Fix a typo.
[binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "layout.h"
50 #include "plugin.h"
51
52 namespace gold
53 {
54
55 // Layout_task_runner methods.
56
57 // Lay out the sections. This is called after all the input objects
58 // have been read.
59
60 void
61 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
62 {
63 off_t file_size = this->layout_->finalize(this->input_objects_,
64 this->symtab_,
65 this->target_,
66 task);
67
68 // Now we know the final size of the output file and we know where
69 // each piece of information goes.
70
71 if (this->mapfile_ != NULL)
72 {
73 this->mapfile_->print_discarded_sections(this->input_objects_);
74 this->layout_->print_to_mapfile(this->mapfile_);
75 }
76
77 Output_file* of = new Output_file(parameters->options().output_file_name());
78 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
79 of->set_is_temporary();
80 of->open(file_size);
81
82 // Queue up the final set of tasks.
83 gold::queue_final_tasks(this->options_, this->input_objects_,
84 this->symtab_, this->layout_, workqueue, of);
85 }
86
87 // Layout methods.
88
89 Layout::Layout(const General_options& options, Script_options* script_options)
90 : options_(options),
91 script_options_(script_options),
92 namepool_(),
93 sympool_(),
94 dynpool_(),
95 signatures_(),
96 section_name_map_(),
97 segment_list_(),
98 section_list_(),
99 unattached_section_list_(),
100 sections_are_attached_(false),
101 special_output_list_(),
102 section_headers_(NULL),
103 tls_segment_(NULL),
104 relro_segment_(NULL),
105 symtab_section_(NULL),
106 symtab_xindex_(NULL),
107 dynsym_section_(NULL),
108 dynsym_xindex_(NULL),
109 dynamic_section_(NULL),
110 dynamic_data_(NULL),
111 eh_frame_section_(NULL),
112 eh_frame_data_(NULL),
113 added_eh_frame_data_(false),
114 eh_frame_hdr_section_(NULL),
115 build_id_note_(NULL),
116 debug_abbrev_(NULL),
117 debug_info_(NULL),
118 group_signatures_(),
119 output_file_size_(-1),
120 input_requires_executable_stack_(false),
121 input_with_gnu_stack_note_(false),
122 input_without_gnu_stack_note_(false),
123 has_static_tls_(false),
124 any_postprocessing_sections_(false)
125 {
126 // Make space for more than enough segments for a typical file.
127 // This is just for efficiency--it's OK if we wind up needing more.
128 this->segment_list_.reserve(12);
129
130 // We expect two unattached Output_data objects: the file header and
131 // the segment headers.
132 this->special_output_list_.reserve(2);
133 }
134
135 // Hash a key we use to look up an output section mapping.
136
137 size_t
138 Layout::Hash_key::operator()(const Layout::Key& k) const
139 {
140 return k.first + k.second.first + k.second.second;
141 }
142
143 // Return whether PREFIX is a prefix of STR.
144
145 static inline bool
146 is_prefix_of(const char* prefix, const char* str)
147 {
148 return strncmp(prefix, str, strlen(prefix)) == 0;
149 }
150
151 // Returns whether the given section is in the list of
152 // debug-sections-used-by-some-version-of-gdb. Currently,
153 // we've checked versions of gdb up to and including 6.7.1.
154
155 static const char* gdb_sections[] =
156 { ".debug_abbrev",
157 // ".debug_aranges", // not used by gdb as of 6.7.1
158 ".debug_frame",
159 ".debug_info",
160 ".debug_line",
161 ".debug_loc",
162 ".debug_macinfo",
163 // ".debug_pubnames", // not used by gdb as of 6.7.1
164 ".debug_ranges",
165 ".debug_str",
166 };
167
168 static const char* lines_only_debug_sections[] =
169 { ".debug_abbrev",
170 // ".debug_aranges", // not used by gdb as of 6.7.1
171 // ".debug_frame",
172 ".debug_info",
173 ".debug_line",
174 // ".debug_loc",
175 // ".debug_macinfo",
176 // ".debug_pubnames", // not used by gdb as of 6.7.1
177 // ".debug_ranges",
178 ".debug_str",
179 };
180
181 static inline bool
182 is_gdb_debug_section(const char* str)
183 {
184 // We can do this faster: binary search or a hashtable. But why bother?
185 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
186 if (strcmp(str, gdb_sections[i]) == 0)
187 return true;
188 return false;
189 }
190
191 static inline bool
192 is_lines_only_debug_section(const char* str)
193 {
194 // We can do this faster: binary search or a hashtable. But why bother?
195 for (size_t i = 0;
196 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
197 ++i)
198 if (strcmp(str, lines_only_debug_sections[i]) == 0)
199 return true;
200 return false;
201 }
202
203 // Whether to include this section in the link.
204
205 template<int size, bool big_endian>
206 bool
207 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
208 const elfcpp::Shdr<size, big_endian>& shdr)
209 {
210 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
211 return false;
212
213 switch (shdr.get_sh_type())
214 {
215 case elfcpp::SHT_NULL:
216 case elfcpp::SHT_SYMTAB:
217 case elfcpp::SHT_DYNSYM:
218 case elfcpp::SHT_HASH:
219 case elfcpp::SHT_DYNAMIC:
220 case elfcpp::SHT_SYMTAB_SHNDX:
221 return false;
222
223 case elfcpp::SHT_STRTAB:
224 // Discard the sections which have special meanings in the ELF
225 // ABI. Keep others (e.g., .stabstr). We could also do this by
226 // checking the sh_link fields of the appropriate sections.
227 return (strcmp(name, ".dynstr") != 0
228 && strcmp(name, ".strtab") != 0
229 && strcmp(name, ".shstrtab") != 0);
230
231 case elfcpp::SHT_RELA:
232 case elfcpp::SHT_REL:
233 case elfcpp::SHT_GROUP:
234 // If we are emitting relocations these should be handled
235 // elsewhere.
236 gold_assert(!parameters->options().relocatable()
237 && !parameters->options().emit_relocs());
238 return false;
239
240 case elfcpp::SHT_PROGBITS:
241 if (parameters->options().strip_debug()
242 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
243 {
244 if (is_debug_info_section(name))
245 return false;
246 }
247 if (parameters->options().strip_debug_non_line()
248 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
249 {
250 // Debugging sections can only be recognized by name.
251 if (is_prefix_of(".debug", name)
252 && !is_lines_only_debug_section(name))
253 return false;
254 }
255 if (parameters->options().strip_debug_gdb()
256 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
257 {
258 // Debugging sections can only be recognized by name.
259 if (is_prefix_of(".debug", name)
260 && !is_gdb_debug_section(name))
261 return false;
262 }
263 if (parameters->options().strip_lto_sections()
264 && !parameters->options().relocatable()
265 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
266 {
267 // Ignore LTO sections containing intermediate code.
268 if (is_prefix_of(".gnu.lto_", name))
269 return false;
270 }
271 return true;
272
273 default:
274 return true;
275 }
276 }
277
278 // Return an output section named NAME, or NULL if there is none.
279
280 Output_section*
281 Layout::find_output_section(const char* name) const
282 {
283 for (Section_list::const_iterator p = this->section_list_.begin();
284 p != this->section_list_.end();
285 ++p)
286 if (strcmp((*p)->name(), name) == 0)
287 return *p;
288 return NULL;
289 }
290
291 // Return an output segment of type TYPE, with segment flags SET set
292 // and segment flags CLEAR clear. Return NULL if there is none.
293
294 Output_segment*
295 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
296 elfcpp::Elf_Word clear) const
297 {
298 for (Segment_list::const_iterator p = this->segment_list_.begin();
299 p != this->segment_list_.end();
300 ++p)
301 if (static_cast<elfcpp::PT>((*p)->type()) == type
302 && ((*p)->flags() & set) == set
303 && ((*p)->flags() & clear) == 0)
304 return *p;
305 return NULL;
306 }
307
308 // Return the output section to use for section NAME with type TYPE
309 // and section flags FLAGS. NAME must be canonicalized in the string
310 // pool, and NAME_KEY is the key.
311
312 Output_section*
313 Layout::get_output_section(const char* name, Stringpool::Key name_key,
314 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
315 {
316 elfcpp::Elf_Xword lookup_flags = flags;
317
318 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
319 // read-write with read-only sections. Some other ELF linkers do
320 // not do this. FIXME: Perhaps there should be an option
321 // controlling this.
322 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
323
324 const Key key(name_key, std::make_pair(type, lookup_flags));
325 const std::pair<Key, Output_section*> v(key, NULL);
326 std::pair<Section_name_map::iterator, bool> ins(
327 this->section_name_map_.insert(v));
328
329 if (!ins.second)
330 return ins.first->second;
331 else
332 {
333 // This is the first time we've seen this name/type/flags
334 // combination. For compatibility with the GNU linker, we
335 // combine sections with contents and zero flags with sections
336 // with non-zero flags. This is a workaround for cases where
337 // assembler code forgets to set section flags. FIXME: Perhaps
338 // there should be an option to control this.
339 Output_section* os = NULL;
340
341 if (type == elfcpp::SHT_PROGBITS)
342 {
343 if (flags == 0)
344 {
345 Output_section* same_name = this->find_output_section(name);
346 if (same_name != NULL
347 && same_name->type() == elfcpp::SHT_PROGBITS
348 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
349 os = same_name;
350 }
351 else if ((flags & elfcpp::SHF_TLS) == 0)
352 {
353 elfcpp::Elf_Xword zero_flags = 0;
354 const Key zero_key(name_key, std::make_pair(type, zero_flags));
355 Section_name_map::iterator p =
356 this->section_name_map_.find(zero_key);
357 if (p != this->section_name_map_.end())
358 os = p->second;
359 }
360 }
361
362 if (os == NULL)
363 os = this->make_output_section(name, type, flags);
364 ins.first->second = os;
365 return os;
366 }
367 }
368
369 // Pick the output section to use for section NAME, in input file
370 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
371 // linker created section. IS_INPUT_SECTION is true if we are
372 // choosing an output section for an input section found in a input
373 // file. This will return NULL if the input section should be
374 // discarded.
375
376 Output_section*
377 Layout::choose_output_section(const Relobj* relobj, const char* name,
378 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
379 bool is_input_section)
380 {
381 // We should not see any input sections after we have attached
382 // sections to segments.
383 gold_assert(!is_input_section || !this->sections_are_attached_);
384
385 // Some flags in the input section should not be automatically
386 // copied to the output section.
387 flags &= ~ (elfcpp::SHF_INFO_LINK
388 | elfcpp::SHF_LINK_ORDER
389 | elfcpp::SHF_GROUP
390 | elfcpp::SHF_MERGE
391 | elfcpp::SHF_STRINGS);
392
393 if (this->script_options_->saw_sections_clause())
394 {
395 // We are using a SECTIONS clause, so the output section is
396 // chosen based only on the name.
397
398 Script_sections* ss = this->script_options_->script_sections();
399 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
400 Output_section** output_section_slot;
401 name = ss->output_section_name(file_name, name, &output_section_slot);
402 if (name == NULL)
403 {
404 // The SECTIONS clause says to discard this input section.
405 return NULL;
406 }
407
408 // If this is an orphan section--one not mentioned in the linker
409 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
410 // default processing below.
411
412 if (output_section_slot != NULL)
413 {
414 if (*output_section_slot != NULL)
415 return *output_section_slot;
416
417 // We don't put sections found in the linker script into
418 // SECTION_NAME_MAP_. That keeps us from getting confused
419 // if an orphan section is mapped to a section with the same
420 // name as one in the linker script.
421
422 name = this->namepool_.add(name, false, NULL);
423
424 Output_section* os = this->make_output_section(name, type, flags);
425 os->set_found_in_sections_clause();
426 *output_section_slot = os;
427 return os;
428 }
429 }
430
431 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
432
433 // Turn NAME from the name of the input section into the name of the
434 // output section.
435
436 size_t len = strlen(name);
437 if (is_input_section && !parameters->options().relocatable())
438 name = Layout::output_section_name(name, &len);
439
440 Stringpool::Key name_key;
441 name = this->namepool_.add_with_length(name, len, true, &name_key);
442
443 // Find or make the output section. The output section is selected
444 // based on the section name, type, and flags.
445 return this->get_output_section(name, name_key, type, flags);
446 }
447
448 // Return the output section to use for input section SHNDX, with name
449 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
450 // index of a relocation section which applies to this section, or 0
451 // if none, or -1U if more than one. RELOC_TYPE is the type of the
452 // relocation section if there is one. Set *OFF to the offset of this
453 // input section without the output section. Return NULL if the
454 // section should be discarded. Set *OFF to -1 if the section
455 // contents should not be written directly to the output file, but
456 // will instead receive special handling.
457
458 template<int size, bool big_endian>
459 Output_section*
460 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
461 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
462 unsigned int reloc_shndx, unsigned int, off_t* off)
463 {
464 *off = 0;
465
466 if (!this->include_section(object, name, shdr))
467 return NULL;
468
469 Output_section* os;
470
471 // In a relocatable link a grouped section must not be combined with
472 // any other sections.
473 if (parameters->options().relocatable()
474 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
475 {
476 name = this->namepool_.add(name, true, NULL);
477 os = this->make_output_section(name, shdr.get_sh_type(),
478 shdr.get_sh_flags());
479 }
480 else
481 {
482 os = this->choose_output_section(object, name, shdr.get_sh_type(),
483 shdr.get_sh_flags(), true);
484 if (os == NULL)
485 return NULL;
486 }
487
488 // By default the GNU linker sorts input sections whose names match
489 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
490 // are sorted by name. This is used to implement constructor
491 // priority ordering. We are compatible.
492 if (!this->script_options_->saw_sections_clause()
493 && (is_prefix_of(".ctors.", name)
494 || is_prefix_of(".dtors.", name)
495 || is_prefix_of(".init_array.", name)
496 || is_prefix_of(".fini_array.", name)))
497 os->set_must_sort_attached_input_sections();
498
499 // FIXME: Handle SHF_LINK_ORDER somewhere.
500
501 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
502 this->script_options_->saw_sections_clause());
503
504 return os;
505 }
506
507 // Handle a relocation section when doing a relocatable link.
508
509 template<int size, bool big_endian>
510 Output_section*
511 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
512 unsigned int,
513 const elfcpp::Shdr<size, big_endian>& shdr,
514 Output_section* data_section,
515 Relocatable_relocs* rr)
516 {
517 gold_assert(parameters->options().relocatable()
518 || parameters->options().emit_relocs());
519
520 int sh_type = shdr.get_sh_type();
521
522 std::string name;
523 if (sh_type == elfcpp::SHT_REL)
524 name = ".rel";
525 else if (sh_type == elfcpp::SHT_RELA)
526 name = ".rela";
527 else
528 gold_unreachable();
529 name += data_section->name();
530
531 Output_section* os = this->choose_output_section(object, name.c_str(),
532 sh_type,
533 shdr.get_sh_flags(),
534 false);
535
536 os->set_should_link_to_symtab();
537 os->set_info_section(data_section);
538
539 Output_section_data* posd;
540 if (sh_type == elfcpp::SHT_REL)
541 {
542 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
543 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
544 size,
545 big_endian>(rr);
546 }
547 else if (sh_type == elfcpp::SHT_RELA)
548 {
549 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
550 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
551 size,
552 big_endian>(rr);
553 }
554 else
555 gold_unreachable();
556
557 os->add_output_section_data(posd);
558 rr->set_output_data(posd);
559
560 return os;
561 }
562
563 // Handle a group section when doing a relocatable link.
564
565 template<int size, bool big_endian>
566 void
567 Layout::layout_group(Symbol_table* symtab,
568 Sized_relobj<size, big_endian>* object,
569 unsigned int,
570 const char* group_section_name,
571 const char* signature,
572 const elfcpp::Shdr<size, big_endian>& shdr,
573 elfcpp::Elf_Word flags,
574 std::vector<unsigned int>* shndxes)
575 {
576 gold_assert(parameters->options().relocatable());
577 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
578 group_section_name = this->namepool_.add(group_section_name, true, NULL);
579 Output_section* os = this->make_output_section(group_section_name,
580 elfcpp::SHT_GROUP,
581 shdr.get_sh_flags());
582
583 // We need to find a symbol with the signature in the symbol table.
584 // If we don't find one now, we need to look again later.
585 Symbol* sym = symtab->lookup(signature, NULL);
586 if (sym != NULL)
587 os->set_info_symndx(sym);
588 else
589 {
590 // We will wind up using a symbol whose name is the signature.
591 // So just put the signature in the symbol name pool to save it.
592 signature = symtab->canonicalize_name(signature);
593 this->group_signatures_.push_back(Group_signature(os, signature));
594 }
595
596 os->set_should_link_to_symtab();
597 os->set_entsize(4);
598
599 section_size_type entry_count =
600 convert_to_section_size_type(shdr.get_sh_size() / 4);
601 Output_section_data* posd =
602 new Output_data_group<size, big_endian>(object, entry_count, flags,
603 shndxes);
604 os->add_output_section_data(posd);
605 }
606
607 // Special GNU handling of sections name .eh_frame. They will
608 // normally hold exception frame data as defined by the C++ ABI
609 // (http://codesourcery.com/cxx-abi/).
610
611 template<int size, bool big_endian>
612 Output_section*
613 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
614 const unsigned char* symbols,
615 off_t symbols_size,
616 const unsigned char* symbol_names,
617 off_t symbol_names_size,
618 unsigned int shndx,
619 const elfcpp::Shdr<size, big_endian>& shdr,
620 unsigned int reloc_shndx, unsigned int reloc_type,
621 off_t* off)
622 {
623 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
624 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
625
626 const char* const name = ".eh_frame";
627 Output_section* os = this->choose_output_section(object,
628 name,
629 elfcpp::SHT_PROGBITS,
630 elfcpp::SHF_ALLOC,
631 false);
632 if (os == NULL)
633 return NULL;
634
635 if (this->eh_frame_section_ == NULL)
636 {
637 this->eh_frame_section_ = os;
638 this->eh_frame_data_ = new Eh_frame();
639
640 if (this->options_.eh_frame_hdr())
641 {
642 Output_section* hdr_os =
643 this->choose_output_section(NULL,
644 ".eh_frame_hdr",
645 elfcpp::SHT_PROGBITS,
646 elfcpp::SHF_ALLOC,
647 false);
648
649 if (hdr_os != NULL)
650 {
651 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
652 this->eh_frame_data_);
653 hdr_os->add_output_section_data(hdr_posd);
654
655 hdr_os->set_after_input_sections();
656
657 if (!this->script_options_->saw_phdrs_clause())
658 {
659 Output_segment* hdr_oseg;
660 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
661 elfcpp::PF_R);
662 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
663 }
664
665 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
666 }
667 }
668 }
669
670 gold_assert(this->eh_frame_section_ == os);
671
672 if (this->eh_frame_data_->add_ehframe_input_section(object,
673 symbols,
674 symbols_size,
675 symbol_names,
676 symbol_names_size,
677 shndx,
678 reloc_shndx,
679 reloc_type))
680 {
681 os->update_flags_for_input_section(shdr.get_sh_flags());
682
683 // We found a .eh_frame section we are going to optimize, so now
684 // we can add the set of optimized sections to the output
685 // section. We need to postpone adding this until we've found a
686 // section we can optimize so that the .eh_frame section in
687 // crtbegin.o winds up at the start of the output section.
688 if (!this->added_eh_frame_data_)
689 {
690 os->add_output_section_data(this->eh_frame_data_);
691 this->added_eh_frame_data_ = true;
692 }
693 *off = -1;
694 }
695 else
696 {
697 // We couldn't handle this .eh_frame section for some reason.
698 // Add it as a normal section.
699 bool saw_sections_clause = this->script_options_->saw_sections_clause();
700 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
701 saw_sections_clause);
702 }
703
704 return os;
705 }
706
707 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
708 // the output section.
709
710 Output_section*
711 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
712 elfcpp::Elf_Xword flags,
713 Output_section_data* posd)
714 {
715 Output_section* os = this->choose_output_section(NULL, name, type, flags,
716 false);
717 if (os != NULL)
718 os->add_output_section_data(posd);
719 return os;
720 }
721
722 // Map section flags to segment flags.
723
724 elfcpp::Elf_Word
725 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
726 {
727 elfcpp::Elf_Word ret = elfcpp::PF_R;
728 if ((flags & elfcpp::SHF_WRITE) != 0)
729 ret |= elfcpp::PF_W;
730 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
731 ret |= elfcpp::PF_X;
732 return ret;
733 }
734
735 // Sometimes we compress sections. This is typically done for
736 // sections that are not part of normal program execution (such as
737 // .debug_* sections), and where the readers of these sections know
738 // how to deal with compressed sections. (To make it easier for them,
739 // we will rename the ouput section in such cases from .foo to
740 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
741 // doesn't say for certain whether we'll compress -- it depends on
742 // commandline options as well -- just whether this section is a
743 // candidate for compression.
744
745 static bool
746 is_compressible_debug_section(const char* secname)
747 {
748 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
749 }
750
751 // Make a new Output_section, and attach it to segments as
752 // appropriate.
753
754 Output_section*
755 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
756 elfcpp::Elf_Xword flags)
757 {
758 Output_section* os;
759 if ((flags & elfcpp::SHF_ALLOC) == 0
760 && strcmp(this->options_.compress_debug_sections(), "none") != 0
761 && is_compressible_debug_section(name))
762 os = new Output_compressed_section(&this->options_, name, type, flags);
763
764 else if ((flags & elfcpp::SHF_ALLOC) == 0
765 && this->options_.strip_debug_non_line()
766 && strcmp(".debug_abbrev", name) == 0)
767 {
768 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
769 name, type, flags);
770 if (this->debug_info_)
771 this->debug_info_->set_abbreviations(this->debug_abbrev_);
772 }
773 else if ((flags & elfcpp::SHF_ALLOC) == 0
774 && this->options_.strip_debug_non_line()
775 && strcmp(".debug_info", name) == 0)
776 {
777 os = this->debug_info_ = new Output_reduced_debug_info_section(
778 name, type, flags);
779 if (this->debug_abbrev_)
780 this->debug_info_->set_abbreviations(this->debug_abbrev_);
781 }
782 else
783 os = new Output_section(name, type, flags);
784
785 this->section_list_.push_back(os);
786
787 // The GNU linker by default sorts some sections by priority, so we
788 // do the same. We need to know that this might happen before we
789 // attach any input sections.
790 if (!this->script_options_->saw_sections_clause()
791 && (strcmp(name, ".ctors") == 0
792 || strcmp(name, ".dtors") == 0
793 || strcmp(name, ".init_array") == 0
794 || strcmp(name, ".fini_array") == 0))
795 os->set_may_sort_attached_input_sections();
796
797 // With -z relro, we have to recognize the special sections by name.
798 // There is no other way.
799 if (!this->script_options_->saw_sections_clause()
800 && parameters->options().relro()
801 && type == elfcpp::SHT_PROGBITS
802 && (flags & elfcpp::SHF_ALLOC) != 0
803 && (flags & elfcpp::SHF_WRITE) != 0)
804 {
805 if (strcmp(name, ".data.rel.ro") == 0)
806 os->set_is_relro();
807 else if (strcmp(name, ".data.rel.ro.local") == 0)
808 {
809 os->set_is_relro();
810 os->set_is_relro_local();
811 }
812 }
813
814 // If we have already attached the sections to segments, then we
815 // need to attach this one now. This happens for sections created
816 // directly by the linker.
817 if (this->sections_are_attached_)
818 this->attach_section_to_segment(os);
819
820 return os;
821 }
822
823 // Attach output sections to segments. This is called after we have
824 // seen all the input sections.
825
826 void
827 Layout::attach_sections_to_segments()
828 {
829 for (Section_list::iterator p = this->section_list_.begin();
830 p != this->section_list_.end();
831 ++p)
832 this->attach_section_to_segment(*p);
833
834 this->sections_are_attached_ = true;
835 }
836
837 // Attach an output section to a segment.
838
839 void
840 Layout::attach_section_to_segment(Output_section* os)
841 {
842 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
843 this->unattached_section_list_.push_back(os);
844 else
845 this->attach_allocated_section_to_segment(os);
846 }
847
848 // Attach an allocated output section to a segment.
849
850 void
851 Layout::attach_allocated_section_to_segment(Output_section* os)
852 {
853 elfcpp::Elf_Xword flags = os->flags();
854 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
855
856 if (parameters->options().relocatable())
857 return;
858
859 // If we have a SECTIONS clause, we can't handle the attachment to
860 // segments until after we've seen all the sections.
861 if (this->script_options_->saw_sections_clause())
862 return;
863
864 gold_assert(!this->script_options_->saw_phdrs_clause());
865
866 // This output section goes into a PT_LOAD segment.
867
868 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
869
870 // In general the only thing we really care about for PT_LOAD
871 // segments is whether or not they are writable, so that is how we
872 // search for them. People who need segments sorted on some other
873 // basis will have to use a linker script.
874
875 Segment_list::const_iterator p;
876 for (p = this->segment_list_.begin();
877 p != this->segment_list_.end();
878 ++p)
879 {
880 if ((*p)->type() == elfcpp::PT_LOAD
881 && (parameters->options().omagic()
882 || ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W)))
883 {
884 // If -Tbss was specified, we need to separate the data
885 // and BSS segments.
886 if (this->options_.user_set_Tbss())
887 {
888 if ((os->type() == elfcpp::SHT_NOBITS)
889 == (*p)->has_any_data_sections())
890 continue;
891 }
892
893 (*p)->add_output_section(os, seg_flags);
894 break;
895 }
896 }
897
898 if (p == this->segment_list_.end())
899 {
900 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
901 seg_flags);
902 oseg->add_output_section(os, seg_flags);
903 }
904
905 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
906 // segment.
907 if (os->type() == elfcpp::SHT_NOTE)
908 {
909 // See if we already have an equivalent PT_NOTE segment.
910 for (p = this->segment_list_.begin();
911 p != segment_list_.end();
912 ++p)
913 {
914 if ((*p)->type() == elfcpp::PT_NOTE
915 && (((*p)->flags() & elfcpp::PF_W)
916 == (seg_flags & elfcpp::PF_W)))
917 {
918 (*p)->add_output_section(os, seg_flags);
919 break;
920 }
921 }
922
923 if (p == this->segment_list_.end())
924 {
925 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
926 seg_flags);
927 oseg->add_output_section(os, seg_flags);
928 }
929 }
930
931 // If we see a loadable SHF_TLS section, we create a PT_TLS
932 // segment. There can only be one such segment.
933 if ((flags & elfcpp::SHF_TLS) != 0)
934 {
935 if (this->tls_segment_ == NULL)
936 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
937 this->tls_segment_->add_output_section(os, seg_flags);
938 }
939
940 // If -z relro is in effect, and we see a relro section, we create a
941 // PT_GNU_RELRO segment. There can only be one such segment.
942 if (os->is_relro() && parameters->options().relro())
943 {
944 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
945 if (this->relro_segment_ == NULL)
946 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
947 this->relro_segment_->add_output_section(os, seg_flags);
948 }
949 }
950
951 // Make an output section for a script.
952
953 Output_section*
954 Layout::make_output_section_for_script(const char* name)
955 {
956 name = this->namepool_.add(name, false, NULL);
957 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
958 elfcpp::SHF_ALLOC);
959 os->set_found_in_sections_clause();
960 return os;
961 }
962
963 // Return the number of segments we expect to see.
964
965 size_t
966 Layout::expected_segment_count() const
967 {
968 size_t ret = this->segment_list_.size();
969
970 // If we didn't see a SECTIONS clause in a linker script, we should
971 // already have the complete list of segments. Otherwise we ask the
972 // SECTIONS clause how many segments it expects, and add in the ones
973 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
974
975 if (!this->script_options_->saw_sections_clause())
976 return ret;
977 else
978 {
979 const Script_sections* ss = this->script_options_->script_sections();
980 return ret + ss->expected_segment_count(this);
981 }
982 }
983
984 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
985 // is whether we saw a .note.GNU-stack section in the object file.
986 // GNU_STACK_FLAGS is the section flags. The flags give the
987 // protection required for stack memory. We record this in an
988 // executable as a PT_GNU_STACK segment. If an object file does not
989 // have a .note.GNU-stack segment, we must assume that it is an old
990 // object. On some targets that will force an executable stack.
991
992 void
993 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
994 {
995 if (!seen_gnu_stack)
996 this->input_without_gnu_stack_note_ = true;
997 else
998 {
999 this->input_with_gnu_stack_note_ = true;
1000 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1001 this->input_requires_executable_stack_ = true;
1002 }
1003 }
1004
1005 // Create the dynamic sections which are needed before we read the
1006 // relocs.
1007
1008 void
1009 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1010 {
1011 if (parameters->doing_static_link())
1012 return;
1013
1014 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1015 elfcpp::SHT_DYNAMIC,
1016 (elfcpp::SHF_ALLOC
1017 | elfcpp::SHF_WRITE),
1018 false);
1019 this->dynamic_section_->set_is_relro();
1020
1021 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1022 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1023 elfcpp::STV_HIDDEN, 0, false, false);
1024
1025 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1026
1027 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1028 }
1029
1030 // For each output section whose name can be represented as C symbol,
1031 // define __start and __stop symbols for the section. This is a GNU
1032 // extension.
1033
1034 void
1035 Layout::define_section_symbols(Symbol_table* symtab)
1036 {
1037 for (Section_list::const_iterator p = this->section_list_.begin();
1038 p != this->section_list_.end();
1039 ++p)
1040 {
1041 const char* const name = (*p)->name();
1042 if (name[strspn(name,
1043 ("0123456789"
1044 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1045 "abcdefghijklmnopqrstuvwxyz"
1046 "_"))]
1047 == '\0')
1048 {
1049 const std::string name_string(name);
1050 const std::string start_name("__start_" + name_string);
1051 const std::string stop_name("__stop_" + name_string);
1052
1053 symtab->define_in_output_data(start_name.c_str(),
1054 NULL, // version
1055 *p,
1056 0, // value
1057 0, // symsize
1058 elfcpp::STT_NOTYPE,
1059 elfcpp::STB_GLOBAL,
1060 elfcpp::STV_DEFAULT,
1061 0, // nonvis
1062 false, // offset_is_from_end
1063 true); // only_if_ref
1064
1065 symtab->define_in_output_data(stop_name.c_str(),
1066 NULL, // version
1067 *p,
1068 0, // value
1069 0, // symsize
1070 elfcpp::STT_NOTYPE,
1071 elfcpp::STB_GLOBAL,
1072 elfcpp::STV_DEFAULT,
1073 0, // nonvis
1074 true, // offset_is_from_end
1075 true); // only_if_ref
1076 }
1077 }
1078 }
1079
1080 // Define symbols for group signatures.
1081
1082 void
1083 Layout::define_group_signatures(Symbol_table* symtab)
1084 {
1085 for (Group_signatures::iterator p = this->group_signatures_.begin();
1086 p != this->group_signatures_.end();
1087 ++p)
1088 {
1089 Symbol* sym = symtab->lookup(p->signature, NULL);
1090 if (sym != NULL)
1091 p->section->set_info_symndx(sym);
1092 else
1093 {
1094 // Force the name of the group section to the group
1095 // signature, and use the group's section symbol as the
1096 // signature symbol.
1097 if (strcmp(p->section->name(), p->signature) != 0)
1098 {
1099 const char* name = this->namepool_.add(p->signature,
1100 true, NULL);
1101 p->section->set_name(name);
1102 }
1103 p->section->set_needs_symtab_index();
1104 p->section->set_info_section_symndx(p->section);
1105 }
1106 }
1107
1108 this->group_signatures_.clear();
1109 }
1110
1111 // Find the first read-only PT_LOAD segment, creating one if
1112 // necessary.
1113
1114 Output_segment*
1115 Layout::find_first_load_seg()
1116 {
1117 for (Segment_list::const_iterator p = this->segment_list_.begin();
1118 p != this->segment_list_.end();
1119 ++p)
1120 {
1121 if ((*p)->type() == elfcpp::PT_LOAD
1122 && ((*p)->flags() & elfcpp::PF_R) != 0
1123 && (parameters->options().omagic()
1124 || ((*p)->flags() & elfcpp::PF_W) == 0))
1125 return *p;
1126 }
1127
1128 gold_assert(!this->script_options_->saw_phdrs_clause());
1129
1130 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1131 elfcpp::PF_R);
1132 return load_seg;
1133 }
1134
1135 // Finalize the layout. When this is called, we have created all the
1136 // output sections and all the output segments which are based on
1137 // input sections. We have several things to do, and we have to do
1138 // them in the right order, so that we get the right results correctly
1139 // and efficiently.
1140
1141 // 1) Finalize the list of output segments and create the segment
1142 // table header.
1143
1144 // 2) Finalize the dynamic symbol table and associated sections.
1145
1146 // 3) Determine the final file offset of all the output segments.
1147
1148 // 4) Determine the final file offset of all the SHF_ALLOC output
1149 // sections.
1150
1151 // 5) Create the symbol table sections and the section name table
1152 // section.
1153
1154 // 6) Finalize the symbol table: set symbol values to their final
1155 // value and make a final determination of which symbols are going
1156 // into the output symbol table.
1157
1158 // 7) Create the section table header.
1159
1160 // 8) Determine the final file offset of all the output sections which
1161 // are not SHF_ALLOC, including the section table header.
1162
1163 // 9) Finalize the ELF file header.
1164
1165 // This function returns the size of the output file.
1166
1167 off_t
1168 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1169 Target* target, const Task* task)
1170 {
1171 target->finalize_sections(this);
1172
1173 this->count_local_symbols(task, input_objects);
1174
1175 this->create_gold_note();
1176 this->create_executable_stack_info(target);
1177 this->create_build_id();
1178
1179 Output_segment* phdr_seg = NULL;
1180 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1181 {
1182 // There was a dynamic object in the link. We need to create
1183 // some information for the dynamic linker.
1184
1185 // Create the PT_PHDR segment which will hold the program
1186 // headers.
1187 if (!this->script_options_->saw_phdrs_clause())
1188 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1189
1190 // Create the dynamic symbol table, including the hash table.
1191 Output_section* dynstr;
1192 std::vector<Symbol*> dynamic_symbols;
1193 unsigned int local_dynamic_count;
1194 Versions versions(*this->script_options()->version_script_info(),
1195 &this->dynpool_);
1196 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1197 &local_dynamic_count, &dynamic_symbols,
1198 &versions);
1199
1200 // Create the .interp section to hold the name of the
1201 // interpreter, and put it in a PT_INTERP segment.
1202 if (!parameters->options().shared())
1203 this->create_interp(target);
1204
1205 // Finish the .dynamic section to hold the dynamic data, and put
1206 // it in a PT_DYNAMIC segment.
1207 this->finish_dynamic_section(input_objects, symtab);
1208
1209 // We should have added everything we need to the dynamic string
1210 // table.
1211 this->dynpool_.set_string_offsets();
1212
1213 // Create the version sections. We can't do this until the
1214 // dynamic string table is complete.
1215 this->create_version_sections(&versions, symtab, local_dynamic_count,
1216 dynamic_symbols, dynstr);
1217 }
1218
1219 // If there is a SECTIONS clause, put all the input sections into
1220 // the required order.
1221 Output_segment* load_seg;
1222 if (this->script_options_->saw_sections_clause())
1223 load_seg = this->set_section_addresses_from_script(symtab);
1224 else if (parameters->options().relocatable())
1225 load_seg = NULL;
1226 else
1227 load_seg = this->find_first_load_seg();
1228
1229 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1230 load_seg = NULL;
1231
1232 gold_assert(phdr_seg == NULL || load_seg != NULL);
1233
1234 // Lay out the segment headers.
1235 Output_segment_headers* segment_headers;
1236 if (parameters->options().relocatable())
1237 segment_headers = NULL;
1238 else
1239 {
1240 segment_headers = new Output_segment_headers(this->segment_list_);
1241 if (load_seg != NULL)
1242 load_seg->add_initial_output_data(segment_headers);
1243 if (phdr_seg != NULL)
1244 phdr_seg->add_initial_output_data(segment_headers);
1245 }
1246
1247 // Lay out the file header.
1248 Output_file_header* file_header;
1249 file_header = new Output_file_header(target, symtab, segment_headers,
1250 this->options_.entry());
1251 if (load_seg != NULL)
1252 load_seg->add_initial_output_data(file_header);
1253
1254 this->special_output_list_.push_back(file_header);
1255 if (segment_headers != NULL)
1256 this->special_output_list_.push_back(segment_headers);
1257
1258 if (this->script_options_->saw_phdrs_clause()
1259 && !parameters->options().relocatable())
1260 {
1261 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1262 // clause in a linker script.
1263 Script_sections* ss = this->script_options_->script_sections();
1264 ss->put_headers_in_phdrs(file_header, segment_headers);
1265 }
1266
1267 // We set the output section indexes in set_segment_offsets and
1268 // set_section_indexes.
1269 unsigned int shndx = 1;
1270
1271 // Set the file offsets of all the segments, and all the sections
1272 // they contain.
1273 off_t off;
1274 if (!parameters->options().relocatable())
1275 off = this->set_segment_offsets(target, load_seg, &shndx);
1276 else
1277 off = this->set_relocatable_section_offsets(file_header, &shndx);
1278
1279 // Set the file offsets of all the non-data sections we've seen so
1280 // far which don't have to wait for the input sections. We need
1281 // this in order to finalize local symbols in non-allocated
1282 // sections.
1283 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1284
1285 // Set the section indexes of all unallocated sections seen so far,
1286 // in case any of them are somehow referenced by a symbol.
1287 shndx = this->set_section_indexes(shndx);
1288
1289 // Create the symbol table sections.
1290 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1291 if (!parameters->doing_static_link())
1292 this->assign_local_dynsym_offsets(input_objects);
1293
1294 // Process any symbol assignments from a linker script. This must
1295 // be called after the symbol table has been finalized.
1296 this->script_options_->finalize_symbols(symtab, this);
1297
1298 // Create the .shstrtab section.
1299 Output_section* shstrtab_section = this->create_shstrtab();
1300
1301 // Set the file offsets of the rest of the non-data sections which
1302 // don't have to wait for the input sections.
1303 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1304
1305 // Now that all sections have been created, set the section indexes
1306 // for any sections which haven't been done yet.
1307 shndx = this->set_section_indexes(shndx);
1308
1309 // Create the section table header.
1310 this->create_shdrs(shstrtab_section, &off);
1311
1312 // If there are no sections which require postprocessing, we can
1313 // handle the section names now, and avoid a resize later.
1314 if (!this->any_postprocessing_sections_)
1315 off = this->set_section_offsets(off,
1316 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1317
1318 file_header->set_section_info(this->section_headers_, shstrtab_section);
1319
1320 // Now we know exactly where everything goes in the output file
1321 // (except for non-allocated sections which require postprocessing).
1322 Output_data::layout_complete();
1323
1324 this->output_file_size_ = off;
1325
1326 return off;
1327 }
1328
1329 // Create a note header following the format defined in the ELF ABI.
1330 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1331 // descriptor. ALLOCATE is true if the section should be allocated in
1332 // memory. This returns the new note section. It sets
1333 // *TRAILING_PADDING to the number of trailing zero bytes required.
1334
1335 Output_section*
1336 Layout::create_note(const char* name, int note_type, size_t descsz,
1337 bool allocate, size_t* trailing_padding)
1338 {
1339 // Authorities all agree that the values in a .note field should
1340 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1341 // they differ on what the alignment is for 64-bit binaries.
1342 // The GABI says unambiguously they take 8-byte alignment:
1343 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1344 // Other documentation says alignment should always be 4 bytes:
1345 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1346 // GNU ld and GNU readelf both support the latter (at least as of
1347 // version 2.16.91), and glibc always generates the latter for
1348 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1349 // here.
1350 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1351 const int size = parameters->target().get_size();
1352 #else
1353 const int size = 32;
1354 #endif
1355
1356 // The contents of the .note section.
1357 size_t namesz = strlen(name) + 1;
1358 size_t aligned_namesz = align_address(namesz, size / 8);
1359 size_t aligned_descsz = align_address(descsz, size / 8);
1360
1361 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1362
1363 unsigned char* buffer = new unsigned char[notehdrsz];
1364 memset(buffer, 0, notehdrsz);
1365
1366 bool is_big_endian = parameters->target().is_big_endian();
1367
1368 if (size == 32)
1369 {
1370 if (!is_big_endian)
1371 {
1372 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1373 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1374 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1375 }
1376 else
1377 {
1378 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1379 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1380 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1381 }
1382 }
1383 else if (size == 64)
1384 {
1385 if (!is_big_endian)
1386 {
1387 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1388 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1389 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1390 }
1391 else
1392 {
1393 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1394 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1395 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1396 }
1397 }
1398 else
1399 gold_unreachable();
1400
1401 memcpy(buffer + 3 * (size / 8), name, namesz);
1402
1403 const char* note_name = this->namepool_.add(".note", false, NULL);
1404 elfcpp::Elf_Xword flags = 0;
1405 if (allocate)
1406 flags = elfcpp::SHF_ALLOC;
1407 Output_section* os = this->make_output_section(note_name,
1408 elfcpp::SHT_NOTE,
1409 flags);
1410 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1411 size / 8,
1412 "** note header");
1413 os->add_output_section_data(posd);
1414
1415 *trailing_padding = aligned_descsz - descsz;
1416
1417 return os;
1418 }
1419
1420 // For an executable or shared library, create a note to record the
1421 // version of gold used to create the binary.
1422
1423 void
1424 Layout::create_gold_note()
1425 {
1426 if (parameters->options().relocatable())
1427 return;
1428
1429 std::string desc = std::string("gold ") + gold::get_version_string();
1430
1431 size_t trailing_padding;
1432 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1433 desc.size(), false, &trailing_padding);
1434
1435 Output_section_data* posd = new Output_data_const(desc, 4);
1436 os->add_output_section_data(posd);
1437
1438 if (trailing_padding > 0)
1439 {
1440 posd = new Output_data_zero_fill(trailing_padding, 0);
1441 os->add_output_section_data(posd);
1442 }
1443 }
1444
1445 // Record whether the stack should be executable. This can be set
1446 // from the command line using the -z execstack or -z noexecstack
1447 // options. Otherwise, if any input file has a .note.GNU-stack
1448 // section with the SHF_EXECINSTR flag set, the stack should be
1449 // executable. Otherwise, if at least one input file a
1450 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1451 // section, we use the target default for whether the stack should be
1452 // executable. Otherwise, we don't generate a stack note. When
1453 // generating a object file, we create a .note.GNU-stack section with
1454 // the appropriate marking. When generating an executable or shared
1455 // library, we create a PT_GNU_STACK segment.
1456
1457 void
1458 Layout::create_executable_stack_info(const Target* target)
1459 {
1460 bool is_stack_executable;
1461 if (this->options_.is_execstack_set())
1462 is_stack_executable = this->options_.is_stack_executable();
1463 else if (!this->input_with_gnu_stack_note_)
1464 return;
1465 else
1466 {
1467 if (this->input_requires_executable_stack_)
1468 is_stack_executable = true;
1469 else if (this->input_without_gnu_stack_note_)
1470 is_stack_executable = target->is_default_stack_executable();
1471 else
1472 is_stack_executable = false;
1473 }
1474
1475 if (parameters->options().relocatable())
1476 {
1477 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1478 elfcpp::Elf_Xword flags = 0;
1479 if (is_stack_executable)
1480 flags |= elfcpp::SHF_EXECINSTR;
1481 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1482 }
1483 else
1484 {
1485 if (this->script_options_->saw_phdrs_clause())
1486 return;
1487 int flags = elfcpp::PF_R | elfcpp::PF_W;
1488 if (is_stack_executable)
1489 flags |= elfcpp::PF_X;
1490 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1491 }
1492 }
1493
1494 // If --build-id was used, set up the build ID note.
1495
1496 void
1497 Layout::create_build_id()
1498 {
1499 if (!parameters->options().user_set_build_id())
1500 return;
1501
1502 const char* style = parameters->options().build_id();
1503 if (strcmp(style, "none") == 0)
1504 return;
1505
1506 // Set DESCSZ to the size of the note descriptor. When possible,
1507 // set DESC to the note descriptor contents.
1508 size_t descsz;
1509 std::string desc;
1510 if (strcmp(style, "md5") == 0)
1511 descsz = 128 / 8;
1512 else if (strcmp(style, "sha1") == 0)
1513 descsz = 160 / 8;
1514 else if (strcmp(style, "uuid") == 0)
1515 {
1516 const size_t uuidsz = 128 / 8;
1517
1518 char buffer[uuidsz];
1519 memset(buffer, 0, uuidsz);
1520
1521 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1522 if (descriptor < 0)
1523 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1524 strerror(errno));
1525 else
1526 {
1527 ssize_t got = ::read(descriptor, buffer, uuidsz);
1528 release_descriptor(descriptor, true);
1529 if (got < 0)
1530 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1531 else if (static_cast<size_t>(got) != uuidsz)
1532 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1533 uuidsz, got);
1534 }
1535
1536 desc.assign(buffer, uuidsz);
1537 descsz = uuidsz;
1538 }
1539 else if (strncmp(style, "0x", 2) == 0)
1540 {
1541 hex_init();
1542 const char* p = style + 2;
1543 while (*p != '\0')
1544 {
1545 if (hex_p(p[0]) && hex_p(p[1]))
1546 {
1547 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1548 desc += c;
1549 p += 2;
1550 }
1551 else if (*p == '-' || *p == ':')
1552 ++p;
1553 else
1554 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1555 style);
1556 }
1557 descsz = desc.size();
1558 }
1559 else
1560 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1561
1562 // Create the note.
1563 size_t trailing_padding;
1564 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1565 descsz, true, &trailing_padding);
1566
1567 if (!desc.empty())
1568 {
1569 // We know the value already, so we fill it in now.
1570 gold_assert(desc.size() == descsz);
1571
1572 Output_section_data* posd = new Output_data_const(desc, 4);
1573 os->add_output_section_data(posd);
1574
1575 if (trailing_padding != 0)
1576 {
1577 posd = new Output_data_zero_fill(trailing_padding, 0);
1578 os->add_output_section_data(posd);
1579 }
1580 }
1581 else
1582 {
1583 // We need to compute a checksum after we have completed the
1584 // link.
1585 gold_assert(trailing_padding == 0);
1586 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1587 os->add_output_section_data(this->build_id_note_);
1588 os->set_after_input_sections();
1589 }
1590 }
1591
1592 // Return whether SEG1 should be before SEG2 in the output file. This
1593 // is based entirely on the segment type and flags. When this is
1594 // called the segment addresses has normally not yet been set.
1595
1596 bool
1597 Layout::segment_precedes(const Output_segment* seg1,
1598 const Output_segment* seg2)
1599 {
1600 elfcpp::Elf_Word type1 = seg1->type();
1601 elfcpp::Elf_Word type2 = seg2->type();
1602
1603 // The single PT_PHDR segment is required to precede any loadable
1604 // segment. We simply make it always first.
1605 if (type1 == elfcpp::PT_PHDR)
1606 {
1607 gold_assert(type2 != elfcpp::PT_PHDR);
1608 return true;
1609 }
1610 if (type2 == elfcpp::PT_PHDR)
1611 return false;
1612
1613 // The single PT_INTERP segment is required to precede any loadable
1614 // segment. We simply make it always second.
1615 if (type1 == elfcpp::PT_INTERP)
1616 {
1617 gold_assert(type2 != elfcpp::PT_INTERP);
1618 return true;
1619 }
1620 if (type2 == elfcpp::PT_INTERP)
1621 return false;
1622
1623 // We then put PT_LOAD segments before any other segments.
1624 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1625 return true;
1626 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1627 return false;
1628
1629 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1630 // segment, because that is where the dynamic linker expects to find
1631 // it (this is just for efficiency; other positions would also work
1632 // correctly).
1633 if (type1 == elfcpp::PT_TLS
1634 && type2 != elfcpp::PT_TLS
1635 && type2 != elfcpp::PT_GNU_RELRO)
1636 return false;
1637 if (type2 == elfcpp::PT_TLS
1638 && type1 != elfcpp::PT_TLS
1639 && type1 != elfcpp::PT_GNU_RELRO)
1640 return true;
1641
1642 // We put the PT_GNU_RELRO segment last, because that is where the
1643 // dynamic linker expects to find it (as with PT_TLS, this is just
1644 // for efficiency).
1645 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1646 return false;
1647 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1648 return true;
1649
1650 const elfcpp::Elf_Word flags1 = seg1->flags();
1651 const elfcpp::Elf_Word flags2 = seg2->flags();
1652
1653 // The order of non-PT_LOAD segments is unimportant. We simply sort
1654 // by the numeric segment type and flags values. There should not
1655 // be more than one segment with the same type and flags.
1656 if (type1 != elfcpp::PT_LOAD)
1657 {
1658 if (type1 != type2)
1659 return type1 < type2;
1660 gold_assert(flags1 != flags2);
1661 return flags1 < flags2;
1662 }
1663
1664 // If the addresses are set already, sort by load address.
1665 if (seg1->are_addresses_set())
1666 {
1667 if (!seg2->are_addresses_set())
1668 return true;
1669
1670 unsigned int section_count1 = seg1->output_section_count();
1671 unsigned int section_count2 = seg2->output_section_count();
1672 if (section_count1 == 0 && section_count2 > 0)
1673 return true;
1674 if (section_count1 > 0 && section_count2 == 0)
1675 return false;
1676
1677 uint64_t paddr1 = seg1->first_section_load_address();
1678 uint64_t paddr2 = seg2->first_section_load_address();
1679 if (paddr1 != paddr2)
1680 return paddr1 < paddr2;
1681 }
1682 else if (seg2->are_addresses_set())
1683 return false;
1684
1685 // We sort PT_LOAD segments based on the flags. Readonly segments
1686 // come before writable segments. Then writable segments with data
1687 // come before writable segments without data. Then executable
1688 // segments come before non-executable segments. Then the unlikely
1689 // case of a non-readable segment comes before the normal case of a
1690 // readable segment. If there are multiple segments with the same
1691 // type and flags, we require that the address be set, and we sort
1692 // by virtual address and then physical address.
1693 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1694 return (flags1 & elfcpp::PF_W) == 0;
1695 if ((flags1 & elfcpp::PF_W) != 0
1696 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1697 return seg1->has_any_data_sections();
1698 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1699 return (flags1 & elfcpp::PF_X) != 0;
1700 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1701 return (flags1 & elfcpp::PF_R) == 0;
1702
1703 // We shouldn't get here--we shouldn't create segments which we
1704 // can't distinguish.
1705 gold_unreachable();
1706 }
1707
1708 // Set the file offsets of all the segments, and all the sections they
1709 // contain. They have all been created. LOAD_SEG must be be laid out
1710 // first. Return the offset of the data to follow.
1711
1712 off_t
1713 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1714 unsigned int *pshndx)
1715 {
1716 // Sort them into the final order.
1717 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1718 Layout::Compare_segments());
1719
1720 // Find the PT_LOAD segments, and set their addresses and offsets
1721 // and their section's addresses and offsets.
1722 uint64_t addr;
1723 if (this->options_.user_set_Ttext())
1724 addr = this->options_.Ttext();
1725 else if (parameters->options().shared())
1726 addr = 0;
1727 else
1728 addr = target->default_text_segment_address();
1729 off_t off = 0;
1730
1731 // If LOAD_SEG is NULL, then the file header and segment headers
1732 // will not be loadable. But they still need to be at offset 0 in
1733 // the file. Set their offsets now.
1734 if (load_seg == NULL)
1735 {
1736 for (Data_list::iterator p = this->special_output_list_.begin();
1737 p != this->special_output_list_.end();
1738 ++p)
1739 {
1740 off = align_address(off, (*p)->addralign());
1741 (*p)->set_address_and_file_offset(0, off);
1742 off += (*p)->data_size();
1743 }
1744 }
1745
1746 const bool check_sections = parameters->options().check_sections();
1747 Output_segment* last_load_segment = NULL;
1748
1749 bool was_readonly = false;
1750 for (Segment_list::iterator p = this->segment_list_.begin();
1751 p != this->segment_list_.end();
1752 ++p)
1753 {
1754 if ((*p)->type() == elfcpp::PT_LOAD)
1755 {
1756 if (load_seg != NULL && load_seg != *p)
1757 gold_unreachable();
1758 load_seg = NULL;
1759
1760 bool are_addresses_set = (*p)->are_addresses_set();
1761 if (are_addresses_set)
1762 {
1763 // When it comes to setting file offsets, we care about
1764 // the physical address.
1765 addr = (*p)->paddr();
1766 }
1767 else if (this->options_.user_set_Tdata()
1768 && ((*p)->flags() & elfcpp::PF_W) != 0
1769 && (!this->options_.user_set_Tbss()
1770 || (*p)->has_any_data_sections()))
1771 {
1772 addr = this->options_.Tdata();
1773 are_addresses_set = true;
1774 }
1775 else if (this->options_.user_set_Tbss()
1776 && ((*p)->flags() & elfcpp::PF_W) != 0
1777 && !(*p)->has_any_data_sections())
1778 {
1779 addr = this->options_.Tbss();
1780 are_addresses_set = true;
1781 }
1782
1783 uint64_t orig_addr = addr;
1784 uint64_t orig_off = off;
1785
1786 uint64_t aligned_addr = 0;
1787 uint64_t abi_pagesize = target->abi_pagesize();
1788 uint64_t common_pagesize = target->common_pagesize();
1789
1790 if (!parameters->options().nmagic()
1791 && !parameters->options().omagic())
1792 (*p)->set_minimum_p_align(common_pagesize);
1793
1794 if (are_addresses_set)
1795 {
1796 if (!parameters->options().nmagic()
1797 && !parameters->options().omagic())
1798 {
1799 // Adjust the file offset to the same address modulo
1800 // the page size.
1801 uint64_t unsigned_off = off;
1802 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1803 | (addr & (abi_pagesize - 1)));
1804 if (aligned_off < unsigned_off)
1805 aligned_off += abi_pagesize;
1806 off = aligned_off;
1807 }
1808 }
1809 else
1810 {
1811 // If the last segment was readonly, and this one is
1812 // not, then skip the address forward one page,
1813 // maintaining the same position within the page. This
1814 // lets us store both segments overlapping on a single
1815 // page in the file, but the loader will put them on
1816 // different pages in memory.
1817
1818 addr = align_address(addr, (*p)->maximum_alignment());
1819 aligned_addr = addr;
1820
1821 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1822 {
1823 if ((addr & (abi_pagesize - 1)) != 0)
1824 addr = addr + abi_pagesize;
1825 }
1826
1827 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1828 }
1829
1830 unsigned int shndx_hold = *pshndx;
1831 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1832 &off, pshndx);
1833
1834 // Now that we know the size of this segment, we may be able
1835 // to save a page in memory, at the cost of wasting some
1836 // file space, by instead aligning to the start of a new
1837 // page. Here we use the real machine page size rather than
1838 // the ABI mandated page size.
1839
1840 if (!are_addresses_set && aligned_addr != addr)
1841 {
1842 uint64_t first_off = (common_pagesize
1843 - (aligned_addr
1844 & (common_pagesize - 1)));
1845 uint64_t last_off = new_addr & (common_pagesize - 1);
1846 if (first_off > 0
1847 && last_off > 0
1848 && ((aligned_addr & ~ (common_pagesize - 1))
1849 != (new_addr & ~ (common_pagesize - 1)))
1850 && first_off + last_off <= common_pagesize)
1851 {
1852 *pshndx = shndx_hold;
1853 addr = align_address(aligned_addr, common_pagesize);
1854 addr = align_address(addr, (*p)->maximum_alignment());
1855 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1856 new_addr = (*p)->set_section_addresses(this, true, addr,
1857 &off, pshndx);
1858 }
1859 }
1860
1861 addr = new_addr;
1862
1863 if (((*p)->flags() & elfcpp::PF_W) == 0)
1864 was_readonly = true;
1865
1866 // Implement --check-sections. We know that the segments
1867 // are sorted by LMA.
1868 if (check_sections && last_load_segment != NULL)
1869 {
1870 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
1871 if (last_load_segment->paddr() + last_load_segment->memsz()
1872 > (*p)->paddr())
1873 {
1874 unsigned long long lb1 = last_load_segment->paddr();
1875 unsigned long long le1 = lb1 + last_load_segment->memsz();
1876 unsigned long long lb2 = (*p)->paddr();
1877 unsigned long long le2 = lb2 + (*p)->memsz();
1878 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1879 "[0x%llx -> 0x%llx]"),
1880 lb1, le1, lb2, le2);
1881 }
1882 }
1883 last_load_segment = *p;
1884 }
1885 }
1886
1887 // Handle the non-PT_LOAD segments, setting their offsets from their
1888 // section's offsets.
1889 for (Segment_list::iterator p = this->segment_list_.begin();
1890 p != this->segment_list_.end();
1891 ++p)
1892 {
1893 if ((*p)->type() != elfcpp::PT_LOAD)
1894 (*p)->set_offset();
1895 }
1896
1897 // Set the TLS offsets for each section in the PT_TLS segment.
1898 if (this->tls_segment_ != NULL)
1899 this->tls_segment_->set_tls_offsets();
1900
1901 return off;
1902 }
1903
1904 // Set the offsets of all the allocated sections when doing a
1905 // relocatable link. This does the same jobs as set_segment_offsets,
1906 // only for a relocatable link.
1907
1908 off_t
1909 Layout::set_relocatable_section_offsets(Output_data* file_header,
1910 unsigned int *pshndx)
1911 {
1912 off_t off = 0;
1913
1914 file_header->set_address_and_file_offset(0, 0);
1915 off += file_header->data_size();
1916
1917 for (Section_list::iterator p = this->section_list_.begin();
1918 p != this->section_list_.end();
1919 ++p)
1920 {
1921 // We skip unallocated sections here, except that group sections
1922 // have to come first.
1923 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1924 && (*p)->type() != elfcpp::SHT_GROUP)
1925 continue;
1926
1927 off = align_address(off, (*p)->addralign());
1928
1929 // The linker script might have set the address.
1930 if (!(*p)->is_address_valid())
1931 (*p)->set_address(0);
1932 (*p)->set_file_offset(off);
1933 (*p)->finalize_data_size();
1934 off += (*p)->data_size();
1935
1936 (*p)->set_out_shndx(*pshndx);
1937 ++*pshndx;
1938 }
1939
1940 return off;
1941 }
1942
1943 // Set the file offset of all the sections not associated with a
1944 // segment.
1945
1946 off_t
1947 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1948 {
1949 for (Section_list::iterator p = this->unattached_section_list_.begin();
1950 p != this->unattached_section_list_.end();
1951 ++p)
1952 {
1953 // The symtab section is handled in create_symtab_sections.
1954 if (*p == this->symtab_section_)
1955 continue;
1956
1957 // If we've already set the data size, don't set it again.
1958 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1959 continue;
1960
1961 if (pass == BEFORE_INPUT_SECTIONS_PASS
1962 && (*p)->requires_postprocessing())
1963 {
1964 (*p)->create_postprocessing_buffer();
1965 this->any_postprocessing_sections_ = true;
1966 }
1967
1968 if (pass == BEFORE_INPUT_SECTIONS_PASS
1969 && (*p)->after_input_sections())
1970 continue;
1971 else if (pass == POSTPROCESSING_SECTIONS_PASS
1972 && (!(*p)->after_input_sections()
1973 || (*p)->type() == elfcpp::SHT_STRTAB))
1974 continue;
1975 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1976 && (!(*p)->after_input_sections()
1977 || (*p)->type() != elfcpp::SHT_STRTAB))
1978 continue;
1979
1980 off = align_address(off, (*p)->addralign());
1981 (*p)->set_file_offset(off);
1982 (*p)->finalize_data_size();
1983 off += (*p)->data_size();
1984
1985 // At this point the name must be set.
1986 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1987 this->namepool_.add((*p)->name(), false, NULL);
1988 }
1989 return off;
1990 }
1991
1992 // Set the section indexes of all the sections not associated with a
1993 // segment.
1994
1995 unsigned int
1996 Layout::set_section_indexes(unsigned int shndx)
1997 {
1998 for (Section_list::iterator p = this->unattached_section_list_.begin();
1999 p != this->unattached_section_list_.end();
2000 ++p)
2001 {
2002 if (!(*p)->has_out_shndx())
2003 {
2004 (*p)->set_out_shndx(shndx);
2005 ++shndx;
2006 }
2007 }
2008 return shndx;
2009 }
2010
2011 // Set the section addresses according to the linker script. This is
2012 // only called when we see a SECTIONS clause. This returns the
2013 // program segment which should hold the file header and segment
2014 // headers, if any. It will return NULL if they should not be in a
2015 // segment.
2016
2017 Output_segment*
2018 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2019 {
2020 Script_sections* ss = this->script_options_->script_sections();
2021 gold_assert(ss->saw_sections_clause());
2022
2023 // Place each orphaned output section in the script.
2024 for (Section_list::iterator p = this->section_list_.begin();
2025 p != this->section_list_.end();
2026 ++p)
2027 {
2028 if (!(*p)->found_in_sections_clause())
2029 ss->place_orphan(*p);
2030 }
2031
2032 return this->script_options_->set_section_addresses(symtab, this);
2033 }
2034
2035 // Count the local symbols in the regular symbol table and the dynamic
2036 // symbol table, and build the respective string pools.
2037
2038 void
2039 Layout::count_local_symbols(const Task* task,
2040 const Input_objects* input_objects)
2041 {
2042 // First, figure out an upper bound on the number of symbols we'll
2043 // be inserting into each pool. This helps us create the pools with
2044 // the right size, to avoid unnecessary hashtable resizing.
2045 unsigned int symbol_count = 0;
2046 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2047 p != input_objects->relobj_end();
2048 ++p)
2049 symbol_count += (*p)->local_symbol_count();
2050
2051 // Go from "upper bound" to "estimate." We overcount for two
2052 // reasons: we double-count symbols that occur in more than one
2053 // object file, and we count symbols that are dropped from the
2054 // output. Add it all together and assume we overcount by 100%.
2055 symbol_count /= 2;
2056
2057 // We assume all symbols will go into both the sympool and dynpool.
2058 this->sympool_.reserve(symbol_count);
2059 this->dynpool_.reserve(symbol_count);
2060
2061 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2062 p != input_objects->relobj_end();
2063 ++p)
2064 {
2065 Task_lock_obj<Object> tlo(task, *p);
2066 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2067 }
2068 }
2069
2070 // Create the symbol table sections. Here we also set the final
2071 // values of the symbols. At this point all the loadable sections are
2072 // fully laid out. SHNUM is the number of sections so far.
2073
2074 void
2075 Layout::create_symtab_sections(const Input_objects* input_objects,
2076 Symbol_table* symtab,
2077 unsigned int shnum,
2078 off_t* poff)
2079 {
2080 int symsize;
2081 unsigned int align;
2082 if (parameters->target().get_size() == 32)
2083 {
2084 symsize = elfcpp::Elf_sizes<32>::sym_size;
2085 align = 4;
2086 }
2087 else if (parameters->target().get_size() == 64)
2088 {
2089 symsize = elfcpp::Elf_sizes<64>::sym_size;
2090 align = 8;
2091 }
2092 else
2093 gold_unreachable();
2094
2095 off_t off = *poff;
2096 off = align_address(off, align);
2097 off_t startoff = off;
2098
2099 // Save space for the dummy symbol at the start of the section. We
2100 // never bother to write this out--it will just be left as zero.
2101 off += symsize;
2102 unsigned int local_symbol_index = 1;
2103
2104 // Add STT_SECTION symbols for each Output section which needs one.
2105 for (Section_list::iterator p = this->section_list_.begin();
2106 p != this->section_list_.end();
2107 ++p)
2108 {
2109 if (!(*p)->needs_symtab_index())
2110 (*p)->set_symtab_index(-1U);
2111 else
2112 {
2113 (*p)->set_symtab_index(local_symbol_index);
2114 ++local_symbol_index;
2115 off += symsize;
2116 }
2117 }
2118
2119 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2120 p != input_objects->relobj_end();
2121 ++p)
2122 {
2123 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2124 off);
2125 off += (index - local_symbol_index) * symsize;
2126 local_symbol_index = index;
2127 }
2128
2129 unsigned int local_symcount = local_symbol_index;
2130 gold_assert(local_symcount * symsize == off - startoff);
2131
2132 off_t dynoff;
2133 size_t dyn_global_index;
2134 size_t dyncount;
2135 if (this->dynsym_section_ == NULL)
2136 {
2137 dynoff = 0;
2138 dyn_global_index = 0;
2139 dyncount = 0;
2140 }
2141 else
2142 {
2143 dyn_global_index = this->dynsym_section_->info();
2144 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2145 dynoff = this->dynsym_section_->offset() + locsize;
2146 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2147 gold_assert(static_cast<off_t>(dyncount * symsize)
2148 == this->dynsym_section_->data_size() - locsize);
2149 }
2150
2151 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2152 &this->sympool_, &local_symcount);
2153
2154 if (!parameters->options().strip_all())
2155 {
2156 this->sympool_.set_string_offsets();
2157
2158 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2159 Output_section* osymtab = this->make_output_section(symtab_name,
2160 elfcpp::SHT_SYMTAB,
2161 0);
2162 this->symtab_section_ = osymtab;
2163
2164 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2165 align,
2166 "** symtab");
2167 osymtab->add_output_section_data(pos);
2168
2169 // We generate a .symtab_shndx section if we have more than
2170 // SHN_LORESERVE sections. Technically it is possible that we
2171 // don't need one, because it is possible that there are no
2172 // symbols in any of sections with indexes larger than
2173 // SHN_LORESERVE. That is probably unusual, though, and it is
2174 // easier to always create one than to compute section indexes
2175 // twice (once here, once when writing out the symbols).
2176 if (shnum >= elfcpp::SHN_LORESERVE)
2177 {
2178 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2179 false, NULL);
2180 Output_section* osymtab_xindex =
2181 this->make_output_section(symtab_xindex_name,
2182 elfcpp::SHT_SYMTAB_SHNDX, 0);
2183
2184 size_t symcount = (off - startoff) / symsize;
2185 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2186
2187 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2188
2189 osymtab_xindex->set_link_section(osymtab);
2190 osymtab_xindex->set_addralign(4);
2191 osymtab_xindex->set_entsize(4);
2192
2193 osymtab_xindex->set_after_input_sections();
2194
2195 // This tells the driver code to wait until the symbol table
2196 // has written out before writing out the postprocessing
2197 // sections, including the .symtab_shndx section.
2198 this->any_postprocessing_sections_ = true;
2199 }
2200
2201 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2202 Output_section* ostrtab = this->make_output_section(strtab_name,
2203 elfcpp::SHT_STRTAB,
2204 0);
2205
2206 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2207 ostrtab->add_output_section_data(pstr);
2208
2209 osymtab->set_file_offset(startoff);
2210 osymtab->finalize_data_size();
2211 osymtab->set_link_section(ostrtab);
2212 osymtab->set_info(local_symcount);
2213 osymtab->set_entsize(symsize);
2214
2215 *poff = off;
2216 }
2217 }
2218
2219 // Create the .shstrtab section, which holds the names of the
2220 // sections. At the time this is called, we have created all the
2221 // output sections except .shstrtab itself.
2222
2223 Output_section*
2224 Layout::create_shstrtab()
2225 {
2226 // FIXME: We don't need to create a .shstrtab section if we are
2227 // stripping everything.
2228
2229 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2230
2231 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2232
2233 // We can't write out this section until we've set all the section
2234 // names, and we don't set the names of compressed output sections
2235 // until relocations are complete.
2236 os->set_after_input_sections();
2237
2238 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2239 os->add_output_section_data(posd);
2240
2241 return os;
2242 }
2243
2244 // Create the section headers. SIZE is 32 or 64. OFF is the file
2245 // offset.
2246
2247 void
2248 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2249 {
2250 Output_section_headers* oshdrs;
2251 oshdrs = new Output_section_headers(this,
2252 &this->segment_list_,
2253 &this->section_list_,
2254 &this->unattached_section_list_,
2255 &this->namepool_,
2256 shstrtab_section);
2257 off_t off = align_address(*poff, oshdrs->addralign());
2258 oshdrs->set_address_and_file_offset(0, off);
2259 off += oshdrs->data_size();
2260 *poff = off;
2261 this->section_headers_ = oshdrs;
2262 }
2263
2264 // Count the allocated sections.
2265
2266 size_t
2267 Layout::allocated_output_section_count() const
2268 {
2269 size_t section_count = 0;
2270 for (Segment_list::const_iterator p = this->segment_list_.begin();
2271 p != this->segment_list_.end();
2272 ++p)
2273 section_count += (*p)->output_section_count();
2274 return section_count;
2275 }
2276
2277 // Create the dynamic symbol table.
2278
2279 void
2280 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2281 Symbol_table* symtab,
2282 Output_section **pdynstr,
2283 unsigned int* plocal_dynamic_count,
2284 std::vector<Symbol*>* pdynamic_symbols,
2285 Versions* pversions)
2286 {
2287 // Count all the symbols in the dynamic symbol table, and set the
2288 // dynamic symbol indexes.
2289
2290 // Skip symbol 0, which is always all zeroes.
2291 unsigned int index = 1;
2292
2293 // Add STT_SECTION symbols for each Output section which needs one.
2294 for (Section_list::iterator p = this->section_list_.begin();
2295 p != this->section_list_.end();
2296 ++p)
2297 {
2298 if (!(*p)->needs_dynsym_index())
2299 (*p)->set_dynsym_index(-1U);
2300 else
2301 {
2302 (*p)->set_dynsym_index(index);
2303 ++index;
2304 }
2305 }
2306
2307 // Count the local symbols that need to go in the dynamic symbol table,
2308 // and set the dynamic symbol indexes.
2309 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2310 p != input_objects->relobj_end();
2311 ++p)
2312 {
2313 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2314 index = new_index;
2315 }
2316
2317 unsigned int local_symcount = index;
2318 *plocal_dynamic_count = local_symcount;
2319
2320 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2321 &this->dynpool_, pversions);
2322
2323 int symsize;
2324 unsigned int align;
2325 const int size = parameters->target().get_size();
2326 if (size == 32)
2327 {
2328 symsize = elfcpp::Elf_sizes<32>::sym_size;
2329 align = 4;
2330 }
2331 else if (size == 64)
2332 {
2333 symsize = elfcpp::Elf_sizes<64>::sym_size;
2334 align = 8;
2335 }
2336 else
2337 gold_unreachable();
2338
2339 // Create the dynamic symbol table section.
2340
2341 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2342 elfcpp::SHT_DYNSYM,
2343 elfcpp::SHF_ALLOC,
2344 false);
2345
2346 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2347 align,
2348 "** dynsym");
2349 dynsym->add_output_section_data(odata);
2350
2351 dynsym->set_info(local_symcount);
2352 dynsym->set_entsize(symsize);
2353 dynsym->set_addralign(align);
2354
2355 this->dynsym_section_ = dynsym;
2356
2357 Output_data_dynamic* const odyn = this->dynamic_data_;
2358 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2359 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2360
2361 // If there are more than SHN_LORESERVE allocated sections, we
2362 // create a .dynsym_shndx section. It is possible that we don't
2363 // need one, because it is possible that there are no dynamic
2364 // symbols in any of the sections with indexes larger than
2365 // SHN_LORESERVE. This is probably unusual, though, and at this
2366 // time we don't know the actual section indexes so it is
2367 // inconvenient to check.
2368 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2369 {
2370 Output_section* dynsym_xindex =
2371 this->choose_output_section(NULL, ".dynsym_shndx",
2372 elfcpp::SHT_SYMTAB_SHNDX,
2373 elfcpp::SHF_ALLOC,
2374 false);
2375
2376 this->dynsym_xindex_ = new Output_symtab_xindex(index);
2377
2378 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2379
2380 dynsym_xindex->set_link_section(dynsym);
2381 dynsym_xindex->set_addralign(4);
2382 dynsym_xindex->set_entsize(4);
2383
2384 dynsym_xindex->set_after_input_sections();
2385
2386 // This tells the driver code to wait until the symbol table has
2387 // written out before writing out the postprocessing sections,
2388 // including the .dynsym_shndx section.
2389 this->any_postprocessing_sections_ = true;
2390 }
2391
2392 // Create the dynamic string table section.
2393
2394 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2395 elfcpp::SHT_STRTAB,
2396 elfcpp::SHF_ALLOC,
2397 false);
2398
2399 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2400 dynstr->add_output_section_data(strdata);
2401
2402 dynsym->set_link_section(dynstr);
2403 this->dynamic_section_->set_link_section(dynstr);
2404
2405 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2406 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2407
2408 *pdynstr = dynstr;
2409
2410 // Create the hash tables.
2411
2412 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2413 || strcmp(parameters->options().hash_style(), "both") == 0)
2414 {
2415 unsigned char* phash;
2416 unsigned int hashlen;
2417 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2418 &phash, &hashlen);
2419
2420 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2421 elfcpp::SHT_HASH,
2422 elfcpp::SHF_ALLOC,
2423 false);
2424
2425 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2426 hashlen,
2427 align,
2428 "** hash");
2429 hashsec->add_output_section_data(hashdata);
2430
2431 hashsec->set_link_section(dynsym);
2432 hashsec->set_entsize(4);
2433
2434 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2435 }
2436
2437 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2438 || strcmp(parameters->options().hash_style(), "both") == 0)
2439 {
2440 unsigned char* phash;
2441 unsigned int hashlen;
2442 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2443 &phash, &hashlen);
2444
2445 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2446 elfcpp::SHT_GNU_HASH,
2447 elfcpp::SHF_ALLOC,
2448 false);
2449
2450 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2451 hashlen,
2452 align,
2453 "** hash");
2454 hashsec->add_output_section_data(hashdata);
2455
2456 hashsec->set_link_section(dynsym);
2457 hashsec->set_entsize(4);
2458
2459 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2460 }
2461 }
2462
2463 // Assign offsets to each local portion of the dynamic symbol table.
2464
2465 void
2466 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2467 {
2468 Output_section* dynsym = this->dynsym_section_;
2469 gold_assert(dynsym != NULL);
2470
2471 off_t off = dynsym->offset();
2472
2473 // Skip the dummy symbol at the start of the section.
2474 off += dynsym->entsize();
2475
2476 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2477 p != input_objects->relobj_end();
2478 ++p)
2479 {
2480 unsigned int count = (*p)->set_local_dynsym_offset(off);
2481 off += count * dynsym->entsize();
2482 }
2483 }
2484
2485 // Create the version sections.
2486
2487 void
2488 Layout::create_version_sections(const Versions* versions,
2489 const Symbol_table* symtab,
2490 unsigned int local_symcount,
2491 const std::vector<Symbol*>& dynamic_symbols,
2492 const Output_section* dynstr)
2493 {
2494 if (!versions->any_defs() && !versions->any_needs())
2495 return;
2496
2497 switch (parameters->size_and_endianness())
2498 {
2499 #ifdef HAVE_TARGET_32_LITTLE
2500 case Parameters::TARGET_32_LITTLE:
2501 this->sized_create_version_sections<32, false>(versions, symtab,
2502 local_symcount,
2503 dynamic_symbols, dynstr);
2504 break;
2505 #endif
2506 #ifdef HAVE_TARGET_32_BIG
2507 case Parameters::TARGET_32_BIG:
2508 this->sized_create_version_sections<32, true>(versions, symtab,
2509 local_symcount,
2510 dynamic_symbols, dynstr);
2511 break;
2512 #endif
2513 #ifdef HAVE_TARGET_64_LITTLE
2514 case Parameters::TARGET_64_LITTLE:
2515 this->sized_create_version_sections<64, false>(versions, symtab,
2516 local_symcount,
2517 dynamic_symbols, dynstr);
2518 break;
2519 #endif
2520 #ifdef HAVE_TARGET_64_BIG
2521 case Parameters::TARGET_64_BIG:
2522 this->sized_create_version_sections<64, true>(versions, symtab,
2523 local_symcount,
2524 dynamic_symbols, dynstr);
2525 break;
2526 #endif
2527 default:
2528 gold_unreachable();
2529 }
2530 }
2531
2532 // Create the version sections, sized version.
2533
2534 template<int size, bool big_endian>
2535 void
2536 Layout::sized_create_version_sections(
2537 const Versions* versions,
2538 const Symbol_table* symtab,
2539 unsigned int local_symcount,
2540 const std::vector<Symbol*>& dynamic_symbols,
2541 const Output_section* dynstr)
2542 {
2543 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2544 elfcpp::SHT_GNU_versym,
2545 elfcpp::SHF_ALLOC,
2546 false);
2547
2548 unsigned char* vbuf;
2549 unsigned int vsize;
2550 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2551 local_symcount,
2552 dynamic_symbols,
2553 &vbuf, &vsize);
2554
2555 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2556 "** versions");
2557
2558 vsec->add_output_section_data(vdata);
2559 vsec->set_entsize(2);
2560 vsec->set_link_section(this->dynsym_section_);
2561
2562 Output_data_dynamic* const odyn = this->dynamic_data_;
2563 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2564
2565 if (versions->any_defs())
2566 {
2567 Output_section* vdsec;
2568 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2569 elfcpp::SHT_GNU_verdef,
2570 elfcpp::SHF_ALLOC,
2571 false);
2572
2573 unsigned char* vdbuf;
2574 unsigned int vdsize;
2575 unsigned int vdentries;
2576 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2577 &vdsize, &vdentries);
2578
2579 Output_section_data* vddata =
2580 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2581
2582 vdsec->add_output_section_data(vddata);
2583 vdsec->set_link_section(dynstr);
2584 vdsec->set_info(vdentries);
2585
2586 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2587 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2588 }
2589
2590 if (versions->any_needs())
2591 {
2592 Output_section* vnsec;
2593 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2594 elfcpp::SHT_GNU_verneed,
2595 elfcpp::SHF_ALLOC,
2596 false);
2597
2598 unsigned char* vnbuf;
2599 unsigned int vnsize;
2600 unsigned int vnentries;
2601 versions->need_section_contents<size, big_endian>(&this->dynpool_,
2602 &vnbuf, &vnsize,
2603 &vnentries);
2604
2605 Output_section_data* vndata =
2606 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2607
2608 vnsec->add_output_section_data(vndata);
2609 vnsec->set_link_section(dynstr);
2610 vnsec->set_info(vnentries);
2611
2612 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2613 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2614 }
2615 }
2616
2617 // Create the .interp section and PT_INTERP segment.
2618
2619 void
2620 Layout::create_interp(const Target* target)
2621 {
2622 const char* interp = this->options_.dynamic_linker();
2623 if (interp == NULL)
2624 {
2625 interp = target->dynamic_linker();
2626 gold_assert(interp != NULL);
2627 }
2628
2629 size_t len = strlen(interp) + 1;
2630
2631 Output_section_data* odata = new Output_data_const(interp, len, 1);
2632
2633 Output_section* osec = this->choose_output_section(NULL, ".interp",
2634 elfcpp::SHT_PROGBITS,
2635 elfcpp::SHF_ALLOC,
2636 false);
2637 osec->add_output_section_data(odata);
2638
2639 if (!this->script_options_->saw_phdrs_clause())
2640 {
2641 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2642 elfcpp::PF_R);
2643 oseg->add_output_section(osec, elfcpp::PF_R);
2644 }
2645 }
2646
2647 // Finish the .dynamic section and PT_DYNAMIC segment.
2648
2649 void
2650 Layout::finish_dynamic_section(const Input_objects* input_objects,
2651 const Symbol_table* symtab)
2652 {
2653 if (!this->script_options_->saw_phdrs_clause())
2654 {
2655 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2656 (elfcpp::PF_R
2657 | elfcpp::PF_W));
2658 oseg->add_output_section(this->dynamic_section_,
2659 elfcpp::PF_R | elfcpp::PF_W);
2660 }
2661
2662 Output_data_dynamic* const odyn = this->dynamic_data_;
2663
2664 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2665 p != input_objects->dynobj_end();
2666 ++p)
2667 {
2668 // FIXME: Handle --as-needed.
2669 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2670 }
2671
2672 if (parameters->options().shared())
2673 {
2674 const char* soname = this->options_.soname();
2675 if (soname != NULL)
2676 odyn->add_string(elfcpp::DT_SONAME, soname);
2677 }
2678
2679 // FIXME: Support --init and --fini.
2680 Symbol* sym = symtab->lookup("_init");
2681 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2682 odyn->add_symbol(elfcpp::DT_INIT, sym);
2683
2684 sym = symtab->lookup("_fini");
2685 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2686 odyn->add_symbol(elfcpp::DT_FINI, sym);
2687
2688 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2689
2690 // Add a DT_RPATH entry if needed.
2691 const General_options::Dir_list& rpath(this->options_.rpath());
2692 if (!rpath.empty())
2693 {
2694 std::string rpath_val;
2695 for (General_options::Dir_list::const_iterator p = rpath.begin();
2696 p != rpath.end();
2697 ++p)
2698 {
2699 if (rpath_val.empty())
2700 rpath_val = p->name();
2701 else
2702 {
2703 // Eliminate duplicates.
2704 General_options::Dir_list::const_iterator q;
2705 for (q = rpath.begin(); q != p; ++q)
2706 if (q->name() == p->name())
2707 break;
2708 if (q == p)
2709 {
2710 rpath_val += ':';
2711 rpath_val += p->name();
2712 }
2713 }
2714 }
2715
2716 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2717 if (parameters->options().enable_new_dtags())
2718 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2719 }
2720
2721 // Look for text segments that have dynamic relocations.
2722 bool have_textrel = false;
2723 if (!this->script_options_->saw_sections_clause())
2724 {
2725 for (Segment_list::const_iterator p = this->segment_list_.begin();
2726 p != this->segment_list_.end();
2727 ++p)
2728 {
2729 if (((*p)->flags() & elfcpp::PF_W) == 0
2730 && (*p)->dynamic_reloc_count() > 0)
2731 {
2732 have_textrel = true;
2733 break;
2734 }
2735 }
2736 }
2737 else
2738 {
2739 // We don't know the section -> segment mapping, so we are
2740 // conservative and just look for readonly sections with
2741 // relocations. If those sections wind up in writable segments,
2742 // then we have created an unnecessary DT_TEXTREL entry.
2743 for (Section_list::const_iterator p = this->section_list_.begin();
2744 p != this->section_list_.end();
2745 ++p)
2746 {
2747 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2748 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2749 && ((*p)->dynamic_reloc_count() > 0))
2750 {
2751 have_textrel = true;
2752 break;
2753 }
2754 }
2755 }
2756
2757 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2758 // post-link tools can easily modify these flags if desired.
2759 unsigned int flags = 0;
2760 if (have_textrel)
2761 {
2762 // Add a DT_TEXTREL for compatibility with older loaders.
2763 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2764 flags |= elfcpp::DF_TEXTREL;
2765 }
2766 if (parameters->options().shared() && this->has_static_tls())
2767 flags |= elfcpp::DF_STATIC_TLS;
2768 if (parameters->options().origin())
2769 flags |= elfcpp::DF_ORIGIN;
2770 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2771
2772 flags = 0;
2773 if (parameters->options().initfirst())
2774 flags |= elfcpp::DF_1_INITFIRST;
2775 if (parameters->options().interpose())
2776 flags |= elfcpp::DF_1_INTERPOSE;
2777 if (parameters->options().loadfltr())
2778 flags |= elfcpp::DF_1_LOADFLTR;
2779 if (parameters->options().nodefaultlib())
2780 flags |= elfcpp::DF_1_NODEFLIB;
2781 if (parameters->options().nodelete())
2782 flags |= elfcpp::DF_1_NODELETE;
2783 if (parameters->options().nodlopen())
2784 flags |= elfcpp::DF_1_NOOPEN;
2785 if (parameters->options().nodump())
2786 flags |= elfcpp::DF_1_NODUMP;
2787 if (!parameters->options().shared())
2788 flags &= ~(elfcpp::DF_1_INITFIRST
2789 | elfcpp::DF_1_NODELETE
2790 | elfcpp::DF_1_NOOPEN);
2791 if (parameters->options().origin())
2792 flags |= elfcpp::DF_1_ORIGIN;
2793 if (flags)
2794 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2795 }
2796
2797 // The mapping of .gnu.linkonce section names to real section names.
2798
2799 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2800 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2801 {
2802 MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2803 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Before "d".
2804 MAPPING_INIT("t", ".text"),
2805 MAPPING_INIT("r", ".rodata"),
2806 MAPPING_INIT("d", ".data"),
2807 MAPPING_INIT("b", ".bss"),
2808 MAPPING_INIT("s", ".sdata"),
2809 MAPPING_INIT("sb", ".sbss"),
2810 MAPPING_INIT("s2", ".sdata2"),
2811 MAPPING_INIT("sb2", ".sbss2"),
2812 MAPPING_INIT("wi", ".debug_info"),
2813 MAPPING_INIT("td", ".tdata"),
2814 MAPPING_INIT("tb", ".tbss"),
2815 MAPPING_INIT("lr", ".lrodata"),
2816 MAPPING_INIT("l", ".ldata"),
2817 MAPPING_INIT("lb", ".lbss"),
2818 };
2819 #undef MAPPING_INIT
2820
2821 const int Layout::linkonce_mapping_count =
2822 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2823
2824 // Return the name of the output section to use for a .gnu.linkonce
2825 // section. This is based on the default ELF linker script of the old
2826 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2827 // to ".text". Set *PLEN to the length of the name. *PLEN is
2828 // initialized to the length of NAME.
2829
2830 const char*
2831 Layout::linkonce_output_name(const char* name, size_t *plen)
2832 {
2833 const char* s = name + sizeof(".gnu.linkonce") - 1;
2834 if (*s != '.')
2835 return name;
2836 ++s;
2837 const Linkonce_mapping* plm = linkonce_mapping;
2838 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2839 {
2840 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2841 {
2842 *plen = plm->tolen;
2843 return plm->to;
2844 }
2845 }
2846 return name;
2847 }
2848
2849 // Choose the output section name to use given an input section name.
2850 // Set *PLEN to the length of the name. *PLEN is initialized to the
2851 // length of NAME.
2852
2853 const char*
2854 Layout::output_section_name(const char* name, size_t* plen)
2855 {
2856 if (Layout::is_linkonce(name))
2857 {
2858 // .gnu.linkonce sections are laid out as though they were named
2859 // for the sections are placed into.
2860 return Layout::linkonce_output_name(name, plen);
2861 }
2862
2863 // gcc 4.3 generates the following sorts of section names when it
2864 // needs a section name specific to a function:
2865 // .text.FN
2866 // .rodata.FN
2867 // .sdata2.FN
2868 // .data.FN
2869 // .data.rel.FN
2870 // .data.rel.local.FN
2871 // .data.rel.ro.FN
2872 // .data.rel.ro.local.FN
2873 // .sdata.FN
2874 // .bss.FN
2875 // .sbss.FN
2876 // .tdata.FN
2877 // .tbss.FN
2878
2879 // The GNU linker maps all of those to the part before the .FN,
2880 // except that .data.rel.local.FN is mapped to .data, and
2881 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2882 // beginning with .data.rel.ro.local are grouped together.
2883
2884 // For an anonymous namespace, the string FN can contain a '.'.
2885
2886 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2887 // GNU linker maps to .rodata.
2888
2889 // The .data.rel.ro sections enable a security feature triggered by
2890 // the -z relro option. Section which need to be relocated at
2891 // program startup time but which may be readonly after startup are
2892 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2893 // segment. The dynamic linker will make that segment writable,
2894 // perform relocations, and then make it read-only. FIXME: We do
2895 // not yet implement this optimization.
2896
2897 // It is hard to handle this in a principled way.
2898
2899 // These are the rules we follow:
2900
2901 // If the section name has no initial '.', or no dot other than an
2902 // initial '.', we use the name unchanged (i.e., "mysection" and
2903 // ".text" are unchanged).
2904
2905 // If the name starts with ".data.rel.ro.local" we use
2906 // ".data.rel.ro.local".
2907
2908 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2909
2910 // Otherwise, we drop the second '.' and everything that comes after
2911 // it (i.e., ".text.XXX" becomes ".text").
2912
2913 const char* s = name;
2914 if (*s != '.')
2915 return name;
2916 ++s;
2917 const char* sdot = strchr(s, '.');
2918 if (sdot == NULL)
2919 return name;
2920
2921 const char* const data_rel_ro_local = ".data.rel.ro.local";
2922 if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2923 {
2924 *plen = strlen(data_rel_ro_local);
2925 return data_rel_ro_local;
2926 }
2927
2928 const char* const data_rel_ro = ".data.rel.ro";
2929 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2930 {
2931 *plen = strlen(data_rel_ro);
2932 return data_rel_ro;
2933 }
2934
2935 *plen = sdot - name;
2936 return name;
2937 }
2938
2939 // Record the signature of a comdat section, and return whether to
2940 // include it in the link. If GROUP is true, this is a regular
2941 // section group. If GROUP is false, this is a group signature
2942 // derived from the name of a linkonce section. We want linkonce
2943 // signatures and group signatures to block each other, but we don't
2944 // want a linkonce signature to block another linkonce signature.
2945
2946 bool
2947 Layout::add_comdat(Relobj* object, unsigned int shndx,
2948 const std::string& signature, bool group)
2949 {
2950 Kept_section kept(object, shndx, group);
2951 std::pair<Signatures::iterator, bool> ins(
2952 this->signatures_.insert(std::make_pair(signature, kept)));
2953
2954 if (ins.second)
2955 {
2956 // This is the first time we've seen this signature.
2957 return true;
2958 }
2959
2960 if (ins.first->second.group_)
2961 {
2962 // We've already seen a real section group with this signature.
2963 // If the kept group is from a plugin object, and we're in
2964 // the replacement phase, accept the new one as a replacement.
2965 if (ins.first->second.object_ == NULL
2966 && parameters->options().plugins()->in_replacement_phase())
2967 {
2968 ins.first->second = kept;
2969 return true;
2970 }
2971 return false;
2972 }
2973 else if (group)
2974 {
2975 // This is a real section group, and we've already seen a
2976 // linkonce section with this signature. Record that we've seen
2977 // a section group, and don't include this section group.
2978 ins.first->second.group_ = true;
2979 return false;
2980 }
2981 else
2982 {
2983 // We've already seen a linkonce section and this is a linkonce
2984 // section. These don't block each other--this may be the same
2985 // symbol name with different section types.
2986 return true;
2987 }
2988 }
2989
2990 // Find the given comdat signature, and return the object and section
2991 // index of the kept group.
2992 Relobj*
2993 Layout::find_kept_object(const std::string& signature,
2994 unsigned int* pshndx) const
2995 {
2996 Signatures::const_iterator p = this->signatures_.find(signature);
2997 if (p == this->signatures_.end())
2998 return NULL;
2999 if (pshndx != NULL)
3000 *pshndx = p->second.shndx_;
3001 return p->second.object_;
3002 }
3003
3004 // Store the allocated sections into the section list.
3005
3006 void
3007 Layout::get_allocated_sections(Section_list* section_list) const
3008 {
3009 for (Section_list::const_iterator p = this->section_list_.begin();
3010 p != this->section_list_.end();
3011 ++p)
3012 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3013 section_list->push_back(*p);
3014 }
3015
3016 // Create an output segment.
3017
3018 Output_segment*
3019 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3020 {
3021 gold_assert(!parameters->options().relocatable());
3022 Output_segment* oseg = new Output_segment(type, flags);
3023 this->segment_list_.push_back(oseg);
3024
3025 if (type == elfcpp::PT_TLS)
3026 this->tls_segment_ = oseg;
3027 else if (type == elfcpp::PT_GNU_RELRO)
3028 this->relro_segment_ = oseg;
3029
3030 return oseg;
3031 }
3032
3033 // Write out the Output_sections. Most won't have anything to write,
3034 // since most of the data will come from input sections which are
3035 // handled elsewhere. But some Output_sections do have Output_data.
3036
3037 void
3038 Layout::write_output_sections(Output_file* of) const
3039 {
3040 for (Section_list::const_iterator p = this->section_list_.begin();
3041 p != this->section_list_.end();
3042 ++p)
3043 {
3044 if (!(*p)->after_input_sections())
3045 (*p)->write(of);
3046 }
3047 }
3048
3049 // Write out data not associated with a section or the symbol table.
3050
3051 void
3052 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3053 {
3054 if (!parameters->options().strip_all())
3055 {
3056 const Output_section* symtab_section = this->symtab_section_;
3057 for (Section_list::const_iterator p = this->section_list_.begin();
3058 p != this->section_list_.end();
3059 ++p)
3060 {
3061 if ((*p)->needs_symtab_index())
3062 {
3063 gold_assert(symtab_section != NULL);
3064 unsigned int index = (*p)->symtab_index();
3065 gold_assert(index > 0 && index != -1U);
3066 off_t off = (symtab_section->offset()
3067 + index * symtab_section->entsize());
3068 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3069 }
3070 }
3071 }
3072
3073 const Output_section* dynsym_section = this->dynsym_section_;
3074 for (Section_list::const_iterator p = this->section_list_.begin();
3075 p != this->section_list_.end();
3076 ++p)
3077 {
3078 if ((*p)->needs_dynsym_index())
3079 {
3080 gold_assert(dynsym_section != NULL);
3081 unsigned int index = (*p)->dynsym_index();
3082 gold_assert(index > 0 && index != -1U);
3083 off_t off = (dynsym_section->offset()
3084 + index * dynsym_section->entsize());
3085 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3086 }
3087 }
3088
3089 // Write out the Output_data which are not in an Output_section.
3090 for (Data_list::const_iterator p = this->special_output_list_.begin();
3091 p != this->special_output_list_.end();
3092 ++p)
3093 (*p)->write(of);
3094 }
3095
3096 // Write out the Output_sections which can only be written after the
3097 // input sections are complete.
3098
3099 void
3100 Layout::write_sections_after_input_sections(Output_file* of)
3101 {
3102 // Determine the final section offsets, and thus the final output
3103 // file size. Note we finalize the .shstrab last, to allow the
3104 // after_input_section sections to modify their section-names before
3105 // writing.
3106 if (this->any_postprocessing_sections_)
3107 {
3108 off_t off = this->output_file_size_;
3109 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3110
3111 // Now that we've finalized the names, we can finalize the shstrab.
3112 off =
3113 this->set_section_offsets(off,
3114 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3115
3116 if (off > this->output_file_size_)
3117 {
3118 of->resize(off);
3119 this->output_file_size_ = off;
3120 }
3121 }
3122
3123 for (Section_list::const_iterator p = this->section_list_.begin();
3124 p != this->section_list_.end();
3125 ++p)
3126 {
3127 if ((*p)->after_input_sections())
3128 (*p)->write(of);
3129 }
3130
3131 this->section_headers_->write(of);
3132 }
3133
3134 // If the build ID requires computing a checksum, do so here, and
3135 // write it out. We compute a checksum over the entire file because
3136 // that is simplest.
3137
3138 void
3139 Layout::write_build_id(Output_file* of) const
3140 {
3141 if (this->build_id_note_ == NULL)
3142 return;
3143
3144 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3145
3146 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3147 this->build_id_note_->data_size());
3148
3149 const char* style = parameters->options().build_id();
3150 if (strcmp(style, "sha1") == 0)
3151 {
3152 sha1_ctx ctx;
3153 sha1_init_ctx(&ctx);
3154 sha1_process_bytes(iv, this->output_file_size_, &ctx);
3155 sha1_finish_ctx(&ctx, ov);
3156 }
3157 else if (strcmp(style, "md5") == 0)
3158 {
3159 md5_ctx ctx;
3160 md5_init_ctx(&ctx);
3161 md5_process_bytes(iv, this->output_file_size_, &ctx);
3162 md5_finish_ctx(&ctx, ov);
3163 }
3164 else
3165 gold_unreachable();
3166
3167 of->write_output_view(this->build_id_note_->offset(),
3168 this->build_id_note_->data_size(),
3169 ov);
3170
3171 of->free_input_view(0, this->output_file_size_, iv);
3172 }
3173
3174 // Write out a binary file. This is called after the link is
3175 // complete. IN is the temporary output file we used to generate the
3176 // ELF code. We simply walk through the segments, read them from
3177 // their file offset in IN, and write them to their load address in
3178 // the output file. FIXME: with a bit more work, we could support
3179 // S-records and/or Intel hex format here.
3180
3181 void
3182 Layout::write_binary(Output_file* in) const
3183 {
3184 gold_assert(this->options_.oformat_enum()
3185 == General_options::OBJECT_FORMAT_BINARY);
3186
3187 // Get the size of the binary file.
3188 uint64_t max_load_address = 0;
3189 for (Segment_list::const_iterator p = this->segment_list_.begin();
3190 p != this->segment_list_.end();
3191 ++p)
3192 {
3193 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3194 {
3195 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3196 if (max_paddr > max_load_address)
3197 max_load_address = max_paddr;
3198 }
3199 }
3200
3201 Output_file out(parameters->options().output_file_name());
3202 out.open(max_load_address);
3203
3204 for (Segment_list::const_iterator p = this->segment_list_.begin();
3205 p != this->segment_list_.end();
3206 ++p)
3207 {
3208 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3209 {
3210 const unsigned char* vin = in->get_input_view((*p)->offset(),
3211 (*p)->filesz());
3212 unsigned char* vout = out.get_output_view((*p)->paddr(),
3213 (*p)->filesz());
3214 memcpy(vout, vin, (*p)->filesz());
3215 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3216 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3217 }
3218 }
3219
3220 out.close();
3221 }
3222
3223 // Print the output sections to the map file.
3224
3225 void
3226 Layout::print_to_mapfile(Mapfile* mapfile) const
3227 {
3228 for (Segment_list::const_iterator p = this->segment_list_.begin();
3229 p != this->segment_list_.end();
3230 ++p)
3231 (*p)->print_sections_to_mapfile(mapfile);
3232 }
3233
3234 // Print statistical information to stderr. This is used for --stats.
3235
3236 void
3237 Layout::print_stats() const
3238 {
3239 this->namepool_.print_stats("section name pool");
3240 this->sympool_.print_stats("output symbol name pool");
3241 this->dynpool_.print_stats("dynamic name pool");
3242
3243 for (Section_list::const_iterator p = this->section_list_.begin();
3244 p != this->section_list_.end();
3245 ++p)
3246 (*p)->print_merge_stats();
3247 }
3248
3249 // Write_sections_task methods.
3250
3251 // We can always run this task.
3252
3253 Task_token*
3254 Write_sections_task::is_runnable()
3255 {
3256 return NULL;
3257 }
3258
3259 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3260 // when finished.
3261
3262 void
3263 Write_sections_task::locks(Task_locker* tl)
3264 {
3265 tl->add(this, this->output_sections_blocker_);
3266 tl->add(this, this->final_blocker_);
3267 }
3268
3269 // Run the task--write out the data.
3270
3271 void
3272 Write_sections_task::run(Workqueue*)
3273 {
3274 this->layout_->write_output_sections(this->of_);
3275 }
3276
3277 // Write_data_task methods.
3278
3279 // We can always run this task.
3280
3281 Task_token*
3282 Write_data_task::is_runnable()
3283 {
3284 return NULL;
3285 }
3286
3287 // We need to unlock FINAL_BLOCKER when finished.
3288
3289 void
3290 Write_data_task::locks(Task_locker* tl)
3291 {
3292 tl->add(this, this->final_blocker_);
3293 }
3294
3295 // Run the task--write out the data.
3296
3297 void
3298 Write_data_task::run(Workqueue*)
3299 {
3300 this->layout_->write_data(this->symtab_, this->of_);
3301 }
3302
3303 // Write_symbols_task methods.
3304
3305 // We can always run this task.
3306
3307 Task_token*
3308 Write_symbols_task::is_runnable()
3309 {
3310 return NULL;
3311 }
3312
3313 // We need to unlock FINAL_BLOCKER when finished.
3314
3315 void
3316 Write_symbols_task::locks(Task_locker* tl)
3317 {
3318 tl->add(this, this->final_blocker_);
3319 }
3320
3321 // Run the task--write out the symbols.
3322
3323 void
3324 Write_symbols_task::run(Workqueue*)
3325 {
3326 this->symtab_->write_globals(this->input_objects_, this->sympool_,
3327 this->dynpool_, this->layout_->symtab_xindex(),
3328 this->layout_->dynsym_xindex(), this->of_);
3329 }
3330
3331 // Write_after_input_sections_task methods.
3332
3333 // We can only run this task after the input sections have completed.
3334
3335 Task_token*
3336 Write_after_input_sections_task::is_runnable()
3337 {
3338 if (this->input_sections_blocker_->is_blocked())
3339 return this->input_sections_blocker_;
3340 return NULL;
3341 }
3342
3343 // We need to unlock FINAL_BLOCKER when finished.
3344
3345 void
3346 Write_after_input_sections_task::locks(Task_locker* tl)
3347 {
3348 tl->add(this, this->final_blocker_);
3349 }
3350
3351 // Run the task.
3352
3353 void
3354 Write_after_input_sections_task::run(Workqueue*)
3355 {
3356 this->layout_->write_sections_after_input_sections(this->of_);
3357 }
3358
3359 // Close_task_runner methods.
3360
3361 // Run the task--close the file.
3362
3363 void
3364 Close_task_runner::run(Workqueue*, const Task*)
3365 {
3366 // If we need to compute a checksum for the BUILD if, we do so here.
3367 this->layout_->write_build_id(this->of_);
3368
3369 // If we've been asked to create a binary file, we do so here.
3370 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3371 this->layout_->write_binary(this->of_);
3372
3373 this->of_->close();
3374 }
3375
3376 // Instantiate the templates we need. We could use the configure
3377 // script to restrict this to only the ones for implemented targets.
3378
3379 #ifdef HAVE_TARGET_32_LITTLE
3380 template
3381 Output_section*
3382 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3383 const char* name,
3384 const elfcpp::Shdr<32, false>& shdr,
3385 unsigned int, unsigned int, off_t*);
3386 #endif
3387
3388 #ifdef HAVE_TARGET_32_BIG
3389 template
3390 Output_section*
3391 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3392 const char* name,
3393 const elfcpp::Shdr<32, true>& shdr,
3394 unsigned int, unsigned int, off_t*);
3395 #endif
3396
3397 #ifdef HAVE_TARGET_64_LITTLE
3398 template
3399 Output_section*
3400 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3401 const char* name,
3402 const elfcpp::Shdr<64, false>& shdr,
3403 unsigned int, unsigned int, off_t*);
3404 #endif
3405
3406 #ifdef HAVE_TARGET_64_BIG
3407 template
3408 Output_section*
3409 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3410 const char* name,
3411 const elfcpp::Shdr<64, true>& shdr,
3412 unsigned int, unsigned int, off_t*);
3413 #endif
3414
3415 #ifdef HAVE_TARGET_32_LITTLE
3416 template
3417 Output_section*
3418 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3419 unsigned int reloc_shndx,
3420 const elfcpp::Shdr<32, false>& shdr,
3421 Output_section* data_section,
3422 Relocatable_relocs* rr);
3423 #endif
3424
3425 #ifdef HAVE_TARGET_32_BIG
3426 template
3427 Output_section*
3428 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3429 unsigned int reloc_shndx,
3430 const elfcpp::Shdr<32, true>& shdr,
3431 Output_section* data_section,
3432 Relocatable_relocs* rr);
3433 #endif
3434
3435 #ifdef HAVE_TARGET_64_LITTLE
3436 template
3437 Output_section*
3438 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3439 unsigned int reloc_shndx,
3440 const elfcpp::Shdr<64, false>& shdr,
3441 Output_section* data_section,
3442 Relocatable_relocs* rr);
3443 #endif
3444
3445 #ifdef HAVE_TARGET_64_BIG
3446 template
3447 Output_section*
3448 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3449 unsigned int reloc_shndx,
3450 const elfcpp::Shdr<64, true>& shdr,
3451 Output_section* data_section,
3452 Relocatable_relocs* rr);
3453 #endif
3454
3455 #ifdef HAVE_TARGET_32_LITTLE
3456 template
3457 void
3458 Layout::layout_group<32, false>(Symbol_table* symtab,
3459 Sized_relobj<32, false>* object,
3460 unsigned int,
3461 const char* group_section_name,
3462 const char* signature,
3463 const elfcpp::Shdr<32, false>& shdr,
3464 elfcpp::Elf_Word flags,
3465 std::vector<unsigned int>* shndxes);
3466 #endif
3467
3468 #ifdef HAVE_TARGET_32_BIG
3469 template
3470 void
3471 Layout::layout_group<32, true>(Symbol_table* symtab,
3472 Sized_relobj<32, true>* object,
3473 unsigned int,
3474 const char* group_section_name,
3475 const char* signature,
3476 const elfcpp::Shdr<32, true>& shdr,
3477 elfcpp::Elf_Word flags,
3478 std::vector<unsigned int>* shndxes);
3479 #endif
3480
3481 #ifdef HAVE_TARGET_64_LITTLE
3482 template
3483 void
3484 Layout::layout_group<64, false>(Symbol_table* symtab,
3485 Sized_relobj<64, false>* object,
3486 unsigned int,
3487 const char* group_section_name,
3488 const char* signature,
3489 const elfcpp::Shdr<64, false>& shdr,
3490 elfcpp::Elf_Word flags,
3491 std::vector<unsigned int>* shndxes);
3492 #endif
3493
3494 #ifdef HAVE_TARGET_64_BIG
3495 template
3496 void
3497 Layout::layout_group<64, true>(Symbol_table* symtab,
3498 Sized_relobj<64, true>* object,
3499 unsigned int,
3500 const char* group_section_name,
3501 const char* signature,
3502 const elfcpp::Shdr<64, true>& shdr,
3503 elfcpp::Elf_Word flags,
3504 std::vector<unsigned int>* shndxes);
3505 #endif
3506
3507 #ifdef HAVE_TARGET_32_LITTLE
3508 template
3509 Output_section*
3510 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3511 const unsigned char* symbols,
3512 off_t symbols_size,
3513 const unsigned char* symbol_names,
3514 off_t symbol_names_size,
3515 unsigned int shndx,
3516 const elfcpp::Shdr<32, false>& shdr,
3517 unsigned int reloc_shndx,
3518 unsigned int reloc_type,
3519 off_t* off);
3520 #endif
3521
3522 #ifdef HAVE_TARGET_32_BIG
3523 template
3524 Output_section*
3525 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3526 const unsigned char* symbols,
3527 off_t symbols_size,
3528 const unsigned char* symbol_names,
3529 off_t symbol_names_size,
3530 unsigned int shndx,
3531 const elfcpp::Shdr<32, true>& shdr,
3532 unsigned int reloc_shndx,
3533 unsigned int reloc_type,
3534 off_t* off);
3535 #endif
3536
3537 #ifdef HAVE_TARGET_64_LITTLE
3538 template
3539 Output_section*
3540 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3541 const unsigned char* symbols,
3542 off_t symbols_size,
3543 const unsigned char* symbol_names,
3544 off_t symbol_names_size,
3545 unsigned int shndx,
3546 const elfcpp::Shdr<64, false>& shdr,
3547 unsigned int reloc_shndx,
3548 unsigned int reloc_type,
3549 off_t* off);
3550 #endif
3551
3552 #ifdef HAVE_TARGET_64_BIG
3553 template
3554 Output_section*
3555 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3556 const unsigned char* symbols,
3557 off_t symbols_size,
3558 const unsigned char* symbol_names,
3559 off_t symbol_names_size,
3560 unsigned int shndx,
3561 const elfcpp::Shdr<64, true>& shdr,
3562 unsigned int reloc_shndx,
3563 unsigned int reloc_type,
3564 off_t* off);
3565 #endif
3566
3567 } // End namespace gold.