* layout.cc (Layout::relaxation_loop_body): Only clear load_seg if
[binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list. Creates a single free list node that
75 // describes the entire region of length LEN. If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82 this->list_.push_front(Free_list_node(0, len));
83 this->last_remove_ = this->list_.begin();
84 this->extend_ = extend;
85 this->length_ = len;
86 ++Free_list::num_lists;
87 ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list. Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node. We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102 if (start == end)
103 return;
104 gold_assert(start < end);
105
106 ++Free_list::num_removes;
107
108 Iterator p = this->last_remove_;
109 if (p->start_ > start)
110 p = this->list_.begin();
111
112 for (; p != this->list_.end(); ++p)
113 {
114 ++Free_list::num_remove_visits;
115 // Find a node that wholly contains the indicated region.
116 if (p->start_ <= start && p->end_ >= end)
117 {
118 // Case 1: the indicated region spans the whole node.
119 // Add some fuzz to avoid creating tiny free chunks.
120 if (p->start_ + 3 >= start && p->end_ <= end + 3)
121 p = this->list_.erase(p);
122 // Case 2: remove a chunk from the start of the node.
123 else if (p->start_ + 3 >= start)
124 p->start_ = end;
125 // Case 3: remove a chunk from the end of the node.
126 else if (p->end_ <= end + 3)
127 p->end_ = start;
128 // Case 4: remove a chunk from the middle, and split
129 // the node into two.
130 else
131 {
132 Free_list_node newnode(p->start_, start);
133 p->start_ = end;
134 this->list_.insert(p, newnode);
135 ++Free_list::num_nodes;
136 }
137 this->last_remove_ = p;
138 return;
139 }
140 }
141
142 // Did not find a node containing the given chunk. This could happen
143 // because a small chunk was already removed due to the fuzz.
144 gold_debug(DEBUG_INCREMENTAL,
145 "Free_list::remove(%d,%d) not found",
146 static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list. Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156 gold_debug(DEBUG_INCREMENTAL,
157 "Free_list::allocate(%08lx, %d, %08lx)",
158 static_cast<long>(len), static_cast<int>(align),
159 static_cast<long>(minoff));
160 if (len == 0)
161 return align_address(minoff, align);
162
163 ++Free_list::num_allocates;
164
165 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166 {
167 ++Free_list::num_allocate_visits;
168 off_t start = p->start_ > minoff ? p->start_ : minoff;
169 start = align_address(start, align);
170 off_t end = start + len;
171 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
172 {
173 this->length_ = end;
174 p->end_ = end;
175 }
176 if (end <= p->end_)
177 {
178 if (p->start_ + 3 >= start && p->end_ <= end + 3)
179 this->list_.erase(p);
180 else if (p->start_ + 3 >= start)
181 p->start_ = end;
182 else if (p->end_ <= end + 3)
183 p->end_ = start;
184 else
185 {
186 Free_list_node newnode(p->start_, start);
187 p->start_ = end;
188 this->list_.insert(p, newnode);
189 ++Free_list::num_nodes;
190 }
191 return start;
192 }
193 }
194 if (this->extend_)
195 {
196 off_t start = align_address(this->length_, align);
197 this->length_ = start + len;
198 return start;
199 }
200 return -1;
201 }
202
203 // Dump the free list (for debugging).
204 void
205 Free_list::dump()
206 {
207 gold_info("Free list:\n start end length\n");
208 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
209 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
210 static_cast<long>(p->end_),
211 static_cast<long>(p->end_ - p->start_));
212 }
213
214 // Print the statistics for the free lists.
215 void
216 Free_list::print_stats()
217 {
218 fprintf(stderr, _("%s: total free lists: %u\n"),
219 program_name, Free_list::num_lists);
220 fprintf(stderr, _("%s: total free list nodes: %u\n"),
221 program_name, Free_list::num_nodes);
222 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
223 program_name, Free_list::num_removes);
224 fprintf(stderr, _("%s: nodes visited: %u\n"),
225 program_name, Free_list::num_remove_visits);
226 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
227 program_name, Free_list::num_allocates);
228 fprintf(stderr, _("%s: nodes visited: %u\n"),
229 program_name, Free_list::num_allocate_visits);
230 }
231
232 // Layout::Relaxation_debug_check methods.
233
234 // Check that sections and special data are in reset states.
235 // We do not save states for Output_sections and special Output_data.
236 // So we check that they have not assigned any addresses or offsets.
237 // clean_up_after_relaxation simply resets their addresses and offsets.
238 void
239 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
240 const Layout::Section_list& sections,
241 const Layout::Data_list& special_outputs)
242 {
243 for(Layout::Section_list::const_iterator p = sections.begin();
244 p != sections.end();
245 ++p)
246 gold_assert((*p)->address_and_file_offset_have_reset_values());
247
248 for(Layout::Data_list::const_iterator p = special_outputs.begin();
249 p != special_outputs.end();
250 ++p)
251 gold_assert((*p)->address_and_file_offset_have_reset_values());
252 }
253
254 // Save information of SECTIONS for checking later.
255
256 void
257 Layout::Relaxation_debug_check::read_sections(
258 const Layout::Section_list& sections)
259 {
260 for(Layout::Section_list::const_iterator p = sections.begin();
261 p != sections.end();
262 ++p)
263 {
264 Output_section* os = *p;
265 Section_info info;
266 info.output_section = os;
267 info.address = os->is_address_valid() ? os->address() : 0;
268 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
269 info.offset = os->is_offset_valid()? os->offset() : -1 ;
270 this->section_infos_.push_back(info);
271 }
272 }
273
274 // Verify SECTIONS using previously recorded information.
275
276 void
277 Layout::Relaxation_debug_check::verify_sections(
278 const Layout::Section_list& sections)
279 {
280 size_t i = 0;
281 for(Layout::Section_list::const_iterator p = sections.begin();
282 p != sections.end();
283 ++p, ++i)
284 {
285 Output_section* os = *p;
286 uint64_t address = os->is_address_valid() ? os->address() : 0;
287 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
288 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
289
290 if (i >= this->section_infos_.size())
291 {
292 gold_fatal("Section_info of %s missing.\n", os->name());
293 }
294 const Section_info& info = this->section_infos_[i];
295 if (os != info.output_section)
296 gold_fatal("Section order changed. Expecting %s but see %s\n",
297 info.output_section->name(), os->name());
298 if (address != info.address
299 || data_size != info.data_size
300 || offset != info.offset)
301 gold_fatal("Section %s changed.\n", os->name());
302 }
303 }
304
305 // Layout_task_runner methods.
306
307 // Lay out the sections. This is called after all the input objects
308 // have been read.
309
310 void
311 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
312 {
313 Layout* layout = this->layout_;
314 off_t file_size = layout->finalize(this->input_objects_,
315 this->symtab_,
316 this->target_,
317 task);
318
319 // Now we know the final size of the output file and we know where
320 // each piece of information goes.
321
322 if (this->mapfile_ != NULL)
323 {
324 this->mapfile_->print_discarded_sections(this->input_objects_);
325 layout->print_to_mapfile(this->mapfile_);
326 }
327
328 Output_file* of;
329 if (layout->incremental_base() == NULL)
330 {
331 of = new Output_file(parameters->options().output_file_name());
332 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
333 of->set_is_temporary();
334 of->open(file_size);
335 }
336 else
337 {
338 of = layout->incremental_base()->output_file();
339
340 // Apply the incremental relocations for symbols whose values
341 // have changed. We do this before we resize the file and start
342 // writing anything else to it, so that we can read the old
343 // incremental information from the file before (possibly)
344 // overwriting it.
345 if (parameters->incremental_update())
346 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
347 this->layout_,
348 of);
349
350 of->resize(file_size);
351 }
352
353 // Queue up the final set of tasks.
354 gold::queue_final_tasks(this->options_, this->input_objects_,
355 this->symtab_, layout, workqueue, of);
356 }
357
358 // Layout methods.
359
360 Layout::Layout(int number_of_input_files, Script_options* script_options)
361 : number_of_input_files_(number_of_input_files),
362 script_options_(script_options),
363 namepool_(),
364 sympool_(),
365 dynpool_(),
366 signatures_(),
367 section_name_map_(),
368 segment_list_(),
369 section_list_(),
370 unattached_section_list_(),
371 special_output_list_(),
372 section_headers_(NULL),
373 tls_segment_(NULL),
374 relro_segment_(NULL),
375 interp_segment_(NULL),
376 increase_relro_(0),
377 symtab_section_(NULL),
378 symtab_xindex_(NULL),
379 dynsym_section_(NULL),
380 dynsym_xindex_(NULL),
381 dynamic_section_(NULL),
382 dynamic_symbol_(NULL),
383 dynamic_data_(NULL),
384 eh_frame_section_(NULL),
385 eh_frame_data_(NULL),
386 added_eh_frame_data_(false),
387 eh_frame_hdr_section_(NULL),
388 build_id_note_(NULL),
389 debug_abbrev_(NULL),
390 debug_info_(NULL),
391 group_signatures_(),
392 output_file_size_(-1),
393 have_added_input_section_(false),
394 sections_are_attached_(false),
395 input_requires_executable_stack_(false),
396 input_with_gnu_stack_note_(false),
397 input_without_gnu_stack_note_(false),
398 has_static_tls_(false),
399 any_postprocessing_sections_(false),
400 resized_signatures_(false),
401 have_stabstr_section_(false),
402 section_ordering_specified_(false),
403 incremental_inputs_(NULL),
404 record_output_section_data_from_script_(false),
405 script_output_section_data_list_(),
406 segment_states_(NULL),
407 relaxation_debug_check_(NULL),
408 input_section_position_(),
409 input_section_glob_(),
410 incremental_base_(NULL),
411 free_list_()
412 {
413 // Make space for more than enough segments for a typical file.
414 // This is just for efficiency--it's OK if we wind up needing more.
415 this->segment_list_.reserve(12);
416
417 // We expect two unattached Output_data objects: the file header and
418 // the segment headers.
419 this->special_output_list_.reserve(2);
420
421 // Initialize structure needed for an incremental build.
422 if (parameters->incremental())
423 this->incremental_inputs_ = new Incremental_inputs;
424
425 // The section name pool is worth optimizing in all cases, because
426 // it is small, but there are often overlaps due to .rel sections.
427 this->namepool_.set_optimize();
428 }
429
430 // For incremental links, record the base file to be modified.
431
432 void
433 Layout::set_incremental_base(Incremental_binary* base)
434 {
435 this->incremental_base_ = base;
436 this->free_list_.init(base->output_file()->filesize(), true);
437 }
438
439 // Hash a key we use to look up an output section mapping.
440
441 size_t
442 Layout::Hash_key::operator()(const Layout::Key& k) const
443 {
444 return k.first + k.second.first + k.second.second;
445 }
446
447 // Returns whether the given section is in the list of
448 // debug-sections-used-by-some-version-of-gdb. Currently,
449 // we've checked versions of gdb up to and including 6.7.1.
450
451 static const char* gdb_sections[] =
452 { ".debug_abbrev",
453 // ".debug_aranges", // not used by gdb as of 6.7.1
454 ".debug_frame",
455 ".debug_info",
456 ".debug_types",
457 ".debug_line",
458 ".debug_loc",
459 ".debug_macinfo",
460 // ".debug_pubnames", // not used by gdb as of 6.7.1
461 ".debug_ranges",
462 ".debug_str",
463 };
464
465 static const char* lines_only_debug_sections[] =
466 { ".debug_abbrev",
467 // ".debug_aranges", // not used by gdb as of 6.7.1
468 // ".debug_frame",
469 ".debug_info",
470 // ".debug_types",
471 ".debug_line",
472 // ".debug_loc",
473 // ".debug_macinfo",
474 // ".debug_pubnames", // not used by gdb as of 6.7.1
475 // ".debug_ranges",
476 ".debug_str",
477 };
478
479 static inline bool
480 is_gdb_debug_section(const char* str)
481 {
482 // We can do this faster: binary search or a hashtable. But why bother?
483 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
484 if (strcmp(str, gdb_sections[i]) == 0)
485 return true;
486 return false;
487 }
488
489 static inline bool
490 is_lines_only_debug_section(const char* str)
491 {
492 // We can do this faster: binary search or a hashtable. But why bother?
493 for (size_t i = 0;
494 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
495 ++i)
496 if (strcmp(str, lines_only_debug_sections[i]) == 0)
497 return true;
498 return false;
499 }
500
501 // Sometimes we compress sections. This is typically done for
502 // sections that are not part of normal program execution (such as
503 // .debug_* sections), and where the readers of these sections know
504 // how to deal with compressed sections. This routine doesn't say for
505 // certain whether we'll compress -- it depends on commandline options
506 // as well -- just whether this section is a candidate for compression.
507 // (The Output_compressed_section class decides whether to compress
508 // a given section, and picks the name of the compressed section.)
509
510 static bool
511 is_compressible_debug_section(const char* secname)
512 {
513 return (is_prefix_of(".debug", secname));
514 }
515
516 // We may see compressed debug sections in input files. Return TRUE
517 // if this is the name of a compressed debug section.
518
519 bool
520 is_compressed_debug_section(const char* secname)
521 {
522 return (is_prefix_of(".zdebug", secname));
523 }
524
525 // Whether to include this section in the link.
526
527 template<int size, bool big_endian>
528 bool
529 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
530 const elfcpp::Shdr<size, big_endian>& shdr)
531 {
532 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
533 return false;
534
535 switch (shdr.get_sh_type())
536 {
537 case elfcpp::SHT_NULL:
538 case elfcpp::SHT_SYMTAB:
539 case elfcpp::SHT_DYNSYM:
540 case elfcpp::SHT_HASH:
541 case elfcpp::SHT_DYNAMIC:
542 case elfcpp::SHT_SYMTAB_SHNDX:
543 return false;
544
545 case elfcpp::SHT_STRTAB:
546 // Discard the sections which have special meanings in the ELF
547 // ABI. Keep others (e.g., .stabstr). We could also do this by
548 // checking the sh_link fields of the appropriate sections.
549 return (strcmp(name, ".dynstr") != 0
550 && strcmp(name, ".strtab") != 0
551 && strcmp(name, ".shstrtab") != 0);
552
553 case elfcpp::SHT_RELA:
554 case elfcpp::SHT_REL:
555 case elfcpp::SHT_GROUP:
556 // If we are emitting relocations these should be handled
557 // elsewhere.
558 gold_assert(!parameters->options().relocatable()
559 && !parameters->options().emit_relocs());
560 return false;
561
562 case elfcpp::SHT_PROGBITS:
563 if (parameters->options().strip_debug()
564 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
565 {
566 if (is_debug_info_section(name))
567 return false;
568 }
569 if (parameters->options().strip_debug_non_line()
570 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
571 {
572 // Debugging sections can only be recognized by name.
573 if (is_prefix_of(".debug", name)
574 && !is_lines_only_debug_section(name))
575 return false;
576 }
577 if (parameters->options().strip_debug_gdb()
578 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
579 {
580 // Debugging sections can only be recognized by name.
581 if (is_prefix_of(".debug", name)
582 && !is_gdb_debug_section(name))
583 return false;
584 }
585 if (parameters->options().strip_lto_sections()
586 && !parameters->options().relocatable()
587 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
588 {
589 // Ignore LTO sections containing intermediate code.
590 if (is_prefix_of(".gnu.lto_", name))
591 return false;
592 }
593 // The GNU linker strips .gnu_debuglink sections, so we do too.
594 // This is a feature used to keep debugging information in
595 // separate files.
596 if (strcmp(name, ".gnu_debuglink") == 0)
597 return false;
598 return true;
599
600 default:
601 return true;
602 }
603 }
604
605 // Return an output section named NAME, or NULL if there is none.
606
607 Output_section*
608 Layout::find_output_section(const char* name) const
609 {
610 for (Section_list::const_iterator p = this->section_list_.begin();
611 p != this->section_list_.end();
612 ++p)
613 if (strcmp((*p)->name(), name) == 0)
614 return *p;
615 return NULL;
616 }
617
618 // Return an output segment of type TYPE, with segment flags SET set
619 // and segment flags CLEAR clear. Return NULL if there is none.
620
621 Output_segment*
622 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
623 elfcpp::Elf_Word clear) const
624 {
625 for (Segment_list::const_iterator p = this->segment_list_.begin();
626 p != this->segment_list_.end();
627 ++p)
628 if (static_cast<elfcpp::PT>((*p)->type()) == type
629 && ((*p)->flags() & set) == set
630 && ((*p)->flags() & clear) == 0)
631 return *p;
632 return NULL;
633 }
634
635 // When we put a .ctors or .dtors section with more than one word into
636 // a .init_array or .fini_array section, we need to reverse the words
637 // in the .ctors/.dtors section. This is because .init_array executes
638 // constructors front to back, where .ctors executes them back to
639 // front, and vice-versa for .fini_array/.dtors. Although we do want
640 // to remap .ctors/.dtors into .init_array/.fini_array because it can
641 // be more efficient, we don't want to change the order in which
642 // constructors/destructors are run. This set just keeps track of
643 // these sections which need to be reversed. It is only changed by
644 // Layout::layout. It should be a private member of Layout, but that
645 // would require layout.h to #include object.h to get the definition
646 // of Section_id.
647 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
648
649 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
650 // .init_array/.fini_array section.
651
652 bool
653 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
654 {
655 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
656 != ctors_sections_in_init_array.end());
657 }
658
659 // Return the output section to use for section NAME with type TYPE
660 // and section flags FLAGS. NAME must be canonicalized in the string
661 // pool, and NAME_KEY is the key. ORDER is where this should appear
662 // in the output sections. IS_RELRO is true for a relro section.
663
664 Output_section*
665 Layout::get_output_section(const char* name, Stringpool::Key name_key,
666 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
667 Output_section_order order, bool is_relro)
668 {
669 elfcpp::Elf_Word lookup_type = type;
670
671 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
672 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
673 // .init_array, .fini_array, and .preinit_array sections by name
674 // whatever their type in the input file. We do this because the
675 // types are not always right in the input files.
676 if (lookup_type == elfcpp::SHT_INIT_ARRAY
677 || lookup_type == elfcpp::SHT_FINI_ARRAY
678 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
679 lookup_type = elfcpp::SHT_PROGBITS;
680
681 elfcpp::Elf_Xword lookup_flags = flags;
682
683 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
684 // read-write with read-only sections. Some other ELF linkers do
685 // not do this. FIXME: Perhaps there should be an option
686 // controlling this.
687 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
688
689 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
690 const std::pair<Key, Output_section*> v(key, NULL);
691 std::pair<Section_name_map::iterator, bool> ins(
692 this->section_name_map_.insert(v));
693
694 if (!ins.second)
695 return ins.first->second;
696 else
697 {
698 // This is the first time we've seen this name/type/flags
699 // combination. For compatibility with the GNU linker, we
700 // combine sections with contents and zero flags with sections
701 // with non-zero flags. This is a workaround for cases where
702 // assembler code forgets to set section flags. FIXME: Perhaps
703 // there should be an option to control this.
704 Output_section* os = NULL;
705
706 if (lookup_type == elfcpp::SHT_PROGBITS)
707 {
708 if (flags == 0)
709 {
710 Output_section* same_name = this->find_output_section(name);
711 if (same_name != NULL
712 && (same_name->type() == elfcpp::SHT_PROGBITS
713 || same_name->type() == elfcpp::SHT_INIT_ARRAY
714 || same_name->type() == elfcpp::SHT_FINI_ARRAY
715 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
716 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
717 os = same_name;
718 }
719 else if ((flags & elfcpp::SHF_TLS) == 0)
720 {
721 elfcpp::Elf_Xword zero_flags = 0;
722 const Key zero_key(name_key, std::make_pair(lookup_type,
723 zero_flags));
724 Section_name_map::iterator p =
725 this->section_name_map_.find(zero_key);
726 if (p != this->section_name_map_.end())
727 os = p->second;
728 }
729 }
730
731 if (os == NULL)
732 os = this->make_output_section(name, type, flags, order, is_relro);
733
734 ins.first->second = os;
735 return os;
736 }
737 }
738
739 // Pick the output section to use for section NAME, in input file
740 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
741 // linker created section. IS_INPUT_SECTION is true if we are
742 // choosing an output section for an input section found in a input
743 // file. ORDER is where this section should appear in the output
744 // sections. IS_RELRO is true for a relro section. This will return
745 // NULL if the input section should be discarded.
746
747 Output_section*
748 Layout::choose_output_section(const Relobj* relobj, const char* name,
749 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
750 bool is_input_section, Output_section_order order,
751 bool is_relro)
752 {
753 // We should not see any input sections after we have attached
754 // sections to segments.
755 gold_assert(!is_input_section || !this->sections_are_attached_);
756
757 // Some flags in the input section should not be automatically
758 // copied to the output section.
759 flags &= ~ (elfcpp::SHF_INFO_LINK
760 | elfcpp::SHF_GROUP
761 | elfcpp::SHF_MERGE
762 | elfcpp::SHF_STRINGS);
763
764 // We only clear the SHF_LINK_ORDER flag in for
765 // a non-relocatable link.
766 if (!parameters->options().relocatable())
767 flags &= ~elfcpp::SHF_LINK_ORDER;
768
769 if (this->script_options_->saw_sections_clause())
770 {
771 // We are using a SECTIONS clause, so the output section is
772 // chosen based only on the name.
773
774 Script_sections* ss = this->script_options_->script_sections();
775 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
776 Output_section** output_section_slot;
777 Script_sections::Section_type script_section_type;
778 const char* orig_name = name;
779 name = ss->output_section_name(file_name, name, &output_section_slot,
780 &script_section_type);
781 if (name == NULL)
782 {
783 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
784 "because it is not allowed by the "
785 "SECTIONS clause of the linker script"),
786 orig_name);
787 // The SECTIONS clause says to discard this input section.
788 return NULL;
789 }
790
791 // We can only handle script section types ST_NONE and ST_NOLOAD.
792 switch (script_section_type)
793 {
794 case Script_sections::ST_NONE:
795 break;
796 case Script_sections::ST_NOLOAD:
797 flags &= elfcpp::SHF_ALLOC;
798 break;
799 default:
800 gold_unreachable();
801 }
802
803 // If this is an orphan section--one not mentioned in the linker
804 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
805 // default processing below.
806
807 if (output_section_slot != NULL)
808 {
809 if (*output_section_slot != NULL)
810 {
811 (*output_section_slot)->update_flags_for_input_section(flags);
812 return *output_section_slot;
813 }
814
815 // We don't put sections found in the linker script into
816 // SECTION_NAME_MAP_. That keeps us from getting confused
817 // if an orphan section is mapped to a section with the same
818 // name as one in the linker script.
819
820 name = this->namepool_.add(name, false, NULL);
821
822 Output_section* os = this->make_output_section(name, type, flags,
823 order, is_relro);
824
825 os->set_found_in_sections_clause();
826
827 // Special handling for NOLOAD sections.
828 if (script_section_type == Script_sections::ST_NOLOAD)
829 {
830 os->set_is_noload();
831
832 // The constructor of Output_section sets addresses of non-ALLOC
833 // sections to 0 by default. We don't want that for NOLOAD
834 // sections even if they have no SHF_ALLOC flag.
835 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
836 && os->is_address_valid())
837 {
838 gold_assert(os->address() == 0
839 && !os->is_offset_valid()
840 && !os->is_data_size_valid());
841 os->reset_address_and_file_offset();
842 }
843 }
844
845 *output_section_slot = os;
846 return os;
847 }
848 }
849
850 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
851
852 size_t len = strlen(name);
853 char* uncompressed_name = NULL;
854
855 // Compressed debug sections should be mapped to the corresponding
856 // uncompressed section.
857 if (is_compressed_debug_section(name))
858 {
859 uncompressed_name = new char[len];
860 uncompressed_name[0] = '.';
861 gold_assert(name[0] == '.' && name[1] == 'z');
862 strncpy(&uncompressed_name[1], &name[2], len - 2);
863 uncompressed_name[len - 1] = '\0';
864 len -= 1;
865 name = uncompressed_name;
866 }
867
868 // Turn NAME from the name of the input section into the name of the
869 // output section.
870 if (is_input_section
871 && !this->script_options_->saw_sections_clause()
872 && !parameters->options().relocatable())
873 name = Layout::output_section_name(relobj, name, &len);
874
875 Stringpool::Key name_key;
876 name = this->namepool_.add_with_length(name, len, true, &name_key);
877
878 if (uncompressed_name != NULL)
879 delete[] uncompressed_name;
880
881 // Find or make the output section. The output section is selected
882 // based on the section name, type, and flags.
883 return this->get_output_section(name, name_key, type, flags, order, is_relro);
884 }
885
886 // For incremental links, record the initial fixed layout of a section
887 // from the base file, and return a pointer to the Output_section.
888
889 template<int size, bool big_endian>
890 Output_section*
891 Layout::init_fixed_output_section(const char* name,
892 elfcpp::Shdr<size, big_endian>& shdr)
893 {
894 unsigned int sh_type = shdr.get_sh_type();
895
896 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
897 // All others will be created from scratch and reallocated.
898 if (sh_type != elfcpp::SHT_PROGBITS
899 && sh_type != elfcpp::SHT_NOBITS
900 && sh_type != elfcpp::SHT_NOTE)
901 return NULL;
902
903 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
904 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
905 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
906 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
907 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
908 shdr.get_sh_addralign();
909
910 // Make the output section.
911 Stringpool::Key name_key;
912 name = this->namepool_.add(name, true, &name_key);
913 Output_section* os = this->get_output_section(name, name_key, sh_type,
914 sh_flags, ORDER_INVALID, false);
915 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
916 if (sh_type != elfcpp::SHT_NOBITS)
917 this->free_list_.remove(sh_offset, sh_offset + sh_size);
918 return os;
919 }
920
921 // Return the output section to use for input section SHNDX, with name
922 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
923 // index of a relocation section which applies to this section, or 0
924 // if none, or -1U if more than one. RELOC_TYPE is the type of the
925 // relocation section if there is one. Set *OFF to the offset of this
926 // input section without the output section. Return NULL if the
927 // section should be discarded. Set *OFF to -1 if the section
928 // contents should not be written directly to the output file, but
929 // will instead receive special handling.
930
931 template<int size, bool big_endian>
932 Output_section*
933 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
934 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
935 unsigned int reloc_shndx, unsigned int, off_t* off)
936 {
937 *off = 0;
938
939 if (!this->include_section(object, name, shdr))
940 return NULL;
941
942 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
943
944 // In a relocatable link a grouped section must not be combined with
945 // any other sections.
946 Output_section* os;
947 if (parameters->options().relocatable()
948 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
949 {
950 name = this->namepool_.add(name, true, NULL);
951 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
952 ORDER_INVALID, false);
953 }
954 else
955 {
956 os = this->choose_output_section(object, name, sh_type,
957 shdr.get_sh_flags(), true,
958 ORDER_INVALID, false);
959 if (os == NULL)
960 return NULL;
961 }
962
963 // By default the GNU linker sorts input sections whose names match
964 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
965 // sections are sorted by name. This is used to implement
966 // constructor priority ordering. We are compatible. When we put
967 // .ctor sections in .init_array and .dtor sections in .fini_array,
968 // we must also sort plain .ctor and .dtor sections.
969 if (!this->script_options_->saw_sections_clause()
970 && !parameters->options().relocatable()
971 && (is_prefix_of(".ctors.", name)
972 || is_prefix_of(".dtors.", name)
973 || is_prefix_of(".init_array.", name)
974 || is_prefix_of(".fini_array.", name)
975 || (parameters->options().ctors_in_init_array()
976 && (strcmp(name, ".ctors") == 0
977 || strcmp(name, ".dtors") == 0))))
978 os->set_must_sort_attached_input_sections();
979
980 // If this is a .ctors or .ctors.* section being mapped to a
981 // .init_array section, or a .dtors or .dtors.* section being mapped
982 // to a .fini_array section, we will need to reverse the words if
983 // there is more than one. Record this section for later. See
984 // ctors_sections_in_init_array above.
985 if (!this->script_options_->saw_sections_clause()
986 && !parameters->options().relocatable()
987 && shdr.get_sh_size() > size / 8
988 && (((strcmp(name, ".ctors") == 0
989 || is_prefix_of(".ctors.", name))
990 && strcmp(os->name(), ".init_array") == 0)
991 || ((strcmp(name, ".dtors") == 0
992 || is_prefix_of(".dtors.", name))
993 && strcmp(os->name(), ".fini_array") == 0)))
994 ctors_sections_in_init_array.insert(Section_id(object, shndx));
995
996 // FIXME: Handle SHF_LINK_ORDER somewhere.
997
998 elfcpp::Elf_Xword orig_flags = os->flags();
999
1000 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1001 this->script_options_->saw_sections_clause());
1002
1003 // If the flags changed, we may have to change the order.
1004 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1005 {
1006 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1007 elfcpp::Elf_Xword new_flags =
1008 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1009 if (orig_flags != new_flags)
1010 os->set_order(this->default_section_order(os, false));
1011 }
1012
1013 this->have_added_input_section_ = true;
1014
1015 return os;
1016 }
1017
1018 // Handle a relocation section when doing a relocatable link.
1019
1020 template<int size, bool big_endian>
1021 Output_section*
1022 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1023 unsigned int,
1024 const elfcpp::Shdr<size, big_endian>& shdr,
1025 Output_section* data_section,
1026 Relocatable_relocs* rr)
1027 {
1028 gold_assert(parameters->options().relocatable()
1029 || parameters->options().emit_relocs());
1030
1031 int sh_type = shdr.get_sh_type();
1032
1033 std::string name;
1034 if (sh_type == elfcpp::SHT_REL)
1035 name = ".rel";
1036 else if (sh_type == elfcpp::SHT_RELA)
1037 name = ".rela";
1038 else
1039 gold_unreachable();
1040 name += data_section->name();
1041
1042 // In a relocatable link relocs for a grouped section must not be
1043 // combined with other reloc sections.
1044 Output_section* os;
1045 if (!parameters->options().relocatable()
1046 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1047 os = this->choose_output_section(object, name.c_str(), sh_type,
1048 shdr.get_sh_flags(), false,
1049 ORDER_INVALID, false);
1050 else
1051 {
1052 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1053 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1054 ORDER_INVALID, false);
1055 }
1056
1057 os->set_should_link_to_symtab();
1058 os->set_info_section(data_section);
1059
1060 Output_section_data* posd;
1061 if (sh_type == elfcpp::SHT_REL)
1062 {
1063 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1064 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1065 size,
1066 big_endian>(rr);
1067 }
1068 else if (sh_type == elfcpp::SHT_RELA)
1069 {
1070 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1071 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1072 size,
1073 big_endian>(rr);
1074 }
1075 else
1076 gold_unreachable();
1077
1078 os->add_output_section_data(posd);
1079 rr->set_output_data(posd);
1080
1081 return os;
1082 }
1083
1084 // Handle a group section when doing a relocatable link.
1085
1086 template<int size, bool big_endian>
1087 void
1088 Layout::layout_group(Symbol_table* symtab,
1089 Sized_relobj_file<size, big_endian>* object,
1090 unsigned int,
1091 const char* group_section_name,
1092 const char* signature,
1093 const elfcpp::Shdr<size, big_endian>& shdr,
1094 elfcpp::Elf_Word flags,
1095 std::vector<unsigned int>* shndxes)
1096 {
1097 gold_assert(parameters->options().relocatable());
1098 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1099 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1100 Output_section* os = this->make_output_section(group_section_name,
1101 elfcpp::SHT_GROUP,
1102 shdr.get_sh_flags(),
1103 ORDER_INVALID, false);
1104
1105 // We need to find a symbol with the signature in the symbol table.
1106 // If we don't find one now, we need to look again later.
1107 Symbol* sym = symtab->lookup(signature, NULL);
1108 if (sym != NULL)
1109 os->set_info_symndx(sym);
1110 else
1111 {
1112 // Reserve some space to minimize reallocations.
1113 if (this->group_signatures_.empty())
1114 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1115
1116 // We will wind up using a symbol whose name is the signature.
1117 // So just put the signature in the symbol name pool to save it.
1118 signature = symtab->canonicalize_name(signature);
1119 this->group_signatures_.push_back(Group_signature(os, signature));
1120 }
1121
1122 os->set_should_link_to_symtab();
1123 os->set_entsize(4);
1124
1125 section_size_type entry_count =
1126 convert_to_section_size_type(shdr.get_sh_size() / 4);
1127 Output_section_data* posd =
1128 new Output_data_group<size, big_endian>(object, entry_count, flags,
1129 shndxes);
1130 os->add_output_section_data(posd);
1131 }
1132
1133 // Special GNU handling of sections name .eh_frame. They will
1134 // normally hold exception frame data as defined by the C++ ABI
1135 // (http://codesourcery.com/cxx-abi/).
1136
1137 template<int size, bool big_endian>
1138 Output_section*
1139 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1140 const unsigned char* symbols,
1141 off_t symbols_size,
1142 const unsigned char* symbol_names,
1143 off_t symbol_names_size,
1144 unsigned int shndx,
1145 const elfcpp::Shdr<size, big_endian>& shdr,
1146 unsigned int reloc_shndx, unsigned int reloc_type,
1147 off_t* off)
1148 {
1149 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1150 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1151 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1152
1153 Output_section* os = this->make_eh_frame_section(object);
1154 if (os == NULL)
1155 return NULL;
1156
1157 gold_assert(this->eh_frame_section_ == os);
1158
1159 elfcpp::Elf_Xword orig_flags = os->flags();
1160
1161 if (!parameters->incremental()
1162 && this->eh_frame_data_->add_ehframe_input_section(object,
1163 symbols,
1164 symbols_size,
1165 symbol_names,
1166 symbol_names_size,
1167 shndx,
1168 reloc_shndx,
1169 reloc_type))
1170 {
1171 os->update_flags_for_input_section(shdr.get_sh_flags());
1172
1173 // A writable .eh_frame section is a RELRO section.
1174 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1175 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1176 {
1177 os->set_is_relro();
1178 os->set_order(ORDER_RELRO);
1179 }
1180
1181 // We found a .eh_frame section we are going to optimize, so now
1182 // we can add the set of optimized sections to the output
1183 // section. We need to postpone adding this until we've found a
1184 // section we can optimize so that the .eh_frame section in
1185 // crtbegin.o winds up at the start of the output section.
1186 if (!this->added_eh_frame_data_)
1187 {
1188 os->add_output_section_data(this->eh_frame_data_);
1189 this->added_eh_frame_data_ = true;
1190 }
1191 *off = -1;
1192 }
1193 else
1194 {
1195 // We couldn't handle this .eh_frame section for some reason.
1196 // Add it as a normal section.
1197 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1198 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1199 reloc_shndx, saw_sections_clause);
1200 this->have_added_input_section_ = true;
1201
1202 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1203 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1204 os->set_order(this->default_section_order(os, false));
1205 }
1206
1207 return os;
1208 }
1209
1210 // Create and return the magic .eh_frame section. Create
1211 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1212 // input .eh_frame section; it may be NULL.
1213
1214 Output_section*
1215 Layout::make_eh_frame_section(const Relobj* object)
1216 {
1217 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1218 // SHT_PROGBITS.
1219 Output_section* os = this->choose_output_section(object, ".eh_frame",
1220 elfcpp::SHT_PROGBITS,
1221 elfcpp::SHF_ALLOC, false,
1222 ORDER_EHFRAME, false);
1223 if (os == NULL)
1224 return NULL;
1225
1226 if (this->eh_frame_section_ == NULL)
1227 {
1228 this->eh_frame_section_ = os;
1229 this->eh_frame_data_ = new Eh_frame();
1230
1231 // For incremental linking, we do not optimize .eh_frame sections
1232 // or create a .eh_frame_hdr section.
1233 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1234 {
1235 Output_section* hdr_os =
1236 this->choose_output_section(NULL, ".eh_frame_hdr",
1237 elfcpp::SHT_PROGBITS,
1238 elfcpp::SHF_ALLOC, false,
1239 ORDER_EHFRAME, false);
1240
1241 if (hdr_os != NULL)
1242 {
1243 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1244 this->eh_frame_data_);
1245 hdr_os->add_output_section_data(hdr_posd);
1246
1247 hdr_os->set_after_input_sections();
1248
1249 if (!this->script_options_->saw_phdrs_clause())
1250 {
1251 Output_segment* hdr_oseg;
1252 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1253 elfcpp::PF_R);
1254 hdr_oseg->add_output_section_to_nonload(hdr_os,
1255 elfcpp::PF_R);
1256 }
1257
1258 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1259 }
1260 }
1261 }
1262
1263 return os;
1264 }
1265
1266 // Add an exception frame for a PLT. This is called from target code.
1267
1268 void
1269 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1270 size_t cie_length, const unsigned char* fde_data,
1271 size_t fde_length)
1272 {
1273 if (parameters->incremental())
1274 {
1275 // FIXME: Maybe this could work some day....
1276 return;
1277 }
1278 Output_section* os = this->make_eh_frame_section(NULL);
1279 if (os == NULL)
1280 return;
1281 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1282 fde_data, fde_length);
1283 if (!this->added_eh_frame_data_)
1284 {
1285 os->add_output_section_data(this->eh_frame_data_);
1286 this->added_eh_frame_data_ = true;
1287 }
1288 }
1289
1290 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1291 // the output section.
1292
1293 Output_section*
1294 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1295 elfcpp::Elf_Xword flags,
1296 Output_section_data* posd,
1297 Output_section_order order, bool is_relro)
1298 {
1299 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1300 false, order, is_relro);
1301 if (os != NULL)
1302 os->add_output_section_data(posd);
1303 return os;
1304 }
1305
1306 // Map section flags to segment flags.
1307
1308 elfcpp::Elf_Word
1309 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1310 {
1311 elfcpp::Elf_Word ret = elfcpp::PF_R;
1312 if ((flags & elfcpp::SHF_WRITE) != 0)
1313 ret |= elfcpp::PF_W;
1314 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1315 ret |= elfcpp::PF_X;
1316 return ret;
1317 }
1318
1319 // Make a new Output_section, and attach it to segments as
1320 // appropriate. ORDER is the order in which this section should
1321 // appear in the output segment. IS_RELRO is true if this is a relro
1322 // (read-only after relocations) section.
1323
1324 Output_section*
1325 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1326 elfcpp::Elf_Xword flags,
1327 Output_section_order order, bool is_relro)
1328 {
1329 Output_section* os;
1330 if ((flags & elfcpp::SHF_ALLOC) == 0
1331 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1332 && is_compressible_debug_section(name))
1333 os = new Output_compressed_section(&parameters->options(), name, type,
1334 flags);
1335 else if ((flags & elfcpp::SHF_ALLOC) == 0
1336 && parameters->options().strip_debug_non_line()
1337 && strcmp(".debug_abbrev", name) == 0)
1338 {
1339 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1340 name, type, flags);
1341 if (this->debug_info_)
1342 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1343 }
1344 else if ((flags & elfcpp::SHF_ALLOC) == 0
1345 && parameters->options().strip_debug_non_line()
1346 && strcmp(".debug_info", name) == 0)
1347 {
1348 os = this->debug_info_ = new Output_reduced_debug_info_section(
1349 name, type, flags);
1350 if (this->debug_abbrev_)
1351 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1352 }
1353 else
1354 {
1355 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1356 // not have correct section types. Force them here.
1357 if (type == elfcpp::SHT_PROGBITS)
1358 {
1359 if (is_prefix_of(".init_array", name))
1360 type = elfcpp::SHT_INIT_ARRAY;
1361 else if (is_prefix_of(".preinit_array", name))
1362 type = elfcpp::SHT_PREINIT_ARRAY;
1363 else if (is_prefix_of(".fini_array", name))
1364 type = elfcpp::SHT_FINI_ARRAY;
1365 }
1366
1367 // FIXME: const_cast is ugly.
1368 Target* target = const_cast<Target*>(&parameters->target());
1369 os = target->make_output_section(name, type, flags);
1370 }
1371
1372 // With -z relro, we have to recognize the special sections by name.
1373 // There is no other way.
1374 bool is_relro_local = false;
1375 if (!this->script_options_->saw_sections_clause()
1376 && parameters->options().relro()
1377 && type == elfcpp::SHT_PROGBITS
1378 && (flags & elfcpp::SHF_ALLOC) != 0
1379 && (flags & elfcpp::SHF_WRITE) != 0)
1380 {
1381 if (strcmp(name, ".data.rel.ro") == 0)
1382 is_relro = true;
1383 else if (strcmp(name, ".data.rel.ro.local") == 0)
1384 {
1385 is_relro = true;
1386 is_relro_local = true;
1387 }
1388 else if (type == elfcpp::SHT_INIT_ARRAY
1389 || type == elfcpp::SHT_FINI_ARRAY
1390 || type == elfcpp::SHT_PREINIT_ARRAY)
1391 is_relro = true;
1392 else if (strcmp(name, ".ctors") == 0
1393 || strcmp(name, ".dtors") == 0
1394 || strcmp(name, ".jcr") == 0)
1395 is_relro = true;
1396 }
1397
1398 if (is_relro)
1399 os->set_is_relro();
1400
1401 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1402 order = this->default_section_order(os, is_relro_local);
1403
1404 os->set_order(order);
1405
1406 parameters->target().new_output_section(os);
1407
1408 this->section_list_.push_back(os);
1409
1410 // The GNU linker by default sorts some sections by priority, so we
1411 // do the same. We need to know that this might happen before we
1412 // attach any input sections.
1413 if (!this->script_options_->saw_sections_clause()
1414 && !parameters->options().relocatable()
1415 && (strcmp(name, ".init_array") == 0
1416 || strcmp(name, ".fini_array") == 0
1417 || (!parameters->options().ctors_in_init_array()
1418 && (strcmp(name, ".ctors") == 0
1419 || strcmp(name, ".dtors") == 0))))
1420 os->set_may_sort_attached_input_sections();
1421
1422 // Check for .stab*str sections, as .stab* sections need to link to
1423 // them.
1424 if (type == elfcpp::SHT_STRTAB
1425 && !this->have_stabstr_section_
1426 && strncmp(name, ".stab", 5) == 0
1427 && strcmp(name + strlen(name) - 3, "str") == 0)
1428 this->have_stabstr_section_ = true;
1429
1430 // During a full incremental link, we add patch space to most
1431 // PROGBITS and NOBITS sections. Flag those that may be
1432 // arbitrarily padded.
1433 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1434 && order != ORDER_INTERP
1435 && order != ORDER_INIT
1436 && order != ORDER_PLT
1437 && order != ORDER_FINI
1438 && order != ORDER_RELRO_LAST
1439 && order != ORDER_NON_RELRO_FIRST
1440 && strcmp(name, ".ctors") != 0
1441 && strcmp(name, ".dtors") != 0
1442 && strcmp(name, ".jcr") != 0)
1443 os->set_is_patch_space_allowed();
1444
1445 // If we have already attached the sections to segments, then we
1446 // need to attach this one now. This happens for sections created
1447 // directly by the linker.
1448 if (this->sections_are_attached_)
1449 this->attach_section_to_segment(os);
1450
1451 return os;
1452 }
1453
1454 // Return the default order in which a section should be placed in an
1455 // output segment. This function captures a lot of the ideas in
1456 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1457 // linker created section is normally set when the section is created;
1458 // this function is used for input sections.
1459
1460 Output_section_order
1461 Layout::default_section_order(Output_section* os, bool is_relro_local)
1462 {
1463 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1464 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1465 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1466 bool is_bss = false;
1467
1468 switch (os->type())
1469 {
1470 default:
1471 case elfcpp::SHT_PROGBITS:
1472 break;
1473 case elfcpp::SHT_NOBITS:
1474 is_bss = true;
1475 break;
1476 case elfcpp::SHT_RELA:
1477 case elfcpp::SHT_REL:
1478 if (!is_write)
1479 return ORDER_DYNAMIC_RELOCS;
1480 break;
1481 case elfcpp::SHT_HASH:
1482 case elfcpp::SHT_DYNAMIC:
1483 case elfcpp::SHT_SHLIB:
1484 case elfcpp::SHT_DYNSYM:
1485 case elfcpp::SHT_GNU_HASH:
1486 case elfcpp::SHT_GNU_verdef:
1487 case elfcpp::SHT_GNU_verneed:
1488 case elfcpp::SHT_GNU_versym:
1489 if (!is_write)
1490 return ORDER_DYNAMIC_LINKER;
1491 break;
1492 case elfcpp::SHT_NOTE:
1493 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1494 }
1495
1496 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1497 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1498
1499 if (!is_bss && !is_write)
1500 {
1501 if (is_execinstr)
1502 {
1503 if (strcmp(os->name(), ".init") == 0)
1504 return ORDER_INIT;
1505 else if (strcmp(os->name(), ".fini") == 0)
1506 return ORDER_FINI;
1507 }
1508 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1509 }
1510
1511 if (os->is_relro())
1512 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1513
1514 if (os->is_small_section())
1515 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1516 if (os->is_large_section())
1517 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1518
1519 return is_bss ? ORDER_BSS : ORDER_DATA;
1520 }
1521
1522 // Attach output sections to segments. This is called after we have
1523 // seen all the input sections.
1524
1525 void
1526 Layout::attach_sections_to_segments()
1527 {
1528 for (Section_list::iterator p = this->section_list_.begin();
1529 p != this->section_list_.end();
1530 ++p)
1531 this->attach_section_to_segment(*p);
1532
1533 this->sections_are_attached_ = true;
1534 }
1535
1536 // Attach an output section to a segment.
1537
1538 void
1539 Layout::attach_section_to_segment(Output_section* os)
1540 {
1541 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1542 this->unattached_section_list_.push_back(os);
1543 else
1544 this->attach_allocated_section_to_segment(os);
1545 }
1546
1547 // Attach an allocated output section to a segment.
1548
1549 void
1550 Layout::attach_allocated_section_to_segment(Output_section* os)
1551 {
1552 elfcpp::Elf_Xword flags = os->flags();
1553 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1554
1555 if (parameters->options().relocatable())
1556 return;
1557
1558 // If we have a SECTIONS clause, we can't handle the attachment to
1559 // segments until after we've seen all the sections.
1560 if (this->script_options_->saw_sections_clause())
1561 return;
1562
1563 gold_assert(!this->script_options_->saw_phdrs_clause());
1564
1565 // This output section goes into a PT_LOAD segment.
1566
1567 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1568
1569 // Check for --section-start.
1570 uint64_t addr;
1571 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1572
1573 // In general the only thing we really care about for PT_LOAD
1574 // segments is whether or not they are writable or executable,
1575 // so that is how we search for them.
1576 // Large data sections also go into their own PT_LOAD segment.
1577 // People who need segments sorted on some other basis will
1578 // have to use a linker script.
1579
1580 Segment_list::const_iterator p;
1581 for (p = this->segment_list_.begin();
1582 p != this->segment_list_.end();
1583 ++p)
1584 {
1585 if ((*p)->type() != elfcpp::PT_LOAD)
1586 continue;
1587 if (!parameters->options().omagic()
1588 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1589 continue;
1590 if (parameters->options().rosegment()
1591 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1592 continue;
1593 // If -Tbss was specified, we need to separate the data and BSS
1594 // segments.
1595 if (parameters->options().user_set_Tbss())
1596 {
1597 if ((os->type() == elfcpp::SHT_NOBITS)
1598 == (*p)->has_any_data_sections())
1599 continue;
1600 }
1601 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1602 continue;
1603
1604 if (is_address_set)
1605 {
1606 if ((*p)->are_addresses_set())
1607 continue;
1608
1609 (*p)->add_initial_output_data(os);
1610 (*p)->update_flags_for_output_section(seg_flags);
1611 (*p)->set_addresses(addr, addr);
1612 break;
1613 }
1614
1615 (*p)->add_output_section_to_load(this, os, seg_flags);
1616 break;
1617 }
1618
1619 if (p == this->segment_list_.end())
1620 {
1621 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1622 seg_flags);
1623 if (os->is_large_data_section())
1624 oseg->set_is_large_data_segment();
1625 oseg->add_output_section_to_load(this, os, seg_flags);
1626 if (is_address_set)
1627 oseg->set_addresses(addr, addr);
1628 }
1629
1630 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1631 // segment.
1632 if (os->type() == elfcpp::SHT_NOTE)
1633 {
1634 // See if we already have an equivalent PT_NOTE segment.
1635 for (p = this->segment_list_.begin();
1636 p != segment_list_.end();
1637 ++p)
1638 {
1639 if ((*p)->type() == elfcpp::PT_NOTE
1640 && (((*p)->flags() & elfcpp::PF_W)
1641 == (seg_flags & elfcpp::PF_W)))
1642 {
1643 (*p)->add_output_section_to_nonload(os, seg_flags);
1644 break;
1645 }
1646 }
1647
1648 if (p == this->segment_list_.end())
1649 {
1650 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1651 seg_flags);
1652 oseg->add_output_section_to_nonload(os, seg_flags);
1653 }
1654 }
1655
1656 // If we see a loadable SHF_TLS section, we create a PT_TLS
1657 // segment. There can only be one such segment.
1658 if ((flags & elfcpp::SHF_TLS) != 0)
1659 {
1660 if (this->tls_segment_ == NULL)
1661 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1662 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1663 }
1664
1665 // If -z relro is in effect, and we see a relro section, we create a
1666 // PT_GNU_RELRO segment. There can only be one such segment.
1667 if (os->is_relro() && parameters->options().relro())
1668 {
1669 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1670 if (this->relro_segment_ == NULL)
1671 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1672 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1673 }
1674
1675 // If we see a section named .interp, put it into a PT_INTERP
1676 // segment. This seems broken to me, but this is what GNU ld does,
1677 // and glibc expects it.
1678 if (strcmp(os->name(), ".interp") == 0
1679 && !this->script_options_->saw_phdrs_clause())
1680 {
1681 if (this->interp_segment_ == NULL)
1682 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1683 else
1684 gold_warning(_("multiple '.interp' sections in input files "
1685 "may cause confusing PT_INTERP segment"));
1686 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1687 }
1688 }
1689
1690 // Make an output section for a script.
1691
1692 Output_section*
1693 Layout::make_output_section_for_script(
1694 const char* name,
1695 Script_sections::Section_type section_type)
1696 {
1697 name = this->namepool_.add(name, false, NULL);
1698 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1699 if (section_type == Script_sections::ST_NOLOAD)
1700 sh_flags = 0;
1701 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1702 sh_flags, ORDER_INVALID,
1703 false);
1704 os->set_found_in_sections_clause();
1705 if (section_type == Script_sections::ST_NOLOAD)
1706 os->set_is_noload();
1707 return os;
1708 }
1709
1710 // Return the number of segments we expect to see.
1711
1712 size_t
1713 Layout::expected_segment_count() const
1714 {
1715 size_t ret = this->segment_list_.size();
1716
1717 // If we didn't see a SECTIONS clause in a linker script, we should
1718 // already have the complete list of segments. Otherwise we ask the
1719 // SECTIONS clause how many segments it expects, and add in the ones
1720 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1721
1722 if (!this->script_options_->saw_sections_clause())
1723 return ret;
1724 else
1725 {
1726 const Script_sections* ss = this->script_options_->script_sections();
1727 return ret + ss->expected_segment_count(this);
1728 }
1729 }
1730
1731 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1732 // is whether we saw a .note.GNU-stack section in the object file.
1733 // GNU_STACK_FLAGS is the section flags. The flags give the
1734 // protection required for stack memory. We record this in an
1735 // executable as a PT_GNU_STACK segment. If an object file does not
1736 // have a .note.GNU-stack segment, we must assume that it is an old
1737 // object. On some targets that will force an executable stack.
1738
1739 void
1740 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1741 const Object* obj)
1742 {
1743 if (!seen_gnu_stack)
1744 {
1745 this->input_without_gnu_stack_note_ = true;
1746 if (parameters->options().warn_execstack()
1747 && parameters->target().is_default_stack_executable())
1748 gold_warning(_("%s: missing .note.GNU-stack section"
1749 " implies executable stack"),
1750 obj->name().c_str());
1751 }
1752 else
1753 {
1754 this->input_with_gnu_stack_note_ = true;
1755 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1756 {
1757 this->input_requires_executable_stack_ = true;
1758 if (parameters->options().warn_execstack()
1759 || parameters->options().is_stack_executable())
1760 gold_warning(_("%s: requires executable stack"),
1761 obj->name().c_str());
1762 }
1763 }
1764 }
1765
1766 // Create automatic note sections.
1767
1768 void
1769 Layout::create_notes()
1770 {
1771 this->create_gold_note();
1772 this->create_executable_stack_info();
1773 this->create_build_id();
1774 }
1775
1776 // Create the dynamic sections which are needed before we read the
1777 // relocs.
1778
1779 void
1780 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1781 {
1782 if (parameters->doing_static_link())
1783 return;
1784
1785 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1786 elfcpp::SHT_DYNAMIC,
1787 (elfcpp::SHF_ALLOC
1788 | elfcpp::SHF_WRITE),
1789 false, ORDER_RELRO,
1790 true);
1791
1792 // A linker script may discard .dynamic, so check for NULL.
1793 if (this->dynamic_section_ != NULL)
1794 {
1795 this->dynamic_symbol_ =
1796 symtab->define_in_output_data("_DYNAMIC", NULL,
1797 Symbol_table::PREDEFINED,
1798 this->dynamic_section_, 0, 0,
1799 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1800 elfcpp::STV_HIDDEN, 0, false, false);
1801
1802 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1803
1804 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1805 }
1806 }
1807
1808 // For each output section whose name can be represented as C symbol,
1809 // define __start and __stop symbols for the section. This is a GNU
1810 // extension.
1811
1812 void
1813 Layout::define_section_symbols(Symbol_table* symtab)
1814 {
1815 for (Section_list::const_iterator p = this->section_list_.begin();
1816 p != this->section_list_.end();
1817 ++p)
1818 {
1819 const char* const name = (*p)->name();
1820 if (is_cident(name))
1821 {
1822 const std::string name_string(name);
1823 const std::string start_name(cident_section_start_prefix
1824 + name_string);
1825 const std::string stop_name(cident_section_stop_prefix
1826 + name_string);
1827
1828 symtab->define_in_output_data(start_name.c_str(),
1829 NULL, // version
1830 Symbol_table::PREDEFINED,
1831 *p,
1832 0, // value
1833 0, // symsize
1834 elfcpp::STT_NOTYPE,
1835 elfcpp::STB_GLOBAL,
1836 elfcpp::STV_DEFAULT,
1837 0, // nonvis
1838 false, // offset_is_from_end
1839 true); // only_if_ref
1840
1841 symtab->define_in_output_data(stop_name.c_str(),
1842 NULL, // version
1843 Symbol_table::PREDEFINED,
1844 *p,
1845 0, // value
1846 0, // symsize
1847 elfcpp::STT_NOTYPE,
1848 elfcpp::STB_GLOBAL,
1849 elfcpp::STV_DEFAULT,
1850 0, // nonvis
1851 true, // offset_is_from_end
1852 true); // only_if_ref
1853 }
1854 }
1855 }
1856
1857 // Define symbols for group signatures.
1858
1859 void
1860 Layout::define_group_signatures(Symbol_table* symtab)
1861 {
1862 for (Group_signatures::iterator p = this->group_signatures_.begin();
1863 p != this->group_signatures_.end();
1864 ++p)
1865 {
1866 Symbol* sym = symtab->lookup(p->signature, NULL);
1867 if (sym != NULL)
1868 p->section->set_info_symndx(sym);
1869 else
1870 {
1871 // Force the name of the group section to the group
1872 // signature, and use the group's section symbol as the
1873 // signature symbol.
1874 if (strcmp(p->section->name(), p->signature) != 0)
1875 {
1876 const char* name = this->namepool_.add(p->signature,
1877 true, NULL);
1878 p->section->set_name(name);
1879 }
1880 p->section->set_needs_symtab_index();
1881 p->section->set_info_section_symndx(p->section);
1882 }
1883 }
1884
1885 this->group_signatures_.clear();
1886 }
1887
1888 // Find the first read-only PT_LOAD segment, creating one if
1889 // necessary.
1890
1891 Output_segment*
1892 Layout::find_first_load_seg()
1893 {
1894 Output_segment* best = NULL;
1895 for (Segment_list::const_iterator p = this->segment_list_.begin();
1896 p != this->segment_list_.end();
1897 ++p)
1898 {
1899 if ((*p)->type() == elfcpp::PT_LOAD
1900 && ((*p)->flags() & elfcpp::PF_R) != 0
1901 && (parameters->options().omagic()
1902 || ((*p)->flags() & elfcpp::PF_W) == 0))
1903 {
1904 if (best == NULL || this->segment_precedes(*p, best))
1905 best = *p;
1906 }
1907 }
1908 if (best != NULL)
1909 return best;
1910
1911 gold_assert(!this->script_options_->saw_phdrs_clause());
1912
1913 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1914 elfcpp::PF_R);
1915 return load_seg;
1916 }
1917
1918 // Save states of all current output segments. Store saved states
1919 // in SEGMENT_STATES.
1920
1921 void
1922 Layout::save_segments(Segment_states* segment_states)
1923 {
1924 for (Segment_list::const_iterator p = this->segment_list_.begin();
1925 p != this->segment_list_.end();
1926 ++p)
1927 {
1928 Output_segment* segment = *p;
1929 // Shallow copy.
1930 Output_segment* copy = new Output_segment(*segment);
1931 (*segment_states)[segment] = copy;
1932 }
1933 }
1934
1935 // Restore states of output segments and delete any segment not found in
1936 // SEGMENT_STATES.
1937
1938 void
1939 Layout::restore_segments(const Segment_states* segment_states)
1940 {
1941 // Go through the segment list and remove any segment added in the
1942 // relaxation loop.
1943 this->tls_segment_ = NULL;
1944 this->relro_segment_ = NULL;
1945 Segment_list::iterator list_iter = this->segment_list_.begin();
1946 while (list_iter != this->segment_list_.end())
1947 {
1948 Output_segment* segment = *list_iter;
1949 Segment_states::const_iterator states_iter =
1950 segment_states->find(segment);
1951 if (states_iter != segment_states->end())
1952 {
1953 const Output_segment* copy = states_iter->second;
1954 // Shallow copy to restore states.
1955 *segment = *copy;
1956
1957 // Also fix up TLS and RELRO segment pointers as appropriate.
1958 if (segment->type() == elfcpp::PT_TLS)
1959 this->tls_segment_ = segment;
1960 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1961 this->relro_segment_ = segment;
1962
1963 ++list_iter;
1964 }
1965 else
1966 {
1967 list_iter = this->segment_list_.erase(list_iter);
1968 // This is a segment created during section layout. It should be
1969 // safe to remove it since we should have removed all pointers to it.
1970 delete segment;
1971 }
1972 }
1973 }
1974
1975 // Clean up after relaxation so that sections can be laid out again.
1976
1977 void
1978 Layout::clean_up_after_relaxation()
1979 {
1980 // Restore the segments to point state just prior to the relaxation loop.
1981 Script_sections* script_section = this->script_options_->script_sections();
1982 script_section->release_segments();
1983 this->restore_segments(this->segment_states_);
1984
1985 // Reset section addresses and file offsets
1986 for (Section_list::iterator p = this->section_list_.begin();
1987 p != this->section_list_.end();
1988 ++p)
1989 {
1990 (*p)->restore_states();
1991
1992 // If an input section changes size because of relaxation,
1993 // we need to adjust the section offsets of all input sections.
1994 // after such a section.
1995 if ((*p)->section_offsets_need_adjustment())
1996 (*p)->adjust_section_offsets();
1997
1998 (*p)->reset_address_and_file_offset();
1999 }
2000
2001 // Reset special output object address and file offsets.
2002 for (Data_list::iterator p = this->special_output_list_.begin();
2003 p != this->special_output_list_.end();
2004 ++p)
2005 (*p)->reset_address_and_file_offset();
2006
2007 // A linker script may have created some output section data objects.
2008 // They are useless now.
2009 for (Output_section_data_list::const_iterator p =
2010 this->script_output_section_data_list_.begin();
2011 p != this->script_output_section_data_list_.end();
2012 ++p)
2013 delete *p;
2014 this->script_output_section_data_list_.clear();
2015 }
2016
2017 // Prepare for relaxation.
2018
2019 void
2020 Layout::prepare_for_relaxation()
2021 {
2022 // Create an relaxation debug check if in debugging mode.
2023 if (is_debugging_enabled(DEBUG_RELAXATION))
2024 this->relaxation_debug_check_ = new Relaxation_debug_check();
2025
2026 // Save segment states.
2027 this->segment_states_ = new Segment_states();
2028 this->save_segments(this->segment_states_);
2029
2030 for(Section_list::const_iterator p = this->section_list_.begin();
2031 p != this->section_list_.end();
2032 ++p)
2033 (*p)->save_states();
2034
2035 if (is_debugging_enabled(DEBUG_RELAXATION))
2036 this->relaxation_debug_check_->check_output_data_for_reset_values(
2037 this->section_list_, this->special_output_list_);
2038
2039 // Also enable recording of output section data from scripts.
2040 this->record_output_section_data_from_script_ = true;
2041 }
2042
2043 // Relaxation loop body: If target has no relaxation, this runs only once
2044 // Otherwise, the target relaxation hook is called at the end of
2045 // each iteration. If the hook returns true, it means re-layout of
2046 // section is required.
2047 //
2048 // The number of segments created by a linking script without a PHDRS
2049 // clause may be affected by section sizes and alignments. There is
2050 // a remote chance that relaxation causes different number of PT_LOAD
2051 // segments are created and sections are attached to different segments.
2052 // Therefore, we always throw away all segments created during section
2053 // layout. In order to be able to restart the section layout, we keep
2054 // a copy of the segment list right before the relaxation loop and use
2055 // that to restore the segments.
2056 //
2057 // PASS is the current relaxation pass number.
2058 // SYMTAB is a symbol table.
2059 // PLOAD_SEG is the address of a pointer for the load segment.
2060 // PHDR_SEG is a pointer to the PHDR segment.
2061 // SEGMENT_HEADERS points to the output segment header.
2062 // FILE_HEADER points to the output file header.
2063 // PSHNDX is the address to store the output section index.
2064
2065 off_t inline
2066 Layout::relaxation_loop_body(
2067 int pass,
2068 Target* target,
2069 Symbol_table* symtab,
2070 Output_segment** pload_seg,
2071 Output_segment* phdr_seg,
2072 Output_segment_headers* segment_headers,
2073 Output_file_header* file_header,
2074 unsigned int* pshndx)
2075 {
2076 // If this is not the first iteration, we need to clean up after
2077 // relaxation so that we can lay out the sections again.
2078 if (pass != 0)
2079 this->clean_up_after_relaxation();
2080
2081 // If there is a SECTIONS clause, put all the input sections into
2082 // the required order.
2083 Output_segment* load_seg;
2084 if (this->script_options_->saw_sections_clause())
2085 load_seg = this->set_section_addresses_from_script(symtab);
2086 else if (parameters->options().relocatable())
2087 load_seg = NULL;
2088 else
2089 load_seg = this->find_first_load_seg();
2090
2091 if (parameters->options().oformat_enum()
2092 != General_options::OBJECT_FORMAT_ELF)
2093 load_seg = NULL;
2094
2095 // If the user set the address of the text segment, that may not be
2096 // compatible with putting the segment headers and file headers into
2097 // that segment.
2098 if (parameters->options().user_set_Ttext()
2099 && parameters->options().Ttext() % target->common_pagesize() != 0)
2100 {
2101 load_seg = NULL;
2102 phdr_seg = NULL;
2103 }
2104
2105 gold_assert(phdr_seg == NULL
2106 || load_seg != NULL
2107 || this->script_options_->saw_sections_clause());
2108
2109 // If the address of the load segment we found has been set by
2110 // --section-start rather than by a script, then adjust the VMA and
2111 // LMA downward if possible to include the file and section headers.
2112 uint64_t header_gap = 0;
2113 if (load_seg != NULL
2114 && load_seg->are_addresses_set()
2115 && !this->script_options_->saw_sections_clause()
2116 && !parameters->options().relocatable())
2117 {
2118 file_header->finalize_data_size();
2119 segment_headers->finalize_data_size();
2120 size_t sizeof_headers = (file_header->data_size()
2121 + segment_headers->data_size());
2122 const uint64_t abi_pagesize = target->abi_pagesize();
2123 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2124 hdr_paddr &= ~(abi_pagesize - 1);
2125 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2126 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2127 load_seg = NULL;
2128 else
2129 {
2130 load_seg->set_addresses(load_seg->vaddr() - subtract,
2131 load_seg->paddr() - subtract);
2132 header_gap = subtract - sizeof_headers;
2133 }
2134 }
2135
2136 // Lay out the segment headers.
2137 if (!parameters->options().relocatable())
2138 {
2139 gold_assert(segment_headers != NULL);
2140 if (header_gap != 0 && load_seg != NULL)
2141 {
2142 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2143 load_seg->add_initial_output_data(z);
2144 }
2145 if (load_seg != NULL)
2146 load_seg->add_initial_output_data(segment_headers);
2147 if (phdr_seg != NULL)
2148 phdr_seg->add_initial_output_data(segment_headers);
2149 }
2150
2151 // Lay out the file header.
2152 if (load_seg != NULL)
2153 load_seg->add_initial_output_data(file_header);
2154
2155 if (this->script_options_->saw_phdrs_clause()
2156 && !parameters->options().relocatable())
2157 {
2158 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2159 // clause in a linker script.
2160 Script_sections* ss = this->script_options_->script_sections();
2161 ss->put_headers_in_phdrs(file_header, segment_headers);
2162 }
2163
2164 // We set the output section indexes in set_segment_offsets and
2165 // set_section_indexes.
2166 *pshndx = 1;
2167
2168 // Set the file offsets of all the segments, and all the sections
2169 // they contain.
2170 off_t off;
2171 if (!parameters->options().relocatable())
2172 off = this->set_segment_offsets(target, load_seg, pshndx);
2173 else
2174 off = this->set_relocatable_section_offsets(file_header, pshndx);
2175
2176 // Verify that the dummy relaxation does not change anything.
2177 if (is_debugging_enabled(DEBUG_RELAXATION))
2178 {
2179 if (pass == 0)
2180 this->relaxation_debug_check_->read_sections(this->section_list_);
2181 else
2182 this->relaxation_debug_check_->verify_sections(this->section_list_);
2183 }
2184
2185 *pload_seg = load_seg;
2186 return off;
2187 }
2188
2189 // Search the list of patterns and find the postion of the given section
2190 // name in the output section. If the section name matches a glob
2191 // pattern and a non-glob name, then the non-glob position takes
2192 // precedence. Return 0 if no match is found.
2193
2194 unsigned int
2195 Layout::find_section_order_index(const std::string& section_name)
2196 {
2197 Unordered_map<std::string, unsigned int>::iterator map_it;
2198 map_it = this->input_section_position_.find(section_name);
2199 if (map_it != this->input_section_position_.end())
2200 return map_it->second;
2201
2202 // Absolute match failed. Linear search the glob patterns.
2203 std::vector<std::string>::iterator it;
2204 for (it = this->input_section_glob_.begin();
2205 it != this->input_section_glob_.end();
2206 ++it)
2207 {
2208 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2209 {
2210 map_it = this->input_section_position_.find(*it);
2211 gold_assert(map_it != this->input_section_position_.end());
2212 return map_it->second;
2213 }
2214 }
2215 return 0;
2216 }
2217
2218 // Read the sequence of input sections from the file specified with
2219 // option --section-ordering-file.
2220
2221 void
2222 Layout::read_layout_from_file()
2223 {
2224 const char* filename = parameters->options().section_ordering_file();
2225 std::ifstream in;
2226 std::string line;
2227
2228 in.open(filename);
2229 if (!in)
2230 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2231 filename, strerror(errno));
2232
2233 std::getline(in, line); // this chops off the trailing \n, if any
2234 unsigned int position = 1;
2235 this->set_section_ordering_specified();
2236
2237 while (in)
2238 {
2239 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2240 line.resize(line.length() - 1);
2241 // Ignore comments, beginning with '#'
2242 if (line[0] == '#')
2243 {
2244 std::getline(in, line);
2245 continue;
2246 }
2247 this->input_section_position_[line] = position;
2248 // Store all glob patterns in a vector.
2249 if (is_wildcard_string(line.c_str()))
2250 this->input_section_glob_.push_back(line);
2251 position++;
2252 std::getline(in, line);
2253 }
2254 }
2255
2256 // Finalize the layout. When this is called, we have created all the
2257 // output sections and all the output segments which are based on
2258 // input sections. We have several things to do, and we have to do
2259 // them in the right order, so that we get the right results correctly
2260 // and efficiently.
2261
2262 // 1) Finalize the list of output segments and create the segment
2263 // table header.
2264
2265 // 2) Finalize the dynamic symbol table and associated sections.
2266
2267 // 3) Determine the final file offset of all the output segments.
2268
2269 // 4) Determine the final file offset of all the SHF_ALLOC output
2270 // sections.
2271
2272 // 5) Create the symbol table sections and the section name table
2273 // section.
2274
2275 // 6) Finalize the symbol table: set symbol values to their final
2276 // value and make a final determination of which symbols are going
2277 // into the output symbol table.
2278
2279 // 7) Create the section table header.
2280
2281 // 8) Determine the final file offset of all the output sections which
2282 // are not SHF_ALLOC, including the section table header.
2283
2284 // 9) Finalize the ELF file header.
2285
2286 // This function returns the size of the output file.
2287
2288 off_t
2289 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2290 Target* target, const Task* task)
2291 {
2292 target->finalize_sections(this, input_objects, symtab);
2293
2294 this->count_local_symbols(task, input_objects);
2295
2296 this->link_stabs_sections();
2297
2298 Output_segment* phdr_seg = NULL;
2299 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2300 {
2301 // There was a dynamic object in the link. We need to create
2302 // some information for the dynamic linker.
2303
2304 // Create the PT_PHDR segment which will hold the program
2305 // headers.
2306 if (!this->script_options_->saw_phdrs_clause())
2307 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2308
2309 // Create the dynamic symbol table, including the hash table.
2310 Output_section* dynstr;
2311 std::vector<Symbol*> dynamic_symbols;
2312 unsigned int local_dynamic_count;
2313 Versions versions(*this->script_options()->version_script_info(),
2314 &this->dynpool_);
2315 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2316 &local_dynamic_count, &dynamic_symbols,
2317 &versions);
2318
2319 // Create the .interp section to hold the name of the
2320 // interpreter, and put it in a PT_INTERP segment. Don't do it
2321 // if we saw a .interp section in an input file.
2322 if ((!parameters->options().shared()
2323 || parameters->options().dynamic_linker() != NULL)
2324 && this->interp_segment_ == NULL)
2325 this->create_interp(target);
2326
2327 // Finish the .dynamic section to hold the dynamic data, and put
2328 // it in a PT_DYNAMIC segment.
2329 this->finish_dynamic_section(input_objects, symtab);
2330
2331 // We should have added everything we need to the dynamic string
2332 // table.
2333 this->dynpool_.set_string_offsets();
2334
2335 // Create the version sections. We can't do this until the
2336 // dynamic string table is complete.
2337 this->create_version_sections(&versions, symtab, local_dynamic_count,
2338 dynamic_symbols, dynstr);
2339
2340 // Set the size of the _DYNAMIC symbol. We can't do this until
2341 // after we call create_version_sections.
2342 this->set_dynamic_symbol_size(symtab);
2343 }
2344
2345 // Create segment headers.
2346 Output_segment_headers* segment_headers =
2347 (parameters->options().relocatable()
2348 ? NULL
2349 : new Output_segment_headers(this->segment_list_));
2350
2351 // Lay out the file header.
2352 Output_file_header* file_header = new Output_file_header(target, symtab,
2353 segment_headers);
2354
2355 this->special_output_list_.push_back(file_header);
2356 if (segment_headers != NULL)
2357 this->special_output_list_.push_back(segment_headers);
2358
2359 // Find approriate places for orphan output sections if we are using
2360 // a linker script.
2361 if (this->script_options_->saw_sections_clause())
2362 this->place_orphan_sections_in_script();
2363
2364 Output_segment* load_seg;
2365 off_t off;
2366 unsigned int shndx;
2367 int pass = 0;
2368
2369 // Take a snapshot of the section layout as needed.
2370 if (target->may_relax())
2371 this->prepare_for_relaxation();
2372
2373 // Run the relaxation loop to lay out sections.
2374 do
2375 {
2376 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2377 phdr_seg, segment_headers, file_header,
2378 &shndx);
2379 pass++;
2380 }
2381 while (target->may_relax()
2382 && target->relax(pass, input_objects, symtab, this, task));
2383
2384 // Set the file offsets of all the non-data sections we've seen so
2385 // far which don't have to wait for the input sections. We need
2386 // this in order to finalize local symbols in non-allocated
2387 // sections.
2388 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2389
2390 // Set the section indexes of all unallocated sections seen so far,
2391 // in case any of them are somehow referenced by a symbol.
2392 shndx = this->set_section_indexes(shndx);
2393
2394 // Create the symbol table sections.
2395 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2396 if (!parameters->doing_static_link())
2397 this->assign_local_dynsym_offsets(input_objects);
2398
2399 // Process any symbol assignments from a linker script. This must
2400 // be called after the symbol table has been finalized.
2401 this->script_options_->finalize_symbols(symtab, this);
2402
2403 // Create the incremental inputs sections.
2404 if (this->incremental_inputs_)
2405 {
2406 this->incremental_inputs_->finalize();
2407 this->create_incremental_info_sections(symtab);
2408 }
2409
2410 // Create the .shstrtab section.
2411 Output_section* shstrtab_section = this->create_shstrtab();
2412
2413 // Set the file offsets of the rest of the non-data sections which
2414 // don't have to wait for the input sections.
2415 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2416
2417 // Now that all sections have been created, set the section indexes
2418 // for any sections which haven't been done yet.
2419 shndx = this->set_section_indexes(shndx);
2420
2421 // Create the section table header.
2422 this->create_shdrs(shstrtab_section, &off);
2423
2424 // If there are no sections which require postprocessing, we can
2425 // handle the section names now, and avoid a resize later.
2426 if (!this->any_postprocessing_sections_)
2427 {
2428 off = this->set_section_offsets(off,
2429 POSTPROCESSING_SECTIONS_PASS);
2430 off =
2431 this->set_section_offsets(off,
2432 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2433 }
2434
2435 file_header->set_section_info(this->section_headers_, shstrtab_section);
2436
2437 // Now we know exactly where everything goes in the output file
2438 // (except for non-allocated sections which require postprocessing).
2439 Output_data::layout_complete();
2440
2441 this->output_file_size_ = off;
2442
2443 return off;
2444 }
2445
2446 // Create a note header following the format defined in the ELF ABI.
2447 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2448 // of the section to create, DESCSZ is the size of the descriptor.
2449 // ALLOCATE is true if the section should be allocated in memory.
2450 // This returns the new note section. It sets *TRAILING_PADDING to
2451 // the number of trailing zero bytes required.
2452
2453 Output_section*
2454 Layout::create_note(const char* name, int note_type,
2455 const char* section_name, size_t descsz,
2456 bool allocate, size_t* trailing_padding)
2457 {
2458 // Authorities all agree that the values in a .note field should
2459 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2460 // they differ on what the alignment is for 64-bit binaries.
2461 // The GABI says unambiguously they take 8-byte alignment:
2462 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2463 // Other documentation says alignment should always be 4 bytes:
2464 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2465 // GNU ld and GNU readelf both support the latter (at least as of
2466 // version 2.16.91), and glibc always generates the latter for
2467 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2468 // here.
2469 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2470 const int size = parameters->target().get_size();
2471 #else
2472 const int size = 32;
2473 #endif
2474
2475 // The contents of the .note section.
2476 size_t namesz = strlen(name) + 1;
2477 size_t aligned_namesz = align_address(namesz, size / 8);
2478 size_t aligned_descsz = align_address(descsz, size / 8);
2479
2480 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2481
2482 unsigned char* buffer = new unsigned char[notehdrsz];
2483 memset(buffer, 0, notehdrsz);
2484
2485 bool is_big_endian = parameters->target().is_big_endian();
2486
2487 if (size == 32)
2488 {
2489 if (!is_big_endian)
2490 {
2491 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2492 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2493 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2494 }
2495 else
2496 {
2497 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2498 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2499 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2500 }
2501 }
2502 else if (size == 64)
2503 {
2504 if (!is_big_endian)
2505 {
2506 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2507 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2508 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2509 }
2510 else
2511 {
2512 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2513 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2514 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2515 }
2516 }
2517 else
2518 gold_unreachable();
2519
2520 memcpy(buffer + 3 * (size / 8), name, namesz);
2521
2522 elfcpp::Elf_Xword flags = 0;
2523 Output_section_order order = ORDER_INVALID;
2524 if (allocate)
2525 {
2526 flags = elfcpp::SHF_ALLOC;
2527 order = ORDER_RO_NOTE;
2528 }
2529 Output_section* os = this->choose_output_section(NULL, section_name,
2530 elfcpp::SHT_NOTE,
2531 flags, false, order, false);
2532 if (os == NULL)
2533 return NULL;
2534
2535 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2536 size / 8,
2537 "** note header");
2538 os->add_output_section_data(posd);
2539
2540 *trailing_padding = aligned_descsz - descsz;
2541
2542 return os;
2543 }
2544
2545 // For an executable or shared library, create a note to record the
2546 // version of gold used to create the binary.
2547
2548 void
2549 Layout::create_gold_note()
2550 {
2551 if (parameters->options().relocatable()
2552 || parameters->incremental_update())
2553 return;
2554
2555 std::string desc = std::string("gold ") + gold::get_version_string();
2556
2557 size_t trailing_padding;
2558 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2559 ".note.gnu.gold-version", desc.size(),
2560 false, &trailing_padding);
2561 if (os == NULL)
2562 return;
2563
2564 Output_section_data* posd = new Output_data_const(desc, 4);
2565 os->add_output_section_data(posd);
2566
2567 if (trailing_padding > 0)
2568 {
2569 posd = new Output_data_zero_fill(trailing_padding, 0);
2570 os->add_output_section_data(posd);
2571 }
2572 }
2573
2574 // Record whether the stack should be executable. This can be set
2575 // from the command line using the -z execstack or -z noexecstack
2576 // options. Otherwise, if any input file has a .note.GNU-stack
2577 // section with the SHF_EXECINSTR flag set, the stack should be
2578 // executable. Otherwise, if at least one input file a
2579 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2580 // section, we use the target default for whether the stack should be
2581 // executable. Otherwise, we don't generate a stack note. When
2582 // generating a object file, we create a .note.GNU-stack section with
2583 // the appropriate marking. When generating an executable or shared
2584 // library, we create a PT_GNU_STACK segment.
2585
2586 void
2587 Layout::create_executable_stack_info()
2588 {
2589 bool is_stack_executable;
2590 if (parameters->options().is_execstack_set())
2591 is_stack_executable = parameters->options().is_stack_executable();
2592 else if (!this->input_with_gnu_stack_note_)
2593 return;
2594 else
2595 {
2596 if (this->input_requires_executable_stack_)
2597 is_stack_executable = true;
2598 else if (this->input_without_gnu_stack_note_)
2599 is_stack_executable =
2600 parameters->target().is_default_stack_executable();
2601 else
2602 is_stack_executable = false;
2603 }
2604
2605 if (parameters->options().relocatable())
2606 {
2607 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2608 elfcpp::Elf_Xword flags = 0;
2609 if (is_stack_executable)
2610 flags |= elfcpp::SHF_EXECINSTR;
2611 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2612 ORDER_INVALID, false);
2613 }
2614 else
2615 {
2616 if (this->script_options_->saw_phdrs_clause())
2617 return;
2618 int flags = elfcpp::PF_R | elfcpp::PF_W;
2619 if (is_stack_executable)
2620 flags |= elfcpp::PF_X;
2621 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2622 }
2623 }
2624
2625 // If --build-id was used, set up the build ID note.
2626
2627 void
2628 Layout::create_build_id()
2629 {
2630 if (!parameters->options().user_set_build_id())
2631 return;
2632
2633 const char* style = parameters->options().build_id();
2634 if (strcmp(style, "none") == 0)
2635 return;
2636
2637 // Set DESCSZ to the size of the note descriptor. When possible,
2638 // set DESC to the note descriptor contents.
2639 size_t descsz;
2640 std::string desc;
2641 if (strcmp(style, "md5") == 0)
2642 descsz = 128 / 8;
2643 else if (strcmp(style, "sha1") == 0)
2644 descsz = 160 / 8;
2645 else if (strcmp(style, "uuid") == 0)
2646 {
2647 const size_t uuidsz = 128 / 8;
2648
2649 char buffer[uuidsz];
2650 memset(buffer, 0, uuidsz);
2651
2652 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2653 if (descriptor < 0)
2654 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2655 strerror(errno));
2656 else
2657 {
2658 ssize_t got = ::read(descriptor, buffer, uuidsz);
2659 release_descriptor(descriptor, true);
2660 if (got < 0)
2661 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2662 else if (static_cast<size_t>(got) != uuidsz)
2663 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2664 uuidsz, got);
2665 }
2666
2667 desc.assign(buffer, uuidsz);
2668 descsz = uuidsz;
2669 }
2670 else if (strncmp(style, "0x", 2) == 0)
2671 {
2672 hex_init();
2673 const char* p = style + 2;
2674 while (*p != '\0')
2675 {
2676 if (hex_p(p[0]) && hex_p(p[1]))
2677 {
2678 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2679 desc += c;
2680 p += 2;
2681 }
2682 else if (*p == '-' || *p == ':')
2683 ++p;
2684 else
2685 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2686 style);
2687 }
2688 descsz = desc.size();
2689 }
2690 else
2691 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2692
2693 // Create the note.
2694 size_t trailing_padding;
2695 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2696 ".note.gnu.build-id", descsz, true,
2697 &trailing_padding);
2698 if (os == NULL)
2699 return;
2700
2701 if (!desc.empty())
2702 {
2703 // We know the value already, so we fill it in now.
2704 gold_assert(desc.size() == descsz);
2705
2706 Output_section_data* posd = new Output_data_const(desc, 4);
2707 os->add_output_section_data(posd);
2708
2709 if (trailing_padding != 0)
2710 {
2711 posd = new Output_data_zero_fill(trailing_padding, 0);
2712 os->add_output_section_data(posd);
2713 }
2714 }
2715 else
2716 {
2717 // We need to compute a checksum after we have completed the
2718 // link.
2719 gold_assert(trailing_padding == 0);
2720 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2721 os->add_output_section_data(this->build_id_note_);
2722 }
2723 }
2724
2725 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2726 // field of the former should point to the latter. I'm not sure who
2727 // started this, but the GNU linker does it, and some tools depend
2728 // upon it.
2729
2730 void
2731 Layout::link_stabs_sections()
2732 {
2733 if (!this->have_stabstr_section_)
2734 return;
2735
2736 for (Section_list::iterator p = this->section_list_.begin();
2737 p != this->section_list_.end();
2738 ++p)
2739 {
2740 if ((*p)->type() != elfcpp::SHT_STRTAB)
2741 continue;
2742
2743 const char* name = (*p)->name();
2744 if (strncmp(name, ".stab", 5) != 0)
2745 continue;
2746
2747 size_t len = strlen(name);
2748 if (strcmp(name + len - 3, "str") != 0)
2749 continue;
2750
2751 std::string stab_name(name, len - 3);
2752 Output_section* stab_sec;
2753 stab_sec = this->find_output_section(stab_name.c_str());
2754 if (stab_sec != NULL)
2755 stab_sec->set_link_section(*p);
2756 }
2757 }
2758
2759 // Create .gnu_incremental_inputs and related sections needed
2760 // for the next run of incremental linking to check what has changed.
2761
2762 void
2763 Layout::create_incremental_info_sections(Symbol_table* symtab)
2764 {
2765 Incremental_inputs* incr = this->incremental_inputs_;
2766
2767 gold_assert(incr != NULL);
2768
2769 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2770 incr->create_data_sections(symtab);
2771
2772 // Add the .gnu_incremental_inputs section.
2773 const char* incremental_inputs_name =
2774 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2775 Output_section* incremental_inputs_os =
2776 this->make_output_section(incremental_inputs_name,
2777 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2778 ORDER_INVALID, false);
2779 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2780
2781 // Add the .gnu_incremental_symtab section.
2782 const char* incremental_symtab_name =
2783 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2784 Output_section* incremental_symtab_os =
2785 this->make_output_section(incremental_symtab_name,
2786 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2787 ORDER_INVALID, false);
2788 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2789 incremental_symtab_os->set_entsize(4);
2790
2791 // Add the .gnu_incremental_relocs section.
2792 const char* incremental_relocs_name =
2793 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2794 Output_section* incremental_relocs_os =
2795 this->make_output_section(incremental_relocs_name,
2796 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2797 ORDER_INVALID, false);
2798 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2799 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2800
2801 // Add the .gnu_incremental_got_plt section.
2802 const char* incremental_got_plt_name =
2803 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2804 Output_section* incremental_got_plt_os =
2805 this->make_output_section(incremental_got_plt_name,
2806 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2807 ORDER_INVALID, false);
2808 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2809
2810 // Add the .gnu_incremental_strtab section.
2811 const char* incremental_strtab_name =
2812 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2813 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2814 elfcpp::SHT_STRTAB, 0,
2815 ORDER_INVALID, false);
2816 Output_data_strtab* strtab_data =
2817 new Output_data_strtab(incr->get_stringpool());
2818 incremental_strtab_os->add_output_section_data(strtab_data);
2819
2820 incremental_inputs_os->set_after_input_sections();
2821 incremental_symtab_os->set_after_input_sections();
2822 incremental_relocs_os->set_after_input_sections();
2823 incremental_got_plt_os->set_after_input_sections();
2824
2825 incremental_inputs_os->set_link_section(incremental_strtab_os);
2826 incremental_symtab_os->set_link_section(incremental_inputs_os);
2827 incremental_relocs_os->set_link_section(incremental_inputs_os);
2828 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2829 }
2830
2831 // Return whether SEG1 should be before SEG2 in the output file. This
2832 // is based entirely on the segment type and flags. When this is
2833 // called the segment addresses have normally not yet been set.
2834
2835 bool
2836 Layout::segment_precedes(const Output_segment* seg1,
2837 const Output_segment* seg2)
2838 {
2839 elfcpp::Elf_Word type1 = seg1->type();
2840 elfcpp::Elf_Word type2 = seg2->type();
2841
2842 // The single PT_PHDR segment is required to precede any loadable
2843 // segment. We simply make it always first.
2844 if (type1 == elfcpp::PT_PHDR)
2845 {
2846 gold_assert(type2 != elfcpp::PT_PHDR);
2847 return true;
2848 }
2849 if (type2 == elfcpp::PT_PHDR)
2850 return false;
2851
2852 // The single PT_INTERP segment is required to precede any loadable
2853 // segment. We simply make it always second.
2854 if (type1 == elfcpp::PT_INTERP)
2855 {
2856 gold_assert(type2 != elfcpp::PT_INTERP);
2857 return true;
2858 }
2859 if (type2 == elfcpp::PT_INTERP)
2860 return false;
2861
2862 // We then put PT_LOAD segments before any other segments.
2863 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2864 return true;
2865 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2866 return false;
2867
2868 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2869 // segment, because that is where the dynamic linker expects to find
2870 // it (this is just for efficiency; other positions would also work
2871 // correctly).
2872 if (type1 == elfcpp::PT_TLS
2873 && type2 != elfcpp::PT_TLS
2874 && type2 != elfcpp::PT_GNU_RELRO)
2875 return false;
2876 if (type2 == elfcpp::PT_TLS
2877 && type1 != elfcpp::PT_TLS
2878 && type1 != elfcpp::PT_GNU_RELRO)
2879 return true;
2880
2881 // We put the PT_GNU_RELRO segment last, because that is where the
2882 // dynamic linker expects to find it (as with PT_TLS, this is just
2883 // for efficiency).
2884 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2885 return false;
2886 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2887 return true;
2888
2889 const elfcpp::Elf_Word flags1 = seg1->flags();
2890 const elfcpp::Elf_Word flags2 = seg2->flags();
2891
2892 // The order of non-PT_LOAD segments is unimportant. We simply sort
2893 // by the numeric segment type and flags values. There should not
2894 // be more than one segment with the same type and flags.
2895 if (type1 != elfcpp::PT_LOAD)
2896 {
2897 if (type1 != type2)
2898 return type1 < type2;
2899 gold_assert(flags1 != flags2);
2900 return flags1 < flags2;
2901 }
2902
2903 // If the addresses are set already, sort by load address.
2904 if (seg1->are_addresses_set())
2905 {
2906 if (!seg2->are_addresses_set())
2907 return true;
2908
2909 unsigned int section_count1 = seg1->output_section_count();
2910 unsigned int section_count2 = seg2->output_section_count();
2911 if (section_count1 == 0 && section_count2 > 0)
2912 return true;
2913 if (section_count1 > 0 && section_count2 == 0)
2914 return false;
2915
2916 uint64_t paddr1 = (seg1->are_addresses_set()
2917 ? seg1->paddr()
2918 : seg1->first_section_load_address());
2919 uint64_t paddr2 = (seg2->are_addresses_set()
2920 ? seg2->paddr()
2921 : seg2->first_section_load_address());
2922
2923 if (paddr1 != paddr2)
2924 return paddr1 < paddr2;
2925 }
2926 else if (seg2->are_addresses_set())
2927 return false;
2928
2929 // A segment which holds large data comes after a segment which does
2930 // not hold large data.
2931 if (seg1->is_large_data_segment())
2932 {
2933 if (!seg2->is_large_data_segment())
2934 return false;
2935 }
2936 else if (seg2->is_large_data_segment())
2937 return true;
2938
2939 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2940 // segments come before writable segments. Then writable segments
2941 // with data come before writable segments without data. Then
2942 // executable segments come before non-executable segments. Then
2943 // the unlikely case of a non-readable segment comes before the
2944 // normal case of a readable segment. If there are multiple
2945 // segments with the same type and flags, we require that the
2946 // address be set, and we sort by virtual address and then physical
2947 // address.
2948 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2949 return (flags1 & elfcpp::PF_W) == 0;
2950 if ((flags1 & elfcpp::PF_W) != 0
2951 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2952 return seg1->has_any_data_sections();
2953 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2954 return (flags1 & elfcpp::PF_X) != 0;
2955 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2956 return (flags1 & elfcpp::PF_R) == 0;
2957
2958 // We shouldn't get here--we shouldn't create segments which we
2959 // can't distinguish. Unless of course we are using a weird linker
2960 // script.
2961 gold_assert(this->script_options_->saw_phdrs_clause());
2962 return false;
2963 }
2964
2965 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2966
2967 static off_t
2968 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2969 {
2970 uint64_t unsigned_off = off;
2971 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2972 | (addr & (abi_pagesize - 1)));
2973 if (aligned_off < unsigned_off)
2974 aligned_off += abi_pagesize;
2975 return aligned_off;
2976 }
2977
2978 // Set the file offsets of all the segments, and all the sections they
2979 // contain. They have all been created. LOAD_SEG must be be laid out
2980 // first. Return the offset of the data to follow.
2981
2982 off_t
2983 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2984 unsigned int* pshndx)
2985 {
2986 // Sort them into the final order. We use a stable sort so that we
2987 // don't randomize the order of indistinguishable segments created
2988 // by linker scripts.
2989 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
2990 Layout::Compare_segments(this));
2991
2992 // Find the PT_LOAD segments, and set their addresses and offsets
2993 // and their section's addresses and offsets.
2994 uint64_t addr;
2995 if (parameters->options().user_set_Ttext())
2996 addr = parameters->options().Ttext();
2997 else if (parameters->options().output_is_position_independent())
2998 addr = 0;
2999 else
3000 addr = target->default_text_segment_address();
3001 off_t off = 0;
3002
3003 // If LOAD_SEG is NULL, then the file header and segment headers
3004 // will not be loadable. But they still need to be at offset 0 in
3005 // the file. Set their offsets now.
3006 if (load_seg == NULL)
3007 {
3008 for (Data_list::iterator p = this->special_output_list_.begin();
3009 p != this->special_output_list_.end();
3010 ++p)
3011 {
3012 off = align_address(off, (*p)->addralign());
3013 (*p)->set_address_and_file_offset(0, off);
3014 off += (*p)->data_size();
3015 }
3016 }
3017
3018 unsigned int increase_relro = this->increase_relro_;
3019 if (this->script_options_->saw_sections_clause())
3020 increase_relro = 0;
3021
3022 const bool check_sections = parameters->options().check_sections();
3023 Output_segment* last_load_segment = NULL;
3024
3025 for (Segment_list::iterator p = this->segment_list_.begin();
3026 p != this->segment_list_.end();
3027 ++p)
3028 {
3029 if ((*p)->type() == elfcpp::PT_LOAD)
3030 {
3031 if (load_seg != NULL && load_seg != *p)
3032 gold_unreachable();
3033 load_seg = NULL;
3034
3035 bool are_addresses_set = (*p)->are_addresses_set();
3036 if (are_addresses_set)
3037 {
3038 // When it comes to setting file offsets, we care about
3039 // the physical address.
3040 addr = (*p)->paddr();
3041 }
3042 else if (parameters->options().user_set_Tdata()
3043 && ((*p)->flags() & elfcpp::PF_W) != 0
3044 && (!parameters->options().user_set_Tbss()
3045 || (*p)->has_any_data_sections()))
3046 {
3047 addr = parameters->options().Tdata();
3048 are_addresses_set = true;
3049 }
3050 else if (parameters->options().user_set_Tbss()
3051 && ((*p)->flags() & elfcpp::PF_W) != 0
3052 && !(*p)->has_any_data_sections())
3053 {
3054 addr = parameters->options().Tbss();
3055 are_addresses_set = true;
3056 }
3057
3058 uint64_t orig_addr = addr;
3059 uint64_t orig_off = off;
3060
3061 uint64_t aligned_addr = 0;
3062 uint64_t abi_pagesize = target->abi_pagesize();
3063 uint64_t common_pagesize = target->common_pagesize();
3064
3065 if (!parameters->options().nmagic()
3066 && !parameters->options().omagic())
3067 (*p)->set_minimum_p_align(common_pagesize);
3068
3069 if (!are_addresses_set)
3070 {
3071 // Skip the address forward one page, maintaining the same
3072 // position within the page. This lets us store both segments
3073 // overlapping on a single page in the file, but the loader will
3074 // put them on different pages in memory. We will revisit this
3075 // decision once we know the size of the segment.
3076
3077 addr = align_address(addr, (*p)->maximum_alignment());
3078 aligned_addr = addr;
3079
3080 if ((addr & (abi_pagesize - 1)) != 0)
3081 addr = addr + abi_pagesize;
3082
3083 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3084 }
3085
3086 if (!parameters->options().nmagic()
3087 && !parameters->options().omagic())
3088 off = align_file_offset(off, addr, abi_pagesize);
3089 else if (load_seg == NULL)
3090 {
3091 // This is -N or -n with a section script which prevents
3092 // us from using a load segment. We need to ensure that
3093 // the file offset is aligned to the alignment of the
3094 // segment. This is because the linker script
3095 // implicitly assumed a zero offset. If we don't align
3096 // here, then the alignment of the sections in the
3097 // linker script may not match the alignment of the
3098 // sections in the set_section_addresses call below,
3099 // causing an error about dot moving backward.
3100 off = align_address(off, (*p)->maximum_alignment());
3101 }
3102
3103 unsigned int shndx_hold = *pshndx;
3104 bool has_relro = false;
3105 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3106 &increase_relro,
3107 &has_relro,
3108 &off, pshndx);
3109
3110 // Now that we know the size of this segment, we may be able
3111 // to save a page in memory, at the cost of wasting some
3112 // file space, by instead aligning to the start of a new
3113 // page. Here we use the real machine page size rather than
3114 // the ABI mandated page size. If the segment has been
3115 // aligned so that the relro data ends at a page boundary,
3116 // we do not try to realign it.
3117
3118 if (!are_addresses_set
3119 && !has_relro
3120 && aligned_addr != addr
3121 && !parameters->incremental())
3122 {
3123 uint64_t first_off = (common_pagesize
3124 - (aligned_addr
3125 & (common_pagesize - 1)));
3126 uint64_t last_off = new_addr & (common_pagesize - 1);
3127 if (first_off > 0
3128 && last_off > 0
3129 && ((aligned_addr & ~ (common_pagesize - 1))
3130 != (new_addr & ~ (common_pagesize - 1)))
3131 && first_off + last_off <= common_pagesize)
3132 {
3133 *pshndx = shndx_hold;
3134 addr = align_address(aligned_addr, common_pagesize);
3135 addr = align_address(addr, (*p)->maximum_alignment());
3136 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3137 off = align_file_offset(off, addr, abi_pagesize);
3138
3139 increase_relro = this->increase_relro_;
3140 if (this->script_options_->saw_sections_clause())
3141 increase_relro = 0;
3142 has_relro = false;
3143
3144 new_addr = (*p)->set_section_addresses(this, true, addr,
3145 &increase_relro,
3146 &has_relro,
3147 &off, pshndx);
3148 }
3149 }
3150
3151 addr = new_addr;
3152
3153 // Implement --check-sections. We know that the segments
3154 // are sorted by LMA.
3155 if (check_sections && last_load_segment != NULL)
3156 {
3157 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3158 if (last_load_segment->paddr() + last_load_segment->memsz()
3159 > (*p)->paddr())
3160 {
3161 unsigned long long lb1 = last_load_segment->paddr();
3162 unsigned long long le1 = lb1 + last_load_segment->memsz();
3163 unsigned long long lb2 = (*p)->paddr();
3164 unsigned long long le2 = lb2 + (*p)->memsz();
3165 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3166 "[0x%llx -> 0x%llx]"),
3167 lb1, le1, lb2, le2);
3168 }
3169 }
3170 last_load_segment = *p;
3171 }
3172 }
3173
3174 // Handle the non-PT_LOAD segments, setting their offsets from their
3175 // section's offsets.
3176 for (Segment_list::iterator p = this->segment_list_.begin();
3177 p != this->segment_list_.end();
3178 ++p)
3179 {
3180 if ((*p)->type() != elfcpp::PT_LOAD)
3181 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3182 ? increase_relro
3183 : 0);
3184 }
3185
3186 // Set the TLS offsets for each section in the PT_TLS segment.
3187 if (this->tls_segment_ != NULL)
3188 this->tls_segment_->set_tls_offsets();
3189
3190 return off;
3191 }
3192
3193 // Set the offsets of all the allocated sections when doing a
3194 // relocatable link. This does the same jobs as set_segment_offsets,
3195 // only for a relocatable link.
3196
3197 off_t
3198 Layout::set_relocatable_section_offsets(Output_data* file_header,
3199 unsigned int* pshndx)
3200 {
3201 off_t off = 0;
3202
3203 file_header->set_address_and_file_offset(0, 0);
3204 off += file_header->data_size();
3205
3206 for (Section_list::iterator p = this->section_list_.begin();
3207 p != this->section_list_.end();
3208 ++p)
3209 {
3210 // We skip unallocated sections here, except that group sections
3211 // have to come first.
3212 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3213 && (*p)->type() != elfcpp::SHT_GROUP)
3214 continue;
3215
3216 off = align_address(off, (*p)->addralign());
3217
3218 // The linker script might have set the address.
3219 if (!(*p)->is_address_valid())
3220 (*p)->set_address(0);
3221 (*p)->set_file_offset(off);
3222 (*p)->finalize_data_size();
3223 off += (*p)->data_size();
3224
3225 (*p)->set_out_shndx(*pshndx);
3226 ++*pshndx;
3227 }
3228
3229 return off;
3230 }
3231
3232 // Set the file offset of all the sections not associated with a
3233 // segment.
3234
3235 off_t
3236 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3237 {
3238 off_t startoff = off;
3239 off_t maxoff = off;
3240
3241 for (Section_list::iterator p = this->unattached_section_list_.begin();
3242 p != this->unattached_section_list_.end();
3243 ++p)
3244 {
3245 // The symtab section is handled in create_symtab_sections.
3246 if (*p == this->symtab_section_)
3247 continue;
3248
3249 // If we've already set the data size, don't set it again.
3250 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3251 continue;
3252
3253 if (pass == BEFORE_INPUT_SECTIONS_PASS
3254 && (*p)->requires_postprocessing())
3255 {
3256 (*p)->create_postprocessing_buffer();
3257 this->any_postprocessing_sections_ = true;
3258 }
3259
3260 if (pass == BEFORE_INPUT_SECTIONS_PASS
3261 && (*p)->after_input_sections())
3262 continue;
3263 else if (pass == POSTPROCESSING_SECTIONS_PASS
3264 && (!(*p)->after_input_sections()
3265 || (*p)->type() == elfcpp::SHT_STRTAB))
3266 continue;
3267 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3268 && (!(*p)->after_input_sections()
3269 || (*p)->type() != elfcpp::SHT_STRTAB))
3270 continue;
3271
3272 if (!parameters->incremental_update())
3273 {
3274 off = align_address(off, (*p)->addralign());
3275 (*p)->set_file_offset(off);
3276 (*p)->finalize_data_size();
3277 }
3278 else
3279 {
3280 // Incremental update: allocate file space from free list.
3281 (*p)->pre_finalize_data_size();
3282 off_t current_size = (*p)->current_data_size();
3283 off = this->allocate(current_size, (*p)->addralign(), startoff);
3284 if (off == -1)
3285 {
3286 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3287 this->free_list_.dump();
3288 gold_assert((*p)->output_section() != NULL);
3289 gold_fallback(_("out of patch space for section %s; "
3290 "relink with --incremental-full"),
3291 (*p)->output_section()->name());
3292 }
3293 (*p)->set_file_offset(off);
3294 (*p)->finalize_data_size();
3295 if ((*p)->data_size() > current_size)
3296 {
3297 gold_assert((*p)->output_section() != NULL);
3298 gold_fallback(_("%s: section changed size; "
3299 "relink with --incremental-full"),
3300 (*p)->output_section()->name());
3301 }
3302 gold_debug(DEBUG_INCREMENTAL,
3303 "set_section_offsets: %08lx %08lx %s",
3304 static_cast<long>(off),
3305 static_cast<long>((*p)->data_size()),
3306 ((*p)->output_section() != NULL
3307 ? (*p)->output_section()->name() : "(special)"));
3308 }
3309
3310 off += (*p)->data_size();
3311 if (off > maxoff)
3312 maxoff = off;
3313
3314 // At this point the name must be set.
3315 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3316 this->namepool_.add((*p)->name(), false, NULL);
3317 }
3318 return maxoff;
3319 }
3320
3321 // Set the section indexes of all the sections not associated with a
3322 // segment.
3323
3324 unsigned int
3325 Layout::set_section_indexes(unsigned int shndx)
3326 {
3327 for (Section_list::iterator p = this->unattached_section_list_.begin();
3328 p != this->unattached_section_list_.end();
3329 ++p)
3330 {
3331 if (!(*p)->has_out_shndx())
3332 {
3333 (*p)->set_out_shndx(shndx);
3334 ++shndx;
3335 }
3336 }
3337 return shndx;
3338 }
3339
3340 // Set the section addresses according to the linker script. This is
3341 // only called when we see a SECTIONS clause. This returns the
3342 // program segment which should hold the file header and segment
3343 // headers, if any. It will return NULL if they should not be in a
3344 // segment.
3345
3346 Output_segment*
3347 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3348 {
3349 Script_sections* ss = this->script_options_->script_sections();
3350 gold_assert(ss->saw_sections_clause());
3351 return this->script_options_->set_section_addresses(symtab, this);
3352 }
3353
3354 // Place the orphan sections in the linker script.
3355
3356 void
3357 Layout::place_orphan_sections_in_script()
3358 {
3359 Script_sections* ss = this->script_options_->script_sections();
3360 gold_assert(ss->saw_sections_clause());
3361
3362 // Place each orphaned output section in the script.
3363 for (Section_list::iterator p = this->section_list_.begin();
3364 p != this->section_list_.end();
3365 ++p)
3366 {
3367 if (!(*p)->found_in_sections_clause())
3368 ss->place_orphan(*p);
3369 }
3370 }
3371
3372 // Count the local symbols in the regular symbol table and the dynamic
3373 // symbol table, and build the respective string pools.
3374
3375 void
3376 Layout::count_local_symbols(const Task* task,
3377 const Input_objects* input_objects)
3378 {
3379 // First, figure out an upper bound on the number of symbols we'll
3380 // be inserting into each pool. This helps us create the pools with
3381 // the right size, to avoid unnecessary hashtable resizing.
3382 unsigned int symbol_count = 0;
3383 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3384 p != input_objects->relobj_end();
3385 ++p)
3386 symbol_count += (*p)->local_symbol_count();
3387
3388 // Go from "upper bound" to "estimate." We overcount for two
3389 // reasons: we double-count symbols that occur in more than one
3390 // object file, and we count symbols that are dropped from the
3391 // output. Add it all together and assume we overcount by 100%.
3392 symbol_count /= 2;
3393
3394 // We assume all symbols will go into both the sympool and dynpool.
3395 this->sympool_.reserve(symbol_count);
3396 this->dynpool_.reserve(symbol_count);
3397
3398 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3399 p != input_objects->relobj_end();
3400 ++p)
3401 {
3402 Task_lock_obj<Object> tlo(task, *p);
3403 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3404 }
3405 }
3406
3407 // Create the symbol table sections. Here we also set the final
3408 // values of the symbols. At this point all the loadable sections are
3409 // fully laid out. SHNUM is the number of sections so far.
3410
3411 void
3412 Layout::create_symtab_sections(const Input_objects* input_objects,
3413 Symbol_table* symtab,
3414 unsigned int shnum,
3415 off_t* poff)
3416 {
3417 int symsize;
3418 unsigned int align;
3419 if (parameters->target().get_size() == 32)
3420 {
3421 symsize = elfcpp::Elf_sizes<32>::sym_size;
3422 align = 4;
3423 }
3424 else if (parameters->target().get_size() == 64)
3425 {
3426 symsize = elfcpp::Elf_sizes<64>::sym_size;
3427 align = 8;
3428 }
3429 else
3430 gold_unreachable();
3431
3432 // Compute file offsets relative to the start of the symtab section.
3433 off_t off = 0;
3434
3435 // Save space for the dummy symbol at the start of the section. We
3436 // never bother to write this out--it will just be left as zero.
3437 off += symsize;
3438 unsigned int local_symbol_index = 1;
3439
3440 // Add STT_SECTION symbols for each Output section which needs one.
3441 for (Section_list::iterator p = this->section_list_.begin();
3442 p != this->section_list_.end();
3443 ++p)
3444 {
3445 if (!(*p)->needs_symtab_index())
3446 (*p)->set_symtab_index(-1U);
3447 else
3448 {
3449 (*p)->set_symtab_index(local_symbol_index);
3450 ++local_symbol_index;
3451 off += symsize;
3452 }
3453 }
3454
3455 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3456 p != input_objects->relobj_end();
3457 ++p)
3458 {
3459 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3460 off, symtab);
3461 off += (index - local_symbol_index) * symsize;
3462 local_symbol_index = index;
3463 }
3464
3465 unsigned int local_symcount = local_symbol_index;
3466 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3467
3468 off_t dynoff;
3469 size_t dyn_global_index;
3470 size_t dyncount;
3471 if (this->dynsym_section_ == NULL)
3472 {
3473 dynoff = 0;
3474 dyn_global_index = 0;
3475 dyncount = 0;
3476 }
3477 else
3478 {
3479 dyn_global_index = this->dynsym_section_->info();
3480 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3481 dynoff = this->dynsym_section_->offset() + locsize;
3482 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3483 gold_assert(static_cast<off_t>(dyncount * symsize)
3484 == this->dynsym_section_->data_size() - locsize);
3485 }
3486
3487 off_t global_off = off;
3488 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3489 &this->sympool_, &local_symcount);
3490
3491 if (!parameters->options().strip_all())
3492 {
3493 this->sympool_.set_string_offsets();
3494
3495 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3496 Output_section* osymtab = this->make_output_section(symtab_name,
3497 elfcpp::SHT_SYMTAB,
3498 0, ORDER_INVALID,
3499 false);
3500 this->symtab_section_ = osymtab;
3501
3502 Output_section_data* pos = new Output_data_fixed_space(off, align,
3503 "** symtab");
3504 osymtab->add_output_section_data(pos);
3505
3506 // We generate a .symtab_shndx section if we have more than
3507 // SHN_LORESERVE sections. Technically it is possible that we
3508 // don't need one, because it is possible that there are no
3509 // symbols in any of sections with indexes larger than
3510 // SHN_LORESERVE. That is probably unusual, though, and it is
3511 // easier to always create one than to compute section indexes
3512 // twice (once here, once when writing out the symbols).
3513 if (shnum >= elfcpp::SHN_LORESERVE)
3514 {
3515 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3516 false, NULL);
3517 Output_section* osymtab_xindex =
3518 this->make_output_section(symtab_xindex_name,
3519 elfcpp::SHT_SYMTAB_SHNDX, 0,
3520 ORDER_INVALID, false);
3521
3522 size_t symcount = off / symsize;
3523 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3524
3525 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3526
3527 osymtab_xindex->set_link_section(osymtab);
3528 osymtab_xindex->set_addralign(4);
3529 osymtab_xindex->set_entsize(4);
3530
3531 osymtab_xindex->set_after_input_sections();
3532
3533 // This tells the driver code to wait until the symbol table
3534 // has written out before writing out the postprocessing
3535 // sections, including the .symtab_shndx section.
3536 this->any_postprocessing_sections_ = true;
3537 }
3538
3539 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3540 Output_section* ostrtab = this->make_output_section(strtab_name,
3541 elfcpp::SHT_STRTAB,
3542 0, ORDER_INVALID,
3543 false);
3544
3545 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3546 ostrtab->add_output_section_data(pstr);
3547
3548 off_t symtab_off;
3549 if (!parameters->incremental_update())
3550 symtab_off = align_address(*poff, align);
3551 else
3552 {
3553 symtab_off = this->allocate(off, align, *poff);
3554 if (off == -1)
3555 gold_fallback(_("out of patch space for symbol table; "
3556 "relink with --incremental-full"));
3557 gold_debug(DEBUG_INCREMENTAL,
3558 "create_symtab_sections: %08lx %08lx .symtab",
3559 static_cast<long>(symtab_off),
3560 static_cast<long>(off));
3561 }
3562
3563 symtab->set_file_offset(symtab_off + global_off);
3564 osymtab->set_file_offset(symtab_off);
3565 osymtab->finalize_data_size();
3566 osymtab->set_link_section(ostrtab);
3567 osymtab->set_info(local_symcount);
3568 osymtab->set_entsize(symsize);
3569
3570 if (symtab_off + off > *poff)
3571 *poff = symtab_off + off;
3572 }
3573 }
3574
3575 // Create the .shstrtab section, which holds the names of the
3576 // sections. At the time this is called, we have created all the
3577 // output sections except .shstrtab itself.
3578
3579 Output_section*
3580 Layout::create_shstrtab()
3581 {
3582 // FIXME: We don't need to create a .shstrtab section if we are
3583 // stripping everything.
3584
3585 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3586
3587 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3588 ORDER_INVALID, false);
3589
3590 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3591 {
3592 // We can't write out this section until we've set all the
3593 // section names, and we don't set the names of compressed
3594 // output sections until relocations are complete. FIXME: With
3595 // the current names we use, this is unnecessary.
3596 os->set_after_input_sections();
3597 }
3598
3599 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3600 os->add_output_section_data(posd);
3601
3602 return os;
3603 }
3604
3605 // Create the section headers. SIZE is 32 or 64. OFF is the file
3606 // offset.
3607
3608 void
3609 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3610 {
3611 Output_section_headers* oshdrs;
3612 oshdrs = new Output_section_headers(this,
3613 &this->segment_list_,
3614 &this->section_list_,
3615 &this->unattached_section_list_,
3616 &this->namepool_,
3617 shstrtab_section);
3618 off_t off;
3619 if (!parameters->incremental_update())
3620 off = align_address(*poff, oshdrs->addralign());
3621 else
3622 {
3623 oshdrs->pre_finalize_data_size();
3624 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3625 if (off == -1)
3626 gold_fallback(_("out of patch space for section header table; "
3627 "relink with --incremental-full"));
3628 gold_debug(DEBUG_INCREMENTAL,
3629 "create_shdrs: %08lx %08lx (section header table)",
3630 static_cast<long>(off),
3631 static_cast<long>(off + oshdrs->data_size()));
3632 }
3633 oshdrs->set_address_and_file_offset(0, off);
3634 off += oshdrs->data_size();
3635 if (off > *poff)
3636 *poff = off;
3637 this->section_headers_ = oshdrs;
3638 }
3639
3640 // Count the allocated sections.
3641
3642 size_t
3643 Layout::allocated_output_section_count() const
3644 {
3645 size_t section_count = 0;
3646 for (Segment_list::const_iterator p = this->segment_list_.begin();
3647 p != this->segment_list_.end();
3648 ++p)
3649 section_count += (*p)->output_section_count();
3650 return section_count;
3651 }
3652
3653 // Create the dynamic symbol table.
3654
3655 void
3656 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3657 Symbol_table* symtab,
3658 Output_section** pdynstr,
3659 unsigned int* plocal_dynamic_count,
3660 std::vector<Symbol*>* pdynamic_symbols,
3661 Versions* pversions)
3662 {
3663 // Count all the symbols in the dynamic symbol table, and set the
3664 // dynamic symbol indexes.
3665
3666 // Skip symbol 0, which is always all zeroes.
3667 unsigned int index = 1;
3668
3669 // Add STT_SECTION symbols for each Output section which needs one.
3670 for (Section_list::iterator p = this->section_list_.begin();
3671 p != this->section_list_.end();
3672 ++p)
3673 {
3674 if (!(*p)->needs_dynsym_index())
3675 (*p)->set_dynsym_index(-1U);
3676 else
3677 {
3678 (*p)->set_dynsym_index(index);
3679 ++index;
3680 }
3681 }
3682
3683 // Count the local symbols that need to go in the dynamic symbol table,
3684 // and set the dynamic symbol indexes.
3685 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3686 p != input_objects->relobj_end();
3687 ++p)
3688 {
3689 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3690 index = new_index;
3691 }
3692
3693 unsigned int local_symcount = index;
3694 *plocal_dynamic_count = local_symcount;
3695
3696 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3697 &this->dynpool_, pversions);
3698
3699 int symsize;
3700 unsigned int align;
3701 const int size = parameters->target().get_size();
3702 if (size == 32)
3703 {
3704 symsize = elfcpp::Elf_sizes<32>::sym_size;
3705 align = 4;
3706 }
3707 else if (size == 64)
3708 {
3709 symsize = elfcpp::Elf_sizes<64>::sym_size;
3710 align = 8;
3711 }
3712 else
3713 gold_unreachable();
3714
3715 // Create the dynamic symbol table section.
3716
3717 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3718 elfcpp::SHT_DYNSYM,
3719 elfcpp::SHF_ALLOC,
3720 false,
3721 ORDER_DYNAMIC_LINKER,
3722 false);
3723
3724 // Check for NULL as a linker script may discard .dynsym.
3725 if (dynsym != NULL)
3726 {
3727 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3728 align,
3729 "** dynsym");
3730 dynsym->add_output_section_data(odata);
3731
3732 dynsym->set_info(local_symcount);
3733 dynsym->set_entsize(symsize);
3734 dynsym->set_addralign(align);
3735
3736 this->dynsym_section_ = dynsym;
3737 }
3738
3739 Output_data_dynamic* const odyn = this->dynamic_data_;
3740 if (odyn != NULL)
3741 {
3742 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3743 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3744 }
3745
3746 // If there are more than SHN_LORESERVE allocated sections, we
3747 // create a .dynsym_shndx section. It is possible that we don't
3748 // need one, because it is possible that there are no dynamic
3749 // symbols in any of the sections with indexes larger than
3750 // SHN_LORESERVE. This is probably unusual, though, and at this
3751 // time we don't know the actual section indexes so it is
3752 // inconvenient to check.
3753 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3754 {
3755 Output_section* dynsym_xindex =
3756 this->choose_output_section(NULL, ".dynsym_shndx",
3757 elfcpp::SHT_SYMTAB_SHNDX,
3758 elfcpp::SHF_ALLOC,
3759 false, ORDER_DYNAMIC_LINKER, false);
3760
3761 if (dynsym_xindex != NULL)
3762 {
3763 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3764
3765 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3766
3767 dynsym_xindex->set_link_section(dynsym);
3768 dynsym_xindex->set_addralign(4);
3769 dynsym_xindex->set_entsize(4);
3770
3771 dynsym_xindex->set_after_input_sections();
3772
3773 // This tells the driver code to wait until the symbol table
3774 // has written out before writing out the postprocessing
3775 // sections, including the .dynsym_shndx section.
3776 this->any_postprocessing_sections_ = true;
3777 }
3778 }
3779
3780 // Create the dynamic string table section.
3781
3782 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3783 elfcpp::SHT_STRTAB,
3784 elfcpp::SHF_ALLOC,
3785 false,
3786 ORDER_DYNAMIC_LINKER,
3787 false);
3788
3789 if (dynstr != NULL)
3790 {
3791 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3792 dynstr->add_output_section_data(strdata);
3793
3794 if (dynsym != NULL)
3795 dynsym->set_link_section(dynstr);
3796 if (this->dynamic_section_ != NULL)
3797 this->dynamic_section_->set_link_section(dynstr);
3798
3799 if (odyn != NULL)
3800 {
3801 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3802 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3803 }
3804
3805 *pdynstr = dynstr;
3806 }
3807
3808 // Create the hash tables.
3809
3810 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3811 || strcmp(parameters->options().hash_style(), "both") == 0)
3812 {
3813 unsigned char* phash;
3814 unsigned int hashlen;
3815 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3816 &phash, &hashlen);
3817
3818 Output_section* hashsec =
3819 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3820 elfcpp::SHF_ALLOC, false,
3821 ORDER_DYNAMIC_LINKER, false);
3822
3823 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3824 hashlen,
3825 align,
3826 "** hash");
3827 if (hashsec != NULL && hashdata != NULL)
3828 hashsec->add_output_section_data(hashdata);
3829
3830 if (hashsec != NULL)
3831 {
3832 if (dynsym != NULL)
3833 hashsec->set_link_section(dynsym);
3834 hashsec->set_entsize(4);
3835 }
3836
3837 if (odyn != NULL)
3838 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3839 }
3840
3841 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3842 || strcmp(parameters->options().hash_style(), "both") == 0)
3843 {
3844 unsigned char* phash;
3845 unsigned int hashlen;
3846 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3847 &phash, &hashlen);
3848
3849 Output_section* hashsec =
3850 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3851 elfcpp::SHF_ALLOC, false,
3852 ORDER_DYNAMIC_LINKER, false);
3853
3854 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3855 hashlen,
3856 align,
3857 "** hash");
3858 if (hashsec != NULL && hashdata != NULL)
3859 hashsec->add_output_section_data(hashdata);
3860
3861 if (hashsec != NULL)
3862 {
3863 if (dynsym != NULL)
3864 hashsec->set_link_section(dynsym);
3865
3866 // For a 64-bit target, the entries in .gnu.hash do not have
3867 // a uniform size, so we only set the entry size for a
3868 // 32-bit target.
3869 if (parameters->target().get_size() == 32)
3870 hashsec->set_entsize(4);
3871
3872 if (odyn != NULL)
3873 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3874 }
3875 }
3876 }
3877
3878 // Assign offsets to each local portion of the dynamic symbol table.
3879
3880 void
3881 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3882 {
3883 Output_section* dynsym = this->dynsym_section_;
3884 if (dynsym == NULL)
3885 return;
3886
3887 off_t off = dynsym->offset();
3888
3889 // Skip the dummy symbol at the start of the section.
3890 off += dynsym->entsize();
3891
3892 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3893 p != input_objects->relobj_end();
3894 ++p)
3895 {
3896 unsigned int count = (*p)->set_local_dynsym_offset(off);
3897 off += count * dynsym->entsize();
3898 }
3899 }
3900
3901 // Create the version sections.
3902
3903 void
3904 Layout::create_version_sections(const Versions* versions,
3905 const Symbol_table* symtab,
3906 unsigned int local_symcount,
3907 const std::vector<Symbol*>& dynamic_symbols,
3908 const Output_section* dynstr)
3909 {
3910 if (!versions->any_defs() && !versions->any_needs())
3911 return;
3912
3913 switch (parameters->size_and_endianness())
3914 {
3915 #ifdef HAVE_TARGET_32_LITTLE
3916 case Parameters::TARGET_32_LITTLE:
3917 this->sized_create_version_sections<32, false>(versions, symtab,
3918 local_symcount,
3919 dynamic_symbols, dynstr);
3920 break;
3921 #endif
3922 #ifdef HAVE_TARGET_32_BIG
3923 case Parameters::TARGET_32_BIG:
3924 this->sized_create_version_sections<32, true>(versions, symtab,
3925 local_symcount,
3926 dynamic_symbols, dynstr);
3927 break;
3928 #endif
3929 #ifdef HAVE_TARGET_64_LITTLE
3930 case Parameters::TARGET_64_LITTLE:
3931 this->sized_create_version_sections<64, false>(versions, symtab,
3932 local_symcount,
3933 dynamic_symbols, dynstr);
3934 break;
3935 #endif
3936 #ifdef HAVE_TARGET_64_BIG
3937 case Parameters::TARGET_64_BIG:
3938 this->sized_create_version_sections<64, true>(versions, symtab,
3939 local_symcount,
3940 dynamic_symbols, dynstr);
3941 break;
3942 #endif
3943 default:
3944 gold_unreachable();
3945 }
3946 }
3947
3948 // Create the version sections, sized version.
3949
3950 template<int size, bool big_endian>
3951 void
3952 Layout::sized_create_version_sections(
3953 const Versions* versions,
3954 const Symbol_table* symtab,
3955 unsigned int local_symcount,
3956 const std::vector<Symbol*>& dynamic_symbols,
3957 const Output_section* dynstr)
3958 {
3959 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3960 elfcpp::SHT_GNU_versym,
3961 elfcpp::SHF_ALLOC,
3962 false,
3963 ORDER_DYNAMIC_LINKER,
3964 false);
3965
3966 // Check for NULL since a linker script may discard this section.
3967 if (vsec != NULL)
3968 {
3969 unsigned char* vbuf;
3970 unsigned int vsize;
3971 versions->symbol_section_contents<size, big_endian>(symtab,
3972 &this->dynpool_,
3973 local_symcount,
3974 dynamic_symbols,
3975 &vbuf, &vsize);
3976
3977 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3978 "** versions");
3979
3980 vsec->add_output_section_data(vdata);
3981 vsec->set_entsize(2);
3982 vsec->set_link_section(this->dynsym_section_);
3983 }
3984
3985 Output_data_dynamic* const odyn = this->dynamic_data_;
3986 if (odyn != NULL && vsec != NULL)
3987 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3988
3989 if (versions->any_defs())
3990 {
3991 Output_section* vdsec;
3992 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
3993 elfcpp::SHT_GNU_verdef,
3994 elfcpp::SHF_ALLOC,
3995 false, ORDER_DYNAMIC_LINKER, false);
3996
3997 if (vdsec != NULL)
3998 {
3999 unsigned char* vdbuf;
4000 unsigned int vdsize;
4001 unsigned int vdentries;
4002 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4003 &vdbuf, &vdsize,
4004 &vdentries);
4005
4006 Output_section_data* vddata =
4007 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4008
4009 vdsec->add_output_section_data(vddata);
4010 vdsec->set_link_section(dynstr);
4011 vdsec->set_info(vdentries);
4012
4013 if (odyn != NULL)
4014 {
4015 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4016 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4017 }
4018 }
4019 }
4020
4021 if (versions->any_needs())
4022 {
4023 Output_section* vnsec;
4024 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4025 elfcpp::SHT_GNU_verneed,
4026 elfcpp::SHF_ALLOC,
4027 false, ORDER_DYNAMIC_LINKER, false);
4028
4029 if (vnsec != NULL)
4030 {
4031 unsigned char* vnbuf;
4032 unsigned int vnsize;
4033 unsigned int vnentries;
4034 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4035 &vnbuf, &vnsize,
4036 &vnentries);
4037
4038 Output_section_data* vndata =
4039 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4040
4041 vnsec->add_output_section_data(vndata);
4042 vnsec->set_link_section(dynstr);
4043 vnsec->set_info(vnentries);
4044
4045 if (odyn != NULL)
4046 {
4047 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4048 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4049 }
4050 }
4051 }
4052 }
4053
4054 // Create the .interp section and PT_INTERP segment.
4055
4056 void
4057 Layout::create_interp(const Target* target)
4058 {
4059 gold_assert(this->interp_segment_ == NULL);
4060
4061 const char* interp = parameters->options().dynamic_linker();
4062 if (interp == NULL)
4063 {
4064 interp = target->dynamic_linker();
4065 gold_assert(interp != NULL);
4066 }
4067
4068 size_t len = strlen(interp) + 1;
4069
4070 Output_section_data* odata = new Output_data_const(interp, len, 1);
4071
4072 Output_section* osec = this->choose_output_section(NULL, ".interp",
4073 elfcpp::SHT_PROGBITS,
4074 elfcpp::SHF_ALLOC,
4075 false, ORDER_INTERP,
4076 false);
4077 if (osec != NULL)
4078 osec->add_output_section_data(odata);
4079 }
4080
4081 // Add dynamic tags for the PLT and the dynamic relocs. This is
4082 // called by the target-specific code. This does nothing if not doing
4083 // a dynamic link.
4084
4085 // USE_REL is true for REL relocs rather than RELA relocs.
4086
4087 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4088
4089 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4090 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4091 // some targets have multiple reloc sections in PLT_REL.
4092
4093 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4094 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4095 // section.
4096
4097 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4098 // executable.
4099
4100 void
4101 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4102 const Output_data* plt_rel,
4103 const Output_data_reloc_generic* dyn_rel,
4104 bool add_debug, bool dynrel_includes_plt)
4105 {
4106 Output_data_dynamic* odyn = this->dynamic_data_;
4107 if (odyn == NULL)
4108 return;
4109
4110 if (plt_got != NULL && plt_got->output_section() != NULL)
4111 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4112
4113 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4114 {
4115 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4116 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4117 odyn->add_constant(elfcpp::DT_PLTREL,
4118 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4119 }
4120
4121 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4122 {
4123 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4124 dyn_rel->output_section());
4125 if (plt_rel != NULL
4126 && plt_rel->output_section() != NULL
4127 && dynrel_includes_plt)
4128 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4129 dyn_rel->output_section(),
4130 plt_rel->output_section());
4131 else
4132 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4133 dyn_rel->output_section());
4134 const int size = parameters->target().get_size();
4135 elfcpp::DT rel_tag;
4136 int rel_size;
4137 if (use_rel)
4138 {
4139 rel_tag = elfcpp::DT_RELENT;
4140 if (size == 32)
4141 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4142 else if (size == 64)
4143 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4144 else
4145 gold_unreachable();
4146 }
4147 else
4148 {
4149 rel_tag = elfcpp::DT_RELAENT;
4150 if (size == 32)
4151 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4152 else if (size == 64)
4153 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4154 else
4155 gold_unreachable();
4156 }
4157 odyn->add_constant(rel_tag, rel_size);
4158
4159 if (parameters->options().combreloc())
4160 {
4161 size_t c = dyn_rel->relative_reloc_count();
4162 if (c > 0)
4163 odyn->add_constant((use_rel
4164 ? elfcpp::DT_RELCOUNT
4165 : elfcpp::DT_RELACOUNT),
4166 c);
4167 }
4168 }
4169
4170 if (add_debug && !parameters->options().shared())
4171 {
4172 // The value of the DT_DEBUG tag is filled in by the dynamic
4173 // linker at run time, and used by the debugger.
4174 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4175 }
4176 }
4177
4178 // Finish the .dynamic section and PT_DYNAMIC segment.
4179
4180 void
4181 Layout::finish_dynamic_section(const Input_objects* input_objects,
4182 const Symbol_table* symtab)
4183 {
4184 if (!this->script_options_->saw_phdrs_clause()
4185 && this->dynamic_section_ != NULL)
4186 {
4187 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4188 (elfcpp::PF_R
4189 | elfcpp::PF_W));
4190 oseg->add_output_section_to_nonload(this->dynamic_section_,
4191 elfcpp::PF_R | elfcpp::PF_W);
4192 }
4193
4194 Output_data_dynamic* const odyn = this->dynamic_data_;
4195 if (odyn == NULL)
4196 return;
4197
4198 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4199 p != input_objects->dynobj_end();
4200 ++p)
4201 {
4202 if (!(*p)->is_needed() && (*p)->as_needed())
4203 {
4204 // This dynamic object was linked with --as-needed, but it
4205 // is not needed.
4206 continue;
4207 }
4208
4209 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4210 }
4211
4212 if (parameters->options().shared())
4213 {
4214 const char* soname = parameters->options().soname();
4215 if (soname != NULL)
4216 odyn->add_string(elfcpp::DT_SONAME, soname);
4217 }
4218
4219 Symbol* sym = symtab->lookup(parameters->options().init());
4220 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4221 odyn->add_symbol(elfcpp::DT_INIT, sym);
4222
4223 sym = symtab->lookup(parameters->options().fini());
4224 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4225 odyn->add_symbol(elfcpp::DT_FINI, sym);
4226
4227 // Look for .init_array, .preinit_array and .fini_array by checking
4228 // section types.
4229 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4230 p != this->section_list_.end();
4231 ++p)
4232 switch((*p)->type())
4233 {
4234 case elfcpp::SHT_FINI_ARRAY:
4235 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4236 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4237 break;
4238 case elfcpp::SHT_INIT_ARRAY:
4239 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4240 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4241 break;
4242 case elfcpp::SHT_PREINIT_ARRAY:
4243 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4244 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4245 break;
4246 default:
4247 break;
4248 }
4249
4250 // Add a DT_RPATH entry if needed.
4251 const General_options::Dir_list& rpath(parameters->options().rpath());
4252 if (!rpath.empty())
4253 {
4254 std::string rpath_val;
4255 for (General_options::Dir_list::const_iterator p = rpath.begin();
4256 p != rpath.end();
4257 ++p)
4258 {
4259 if (rpath_val.empty())
4260 rpath_val = p->name();
4261 else
4262 {
4263 // Eliminate duplicates.
4264 General_options::Dir_list::const_iterator q;
4265 for (q = rpath.begin(); q != p; ++q)
4266 if (q->name() == p->name())
4267 break;
4268 if (q == p)
4269 {
4270 rpath_val += ':';
4271 rpath_val += p->name();
4272 }
4273 }
4274 }
4275
4276 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4277 if (parameters->options().enable_new_dtags())
4278 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4279 }
4280
4281 // Look for text segments that have dynamic relocations.
4282 bool have_textrel = false;
4283 if (!this->script_options_->saw_sections_clause())
4284 {
4285 for (Segment_list::const_iterator p = this->segment_list_.begin();
4286 p != this->segment_list_.end();
4287 ++p)
4288 {
4289 if ((*p)->type() == elfcpp::PT_LOAD
4290 && ((*p)->flags() & elfcpp::PF_W) == 0
4291 && (*p)->has_dynamic_reloc())
4292 {
4293 have_textrel = true;
4294 break;
4295 }
4296 }
4297 }
4298 else
4299 {
4300 // We don't know the section -> segment mapping, so we are
4301 // conservative and just look for readonly sections with
4302 // relocations. If those sections wind up in writable segments,
4303 // then we have created an unnecessary DT_TEXTREL entry.
4304 for (Section_list::const_iterator p = this->section_list_.begin();
4305 p != this->section_list_.end();
4306 ++p)
4307 {
4308 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4309 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4310 && (*p)->has_dynamic_reloc())
4311 {
4312 have_textrel = true;
4313 break;
4314 }
4315 }
4316 }
4317
4318 if (parameters->options().filter() != NULL)
4319 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4320 if (parameters->options().any_auxiliary())
4321 {
4322 for (options::String_set::const_iterator p =
4323 parameters->options().auxiliary_begin();
4324 p != parameters->options().auxiliary_end();
4325 ++p)
4326 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4327 }
4328
4329 // Add a DT_FLAGS entry if necessary.
4330 unsigned int flags = 0;
4331 if (have_textrel)
4332 {
4333 // Add a DT_TEXTREL for compatibility with older loaders.
4334 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4335 flags |= elfcpp::DF_TEXTREL;
4336
4337 if (parameters->options().text())
4338 gold_error(_("read-only segment has dynamic relocations"));
4339 else if (parameters->options().warn_shared_textrel()
4340 && parameters->options().shared())
4341 gold_warning(_("shared library text segment is not shareable"));
4342 }
4343 if (parameters->options().shared() && this->has_static_tls())
4344 flags |= elfcpp::DF_STATIC_TLS;
4345 if (parameters->options().origin())
4346 flags |= elfcpp::DF_ORIGIN;
4347 if (parameters->options().Bsymbolic())
4348 {
4349 flags |= elfcpp::DF_SYMBOLIC;
4350 // Add DT_SYMBOLIC for compatibility with older loaders.
4351 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4352 }
4353 if (parameters->options().now())
4354 flags |= elfcpp::DF_BIND_NOW;
4355 if (flags != 0)
4356 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4357
4358 flags = 0;
4359 if (parameters->options().initfirst())
4360 flags |= elfcpp::DF_1_INITFIRST;
4361 if (parameters->options().interpose())
4362 flags |= elfcpp::DF_1_INTERPOSE;
4363 if (parameters->options().loadfltr())
4364 flags |= elfcpp::DF_1_LOADFLTR;
4365 if (parameters->options().nodefaultlib())
4366 flags |= elfcpp::DF_1_NODEFLIB;
4367 if (parameters->options().nodelete())
4368 flags |= elfcpp::DF_1_NODELETE;
4369 if (parameters->options().nodlopen())
4370 flags |= elfcpp::DF_1_NOOPEN;
4371 if (parameters->options().nodump())
4372 flags |= elfcpp::DF_1_NODUMP;
4373 if (!parameters->options().shared())
4374 flags &= ~(elfcpp::DF_1_INITFIRST
4375 | elfcpp::DF_1_NODELETE
4376 | elfcpp::DF_1_NOOPEN);
4377 if (parameters->options().origin())
4378 flags |= elfcpp::DF_1_ORIGIN;
4379 if (parameters->options().now())
4380 flags |= elfcpp::DF_1_NOW;
4381 if (parameters->options().Bgroup())
4382 flags |= elfcpp::DF_1_GROUP;
4383 if (flags != 0)
4384 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4385 }
4386
4387 // Set the size of the _DYNAMIC symbol table to be the size of the
4388 // dynamic data.
4389
4390 void
4391 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4392 {
4393 Output_data_dynamic* const odyn = this->dynamic_data_;
4394 if (odyn == NULL)
4395 return;
4396 odyn->finalize_data_size();
4397 if (this->dynamic_symbol_ == NULL)
4398 return;
4399 off_t data_size = odyn->data_size();
4400 const int size = parameters->target().get_size();
4401 if (size == 32)
4402 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4403 else if (size == 64)
4404 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4405 else
4406 gold_unreachable();
4407 }
4408
4409 // The mapping of input section name prefixes to output section names.
4410 // In some cases one prefix is itself a prefix of another prefix; in
4411 // such a case the longer prefix must come first. These prefixes are
4412 // based on the GNU linker default ELF linker script.
4413
4414 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4415 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4416 {
4417 MAPPING_INIT(".text.", ".text"),
4418 MAPPING_INIT(".rodata.", ".rodata"),
4419 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4420 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4421 MAPPING_INIT(".data.", ".data"),
4422 MAPPING_INIT(".bss.", ".bss"),
4423 MAPPING_INIT(".tdata.", ".tdata"),
4424 MAPPING_INIT(".tbss.", ".tbss"),
4425 MAPPING_INIT(".init_array.", ".init_array"),
4426 MAPPING_INIT(".fini_array.", ".fini_array"),
4427 MAPPING_INIT(".sdata.", ".sdata"),
4428 MAPPING_INIT(".sbss.", ".sbss"),
4429 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4430 // differently depending on whether it is creating a shared library.
4431 MAPPING_INIT(".sdata2.", ".sdata"),
4432 MAPPING_INIT(".sbss2.", ".sbss"),
4433 MAPPING_INIT(".lrodata.", ".lrodata"),
4434 MAPPING_INIT(".ldata.", ".ldata"),
4435 MAPPING_INIT(".lbss.", ".lbss"),
4436 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4437 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4438 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4439 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4440 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4441 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4442 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4443 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4444 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4445 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4446 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4447 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4448 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4449 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4450 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4451 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4452 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4453 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4454 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4455 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4456 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4457 };
4458 #undef MAPPING_INIT
4459
4460 const int Layout::section_name_mapping_count =
4461 (sizeof(Layout::section_name_mapping)
4462 / sizeof(Layout::section_name_mapping[0]));
4463
4464 // Choose the output section name to use given an input section name.
4465 // Set *PLEN to the length of the name. *PLEN is initialized to the
4466 // length of NAME.
4467
4468 const char*
4469 Layout::output_section_name(const Relobj* relobj, const char* name,
4470 size_t* plen)
4471 {
4472 // gcc 4.3 generates the following sorts of section names when it
4473 // needs a section name specific to a function:
4474 // .text.FN
4475 // .rodata.FN
4476 // .sdata2.FN
4477 // .data.FN
4478 // .data.rel.FN
4479 // .data.rel.local.FN
4480 // .data.rel.ro.FN
4481 // .data.rel.ro.local.FN
4482 // .sdata.FN
4483 // .bss.FN
4484 // .sbss.FN
4485 // .tdata.FN
4486 // .tbss.FN
4487
4488 // The GNU linker maps all of those to the part before the .FN,
4489 // except that .data.rel.local.FN is mapped to .data, and
4490 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4491 // beginning with .data.rel.ro.local are grouped together.
4492
4493 // For an anonymous namespace, the string FN can contain a '.'.
4494
4495 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4496 // GNU linker maps to .rodata.
4497
4498 // The .data.rel.ro sections are used with -z relro. The sections
4499 // are recognized by name. We use the same names that the GNU
4500 // linker does for these sections.
4501
4502 // It is hard to handle this in a principled way, so we don't even
4503 // try. We use a table of mappings. If the input section name is
4504 // not found in the table, we simply use it as the output section
4505 // name.
4506
4507 const Section_name_mapping* psnm = section_name_mapping;
4508 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4509 {
4510 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4511 {
4512 *plen = psnm->tolen;
4513 return psnm->to;
4514 }
4515 }
4516
4517 // As an additional complication, .ctors sections are output in
4518 // either .ctors or .init_array sections, and .dtors sections are
4519 // output in either .dtors or .fini_array sections.
4520 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4521 {
4522 if (parameters->options().ctors_in_init_array())
4523 {
4524 *plen = 11;
4525 return name[1] == 'c' ? ".init_array" : ".fini_array";
4526 }
4527 else
4528 {
4529 *plen = 6;
4530 return name[1] == 'c' ? ".ctors" : ".dtors";
4531 }
4532 }
4533 if (parameters->options().ctors_in_init_array()
4534 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4535 {
4536 // To make .init_array/.fini_array work with gcc we must exclude
4537 // .ctors and .dtors sections from the crtbegin and crtend
4538 // files.
4539 if (relobj == NULL
4540 || (!Layout::match_file_name(relobj, "crtbegin")
4541 && !Layout::match_file_name(relobj, "crtend")))
4542 {
4543 *plen = 11;
4544 return name[1] == 'c' ? ".init_array" : ".fini_array";
4545 }
4546 }
4547
4548 return name;
4549 }
4550
4551 // Return true if RELOBJ is an input file whose base name matches
4552 // FILE_NAME. The base name must have an extension of ".o", and must
4553 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4554 // to match crtbegin.o as well as crtbeginS.o without getting confused
4555 // by other possibilities. Overall matching the file name this way is
4556 // a dreadful hack, but the GNU linker does it in order to better
4557 // support gcc, and we need to be compatible.
4558
4559 bool
4560 Layout::match_file_name(const Relobj* relobj, const char* match)
4561 {
4562 const std::string& file_name(relobj->name());
4563 const char* base_name = lbasename(file_name.c_str());
4564 size_t match_len = strlen(match);
4565 if (strncmp(base_name, match, match_len) != 0)
4566 return false;
4567 size_t base_len = strlen(base_name);
4568 if (base_len != match_len + 2 && base_len != match_len + 3)
4569 return false;
4570 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4571 }
4572
4573 // Check if a comdat group or .gnu.linkonce section with the given
4574 // NAME is selected for the link. If there is already a section,
4575 // *KEPT_SECTION is set to point to the existing section and the
4576 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4577 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4578 // *KEPT_SECTION is set to the internal copy and the function returns
4579 // true.
4580
4581 bool
4582 Layout::find_or_add_kept_section(const std::string& name,
4583 Relobj* object,
4584 unsigned int shndx,
4585 bool is_comdat,
4586 bool is_group_name,
4587 Kept_section** kept_section)
4588 {
4589 // It's normal to see a couple of entries here, for the x86 thunk
4590 // sections. If we see more than a few, we're linking a C++
4591 // program, and we resize to get more space to minimize rehashing.
4592 if (this->signatures_.size() > 4
4593 && !this->resized_signatures_)
4594 {
4595 reserve_unordered_map(&this->signatures_,
4596 this->number_of_input_files_ * 64);
4597 this->resized_signatures_ = true;
4598 }
4599
4600 Kept_section candidate;
4601 std::pair<Signatures::iterator, bool> ins =
4602 this->signatures_.insert(std::make_pair(name, candidate));
4603
4604 if (kept_section != NULL)
4605 *kept_section = &ins.first->second;
4606 if (ins.second)
4607 {
4608 // This is the first time we've seen this signature.
4609 ins.first->second.set_object(object);
4610 ins.first->second.set_shndx(shndx);
4611 if (is_comdat)
4612 ins.first->second.set_is_comdat();
4613 if (is_group_name)
4614 ins.first->second.set_is_group_name();
4615 return true;
4616 }
4617
4618 // We have already seen this signature.
4619
4620 if (ins.first->second.is_group_name())
4621 {
4622 // We've already seen a real section group with this signature.
4623 // If the kept group is from a plugin object, and we're in the
4624 // replacement phase, accept the new one as a replacement.
4625 if (ins.first->second.object() == NULL
4626 && parameters->options().plugins()->in_replacement_phase())
4627 {
4628 ins.first->second.set_object(object);
4629 ins.first->second.set_shndx(shndx);
4630 return true;
4631 }
4632 return false;
4633 }
4634 else if (is_group_name)
4635 {
4636 // This is a real section group, and we've already seen a
4637 // linkonce section with this signature. Record that we've seen
4638 // a section group, and don't include this section group.
4639 ins.first->second.set_is_group_name();
4640 return false;
4641 }
4642 else
4643 {
4644 // We've already seen a linkonce section and this is a linkonce
4645 // section. These don't block each other--this may be the same
4646 // symbol name with different section types.
4647 return true;
4648 }
4649 }
4650
4651 // Store the allocated sections into the section list.
4652
4653 void
4654 Layout::get_allocated_sections(Section_list* section_list) const
4655 {
4656 for (Section_list::const_iterator p = this->section_list_.begin();
4657 p != this->section_list_.end();
4658 ++p)
4659 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4660 section_list->push_back(*p);
4661 }
4662
4663 // Create an output segment.
4664
4665 Output_segment*
4666 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4667 {
4668 gold_assert(!parameters->options().relocatable());
4669 Output_segment* oseg = new Output_segment(type, flags);
4670 this->segment_list_.push_back(oseg);
4671
4672 if (type == elfcpp::PT_TLS)
4673 this->tls_segment_ = oseg;
4674 else if (type == elfcpp::PT_GNU_RELRO)
4675 this->relro_segment_ = oseg;
4676 else if (type == elfcpp::PT_INTERP)
4677 this->interp_segment_ = oseg;
4678
4679 return oseg;
4680 }
4681
4682 // Return the file offset of the normal symbol table.
4683
4684 off_t
4685 Layout::symtab_section_offset() const
4686 {
4687 if (this->symtab_section_ != NULL)
4688 return this->symtab_section_->offset();
4689 return 0;
4690 }
4691
4692 // Return the section index of the normal symbol table. It may have
4693 // been stripped by the -s/--strip-all option.
4694
4695 unsigned int
4696 Layout::symtab_section_shndx() const
4697 {
4698 if (this->symtab_section_ != NULL)
4699 return this->symtab_section_->out_shndx();
4700 return 0;
4701 }
4702
4703 // Write out the Output_sections. Most won't have anything to write,
4704 // since most of the data will come from input sections which are
4705 // handled elsewhere. But some Output_sections do have Output_data.
4706
4707 void
4708 Layout::write_output_sections(Output_file* of) const
4709 {
4710 for (Section_list::const_iterator p = this->section_list_.begin();
4711 p != this->section_list_.end();
4712 ++p)
4713 {
4714 if (!(*p)->after_input_sections())
4715 (*p)->write(of);
4716 }
4717 }
4718
4719 // Write out data not associated with a section or the symbol table.
4720
4721 void
4722 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4723 {
4724 if (!parameters->options().strip_all())
4725 {
4726 const Output_section* symtab_section = this->symtab_section_;
4727 for (Section_list::const_iterator p = this->section_list_.begin();
4728 p != this->section_list_.end();
4729 ++p)
4730 {
4731 if ((*p)->needs_symtab_index())
4732 {
4733 gold_assert(symtab_section != NULL);
4734 unsigned int index = (*p)->symtab_index();
4735 gold_assert(index > 0 && index != -1U);
4736 off_t off = (symtab_section->offset()
4737 + index * symtab_section->entsize());
4738 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4739 }
4740 }
4741 }
4742
4743 const Output_section* dynsym_section = this->dynsym_section_;
4744 for (Section_list::const_iterator p = this->section_list_.begin();
4745 p != this->section_list_.end();
4746 ++p)
4747 {
4748 if ((*p)->needs_dynsym_index())
4749 {
4750 gold_assert(dynsym_section != NULL);
4751 unsigned int index = (*p)->dynsym_index();
4752 gold_assert(index > 0 && index != -1U);
4753 off_t off = (dynsym_section->offset()
4754 + index * dynsym_section->entsize());
4755 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4756 }
4757 }
4758
4759 // Write out the Output_data which are not in an Output_section.
4760 for (Data_list::const_iterator p = this->special_output_list_.begin();
4761 p != this->special_output_list_.end();
4762 ++p)
4763 (*p)->write(of);
4764 }
4765
4766 // Write out the Output_sections which can only be written after the
4767 // input sections are complete.
4768
4769 void
4770 Layout::write_sections_after_input_sections(Output_file* of)
4771 {
4772 // Determine the final section offsets, and thus the final output
4773 // file size. Note we finalize the .shstrab last, to allow the
4774 // after_input_section sections to modify their section-names before
4775 // writing.
4776 if (this->any_postprocessing_sections_)
4777 {
4778 off_t off = this->output_file_size_;
4779 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4780
4781 // Now that we've finalized the names, we can finalize the shstrab.
4782 off =
4783 this->set_section_offsets(off,
4784 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4785
4786 if (off > this->output_file_size_)
4787 {
4788 of->resize(off);
4789 this->output_file_size_ = off;
4790 }
4791 }
4792
4793 for (Section_list::const_iterator p = this->section_list_.begin();
4794 p != this->section_list_.end();
4795 ++p)
4796 {
4797 if ((*p)->after_input_sections())
4798 (*p)->write(of);
4799 }
4800
4801 this->section_headers_->write(of);
4802 }
4803
4804 // If the build ID requires computing a checksum, do so here, and
4805 // write it out. We compute a checksum over the entire file because
4806 // that is simplest.
4807
4808 void
4809 Layout::write_build_id(Output_file* of) const
4810 {
4811 if (this->build_id_note_ == NULL)
4812 return;
4813
4814 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4815
4816 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4817 this->build_id_note_->data_size());
4818
4819 const char* style = parameters->options().build_id();
4820 if (strcmp(style, "sha1") == 0)
4821 {
4822 sha1_ctx ctx;
4823 sha1_init_ctx(&ctx);
4824 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4825 sha1_finish_ctx(&ctx, ov);
4826 }
4827 else if (strcmp(style, "md5") == 0)
4828 {
4829 md5_ctx ctx;
4830 md5_init_ctx(&ctx);
4831 md5_process_bytes(iv, this->output_file_size_, &ctx);
4832 md5_finish_ctx(&ctx, ov);
4833 }
4834 else
4835 gold_unreachable();
4836
4837 of->write_output_view(this->build_id_note_->offset(),
4838 this->build_id_note_->data_size(),
4839 ov);
4840
4841 of->free_input_view(0, this->output_file_size_, iv);
4842 }
4843
4844 // Write out a binary file. This is called after the link is
4845 // complete. IN is the temporary output file we used to generate the
4846 // ELF code. We simply walk through the segments, read them from
4847 // their file offset in IN, and write them to their load address in
4848 // the output file. FIXME: with a bit more work, we could support
4849 // S-records and/or Intel hex format here.
4850
4851 void
4852 Layout::write_binary(Output_file* in) const
4853 {
4854 gold_assert(parameters->options().oformat_enum()
4855 == General_options::OBJECT_FORMAT_BINARY);
4856
4857 // Get the size of the binary file.
4858 uint64_t max_load_address = 0;
4859 for (Segment_list::const_iterator p = this->segment_list_.begin();
4860 p != this->segment_list_.end();
4861 ++p)
4862 {
4863 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4864 {
4865 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4866 if (max_paddr > max_load_address)
4867 max_load_address = max_paddr;
4868 }
4869 }
4870
4871 Output_file out(parameters->options().output_file_name());
4872 out.open(max_load_address);
4873
4874 for (Segment_list::const_iterator p = this->segment_list_.begin();
4875 p != this->segment_list_.end();
4876 ++p)
4877 {
4878 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4879 {
4880 const unsigned char* vin = in->get_input_view((*p)->offset(),
4881 (*p)->filesz());
4882 unsigned char* vout = out.get_output_view((*p)->paddr(),
4883 (*p)->filesz());
4884 memcpy(vout, vin, (*p)->filesz());
4885 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4886 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4887 }
4888 }
4889
4890 out.close();
4891 }
4892
4893 // Print the output sections to the map file.
4894
4895 void
4896 Layout::print_to_mapfile(Mapfile* mapfile) const
4897 {
4898 for (Segment_list::const_iterator p = this->segment_list_.begin();
4899 p != this->segment_list_.end();
4900 ++p)
4901 (*p)->print_sections_to_mapfile(mapfile);
4902 }
4903
4904 // Print statistical information to stderr. This is used for --stats.
4905
4906 void
4907 Layout::print_stats() const
4908 {
4909 this->namepool_.print_stats("section name pool");
4910 this->sympool_.print_stats("output symbol name pool");
4911 this->dynpool_.print_stats("dynamic name pool");
4912
4913 for (Section_list::const_iterator p = this->section_list_.begin();
4914 p != this->section_list_.end();
4915 ++p)
4916 (*p)->print_merge_stats();
4917 }
4918
4919 // Write_sections_task methods.
4920
4921 // We can always run this task.
4922
4923 Task_token*
4924 Write_sections_task::is_runnable()
4925 {
4926 return NULL;
4927 }
4928
4929 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4930 // when finished.
4931
4932 void
4933 Write_sections_task::locks(Task_locker* tl)
4934 {
4935 tl->add(this, this->output_sections_blocker_);
4936 tl->add(this, this->final_blocker_);
4937 }
4938
4939 // Run the task--write out the data.
4940
4941 void
4942 Write_sections_task::run(Workqueue*)
4943 {
4944 this->layout_->write_output_sections(this->of_);
4945 }
4946
4947 // Write_data_task methods.
4948
4949 // We can always run this task.
4950
4951 Task_token*
4952 Write_data_task::is_runnable()
4953 {
4954 return NULL;
4955 }
4956
4957 // We need to unlock FINAL_BLOCKER when finished.
4958
4959 void
4960 Write_data_task::locks(Task_locker* tl)
4961 {
4962 tl->add(this, this->final_blocker_);
4963 }
4964
4965 // Run the task--write out the data.
4966
4967 void
4968 Write_data_task::run(Workqueue*)
4969 {
4970 this->layout_->write_data(this->symtab_, this->of_);
4971 }
4972
4973 // Write_symbols_task methods.
4974
4975 // We can always run this task.
4976
4977 Task_token*
4978 Write_symbols_task::is_runnable()
4979 {
4980 return NULL;
4981 }
4982
4983 // We need to unlock FINAL_BLOCKER when finished.
4984
4985 void
4986 Write_symbols_task::locks(Task_locker* tl)
4987 {
4988 tl->add(this, this->final_blocker_);
4989 }
4990
4991 // Run the task--write out the symbols.
4992
4993 void
4994 Write_symbols_task::run(Workqueue*)
4995 {
4996 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4997 this->layout_->symtab_xindex(),
4998 this->layout_->dynsym_xindex(), this->of_);
4999 }
5000
5001 // Write_after_input_sections_task methods.
5002
5003 // We can only run this task after the input sections have completed.
5004
5005 Task_token*
5006 Write_after_input_sections_task::is_runnable()
5007 {
5008 if (this->input_sections_blocker_->is_blocked())
5009 return this->input_sections_blocker_;
5010 return NULL;
5011 }
5012
5013 // We need to unlock FINAL_BLOCKER when finished.
5014
5015 void
5016 Write_after_input_sections_task::locks(Task_locker* tl)
5017 {
5018 tl->add(this, this->final_blocker_);
5019 }
5020
5021 // Run the task.
5022
5023 void
5024 Write_after_input_sections_task::run(Workqueue*)
5025 {
5026 this->layout_->write_sections_after_input_sections(this->of_);
5027 }
5028
5029 // Close_task_runner methods.
5030
5031 // Run the task--close the file.
5032
5033 void
5034 Close_task_runner::run(Workqueue*, const Task*)
5035 {
5036 // If we need to compute a checksum for the BUILD if, we do so here.
5037 this->layout_->write_build_id(this->of_);
5038
5039 // If we've been asked to create a binary file, we do so here.
5040 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5041 this->layout_->write_binary(this->of_);
5042
5043 this->of_->close();
5044 }
5045
5046 // Instantiate the templates we need. We could use the configure
5047 // script to restrict this to only the ones for implemented targets.
5048
5049 #ifdef HAVE_TARGET_32_LITTLE
5050 template
5051 Output_section*
5052 Layout::init_fixed_output_section<32, false>(
5053 const char* name,
5054 elfcpp::Shdr<32, false>& shdr);
5055 #endif
5056
5057 #ifdef HAVE_TARGET_32_BIG
5058 template
5059 Output_section*
5060 Layout::init_fixed_output_section<32, true>(
5061 const char* name,
5062 elfcpp::Shdr<32, true>& shdr);
5063 #endif
5064
5065 #ifdef HAVE_TARGET_64_LITTLE
5066 template
5067 Output_section*
5068 Layout::init_fixed_output_section<64, false>(
5069 const char* name,
5070 elfcpp::Shdr<64, false>& shdr);
5071 #endif
5072
5073 #ifdef HAVE_TARGET_64_BIG
5074 template
5075 Output_section*
5076 Layout::init_fixed_output_section<64, true>(
5077 const char* name,
5078 elfcpp::Shdr<64, true>& shdr);
5079 #endif
5080
5081 #ifdef HAVE_TARGET_32_LITTLE
5082 template
5083 Output_section*
5084 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5085 unsigned int shndx,
5086 const char* name,
5087 const elfcpp::Shdr<32, false>& shdr,
5088 unsigned int, unsigned int, off_t*);
5089 #endif
5090
5091 #ifdef HAVE_TARGET_32_BIG
5092 template
5093 Output_section*
5094 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5095 unsigned int shndx,
5096 const char* name,
5097 const elfcpp::Shdr<32, true>& shdr,
5098 unsigned int, unsigned int, off_t*);
5099 #endif
5100
5101 #ifdef HAVE_TARGET_64_LITTLE
5102 template
5103 Output_section*
5104 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5105 unsigned int shndx,
5106 const char* name,
5107 const elfcpp::Shdr<64, false>& shdr,
5108 unsigned int, unsigned int, off_t*);
5109 #endif
5110
5111 #ifdef HAVE_TARGET_64_BIG
5112 template
5113 Output_section*
5114 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5115 unsigned int shndx,
5116 const char* name,
5117 const elfcpp::Shdr<64, true>& shdr,
5118 unsigned int, unsigned int, off_t*);
5119 #endif
5120
5121 #ifdef HAVE_TARGET_32_LITTLE
5122 template
5123 Output_section*
5124 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5125 unsigned int reloc_shndx,
5126 const elfcpp::Shdr<32, false>& shdr,
5127 Output_section* data_section,
5128 Relocatable_relocs* rr);
5129 #endif
5130
5131 #ifdef HAVE_TARGET_32_BIG
5132 template
5133 Output_section*
5134 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5135 unsigned int reloc_shndx,
5136 const elfcpp::Shdr<32, true>& shdr,
5137 Output_section* data_section,
5138 Relocatable_relocs* rr);
5139 #endif
5140
5141 #ifdef HAVE_TARGET_64_LITTLE
5142 template
5143 Output_section*
5144 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5145 unsigned int reloc_shndx,
5146 const elfcpp::Shdr<64, false>& shdr,
5147 Output_section* data_section,
5148 Relocatable_relocs* rr);
5149 #endif
5150
5151 #ifdef HAVE_TARGET_64_BIG
5152 template
5153 Output_section*
5154 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5155 unsigned int reloc_shndx,
5156 const elfcpp::Shdr<64, true>& shdr,
5157 Output_section* data_section,
5158 Relocatable_relocs* rr);
5159 #endif
5160
5161 #ifdef HAVE_TARGET_32_LITTLE
5162 template
5163 void
5164 Layout::layout_group<32, false>(Symbol_table* symtab,
5165 Sized_relobj_file<32, false>* object,
5166 unsigned int,
5167 const char* group_section_name,
5168 const char* signature,
5169 const elfcpp::Shdr<32, false>& shdr,
5170 elfcpp::Elf_Word flags,
5171 std::vector<unsigned int>* shndxes);
5172 #endif
5173
5174 #ifdef HAVE_TARGET_32_BIG
5175 template
5176 void
5177 Layout::layout_group<32, true>(Symbol_table* symtab,
5178 Sized_relobj_file<32, true>* object,
5179 unsigned int,
5180 const char* group_section_name,
5181 const char* signature,
5182 const elfcpp::Shdr<32, true>& shdr,
5183 elfcpp::Elf_Word flags,
5184 std::vector<unsigned int>* shndxes);
5185 #endif
5186
5187 #ifdef HAVE_TARGET_64_LITTLE
5188 template
5189 void
5190 Layout::layout_group<64, false>(Symbol_table* symtab,
5191 Sized_relobj_file<64, false>* object,
5192 unsigned int,
5193 const char* group_section_name,
5194 const char* signature,
5195 const elfcpp::Shdr<64, false>& shdr,
5196 elfcpp::Elf_Word flags,
5197 std::vector<unsigned int>* shndxes);
5198 #endif
5199
5200 #ifdef HAVE_TARGET_64_BIG
5201 template
5202 void
5203 Layout::layout_group<64, true>(Symbol_table* symtab,
5204 Sized_relobj_file<64, true>* object,
5205 unsigned int,
5206 const char* group_section_name,
5207 const char* signature,
5208 const elfcpp::Shdr<64, true>& shdr,
5209 elfcpp::Elf_Word flags,
5210 std::vector<unsigned int>* shndxes);
5211 #endif
5212
5213 #ifdef HAVE_TARGET_32_LITTLE
5214 template
5215 Output_section*
5216 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5217 const unsigned char* symbols,
5218 off_t symbols_size,
5219 const unsigned char* symbol_names,
5220 off_t symbol_names_size,
5221 unsigned int shndx,
5222 const elfcpp::Shdr<32, false>& shdr,
5223 unsigned int reloc_shndx,
5224 unsigned int reloc_type,
5225 off_t* off);
5226 #endif
5227
5228 #ifdef HAVE_TARGET_32_BIG
5229 template
5230 Output_section*
5231 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5232 const unsigned char* symbols,
5233 off_t symbols_size,
5234 const unsigned char* symbol_names,
5235 off_t symbol_names_size,
5236 unsigned int shndx,
5237 const elfcpp::Shdr<32, true>& shdr,
5238 unsigned int reloc_shndx,
5239 unsigned int reloc_type,
5240 off_t* off);
5241 #endif
5242
5243 #ifdef HAVE_TARGET_64_LITTLE
5244 template
5245 Output_section*
5246 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5247 const unsigned char* symbols,
5248 off_t symbols_size,
5249 const unsigned char* symbol_names,
5250 off_t symbol_names_size,
5251 unsigned int shndx,
5252 const elfcpp::Shdr<64, false>& shdr,
5253 unsigned int reloc_shndx,
5254 unsigned int reloc_type,
5255 off_t* off);
5256 #endif
5257
5258 #ifdef HAVE_TARGET_64_BIG
5259 template
5260 Output_section*
5261 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5262 const unsigned char* symbols,
5263 off_t symbols_size,
5264 const unsigned char* symbol_names,
5265 off_t symbol_names_size,
5266 unsigned int shndx,
5267 const elfcpp::Shdr<64, true>& shdr,
5268 unsigned int reloc_shndx,
5269 unsigned int reloc_type,
5270 off_t* off);
5271 #endif
5272
5273 } // End namespace gold.