_section(name, type, flags,
1017 order, is_relro);
1018
1019 os->set_found_in_sections_clause();
1020
1021 // Special handling for NOLOAD sections.
1022 if (script_section_type == Script_sections::ST_NOLOAD)
1023 {
1024 os->set_is_noload();
1025
1026 // The constructor of Output_section sets addresses of non-ALLOC
1027 // sections to 0 by default. We don't want that for NOLOAD
1028 // sections even if they have no SHF_ALLOC flag.
1029 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1030 && os->is_address_valid())
1031 {
1032 gold_assert(os->address() == 0
1033 && !os->is_offset_valid()
1034 && !os->is_data_size_valid());
1035 os->reset_address_and_file_offset();
1036 }
1037 }
1038
1039 *output_section_slot = os;
1040 return os;
1041 }
1042 }
1043
1044 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1045
1046 size_t len = strlen(name);
1047 std::string uncompressed_name;
1048
1049 // Compressed debug sections should be mapped to the corresponding
1050 // uncompressed section.
1051 if (is_compressed_debug_section(name))
1052 {
1053 uncompressed_name =
1054 corresponding_uncompressed_section_name(std::string(name, len));
1055 name = uncompressed_name.c_str();
1056 len = uncompressed_name.length();
1057 }
1058
1059 // Turn NAME from the name of the input section into the name of the
1060 // output section.
1061 if (is_input_section
1062 && !this->script_options_->saw_sections_clause()
1063 && !parameters->options().relocatable())
1064 {
1065 const char *orig_name = name;
1066 name = parameters->target().output_section_name(relobj, name, &len);
1067 if (name == NULL)
1068 name = Layout::output_section_name(relobj, orig_name, &len);
1069 }
1070
1071 Stringpool::Key name_key;
1072 name = this->namepool_.add_with_length(name, len, true, &name_key);
1073
1074 // Find or make the output section. The output section is selected
1075 // based on the section name, type, and flags.
1076 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1077 }
1078
1079 // For incremental links, record the initial fixed layout of a section
1080 // from the base file, and return a pointer to the Output_section.
1081
1082 template<int size, bool big_endian>
1083 Output_section*
1084 Layout::init_fixed_output_section(const char* name,
1085 elfcpp::Shdr<size, big_endian>& shdr)
1086 {
1087 unsigned int sh_type = shdr.get_sh_type();
1088
1089 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1090 // PRE_INIT_ARRAY, and NOTE sections.
1091 // All others will be created from scratch and reallocated.
1092 if (!can_incremental_update(sh_type))
1093 return NULL;
1094
1095 // If we're generating a .gdb_index section, we need to regenerate
1096 // it from scratch.
1097 if (parameters->options().gdb_index()
1098 && sh_type == elfcpp::SHT_PROGBITS
1099 && strcmp(name, ".gdb_index") == 0)
1100 return NULL;
1101
1102 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1103 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1104 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1105 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags =
1106 this->get_output_section_flags(shdr.get_sh_flags());
1107 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1108 shdr.get_sh_addralign();
1109
1110 // Make the output section.
1111 Stringpool::Key name_key;
1112 name = this->namepool_.add(name, true, &name_key);
1113 Output_section* os = this->get_output_section(name, name_key, sh_type,
1114 sh_flags, ORDER_INVALID, false);
1115 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1116 if (sh_type != elfcpp::SHT_NOBITS)
1117 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1118 return os;
1119 }
1120
1121 // Return the index by which an input section should be ordered. This
1122 // is used to sort some .text sections, for compatibility with GNU ld.
1123
1124 int
1125 Layout::special_ordering_of_input_section(const char* name)
1126 {
1127 // The GNU linker has some special handling for some sections that
1128 // wind up in the .text section. Sections that start with these
1129 // prefixes must appear first, and must appear in the order listed
1130 // here.
1131 static const char* const text_section_sort[] =
1132 {
1133 ".text.unlikely",
1134 ".text.exit",
1135 ".text.startup",
1136 ".text.hot",
1137 ".text.sorted"
1138 };
1139
1140 for (size_t i = 0;
1141 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1142 i++)
1143 if (is_prefix_of(text_section_sort[i], name))
1144 return i;
1145
1146 return -1;
1147 }
1148
1149 // Return the output section to use for input section SHNDX, with name
1150 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1151 // index of a relocation section which applies to this section, or 0
1152 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1153 // relocation section if there is one. Set *OFF to the offset of this
1154 // input section without the output section. Return NULL if the
1155 // section should be discarded. Set *OFF to -1 if the section
1156 // contents should not be written directly to the output file, but
1157 // will instead receive special handling.
1158
1159 template<int size, bool big_endian>
1160 Output_section*
1161 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1162 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1163 unsigned int sh_type, unsigned int reloc_shndx,
1164 unsigned int, off_t* off)
1165 {
1166 *off = 0;
1167
1168 if (!this->include_section(object, name, shdr))
1169 return NULL;
1170
1171 // In a relocatable link a grouped section must not be combined with
1172 // any other sections.
1173 Output_section* os;
1174 if (parameters->options().relocatable()
1175 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1176 {
1177 // Some flags in the input section should not be automatically
1178 // copied to the output section.
1179 elfcpp::Elf_Xword sh_flags = (shdr.get_sh_flags()
1180 & ~ elfcpp::SHF_COMPRESSED);
1181 name = this->namepool_.add(name, true, NULL);
1182 os = this->make_output_section(name, sh_type, sh_flags, ORDER_INVALID,
1183 false);
1184 }
1185 else
1186 {
1187 // Get the section flags and mask out any flags that do not
1188 // take part in section matching.
1189 elfcpp::Elf_Xword sh_flags
1190 = (this->get_output_section_flags(shdr.get_sh_flags())
1191 & ~object->osabi().ignored_sh_flags());
1192
1193 // All ".text.unlikely.*" sections can be moved to a unique
1194 // segment with --text-unlikely-segment option.
1195 bool text_unlikely_segment
1196 = (parameters->options().text_unlikely_segment()
1197 && is_prefix_of(".text.unlikely",
1198 object->section_name(shndx).c_str()));
1199 if (text_unlikely_segment)
1200 {
1201 Stringpool::Key name_key;
1202 const char* os_name = this->namepool_.add(".text.unlikely", true,
1203 &name_key);
1204 os = this->get_output_section(os_name, name_key, sh_type, sh_flags,
1205 ORDER_INVALID, false);
1206 // Map this output section to a unique segment. This is done to
1207 // separate "text" that is not likely to be executed from "text"
1208 // that is likely executed.
1209 os->set_is_unique_segment();
1210 }
1211 else
1212 {
1213 // Plugins can choose to place one or more subsets of sections in
1214 // unique segments and this is done by mapping these section subsets
1215 // to unique output sections. Check if this section needs to be
1216 // remapped to a unique output section.
1217 Section_segment_map::iterator it
1218 = this->section_segment_map_.find(Const_section_id(object, shndx));
1219 if (it == this->section_segment_map_.end())
1220 {
1221 os = this->choose_output_section(object, name, sh_type,
1222 sh_flags, true, ORDER_INVALID,
1223 false, false, true);
1224 }
1225 else
1226 {
1227 // We know the name of the output section, directly call
1228 // get_output_section here by-passing choose_output_section.
1229 const char* os_name = it->second->name;
1230 Stringpool::Key name_key;
1231 os_name = this->namepool_.add(os_name, true, &name_key);
1232 os = this->get_output_section(os_name, name_key, sh_type,
1233 sh_flags, ORDER_INVALID, false);
1234 if (!os->is_unique_segment())
1235 {
1236 os->set_is_unique_segment();
1237 os->set_extra_segment_flags(it->second->flags);
1238 os->set_segment_alignment(it->second->align);
1239 }
1240 }
1241 }
1242 if (os == NULL)
1243 return NULL;
1244 }
1245
1246 // By default the GNU linker sorts input sections whose names match
1247 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1248 // sections are sorted by name. This is used to implement
1249 // constructor priority ordering. We are compatible. When we put
1250 // .ctor sections in .init_array and .dtor sections in .fini_array,
1251 // we must also sort plain .ctor and .dtor sections.
1252 if (!this->script_options_->saw_sections_clause()
1253 && !parameters->options().relocatable()
1254 && (is_prefix_of(".ctors.", name)
1255 || is_prefix_of(".dtors.", name)
1256 || is_prefix_of(".init_array.", name)
1257 || is_prefix_of(".fini_array.", name)
1258 || (parameters->options().ctors_in_init_array()
1259 && (strcmp(name, ".ctors") == 0
1260 || strcmp(name, ".dtors") == 0))))
1261 os->set_must_sort_attached_input_sections();
1262
1263 // By default the GNU linker sorts some special text sections ahead
1264 // of others. We are compatible.
1265 if (parameters->options().text_reorder()
1266 && !this->script_options_->saw_sections_clause()
1267 && !this->is_section_ordering_specified()
1268 && !parameters->options().relocatable()
1269 && Layout::special_ordering_of_input_section(name) >= 0)
1270 os->set_must_sort_attached_input_sections();
1271
1272 // If this is a .ctors or .ctors.* section being mapped to a
1273 // .init_array section, or a .dtors or .dtors.* section being mapped
1274 // to a .fini_array section, we will need to reverse the words if
1275 // there is more than one. Record this section for later. See
1276 // ctors_sections_in_init_array above.
1277 if (!this->script_options_->saw_sections_clause()
1278 && !parameters->options().relocatable()
1279 && shdr.get_sh_size() > size / 8
1280 && (((strcmp(name, ".ctors") == 0
1281 || is_prefix_of(".ctors.", name))
1282 && strcmp(os->name(), ".init_array") == 0)
1283 || ((strcmp(name, ".dtors") == 0
1284 || is_prefix_of(".dtors.", name))
1285 && strcmp(os->name(), ".fini_array") == 0)))
1286 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1287
1288 // FIXME: Handle SHF_LINK_ORDER somewhere.
1289
1290 elfcpp::Elf_Xword orig_flags = os->flags();
1291
1292 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1293 this->script_options_->saw_sections_clause());
1294
1295 // If the flags changed, we may have to change the order.
1296 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1297 {
1298 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1299 elfcpp::Elf_Xword new_flags =
1300 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1301 if (orig_flags != new_flags)
1302 os->set_order(this->default_section_order(os, false));
1303 }
1304
1305 this->have_added_input_section_ = true;
1306
1307 return os;
1308 }
1309
1310 // Maps section SECN to SEGMENT s.
1311 void
1312 Layout::insert_section_segment_map(Const_section_id secn,
1313 Unique_segment_info *s)
1314 {
1315 gold_assert(this->unique_segment_for_sections_specified_);
1316 this->section_segment_map_[secn] = s;
1317 }
1318
1319 // Handle a relocation section when doing a relocatable link.
1320
1321 template<int size, bool big_endian>
1322 Output_section*
1323 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1324 unsigned int,
1325 const elfcpp::Shdr<size, big_endian>& shdr,
1326 Output_section* data_section,
1327 Relocatable_relocs* rr)
1328 {
1329 gold_assert(parameters->options().relocatable()
1330 || parameters->options().emit_relocs());
1331
1332 int sh_type = shdr.get_sh_type();
1333
1334 std::string name;
1335 if (sh_type == elfcpp::SHT_REL)
1336 name = ".rel";
1337 else if (sh_type == elfcpp::SHT_RELA)
1338 name = ".rela";
1339 else
1340 gold_unreachable();
1341 name += data_section->name();
1342
1343 // If the output data section already has a reloc section, use that;
1344 // otherwise, make a new one.
1345 Output_section* os = data_section->reloc_section();
1346 if (os == NULL)
1347 {
1348 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1349 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1350 ORDER_INVALID, false);
1351 os->set_should_link_to_symtab();
1352 os->set_info_section(data_section);
1353 data_section->set_reloc_section(os);
1354 }
1355
1356 Output_section_data* posd;
1357 if (sh_type == elfcpp::SHT_REL)
1358 {
1359 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1360 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1361 size,
1362 big_endian>(rr);
1363 }
1364 else if (sh_type == elfcpp::SHT_RELA)
1365 {
1366 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1367 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1368 size,
1369 big_endian>(rr);
1370 }
1371 else
1372 gold_unreachable();
1373
1374 os->add_output_section_data(posd);
1375 rr->set_output_data(posd);
1376
1377 return os;
1378 }
1379
1380 // Handle a group section when doing a relocatable link.
1381
1382 template<int size, bool big_endian>
1383 void
1384 Layout::layout_group(Symbol_table* symtab,
1385 Sized_relobj_file<size, big_endian>* object,
1386 unsigned int,
1387 const char* group_section_name,
1388 const char* signature,
1389 const elfcpp::Shdr<size, big_endian>& shdr,
1390 elfcpp::Elf_Word flags,
1391 std::vector<unsigned int>* shndxes)
1392 {
1393 gold_assert(parameters->options().relocatable());
1394 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1395 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1396 Output_section* os = this->make_output_section(group_section_name,
1397 elfcpp::SHT_GROUP,
1398 shdr.get_sh_flags(),
1399 ORDER_INVALID, false);
1400
1401 // We need to find a symbol with the signature in the symbol table.
1402 // If we don't find one now, we need to look again later.
1403 Symbol* sym = symtab->lookup(signature, NULL);
1404 if (sym != NULL)
1405 os->set_info_symndx(sym);
1406 else
1407 {
1408 // Reserve some space to minimize reallocations.
1409 if (this->group_signatures_.empty())
1410 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1411
1412 // We will wind up using a symbol whose name is the signature.
1413 // So just put the signature in the symbol name pool to save it.
1414 signature = symtab->canonicalize_name(signature);
1415 this->group_signatures_.push_back(Group_signature(os, signature));
1416 }
1417
1418 os->set_should_link_to_symtab();
1419 os->set_entsize(4);
1420
1421 section_size_type entry_count =
1422 convert_to_section_size_type(shdr.get_sh_size() / 4);
1423 Output_section_data* posd =
1424 new Output_data_group<size, big_endian>(object, entry_count, flags,
1425 shndxes);
1426 os->add_output_section_data(posd);
1427 }
1428
1429 // Special GNU handling of sections name .eh_frame. They will
1430 // normally hold exception frame data as defined by the C++ ABI
1431 // (http://codesourcery.com/cxx-abi/).
1432
1433 template<int size, bool big_endian>
1434 Output_section*
1435 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1436 const unsigned char* symbols,
1437 off_t symbols_size,
1438 const unsigned char* symbol_names,
1439 off_t symbol_names_size,
1440 unsigned int shndx,
1441 const elfcpp::Shdr<size, big_endian>& shdr,
1442 unsigned int reloc_shndx, unsigned int reloc_type,
1443 off_t* off)
1444 {
1445 const unsigned int unwind_section_type =
1446 parameters->target().unwind_section_type();
1447
1448 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1449 || shdr.get_sh_type() == unwind_section_type);
1450 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1451
1452 Output_section* os = this->make_eh_frame_section(object);
1453 if (os == NULL)
1454 return NULL;
1455
1456 gold_assert(this->eh_frame_section_ == os);
1457
1458 elfcpp::Elf_Xword orig_flags = os->flags();
1459
1460 Eh_frame::Eh_frame_section_disposition disp =
1461 Eh_frame::EH_UNRECOGNIZED_SECTION;
1462 if (!parameters->incremental())
1463 {
1464 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1465 symbols,
1466 symbols_size,
1467 symbol_names,
1468 symbol_names_size,
1469 shndx,
1470 reloc_shndx,
1471 reloc_type);
1472 }
1473
1474 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1475 {
1476 os->update_flags_for_input_section(shdr.get_sh_flags());
1477
1478 // A writable .eh_frame section is a RELRO section.
1479 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1480 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1481 {
1482 os->set_is_relro();
1483 os->set_order(ORDER_RELRO);
1484 }
1485
1486 *off = -1;
1487 return os;
1488 }
1489
1490 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1491 {
1492 // We found the end marker section, so now we can add the set of
1493 // optimized sections to the output section. We need to postpone
1494 // adding this until we've found a section we can optimize so that
1495 // the .eh_frame section in crtbeginT.o winds up at the start of
1496 // the output section.
1497 os->add_output_section_data(this->eh_frame_data_);
1498 this->added_eh_frame_data_ = true;
1499 }
1500
1501 // We couldn't handle this .eh_frame section for some reason.
1502 // Add it as a normal section.
1503 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1504 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1505 reloc_shndx, saw_sections_clause);
1506 this->have_added_input_section_ = true;
1507
1508 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1509 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1510 os->set_order(this->default_section_order(os, false));
1511
1512 return os;
1513 }
1514
1515 void
1516 Layout::finalize_eh_frame_section()
1517 {
1518 // If we never found an end marker section, we need to add the
1519 // optimized eh sections to the output section now.
1520 if (!parameters->incremental()
1521 && this->eh_frame_section_ != NULL
1522 && !this->added_eh_frame_data_)
1523 {
1524 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1525 this->added_eh_frame_data_ = true;
1526 }
1527 }
1528
1529 // Create and return the magic .eh_frame section. Create
1530 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1531 // input .eh_frame section; it may be NULL.
1532
1533 Output_section*
1534 Layout::make_eh_frame_section(const Relobj* object)
1535 {
1536 const unsigned int unwind_section_type =
1537 parameters->target().unwind_section_type();
1538
1539 Output_section* os = this->choose_output_section(object, ".eh_frame",
1540 unwind_section_type,
1541 elfcpp::SHF_ALLOC, false,
1542 ORDER_EHFRAME, false, false,
1543 false);
1544 if (os == NULL)
1545 return NULL;
1546
1547 if (this->eh_frame_section_ == NULL)
1548 {
1549 this->eh_frame_section_ = os;
1550 this->eh_frame_data_ = new Eh_frame();
1551
1552 // For incremental linking, we do not optimize .eh_frame sections
1553 // or create a .eh_frame_hdr section.
1554 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1555 {
1556 Output_section* hdr_os =
1557 this->choose_output_section(NULL, ".eh_frame_hdr",
1558 unwind_section_type,
1559 elfcpp::SHF_ALLOC, false,
1560 ORDER_EHFRAME, false, false,
1561 false);
1562
1563 if (hdr_os != NULL)
1564 {
1565 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1566 this->eh_frame_data_);
1567 hdr_os->add_output_section_data(hdr_posd);
1568
1569 hdr_os->set_after_input_sections();
1570
1571 if (!this->script_options_->saw_phdrs_clause())
1572 {
1573 Output_segment* hdr_oseg;
1574 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1575 elfcpp::PF_R);
1576 hdr_oseg->add_output_section_to_nonload(hdr_os,
1577 elfcpp::PF_R);
1578 }
1579
1580 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1581 }
1582 }
1583 }
1584
1585 return os;
1586 }
1587
1588 // Add an exception frame for a PLT. This is called from target code.
1589
1590 void
1591 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1592 size_t cie_length, const unsigned char* fde_data,
1593 size_t fde_length)
1594 {
1595 if (parameters->incremental())
1596 {
1597 // FIXME: Maybe this could work some day....
1598 return;
1599 }
1600 Output_section* os = this->make_eh_frame_section(NULL);
1601 if (os == NULL)
1602 return;
1603 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1604 fde_data, fde_length);
1605 if (!this->added_eh_frame_data_)
1606 {
1607 os->add_output_section_data(this->eh_frame_data_);
1608 this->added_eh_frame_data_ = true;
1609 }
1610 }
1611
1612 // Remove all post-map .eh_frame information for a PLT.
1613
1614 void
1615 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1616 size_t cie_length)
1617 {
1618 if (parameters->incremental())
1619 {
1620 // FIXME: Maybe this could work some day....
1621 return;
1622 }
1623 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1624 }
1625
1626 // Scan a .debug_info or .debug_types section, and add summary
1627 // information to the .gdb_index section.
1628
1629 template<int size, bool big_endian>
1630 void
1631 Layout::add_to_gdb_index(bool is_type_unit,
1632 Sized_relobj<size, big_endian>* object,
1633 const unsigned char* symbols,
1634 off_t symbols_size,
1635 unsigned int shndx,
1636 unsigned int reloc_shndx,
1637 unsigned int reloc_type)
1638 {
1639 if (this->gdb_index_data_ == NULL)
1640 {
1641 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1642 elfcpp::SHT_PROGBITS, 0,
1643 false, ORDER_INVALID,
1644 false, false, false);
1645 if (os == NULL)
1646 return;
1647
1648 this->gdb_index_data_ = new Gdb_index(os);
1649 os->add_output_section_data(this->gdb_index_data_);
1650 os->set_after_input_sections();
1651 }
1652
1653 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1654 symbols_size, shndx, reloc_shndx,
1655 reloc_type);
1656 }
1657
1658 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1659 // the output section.
1660
1661 Output_section*
1662 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1663 elfcpp::Elf_Xword flags,
1664 Output_section_data* posd,
1665 Output_section_order order, bool is_relro)
1666 {
1667 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1668 false, order, is_relro,
1669 false, false);
1670 if (os != NULL)
1671 os->add_output_section_data(posd);
1672 return os;
1673 }
1674
1675 // Map section flags to segment flags.
1676
1677 elfcpp::Elf_Word
1678 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1679 {
1680 elfcpp::Elf_Word ret = elfcpp::PF_R;
1681 if ((flags & elfcpp::SHF_WRITE) != 0)
1682 ret |= elfcpp::PF_W;
1683 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1684 ret |= elfcpp::PF_X;
1685 return ret;
1686 }
1687
1688 // Make a new Output_section, and attach it to segments as
1689 // appropriate. ORDER is the order in which this section should
1690 // appear in the output segment. IS_RELRO is true if this is a relro
1691 // (read-only after relocations) section.
1692
1693 Output_section*
1694 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1695 elfcpp::Elf_Xword flags,
1696 Output_section_order order, bool is_relro)
1697 {
1698 Output_section* os;
1699 if ((flags & elfcpp::SHF_ALLOC) == 0
1700 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1701 && is_compressible_debug_section(name))
1702 os = new Output_compressed_section(&parameters->options(), name, type,
1703 flags);
1704 else if ((flags & elfcpp::SHF_ALLOC) == 0
1705 && parameters->options().strip_debug_non_line()
1706 && strcmp(".debug_abbrev", name) == 0)
1707 {
1708 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1709 name, type, flags);
1710 if (this->debug_info_)
1711 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1712 }
1713 else if ((flags & elfcpp::SHF_ALLOC) == 0
1714 && parameters->options().strip_debug_non_line()
1715 && strcmp(".debug_info", name) == 0)
1716 {
1717 os = this->debug_info_ = new Output_reduced_debug_info_section(
1718 name, type, flags);
1719 if (this->debug_abbrev_)
1720 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1721 }
1722 else
1723 {
1724 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1725 // not have correct section types. Force them here.
1726 if (type == elfcpp::SHT_PROGBITS)
1727 {
1728 if (is_prefix_of(".init_array", name))
1729 type = elfcpp::SHT_INIT_ARRAY;
1730 else if (is_prefix_of(".preinit_array", name))
1731 type = elfcpp::SHT_PREINIT_ARRAY;
1732 else if (is_prefix_of(".fini_array", name))
1733 type = elfcpp::SHT_FINI_ARRAY;
1734 }
1735
1736 // FIXME: const_cast is ugly.
1737 Target* target = const_cast<Target*>(&parameters->target());
1738 os = target->make_output_section(name, type, flags);
1739 }
1740
1741 // With -z relro, we have to recognize the special sections by name.
1742 // There is no other way.
1743 bool is_relro_local = false;
1744 if (!this->script_options_->saw_sections_clause()
1745 && parameters->options().relro()
1746 && (flags & elfcpp::SHF_ALLOC) != 0
1747 && (flags & elfcpp::SHF_WRITE) != 0)
1748 {
1749 if (type == elfcpp::SHT_PROGBITS)
1750 {
1751 if ((flags & elfcpp::SHF_TLS) != 0)
1752 is_relro = true;
1753 else if (strcmp(name, ".data.rel.ro") == 0)
1754 is_relro = true;
1755 else if (strcmp(name, ".data.rel.ro.local") == 0)
1756 {
1757 is_relro = true;
1758 is_relro_local = true;
1759 }
1760 else if (strcmp(name, ".ctors") == 0
1761 || strcmp(name, ".dtors") == 0
1762 || strcmp(name, ".jcr") == 0)
1763 is_relro = true;
1764 }
1765 else if (type == elfcpp::SHT_INIT_ARRAY
1766 || type == elfcpp::SHT_FINI_ARRAY
1767 || type == elfcpp::SHT_PREINIT_ARRAY)
1768 is_relro = true;
1769 }
1770
1771 if (is_relro)
1772 os->set_is_relro();
1773
1774 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1775 order = this->default_section_order(os, is_relro_local);
1776
1777 os->set_order(order);
1778
1779 parameters->target().new_output_section(os);
1780
1781 this->section_list_.push_back(os);
1782
1783 // The GNU linker by default sorts some sections by priority, so we
1784 // do the same. We need to know that this might happen before we
1785 // attach any input sections.
1786 if (!this->script_options_->saw_sections_clause()
1787 && !parameters->options().relocatable()
1788 && (strcmp(name, ".init_array") == 0
1789 || strcmp(name, ".fini_array") == 0
1790 || (!parameters->options().ctors_in_init_array()
1791 && (strcmp(name, ".ctors") == 0
1792 || strcmp(name, ".dtors") == 0))))
1793 os->set_may_sort_attached_input_sections();
1794
1795 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1796 // sections before other .text sections. We are compatible. We
1797 // need to know that this might happen before we attach any input
1798 // sections.
1799 if (parameters->options().text_reorder()
1800 && !this->script_options_->saw_sections_clause()
1801 && !this->is_section_ordering_specified()
1802 && !parameters->options().relocatable()
1803 && strcmp(name, ".text") == 0)
1804 os->set_may_sort_attached_input_sections();
1805
1806 // GNU linker sorts section by name with --sort-section=name.
1807 if (strcmp(parameters->options().sort_section(), "name") == 0)
1808 os->set_must_sort_attached_input_sections();
1809
1810 // Check for .stab*str sections, as .stab* sections need to link to
1811 // them.
1812 if (type == elfcpp::SHT_STRTAB
1813 && !this->have_stabstr_section_
1814 && strncmp(name, ".stab", 5) == 0
1815 && strcmp(name + strlen(name) - 3, "str") == 0)
1816 this->have_stabstr_section_ = true;
1817
1818 // During a full incremental link, we add patch space to most
1819 // PROGBITS and NOBITS sections. Flag those that may be
1820 // arbitrarily padded.
1821 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1822 && order != ORDER_INTERP
1823 && order != ORDER_INIT
1824 && order != ORDER_PLT
1825 && order != ORDER_FINI
1826 && order != ORDER_RELRO_LAST
1827 && order != ORDER_NON_RELRO_FIRST
1828 && strcmp(name, ".eh_frame") != 0
1829 && strcmp(name, ".ctors") != 0
1830 && strcmp(name, ".dtors") != 0
1831 && strcmp(name, ".jcr") != 0)
1832 {
1833 os->set_is_patch_space_allowed();
1834
1835 // Certain sections require "holes" to be filled with
1836 // specific fill patterns. These fill patterns may have
1837 // a minimum size, so we must prevent allocations from the
1838 // free list that leave a hole smaller than the minimum.
1839 if (strcmp(name, ".debug_info") == 0)
1840 os->set_free_space_fill(new Output_fill_debug_info(false));
1841 else if (strcmp(name, ".debug_types") == 0)
1842 os->set_free_space_fill(new Output_fill_debug_info(true));
1843 else if (strcmp(name, ".debug_line") == 0)
1844 os->set_free_space_fill(new Output_fill_debug_line());
1845 }
1846
1847 // If we have already attached the sections to segments, then we
1848 // need to attach this one now. This happens for sections created
1849 // directly by the linker.
1850 if (this->sections_are_attached_)
1851 this->attach_section_to_segment(&parameters->target(), os);
1852
1853 return os;
1854 }
1855
1856 // Return the default order in which a section should be placed in an
1857 // output segment. This function captures a lot of the ideas in
1858 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1859 // linker created section is normally set when the section is created;
1860 // this function is used for input sections.
1861
1862 Output_section_order
1863 Layout::default_section_order(Output_section* os, bool is_relro_local)
1864 {
1865 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1866 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1867 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1868 bool is_bss = false;
1869
1870 switch (os->type())
1871 {
1872 default:
1873 case elfcpp::SHT_PROGBITS:
1874 break;
1875 case elfcpp::SHT_NOBITS:
1876 is_bss = true;
1877 break;
1878 case elfcpp::SHT_RELA:
1879 case elfcpp::SHT_REL:
1880 if (!is_write)
1881 return ORDER_DYNAMIC_RELOCS;
1882 break;
1883 case elfcpp::SHT_HASH:
1884 case elfcpp::SHT_DYNAMIC:
1885 case elfcpp::SHT_SHLIB:
1886 case elfcpp::SHT_DYNSYM:
1887 case elfcpp::SHT_GNU_HASH:
1888 case elfcpp::SHT_GNU_verdef:
1889 case elfcpp::SHT_GNU_verneed:
1890 case elfcpp::SHT_GNU_versym:
1891 if (!is_write)
1892 return ORDER_DYNAMIC_LINKER;
1893 break;
1894 case elfcpp::SHT_NOTE:
1895 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1896 }
1897
1898 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1899 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1900
1901 if (!is_bss && !is_write)
1902 {
1903 if (is_execinstr)
1904 {
1905 if (strcmp(os->name(), ".init") == 0)
1906 return ORDER_INIT;
1907 else if (strcmp(os->name(), ".fini") == 0)
1908 return ORDER_FINI;
1909 else if (parameters->options().keep_text_section_prefix())
1910 {
1911 // -z,keep-text-section-prefix introduces additional
1912 // output sections.
1913 if (strcmp(os->name(), ".text.hot") == 0)
1914 return ORDER_TEXT_HOT;
1915 else if (strcmp(os->name(), ".text.startup") == 0)
1916 return ORDER_TEXT_STARTUP;
1917 else if (strcmp(os->name(), ".text.exit") == 0)
1918 return ORDER_TEXT_EXIT;
1919 else if (strcmp(os->name(), ".text.unlikely") == 0)
1920 return ORDER_TEXT_UNLIKELY;
1921 }
1922 }
1923 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1924 }
1925
1926 if (os->is_relro())
1927 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1928
1929 if (os->is_small_section())
1930 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1931 if (os->is_large_section())
1932 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1933
1934 return is_bss ? ORDER_BSS : ORDER_DATA;
1935 }
1936
1937 // Attach output sections to segments. This is called after we have
1938 // seen all the input sections.
1939
1940 void
1941 Layout::attach_sections_to_segments(const Target* target)
1942 {
1943 for (Section_list::iterator p = this->section_list_.begin();
1944 p != this->section_list_.end();
1945 ++p)
1946 this->attach_section_to_segment(target, *p);
1947
1948 this->sections_are_attached_ = true;
1949 }
1950
1951 // Attach an output section to a segment.
1952
1953 void
1954 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1955 {
1956 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1957 this->unattached_section_list_.push_back(os);
1958 else
1959 this->attach_allocated_section_to_segment(target, os);
1960 }
1961
1962 // Attach an allocated output section to a segment.
1963
1964 void
1965 Layout::attach_allocated_section_to_segment(const Target* target,
1966 Output_section* os)
1967 {
1968 elfcpp::Elf_Xword flags = os->flags();
1969 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1970
1971 if (parameters->options().relocatable())
1972 return;
1973
1974 // If we have a SECTIONS clause, we can't handle the attachment to
1975 // segments until after we've seen all the sections.
1976 if (this->script_options_->saw_sections_clause())
1977 return;
1978
1979 gold_assert(!this->script_options_->saw_phdrs_clause());
1980
1981 // This output section goes into a PT_LOAD segment.
1982
1983 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1984
1985 // If this output section's segment has extra flags that need to be set,
1986 // coming from a linker plugin, do that.
1987 seg_flags |= os->extra_segment_flags();
1988
1989 // Check for --section-start.
1990 uint64_t addr;
1991 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1992
1993 // In general the only thing we really care about for PT_LOAD
1994 // segments is whether or not they are writable or executable,
1995 // so that is how we search for them.
1996 // Large data sections also go into their own PT_LOAD segment.
1997 // People who need segments sorted on some other basis will
1998 // have to use a linker script.
1999
2000 Segment_list::const_iterator p;
2001 if (!os->is_unique_segment())
2002 {
2003 for (p = this->segment_list_.begin();
2004 p != this->segment_list_.end();
2005 ++p)
2006 {
2007 if ((*p)->type() != elfcpp::PT_LOAD)
2008 continue;
2009 if ((*p)->is_unique_segment())
2010 continue;
2011 if (!parameters->options().omagic()
2012 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2013 continue;
2014 if ((target->isolate_execinstr() || parameters->options().rosegment())
2015 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2016 continue;
2017 // If -Tbss was specified, we need to separate the data and BSS
2018 // segments.
2019 if (parameters->options().user_set_Tbss())
2020 {
2021 if ((os->type() == elfcpp::SHT_NOBITS)
2022 == (*p)->has_any_data_sections())
2023 continue;
2024 }
2025 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2026 continue;
2027
2028 if (is_address_set)
2029 {
2030 if ((*p)->are_addresses_set())
2031 continue;
2032
2033 (*p)->add_initial_output_data(os);
2034 (*p)->update_flags_for_output_section(seg_flags);
2035 (*p)->set_addresses(addr, addr);
2036 break;
2037 }
2038
2039 (*p)->add_output_section_to_load(this, os, seg_flags);
2040 break;
2041 }
2042 }
2043
2044 if (p == this->segment_list_.end()
2045 || os->is_unique_segment())
2046 {
2047 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2048 seg_flags);
2049 if (os->is_large_data_section())
2050 oseg->set_is_large_data_segment();
2051 oseg->add_output_section_to_load(this, os, seg_flags);
2052 if (is_address_set)
2053 oseg->set_addresses(addr, addr);
2054 // Check if segment should be marked unique. For segments marked
2055 // unique by linker plugins, set the new alignment if specified.
2056 if (os->is_unique_segment())
2057 {
2058 oseg->set_is_unique_segment();
2059 if (os->segment_alignment() != 0)
2060 oseg->set_minimum_p_align(os->segment_alignment());
2061 }
2062 }
2063
2064 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2065 // segment.
2066 if (os->type() == elfcpp::SHT_NOTE)
2067 {
2068 uint64_t os_align = os->addralign();
2069
2070 // See if we already have an equivalent PT_NOTE segment.
2071 for (p = this->segment_list_.begin();
2072 p != segment_list_.end();
2073 ++p)
2074 {
2075 if ((*p)->type() == elfcpp::PT_NOTE
2076 && (*p)->align() == os_align
2077 && (((*p)->flags() & elfcpp::PF_W)
2078 == (seg_flags & elfcpp::PF_W)))
2079 {
2080 (*p)->add_output_section_to_nonload(os, seg_flags);
2081 break;
2082 }
2083 }
2084
2085 if (p == this->segment_list_.end())
2086 {
2087 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2088 seg_flags);
2089 oseg->add_output_section_to_nonload(os, seg_flags);
2090 oseg->set_align(os_align);
2091 }
2092 }
2093
2094 // If we see a loadable SHF_TLS section, we create a PT_TLS
2095 // segment. There can only be one such segment.
2096 if ((flags & elfcpp::SHF_TLS) != 0)
2097 {
2098 if (this->tls_segment_ == NULL)
2099 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2100 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2101 }
2102
2103 // If -z relro is in effect, and we see a relro section, we create a
2104 // PT_GNU_RELRO segment. There can only be one such segment.
2105 if (os->is_relro() && parameters->options().relro())
2106 {
2107 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2108 if (this->relro_segment_ == NULL)
2109 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2110 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2111 }
2112
2113 // If we see a section named .interp, put it into a PT_INTERP
2114 // segment. This seems broken to me, but this is what GNU ld does,
2115 // and glibc expects it.
2116 if (strcmp(os->name(), ".interp") == 0
2117 && !this->script_options_->saw_phdrs_clause())
2118 {
2119 if (this->interp_segment_ == NULL)
2120 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2121 else
2122 gold_warning(_("multiple '.interp' sections in input files "
2123 "may cause confusing PT_INTERP segment"));
2124 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2125 }
2126 }
2127
2128 // Make an output section for a script.
2129
2130 Output_section*
2131 Layout::make_output_section_for_script(
2132 const char* name,
2133 Script_sections::Section_type section_type)
2134 {
2135 name = this->namepool_.add(name, false, NULL);
2136 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2137 if (section_type == Script_sections::ST_NOLOAD)
2138 sh_flags = 0;
2139 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2140 sh_flags, ORDER_INVALID,
2141 false);
2142 os->set_found_in_sections_clause();
2143 if (section_type == Script_sections::ST_NOLOAD)
2144 os->set_is_noload();
2145 return os;
2146 }
2147
2148 // Return the number of segments we expect to see.
2149
2150 size_t
2151 Layout::expected_segment_count() const
2152 {
2153 size_t ret = this->segment_list_.size();
2154
2155 // If we didn't see a SECTIONS clause in a linker script, we should
2156 // already have the complete list of segments. Otherwise we ask the
2157 // SECTIONS clause how many segments it expects, and add in the ones
2158 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2159
2160 if (!this->script_options_->saw_sections_clause())
2161 return ret;
2162 else
2163 {
2164 const Script_sections* ss = this->script_options_->script_sections();
2165 return ret + ss->expected_segment_count(this);
2166 }
2167 }
2168
2169 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2170 // is whether we saw a .note.GNU-stack section in the object file.
2171 // GNU_STACK_FLAGS is the section flags. The flags give the
2172 // protection required for stack memory. We record this in an
2173 // executable as a PT_GNU_STACK segment. If an object file does not
2174 // have a .note.GNU-stack segment, we must assume that it is an old
2175 // object. On some targets that will force an executable stack.
2176
2177 void
2178 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2179 const Object* obj)
2180 {
2181 if (!seen_gnu_stack)
2182 {
2183 this->input_without_gnu_stack_note_ = true;
2184 if (parameters->options().warn_execstack()
2185 && parameters->target().is_default_stack_executable())
2186 gold_warning(_("%s: missing .note.GNU-stack section"
2187 " implies executable stack"),
2188 obj->name().c_str());
2189 }
2190 else
2191 {
2192 this->input_with_gnu_stack_note_ = true;
2193 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2194 {
2195 this->input_requires_executable_stack_ = true;
2196 if (parameters->options().warn_execstack())
2197 gold_warning(_("%s: requires executable stack"),
2198 obj->name().c_str());
2199 }
2200 }
2201 }
2202
2203 // Read a value with given size and endianness.
2204
2205 static inline uint64_t
2206 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2207 const Object* object)
2208 {
2209 uint64_t val = 0;
2210 if (size == 4)
2211 {
2212 if (is_big_endian)
2213 val = elfcpp::Swap<32, true>::readval(buf);
2214 else
2215 val = elfcpp::Swap<32, false>::readval(buf);
2216 }
2217 else if (size == 8)
2218 {
2219 if (is_big_endian)
2220 val = elfcpp::Swap<64, true>::readval(buf);
2221 else
2222 val = elfcpp::Swap<64, false>::readval(buf);
2223 }
2224 else
2225 {
2226 gold_warning(_("%s: in .note.gnu.property section, "
2227 "pr_datasz must be 4 or 8"),
2228 object->name().c_str());
2229 }
2230 return val;
2231 }
2232
2233 // Write a value with given size and endianness.
2234
2235 static inline void
2236 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2237 bool is_big_endian)
2238 {
2239 if (size == 4)
2240 {
2241 if (is_big_endian)
2242 elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2243 else
2244 elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2245 }
2246 else if (size == 8)
2247 {
2248 if (is_big_endian)
2249 elfcpp::Swap<64, true>::writeval(buf, value);
2250 else
2251 elfcpp::Swap<64, false>::writeval(buf, value);
2252 }
2253 else
2254 {
2255 // We will have already complained about this.
2256 }
2257 }
2258
2259 // Handle the .note.gnu.property section at layout time.
2260
2261 void
2262 Layout::layout_gnu_property(unsigned int note_type,
2263 unsigned int pr_type,
2264 size_t pr_datasz,
2265 const unsigned char* pr_data,
2266 const Object* object)
2267 {
2268 // We currently support only the one note type.
2269 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2270
2271 if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2272 && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2273 {
2274 // Target-dependent property value; call the target to record.
2275 const int size = parameters->target().get_size();
2276 const bool is_big_endian = parameters->target().is_big_endian();
2277 if (size == 32)
2278 {
2279 if (is_big_endian)
2280 {
2281 #ifdef HAVE_TARGET_32_BIG
2282 parameters->sized_target<32, true>()->
2283 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2284 object);
2285 #else
2286 gold_unreachable();
2287 #endif
2288 }
2289 else
2290 {
2291 #ifdef HAVE_TARGET_32_LITTLE
2292 parameters->sized_target<32, false>()->
2293 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2294 object);
2295 #else
2296 gold_unreachable();
2297 #endif
2298 }
2299 }
2300 else if (size == 64)
2301 {
2302 if (is_big_endian)
2303 {
2304 #ifdef HAVE_TARGET_64_BIG
2305 parameters->sized_target<64, true>()->
2306 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2307 object);
2308 #else
2309 gold_unreachable();
2310 #endif
2311 }
2312 else
2313 {
2314 #ifdef HAVE_TARGET_64_LITTLE
2315 parameters->sized_target<64, false>()->
2316 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2317 object);
2318 #else
2319 gold_unreachable();
2320 #endif
2321 }
2322 }
2323 else
2324 gold_unreachable();
2325 return;
2326 }
2327
2328 Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2329 if (pprop == this->gnu_properties_.end())
2330 {
2331 Gnu_property prop;
2332 prop.pr_datasz = pr_datasz;
2333 prop.pr_data = new unsigned char[pr_datasz];
2334 memcpy(prop.pr_data, pr_data, pr_datasz);
2335 this->gnu_properties_[pr_type] = prop;
2336 }
2337 else
2338 {
2339 const bool is_big_endian = parameters->target().is_big_endian();
2340 switch (pr_type)
2341 {
2342 case elfcpp::GNU_PROPERTY_STACK_SIZE:
2343 // Record the maximum value seen.
2344 {
2345 uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2346 pprop->second.pr_data,
2347 is_big_endian, object);
2348 uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2349 is_big_endian, object);
2350 if (val2 > val1)
2351 write_sized_value(val2, pprop->second.pr_datasz,
2352 pprop->second.pr_data, is_big_endian);
2353 }
2354 break;
2355 case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2356 // No data to merge.
2357 break;
2358 default:
2359 gold_warning(_("%s: unknown program property type %d "
2360 "in .note.gnu.property section"),
2361 object->name().c_str(), pr_type);
2362 }
2363 }
2364 }
2365
2366 // Merge per-object properties with program properties.
2367 // This lets the target identify objects that are missing certain
2368 // properties, in cases where properties must be ANDed together.
2369
2370 void
2371 Layout::merge_gnu_properties(const Object* object)
2372 {
2373 const int size = parameters->target().get_size();
2374 const bool is_big_endian = parameters->target().is_big_endian();
2375 if (size == 32)
2376 {
2377 if (is_big_endian)
2378 {
2379 #ifdef HAVE_TARGET_32_BIG
2380 parameters->sized_target<32, true>()->merge_gnu_properties(object);
2381 #else
2382 gold_unreachable();
2383 #endif
2384 }
2385 else
2386 {
2387 #ifdef HAVE_TARGET_32_LITTLE
2388 parameters->sized_target<32, false>()->merge_gnu_properties(object);
2389 #else
2390 gold_unreachable();
2391 #endif
2392 }
2393 }
2394 else if (size == 64)
2395 {
2396 if (is_big_endian)
2397 {
2398 #ifdef HAVE_TARGET_64_BIG
2399 parameters->sized_target<64, true>()->merge_gnu_properties(object);
2400 #else
2401 gold_unreachable();
2402 #endif
2403 }
2404 else
2405 {
2406 #ifdef HAVE_TARGET_64_LITTLE
2407 parameters->sized_target<64, false>()->merge_gnu_properties(object);
2408 #else
2409 gold_unreachable();
2410 #endif
2411 }
2412 }
2413 else
2414 gold_unreachable();
2415 }
2416
2417 // Add a target-specific property for the output .note.gnu.property section.
2418
2419 void
2420 Layout::add_gnu_property(unsigned int note_type,
2421 unsigned int pr_type,
2422 size_t pr_datasz,
2423 const unsigned char* pr_data)
2424 {
2425 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2426
2427 Gnu_property prop;
2428 prop.pr_datasz = pr_datasz;
2429 prop.pr_data = new unsigned char[pr_datasz];
2430 memcpy(prop.pr_data, pr_data, pr_datasz);
2431 this->gnu_properties_[pr_type] = prop;
2432 }
2433
2434 // Create automatic note sections.
2435
2436 void
2437 Layout::create_notes()
2438 {
2439 this->create_gnu_properties_note();
2440 this->create_gold_note();
2441 this->create_stack_segment();
2442 this->create_build_id();
2443 this->create_package_metadata();
2444 }
2445
2446 // Create the dynamic sections which are needed before we read the
2447 // relocs.
2448
2449 void
2450 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2451 {
2452 if (parameters->doing_static_link())
2453 return;
2454
2455 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2456 elfcpp::SHT_DYNAMIC,
2457 (elfcpp::SHF_ALLOC
2458 | elfcpp::SHF_WRITE),
2459 false, ORDER_RELRO,
2460 true, false, false);
2461
2462 // A linker script may discard .dynamic, so check for NULL.
2463 if (this->dynamic_section_ != NULL)
2464 {
2465 this->dynamic_symbol_ =
2466 symtab->define_in_output_data("_DYNAMIC", NULL,
2467 Symbol_table::PREDEFINED,
2468 this->dynamic_section_, 0, 0,
2469 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2470 elfcpp::STV_HIDDEN, 0, false, false);
2471
2472 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2473
2474 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2475 }
2476 }
2477
2478 // For each output section whose name can be represented as C symbol,
2479 // define __start and __stop symbols for the section. This is a GNU
2480 // extension.
2481
2482 void
2483 Layout::define_section_symbols(Symbol_table* symtab)
2484 {
2485 const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum();
2486 for (Section_list::const_iterator p = this->section_list_.begin();
2487 p != this->section_list_.end();
2488 ++p)
2489 {
2490 const char* const name = (*p)->name();
2491 if (is_cident(name))
2492 {
2493 const std::string name_string(name);
2494 const std::string start_name(cident_section_start_prefix
2495 + name_string);
2496 const std::string stop_name(cident_section_stop_prefix
2497 + name_string);
2498
2499 symtab->define_in_output_data(start_name.c_str(),
2500 NULL, // version
2501 Symbol_table::PREDEFINED,
2502 *p,
2503 0, // value
2504 0, // symsize
2505 elfcpp::STT_NOTYPE,
2506 elfcpp::STB_GLOBAL,
2507 visibility,
2508 0, // nonvis
2509 false, // offset_is_from_end
2510 true); // only_if_ref
2511
2512 symtab->define_in_output_data(stop_name.c_str(),
2513 NULL, // version
2514 Symbol_table::PREDEFINED,
2515 *p,
2516 0, // value
2517 0, // symsize
2518 elfcpp::STT_NOTYPE,
2519 elfcpp::STB_GLOBAL,
2520 visibility,
2521 0, // nonvis
2522 true, // offset_is_from_end
2523 true); // only_if_ref
2524 }
2525 }
2526 }
2527
2528 // Define symbols for group signatures.
2529
2530 void
2531 Layout::define_group_signatures(Symbol_table* symtab)
2532 {
2533 for (Group_signatures::iterator p = this->group_signatures_.begin();
2534 p != this->group_signatures_.end();
2535 ++p)
2536 {
2537 Symbol* sym = symtab->lookup(p->signature, NULL);
2538 if (sym != NULL)
2539 p->section->set_info_symndx(sym);
2540 else
2541 {
2542 // Force the name of the group section to the group
2543 // signature, and use the group's section symbol as the
2544 // signature symbol.
2545 if (strcmp(p->section->name(), p->signature) != 0)
2546 {
2547 const char* name = this->namepool_.add(p->signature,
2548 true, NULL);
2549 p->section->set_name(name);
2550 }
2551 p->section->set_needs_symtab_index();
2552 p->section->set_info_section_symndx(p->section);
2553 }
2554 }
2555
2556 this->group_signatures_.clear();
2557 }
2558
2559 // Find the first read-only PT_LOAD segment, creating one if
2560 // necessary.
2561
2562 Output_segment*
2563 Layout::find_first_load_seg(const Target* target)
2564 {
2565 Output_segment* best = NULL;
2566 for (Segment_list::const_iterator p = this->segment_list_.begin();
2567 p != this->segment_list_.end();
2568 ++p)
2569 {
2570 if ((*p)->type() == elfcpp::PT_LOAD
2571 && ((*p)->flags() & elfcpp::PF_R) != 0
2572 && (parameters->options().omagic()
2573 || ((*p)->flags() & elfcpp::PF_W) == 0)
2574 && (!target->isolate_execinstr()
2575 || ((*p)->flags() & elfcpp::PF_X) == 0))
2576 {
2577 if (best == NULL || this->segment_precedes(*p, best))
2578 best = *p;
2579 }
2580 }
2581 if (best != NULL)
2582 return best;
2583
2584 gold_assert(!this->script_options_->saw_phdrs_clause());
2585
2586 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2587 elfcpp::PF_R);
2588 return load_seg;
2589 }
2590
2591 // Save states of all current output segments. Store saved states
2592 // in SEGMENT_STATES.
2593
2594 void
2595 Layout::save_segments(Segment_states* segment_states)
2596 {
2597 for (Segment_list::const_iterator p = this->segment_list_.begin();
2598 p != this->segment_list_.end();
2599 ++p)
2600 {
2601 Output_segment* segment = *p;
2602 // Shallow copy.
2603 Output_segment* copy = new Output_segment(*segment);
2604 (*segment_states)[segment] = copy;
2605 }
2606 }
2607
2608 // Restore states of output segments and delete any segment not found in
2609 // SEGMENT_STATES.
2610
2611 void
2612 Layout::restore_segments(const Segment_states* segment_states)
2613 {
2614 // Go through the segment list and remove any segment added in the
2615 // relaxation loop.
2616 this->tls_segment_ = NULL;
2617 this->relro_segment_ = NULL;
2618 Segment_list::iterator list_iter = this->segment_list_.begin();
2619 while (list_iter != this->segment_list_.end())
2620 {
2621 Output_segment* segment = *list_iter;
2622 Segment_states::const_iterator states_iter =
2623 segment_states->find(segment);
2624 if (states_iter != segment_states->end())
2625 {
2626 const Output_segment* copy = states_iter->second;
2627 // Shallow copy to restore states.
2628 *segment = *copy;
2629
2630 // Also fix up TLS and RELRO segment pointers as appropriate.
2631 if (segment->type() == elfcpp::PT_TLS)
2632 this->tls_segment_ = segment;
2633 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2634 this->relro_segment_ = segment;
2635
2636 ++list_iter;
2637 }
2638 else
2639 {
2640 list_iter = this->segment_list_.erase(list_iter);
2641 // This is a segment created during section layout. It should be
2642 // safe to remove it since we should have removed all pointers to it.
2643 delete segment;
2644 }
2645 }
2646 }
2647
2648 // Clean up after relaxation so that sections can be laid out again.
2649
2650 void
2651 Layout::clean_up_after_relaxation()
2652 {
2653 // Restore the segments to point state just prior to the relaxation loop.
2654 Script_sections* script_section = this->script_options_->script_sections();
2655 script_section->release_segments();
2656 this->restore_segments(this->segment_states_);
2657
2658 // Reset section addresses and file offsets
2659 for (Section_list::iterator p = this->section_list_.begin();
2660 p != this->section_list_.end();
2661 ++p)
2662 {
2663 (*p)->restore_states();
2664
2665 // If an input section changes size because of relaxation,
2666 // we need to adjust the section offsets of all input sections.
2667 // after such a section.
2668 if ((*p)->section_offsets_need_adjustment())
2669 (*p)->adjust_section_offsets();
2670
2671 (*p)->reset_address_and_file_offset();
2672 }
2673
2674 // Reset special output object address and file offsets.
2675 for (Data_list::iterator p = this->special_output_list_.begin();
2676 p != this->special_output_list_.end();
2677 ++p)
2678 (*p)->reset_address_and_file_offset();
2679
2680 // A linker script may have created some output section data objects.
2681 // They are useless now.
2682 for (Output_section_data_list::const_iterator p =
2683 this->script_output_section_data_list_.begin();
2684 p != this->script_output_section_data_list_.end();
2685 ++p)
2686 delete *p;
2687 this->script_output_section_data_list_.clear();
2688
2689 // Special-case fill output objects are recreated each time through
2690 // the relaxation loop.
2691 this->reset_relax_output();
2692 }
2693
2694 void
2695 Layout::reset_relax_output()
2696 {
2697 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2698 p != this->relax_output_list_.end();
2699 ++p)
2700 delete *p;
2701 this->relax_output_list_.clear();
2702 }
2703
2704 // Prepare for relaxation.
2705
2706 void
2707 Layout::prepare_for_relaxation()
2708 {
2709 // Create an relaxation debug check if in debugging mode.
2710 if (is_debugging_enabled(DEBUG_RELAXATION))
2711 this->relaxation_debug_check_ = new Relaxation_debug_check();
2712
2713 // Save segment states.
2714 this->segment_states_ = new Segment_states();
2715 this->save_segments(this->segment_states_);
2716
2717 for(Section_list::const_iterator p = this->section_list_.begin();
2718 p != this->section_list_.end();
2719 ++p)
2720 (*p)->save_states();
2721
2722 if (is_debugging_enabled(DEBUG_RELAXATION))
2723 this->relaxation_debug_check_->check_output_data_for_reset_values(
2724 this->section_list_, this->special_output_list_,
2725 this->relax_output_list_);
2726
2727 // Also enable recording of output section data from scripts.
2728 this->record_output_section_data_from_script_ = true;
2729 }
2730
2731 // If the user set the address of the text segment, that may not be
2732 // compatible with putting the segment headers and file headers into
2733 // that segment. For isolate_execinstr() targets, it's the rodata
2734 // segment rather than text where we might put the headers.
2735 static inline bool
2736 load_seg_unusable_for_headers(const Target* target)
2737 {
2738 const General_options& options = parameters->options();
2739 if (target->isolate_execinstr())
2740 return (options.user_set_Trodata_segment()
2741 && options.Trodata_segment() % target->abi_pagesize() != 0);
2742 else
2743 return (options.user_set_Ttext()
2744 && options.Ttext() % target->abi_pagesize() != 0);
2745 }
2746
2747 // Relaxation loop body: If target has no relaxation, this runs only once
2748 // Otherwise, the target relaxation hook is called at the end of
2749 // each iteration. If the hook returns true, it means re-layout of
2750 // section is required.
2751 //
2752 // The number of segments created by a linking script without a PHDRS
2753 // clause may be affected by section sizes and alignments. There is
2754 // a remote chance that relaxation causes different number of PT_LOAD
2755 // segments are created and sections are attached to different segments.
2756 // Therefore, we always throw away all segments created during section
2757 // layout. In order to be able to restart the section layout, we keep
2758 // a copy of the segment list right before the relaxation loop and use
2759 // that to restore the segments.
2760 //
2761 // PASS is the current relaxation pass number.
2762 // SYMTAB is a symbol table.
2763 // PLOAD_SEG is the address of a pointer for the load segment.
2764 // PHDR_SEG is a pointer to the PHDR segment.
2765 // SEGMENT_HEADERS points to the output segment header.
2766 // FILE_HEADER points to the output file header.
2767 // PSHNDX is the address to store the output section index.
2768
2769 off_t inline
2770 Layout::relaxation_loop_body(
2771 int pass,
2772 Target* target,
2773 Symbol_table* symtab,
2774 Output_segment** pload_seg,
2775 Output_segment* phdr_seg,
2776 Output_segment_headers* segment_headers,
2777 Output_file_header* file_header,
2778 unsigned int* pshndx)
2779 {
2780 // If this is not the first iteration, we need to clean up after
2781 // relaxation so that we can lay out the sections again.
2782 if (pass != 0)
2783 this->clean_up_after_relaxation();
2784
2785 // If there is a SECTIONS clause, put all the input sections into
2786 // the required order.
2787 Output_segment* load_seg;
2788 if (this->script_options_->saw_sections_clause())
2789 load_seg = this->set_section_addresses_from_script(symtab);
2790 else if (parameters->options().relocatable())
2791 load_seg = NULL;
2792 else
2793 load_seg = this->find_first_load_seg(target);
2794
2795 if (parameters->options().oformat_enum()
2796 != General_options::OBJECT_FORMAT_ELF)
2797 load_seg = NULL;
2798
2799 if (load_seg_unusable_for_headers(target))
2800 {
2801 load_seg = NULL;
2802 phdr_seg = NULL;
2803 }
2804
2805 gold_assert(phdr_seg == NULL
2806 || load_seg != NULL
2807 || this->script_options_->saw_sections_clause());
2808
2809 // If the address of the load segment we found has been set by
2810 // --section-start rather than by a script, then adjust the VMA and
2811 // LMA downward if possible to include the file and section headers.
2812 uint64_t header_gap = 0;
2813 if (load_seg != NULL
2814 && load_seg->are_addresses_set()
2815 && !this->script_options_->saw_sections_clause()
2816 && !parameters->options().relocatable())
2817 {
2818 file_header->finalize_data_size();
2819 segment_headers->finalize_data_size();
2820 size_t sizeof_headers = (file_header->data_size()
2821 + segment_headers->data_size());
2822 const uint64_t abi_pagesize = target->abi_pagesize();
2823 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2824 hdr_paddr &= ~(abi_pagesize - 1);
2825 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2826 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2827 load_seg = NULL;
2828 else
2829 {
2830 load_seg->set_addresses(load_seg->vaddr() - subtract,
2831 load_seg->paddr() - subtract);
2832 header_gap = subtract - sizeof_headers;
2833 }
2834 }
2835
2836 // Lay out the segment headers.
2837 if (!parameters->options().relocatable())
2838 {
2839 gold_assert(segment_headers != NULL);
2840 if (header_gap != 0 && load_seg != NULL)
2841 {
2842 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2843 load_seg->add_initial_output_data(z);
2844 }
2845 if (load_seg != NULL)
2846 load_seg->add_initial_output_data(segment_headers);
2847 if (phdr_seg != NULL)
2848 phdr_seg->add_initial_output_data(segment_headers);
2849 }
2850
2851 // Lay out the file header.
2852 if (load_seg != NULL)
2853 load_seg->add_initial_output_data(file_header);
2854
2855 if (this->script_options_->saw_phdrs_clause()
2856 && !parameters->options().relocatable())
2857 {
2858 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2859 // clause in a linker script.
2860 Script_sections* ss = this->script_options_->script_sections();
2861 ss->put_headers_in_phdrs(file_header, segment_headers);
2862 }
2863
2864 // We set the output section indexes in set_segment_offsets and
2865 // set_section_indexes.
2866 *pshndx = 1;
2867
2868 // Set the file offsets of all the segments, and all the sections
2869 // they contain.
2870 off_t off;
2871 if (!parameters->options().relocatable())
2872 off = this->set_segment_offsets(target, load_seg, pshndx);
2873 else
2874 off = this->set_relocatable_section_offsets(file_header, pshndx);
2875
2876 // Verify that the dummy relaxation does not change anything.
2877 if (is_debugging_enabled(DEBUG_RELAXATION))
2878 {
2879 if (pass == 0)
2880 this->relaxation_debug_check_->read_sections(this->section_list_);
2881 else
2882 this->relaxation_debug_check_->verify_sections(this->section_list_);
2883 }
2884
2885 *pload_seg = load_seg;
2886 return off;
2887 }
2888
2889 // Search the list of patterns and find the position of the given section
2890 // name in the output section. If the section name matches a glob
2891 // pattern and a non-glob name, then the non-glob position takes
2892 // precedence. Return 0 if no match is found.
2893
2894 unsigned int
2895 Layout::find_section_order_index(const std::string& section_name)
2896 {
2897 Unordered_map<std::string, unsigned int>::iterator map_it;
2898 map_it = this->input_section_position_.find(section_name);
2899 if (map_it != this->input_section_position_.end())
2900 return map_it->second;
2901
2902 // Absolute match failed. Linear search the glob patterns.
2903 std::vector<std::string>::iterator it;
2904 for (it = this->input_section_glob_.begin();
2905 it != this->input_section_glob_.end();
2906 ++it)
2907 {
2908 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2909 {
2910 map_it = this->input_section_position_.find(*it);
2911 gold_assert(map_it != this->input_section_position_.end());
2912 return map_it->second;
2913 }
2914 }
2915 return 0;
2916 }
2917
2918 // Read the sequence of input sections from the file specified with
2919 // option --section-ordering-file.
2920
2921 void
2922 Layout::read_layout_from_file()
2923 {
2924 const char* filename = parameters->options().section_ordering_file();
2925 std::ifstream in;
2926 std::string line;
2927
2928 in.open(filename);
2929 if (!in)
2930 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2931 filename, strerror(errno));
2932
2933 File_read::record_file_read(filename);
2934
2935 std::getline(in, line); // this chops off the trailing \n, if any
2936 unsigned int position = 1;
2937 this->set_section_ordering_specified();
2938
2939 while (in)
2940 {
2941 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2942 line.resize(line.length() - 1);
2943 // Ignore comments, beginning with '#'
2944 if (line[0] == '#')
2945 {
2946 std::getline(in, line);
2947 continue;
2948 }
2949 this->input_section_position_[line] = position;
2950 // Store all glob patterns in a vector.
2951 if (is_wildcard_string(line.c_str()))
2952 this->input_section_glob_.push_back(line);
2953 position++;
2954 std::getline(in, line);
2955 }
2956 }
2957
2958 // Finalize the layout. When this is called, we have created all the
2959 // output sections and all the output segments which are based on
2960 // input sections. We have several things to do, and we have to do
2961 // them in the right order, so that we get the right results correctly
2962 // and efficiently.
2963
2964 // 1) Finalize the list of output segments and create the segment
2965 // table header.
2966
2967 // 2) Finalize the dynamic symbol table and associated sections.
2968
2969 // 3) Determine the final file offset of all the output segments.
2970
2971 // 4) Determine the final file offset of all the SHF_ALLOC output
2972 // sections.
2973
2974 // 5) Create the symbol table sections and the section name table
2975 // section.
2976
2977 // 6) Finalize the symbol table: set symbol values to their final
2978 // value and make a final determination of which symbols are going
2979 // into the output symbol table.
2980
2981 // 7) Create the section table header.
2982
2983 // 8) Determine the final file offset of all the output sections which
2984 // are not SHF_ALLOC, including the section table header.
2985
2986 // 9) Finalize the ELF file header.
2987
2988 // This function returns the size of the output file.
2989
2990 off_t
2991 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2992 Target* target, const Task* task)
2993 {
2994 unsigned int local_dynamic_count = 0;
2995 unsigned int forced_local_dynamic_count = 0;
2996
2997 target->finalize_sections(this, input_objects, symtab);
2998
2999 this->count_local_symbols(task, input_objects);
3000
3001 this->link_stabs_sections();
3002
3003 Output_segment* phdr_seg = NULL;
3004 if (!parameters->options().relocatable() && !parameters->doing_static_link())
3005 {
3006 // There was a dynamic object in the link. We need to create
3007 // some information for the dynamic linker.
3008
3009 // Create the PT_PHDR segment which will hold the program
3010 // headers.
3011 if (!this->script_options_->saw_phdrs_clause())
3012 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3013
3014 // Create the dynamic symbol table, including the hash table.
3015 Output_section* dynstr;
3016 std::vector<Symbol*> dynamic_symbols;
3017 Versions versions(*this->script_options()->version_script_info(),
3018 &this->dynpool_);
3019 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3020 &local_dynamic_count,
3021 &forced_local_dynamic_count,
3022 &dynamic_symbols,
3023 &versions);
3024
3025 // Create the .interp section to hold the name of the
3026 // interpreter, and put it in a PT_INTERP segment. Don't do it
3027 // if we saw a .interp section in an input file.
3028 if ((!parameters->options().shared()
3029 || parameters->options().dynamic_linker() != NULL)
3030 && this->interp_segment_ == NULL)
3031 this->create_interp(target);
3032
3033 // Finish the .dynamic section to hold the dynamic data, and put
3034 // it in a PT_DYNAMIC segment.
3035 this->finish_dynamic_section(input_objects, symtab);
3036
3037 // We should have added everything we need to the dynamic string
3038 // table.
3039 this->dynpool_.set_string_offsets();
3040
3041 // Create the version sections. We can't do this until the
3042 // dynamic string table is complete.
3043 this->create_version_sections(&versions, symtab,
3044 (local_dynamic_count
3045 + forced_local_dynamic_count),
3046 dynamic_symbols, dynstr);
3047
3048 // Set the size of the _DYNAMIC symbol. We can't do this until
3049 // after we call create_version_sections.
3050 this->set_dynamic_symbol_size(symtab);
3051 }
3052
3053 // Create segment headers.
3054 Output_segment_headers* segment_headers =
3055 (parameters->options().relocatable()
3056 ? NULL
3057 : new Output_segment_headers(this->segment_list_));
3058
3059 // Lay out the file header.
3060 Output_file_header* file_header = new Output_file_header(target, symtab,
3061 segment_headers);
3062
3063 this->special_output_list_.push_back(file_header);
3064 if (segment_headers != NULL)
3065 this->special_output_list_.push_back(segment_headers);
3066
3067 // Find approriate places for orphan output sections if we are using
3068 // a linker script.
3069 if (this->script_options_->saw_sections_clause())
3070 this->place_orphan_sections_in_script();
3071
3072 Output_segment* load_seg;
3073 off_t off;
3074 unsigned int shndx;
3075 int pass = 0;
3076
3077 // Take a snapshot of the section layout as needed.
3078 if (target->may_relax())
3079 this->prepare_for_relaxation();
3080
3081 // Run the relaxation loop to lay out sections.
3082 do
3083 {
3084 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3085 phdr_seg, segment_headers, file_header,
3086 &shndx);
3087 pass++;
3088 }
3089 while (target->may_relax()
3090 && target->relax(pass, input_objects, symtab, this, task));
3091
3092 // If there is a load segment that contains the file and program headers,
3093 // provide a symbol __ehdr_start pointing there.
3094 // A program can use this to examine itself robustly.
3095 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3096 if (ehdr_start != NULL && ehdr_start->is_predefined())
3097 {
3098 if (load_seg != NULL)
3099 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3100 else
3101 ehdr_start->set_undefined();
3102 }
3103
3104 // Set the file offsets of all the non-data sections we've seen so
3105 // far which don't have to wait for the input sections. We need
3106 // this in order to finalize local symbols in non-allocated
3107 // sections.
3108 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3109
3110 // Set the section indexes of all unallocated sections seen so far,
3111 // in case any of them are somehow referenced by a symbol.
3112 shndx = this->set_section_indexes(shndx);
3113
3114 // Create the symbol table sections.
3115 this->create_symtab_sections(input_objects, symtab, shndx, &off,
3116 local_dynamic_count);
3117 if (!parameters->doing_static_link())
3118 this->assign_local_dynsym_offsets(input_objects);
3119
3120 // Process any symbol assignments from a linker script. This must
3121 // be called after the symbol table has been finalized.
3122 this->script_options_->finalize_symbols(symtab, this);
3123
3124 // Create the incremental inputs sections.
3125 if (this->incremental_inputs_)
3126 {
3127 this->incremental_inputs_->finalize();
3128 this->create_incremental_info_sections(symtab);
3129 }
3130
3131 // Create the .shstrtab section.
3132 Output_section* shstrtab_section = this->create_shstrtab();
3133
3134 // Set the file offsets of the rest of the non-data sections which
3135 // don't have to wait for the input sections.
3136 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3137
3138 // Now that all sections have been created, set the section indexes
3139 // for any sections which haven't been done yet.
3140 shndx = this->set_section_indexes(shndx);
3141
3142 // Create the section table header.
3143 this->create_shdrs(shstrtab_section, &off);
3144
3145 // If there are no sections which require postprocessing, we can
3146 // handle the section names now, and avoid a resize later.
3147 if (!this->any_postprocessing_sections_)
3148 {
3149 off = this->set_section_offsets(off,
3150 POSTPROCESSING_SECTIONS_PASS);
3151 off =
3152 this->set_section_offsets(off,
3153 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3154 }
3155
3156 file_header->set_section_info(this->section_headers_, shstrtab_section);
3157
3158 // Now we know exactly where everything goes in the output file
3159 // (except for non-allocated sections which require postprocessing).
3160 Output_data::layout_complete();
3161
3162 this->output_file_size_ = off;
3163
3164 return off;
3165 }
3166
3167 // Create a note header following the format defined in the ELF ABI.
3168 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3169 // of the section to create, DESCSZ is the size of the descriptor.
3170 // ALLOCATE is true if the section should be allocated in memory.
3171 // This returns the new note section. It sets *TRAILING_PADDING to
3172 // the number of trailing zero bytes required.
3173
3174 Output_section*
3175 Layout::create_note(const char* name, int note_type,
3176 const char* section_name, size_t descsz,
3177 bool allocate, size_t* trailing_padding)
3178 {
3179 // Authorities all agree that the values in a .note field should
3180 // be aligned on 4-byte boundaries for 32-bit binaries. However,
3181 // they differ on what the alignment is for 64-bit binaries.
3182 // The GABI says unambiguously they take 8-byte alignment:
3183 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3184 // Other documentation says alignment should always be 4 bytes:
3185 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3186 // GNU ld and GNU readelf both support the latter (at least as of
3187 // version 2.16.91), and glibc always generates the latter for
3188 // .note.ABI-tag (as of version 1.6), so that's the one we go with
3189 // here.
3190 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
3191 const int size = parameters->target().get_size();
3192 #else
3193 const int size = 32;
3194 #endif
3195 // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
3196 const int addralign = ((note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3197 ? parameters->target().get_size()
3198 : size) / 8);
3199
3200 // The contents of the .note section.
3201 size_t namesz = strlen(name) + 1;
3202 size_t aligned_namesz = align_address(namesz, size / 8);
3203 size_t aligned_descsz = align_address(descsz, size / 8);
3204
3205 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3206
3207 unsigned char* buffer = new unsigned char[notehdrsz];
3208 memset(buffer, 0, notehdrsz);
3209
3210 bool is_big_endian = parameters->target().is_big_endian();
3211
3212 if (size == 32)
3213 {
3214 if (!is_big_endian)
3215 {
3216 elfcpp::Swap<32, false>::writeval(buffer, namesz);
3217 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3218 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3219 }
3220 else
3221 {
3222 elfcpp::Swap<32, true>::writeval(buffer, namesz);
3223 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3224 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3225 }
3226 }
3227 else if (size == 64)
3228 {
3229 if (!is_big_endian)
3230 {
3231 elfcpp::Swap<64, false>::writeval(buffer, namesz);
3232 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3233 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3234 }
3235 else
3236 {
3237 elfcpp::Swap<64, true>::writeval(buffer, namesz);
3238 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3239 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3240 }
3241 }
3242 else
3243 gold_unreachable();
3244
3245 memcpy(buffer + 3 * (size / 8), name, namesz);
3246
3247 elfcpp::Elf_Xword flags = 0;
3248 Output_section_order order = ORDER_INVALID;
3249 if (allocate)
3250 {
3251 flags = elfcpp::SHF_ALLOC;
3252 order = (note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3253 ? ORDER_PROPERTY_NOTE : ORDER_RO_NOTE);
3254 }
3255 Output_section* os = this->choose_output_section(NULL, section_name,
3256 elfcpp::SHT_NOTE,
3257 flags, false, order, false,
3258 false, true);
3259 if (os == NULL)
3260 return NULL;
3261
3262 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3263 addralign,
3264 "** note header");
3265 os->add_output_section_data(posd);
3266
3267 *trailing_padding = aligned_descsz - descsz;
3268
3269 return os;
3270 }
3271
3272 // Create a .note.gnu.property section to record program properties
3273 // accumulated from the input files.
3274
3275 void
3276 Layout::create_gnu_properties_note()
3277 {
3278 parameters->target().finalize_gnu_properties(this);
3279
3280 if (this->gnu_properties_.empty())
3281 return;
3282
3283 const unsigned int size = parameters->target().get_size();
3284 const bool is_big_endian = parameters->target().is_big_endian();
3285
3286 // Compute the total size of the properties array.
3287 size_t descsz = 0;
3288 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3289 prop != this->gnu_properties_.end();
3290 ++prop)
3291 {
3292 descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3293 }
3294
3295 // Create the note section.
3296 size_t trailing_padding;
3297 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3298 ".note.gnu.property", descsz,
3299 true, &trailing_padding);
3300 if (os == NULL)
3301 return;
3302 gold_assert(trailing_padding == 0);
3303
3304 // Allocate and fill the properties array.
3305 unsigned char* desc = new unsigned char[descsz];
3306 unsigned char* p = desc;
3307 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3308 prop != this->gnu_properties_.end();
3309 ++prop)
3310 {
3311 size_t datasz = prop->second.pr_datasz;
3312 size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3313 write_sized_value(prop->first, 4, p, is_big_endian);
3314 write_sized_value(datasz, 4, p + 4, is_big_endian);
3315 memcpy(p + 8, prop->second.pr_data, datasz);
3316 if (aligned_datasz > datasz)
3317 memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3318 p += 8 + aligned_datasz;
3319 }
3320 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3321 os->add_output_section_data(posd);
3322 }
3323
3324 // For an executable or shared library, create a note to record the
3325 // version of gold used to create the binary.
3326
3327 void
3328 Layout::create_gold_note()
3329 {
3330 if (parameters->options().relocatable()
3331 || parameters->incremental_update())
3332 return;
3333
3334 std::string desc = std::string("gold ") + gold::get_version_string();
3335
3336 size_t trailing_padding;
3337 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3338 ".note.gnu.gold-version", desc.size(),
3339 false, &trailing_padding);
3340 if (os == NULL)
3341 return;
3342
3343 Output_section_data* posd = new Output_data_const(desc, 4);
3344 os->add_output_section_data(posd);
3345
3346 if (trailing_padding > 0)
3347 {
3348 posd = new Output_data_zero_fill(trailing_padding, 0);
3349 os->add_output_section_data(posd);
3350 }
3351 }
3352
3353 // Record whether the stack should be executable. This can be set
3354 // from the command line using the -z execstack or -z noexecstack
3355 // options. Otherwise, if any input file has a .note.GNU-stack
3356 // section with the SHF_EXECINSTR flag set, the stack should be
3357 // executable. Otherwise, if at least one input file a
3358 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3359 // section, we use the target default for whether the stack should be
3360 // executable. If -z stack-size was used to set a p_memsz value for
3361 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3362 // don't generate a stack note. When generating a object file, we
3363 // create a .note.GNU-stack section with the appropriate marking.
3364 // When generating an executable or shared library, we create a
3365 // PT_GNU_STACK segment.
3366
3367 void
3368 Layout::create_stack_segment()
3369 {
3370 bool is_stack_executable;
3371 if (parameters->options().is_execstack_set())
3372 {
3373 is_stack_executable = parameters->options().is_stack_executable();
3374 if (!is_stack_executable
3375 && this->input_requires_executable_stack_
3376 && parameters->options().warn_execstack())
3377 gold_warning(_("one or more inputs require executable stack, "
3378 "but -z noexecstack was given"));
3379 }
3380 else if (!this->input_with_gnu_stack_note_
3381 && (!parameters->options().user_set_stack_size()
3382 || parameters->options().relocatable()))
3383 return;
3384 else
3385 {
3386 if (this->input_requires_executable_stack_)
3387 is_stack_executable = true;
3388 else if (this->input_without_gnu_stack_note_)
3389 is_stack_executable =
3390 parameters->target().is_default_stack_executable();
3391 else
3392 is_stack_executable = false;
3393 }
3394
3395 if (parameters->options().relocatable())
3396 {
3397 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3398 elfcpp::Elf_Xword flags = 0;
3399 if (is_stack_executable)
3400 flags |= elfcpp::SHF_EXECINSTR;
3401 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3402 ORDER_INVALID, false);
3403 }
3404 else
3405 {
3406 if (this->script_options_->saw_phdrs_clause())
3407 return;
3408 int flags = elfcpp::PF_R | elfcpp::PF_W;
3409 if (is_stack_executable)
3410 flags |= elfcpp::PF_X;
3411 Output_segment* seg =
3412 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3413 seg->set_size(parameters->options().stack_size());
3414 // BFD lets targets override this default alignment, but the only
3415 // targets that do so are ones that Gold does not support so far.
3416 seg->set_minimum_p_align(16);
3417 }
3418 }
3419
3420 // If --build-id was used, set up the build ID note.
3421
3422 void
3423 Layout::create_build_id()
3424 {
3425 if (!parameters->options().user_set_build_id())
3426 return;
3427
3428 const char* style = parameters->options().build_id();
3429 if (strcmp(style, "none") == 0)
3430 return;
3431
3432 // Set DESCSZ to the size of the note descriptor. When possible,
3433 // set DESC to the note descriptor contents.
3434 size_t descsz;
3435 std::string desc;
3436 if (strcmp(style, "md5") == 0)
3437 descsz = 128 / 8;
3438 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3439 descsz = 160 / 8;
3440 else if (strcmp(style, "uuid") == 0)
3441 {
3442 #ifndef __MINGW32__
3443 const size_t uuidsz = 128 / 8;
3444
3445 char buffer[uuidsz];
3446 memset(buffer, 0, uuidsz);
3447
3448 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3449 if (descriptor < 0)
3450 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3451 strerror(errno));
3452 else
3453 {
3454 ssize_t got = ::read(descriptor, buffer, uuidsz);
3455 release_descriptor(descriptor, true);
3456 if (got < 0)
3457 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3458 else if (static_cast<size_t>(got) != uuidsz)
3459 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3460 uuidsz, got);
3461 }
3462
3463 desc.assign(buffer, uuidsz);
3464 descsz = uuidsz;
3465 #else // __MINGW32__
3466 UUID uuid;
3467 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3468
3469 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3470 if (!rpc_library)
3471 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3472 else
3473 {
3474 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3475 GetProcAddress(rpc_library, "UuidCreate"));
3476 if (!uuid_create)
3477 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3478 else if (uuid_create(&uuid) != RPC_S_OK)
3479 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3480 FreeLibrary(rpc_library);
3481 }
3482 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3483 descsz = sizeof(UUID);
3484 #endif // __MINGW32__
3485 }
3486 else if (strncmp(style, "0x", 2) == 0)
3487 {
3488 hex_init();
3489 const char* p = style + 2;
3490 while (*p != '\0')
3491 {
3492 if (hex_p(p[0]) && hex_p(p[1]))
3493 {
3494 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3495 desc += c;
3496 p += 2;
3497 }
3498 else if (*p == '-' || *p == ':')
3499 ++p;
3500 else
3501 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3502 style);
3503 }
3504 descsz = desc.size();
3505 }
3506 else
3507 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3508
3509 // Create the note.
3510 size_t trailing_padding;
3511 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3512 ".note.gnu.build-id", descsz, true,
3513 &trailing_padding);
3514 if (os == NULL)
3515 return;
3516
3517 if (!desc.empty())
3518 {
3519 // We know the value already, so we fill it in now.
3520 gold_assert(desc.size() == descsz);
3521
3522 Output_section_data* posd = new Output_data_const(desc, 4);
3523 os->add_output_section_data(posd);
3524
3525 if (trailing_padding != 0)
3526 {
3527 posd = new Output_data_zero_fill(trailing_padding, 0);
3528 os->add_output_section_data(posd);
3529 }
3530 }
3531 else
3532 {
3533 // We need to compute a checksum after we have completed the
3534 // link.
3535 gold_assert(trailing_padding == 0);
3536 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3537 os->add_output_section_data(this->build_id_note_);
3538 }
3539 }
3540
3541 // If --package-metadata was used, set up the package metadata note.
3542 // https://systemd.io/ELF_PACKAGE_METADATA/
3543
3544 void
3545 Layout::create_package_metadata()
3546 {
3547 if (!parameters->options().user_set_package_metadata())
3548 return;
3549
3550 const char* desc = parameters->options().package_metadata();
3551 if (strcmp(desc, "") == 0)
3552 return;
3553
3554 #ifdef HAVE_JANSSON
3555 json_error_t json_error;
3556 json_t *json = json_loads(desc, 0, &json_error);
3557 if (json)
3558 json_decref(json);
3559 else
3560 {
3561 gold_fatal(_("error: --package-metadata=%s does not contain valid "
3562 "JSON: %s\n"),
3563 desc, json_error.text);
3564 }
3565 #endif
3566
3567 // Create the note.
3568 size_t trailing_padding;
3569 // Ensure the trailing NULL byte is always included, as per specification.
3570 size_t descsz = strlen(desc) + 1;
3571 Output_section* os = this->create_note("FDO", elfcpp::FDO_PACKAGING_METADATA,
3572 ".note.package", descsz, true,
3573 &trailing_padding);
3574 if (os == NULL)
3575 return;
3576
3577 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3578 os->add_output_section_data(posd);
3579
3580 if (trailing_padding != 0)
3581 {
3582 posd = new Output_data_zero_fill(trailing_padding, 0);
3583 os->add_output_section_data(posd);
3584 }
3585 }
3586
3587 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3588 // field of the former should point to the latter. I'm not sure who
3589 // started this, but the GNU linker does it, and some tools depend
3590 // upon it.
3591
3592 void
3593 Layout::link_stabs_sections()
3594 {
3595 if (!this->have_stabstr_section_)
3596 return;
3597
3598 for (Section_list::iterator p = this->section_list_.begin();
3599 p != this->section_list_.end();
3600 ++p)
3601 {
3602 if ((*p)->type() != elfcpp::SHT_STRTAB)
3603 continue;
3604
3605 const char* name = (*p)->name();
3606 if (strncmp(name, ".stab", 5) != 0)
3607 continue;
3608
3609 size_t len = strlen(name);
3610 if (strcmp(name + len - 3, "str") != 0)
3611 continue;
3612
3613 std::string stab_name(name, len - 3);
3614 Output_section* stab_sec;
3615 stab_sec = this->find_output_section(stab_name.c_str());
3616 if (stab_sec != NULL)
3617 stab_sec->set_link_section(*p);
3618 }
3619 }
3620
3621 // Create .gnu_incremental_inputs and related sections needed
3622 // for the next run of incremental linking to check what has changed.
3623
3624 void
3625 Layout::create_incremental_info_sections(Symbol_table* symtab)
3626 {
3627 Incremental_inputs* incr = this->incremental_inputs_;
3628
3629 gold_assert(incr != NULL);
3630
3631 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3632 incr->create_data_sections(symtab);
3633
3634 // Add the .gnu_incremental_inputs section.
3635 const char* incremental_inputs_name =
3636 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3637 Output_section* incremental_inputs_os =
3638 this->make_output_section(incremental_inputs_name,
3639 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3640 ORDER_INVALID, false);
3641 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3642
3643 // Add the .gnu_incremental_symtab section.
3644 const char* incremental_symtab_name =
3645 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3646 Output_section* incremental_symtab_os =
3647 this->make_output_section(incremental_symtab_name,
3648 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3649 ORDER_INVALID, false);
3650 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3651 incremental_symtab_os->set_entsize(4);
3652
3653 // Add the .gnu_incremental_relocs section.
3654 const char* incremental_relocs_name =
3655 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3656 Output_section* incremental_relocs_os =
3657 this->make_output_section(incremental_relocs_name,
3658 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3659 ORDER_INVALID, false);
3660 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3661 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3662
3663 // Add the .gnu_incremental_got_plt section.
3664 const char* incremental_got_plt_name =
3665 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3666 Output_section* incremental_got_plt_os =
3667 this->make_output_section(incremental_got_plt_name,
3668 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3669 ORDER_INVALID, false);
3670 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3671
3672 // Add the .gnu_incremental_strtab section.
3673 const char* incremental_strtab_name =
3674 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3675 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3676 elfcpp::SHT_STRTAB, 0,
3677 ORDER_INVALID, false);
3678 Output_data_strtab* strtab_data =
3679 new Output_data_strtab(incr->get_stringpool());
3680 incremental_strtab_os->add_output_section_data(strtab_data);
3681
3682 incremental_inputs_os->set_after_input_sections();
3683 incremental_symtab_os->set_after_input_sections();
3684 incremental_relocs_os->set_after_input_sections();
3685 incremental_got_plt_os->set_after_input_sections();
3686
3687 incremental_inputs_os->set_link_section(incremental_strtab_os);
3688 incremental_symtab_os->set_link_section(incremental_inputs_os);
3689 incremental_relocs_os->set_link_section(incremental_inputs_os);
3690 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3691 }
3692
3693 // Return whether SEG1 should be before SEG2 in the output file. This
3694 // is based entirely on the segment type and flags. When this is
3695 // called the segment addresses have normally not yet been set.
3696
3697 bool
3698 Layout::segment_precedes(const Output_segment* seg1,
3699 const Output_segment* seg2)
3700 {
3701 // In order to produce a stable ordering if we're called with the same pointer
3702 // return false.
3703 if (seg1 == seg2)
3704 return false;
3705
3706 elfcpp::Elf_Word type1 = seg1->type();
3707 elfcpp::Elf_Word type2 = seg2->type();
3708
3709 // The single PT_PHDR segment is required to precede any loadable
3710 // segment. We simply make it always first.
3711 if (type1 == elfcpp::PT_PHDR)
3712 {
3713 gold_assert(type2 != elfcpp::PT_PHDR);
3714 return true;
3715 }
3716 if (type2 == elfcpp::PT_PHDR)
3717 return false;
3718
3719 // The single PT_INTERP segment is required to precede any loadable
3720 // segment. We simply make it always second.
3721 if (type1 == elfcpp::PT_INTERP)
3722 {
3723 gold_assert(type2 != elfcpp::PT_INTERP);
3724 return true;
3725 }
3726 if (type2 == elfcpp::PT_INTERP)
3727 return false;
3728
3729 // We then put PT_LOAD segments before any other segments.
3730 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3731 return true;
3732 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3733 return false;
3734
3735 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3736 // segment, because that is where the dynamic linker expects to find
3737 // it (this is just for efficiency; other positions would also work
3738 // correctly).
3739 if (type1 == elfcpp::PT_TLS
3740 && type2 != elfcpp::PT_TLS
3741 && type2 != elfcpp::PT_GNU_RELRO)
3742 return false;
3743 if (type2 == elfcpp::PT_TLS
3744 && type1 != elfcpp::PT_TLS
3745 && type1 != elfcpp::PT_GNU_RELRO)
3746 return true;
3747
3748 // We put the PT_GNU_RELRO segment last, because that is where the
3749 // dynamic linker expects to find it (as with PT_TLS, this is just
3750 // for efficiency).
3751 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3752 return false;
3753 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3754 return true;
3755
3756 const elfcpp::Elf_Word flags1 = seg1->flags();
3757 const elfcpp::Elf_Word flags2 = seg2->flags();
3758
3759 // The order of non-PT_LOAD segments is unimportant. We simply sort
3760 // by the numeric segment type and flags values. There should not
3761 // be more than one segment with the same type and flags, except
3762 // when a linker script specifies such.
3763 if (type1 != elfcpp::PT_LOAD)
3764 {
3765 if (type1 != type2)
3766 return type1 < type2;
3767 uint64_t align1 = seg1->align();
3768 uint64_t align2 = seg2->align();
3769 // Place segments with larger alignments first.
3770 if (align1 != align2)
3771 return align1 > align2;
3772 gold_assert(flags1 != flags2
3773 || this->script_options_->saw_phdrs_clause());
3774 return flags1 < flags2;
3775 }
3776
3777 // If the addresses are set already, sort by load address.
3778 if (seg1->are_addresses_set())
3779 {
3780 if (!seg2->are_addresses_set())
3781 return true;
3782
3783 unsigned int section_count1 = seg1->output_section_count();
3784 unsigned int section_count2 = seg2->output_section_count();
3785 if (section_count1 == 0 && section_count2 > 0)
3786 return true;
3787 if (section_count1 > 0 && section_count2 == 0)
3788 return false;
3789
3790 uint64_t paddr1 = (seg1->are_addresses_set()
3791 ? seg1->paddr()
3792 : seg1->first_section_load_address());
3793 uint64_t paddr2 = (seg2->are_addresses_set()
3794 ? seg2->paddr()
3795 : seg2->first_section_load_address());
3796
3797 if (paddr1 != paddr2)
3798 return paddr1 < paddr2;
3799 }
3800 else if (seg2->are_addresses_set())
3801 return false;
3802
3803 // A segment which holds large data comes after a segment which does
3804 // not hold large data.
3805 if (seg1->is_large_data_segment())
3806 {
3807 if (!seg2->is_large_data_segment())
3808 return false;
3809 }
3810 else if (seg2->is_large_data_segment())
3811 return true;
3812
3813 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3814 // segments come before writable segments. Then writable segments
3815 // with data come before writable segments without data. Then
3816 // executable segments come before non-executable segments. Then
3817 // the unlikely case of a non-readable segment comes before the
3818 // normal case of a readable segment. If there are multiple
3819 // segments with the same type and flags, we require that the
3820 // address be set, and we sort by virtual address and then physical
3821 // address.
3822 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3823 return (flags1 & elfcpp::PF_W) == 0;
3824 if ((flags1 & elfcpp::PF_W) != 0
3825 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3826 return seg1->has_any_data_sections();
3827 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3828 return (flags1 & elfcpp::PF_X) != 0;
3829 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3830 return (flags1 & elfcpp::PF_R) == 0;
3831
3832 // We shouldn't get here--we shouldn't create segments which we
3833 // can't distinguish. Unless of course we are using a weird linker
3834 // script or overlapping --section-start options. We could also get
3835 // here if plugins want unique segments for subsets of sections.
3836 gold_assert(this->script_options_->saw_phdrs_clause()
3837 || parameters->options().any_section_start()
3838 || this->is_unique_segment_for_sections_specified()
3839 || parameters->options().text_unlikely_segment());
3840 return false;
3841 }
3842
3843 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3844
3845 static off_t
3846 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3847 {
3848 uint64_t unsigned_off = off;
3849 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3850 | (addr & (abi_pagesize - 1)));
3851 if (aligned_off < unsigned_off)
3852 aligned_off += abi_pagesize;
3853 return aligned_off;
3854 }
3855
3856 // On targets where the text segment contains only executable code,
3857 // a non-executable segment is never the text segment.
3858
3859 static inline bool
3860 is_text_segment(const Target* target, const Output_segment* seg)
3861 {
3862 elfcpp::Elf_Xword flags = seg->flags();
3863 if ((flags & elfcpp::PF_W) != 0)
3864 return false;
3865 if ((flags & elfcpp::PF_X) == 0)
3866 return !target->isolate_execinstr();
3867 return true;
3868 }
3869
3870 // Set the file offsets of all the segments, and all the sections they
3871 // contain. They have all been created. LOAD_SEG must be laid out
3872 // first. Return the offset of the data to follow.
3873
3874 off_t
3875 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3876 unsigned int* pshndx)
3877 {
3878 // Sort them into the final order. We use a stable sort so that we
3879 // don't randomize the order of indistinguishable segments created
3880 // by linker scripts.
3881 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3882 Layout::Compare_segments(this));
3883
3884 // Find the PT_LOAD segments, and set their addresses and offsets
3885 // and their section's addresses and offsets.
3886 uint64_t start_addr;
3887 if (parameters->options().user_set_Ttext())
3888 start_addr = parameters->options().Ttext();
3889 else if (parameters->options().output_is_position_independent())
3890 start_addr = 0;
3891 else
3892 start_addr = target->default_text_segment_address();
3893
3894 uint64_t addr = start_addr;
3895 off_t off = 0;
3896
3897 // If LOAD_SEG is NULL, then the file header and segment headers
3898 // will not be loadable. But they still need to be at offset 0 in
3899 // the file. Set their offsets now.
3900 if (load_seg == NULL)
3901 {
3902 for (Data_list::iterator p = this->special_output_list_.begin();
3903 p != this->special_output_list_.end();
3904 ++p)
3905 {
3906 off = align_address(off, (*p)->addralign());
3907 (*p)->set_address_and_file_offset(0, off);
3908 off += (*p)->data_size();
3909 }
3910 }
3911
3912 unsigned int increase_relro = this->increase_relro_;
3913 if (this->script_options_->saw_sections_clause())
3914 increase_relro = 0;
3915
3916 const bool check_sections = parameters->options().check_sections();
3917 Output_segment* last_load_segment = NULL;
3918
3919 unsigned int shndx_begin = *pshndx;
3920 unsigned int shndx_load_seg = *pshndx;
3921
3922 for (Segment_list::iterator p = this->segment_list_.begin();
3923 p != this->segment_list_.end();
3924 ++p)
3925 {
3926 if ((*p)->type() == elfcpp::PT_LOAD)
3927 {
3928 if (target->isolate_execinstr())
3929 {
3930 // When we hit the segment that should contain the
3931 // file headers, reset the file offset so we place
3932 // it and subsequent segments appropriately.
3933 // We'll fix up the preceding segments below.
3934 if (load_seg == *p)
3935 {
3936 if (off == 0)
3937 load_seg = NULL;
3938 else
3939 {
3940 off = 0;
3941 shndx_load_seg = *pshndx;
3942 }
3943 }
3944 }
3945 else
3946 {
3947 // Verify that the file headers fall into the first segment.
3948 if (load_seg != NULL && load_seg != *p)
3949 gold_unreachable();
3950 load_seg = NULL;
3951 }
3952
3953 bool are_addresses_set = (*p)->are_addresses_set();
3954 if (are_addresses_set)
3955 {
3956 // When it comes to setting file offsets, we care about
3957 // the physical address.
3958 addr = (*p)->paddr();
3959 }
3960 else if (parameters->options().user_set_Ttext()
3961 && (parameters->options().omagic()
3962 || is_text_segment(target, *p)))
3963 {
3964 are_addresses_set = true;
3965 }
3966 else if (parameters->options().user_set_Trodata_segment()
3967 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3968 {
3969 addr = parameters->options().Trodata_segment();
3970 are_addresses_set = true;
3971 }
3972 else if (parameters->options().user_set_Tdata()
3973 && ((*p)->flags() & elfcpp::PF_W) != 0
3974 && (!parameters->options().user_set_Tbss()
3975 || (*p)->has_any_data_sections()))
3976 {
3977 addr = parameters->options().Tdata();
3978 are_addresses_set = true;
3979 }
3980 else if (parameters->options().user_set_Tbss()
3981 && ((*p)->flags() & elfcpp::PF_W) != 0
3982 && !(*p)->has_any_data_sections())
3983 {
3984 addr = parameters->options().Tbss();
3985 are_addresses_set = true;
3986 }
3987
3988 uint64_t orig_addr = addr;
3989 uint64_t orig_off = off;
3990
3991 uint64_t aligned_addr = 0;
3992 uint64_t abi_pagesize = target->abi_pagesize();
3993 uint64_t common_pagesize = target->common_pagesize();
3994
3995 if (!parameters->options().nmagic()
3996 && !parameters->options().omagic())
3997 (*p)->set_minimum_p_align(abi_pagesize);
3998
3999 if (!are_addresses_set)
4000 {
4001 // Skip the address forward one page, maintaining the same
4002 // position within the page. This lets us store both segments
4003 // overlapping on a single page in the file, but the loader will
4004 // put them on different pages in memory. We will revisit this
4005 // decision once we know the size of the segment.
4006
4007 uint64_t max_align = (*p)->maximum_alignment();
4008 if (max_align > abi_pagesize)
4009 addr = align_address(addr, max_align);
4010 aligned_addr = addr;
4011
4012 if (load_seg == *p)
4013 {
4014 // This is the segment that will contain the file
4015 // headers, so its offset will have to be exactly zero.
4016 gold_assert(orig_off == 0);
4017
4018 // If the target wants a fixed minimum distance from the
4019 // text segment to the read-only segment, move up now.
4020 uint64_t min_addr =
4021 start_addr + (parameters->options().user_set_rosegment_gap()
4022 ? parameters->options().rosegment_gap()
4023 : target->rosegment_gap());
4024 if (addr < min_addr)
4025 addr = min_addr;
4026
4027 // But this is not the first segment! To make its
4028 // address congruent with its offset, that address better
4029 // be aligned to the ABI-mandated page size.
4030 addr = align_address(addr, abi_pagesize);
4031 aligned_addr = addr;
4032 }
4033 else
4034 {
4035 if ((addr & (abi_pagesize - 1)) != 0)
4036 addr = addr + abi_pagesize;
4037
4038 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4039 }
4040 }
4041
4042 if (!parameters->options().nmagic()
4043 && !parameters->options().omagic())
4044 {
4045 // Here we are also taking care of the case when
4046 // the maximum segment alignment is larger than the page size.
4047 off = align_file_offset(off, addr,
4048 std::max(abi_pagesize,
4049 (*p)->maximum_alignment()));
4050 }
4051 else
4052 {
4053 // This is -N or -n with a section script which prevents
4054 // us from using a load segment. We need to ensure that
4055 // the file offset is aligned to the alignment of the
4056 // segment. This is because the linker script
4057 // implicitly assumed a zero offset. If we don't align
4058 // here, then the alignment of the sections in the
4059 // linker script may not match the alignment of the
4060 // sections in the set_section_addresses call below,
4061 // causing an error about dot moving backward.
4062 off = align_address(off, (*p)->maximum_alignment());
4063 }
4064
4065 unsigned int shndx_hold = *pshndx;
4066 bool has_relro = false;
4067 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4068 false, addr,
4069 &increase_relro,
4070 &has_relro,
4071 &off, pshndx);
4072
4073 // Now that we know the size of this segment, we may be able
4074 // to save a page in memory, at the cost of wasting some
4075 // file space, by instead aligning to the start of a new
4076 // page. Here we use the real machine page size rather than
4077 // the ABI mandated page size. If the segment has been
4078 // aligned so that the relro data ends at a page boundary,
4079 // we do not try to realign it.
4080
4081 if (!are_addresses_set
4082 && !has_relro
4083 && aligned_addr != addr
4084 && !parameters->incremental())
4085 {
4086 uint64_t first_off = (common_pagesize
4087 - (aligned_addr
4088 & (common_pagesize - 1)));
4089 uint64_t last_off = new_addr & (common_pagesize - 1);
4090 if (first_off > 0
4091 && last_off > 0
4092 && ((aligned_addr & ~ (common_pagesize - 1))
4093 != (new_addr & ~ (common_pagesize - 1)))
4094 && first_off + last_off <= common_pagesize)
4095 {
4096 *pshndx = shndx_hold;
4097 addr = align_address(aligned_addr, common_pagesize);
4098 addr = align_address(addr, (*p)->maximum_alignment());
4099 if ((addr & (abi_pagesize - 1)) != 0)
4100 addr = addr + abi_pagesize;
4101 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4102 off = align_file_offset(off, addr, abi_pagesize);
4103
4104 increase_relro = this->increase_relro_;
4105 if (this->script_options_->saw_sections_clause())
4106 increase_relro = 0;
4107 has_relro = false;
4108
4109 new_addr = (*p)->set_section_addresses(target, this,
4110 true, addr,
4111 &increase_relro,
4112 &has_relro,
4113 &off, pshndx);
4114 }
4115 }
4116
4117 addr = new_addr;
4118
4119 // Implement --check-sections. We know that the segments
4120 // are sorted by LMA.
4121 if (check_sections && last_load_segment != NULL)
4122 {
4123 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4124 if (last_load_segment->paddr() + last_load_segment->memsz()
4125 > (*p)->paddr())
4126 {
4127 unsigned long long lb1 = last_load_segment->paddr();
4128 unsigned long long le1 = lb1 + last_load_segment->memsz();
4129 unsigned long long lb2 = (*p)->paddr();
4130 unsigned long long le2 = lb2 + (*p)->memsz();
4131 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4132 "[0x%llx -> 0x%llx]"),
4133 lb1, le1, lb2, le2);
4134 }
4135 }
4136 last_load_segment = *p;
4137 }
4138 }
4139
4140 if (load_seg != NULL && target->isolate_execinstr())
4141 {
4142 // Process the early segments again, setting their file offsets
4143 // so they land after the segments starting at LOAD_SEG.
4144 off = align_file_offset(off, 0, target->abi_pagesize());
4145
4146 this->reset_relax_output();
4147
4148 for (Segment_list::iterator p = this->segment_list_.begin();
4149 *p != load_seg;
4150 ++p)
4151 {
4152 if ((*p)->type() == elfcpp::PT_LOAD)
4153 {
4154 // We repeat the whole job of assigning addresses and
4155 // offsets, but we really only want to change the offsets and
4156 // must ensure that the addresses all come out the same as
4157 // they did the first time through.
4158 bool has_relro = false;
4159 const uint64_t old_addr = (*p)->vaddr();
4160 const uint64_t old_end = old_addr + (*p)->memsz();
4161 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4162 true, old_addr,
4163 &increase_relro,
4164 &has_relro,
4165 &off,
4166 &shndx_begin);
4167 gold_assert(new_addr == old_end);
4168 }
4169 }
4170
4171 gold_assert(shndx_begin == shndx_load_seg);
4172 }
4173
4174 // Handle the non-PT_LOAD segments, setting their offsets from their
4175 // section's offsets.
4176 for (Segment_list::iterator p = this->segment_list_.begin();
4177 p != this->segment_list_.end();
4178 ++p)
4179 {
4180 // PT_GNU_STACK was set up correctly when it was created.
4181 if ((*p)->type() != elfcpp::PT_LOAD
4182 && (*p)->type() != elfcpp::PT_GNU_STACK)
4183 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4184 ? increase_relro
4185 : 0);
4186 }
4187
4188 // Set the TLS offsets for each section in the PT_TLS segment.
4189 if (this->tls_segment_ != NULL)
4190 this->tls_segment_->set_tls_offsets();
4191
4192 return off;
4193 }
4194
4195 // Set the offsets of all the allocated sections when doing a
4196 // relocatable link. This does the same jobs as set_segment_offsets,
4197 // only for a relocatable link.
4198
4199 off_t
4200 Layout::set_relocatable_section_offsets(Output_data* file_header,
4201 unsigned int* pshndx)
4202 {
4203 off_t off = 0;
4204
4205 file_header->set_address_and_file_offset(0, 0);
4206 off += file_header->data_size();
4207
4208 for (Section_list::iterator p = this->section_list_.begin();
4209 p != this->section_list_.end();
4210 ++p)
4211 {
4212 // We skip unallocated sections here, except that group sections
4213 // have to come first.
4214 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4215 && (*p)->type() != elfcpp::SHT_GROUP)
4216 continue;
4217
4218 off = align_address(off, (*p)->addralign());
4219
4220 // The linker script might have set the address.
4221 if (!(*p)->is_address_valid())
4222 (*p)->set_address(0);
4223 (*p)->set_file_offset(off);
4224 (*p)->finalize_data_size();
4225 if ((*p)->type() != elfcpp::SHT_NOBITS)
4226 off += (*p)->data_size();
4227
4228 (*p)->set_out_shndx(*pshndx);
4229 ++*pshndx;
4230 }
4231
4232 return off;
4233 }
4234
4235 // Set the file offset of all the sections not associated with a
4236 // segment.
4237
4238 off_t
4239 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4240 {
4241 off_t startoff = off;
4242 off_t maxoff = off;
4243
4244 for (Section_list::iterator p = this->unattached_section_list_.begin();
4245 p != this->unattached_section_list_.end();
4246 ++p)
4247 {
4248 // The symtab section is handled in create_symtab_sections.
4249 if (*p == this->symtab_section_)
4250 continue;
4251
4252 // If we've already set the data size, don't set it again.
4253 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4254 continue;
4255
4256 if (pass == BEFORE_INPUT_SECTIONS_PASS
4257 && (*p)->requires_postprocessing())
4258 {
4259 (*p)->create_postprocessing_buffer();
4260 this->any_postprocessing_sections_ = true;
4261 }
4262
4263 if (pass == BEFORE_INPUT_SECTIONS_PASS
4264 && (*p)->after_input_sections())
4265 continue;
4266 else if (pass == POSTPROCESSING_SECTIONS_PASS
4267 && (!(*p)->after_input_sections()
4268 || (*p)->type() == elfcpp::SHT_STRTAB))
4269 continue;
4270 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4271 && (!(*p)->after_input_sections()
4272 || (*p)->type() != elfcpp::SHT_STRTAB))
4273 continue;
4274
4275 if (!parameters->incremental_update())
4276 {
4277 off = align_address(off, (*p)->addralign());
4278 (*p)->set_file_offset(off);
4279 (*p)->finalize_data_size();
4280 }
4281 else
4282 {
4283 // Incremental update: allocate file space from free list.
4284 (*p)->pre_finalize_data_size();
4285 off_t current_size = (*p)->current_data_size();
4286 off = this->allocate(current_size, (*p)->addralign(), startoff);
4287 if (off == -1)
4288 {
4289 if (is_debugging_enabled(DEBUG_INCREMENTAL))
4290 this->free_list_.dump();
4291 gold_assert((*p)->output_section() != NULL);
4292 gold_fallback(_("out of patch space for section %s; "
4293 "relink with --incremental-full"),
4294 (*p)->output_section()->name());
4295 }
4296 (*p)->set_file_offset(off);
4297 (*p)->finalize_data_size();
4298 if ((*p)->data_size() > current_size)
4299 {
4300 gold_assert((*p)->output_section() != NULL);
4301 gold_fallback(_("%s: section changed size; "
4302 "relink with --incremental-full"),
4303 (*p)->output_section()->name());
4304 }
4305 gold_debug(DEBUG_INCREMENTAL,
4306 "set_section_offsets: %08lx %08lx %s",
4307 static_cast<long>(off),
4308 static_cast<long>((*p)->data_size()),
4309 ((*p)->output_section() != NULL
4310 ? (*p)->output_section()->name() : "(special)"));
4311 }
4312
4313 off += (*p)->data_size();
4314 if (off > maxoff)
4315 maxoff = off;
4316
4317 // At this point the name must be set.
4318 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4319 this->namepool_.add((*p)->name(), false, NULL);
4320 }
4321 return maxoff;
4322 }
4323
4324 // Set the section indexes of all the sections not associated with a
4325 // segment.
4326
4327 unsigned int
4328 Layout::set_section_indexes(unsigned int shndx)
4329 {
4330 for (Section_list::iterator p = this->unattached_section_list_.begin();
4331 p != this->unattached_section_list_.end();
4332 ++p)
4333 {
4334 if (!(*p)->has_out_shndx())
4335 {
4336 (*p)->set_out_shndx(shndx);
4337 ++shndx;
4338 }
4339 }
4340 return shndx;
4341 }
4342
4343 // Set the section addresses according to the linker script. This is
4344 // only called when we see a SECTIONS clause. This returns the
4345 // program segment which should hold the file header and segment
4346 // headers, if any. It will return NULL if they should not be in a
4347 // segment.
4348
4349 Output_segment*
4350 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4351 {
4352 Script_sections* ss = this->script_options_->script_sections();
4353 gold_assert(ss->saw_sections_clause());
4354 return this->script_options_->set_section_addresses(symtab, this);
4355 }
4356
4357 // Place the orphan sections in the linker script.
4358
4359 void
4360 Layout::place_orphan_sections_in_script()
4361 {
4362 Script_sections* ss = this->script_options_->script_sections();
4363 gold_assert(ss->saw_sections_clause());
4364
4365 // Place each orphaned output section in the script.
4366 for (Section_list::iterator p = this->section_list_.begin();
4367 p != this->section_list_.end();
4368 ++p)
4369 {
4370 if (!(*p)->found_in_sections_clause())
4371 ss->place_orphan(*p);
4372 }
4373 }
4374
4375 // Count the local symbols in the regular symbol table and the dynamic
4376 // symbol table, and build the respective string pools.
4377
4378 void
4379 Layout::count_local_symbols(const Task* task,
4380 const Input_objects* input_objects)
4381 {
4382 // First, figure out an upper bound on the number of symbols we'll
4383 // be inserting into each pool. This helps us create the pools with
4384 // the right size, to avoid unnecessary hashtable resizing.
4385 unsigned int symbol_count = 0;
4386 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4387 p != input_objects->relobj_end();
4388 ++p)
4389 symbol_count += (*p)->local_symbol_count();
4390
4391 // Go from "upper bound" to "estimate." We overcount for two
4392 // reasons: we double-count symbols that occur in more than one
4393 // object file, and we count symbols that are dropped from the
4394 // output. Add it all together and assume we overcount by 100%.
4395 symbol_count /= 2;
4396
4397 // We assume all symbols will go into both the sympool and dynpool.
4398 this->sympool_.reserve(symbol_count);
4399 this->dynpool_.reserve(symbol_count);
4400
4401 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4402 p != input_objects->relobj_end();
4403 ++p)
4404 {
4405 Task_lock_obj<Object> tlo(task, *p);
4406 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4407 }
4408 }
4409
4410 // Create the symbol table sections. Here we also set the final
4411 // values of the symbols. At this point all the loadable sections are
4412 // fully laid out. SHNUM is the number of sections so far.
4413
4414 void
4415 Layout::create_symtab_sections(const Input_objects* input_objects,
4416 Symbol_table* symtab,
4417 unsigned int shnum,
4418 off_t* poff,
4419 unsigned int local_dynamic_count)
4420 {
4421 int symsize;
4422 unsigned int align;
4423 if (parameters->target().get_size() == 32)
4424 {
4425 symsize = elfcpp::Elf_sizes<32>::sym_size;
4426 align = 4;
4427 }
4428 else if (parameters->target().get_size() == 64)
4429 {
4430 symsize = elfcpp::Elf_sizes<64>::sym_size;
4431 align = 8;
4432 }
4433 else
4434 gold_unreachable();
4435
4436 // Compute file offsets relative to the start of the symtab section.
4437 off_t off = 0;
4438
4439 // Save space for the dummy symbol at the start of the section. We
4440 // never bother to write this out--it will just be left as zero.
4441 off += symsize;
4442 unsigned int local_symbol_index = 1;
4443
4444 // Add STT_SECTION symbols for each Output section which needs one.
4445 for (Section_list::iterator p = this->section_list_.begin();
4446 p != this->section_list_.end();
4447 ++p)
4448 {
4449 if (!(*p)->needs_symtab_index())
4450 (*p)->set_symtab_index(-1U);
4451 else
4452 {
4453 (*p)->set_symtab_index(local_symbol_index);
4454 ++local_symbol_index;
4455 off += symsize;
4456 }
4457 }
4458
4459 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4460 p != input_objects->relobj_end();
4461 ++p)
4462 {
4463 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4464 off, symtab);
4465 off += (index - local_symbol_index) * symsize;
4466 local_symbol_index = index;
4467 }
4468
4469 unsigned int local_symcount = local_symbol_index;
4470 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4471
4472 off_t dynoff;
4473 size_t dyncount;
4474 if (this->dynsym_section_ == NULL)
4475 {
4476 dynoff = 0;
4477 dyncount = 0;
4478 }
4479 else
4480 {
4481 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4482 dynoff = this->dynsym_section_->offset() + locsize;
4483 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4484 gold_assert(static_cast<off_t>(dyncount * symsize)
4485 == this->dynsym_section_->data_size() - locsize);
4486 }
4487
4488 off_t global_off = off;
4489 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4490 &this->sympool_, &local_symcount);
4491
4492 if (!parameters->options().strip_all())
4493 {
4494 this->sympool_.set_string_offsets();
4495
4496 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4497 Output_section* osymtab = this->make_output_section(symtab_name,
4498 elfcpp::SHT_SYMTAB,
4499 0, ORDER_INVALID,
4500 false);
4501 this->symtab_section_ = osymtab;
4502
4503 Output_section_data* pos = new Output_data_fixed_space(off, align,
4504 "** symtab");
4505 osymtab->add_output_section_data(pos);
4506
4507 // We generate a .symtab_shndx section if we have more than
4508 // SHN_LORESERVE sections. Technically it is possible that we
4509 // don't need one, because it is possible that there are no
4510 // symbols in any of sections with indexes larger than
4511 // SHN_LORESERVE. That is probably unusual, though, and it is
4512 // easier to always create one than to compute section indexes
4513 // twice (once here, once when writing out the symbols).
4514 if (shnum >= elfcpp::SHN_LORESERVE)
4515 {
4516 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4517 false, NULL);
4518 Output_section* osymtab_xindex =
4519 this->make_output_section(symtab_xindex_name,
4520 elfcpp::SHT_SYMTAB_SHNDX, 0,
4521 ORDER_INVALID, false);
4522
4523 size_t symcount = off / symsize;
4524 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4525
4526 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4527
4528 osymtab_xindex->set_link_section(osymtab);
4529 osymtab_xindex->set_addralign(4);
4530 osymtab_xindex->set_entsize(4);
4531
4532 osymtab_xindex->set_after_input_sections();
4533
4534 // This tells the driver code to wait until the symbol table
4535 // has written out before writing out the postprocessing
4536 // sections, including the .symtab_shndx section.
4537 this->any_postprocessing_sections_ = true;
4538 }
4539
4540 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4541 Output_section* ostrtab = this->make_output_section(strtab_name,
4542 elfcpp::SHT_STRTAB,
4543 0, ORDER_INVALID,
4544 false);
4545
4546 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4547 ostrtab->add_output_section_data(pstr);
4548
4549 off_t symtab_off;
4550 if (!parameters->incremental_update())
4551 symtab_off = align_address(*poff, align);
4552 else
4553 {
4554 symtab_off = this->allocate(off, align, *poff);
4555 if (off == -1)
4556 gold_fallback(_("out of patch space for symbol table; "
4557 "relink with --incremental-full"));
4558 gold_debug(DEBUG_INCREMENTAL,
4559 "create_symtab_sections: %08lx %08lx .symtab",
4560 static_cast<long>(symtab_off),
4561 static_cast<long>(off));
4562 }
4563
4564 symtab->set_file_offset(symtab_off + global_off);
4565 osymtab->set_file_offset(symtab_off);
4566 osymtab->finalize_data_size();
4567 osymtab->set_link_section(ostrtab);
4568 osymtab->set_info(local_symcount);
4569 osymtab->set_entsize(symsize);
4570
4571 if (symtab_off + off > *poff)
4572 *poff = symtab_off + off;
4573 }
4574 }
4575
4576 // Create the .shstrtab section, which holds the names of the
4577 // sections. At the time this is called, we have created all the
4578 // output sections except .shstrtab itself.
4579
4580 Output_section*
4581 Layout::create_shstrtab()
4582 {
4583 // FIXME: We don't need to create a .shstrtab section if we are
4584 // stripping everything.
4585
4586 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4587
4588 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4589 ORDER_INVALID, false);
4590
4591 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4592 {
4593 // We can't write out this section until we've set all the
4594 // section names, and we don't set the names of compressed
4595 // output sections until relocations are complete. FIXME: With
4596 // the current names we use, this is unnecessary.
4597 os->set_after_input_sections();
4598 }
4599
4600 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4601 os->add_output_section_data(posd);
4602
4603 return os;
4604 }
4605
4606 // Create the section headers. SIZE is 32 or 64. OFF is the file
4607 // offset.
4608
4609 void
4610 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4611 {
4612 Output_section_headers* oshdrs;
4613 oshdrs = new Output_section_headers(this,
4614 &this->segment_list_,
4615 &this->section_list_,
4616 &this->unattached_section_list_,
4617 &this->namepool_,
4618 shstrtab_section);
4619 off_t off;
4620 if (!parameters->incremental_update())
4621 off = align_address(*poff, oshdrs->addralign());
4622 else
4623 {
4624 oshdrs->pre_finalize_data_size();
4625 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4626 if (off == -1)
4627 gold_fallback(_("out of patch space for section header table; "
4628 "relink with --incremental-full"));
4629 gold_debug(DEBUG_INCREMENTAL,
4630 "create_shdrs: %08lx %08lx (section header table)",
4631 static_cast<long>(off),
4632 static_cast<long>(off + oshdrs->data_size()));
4633 }
4634 oshdrs->set_address_and_file_offset(0, off);
4635 off += oshdrs->data_size();
4636 if (off > *poff)
4637 *poff = off;
4638 this->section_headers_ = oshdrs;
4639 }
4640
4641 // Count the allocated sections.
4642
4643 size_t
4644 Layout::allocated_output_section_count() const
4645 {
4646 size_t section_count = 0;
4647 for (Segment_list::const_iterator p = this->segment_list_.begin();
4648 p != this->segment_list_.end();
4649 ++p)
4650 section_count += (*p)->output_section_count();
4651 return section_count;
4652 }
4653
4654 // Create the dynamic symbol table.
4655 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4656 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4657 // to the number of global symbols that have been forced local.
4658 // We need to remember the former because the forced-local symbols are
4659 // written along with the global symbols in Symtab::write_globals().
4660
4661 void
4662 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4663 Symbol_table* symtab,
4664 Output_section** pdynstr,
4665 unsigned int* plocal_dynamic_count,
4666 unsigned int* pforced_local_dynamic_count,
4667 std::vector<Symbol*>* pdynamic_symbols,
4668 Versions* pversions)
4669 {
4670 // Count all the symbols in the dynamic symbol table, and set the
4671 // dynamic symbol indexes.
4672
4673 // Skip symbol 0, which is always all zeroes.
4674 unsigned int index = 1;
4675
4676 // Add STT_SECTION symbols for each Output section which needs one.
4677 for (Section_list::iterator p = this->section_list_.begin();
4678 p != this->section_list_.end();
4679 ++p)
4680 {
4681 if (!(*p)->needs_dynsym_index())
4682 (*p)->set_dynsym_index(-1U);
4683 else
4684 {
4685 (*p)->set_dynsym_index(index);
4686 ++index;
4687 }
4688 }
4689
4690 // Count the local symbols that need to go in the dynamic symbol table,
4691 // and set the dynamic symbol indexes.
4692 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4693 p != input_objects->relobj_end();
4694 ++p)
4695 {
4696 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4697 index = new_index;
4698 }
4699
4700 unsigned int local_symcount = index;
4701 unsigned int forced_local_count = 0;
4702
4703 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4704 pdynamic_symbols, &this->dynpool_,
4705 pversions);
4706
4707 *plocal_dynamic_count = local_symcount;
4708 *pforced_local_dynamic_count = forced_local_count;
4709
4710 int symsize;
4711 unsigned int align;
4712 const int size = parameters->target().get_size();
4713 if (size == 32)
4714 {
4715 symsize = elfcpp::Elf_sizes<32>::sym_size;
4716 align = 4;
4717 }
4718 else if (size == 64)
4719 {
4720 symsize = elfcpp::Elf_sizes<64>::sym_size;
4721 align = 8;
4722 }
4723 else
4724 gold_unreachable();
4725
4726 // Create the dynamic symbol table section.
4727
4728 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4729 elfcpp::SHT_DYNSYM,
4730 elfcpp::SHF_ALLOC,
4731 false,
4732 ORDER_DYNAMIC_LINKER,
4733 false, false, false);
4734
4735 // Check for NULL as a linker script may discard .dynsym.
4736 if (dynsym != NULL)
4737 {
4738 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4739 align,
4740 "** dynsym");
4741 dynsym->add_output_section_data(odata);
4742
4743 dynsym->set_info(local_symcount + forced_local_count);
4744 dynsym->set_entsize(symsize);
4745 dynsym->set_addralign(align);
4746
4747 this->dynsym_section_ = dynsym;
4748 }
4749
4750 Output_data_dynamic* const odyn = this->dynamic_data_;
4751 if (odyn != NULL)
4752 {
4753 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4754 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4755 }
4756
4757 // If there are more than SHN_LORESERVE allocated sections, we
4758 // create a .dynsym_shndx section. It is possible that we don't
4759 // need one, because it is possible that there are no dynamic
4760 // symbols in any of the sections with indexes larger than
4761 // SHN_LORESERVE. This is probably unusual, though, and at this
4762 // time we don't know the actual section indexes so it is
4763 // inconvenient to check.
4764 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4765 {
4766 Output_section* dynsym_xindex =
4767 this->choose_output_section(NULL, ".dynsym_shndx",
4768 elfcpp::SHT_SYMTAB_SHNDX,
4769 elfcpp::SHF_ALLOC,
4770 false, ORDER_DYNAMIC_LINKER, false, false,
4771 false);
4772
4773 if (dynsym_xindex != NULL)
4774 {
4775 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4776
4777 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4778
4779 dynsym_xindex->set_link_section(dynsym);
4780 dynsym_xindex->set_addralign(4);
4781 dynsym_xindex->set_entsize(4);
4782
4783 dynsym_xindex->set_after_input_sections();
4784
4785 // This tells the driver code to wait until the symbol table
4786 // has written out before writing out the postprocessing
4787 // sections, including the .dynsym_shndx section.
4788 this->any_postprocessing_sections_ = true;
4789 }
4790 }
4791
4792 // Create the dynamic string table section.
4793
4794 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4795 elfcpp::SHT_STRTAB,
4796 elfcpp::SHF_ALLOC,
4797 false,
4798 ORDER_DYNAMIC_LINKER,
4799 false, false, false);
4800 *pdynstr = dynstr;
4801 if (dynstr != NULL)
4802 {
4803 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4804 dynstr->add_output_section_data(strdata);
4805
4806 if (dynsym != NULL)
4807 dynsym->set_link_section(dynstr);
4808 if (this->dynamic_section_ != NULL)
4809 this->dynamic_section_->set_link_section(dynstr);
4810
4811 if (odyn != NULL)
4812 {
4813 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4814 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4815 }
4816 }
4817
4818 // Create the hash tables. The Gnu-style hash table must be
4819 // built first, because it changes the order of the symbols
4820 // in the dynamic symbol table.
4821
4822 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4823 || strcmp(parameters->options().hash_style(), "both") == 0)
4824 {
4825 unsigned char* phash;
4826 unsigned int hashlen;
4827 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4828 local_symcount + forced_local_count,
4829 &phash, &hashlen);
4830
4831 Output_section* hashsec =
4832 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4833 elfcpp::SHF_ALLOC, false,
4834 ORDER_DYNAMIC_LINKER, false, false,
4835 false);
4836
4837 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4838 hashlen,
4839 align,
4840 "** hash");
4841 if (hashsec != NULL && hashdata != NULL)
4842 hashsec->add_output_section_data(hashdata);
4843
4844 if (hashsec != NULL)
4845 {
4846 if (dynsym != NULL)
4847 hashsec->set_link_section(dynsym);
4848
4849 // For a 64-bit target, the entries in .gnu.hash do not have
4850 // a uniform size, so we only set the entry size for a
4851 // 32-bit target.
4852 if (parameters->target().get_size() == 32)
4853 hashsec->set_entsize(4);
4854
4855 if (odyn != NULL)
4856 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4857 }
4858 }
4859
4860 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4861 || strcmp(parameters->options().hash_style(), "both") == 0)
4862 {
4863 unsigned char* phash;
4864 unsigned int hashlen;
4865 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4866 local_symcount + forced_local_count,
4867 &phash, &hashlen);
4868
4869 Output_section* hashsec =
4870 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4871 elfcpp::SHF_ALLOC, false,
4872 ORDER_DYNAMIC_LINKER, false, false,
4873 false);
4874
4875 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4876 hashlen,
4877 align,
4878 "** hash");
4879 if (hashsec != NULL && hashdata != NULL)
4880 hashsec->add_output_section_data(hashdata);
4881
4882 if (hashsec != NULL)
4883 {
4884 if (dynsym != NULL)
4885 hashsec->set_link_section(dynsym);
4886 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4887 }
4888
4889 if (odyn != NULL)
4890 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4891 }
4892 }
4893
4894 // Assign offsets to each local portion of the dynamic symbol table.
4895
4896 void
4897 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4898 {
4899 Output_section* dynsym = this->dynsym_section_;
4900 if (dynsym == NULL)
4901 return;
4902
4903 off_t off = dynsym->offset();
4904
4905 // Skip the dummy symbol at the start of the section.
4906 off += dynsym->entsize();
4907
4908 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4909 p != input_objects->relobj_end();
4910 ++p)
4911 {
4912 unsigned int count = (*p)->set_local_dynsym_offset(off);
4913 off += count * dynsym->entsize();
4914 }
4915 }
4916
4917 // Create the version sections.
4918
4919 void
4920 Layout::create_version_sections(const Versions* versions,
4921 const Symbol_table* symtab,
4922 unsigned int local_symcount,
4923 const std::vector<Symbol*>& dynamic_symbols,
4924 const Output_section* dynstr)
4925 {
4926 if (!versions->any_defs() && !versions->any_needs())
4927 return;
4928
4929 switch (parameters->size_and_endianness())
4930 {
4931 #ifdef HAVE_TARGET_32_LITTLE
4932 case Parameters::TARGET_32_LITTLE:
4933 this->sized_create_version_sections<32, false>(versions, symtab,
4934 local_symcount,
4935 dynamic_symbols, dynstr);
4936 break;
4937 #endif
4938 #ifdef HAVE_TARGET_32_BIG
4939 case Parameters::TARGET_32_BIG:
4940 this->sized_create_version_sections<32, true>(versions, symtab,
4941 local_symcount,
4942 dynamic_symbols, dynstr);
4943 break;
4944 #endif
4945 #ifdef HAVE_TARGET_64_LITTLE
4946 case Parameters::TARGET_64_LITTLE:
4947 this->sized_create_version_sections<64, false>(versions, symtab,
4948 local_symcount,
4949 dynamic_symbols, dynstr);
4950 break;
4951 #endif
4952 #ifdef HAVE_TARGET_64_BIG
4953 case Parameters::TARGET_64_BIG:
4954 this->sized_create_version_sections<64, true>(versions, symtab,
4955 local_symcount,
4956 dynamic_symbols, dynstr);
4957 break;
4958 #endif
4959 default:
4960 gold_unreachable();
4961 }
4962 }
4963
4964 // Create the version sections, sized version.
4965
4966 template<int size, bool big_endian>
4967 void
4968 Layout::sized_create_version_sections(
4969 const Versions* versions,
4970 const Symbol_table* symtab,
4971 unsigned int local_symcount,
4972 const std::vector<Symbol*>& dynamic_symbols,
4973 const Output_section* dynstr)
4974 {
4975 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4976 elfcpp::SHT_GNU_versym,
4977 elfcpp::SHF_ALLOC,
4978 false,
4979 ORDER_DYNAMIC_LINKER,
4980 false, false, false);
4981
4982 // Check for NULL since a linker script may discard this section.
4983 if (vsec != NULL)
4984 {
4985 unsigned char* vbuf;
4986 unsigned int vsize;
4987 versions->symbol_section_contents<size, big_endian>(symtab,
4988 &this->dynpool_,
4989 local_symcount,
4990 dynamic_symbols,
4991 &vbuf, &vsize);
4992
4993 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4994 "** versions");
4995
4996 vsec->add_output_section_data(vdata);
4997 vsec->set_entsize(2);
4998 vsec->set_link_section(this->dynsym_section_);
4999 }
5000
5001 Output_data_dynamic* const odyn = this->dynamic_data_;
5002 if (odyn != NULL && vsec != NULL)
5003 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
5004
5005 if (versions->any_defs())
5006 {
5007 Output_section* vdsec;
5008 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
5009 elfcpp::SHT_GNU_verdef,
5010 elfcpp::SHF_ALLOC,
5011 false, ORDER_DYNAMIC_LINKER, false,
5012 false, false);
5013
5014 if (vdsec != NULL)
5015 {
5016 unsigned char* vdbuf;
5017 unsigned int vdsize;
5018 unsigned int vdentries;
5019 versions->def_section_contents<size, big_endian>(&this->dynpool_,
5020 &vdbuf, &vdsize,
5021 &vdentries);
5022
5023 Output_section_data* vddata =
5024 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
5025
5026 vdsec->add_output_section_data(vddata);
5027 vdsec->set_link_section(dynstr);
5028 vdsec->set_info(vdentries);
5029
5030 if (odyn != NULL)
5031 {
5032 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
5033 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
5034 }
5035 }
5036 }
5037
5038 if (versions->any_needs())
5039 {
5040 Output_section* vnsec;
5041 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
5042 elfcpp::SHT_GNU_verneed,
5043 elfcpp::SHF_ALLOC,
5044 false, ORDER_DYNAMIC_LINKER, false,
5045 false, false);
5046
5047 if (vnsec != NULL)
5048 {
5049 unsigned char* vnbuf;
5050 unsigned int vnsize;
5051 unsigned int vnentries;
5052 versions->need_section_contents<size, big_endian>(&this->dynpool_,
5053 &vnbuf, &vnsize,
5054 &vnentries);
5055
5056 Output_section_data* vndata =
5057 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
5058
5059 vnsec->add_output_section_data(vndata);
5060 vnsec->set_link_section(dynstr);
5061 vnsec->set_info(vnentries);
5062
5063 if (odyn != NULL)
5064 {
5065 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
5066 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
5067 }
5068 }
5069 }
5070 }
5071
5072 // Create the .interp section and PT_INTERP segment.
5073
5074 void
5075 Layout::create_interp(const Target* target)
5076 {
5077 gold_assert(this->interp_segment_ == NULL);
5078
5079 const char* interp = parameters->options().dynamic_linker();
5080 if (interp == NULL)
5081 {
5082 interp = target->dynamic_linker();
5083 gold_assert(interp != NULL);
5084 }
5085
5086 size_t len = strlen(interp) + 1;
5087
5088 Output_section_data* odata = new Output_data_const(interp, len, 1);
5089
5090 Output_section* osec = this->choose_output_section(NULL, ".interp",
5091 elfcpp::SHT_PROGBITS,
5092 elfcpp::SHF_ALLOC,
5093 false, ORDER_INTERP,
5094 false, false, false);
5095 if (osec != NULL)
5096 osec->add_output_section_data(odata);
5097 }
5098
5099 // Add dynamic tags for the PLT and the dynamic relocs. This is
5100 // called by the target-specific code. This does nothing if not doing
5101 // a dynamic link.
5102
5103 // USE_REL is true for REL relocs rather than RELA relocs.
5104
5105 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5106
5107 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5108 // and we also set DT_PLTREL. We use PLT_REL's output section, since
5109 // some targets have multiple reloc sections in PLT_REL.
5110
5111 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5112 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
5113 // section.
5114
5115 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5116 // executable.
5117
5118 void
5119 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5120 const Output_data* plt_rel,
5121 const Output_data_reloc_generic* dyn_rel,
5122 bool add_debug, bool dynrel_includes_plt)
5123 {
5124 Output_data_dynamic* odyn = this->dynamic_data_;
5125 if (odyn == NULL)
5126 return;
5127
5128 if (plt_got != NULL && plt_got->output_section() != NULL)
5129 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5130
5131 if (plt_rel != NULL && plt_rel->output_section() != NULL)
5132 {
5133 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5134 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5135 odyn->add_constant(elfcpp::DT_PLTREL,
5136 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5137 }
5138
5139 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5140 || (dynrel_includes_plt
5141 && plt_rel != NULL
5142 && plt_rel->output_section() != NULL))
5143 {
5144 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5145 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5146 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5147 (have_dyn_rel
5148 ? dyn_rel->output_section()
5149 : plt_rel->output_section()));
5150 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5151 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5152 odyn->add_section_size(size_tag,
5153 dyn_rel->output_section(),
5154 plt_rel->output_section());
5155 else if (have_dyn_rel)
5156 odyn->add_section_size(size_tag, dyn_rel->output_section());
5157 else
5158 odyn->add_section_size(size_tag, plt_rel->output_section());
5159 const int size = parameters->target().get_size();
5160 elfcpp::DT rel_tag;
5161 int rel_size;
5162 if (use_rel)
5163 {
5164 rel_tag = elfcpp::DT_RELENT;
5165 if (size == 32)
5166 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5167 else if (size == 64)
5168 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5169 else
5170 gold_unreachable();
5171 }
5172 else
5173 {
5174 rel_tag = elfcpp::DT_RELAENT;
5175 if (size == 32)
5176 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5177 else if (size == 64)
5178 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5179 else
5180 gold_unreachable();
5181 }
5182 odyn->add_constant(rel_tag, rel_size);
5183
5184 if (parameters->options().combreloc() && have_dyn_rel)
5185 {
5186 size_t c = dyn_rel->relative_reloc_count();
5187 if (c > 0)
5188 odyn->add_constant((use_rel
5189 ? elfcpp::DT_RELCOUNT
5190 : elfcpp::DT_RELACOUNT),
5191 c);
5192 }
5193 }
5194
5195 if (add_debug && !parameters->options().shared())
5196 {
5197 // The value of the DT_DEBUG tag is filled in by the dynamic
5198 // linker at run time, and used by the debugger.
5199 odyn->add_constant(elfcpp::DT_DEBUG, 0);
5200 }
5201 }
5202
5203 void
5204 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5205 {
5206 Output_data_dynamic* odyn = this->dynamic_data_;
5207 if (odyn == NULL)
5208 return;
5209 odyn->add_constant(tag, val);
5210 }
5211
5212 // Finish the .dynamic section and PT_DYNAMIC segment.
5213
5214 void
5215 Layout::finish_dynamic_section(const Input_objects* input_objects,
5216 const Symbol_table* symtab)
5217 {
5218 if (!this->script_options_->saw_phdrs_clause()
5219 && this->dynamic_section_ != NULL)
5220 {
5221 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5222 (elfcpp::PF_R
5223 | elfcpp::PF_W));
5224 oseg->add_output_section_to_nonload(this->dynamic_section_,
5225 elfcpp::PF_R | elfcpp::PF_W);
5226 }
5227
5228 Output_data_dynamic* const odyn = this->dynamic_data_;
5229 if (odyn == NULL)
5230 return;
5231
5232 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5233 p != input_objects->dynobj_end();
5234 ++p)
5235 {
5236 if (!(*p)->is_needed() && (*p)->as_needed())
5237 {
5238 // This dynamic object was linked with --as-needed, but it
5239 // is not needed.
5240 continue;
5241 }
5242
5243 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5244 }
5245
5246 if (parameters->options().shared())
5247 {
5248 const char* soname = parameters->options().soname();
5249 if (soname != NULL)
5250 odyn->add_string(elfcpp::DT_SONAME, soname);
5251 }
5252
5253 Symbol* sym = symtab->lookup(parameters->options().init());
5254 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5255 odyn->add_symbol(elfcpp::DT_INIT, sym);
5256
5257 sym = symtab->lookup(parameters->options().fini());
5258 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5259 odyn->add_symbol(elfcpp::DT_FINI, sym);
5260
5261 // Look for .init_array, .preinit_array and .fini_array by checking
5262 // section types.
5263 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5264 p != this->section_list_.end();
5265 ++p)
5266 switch((*p)->type())
5267 {
5268 case elfcpp::SHT_FINI_ARRAY:
5269 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5270 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5271 break;
5272 case elfcpp::SHT_INIT_ARRAY:
5273 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5274 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5275 break;
5276 case elfcpp::SHT_PREINIT_ARRAY:
5277 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5278 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5279 break;
5280 default:
5281 break;
5282 }
5283
5284 // Add a DT_RPATH entry if needed.
5285 const General_options::Dir_list& rpath(parameters->options().rpath());
5286 if (!rpath.empty())
5287 {
5288 std::string rpath_val;
5289 for (General_options::Dir_list::const_iterator p = rpath.begin();
5290 p != rpath.end();
5291 ++p)
5292 {
5293 if (rpath_val.empty())
5294 rpath_val = p->name();
5295 else
5296 {
5297 // Eliminate duplicates.
5298 General_options::Dir_list::const_iterator q;
5299 for (q = rpath.begin(); q != p; ++q)
5300 if (q->name() == p->name())
5301 break;
5302 if (q == p)
5303 {
5304 rpath_val += ':';
5305 rpath_val += p->name();
5306 }
5307 }
5308 }
5309
5310 if (!parameters->options().enable_new_dtags())
5311 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5312 else
5313 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5314 }
5315
5316 // Look for text segments that have dynamic relocations.
5317 bool have_textrel = false;
5318 if (!this->script_options_->saw_sections_clause())
5319 {
5320 for (Segment_list::const_iterator p = this->segment_list_.begin();
5321 p != this->segment_list_.end();
5322 ++p)
5323 {
5324 if ((*p)->type() == elfcpp::PT_LOAD
5325 && ((*p)->flags() & elfcpp::PF_W) == 0
5326 && (*p)->has_dynamic_reloc())
5327 {
5328 have_textrel = true;
5329 break;
5330 }
5331 }
5332 }
5333 else
5334 {
5335 // We don't know the section -> segment mapping, so we are
5336 // conservative and just look for readonly sections with
5337 // relocations. If those sections wind up in writable segments,
5338 // then we have created an unnecessary DT_TEXTREL entry.
5339 for (Section_list::const_iterator p = this->section_list_.begin();
5340 p != this->section_list_.end();
5341 ++p)
5342 {
5343 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5344 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5345 && (*p)->has_dynamic_reloc())
5346 {
5347 have_textrel = true;
5348 break;
5349 }
5350 }
5351 }
5352
5353 if (parameters->options().filter() != NULL)
5354 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5355 if (parameters->options().any_auxiliary())
5356 {
5357 for (options::String_set::const_iterator p =
5358 parameters->options().auxiliary_begin();
5359 p != parameters->options().auxiliary_end();
5360 ++p)
5361 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5362 }
5363
5364 // Add a DT_FLAGS entry if necessary.
5365 unsigned int flags = 0;
5366 if (have_textrel)
5367 {
5368 // Add a DT_TEXTREL for compatibility with older loaders.
5369 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5370 flags |= elfcpp::DF_TEXTREL;
5371
5372 if (parameters->options().text())
5373 gold_error(_("read-only segment has dynamic relocations"));
5374 else if (parameters->options().warn_shared_textrel()
5375 && parameters->options().shared())
5376 gold_warning(_("shared library text segment is not shareable"));
5377 }
5378 if (parameters->options().shared() && this->has_static_tls())
5379 flags |= elfcpp::DF_STATIC_TLS;
5380 if (parameters->options().origin())
5381 flags |= elfcpp::DF_ORIGIN;
5382 if (parameters->options().Bsymbolic()
5383 && !parameters->options().have_dynamic_list())
5384 {
5385 flags |= elfcpp::DF_SYMBOLIC;
5386 // Add DT_SYMBOLIC for compatibility with older loaders.
5387 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5388 }
5389 if (parameters->options().now())
5390 flags |= elfcpp::DF_BIND_NOW;
5391 if (flags != 0)
5392 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5393
5394 flags = 0;
5395 if (parameters->options().global())
5396 flags |= elfcpp::DF_1_GLOBAL;
5397 if (parameters->options().initfirst())
5398 flags |= elfcpp::DF_1_INITFIRST;
5399 if (parameters->options().interpose())
5400 flags |= elfcpp::DF_1_INTERPOSE;
5401 if (parameters->options().loadfltr())
5402 flags |= elfcpp::DF_1_LOADFLTR;
5403 if (parameters->options().nodefaultlib())
5404 flags |= elfcpp::DF_1_NODEFLIB;
5405 if (parameters->options().nodelete())
5406 flags |= elfcpp::DF_1_NODELETE;
5407 if (parameters->options().nodlopen())
5408 flags |= elfcpp::DF_1_NOOPEN;
5409 if (parameters->options().nodump())
5410 flags |= elfcpp::DF_1_NODUMP;
5411 if (!parameters->options().shared())
5412 flags &= ~(elfcpp::DF_1_INITFIRST
5413 | elfcpp::DF_1_NODELETE
5414 | elfcpp::DF_1_NOOPEN);
5415 if (parameters->options().origin())
5416 flags |= elfcpp::DF_1_ORIGIN;
5417 if (parameters->options().now())
5418 flags |= elfcpp::DF_1_NOW;
5419 if (parameters->options().Bgroup())
5420 flags |= elfcpp::DF_1_GROUP;
5421 if (parameters->options().pie())
5422 flags |= elfcpp::DF_1_PIE;
5423 if (flags != 0)
5424 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5425
5426 flags = 0;
5427 if (parameters->options().unique())
5428 flags |= elfcpp::DF_GNU_1_UNIQUE;
5429 if (flags != 0)
5430 odyn->add_constant(elfcpp::DT_GNU_FLAGS_1, flags);
5431 }
5432
5433 // Set the size of the _DYNAMIC symbol table to be the size of the
5434 // dynamic data.
5435
5436 void
5437 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5438 {
5439 Output_data_dynamic* const odyn = this->dynamic_data_;
5440 if (odyn == NULL)
5441 return;
5442 odyn->finalize_data_size();
5443 if (this->dynamic_symbol_ == NULL)
5444 return;
5445 off_t data_size = odyn->data_size();
5446 const int size = parameters->target().get_size();
5447 if (size == 32)
5448 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5449 else if (size == 64)
5450 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5451 else
5452 gold_unreachable();
5453 }
5454
5455 // The mapping of input section name prefixes to output section names.
5456 // In some cases one prefix is itself a prefix of another prefix; in
5457 // such a case the longer prefix must come first. These prefixes are
5458 // based on the GNU linker default ELF linker script.
5459
5460 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5461 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5462 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5463 {
5464 MAPPING_INIT(".text.", ".text"),
5465 MAPPING_INIT(".rodata.", ".rodata"),
5466 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5467 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5468 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5469 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5470 MAPPING_INIT(".data.", ".data"),
5471 MAPPING_INIT(".bss.", ".bss"),
5472 MAPPING_INIT(".tdata.", ".tdata"),
5473 MAPPING_INIT(".tbss.", ".tbss"),
5474 MAPPING_INIT(".init_array.", ".init_array"),
5475 MAPPING_INIT(".fini_array.", ".fini_array"),
5476 MAPPING_INIT(".sdata.", ".sdata"),
5477 MAPPING_INIT(".sbss.", ".sbss"),
5478 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5479 // differently depending on whether it is creating a shared library.
5480 MAPPING_INIT(".sdata2.", ".sdata"),
5481 MAPPING_INIT(".sbss2.", ".sbss"),
5482 MAPPING_INIT(".lrodata.", ".lrodata"),
5483 MAPPING_INIT(".ldata.", ".ldata"),
5484 MAPPING_INIT(".lbss.", ".lbss"),
5485 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5486 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5487 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5488 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5489 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5490 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5491 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5492 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5493 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5494 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5495 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5496 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5497 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5498 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5499 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5500 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5501 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5502 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5503 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5504 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5505 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5506 MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5507 };
5508
5509 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5510 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5511 {
5512 MAPPING_INIT(".text.hot.", ".text.hot"),
5513 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5514 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5515 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5516 MAPPING_INIT(".text.startup.", ".text.startup"),
5517 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5518 MAPPING_INIT(".text.exit.", ".text.exit"),
5519 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5520 MAPPING_INIT(".text.", ".text"),
5521 };
5522 #undef MAPPING_INIT
5523 #undef MAPPING_INIT_EXACT
5524
5525 const int Layout::section_name_mapping_count =
5526 (sizeof(Layout::section_name_mapping)
5527 / sizeof(Layout::section_name_mapping[0]));
5528
5529 const int Layout::text_section_name_mapping_count =
5530 (sizeof(Layout::text_section_name_mapping)
5531 / sizeof(Layout::text_section_name_mapping[0]));
5532
5533 // Find section name NAME in PSNM and return the mapped name if found
5534 // with the length set in PLEN.
5535 const char *
5536 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5537 const int count,
5538 const char* name, size_t* plen)
5539 {
5540 for (int i = 0; i < count; ++i, ++psnm)
5541 {
5542 if (psnm->fromlen > 0)
5543 {
5544 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5545 {
5546 *plen = psnm->tolen;
5547 return psnm->to;
5548 }
5549 }
5550 else
5551 {
5552 if (strcmp(name, psnm->from) == 0)
5553 {
5554 *plen = psnm->tolen;
5555 return psnm->to;
5556 }
5557 }
5558 }
5559 return NULL;
5560 }
5561
5562 // Choose the output section name to use given an input section name.
5563 // Set *PLEN to the length of the name. *PLEN is initialized to the
5564 // length of NAME.
5565
5566 const char*
5567 Layout::output_section_name(const Relobj* relobj, const char* name,
5568 size_t* plen)
5569 {
5570 // gcc 4.3 generates the following sorts of section names when it
5571 // needs a section name specific to a function:
5572 // .text.FN
5573 // .rodata.FN
5574 // .sdata2.FN
5575 // .data.FN
5576 // .data.rel.FN
5577 // .data.rel.local.FN
5578 // .data.rel.ro.FN
5579 // .data.rel.ro.local.FN
5580 // .sdata.FN
5581 // .bss.FN
5582 // .sbss.FN
5583 // .tdata.FN
5584 // .tbss.FN
5585
5586 // The GNU linker maps all of those to the part before the .FN,
5587 // except that .data.rel.local.FN is mapped to .data, and
5588 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5589 // beginning with .data.rel.ro.local are grouped together.
5590
5591 // For an anonymous namespace, the string FN can contain a '.'.
5592
5593 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5594 // GNU linker maps to .rodata.
5595
5596 // The .data.rel.ro sections are used with -z relro. The sections
5597 // are recognized by name. We use the same names that the GNU
5598 // linker does for these sections.
5599
5600 // It is hard to handle this in a principled way, so we don't even
5601 // try. We use a table of mappings. If the input section name is
5602 // not found in the table, we simply use it as the output section
5603 // name.
5604
5605 if (parameters->options().keep_text_section_prefix()
5606 && is_prefix_of(".text", name))
5607 {
5608 const char* match = match_section_name(text_section_name_mapping,
5609 text_section_name_mapping_count,
5610 name, plen);
5611 if (match != NULL)
5612 return match;
5613 }
5614
5615 const char* match = match_section_name(section_name_mapping,
5616 section_name_mapping_count, name, plen);
5617 if (match != NULL)
5618 return match;
5619
5620 // As an additional complication, .ctors sections are output in
5621 // either .ctors or .init_array sections, and .dtors sections are
5622 // output in either .dtors or .fini_array sections.
5623 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5624 {
5625 if (parameters->options().ctors_in_init_array())
5626 {
5627 *plen = 11;
5628 return name[1] == 'c' ? ".init_array" : ".fini_array";
5629 }
5630 else
5631 {
5632 *plen = 6;
5633 return name[1] == 'c' ? ".ctors" : ".dtors";
5634 }
5635 }
5636 if (parameters->options().ctors_in_init_array()
5637 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5638 {
5639 // To make .init_array/.fini_array work with gcc we must exclude
5640 // .ctors and .dtors sections from the crtbegin and crtend
5641 // files.
5642 if (relobj == NULL
5643 || (!Layout::match_file_name(relobj, "crtbegin")
5644 && !Layout::match_file_name(relobj, "crtend")))
5645 {
5646 *plen = 11;
5647 return name[1] == 'c' ? ".init_array" : ".fini_array";
5648 }
5649 }
5650
5651 return name;
5652 }
5653
5654 // Return true if RELOBJ is an input file whose base name matches
5655 // FILE_NAME. The base name must have an extension of ".o", and must
5656 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5657 // to match crtbegin.o as well as crtbeginS.o without getting confused
5658 // by other possibilities. Overall matching the file name this way is
5659 // a dreadful hack, but the GNU linker does it in order to better
5660 // support gcc, and we need to be compatible.
5661
5662 bool
5663 Layout::match_file_name(const Relobj* relobj, const char* match)
5664 {
5665 const std::string& file_name(relobj->name());
5666 const char* base_name = lbasename(file_name.c_str());
5667 size_t match_len = strlen(match);
5668 if (strncmp(base_name, match, match_len) != 0)
5669 return false;
5670 size_t base_len = strlen(base_name);
5671 if (base_len != match_len + 2 && base_len != match_len + 3)
5672 return false;
5673 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5674 }
5675
5676 // Check if a comdat group or .gnu.linkonce section with the given
5677 // NAME is selected for the link. If there is already a section,
5678 // *KEPT_SECTION is set to point to the existing section and the
5679 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5680 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5681 // *KEPT_SECTION is set to the internal copy and the function returns
5682 // true.
5683
5684 bool
5685 Layout::find_or_add_kept_section(const std::string& name,
5686 Relobj* object,
5687 unsigned int shndx,
5688 bool is_comdat,
5689 bool is_group_name,
5690 Kept_section** kept_section)
5691 {
5692 // It's normal to see a couple of entries here, for the x86 thunk
5693 // sections. If we see more than a few, we're linking a C++
5694 // program, and we resize to get more space to minimize rehashing.
5695 if (this->signatures_.size() > 4
5696 && !this->resized_signatures_)
5697 {
5698 reserve_unordered_map(&this->signatures_,
5699 this->number_of_input_files_ * 64);
5700 this->resized_signatures_ = true;
5701 }
5702
5703 Kept_section candidate;
5704 std::pair<Signatures::iterator, bool> ins =
5705 this->signatures_.insert(std::make_pair(name, candidate));
5706
5707 if (kept_section != NULL)
5708 *kept_section = &ins.first->second;
5709 if (ins.second)
5710 {
5711 // This is the first time we've seen this signature.
5712 ins.first->second.set_object(object);
5713 ins.first->second.set_shndx(shndx);
5714 if (is_comdat)
5715 ins.first->second.set_is_comdat();
5716 if (is_group_name)
5717 ins.first->second.set_is_group_name();
5718 return true;
5719 }
5720
5721 // We have already seen this signature.
5722
5723 if (ins.first->second.is_group_name())
5724 {
5725 // We've already seen a real section group with this signature.
5726 // If the kept group is from a plugin object, and we're in the
5727 // replacement phase, accept the new one as a replacement.
5728 if (ins.first->second.object() == NULL
5729 && parameters->options().plugins()->in_replacement_phase())
5730 {
5731 ins.first->second.set_object(object);
5732 ins.first->second.set_shndx(shndx);
5733 return true;
5734 }
5735 return false;
5736 }
5737 else if (is_group_name)
5738 {
5739 // This is a real section group, and we've already seen a
5740 // linkonce section with this signature. Record that we've seen
5741 // a section group, and don't include this section group.
5742 ins.first->second.set_is_group_name();
5743 return false;
5744 }
5745 else
5746 {
5747 // We've already seen a linkonce section and this is a linkonce
5748 // section. These don't block each other--this may be the same
5749 // symbol name with different section types.
5750 return true;
5751 }
5752 }
5753
5754 // Store the allocated sections into the section list.
5755
5756 void
5757 Layout::get_allocated_sections(Section_list* section_list) const
5758 {
5759 for (Section_list::const_iterator p = this->section_list_.begin();
5760 p != this->section_list_.end();
5761 ++p)
5762 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5763 section_list->push_back(*p);
5764 }
5765
5766 // Store the executable sections into the section list.
5767
5768 void
5769 Layout::get_executable_sections(Section_list* section_list) const
5770 {
5771 for (Section_list::const_iterator p = this->section_list_.begin();
5772 p != this->section_list_.end();
5773 ++p)
5774 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5775 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5776 section_list->push_back(*p);
5777 }
5778
5779 // Create an output segment.
5780
5781 Output_segment*
5782 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5783 {
5784 gold_assert(!parameters->options().relocatable());
5785 Output_segment* oseg = new Output_segment(type, flags);
5786 this->segment_list_.push_back(oseg);
5787
5788 if (type == elfcpp::PT_TLS)
5789 this->tls_segment_ = oseg;
5790 else if (type == elfcpp::PT_GNU_RELRO)
5791 this->relro_segment_ = oseg;
5792 else if (type == elfcpp::PT_INTERP)
5793 this->interp_segment_ = oseg;
5794
5795 return oseg;
5796 }
5797
5798 // Return the file offset of the normal symbol table.
5799
5800 off_t
5801 Layout::symtab_section_offset() const
5802 {
5803 if (this->symtab_section_ != NULL)
5804 return this->symtab_section_->offset();
5805 return 0;
5806 }
5807
5808 // Return the section index of the normal symbol table. It may have
5809 // been stripped by the -s/--strip-all option.
5810
5811 unsigned int
5812 Layout::symtab_section_shndx() const
5813 {
5814 if (this->symtab_section_ != NULL)
5815 return this->symtab_section_->out_shndx();
5816 return 0;
5817 }
5818
5819 // Write out the Output_sections. Most won't have anything to write,
5820 // since most of the data will come from input sections which are
5821 // handled elsewhere. But some Output_sections do have Output_data.
5822
5823 void
5824 Layout::write_output_sections(Output_file* of) const
5825 {
5826 for (Section_list::const_iterator p = this->section_list_.begin();
5827 p != this->section_list_.end();
5828 ++p)
5829 {
5830 if (!(*p)->after_input_sections())
5831 (*p)->write(of);
5832 }
5833 }
5834
5835 // Write out data not associated with a section or the symbol table.
5836
5837 void
5838 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5839 {
5840 if (!parameters->options().strip_all())
5841 {
5842 const Output_section* symtab_section = this->symtab_section_;
5843 for (Section_list::const_iterator p = this->section_list_.begin();
5844 p != this->section_list_.end();
5845 ++p)
5846 {
5847 if ((*p)->needs_symtab_index())
5848 {
5849 gold_assert(symtab_section != NULL);
5850 unsigned int index = (*p)->symtab_index();
5851 gold_assert(index > 0 && index != -1U);
5852 off_t off = (symtab_section->offset()
5853 + index * symtab_section->entsize());
5854 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5855 }
5856 }
5857 }
5858
5859 const Output_section* dynsym_section = this->dynsym_section_;
5860 for (Section_list::const_iterator p = this->section_list_.begin();
5861 p != this->section_list_.end();
5862 ++p)
5863 {
5864 if ((*p)->needs_dynsym_index())
5865 {
5866 gold_assert(dynsym_section != NULL);
5867 unsigned int index = (*p)->dynsym_index();
5868 gold_assert(index > 0 && index != -1U);
5869 off_t off = (dynsym_section->offset()
5870 + index * dynsym_section->entsize());
5871 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5872 }
5873 }
5874
5875 // Write out the Output_data which are not in an Output_section.
5876 for (Data_list::const_iterator p = this->special_output_list_.begin();
5877 p != this->special_output_list_.end();
5878 ++p)
5879 (*p)->write(of);
5880
5881 // Write out the Output_data which are not in an Output_section
5882 // and are regenerated in each iteration of relaxation.
5883 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5884 p != this->relax_output_list_.end();
5885 ++p)
5886 (*p)->write(of);
5887 }
5888
5889 // Write out the Output_sections which can only be written after the
5890 // input sections are complete.
5891
5892 void
5893 Layout::write_sections_after_input_sections(Output_file* of)
5894 {
5895 // Determine the final section offsets, and thus the final output
5896 // file size. Note we finalize the .shstrab last, to allow the
5897 // after_input_section sections to modify their section-names before
5898 // writing.
5899 if (this->any_postprocessing_sections_)
5900 {
5901 off_t off = this->output_file_size_;
5902 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5903
5904 // Now that we've finalized the names, we can finalize the shstrab.
5905 off =
5906 this->set_section_offsets(off,
5907 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5908
5909 if (off > this->output_file_size_)
5910 {
5911 of->resize(off);
5912 this->output_file_size_ = off;
5913 }
5914 }
5915
5916 for (Section_list::const_iterator p = this->section_list_.begin();
5917 p != this->section_list_.end();
5918 ++p)
5919 {
5920 if ((*p)->after_input_sections())
5921 (*p)->write(of);
5922 }
5923
5924 this->section_headers_->write(of);
5925 }
5926
5927 // If a tree-style build ID was requested, the parallel part of that computation
5928 // is already done, and the final hash-of-hashes is computed here. For other
5929 // types of build IDs, all the work is done here.
5930
5931 void
5932 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5933 size_t size_of_hashes) const
5934 {
5935 if (this->build_id_note_ == NULL)
5936 return;
5937
5938 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5939 this->build_id_note_->data_size());
5940
5941 if (array_of_hashes == NULL)
5942 {
5943 const size_t output_file_size = this->output_file_size();
5944 const unsigned char* iv = of->get_input_view(0, output_file_size);
5945 const char* style = parameters->options().build_id();
5946
5947 // If we get here with style == "tree" then the output must be
5948 // too small for chunking, and we use SHA-1 in that case.
5949 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5950 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5951 else if (strcmp(style, "md5") == 0)
5952 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5953 else
5954 gold_unreachable();
5955
5956 of->free_input_view(0, output_file_size, iv);
5957 }
5958 else
5959 {
5960 // Non-overlapping substrings of the output file have been hashed.
5961 // Compute SHA-1 hash of the hashes.
5962 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5963 size_of_hashes, ov);
5964 delete[] array_of_hashes;
5965 }
5966
5967 of->write_output_view(this->build_id_note_->offset(),
5968 this->build_id_note_->data_size(),
5969 ov);
5970 }
5971
5972 // Write out a binary file. This is called after the link is
5973 // complete. IN is the temporary output file we used to generate the
5974 // ELF code. We simply walk through the segments, read them from
5975 // their file offset in IN, and write them to their load address in
5976 // the output file. FIXME: with a bit more work, we could support
5977 // S-records and/or Intel hex format here.
5978
5979 void
5980 Layout::write_binary(Output_file* in) const
5981 {
5982 gold_assert(parameters->options().oformat_enum()
5983 == General_options::OBJECT_FORMAT_BINARY);
5984
5985 // Get the size of the binary file.
5986 uint64_t max_load_address = 0;
5987 for (Segment_list::const_iterator p = this->segment_list_.begin();
5988 p != this->segment_list_.end();
5989 ++p)
5990 {
5991 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5992 {
5993 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5994 if (max_paddr > max_load_address)
5995 max_load_address = max_paddr;
5996 }
5997 }
5998
5999 Output_file out(parameters->options().output_file_name());
6000 out.open(max_load_address);
6001
6002 for (Segment_list::const_iterator p = this->segment_list_.begin();
6003 p != this->segment_list_.end();
6004 ++p)
6005 {
6006 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
6007 {
6008 const unsigned char* vin = in->get_input_view((*p)->offset(),
6009 (*p)->filesz());
6010 unsigned char* vout = out.get_output_view((*p)->paddr(),
6011 (*p)->filesz());
6012 memcpy(vout, vin, (*p)->filesz());
6013 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
6014 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
6015 }
6016 }
6017
6018 out.close();
6019 }
6020
6021 // Print the output sections to the map file.
6022
6023 void
6024 Layout::print_to_mapfile(Mapfile* mapfile) const
6025 {
6026 for (Segment_list::const_iterator p = this->segment_list_.begin();
6027 p != this->segment_list_.end();
6028 ++p)
6029 (*p)->print_sections_to_mapfile(mapfile);
6030 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
6031 p != this->unattached_section_list_.end();
6032 ++p)
6033 (*p)->print_to_mapfile(mapfile);
6034 }
6035
6036 // Print statistical information to stderr. This is used for --stats.
6037
6038 void
6039 Layout::print_stats() const
6040 {
6041 this->namepool_.print_stats("section name pool");
6042 this->sympool_.print_stats("output symbol name pool");
6043 this->dynpool_.print_stats("dynamic name pool");
6044
6045 for (Section_list::const_iterator p = this->section_list_.begin();
6046 p != this->section_list_.end();
6047 ++p)
6048 (*p)->print_merge_stats();
6049 }
6050
6051 // Write_sections_task methods.
6052
6053 // We can always run this task.
6054
6055 Task_token*
6056 Write_sections_task::is_runnable()
6057 {
6058 return NULL;
6059 }
6060
6061 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
6062 // when finished.
6063
6064 void
6065 Write_sections_task::locks(Task_locker* tl)
6066 {
6067 tl->add(this, this->output_sections_blocker_);
6068 if (this->input_sections_blocker_ != NULL)
6069 tl->add(this, this->input_sections_blocker_);
6070 tl->add(this, this->final_blocker_);
6071 }
6072
6073 // Run the task--write out the data.
6074
6075 void
6076 Write_sections_task::run(Workqueue*)
6077 {
6078 this->layout_->write_output_sections(this->of_);
6079 }
6080
6081 // Write_data_task methods.
6082
6083 // We can always run this task.
6084
6085 Task_token*
6086 Write_data_task::is_runnable()
6087 {
6088 return NULL;
6089 }
6090
6091 // We need to unlock FINAL_BLOCKER when finished.
6092
6093 void
6094 Write_data_task::locks(Task_locker* tl)
6095 {
6096 tl->add(this, this->final_blocker_);
6097 }
6098
6099 // Run the task--write out the data.
6100
6101 void
6102 Write_data_task::run(Workqueue*)
6103 {
6104 this->layout_->write_data(this->symtab_, this->of_);
6105 }
6106
6107 // Write_symbols_task methods.
6108
6109 // We can always run this task.
6110
6111 Task_token*
6112 Write_symbols_task::is_runnable()
6113 {
6114 return NULL;
6115 }
6116
6117 // We need to unlock FINAL_BLOCKER when finished.
6118
6119 void
6120 Write_symbols_task::locks(Task_locker* tl)
6121 {
6122 tl->add(this, this->final_blocker_);
6123 }
6124
6125 // Run the task--write out the symbols.
6126
6127 void
6128 Write_symbols_task::run(Workqueue*)
6129 {
6130 this->symtab_->write_globals(this->sympool_, this->dynpool_,
6131 this->layout_->symtab_xindex(),
6132 this->layout_->dynsym_xindex(), this->of_);
6133 }
6134
6135 // Write_after_input_sections_task methods.
6136
6137 // We can only run this task after the input sections have completed.
6138
6139 Task_token*
6140 Write_after_input_sections_task::is_runnable()
6141 {
6142 if (this->input_sections_blocker_->is_blocked())
6143 return this->input_sections_blocker_;
6144 return NULL;
6145 }
6146
6147 // We need to unlock FINAL_BLOCKER when finished.
6148
6149 void
6150 Write_after_input_sections_task::locks(Task_locker* tl)
6151 {
6152 tl->add(this, this->final_blocker_);
6153 }
6154
6155 // Run the task.
6156
6157 void
6158 Write_after_input_sections_task::run(Workqueue*)
6159 {
6160 this->layout_->write_sections_after_input_sections(this->of_);
6161 }
6162
6163 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6164 // or as a "tree" where each chunk of the string is hashed and then those
6165 // hashes are put into a (much smaller) string which is hashed with sha1.
6166 // We compute a checksum over the entire file because that is simplest.
6167
6168 void
6169 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6170 {
6171 Task_token* post_hash_tasks_blocker = new Task_token(true);
6172 const Layout* layout = this->layout_;
6173 Output_file* of = this->of_;
6174 const size_t filesize = (layout->output_file_size() <= 0 ? 0
6175 : static_cast<size_t>(layout->output_file_size()));
6176 unsigned char* array_of_hashes = NULL;
6177 size_t size_of_hashes = 0;
6178
6179 if (strcmp(this->options_->build_id(), "tree") == 0
6180 && this->options_->build_id_chunk_size_for_treehash() > 0
6181 && filesize > 0
6182 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6183 {
6184 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6185 const size_t chunk_size =
6186 this->options_->build_id_chunk_size_for_treehash();
6187 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6188 post_hash_tasks_blocker->add_blockers(num_hashes);
6189 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6190 array_of_hashes = new unsigned char[size_of_hashes];
6191 unsigned char *dst = array_of_hashes;
6192 for (size_t i = 0, src_offset = 0; i < num_hashes;
6193 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6194 {
6195 size_t size = std::min(chunk_size, filesize - src_offset);
6196 workqueue->queue(new Hash_task(of,
6197 src_offset,
6198 size,
6199 dst,
6200 post_hash_tasks_blocker));
6201 }
6202 }
6203
6204 // Queue the final task to write the build id and close the output file.
6205 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6206 layout,
6207 of,
6208 array_of_hashes,
6209 size_of_hashes),
6210 post_hash_tasks_blocker,
6211 "Task_function Close_task_runner"));
6212 }
6213
6214 // Close_task_runner methods.
6215
6216 // Finish up the build ID computation, if necessary, and write a binary file,
6217 // if necessary. Then close the output file.
6218
6219 void
6220 Close_task_runner::run(Workqueue*, const Task*)
6221 {
6222 // At this point the multi-threaded part of the build ID computation,
6223 // if any, is done. See Build_id_task_runner.
6224 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6225 this->size_of_hashes_);
6226
6227 // If we've been asked to create a binary file, we do so here.
6228 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6229 this->layout_->write_binary(this->of_);
6230
6231 if (this->options_->dependency_file())
6232 File_read::write_dependency_file(this->options_->dependency_file(),
6233 this->options_->output_file_name());
6234
6235 this->of_->close();
6236 }
6237
6238 // Instantiate the templates we need. We could use the configure
6239 // script to restrict this to only the ones for implemented targets.
6240
6241 #ifdef HAVE_TARGET_32_LITTLE
6242 template
6243 Output_section*
6244 Layout::init_fixed_output_section<32, false>(
6245 const char* name,
6246 elfcpp::Shdr<32, false>& shdr);
6247 #endif
6248
6249 #ifdef HAVE_TARGET_32_BIG
6250 template
6251 Output_section*
6252 Layout::init_fixed_output_section<32, true>(
6253 const char* name,
6254 elfcpp::Shdr<32, true>& shdr);
6255 #endif
6256
6257 #ifdef HAVE_TARGET_64_LITTLE
6258 template
6259 Output_section*
6260 Layout::init_fixed_output_section<64, false>(
6261 const char* name,
6262 elfcpp::Shdr<64, false>& shdr);
6263 #endif
6264
6265 #ifdef HAVE_TARGET_64_BIG
6266 template
6267 Output_section*
6268 Layout::init_fixed_output_section<64, true>(
6269 const char* name,
6270 elfcpp::Shdr<64, true>& shdr);
6271 #endif
6272
6273 #ifdef HAVE_TARGET_32_LITTLE
6274 template
6275 Output_section*
6276 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6277 unsigned int shndx,
6278 const char* name,
6279 const elfcpp::Shdr<32, false>& shdr,
6280 unsigned int, unsigned int, unsigned int, off_t*);
6281 #endif
6282
6283 #ifdef HAVE_TARGET_32_BIG
6284 template
6285 Output_section*
6286 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6287 unsigned int shndx,
6288 const char* name,
6289 const elfcpp::Shdr<32, true>& shdr,
6290 unsigned int, unsigned int, unsigned int, off_t*);
6291 #endif
6292
6293 #ifdef HAVE_TARGET_64_LITTLE
6294 template
6295 Output_section*
6296 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6297 unsigned int shndx,
6298 const char* name,
6299 const elfcpp::Shdr<64, false>& shdr,
6300 unsigned int, unsigned int, unsigned int, off_t*);
6301 #endif
6302
6303 #ifdef HAVE_TARGET_64_BIG
6304 template
6305 Output_section*
6306 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6307 unsigned int shndx,
6308 const char* name,
6309 const elfcpp::Shdr<64, true>& shdr,
6310 unsigned int, unsigned int, unsigned int, off_t*);
6311 #endif
6312
6313 #ifdef HAVE_TARGET_32_LITTLE
6314 template
6315 Output_section*
6316 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6317 unsigned int reloc_shndx,
6318 const elfcpp::Shdr<32, false>& shdr,
6319 Output_section* data_section,
6320 Relocatable_relocs* rr);
6321 #endif
6322
6323 #ifdef HAVE_TARGET_32_BIG
6324 template
6325 Output_section*
6326 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6327 unsigned int reloc_shndx,
6328 const elfcpp::Shdr<32, true>& shdr,
6329 Output_section* data_section,
6330 Relocatable_relocs* rr);
6331 #endif
6332
6333 #ifdef HAVE_TARGET_64_LITTLE
6334 template
6335 Output_section*
6336 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6337 unsigned int reloc_shndx,
6338 const elfcpp::Shdr<64, false>& shdr,
6339 Output_section* data_section,
6340 Relocatable_relocs* rr);
6341 #endif
6342
6343 #ifdef HAVE_TARGET_64_BIG
6344 template
6345 Output_section*
6346 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6347 unsigned int reloc_shndx,
6348 const elfcpp::Shdr<64, true>& shdr,
6349 Output_section* data_section,
6350 Relocatable_relocs* rr);
6351 #endif
6352
6353 #ifdef HAVE_TARGET_32_LITTLE
6354 template
6355 void
6356 Layout::layout_group<32, false>(Symbol_table* symtab,
6357 Sized_relobj_file<32, false>* object,
6358 unsigned int,
6359 const char* group_section_name,
6360 const char* signature,
6361 const elfcpp::Shdr<32, false>& shdr,
6362 elfcpp::Elf_Word flags,
6363 std::vector<unsigned int>* shndxes);
6364 #endif
6365
6366 #ifdef HAVE_TARGET_32_BIG
6367 template
6368 void
6369 Layout::layout_group<32, true>(Symbol_table* symtab,
6370 Sized_relobj_file<32, true>* object,
6371 unsigned int,
6372 const char* group_section_name,
6373 const char* signature,
6374 const elfcpp::Shdr<32, true>& shdr,
6375 elfcpp::Elf_Word flags,
6376 std::vector<unsigned int>* shndxes);
6377 #endif
6378
6379 #ifdef HAVE_TARGET_64_LITTLE
6380 template
6381 void
6382 Layout::layout_group<64, false>(Symbol_table* symtab,
6383 Sized_relobj_file<64, false>* object,
6384 unsigned int,
6385 const char* group_section_name,
6386 const char* signature,
6387 const elfcpp::Shdr<64, false>& shdr,
6388 elfcpp::Elf_Word flags,
6389 std::vector<unsigned int>* shndxes);
6390 #endif
6391
6392 #ifdef HAVE_TARGET_64_BIG
6393 template
6394 void
6395 Layout::layout_group<64, true>(Symbol_table* symtab,
6396 Sized_relobj_file<64, true>* object,
6397 unsigned int,
6398 const char* group_section_name,
6399 const char* signature,
6400 const elfcpp::Shdr<64, true>& shdr,
6401 elfcpp::Elf_Word flags,
6402 std::vector<unsigned int>* shndxes);
6403 #endif
6404
6405 #ifdef HAVE_TARGET_32_LITTLE
6406 template
6407 Output_section*
6408 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6409 const unsigned char* symbols,
6410 off_t symbols_size,
6411 const unsigned char* symbol_names,
6412 off_t symbol_names_size,
6413 unsigned int shndx,
6414 const elfcpp::Shdr<32, false>& shdr,
6415 unsigned int reloc_shndx,
6416 unsigned int reloc_type,
6417 off_t* off);
6418 #endif
6419
6420 #ifdef HAVE_TARGET_32_BIG
6421 template
6422 Output_section*
6423 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6424 const unsigned char* symbols,
6425 off_t symbols_size,
6426 const unsigned char* symbol_names,
6427 off_t symbol_names_size,
6428 unsigned int shndx,
6429 const elfcpp::Shdr<32, true>& shdr,
6430 unsigned int reloc_shndx,
6431 unsigned int reloc_type,
6432 off_t* off);
6433 #endif
6434
6435 #ifdef HAVE_TARGET_64_LITTLE
6436 template
6437 Output_section*
6438 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6439 const unsigned char* symbols,
6440 off_t symbols_size,
6441 const unsigned char* symbol_names,
6442 off_t symbol_names_size,
6443 unsigned int shndx,
6444 const elfcpp::Shdr<64, false>& shdr,
6445 unsigned int reloc_shndx,
6446 unsigned int reloc_type,
6447 off_t* off);
6448 #endif
6449
6450 #ifdef HAVE_TARGET_64_BIG
6451 template
6452 Output_section*
6453 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6454 const unsigned char* symbols,
6455 off_t symbols_size,
6456 const unsigned char* symbol_names,
6457 off_t symbol_names_size,
6458 unsigned int shndx,
6459 const elfcpp::Shdr<64, true>& shdr,
6460 unsigned int reloc_shndx,
6461 unsigned int reloc_type,
6462 off_t* off);
6463 #endif
6464
6465 #ifdef HAVE_TARGET_32_LITTLE
6466 template
6467 void
6468 Layout::add_to_gdb_index(bool is_type_unit,
6469 Sized_relobj<32, false>* object,
6470 const unsigned char* symbols,
6471 off_t symbols_size,
6472 unsigned int shndx,
6473 unsigned int reloc_shndx,
6474 unsigned int reloc_type);
6475 #endif
6476
6477 #ifdef HAVE_TARGET_32_BIG
6478 template
6479 void
6480 Layout::add_to_gdb_index(bool is_type_unit,
6481 Sized_relobj<32, true>* object,
6482 const unsigned char* symbols,
6483 off_t symbols_size,
6484 unsigned int shndx,
6485 unsigned int reloc_shndx,
6486 unsigned int reloc_type);
6487 #endif
6488
6489 #ifdef HAVE_TARGET_64_LITTLE
6490 template
6491 void
6492 Layout::add_to_gdb_index(bool is_type_unit,
6493 Sized_relobj<64, false>* object,
6494 const unsigned char* symbols,
6495 off_t symbols_size,
6496 unsigned int shndx,
6497 unsigned int reloc_shndx,
6498 unsigned int reloc_type);
6499 #endif
6500
6501 #ifdef HAVE_TARGET_64_BIG
6502 template
6503 void
6504 Layout::add_to_gdb_index(bool is_type_unit,
6505 Sized_relobj<64, true>* object,
6506 const unsigned char* symbols,
6507 off_t symbols_size,
6508 unsigned int shndx,
6509 unsigned int reloc_shndx,
6510 unsigned int reloc_type);
6511 #endif
6512
6513 } // End namespace gold.