PR 10980
[binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64 const Layout::Section_list& sections,
65 const Layout::Data_list& special_outputs)
66 {
67 for(Layout::Section_list::const_iterator p = sections.begin();
68 p != sections.end();
69 ++p)
70 gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72 for(Layout::Data_list::const_iterator p = special_outputs.begin();
73 p != special_outputs.end();
74 ++p)
75 gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82 const Layout::Section_list& sections)
83 {
84 for(Layout::Section_list::const_iterator p = sections.begin();
85 p != sections.end();
86 ++p)
87 {
88 Output_section* os = *p;
89 Section_info info;
90 info.output_section = os;
91 info.address = os->is_address_valid() ? os->address() : 0;
92 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93 info.offset = os->is_offset_valid()? os->offset() : -1 ;
94 this->section_infos_.push_back(info);
95 }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102 const Layout::Section_list& sections)
103 {
104 size_t i = 0;
105 for(Layout::Section_list::const_iterator p = sections.begin();
106 p != sections.end();
107 ++p, ++i)
108 {
109 Output_section* os = *p;
110 uint64_t address = os->is_address_valid() ? os->address() : 0;
111 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114 if (i >= this->section_infos_.size())
115 {
116 gold_fatal("Section_info of %s missing.\n", os->name());
117 }
118 const Section_info& info = this->section_infos_[i];
119 if (os != info.output_section)
120 gold_fatal("Section order changed. Expecting %s but see %s\n",
121 info.output_section->name(), os->name());
122 if (address != info.address
123 || data_size != info.data_size
124 || offset != info.offset)
125 gold_fatal("Section %s changed.\n", os->name());
126 }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections. This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137 off_t file_size = this->layout_->finalize(this->input_objects_,
138 this->symtab_,
139 this->target_,
140 task);
141
142 // Now we know the final size of the output file and we know where
143 // each piece of information goes.
144
145 if (this->mapfile_ != NULL)
146 {
147 this->mapfile_->print_discarded_sections(this->input_objects_);
148 this->layout_->print_to_mapfile(this->mapfile_);
149 }
150
151 Output_file* of = new Output_file(parameters->options().output_file_name());
152 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153 of->set_is_temporary();
154 of->open(file_size);
155
156 // Queue up the final set of tasks.
157 gold::queue_final_tasks(this->options_, this->input_objects_,
158 this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164 : number_of_input_files_(number_of_input_files),
165 script_options_(script_options),
166 namepool_(),
167 sympool_(),
168 dynpool_(),
169 signatures_(),
170 section_name_map_(),
171 segment_list_(),
172 section_list_(),
173 unattached_section_list_(),
174 special_output_list_(),
175 section_headers_(NULL),
176 tls_segment_(NULL),
177 relro_segment_(NULL),
178 increase_relro_(0),
179 symtab_section_(NULL),
180 symtab_xindex_(NULL),
181 dynsym_section_(NULL),
182 dynsym_xindex_(NULL),
183 dynamic_section_(NULL),
184 dynamic_symbol_(NULL),
185 dynamic_data_(NULL),
186 eh_frame_section_(NULL),
187 eh_frame_data_(NULL),
188 added_eh_frame_data_(false),
189 eh_frame_hdr_section_(NULL),
190 build_id_note_(NULL),
191 debug_abbrev_(NULL),
192 debug_info_(NULL),
193 group_signatures_(),
194 output_file_size_(-1),
195 have_added_input_section_(false),
196 sections_are_attached_(false),
197 input_requires_executable_stack_(false),
198 input_with_gnu_stack_note_(false),
199 input_without_gnu_stack_note_(false),
200 has_static_tls_(false),
201 any_postprocessing_sections_(false),
202 resized_signatures_(false),
203 have_stabstr_section_(false),
204 incremental_inputs_(NULL),
205 record_output_section_data_from_script_(false),
206 script_output_section_data_list_(),
207 segment_states_(NULL),
208 relaxation_debug_check_(NULL)
209 {
210 // Make space for more than enough segments for a typical file.
211 // This is just for efficiency--it's OK if we wind up needing more.
212 this->segment_list_.reserve(12);
213
214 // We expect two unattached Output_data objects: the file header and
215 // the segment headers.
216 this->special_output_list_.reserve(2);
217
218 // Initialize structure needed for an incremental build.
219 if (parameters->options().incremental())
220 this->incremental_inputs_ = new Incremental_inputs;
221
222 // The section name pool is worth optimizing in all cases, because
223 // it is small, but there are often overlaps due to .rel sections.
224 this->namepool_.set_optimize();
225 }
226
227 // Hash a key we use to look up an output section mapping.
228
229 size_t
230 Layout::Hash_key::operator()(const Layout::Key& k) const
231 {
232 return k.first + k.second.first + k.second.second;
233 }
234
235 // Returns whether the given section is in the list of
236 // debug-sections-used-by-some-version-of-gdb. Currently,
237 // we've checked versions of gdb up to and including 6.7.1.
238
239 static const char* gdb_sections[] =
240 { ".debug_abbrev",
241 // ".debug_aranges", // not used by gdb as of 6.7.1
242 ".debug_frame",
243 ".debug_info",
244 ".debug_line",
245 ".debug_loc",
246 ".debug_macinfo",
247 // ".debug_pubnames", // not used by gdb as of 6.7.1
248 ".debug_ranges",
249 ".debug_str",
250 };
251
252 static const char* lines_only_debug_sections[] =
253 { ".debug_abbrev",
254 // ".debug_aranges", // not used by gdb as of 6.7.1
255 // ".debug_frame",
256 ".debug_info",
257 ".debug_line",
258 // ".debug_loc",
259 // ".debug_macinfo",
260 // ".debug_pubnames", // not used by gdb as of 6.7.1
261 // ".debug_ranges",
262 ".debug_str",
263 };
264
265 static inline bool
266 is_gdb_debug_section(const char* str)
267 {
268 // We can do this faster: binary search or a hashtable. But why bother?
269 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
270 if (strcmp(str, gdb_sections[i]) == 0)
271 return true;
272 return false;
273 }
274
275 static inline bool
276 is_lines_only_debug_section(const char* str)
277 {
278 // We can do this faster: binary search or a hashtable. But why bother?
279 for (size_t i = 0;
280 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
281 ++i)
282 if (strcmp(str, lines_only_debug_sections[i]) == 0)
283 return true;
284 return false;
285 }
286
287 // Whether to include this section in the link.
288
289 template<int size, bool big_endian>
290 bool
291 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
292 const elfcpp::Shdr<size, big_endian>& shdr)
293 {
294 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
295 return false;
296
297 switch (shdr.get_sh_type())
298 {
299 case elfcpp::SHT_NULL:
300 case elfcpp::SHT_SYMTAB:
301 case elfcpp::SHT_DYNSYM:
302 case elfcpp::SHT_HASH:
303 case elfcpp::SHT_DYNAMIC:
304 case elfcpp::SHT_SYMTAB_SHNDX:
305 return false;
306
307 case elfcpp::SHT_STRTAB:
308 // Discard the sections which have special meanings in the ELF
309 // ABI. Keep others (e.g., .stabstr). We could also do this by
310 // checking the sh_link fields of the appropriate sections.
311 return (strcmp(name, ".dynstr") != 0
312 && strcmp(name, ".strtab") != 0
313 && strcmp(name, ".shstrtab") != 0);
314
315 case elfcpp::SHT_RELA:
316 case elfcpp::SHT_REL:
317 case elfcpp::SHT_GROUP:
318 // If we are emitting relocations these should be handled
319 // elsewhere.
320 gold_assert(!parameters->options().relocatable()
321 && !parameters->options().emit_relocs());
322 return false;
323
324 case elfcpp::SHT_PROGBITS:
325 if (parameters->options().strip_debug()
326 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
327 {
328 if (is_debug_info_section(name))
329 return false;
330 }
331 if (parameters->options().strip_debug_non_line()
332 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
333 {
334 // Debugging sections can only be recognized by name.
335 if (is_prefix_of(".debug", name)
336 && !is_lines_only_debug_section(name))
337 return false;
338 }
339 if (parameters->options().strip_debug_gdb()
340 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
341 {
342 // Debugging sections can only be recognized by name.
343 if (is_prefix_of(".debug", name)
344 && !is_gdb_debug_section(name))
345 return false;
346 }
347 if (parameters->options().strip_lto_sections()
348 && !parameters->options().relocatable()
349 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
350 {
351 // Ignore LTO sections containing intermediate code.
352 if (is_prefix_of(".gnu.lto_", name))
353 return false;
354 }
355 return true;
356
357 default:
358 return true;
359 }
360 }
361
362 // Return an output section named NAME, or NULL if there is none.
363
364 Output_section*
365 Layout::find_output_section(const char* name) const
366 {
367 for (Section_list::const_iterator p = this->section_list_.begin();
368 p != this->section_list_.end();
369 ++p)
370 if (strcmp((*p)->name(), name) == 0)
371 return *p;
372 return NULL;
373 }
374
375 // Return an output segment of type TYPE, with segment flags SET set
376 // and segment flags CLEAR clear. Return NULL if there is none.
377
378 Output_segment*
379 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
380 elfcpp::Elf_Word clear) const
381 {
382 for (Segment_list::const_iterator p = this->segment_list_.begin();
383 p != this->segment_list_.end();
384 ++p)
385 if (static_cast<elfcpp::PT>((*p)->type()) == type
386 && ((*p)->flags() & set) == set
387 && ((*p)->flags() & clear) == 0)
388 return *p;
389 return NULL;
390 }
391
392 // Return the output section to use for section NAME with type TYPE
393 // and section flags FLAGS. NAME must be canonicalized in the string
394 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
395 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
396 // is used by the dynamic linker. IS_RELRO is true for a relro
397 // section. IS_LAST_RELRO is true for the last relro section.
398 // IS_FIRST_NON_RELRO is true for the first non-relro section.
399
400 Output_section*
401 Layout::get_output_section(const char* name, Stringpool::Key name_key,
402 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
403 bool is_interp, bool is_dynamic_linker_section,
404 bool is_relro, bool is_last_relro,
405 bool is_first_non_relro)
406 {
407 elfcpp::Elf_Xword lookup_flags = flags;
408
409 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
410 // read-write with read-only sections. Some other ELF linkers do
411 // not do this. FIXME: Perhaps there should be an option
412 // controlling this.
413 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
414
415 const Key key(name_key, std::make_pair(type, lookup_flags));
416 const std::pair<Key, Output_section*> v(key, NULL);
417 std::pair<Section_name_map::iterator, bool> ins(
418 this->section_name_map_.insert(v));
419
420 if (!ins.second)
421 return ins.first->second;
422 else
423 {
424 // This is the first time we've seen this name/type/flags
425 // combination. For compatibility with the GNU linker, we
426 // combine sections with contents and zero flags with sections
427 // with non-zero flags. This is a workaround for cases where
428 // assembler code forgets to set section flags. FIXME: Perhaps
429 // there should be an option to control this.
430 Output_section* os = NULL;
431
432 if (type == elfcpp::SHT_PROGBITS)
433 {
434 if (flags == 0)
435 {
436 Output_section* same_name = this->find_output_section(name);
437 if (same_name != NULL
438 && same_name->type() == elfcpp::SHT_PROGBITS
439 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
440 os = same_name;
441 }
442 else if ((flags & elfcpp::SHF_TLS) == 0)
443 {
444 elfcpp::Elf_Xword zero_flags = 0;
445 const Key zero_key(name_key, std::make_pair(type, zero_flags));
446 Section_name_map::iterator p =
447 this->section_name_map_.find(zero_key);
448 if (p != this->section_name_map_.end())
449 os = p->second;
450 }
451 }
452
453 if (os == NULL)
454 os = this->make_output_section(name, type, flags, is_interp,
455 is_dynamic_linker_section, is_relro,
456 is_last_relro, is_first_non_relro);
457 ins.first->second = os;
458 return os;
459 }
460 }
461
462 // Pick the output section to use for section NAME, in input file
463 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
464 // linker created section. IS_INPUT_SECTION is true if we are
465 // choosing an output section for an input section found in a input
466 // file. IS_INTERP is true if this is the .interp section.
467 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
468 // dynamic linker. IS_RELRO is true for a relro section.
469 // IS_LAST_RELRO is true for the last relro section.
470 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
471 // will return NULL if the input section should be discarded.
472
473 Output_section*
474 Layout::choose_output_section(const Relobj* relobj, const char* name,
475 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
476 bool is_input_section, bool is_interp,
477 bool is_dynamic_linker_section, bool is_relro,
478 bool is_last_relro, bool is_first_non_relro)
479 {
480 // We should not see any input sections after we have attached
481 // sections to segments.
482 gold_assert(!is_input_section || !this->sections_are_attached_);
483
484 // Some flags in the input section should not be automatically
485 // copied to the output section.
486 flags &= ~ (elfcpp::SHF_INFO_LINK
487 | elfcpp::SHF_LINK_ORDER
488 | elfcpp::SHF_GROUP
489 | elfcpp::SHF_MERGE
490 | elfcpp::SHF_STRINGS);
491
492 if (this->script_options_->saw_sections_clause())
493 {
494 // We are using a SECTIONS clause, so the output section is
495 // chosen based only on the name.
496
497 Script_sections* ss = this->script_options_->script_sections();
498 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
499 Output_section** output_section_slot;
500 name = ss->output_section_name(file_name, name, &output_section_slot);
501 if (name == NULL)
502 {
503 // The SECTIONS clause says to discard this input section.
504 return NULL;
505 }
506
507 // If this is an orphan section--one not mentioned in the linker
508 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
509 // default processing below.
510
511 if (output_section_slot != NULL)
512 {
513 if (*output_section_slot != NULL)
514 {
515 (*output_section_slot)->update_flags_for_input_section(flags);
516 return *output_section_slot;
517 }
518
519 // We don't put sections found in the linker script into
520 // SECTION_NAME_MAP_. That keeps us from getting confused
521 // if an orphan section is mapped to a section with the same
522 // name as one in the linker script.
523
524 name = this->namepool_.add(name, false, NULL);
525
526 Output_section* os =
527 this->make_output_section(name, type, flags, is_interp,
528 is_dynamic_linker_section, is_relro,
529 is_last_relro, is_first_non_relro);
530 os->set_found_in_sections_clause();
531 *output_section_slot = os;
532 return os;
533 }
534 }
535
536 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
537
538 // Turn NAME from the name of the input section into the name of the
539 // output section.
540
541 size_t len = strlen(name);
542 if (is_input_section
543 && !this->script_options_->saw_sections_clause()
544 && !parameters->options().relocatable())
545 name = Layout::output_section_name(name, &len);
546
547 Stringpool::Key name_key;
548 name = this->namepool_.add_with_length(name, len, true, &name_key);
549
550 // Find or make the output section. The output section is selected
551 // based on the section name, type, and flags.
552 return this->get_output_section(name, name_key, type, flags, is_interp,
553 is_dynamic_linker_section, is_relro,
554 is_last_relro, is_first_non_relro);
555 }
556
557 // Return the output section to use for input section SHNDX, with name
558 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
559 // index of a relocation section which applies to this section, or 0
560 // if none, or -1U if more than one. RELOC_TYPE is the type of the
561 // relocation section if there is one. Set *OFF to the offset of this
562 // input section without the output section. Return NULL if the
563 // section should be discarded. Set *OFF to -1 if the section
564 // contents should not be written directly to the output file, but
565 // will instead receive special handling.
566
567 template<int size, bool big_endian>
568 Output_section*
569 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
570 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
571 unsigned int reloc_shndx, unsigned int, off_t* off)
572 {
573 *off = 0;
574
575 if (!this->include_section(object, name, shdr))
576 return NULL;
577
578 Output_section* os;
579
580 // In a relocatable link a grouped section must not be combined with
581 // any other sections.
582 if (parameters->options().relocatable()
583 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
584 {
585 name = this->namepool_.add(name, true, NULL);
586 os = this->make_output_section(name, shdr.get_sh_type(),
587 shdr.get_sh_flags(), false, false,
588 false, false, false);
589 }
590 else
591 {
592 os = this->choose_output_section(object, name, shdr.get_sh_type(),
593 shdr.get_sh_flags(), true, false,
594 false, false, false, false);
595 if (os == NULL)
596 return NULL;
597 }
598
599 // By default the GNU linker sorts input sections whose names match
600 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
601 // are sorted by name. This is used to implement constructor
602 // priority ordering. We are compatible.
603 if (!this->script_options_->saw_sections_clause()
604 && (is_prefix_of(".ctors.", name)
605 || is_prefix_of(".dtors.", name)
606 || is_prefix_of(".init_array.", name)
607 || is_prefix_of(".fini_array.", name)))
608 os->set_must_sort_attached_input_sections();
609
610 // FIXME: Handle SHF_LINK_ORDER somewhere.
611
612 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
613 this->script_options_->saw_sections_clause());
614 this->have_added_input_section_ = true;
615
616 return os;
617 }
618
619 // Handle a relocation section when doing a relocatable link.
620
621 template<int size, bool big_endian>
622 Output_section*
623 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
624 unsigned int,
625 const elfcpp::Shdr<size, big_endian>& shdr,
626 Output_section* data_section,
627 Relocatable_relocs* rr)
628 {
629 gold_assert(parameters->options().relocatable()
630 || parameters->options().emit_relocs());
631
632 int sh_type = shdr.get_sh_type();
633
634 std::string name;
635 if (sh_type == elfcpp::SHT_REL)
636 name = ".rel";
637 else if (sh_type == elfcpp::SHT_RELA)
638 name = ".rela";
639 else
640 gold_unreachable();
641 name += data_section->name();
642
643 Output_section* os = this->choose_output_section(object, name.c_str(),
644 sh_type,
645 shdr.get_sh_flags(),
646 false, false, false,
647 false, false, false);
648
649 os->set_should_link_to_symtab();
650 os->set_info_section(data_section);
651
652 Output_section_data* posd;
653 if (sh_type == elfcpp::SHT_REL)
654 {
655 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
656 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
657 size,
658 big_endian>(rr);
659 }
660 else if (sh_type == elfcpp::SHT_RELA)
661 {
662 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
663 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
664 size,
665 big_endian>(rr);
666 }
667 else
668 gold_unreachable();
669
670 os->add_output_section_data(posd);
671 rr->set_output_data(posd);
672
673 return os;
674 }
675
676 // Handle a group section when doing a relocatable link.
677
678 template<int size, bool big_endian>
679 void
680 Layout::layout_group(Symbol_table* symtab,
681 Sized_relobj<size, big_endian>* object,
682 unsigned int,
683 const char* group_section_name,
684 const char* signature,
685 const elfcpp::Shdr<size, big_endian>& shdr,
686 elfcpp::Elf_Word flags,
687 std::vector<unsigned int>* shndxes)
688 {
689 gold_assert(parameters->options().relocatable());
690 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
691 group_section_name = this->namepool_.add(group_section_name, true, NULL);
692 Output_section* os = this->make_output_section(group_section_name,
693 elfcpp::SHT_GROUP,
694 shdr.get_sh_flags(),
695 false, false, false,
696 false, false);
697
698 // We need to find a symbol with the signature in the symbol table.
699 // If we don't find one now, we need to look again later.
700 Symbol* sym = symtab->lookup(signature, NULL);
701 if (sym != NULL)
702 os->set_info_symndx(sym);
703 else
704 {
705 // Reserve some space to minimize reallocations.
706 if (this->group_signatures_.empty())
707 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
708
709 // We will wind up using a symbol whose name is the signature.
710 // So just put the signature in the symbol name pool to save it.
711 signature = symtab->canonicalize_name(signature);
712 this->group_signatures_.push_back(Group_signature(os, signature));
713 }
714
715 os->set_should_link_to_symtab();
716 os->set_entsize(4);
717
718 section_size_type entry_count =
719 convert_to_section_size_type(shdr.get_sh_size() / 4);
720 Output_section_data* posd =
721 new Output_data_group<size, big_endian>(object, entry_count, flags,
722 shndxes);
723 os->add_output_section_data(posd);
724 }
725
726 // Special GNU handling of sections name .eh_frame. They will
727 // normally hold exception frame data as defined by the C++ ABI
728 // (http://codesourcery.com/cxx-abi/).
729
730 template<int size, bool big_endian>
731 Output_section*
732 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
733 const unsigned char* symbols,
734 off_t symbols_size,
735 const unsigned char* symbol_names,
736 off_t symbol_names_size,
737 unsigned int shndx,
738 const elfcpp::Shdr<size, big_endian>& shdr,
739 unsigned int reloc_shndx, unsigned int reloc_type,
740 off_t* off)
741 {
742 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
743 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
744
745 const char* const name = ".eh_frame";
746 Output_section* os = this->choose_output_section(object,
747 name,
748 elfcpp::SHT_PROGBITS,
749 elfcpp::SHF_ALLOC,
750 false, false, false,
751 false, false, false);
752 if (os == NULL)
753 return NULL;
754
755 if (this->eh_frame_section_ == NULL)
756 {
757 this->eh_frame_section_ = os;
758 this->eh_frame_data_ = new Eh_frame();
759
760 if (parameters->options().eh_frame_hdr())
761 {
762 Output_section* hdr_os =
763 this->choose_output_section(NULL,
764 ".eh_frame_hdr",
765 elfcpp::SHT_PROGBITS,
766 elfcpp::SHF_ALLOC,
767 false, false, false,
768 false, false, false);
769
770 if (hdr_os != NULL)
771 {
772 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
773 this->eh_frame_data_);
774 hdr_os->add_output_section_data(hdr_posd);
775
776 hdr_os->set_after_input_sections();
777
778 if (!this->script_options_->saw_phdrs_clause())
779 {
780 Output_segment* hdr_oseg;
781 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
782 elfcpp::PF_R);
783 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R, false);
784 }
785
786 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
787 }
788 }
789 }
790
791 gold_assert(this->eh_frame_section_ == os);
792
793 if (this->eh_frame_data_->add_ehframe_input_section(object,
794 symbols,
795 symbols_size,
796 symbol_names,
797 symbol_names_size,
798 shndx,
799 reloc_shndx,
800 reloc_type))
801 {
802 os->update_flags_for_input_section(shdr.get_sh_flags());
803
804 // We found a .eh_frame section we are going to optimize, so now
805 // we can add the set of optimized sections to the output
806 // section. We need to postpone adding this until we've found a
807 // section we can optimize so that the .eh_frame section in
808 // crtbegin.o winds up at the start of the output section.
809 if (!this->added_eh_frame_data_)
810 {
811 os->add_output_section_data(this->eh_frame_data_);
812 this->added_eh_frame_data_ = true;
813 }
814 *off = -1;
815 }
816 else
817 {
818 // We couldn't handle this .eh_frame section for some reason.
819 // Add it as a normal section.
820 bool saw_sections_clause = this->script_options_->saw_sections_clause();
821 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
822 saw_sections_clause);
823 this->have_added_input_section_ = true;
824 }
825
826 return os;
827 }
828
829 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
830 // the output section.
831
832 Output_section*
833 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
834 elfcpp::Elf_Xword flags,
835 Output_section_data* posd,
836 bool is_dynamic_linker_section,
837 bool is_relro, bool is_last_relro,
838 bool is_first_non_relro)
839 {
840 Output_section* os = this->choose_output_section(NULL, name, type, flags,
841 false, false,
842 is_dynamic_linker_section,
843 is_relro, is_last_relro,
844 is_first_non_relro);
845 if (os != NULL)
846 os->add_output_section_data(posd);
847 return os;
848 }
849
850 // Map section flags to segment flags.
851
852 elfcpp::Elf_Word
853 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
854 {
855 elfcpp::Elf_Word ret = elfcpp::PF_R;
856 if ((flags & elfcpp::SHF_WRITE) != 0)
857 ret |= elfcpp::PF_W;
858 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
859 ret |= elfcpp::PF_X;
860 return ret;
861 }
862
863 // Sometimes we compress sections. This is typically done for
864 // sections that are not part of normal program execution (such as
865 // .debug_* sections), and where the readers of these sections know
866 // how to deal with compressed sections. This routine doesn't say for
867 // certain whether we'll compress -- it depends on commandline options
868 // as well -- just whether this section is a candidate for compression.
869 // (The Output_compressed_section class decides whether to compress
870 // a given section, and picks the name of the compressed section.)
871
872 static bool
873 is_compressible_debug_section(const char* secname)
874 {
875 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
876 }
877
878 // Make a new Output_section, and attach it to segments as
879 // appropriate. IS_INTERP is true if this is the .interp section.
880 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
881 // dynamic linker. IS_RELRO is true if this is a relro section.
882 // IS_LAST_RELRO is true if this is the last relro section.
883 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
884
885 Output_section*
886 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
887 elfcpp::Elf_Xword flags, bool is_interp,
888 bool is_dynamic_linker_section, bool is_relro,
889 bool is_last_relro, bool is_first_non_relro)
890 {
891 Output_section* os;
892 if ((flags & elfcpp::SHF_ALLOC) == 0
893 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
894 && is_compressible_debug_section(name))
895 os = new Output_compressed_section(&parameters->options(), name, type,
896 flags);
897 else if ((flags & elfcpp::SHF_ALLOC) == 0
898 && parameters->options().strip_debug_non_line()
899 && strcmp(".debug_abbrev", name) == 0)
900 {
901 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
902 name, type, flags);
903 if (this->debug_info_)
904 this->debug_info_->set_abbreviations(this->debug_abbrev_);
905 }
906 else if ((flags & elfcpp::SHF_ALLOC) == 0
907 && parameters->options().strip_debug_non_line()
908 && strcmp(".debug_info", name) == 0)
909 {
910 os = this->debug_info_ = new Output_reduced_debug_info_section(
911 name, type, flags);
912 if (this->debug_abbrev_)
913 this->debug_info_->set_abbreviations(this->debug_abbrev_);
914 }
915 else
916 {
917 // FIXME: const_cast is ugly.
918 Target* target = const_cast<Target*>(&parameters->target());
919 os = target->make_output_section(name, type, flags);
920 }
921
922 if (is_interp)
923 os->set_is_interp();
924 if (is_dynamic_linker_section)
925 os->set_is_dynamic_linker_section();
926 if (is_relro)
927 os->set_is_relro();
928 if (is_last_relro)
929 os->set_is_last_relro();
930 if (is_first_non_relro)
931 os->set_is_first_non_relro();
932
933 parameters->target().new_output_section(os);
934
935 this->section_list_.push_back(os);
936
937 // The GNU linker by default sorts some sections by priority, so we
938 // do the same. We need to know that this might happen before we
939 // attach any input sections.
940 if (!this->script_options_->saw_sections_clause()
941 && (strcmp(name, ".ctors") == 0
942 || strcmp(name, ".dtors") == 0
943 || strcmp(name, ".init_array") == 0
944 || strcmp(name, ".fini_array") == 0))
945 os->set_may_sort_attached_input_sections();
946
947 // With -z relro, we have to recognize the special sections by name.
948 // There is no other way.
949 if (!this->script_options_->saw_sections_clause()
950 && parameters->options().relro()
951 && type == elfcpp::SHT_PROGBITS
952 && (flags & elfcpp::SHF_ALLOC) != 0
953 && (flags & elfcpp::SHF_WRITE) != 0)
954 {
955 if (strcmp(name, ".data.rel.ro") == 0)
956 os->set_is_relro();
957 else if (strcmp(name, ".data.rel.ro.local") == 0)
958 {
959 os->set_is_relro();
960 os->set_is_relro_local();
961 }
962 }
963
964 // Check for .stab*str sections, as .stab* sections need to link to
965 // them.
966 if (type == elfcpp::SHT_STRTAB
967 && !this->have_stabstr_section_
968 && strncmp(name, ".stab", 5) == 0
969 && strcmp(name + strlen(name) - 3, "str") == 0)
970 this->have_stabstr_section_ = true;
971
972 // If we have already attached the sections to segments, then we
973 // need to attach this one now. This happens for sections created
974 // directly by the linker.
975 if (this->sections_are_attached_)
976 this->attach_section_to_segment(os);
977
978 return os;
979 }
980
981 // Attach output sections to segments. This is called after we have
982 // seen all the input sections.
983
984 void
985 Layout::attach_sections_to_segments()
986 {
987 for (Section_list::iterator p = this->section_list_.begin();
988 p != this->section_list_.end();
989 ++p)
990 this->attach_section_to_segment(*p);
991
992 this->sections_are_attached_ = true;
993 }
994
995 // Attach an output section to a segment.
996
997 void
998 Layout::attach_section_to_segment(Output_section* os)
999 {
1000 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1001 this->unattached_section_list_.push_back(os);
1002 else
1003 this->attach_allocated_section_to_segment(os);
1004 }
1005
1006 // Attach an allocated output section to a segment.
1007
1008 void
1009 Layout::attach_allocated_section_to_segment(Output_section* os)
1010 {
1011 elfcpp::Elf_Xword flags = os->flags();
1012 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1013
1014 if (parameters->options().relocatable())
1015 return;
1016
1017 // If we have a SECTIONS clause, we can't handle the attachment to
1018 // segments until after we've seen all the sections.
1019 if (this->script_options_->saw_sections_clause())
1020 return;
1021
1022 gold_assert(!this->script_options_->saw_phdrs_clause());
1023
1024 // This output section goes into a PT_LOAD segment.
1025
1026 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1027
1028 bool sort_sections = !this->script_options_->saw_sections_clause();
1029
1030 // In general the only thing we really care about for PT_LOAD
1031 // segments is whether or not they are writable, so that is how we
1032 // search for them. Large data sections also go into their own
1033 // PT_LOAD segment. People who need segments sorted on some other
1034 // basis will have to use a linker script.
1035
1036 Segment_list::const_iterator p;
1037 for (p = this->segment_list_.begin();
1038 p != this->segment_list_.end();
1039 ++p)
1040 {
1041 if ((*p)->type() != elfcpp::PT_LOAD)
1042 continue;
1043 if (!parameters->options().omagic()
1044 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1045 continue;
1046 // If -Tbss was specified, we need to separate the data and BSS
1047 // segments.
1048 if (parameters->options().user_set_Tbss())
1049 {
1050 if ((os->type() == elfcpp::SHT_NOBITS)
1051 == (*p)->has_any_data_sections())
1052 continue;
1053 }
1054 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1055 continue;
1056
1057 (*p)->add_output_section(os, seg_flags, sort_sections);
1058 break;
1059 }
1060
1061 if (p == this->segment_list_.end())
1062 {
1063 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1064 seg_flags);
1065 if (os->is_large_data_section())
1066 oseg->set_is_large_data_segment();
1067 oseg->add_output_section(os, seg_flags, sort_sections);
1068 }
1069
1070 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1071 // segment.
1072 if (os->type() == elfcpp::SHT_NOTE)
1073 {
1074 // See if we already have an equivalent PT_NOTE segment.
1075 for (p = this->segment_list_.begin();
1076 p != segment_list_.end();
1077 ++p)
1078 {
1079 if ((*p)->type() == elfcpp::PT_NOTE
1080 && (((*p)->flags() & elfcpp::PF_W)
1081 == (seg_flags & elfcpp::PF_W)))
1082 {
1083 (*p)->add_output_section(os, seg_flags, false);
1084 break;
1085 }
1086 }
1087
1088 if (p == this->segment_list_.end())
1089 {
1090 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1091 seg_flags);
1092 oseg->add_output_section(os, seg_flags, false);
1093 }
1094 }
1095
1096 // If we see a loadable SHF_TLS section, we create a PT_TLS
1097 // segment. There can only be one such segment.
1098 if ((flags & elfcpp::SHF_TLS) != 0)
1099 {
1100 if (this->tls_segment_ == NULL)
1101 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1102 this->tls_segment_->add_output_section(os, seg_flags, false);
1103 }
1104
1105 // If -z relro is in effect, and we see a relro section, we create a
1106 // PT_GNU_RELRO segment. There can only be one such segment.
1107 if (os->is_relro() && parameters->options().relro())
1108 {
1109 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1110 if (this->relro_segment_ == NULL)
1111 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1112 this->relro_segment_->add_output_section(os, seg_flags, false);
1113 }
1114 }
1115
1116 // Make an output section for a script.
1117
1118 Output_section*
1119 Layout::make_output_section_for_script(const char* name)
1120 {
1121 name = this->namepool_.add(name, false, NULL);
1122 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1123 elfcpp::SHF_ALLOC, false,
1124 false, false, false, false);
1125 os->set_found_in_sections_clause();
1126 return os;
1127 }
1128
1129 // Return the number of segments we expect to see.
1130
1131 size_t
1132 Layout::expected_segment_count() const
1133 {
1134 size_t ret = this->segment_list_.size();
1135
1136 // If we didn't see a SECTIONS clause in a linker script, we should
1137 // already have the complete list of segments. Otherwise we ask the
1138 // SECTIONS clause how many segments it expects, and add in the ones
1139 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1140
1141 if (!this->script_options_->saw_sections_clause())
1142 return ret;
1143 else
1144 {
1145 const Script_sections* ss = this->script_options_->script_sections();
1146 return ret + ss->expected_segment_count(this);
1147 }
1148 }
1149
1150 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1151 // is whether we saw a .note.GNU-stack section in the object file.
1152 // GNU_STACK_FLAGS is the section flags. The flags give the
1153 // protection required for stack memory. We record this in an
1154 // executable as a PT_GNU_STACK segment. If an object file does not
1155 // have a .note.GNU-stack segment, we must assume that it is an old
1156 // object. On some targets that will force an executable stack.
1157
1158 void
1159 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1160 {
1161 if (!seen_gnu_stack)
1162 this->input_without_gnu_stack_note_ = true;
1163 else
1164 {
1165 this->input_with_gnu_stack_note_ = true;
1166 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1167 this->input_requires_executable_stack_ = true;
1168 }
1169 }
1170
1171 // Create automatic note sections.
1172
1173 void
1174 Layout::create_notes()
1175 {
1176 this->create_gold_note();
1177 this->create_executable_stack_info();
1178 this->create_build_id();
1179 }
1180
1181 // Create the dynamic sections which are needed before we read the
1182 // relocs.
1183
1184 void
1185 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1186 {
1187 if (parameters->doing_static_link())
1188 return;
1189
1190 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1191 elfcpp::SHT_DYNAMIC,
1192 (elfcpp::SHF_ALLOC
1193 | elfcpp::SHF_WRITE),
1194 false, false, true,
1195 true, false, false);
1196
1197 this->dynamic_symbol_ =
1198 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1199 this->dynamic_section_, 0, 0,
1200 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1201 elfcpp::STV_HIDDEN, 0, false, false);
1202
1203 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1204
1205 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1206 }
1207
1208 // For each output section whose name can be represented as C symbol,
1209 // define __start and __stop symbols for the section. This is a GNU
1210 // extension.
1211
1212 void
1213 Layout::define_section_symbols(Symbol_table* symtab)
1214 {
1215 for (Section_list::const_iterator p = this->section_list_.begin();
1216 p != this->section_list_.end();
1217 ++p)
1218 {
1219 const char* const name = (*p)->name();
1220 if (name[strspn(name,
1221 ("0123456789"
1222 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1223 "abcdefghijklmnopqrstuvwxyz"
1224 "_"))]
1225 == '\0')
1226 {
1227 const std::string name_string(name);
1228 const std::string start_name("__start_" + name_string);
1229 const std::string stop_name("__stop_" + name_string);
1230
1231 symtab->define_in_output_data(start_name.c_str(),
1232 NULL, // version
1233 Symbol_table::PREDEFINED,
1234 *p,
1235 0, // value
1236 0, // symsize
1237 elfcpp::STT_NOTYPE,
1238 elfcpp::STB_GLOBAL,
1239 elfcpp::STV_DEFAULT,
1240 0, // nonvis
1241 false, // offset_is_from_end
1242 true); // only_if_ref
1243
1244 symtab->define_in_output_data(stop_name.c_str(),
1245 NULL, // version
1246 Symbol_table::PREDEFINED,
1247 *p,
1248 0, // value
1249 0, // symsize
1250 elfcpp::STT_NOTYPE,
1251 elfcpp::STB_GLOBAL,
1252 elfcpp::STV_DEFAULT,
1253 0, // nonvis
1254 true, // offset_is_from_end
1255 true); // only_if_ref
1256 }
1257 }
1258 }
1259
1260 // Define symbols for group signatures.
1261
1262 void
1263 Layout::define_group_signatures(Symbol_table* symtab)
1264 {
1265 for (Group_signatures::iterator p = this->group_signatures_.begin();
1266 p != this->group_signatures_.end();
1267 ++p)
1268 {
1269 Symbol* sym = symtab->lookup(p->signature, NULL);
1270 if (sym != NULL)
1271 p->section->set_info_symndx(sym);
1272 else
1273 {
1274 // Force the name of the group section to the group
1275 // signature, and use the group's section symbol as the
1276 // signature symbol.
1277 if (strcmp(p->section->name(), p->signature) != 0)
1278 {
1279 const char* name = this->namepool_.add(p->signature,
1280 true, NULL);
1281 p->section->set_name(name);
1282 }
1283 p->section->set_needs_symtab_index();
1284 p->section->set_info_section_symndx(p->section);
1285 }
1286 }
1287
1288 this->group_signatures_.clear();
1289 }
1290
1291 // Find the first read-only PT_LOAD segment, creating one if
1292 // necessary.
1293
1294 Output_segment*
1295 Layout::find_first_load_seg()
1296 {
1297 for (Segment_list::const_iterator p = this->segment_list_.begin();
1298 p != this->segment_list_.end();
1299 ++p)
1300 {
1301 if ((*p)->type() == elfcpp::PT_LOAD
1302 && ((*p)->flags() & elfcpp::PF_R) != 0
1303 && (parameters->options().omagic()
1304 || ((*p)->flags() & elfcpp::PF_W) == 0))
1305 return *p;
1306 }
1307
1308 gold_assert(!this->script_options_->saw_phdrs_clause());
1309
1310 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1311 elfcpp::PF_R);
1312 return load_seg;
1313 }
1314
1315 // Save states of all current output segments. Store saved states
1316 // in SEGMENT_STATES.
1317
1318 void
1319 Layout::save_segments(Segment_states* segment_states)
1320 {
1321 for (Segment_list::const_iterator p = this->segment_list_.begin();
1322 p != this->segment_list_.end();
1323 ++p)
1324 {
1325 Output_segment* segment = *p;
1326 // Shallow copy.
1327 Output_segment* copy = new Output_segment(*segment);
1328 (*segment_states)[segment] = copy;
1329 }
1330 }
1331
1332 // Restore states of output segments and delete any segment not found in
1333 // SEGMENT_STATES.
1334
1335 void
1336 Layout::restore_segments(const Segment_states* segment_states)
1337 {
1338 // Go through the segment list and remove any segment added in the
1339 // relaxation loop.
1340 this->tls_segment_ = NULL;
1341 this->relro_segment_ = NULL;
1342 Segment_list::iterator list_iter = this->segment_list_.begin();
1343 while (list_iter != this->segment_list_.end())
1344 {
1345 Output_segment* segment = *list_iter;
1346 Segment_states::const_iterator states_iter =
1347 segment_states->find(segment);
1348 if (states_iter != segment_states->end())
1349 {
1350 const Output_segment* copy = states_iter->second;
1351 // Shallow copy to restore states.
1352 *segment = *copy;
1353
1354 // Also fix up TLS and RELRO segment pointers as appropriate.
1355 if (segment->type() == elfcpp::PT_TLS)
1356 this->tls_segment_ = segment;
1357 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1358 this->relro_segment_ = segment;
1359
1360 ++list_iter;
1361 }
1362 else
1363 {
1364 list_iter = this->segment_list_.erase(list_iter);
1365 // This is a segment created during section layout. It should be
1366 // safe to remove it since we should have removed all pointers to it.
1367 delete segment;
1368 }
1369 }
1370 }
1371
1372 // Clean up after relaxation so that sections can be laid out again.
1373
1374 void
1375 Layout::clean_up_after_relaxation()
1376 {
1377 // Restore the segments to point state just prior to the relaxation loop.
1378 Script_sections* script_section = this->script_options_->script_sections();
1379 script_section->release_segments();
1380 this->restore_segments(this->segment_states_);
1381
1382 // Reset section addresses and file offsets
1383 for (Section_list::iterator p = this->section_list_.begin();
1384 p != this->section_list_.end();
1385 ++p)
1386 {
1387 (*p)->reset_address_and_file_offset();
1388 (*p)->restore_states();
1389 }
1390
1391 // Reset special output object address and file offsets.
1392 for (Data_list::iterator p = this->special_output_list_.begin();
1393 p != this->special_output_list_.end();
1394 ++p)
1395 (*p)->reset_address_and_file_offset();
1396
1397 // A linker script may have created some output section data objects.
1398 // They are useless now.
1399 for (Output_section_data_list::const_iterator p =
1400 this->script_output_section_data_list_.begin();
1401 p != this->script_output_section_data_list_.end();
1402 ++p)
1403 delete *p;
1404 this->script_output_section_data_list_.clear();
1405 }
1406
1407 // Prepare for relaxation.
1408
1409 void
1410 Layout::prepare_for_relaxation()
1411 {
1412 // Create an relaxation debug check if in debugging mode.
1413 if (is_debugging_enabled(DEBUG_RELAXATION))
1414 this->relaxation_debug_check_ = new Relaxation_debug_check();
1415
1416 // Save segment states.
1417 this->segment_states_ = new Segment_states();
1418 this->save_segments(this->segment_states_);
1419
1420 for(Section_list::const_iterator p = this->section_list_.begin();
1421 p != this->section_list_.end();
1422 ++p)
1423 (*p)->save_states();
1424
1425 if (is_debugging_enabled(DEBUG_RELAXATION))
1426 this->relaxation_debug_check_->check_output_data_for_reset_values(
1427 this->section_list_, this->special_output_list_);
1428
1429 // Also enable recording of output section data from scripts.
1430 this->record_output_section_data_from_script_ = true;
1431 }
1432
1433 // Relaxation loop body: If target has no relaxation, this runs only once
1434 // Otherwise, the target relaxation hook is called at the end of
1435 // each iteration. If the hook returns true, it means re-layout of
1436 // section is required.
1437 //
1438 // The number of segments created by a linking script without a PHDRS
1439 // clause may be affected by section sizes and alignments. There is
1440 // a remote chance that relaxation causes different number of PT_LOAD
1441 // segments are created and sections are attached to different segments.
1442 // Therefore, we always throw away all segments created during section
1443 // layout. In order to be able to restart the section layout, we keep
1444 // a copy of the segment list right before the relaxation loop and use
1445 // that to restore the segments.
1446 //
1447 // PASS is the current relaxation pass number.
1448 // SYMTAB is a symbol table.
1449 // PLOAD_SEG is the address of a pointer for the load segment.
1450 // PHDR_SEG is a pointer to the PHDR segment.
1451 // SEGMENT_HEADERS points to the output segment header.
1452 // FILE_HEADER points to the output file header.
1453 // PSHNDX is the address to store the output section index.
1454
1455 off_t inline
1456 Layout::relaxation_loop_body(
1457 int pass,
1458 Target* target,
1459 Symbol_table* symtab,
1460 Output_segment** pload_seg,
1461 Output_segment* phdr_seg,
1462 Output_segment_headers* segment_headers,
1463 Output_file_header* file_header,
1464 unsigned int* pshndx)
1465 {
1466 // If this is not the first iteration, we need to clean up after
1467 // relaxation so that we can lay out the sections again.
1468 if (pass != 0)
1469 this->clean_up_after_relaxation();
1470
1471 // If there is a SECTIONS clause, put all the input sections into
1472 // the required order.
1473 Output_segment* load_seg;
1474 if (this->script_options_->saw_sections_clause())
1475 load_seg = this->set_section_addresses_from_script(symtab);
1476 else if (parameters->options().relocatable())
1477 load_seg = NULL;
1478 else
1479 load_seg = this->find_first_load_seg();
1480
1481 if (parameters->options().oformat_enum()
1482 != General_options::OBJECT_FORMAT_ELF)
1483 load_seg = NULL;
1484
1485 // If the user set the address of the text segment, that may not be
1486 // compatible with putting the segment headers and file headers into
1487 // that segment.
1488 if (parameters->options().user_set_Ttext())
1489 load_seg = NULL;
1490
1491 gold_assert(phdr_seg == NULL
1492 || load_seg != NULL
1493 || this->script_options_->saw_sections_clause());
1494
1495 // Lay out the segment headers.
1496 if (!parameters->options().relocatable())
1497 {
1498 gold_assert(segment_headers != NULL);
1499 if (load_seg != NULL)
1500 load_seg->add_initial_output_data(segment_headers);
1501 if (phdr_seg != NULL)
1502 phdr_seg->add_initial_output_data(segment_headers);
1503 }
1504
1505 // Lay out the file header.
1506 if (load_seg != NULL)
1507 load_seg->add_initial_output_data(file_header);
1508
1509 if (this->script_options_->saw_phdrs_clause()
1510 && !parameters->options().relocatable())
1511 {
1512 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1513 // clause in a linker script.
1514 Script_sections* ss = this->script_options_->script_sections();
1515 ss->put_headers_in_phdrs(file_header, segment_headers);
1516 }
1517
1518 // We set the output section indexes in set_segment_offsets and
1519 // set_section_indexes.
1520 *pshndx = 1;
1521
1522 // Set the file offsets of all the segments, and all the sections
1523 // they contain.
1524 off_t off;
1525 if (!parameters->options().relocatable())
1526 off = this->set_segment_offsets(target, load_seg, pshndx);
1527 else
1528 off = this->set_relocatable_section_offsets(file_header, pshndx);
1529
1530 // Verify that the dummy relaxation does not change anything.
1531 if (is_debugging_enabled(DEBUG_RELAXATION))
1532 {
1533 if (pass == 0)
1534 this->relaxation_debug_check_->read_sections(this->section_list_);
1535 else
1536 this->relaxation_debug_check_->verify_sections(this->section_list_);
1537 }
1538
1539 *pload_seg = load_seg;
1540 return off;
1541 }
1542
1543 // Finalize the layout. When this is called, we have created all the
1544 // output sections and all the output segments which are based on
1545 // input sections. We have several things to do, and we have to do
1546 // them in the right order, so that we get the right results correctly
1547 // and efficiently.
1548
1549 // 1) Finalize the list of output segments and create the segment
1550 // table header.
1551
1552 // 2) Finalize the dynamic symbol table and associated sections.
1553
1554 // 3) Determine the final file offset of all the output segments.
1555
1556 // 4) Determine the final file offset of all the SHF_ALLOC output
1557 // sections.
1558
1559 // 5) Create the symbol table sections and the section name table
1560 // section.
1561
1562 // 6) Finalize the symbol table: set symbol values to their final
1563 // value and make a final determination of which symbols are going
1564 // into the output symbol table.
1565
1566 // 7) Create the section table header.
1567
1568 // 8) Determine the final file offset of all the output sections which
1569 // are not SHF_ALLOC, including the section table header.
1570
1571 // 9) Finalize the ELF file header.
1572
1573 // This function returns the size of the output file.
1574
1575 off_t
1576 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1577 Target* target, const Task* task)
1578 {
1579 target->finalize_sections(this, input_objects, symtab);
1580
1581 this->count_local_symbols(task, input_objects);
1582
1583 this->link_stabs_sections();
1584
1585 Output_segment* phdr_seg = NULL;
1586 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1587 {
1588 // There was a dynamic object in the link. We need to create
1589 // some information for the dynamic linker.
1590
1591 // Create the PT_PHDR segment which will hold the program
1592 // headers.
1593 if (!this->script_options_->saw_phdrs_clause())
1594 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1595
1596 // Create the dynamic symbol table, including the hash table.
1597 Output_section* dynstr;
1598 std::vector<Symbol*> dynamic_symbols;
1599 unsigned int local_dynamic_count;
1600 Versions versions(*this->script_options()->version_script_info(),
1601 &this->dynpool_);
1602 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1603 &local_dynamic_count, &dynamic_symbols,
1604 &versions);
1605
1606 // Create the .interp section to hold the name of the
1607 // interpreter, and put it in a PT_INTERP segment.
1608 if (!parameters->options().shared())
1609 this->create_interp(target);
1610
1611 // Finish the .dynamic section to hold the dynamic data, and put
1612 // it in a PT_DYNAMIC segment.
1613 this->finish_dynamic_section(input_objects, symtab);
1614
1615 // We should have added everything we need to the dynamic string
1616 // table.
1617 this->dynpool_.set_string_offsets();
1618
1619 // Create the version sections. We can't do this until the
1620 // dynamic string table is complete.
1621 this->create_version_sections(&versions, symtab, local_dynamic_count,
1622 dynamic_symbols, dynstr);
1623
1624 // Set the size of the _DYNAMIC symbol. We can't do this until
1625 // after we call create_version_sections.
1626 this->set_dynamic_symbol_size(symtab);
1627 }
1628
1629 if (this->incremental_inputs_)
1630 {
1631 this->incremental_inputs_->finalize();
1632 this->create_incremental_info_sections();
1633 }
1634
1635 // Create segment headers.
1636 Output_segment_headers* segment_headers =
1637 (parameters->options().relocatable()
1638 ? NULL
1639 : new Output_segment_headers(this->segment_list_));
1640
1641 // Lay out the file header.
1642 Output_file_header* file_header
1643 = new Output_file_header(target, symtab, segment_headers,
1644 parameters->options().entry());
1645
1646 this->special_output_list_.push_back(file_header);
1647 if (segment_headers != NULL)
1648 this->special_output_list_.push_back(segment_headers);
1649
1650 // Find approriate places for orphan output sections if we are using
1651 // a linker script.
1652 if (this->script_options_->saw_sections_clause())
1653 this->place_orphan_sections_in_script();
1654
1655 Output_segment* load_seg;
1656 off_t off;
1657 unsigned int shndx;
1658 int pass = 0;
1659
1660 // Take a snapshot of the section layout as needed.
1661 if (target->may_relax())
1662 this->prepare_for_relaxation();
1663
1664 // Run the relaxation loop to lay out sections.
1665 do
1666 {
1667 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1668 phdr_seg, segment_headers, file_header,
1669 &shndx);
1670 pass++;
1671 }
1672 while (target->may_relax()
1673 && target->relax(pass, input_objects, symtab, this));
1674
1675 // Set the file offsets of all the non-data sections we've seen so
1676 // far which don't have to wait for the input sections. We need
1677 // this in order to finalize local symbols in non-allocated
1678 // sections.
1679 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1680
1681 // Set the section indexes of all unallocated sections seen so far,
1682 // in case any of them are somehow referenced by a symbol.
1683 shndx = this->set_section_indexes(shndx);
1684
1685 // Create the symbol table sections.
1686 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1687 if (!parameters->doing_static_link())
1688 this->assign_local_dynsym_offsets(input_objects);
1689
1690 // Process any symbol assignments from a linker script. This must
1691 // be called after the symbol table has been finalized.
1692 this->script_options_->finalize_symbols(symtab, this);
1693
1694 // Create the .shstrtab section.
1695 Output_section* shstrtab_section = this->create_shstrtab();
1696
1697 // Set the file offsets of the rest of the non-data sections which
1698 // don't have to wait for the input sections.
1699 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1700
1701 // Now that all sections have been created, set the section indexes
1702 // for any sections which haven't been done yet.
1703 shndx = this->set_section_indexes(shndx);
1704
1705 // Create the section table header.
1706 this->create_shdrs(shstrtab_section, &off);
1707
1708 // If there are no sections which require postprocessing, we can
1709 // handle the section names now, and avoid a resize later.
1710 if (!this->any_postprocessing_sections_)
1711 off = this->set_section_offsets(off,
1712 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1713
1714 file_header->set_section_info(this->section_headers_, shstrtab_section);
1715
1716 // Now we know exactly where everything goes in the output file
1717 // (except for non-allocated sections which require postprocessing).
1718 Output_data::layout_complete();
1719
1720 this->output_file_size_ = off;
1721
1722 return off;
1723 }
1724
1725 // Create a note header following the format defined in the ELF ABI.
1726 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1727 // of the section to create, DESCSZ is the size of the descriptor.
1728 // ALLOCATE is true if the section should be allocated in memory.
1729 // This returns the new note section. It sets *TRAILING_PADDING to
1730 // the number of trailing zero bytes required.
1731
1732 Output_section*
1733 Layout::create_note(const char* name, int note_type,
1734 const char* section_name, size_t descsz,
1735 bool allocate, size_t* trailing_padding)
1736 {
1737 // Authorities all agree that the values in a .note field should
1738 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1739 // they differ on what the alignment is for 64-bit binaries.
1740 // The GABI says unambiguously they take 8-byte alignment:
1741 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1742 // Other documentation says alignment should always be 4 bytes:
1743 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1744 // GNU ld and GNU readelf both support the latter (at least as of
1745 // version 2.16.91), and glibc always generates the latter for
1746 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1747 // here.
1748 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1749 const int size = parameters->target().get_size();
1750 #else
1751 const int size = 32;
1752 #endif
1753
1754 // The contents of the .note section.
1755 size_t namesz = strlen(name) + 1;
1756 size_t aligned_namesz = align_address(namesz, size / 8);
1757 size_t aligned_descsz = align_address(descsz, size / 8);
1758
1759 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1760
1761 unsigned char* buffer = new unsigned char[notehdrsz];
1762 memset(buffer, 0, notehdrsz);
1763
1764 bool is_big_endian = parameters->target().is_big_endian();
1765
1766 if (size == 32)
1767 {
1768 if (!is_big_endian)
1769 {
1770 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1771 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1772 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1773 }
1774 else
1775 {
1776 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1777 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1778 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1779 }
1780 }
1781 else if (size == 64)
1782 {
1783 if (!is_big_endian)
1784 {
1785 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1786 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1787 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1788 }
1789 else
1790 {
1791 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1792 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1793 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1794 }
1795 }
1796 else
1797 gold_unreachable();
1798
1799 memcpy(buffer + 3 * (size / 8), name, namesz);
1800
1801 elfcpp::Elf_Xword flags = 0;
1802 if (allocate)
1803 flags = elfcpp::SHF_ALLOC;
1804 Output_section* os = this->choose_output_section(NULL, section_name,
1805 elfcpp::SHT_NOTE,
1806 flags, false, false,
1807 false, false, false, false);
1808 if (os == NULL)
1809 return NULL;
1810
1811 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1812 size / 8,
1813 "** note header");
1814 os->add_output_section_data(posd);
1815
1816 *trailing_padding = aligned_descsz - descsz;
1817
1818 return os;
1819 }
1820
1821 // For an executable or shared library, create a note to record the
1822 // version of gold used to create the binary.
1823
1824 void
1825 Layout::create_gold_note()
1826 {
1827 if (parameters->options().relocatable())
1828 return;
1829
1830 std::string desc = std::string("gold ") + gold::get_version_string();
1831
1832 size_t trailing_padding;
1833 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1834 ".note.gnu.gold-version", desc.size(),
1835 false, &trailing_padding);
1836 if (os == NULL)
1837 return;
1838
1839 Output_section_data* posd = new Output_data_const(desc, 4);
1840 os->add_output_section_data(posd);
1841
1842 if (trailing_padding > 0)
1843 {
1844 posd = new Output_data_zero_fill(trailing_padding, 0);
1845 os->add_output_section_data(posd);
1846 }
1847 }
1848
1849 // Record whether the stack should be executable. This can be set
1850 // from the command line using the -z execstack or -z noexecstack
1851 // options. Otherwise, if any input file has a .note.GNU-stack
1852 // section with the SHF_EXECINSTR flag set, the stack should be
1853 // executable. Otherwise, if at least one input file a
1854 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1855 // section, we use the target default for whether the stack should be
1856 // executable. Otherwise, we don't generate a stack note. When
1857 // generating a object file, we create a .note.GNU-stack section with
1858 // the appropriate marking. When generating an executable or shared
1859 // library, we create a PT_GNU_STACK segment.
1860
1861 void
1862 Layout::create_executable_stack_info()
1863 {
1864 bool is_stack_executable;
1865 if (parameters->options().is_execstack_set())
1866 is_stack_executable = parameters->options().is_stack_executable();
1867 else if (!this->input_with_gnu_stack_note_)
1868 return;
1869 else
1870 {
1871 if (this->input_requires_executable_stack_)
1872 is_stack_executable = true;
1873 else if (this->input_without_gnu_stack_note_)
1874 is_stack_executable =
1875 parameters->target().is_default_stack_executable();
1876 else
1877 is_stack_executable = false;
1878 }
1879
1880 if (parameters->options().relocatable())
1881 {
1882 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1883 elfcpp::Elf_Xword flags = 0;
1884 if (is_stack_executable)
1885 flags |= elfcpp::SHF_EXECINSTR;
1886 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, false,
1887 false, false, false, false);
1888 }
1889 else
1890 {
1891 if (this->script_options_->saw_phdrs_clause())
1892 return;
1893 int flags = elfcpp::PF_R | elfcpp::PF_W;
1894 if (is_stack_executable)
1895 flags |= elfcpp::PF_X;
1896 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1897 }
1898 }
1899
1900 // If --build-id was used, set up the build ID note.
1901
1902 void
1903 Layout::create_build_id()
1904 {
1905 if (!parameters->options().user_set_build_id())
1906 return;
1907
1908 const char* style = parameters->options().build_id();
1909 if (strcmp(style, "none") == 0)
1910 return;
1911
1912 // Set DESCSZ to the size of the note descriptor. When possible,
1913 // set DESC to the note descriptor contents.
1914 size_t descsz;
1915 std::string desc;
1916 if (strcmp(style, "md5") == 0)
1917 descsz = 128 / 8;
1918 else if (strcmp(style, "sha1") == 0)
1919 descsz = 160 / 8;
1920 else if (strcmp(style, "uuid") == 0)
1921 {
1922 const size_t uuidsz = 128 / 8;
1923
1924 char buffer[uuidsz];
1925 memset(buffer, 0, uuidsz);
1926
1927 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1928 if (descriptor < 0)
1929 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1930 strerror(errno));
1931 else
1932 {
1933 ssize_t got = ::read(descriptor, buffer, uuidsz);
1934 release_descriptor(descriptor, true);
1935 if (got < 0)
1936 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1937 else if (static_cast<size_t>(got) != uuidsz)
1938 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1939 uuidsz, got);
1940 }
1941
1942 desc.assign(buffer, uuidsz);
1943 descsz = uuidsz;
1944 }
1945 else if (strncmp(style, "0x", 2) == 0)
1946 {
1947 hex_init();
1948 const char* p = style + 2;
1949 while (*p != '\0')
1950 {
1951 if (hex_p(p[0]) && hex_p(p[1]))
1952 {
1953 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1954 desc += c;
1955 p += 2;
1956 }
1957 else if (*p == '-' || *p == ':')
1958 ++p;
1959 else
1960 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1961 style);
1962 }
1963 descsz = desc.size();
1964 }
1965 else
1966 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1967
1968 // Create the note.
1969 size_t trailing_padding;
1970 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1971 ".note.gnu.build-id", descsz, true,
1972 &trailing_padding);
1973 if (os == NULL)
1974 return;
1975
1976 if (!desc.empty())
1977 {
1978 // We know the value already, so we fill it in now.
1979 gold_assert(desc.size() == descsz);
1980
1981 Output_section_data* posd = new Output_data_const(desc, 4);
1982 os->add_output_section_data(posd);
1983
1984 if (trailing_padding != 0)
1985 {
1986 posd = new Output_data_zero_fill(trailing_padding, 0);
1987 os->add_output_section_data(posd);
1988 }
1989 }
1990 else
1991 {
1992 // We need to compute a checksum after we have completed the
1993 // link.
1994 gold_assert(trailing_padding == 0);
1995 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1996 os->add_output_section_data(this->build_id_note_);
1997 }
1998 }
1999
2000 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2001 // field of the former should point to the latter. I'm not sure who
2002 // started this, but the GNU linker does it, and some tools depend
2003 // upon it.
2004
2005 void
2006 Layout::link_stabs_sections()
2007 {
2008 if (!this->have_stabstr_section_)
2009 return;
2010
2011 for (Section_list::iterator p = this->section_list_.begin();
2012 p != this->section_list_.end();
2013 ++p)
2014 {
2015 if ((*p)->type() != elfcpp::SHT_STRTAB)
2016 continue;
2017
2018 const char* name = (*p)->name();
2019 if (strncmp(name, ".stab", 5) != 0)
2020 continue;
2021
2022 size_t len = strlen(name);
2023 if (strcmp(name + len - 3, "str") != 0)
2024 continue;
2025
2026 std::string stab_name(name, len - 3);
2027 Output_section* stab_sec;
2028 stab_sec = this->find_output_section(stab_name.c_str());
2029 if (stab_sec != NULL)
2030 stab_sec->set_link_section(*p);
2031 }
2032 }
2033
2034 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2035 // for the next run of incremental linking to check what has changed.
2036
2037 void
2038 Layout::create_incremental_info_sections()
2039 {
2040 gold_assert(this->incremental_inputs_ != NULL);
2041
2042 // Add the .gnu_incremental_inputs section.
2043 const char *incremental_inputs_name =
2044 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2045 Output_section* inputs_os =
2046 this->make_output_section(incremental_inputs_name,
2047 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2048 false, false, false, false, false);
2049 Output_section_data* posd =
2050 this->incremental_inputs_->create_incremental_inputs_section_data();
2051 inputs_os->add_output_section_data(posd);
2052
2053 // Add the .gnu_incremental_strtab section.
2054 const char *incremental_strtab_name =
2055 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2056 Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2057 elfcpp::SHT_STRTAB,
2058 0, false, false,
2059 false, false, false);
2060 Output_data_strtab* strtab_data =
2061 new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2062 strtab_os->add_output_section_data(strtab_data);
2063
2064 inputs_os->set_link_section(strtab_data);
2065 }
2066
2067 // Return whether SEG1 should be before SEG2 in the output file. This
2068 // is based entirely on the segment type and flags. When this is
2069 // called the segment addresses has normally not yet been set.
2070
2071 bool
2072 Layout::segment_precedes(const Output_segment* seg1,
2073 const Output_segment* seg2)
2074 {
2075 elfcpp::Elf_Word type1 = seg1->type();
2076 elfcpp::Elf_Word type2 = seg2->type();
2077
2078 // The single PT_PHDR segment is required to precede any loadable
2079 // segment. We simply make it always first.
2080 if (type1 == elfcpp::PT_PHDR)
2081 {
2082 gold_assert(type2 != elfcpp::PT_PHDR);
2083 return true;
2084 }
2085 if (type2 == elfcpp::PT_PHDR)
2086 return false;
2087
2088 // The single PT_INTERP segment is required to precede any loadable
2089 // segment. We simply make it always second.
2090 if (type1 == elfcpp::PT_INTERP)
2091 {
2092 gold_assert(type2 != elfcpp::PT_INTERP);
2093 return true;
2094 }
2095 if (type2 == elfcpp::PT_INTERP)
2096 return false;
2097
2098 // We then put PT_LOAD segments before any other segments.
2099 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2100 return true;
2101 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2102 return false;
2103
2104 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2105 // segment, because that is where the dynamic linker expects to find
2106 // it (this is just for efficiency; other positions would also work
2107 // correctly).
2108 if (type1 == elfcpp::PT_TLS
2109 && type2 != elfcpp::PT_TLS
2110 && type2 != elfcpp::PT_GNU_RELRO)
2111 return false;
2112 if (type2 == elfcpp::PT_TLS
2113 && type1 != elfcpp::PT_TLS
2114 && type1 != elfcpp::PT_GNU_RELRO)
2115 return true;
2116
2117 // We put the PT_GNU_RELRO segment last, because that is where the
2118 // dynamic linker expects to find it (as with PT_TLS, this is just
2119 // for efficiency).
2120 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2121 return false;
2122 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2123 return true;
2124
2125 const elfcpp::Elf_Word flags1 = seg1->flags();
2126 const elfcpp::Elf_Word flags2 = seg2->flags();
2127
2128 // The order of non-PT_LOAD segments is unimportant. We simply sort
2129 // by the numeric segment type and flags values. There should not
2130 // be more than one segment with the same type and flags.
2131 if (type1 != elfcpp::PT_LOAD)
2132 {
2133 if (type1 != type2)
2134 return type1 < type2;
2135 gold_assert(flags1 != flags2);
2136 return flags1 < flags2;
2137 }
2138
2139 // If the addresses are set already, sort by load address.
2140 if (seg1->are_addresses_set())
2141 {
2142 if (!seg2->are_addresses_set())
2143 return true;
2144
2145 unsigned int section_count1 = seg1->output_section_count();
2146 unsigned int section_count2 = seg2->output_section_count();
2147 if (section_count1 == 0 && section_count2 > 0)
2148 return true;
2149 if (section_count1 > 0 && section_count2 == 0)
2150 return false;
2151
2152 uint64_t paddr1 = seg1->first_section_load_address();
2153 uint64_t paddr2 = seg2->first_section_load_address();
2154 if (paddr1 != paddr2)
2155 return paddr1 < paddr2;
2156 }
2157 else if (seg2->are_addresses_set())
2158 return false;
2159
2160 // A segment which holds large data comes after a segment which does
2161 // not hold large data.
2162 if (seg1->is_large_data_segment())
2163 {
2164 if (!seg2->is_large_data_segment())
2165 return false;
2166 }
2167 else if (seg2->is_large_data_segment())
2168 return true;
2169
2170 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2171 // segments come before writable segments. Then writable segments
2172 // with data come before writable segments without data. Then
2173 // executable segments come before non-executable segments. Then
2174 // the unlikely case of a non-readable segment comes before the
2175 // normal case of a readable segment. If there are multiple
2176 // segments with the same type and flags, we require that the
2177 // address be set, and we sort by virtual address and then physical
2178 // address.
2179 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2180 return (flags1 & elfcpp::PF_W) == 0;
2181 if ((flags1 & elfcpp::PF_W) != 0
2182 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2183 return seg1->has_any_data_sections();
2184 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2185 return (flags1 & elfcpp::PF_X) != 0;
2186 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2187 return (flags1 & elfcpp::PF_R) == 0;
2188
2189 // We shouldn't get here--we shouldn't create segments which we
2190 // can't distinguish.
2191 gold_unreachable();
2192 }
2193
2194 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2195
2196 static off_t
2197 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2198 {
2199 uint64_t unsigned_off = off;
2200 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2201 | (addr & (abi_pagesize - 1)));
2202 if (aligned_off < unsigned_off)
2203 aligned_off += abi_pagesize;
2204 return aligned_off;
2205 }
2206
2207 // Set the file offsets of all the segments, and all the sections they
2208 // contain. They have all been created. LOAD_SEG must be be laid out
2209 // first. Return the offset of the data to follow.
2210
2211 off_t
2212 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2213 unsigned int *pshndx)
2214 {
2215 // Sort them into the final order.
2216 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2217 Layout::Compare_segments());
2218
2219 // Find the PT_LOAD segments, and set their addresses and offsets
2220 // and their section's addresses and offsets.
2221 uint64_t addr;
2222 if (parameters->options().user_set_Ttext())
2223 addr = parameters->options().Ttext();
2224 else if (parameters->options().output_is_position_independent())
2225 addr = 0;
2226 else
2227 addr = target->default_text_segment_address();
2228 off_t off = 0;
2229
2230 // If LOAD_SEG is NULL, then the file header and segment headers
2231 // will not be loadable. But they still need to be at offset 0 in
2232 // the file. Set their offsets now.
2233 if (load_seg == NULL)
2234 {
2235 for (Data_list::iterator p = this->special_output_list_.begin();
2236 p != this->special_output_list_.end();
2237 ++p)
2238 {
2239 off = align_address(off, (*p)->addralign());
2240 (*p)->set_address_and_file_offset(0, off);
2241 off += (*p)->data_size();
2242 }
2243 }
2244
2245 unsigned int increase_relro = this->increase_relro_;
2246 if (this->script_options_->saw_sections_clause())
2247 increase_relro = 0;
2248
2249 const bool check_sections = parameters->options().check_sections();
2250 Output_segment* last_load_segment = NULL;
2251
2252 bool was_readonly = false;
2253 for (Segment_list::iterator p = this->segment_list_.begin();
2254 p != this->segment_list_.end();
2255 ++p)
2256 {
2257 if ((*p)->type() == elfcpp::PT_LOAD)
2258 {
2259 if (load_seg != NULL && load_seg != *p)
2260 gold_unreachable();
2261 load_seg = NULL;
2262
2263 bool are_addresses_set = (*p)->are_addresses_set();
2264 if (are_addresses_set)
2265 {
2266 // When it comes to setting file offsets, we care about
2267 // the physical address.
2268 addr = (*p)->paddr();
2269 }
2270 else if (parameters->options().user_set_Tdata()
2271 && ((*p)->flags() & elfcpp::PF_W) != 0
2272 && (!parameters->options().user_set_Tbss()
2273 || (*p)->has_any_data_sections()))
2274 {
2275 addr = parameters->options().Tdata();
2276 are_addresses_set = true;
2277 }
2278 else if (parameters->options().user_set_Tbss()
2279 && ((*p)->flags() & elfcpp::PF_W) != 0
2280 && !(*p)->has_any_data_sections())
2281 {
2282 addr = parameters->options().Tbss();
2283 are_addresses_set = true;
2284 }
2285
2286 uint64_t orig_addr = addr;
2287 uint64_t orig_off = off;
2288
2289 uint64_t aligned_addr = 0;
2290 uint64_t abi_pagesize = target->abi_pagesize();
2291 uint64_t common_pagesize = target->common_pagesize();
2292
2293 if (!parameters->options().nmagic()
2294 && !parameters->options().omagic())
2295 (*p)->set_minimum_p_align(common_pagesize);
2296
2297 if (!are_addresses_set)
2298 {
2299 // If the last segment was readonly, and this one is
2300 // not, then skip the address forward one page,
2301 // maintaining the same position within the page. This
2302 // lets us store both segments overlapping on a single
2303 // page in the file, but the loader will put them on
2304 // different pages in memory.
2305
2306 addr = align_address(addr, (*p)->maximum_alignment());
2307 aligned_addr = addr;
2308
2309 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2310 {
2311 if ((addr & (abi_pagesize - 1)) != 0)
2312 addr = addr + abi_pagesize;
2313 }
2314
2315 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2316 }
2317
2318 if (!parameters->options().nmagic()
2319 && !parameters->options().omagic())
2320 off = align_file_offset(off, addr, abi_pagesize);
2321 else if (load_seg == NULL)
2322 {
2323 // This is -N or -n with a section script which prevents
2324 // us from using a load segment. We need to ensure that
2325 // the file offset is aligned to the alignment of the
2326 // segment. This is because the linker script
2327 // implicitly assumed a zero offset. If we don't align
2328 // here, then the alignment of the sections in the
2329 // linker script may not match the alignment of the
2330 // sections in the set_section_addresses call below,
2331 // causing an error about dot moving backward.
2332 off = align_address(off, (*p)->maximum_alignment());
2333 }
2334
2335 unsigned int shndx_hold = *pshndx;
2336 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2337 increase_relro,
2338 &off, pshndx);
2339
2340 // Now that we know the size of this segment, we may be able
2341 // to save a page in memory, at the cost of wasting some
2342 // file space, by instead aligning to the start of a new
2343 // page. Here we use the real machine page size rather than
2344 // the ABI mandated page size.
2345
2346 if (!are_addresses_set && aligned_addr != addr)
2347 {
2348 uint64_t first_off = (common_pagesize
2349 - (aligned_addr
2350 & (common_pagesize - 1)));
2351 uint64_t last_off = new_addr & (common_pagesize - 1);
2352 if (first_off > 0
2353 && last_off > 0
2354 && ((aligned_addr & ~ (common_pagesize - 1))
2355 != (new_addr & ~ (common_pagesize - 1)))
2356 && first_off + last_off <= common_pagesize)
2357 {
2358 *pshndx = shndx_hold;
2359 addr = align_address(aligned_addr, common_pagesize);
2360 addr = align_address(addr, (*p)->maximum_alignment());
2361 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2362 off = align_file_offset(off, addr, abi_pagesize);
2363 new_addr = (*p)->set_section_addresses(this, true, addr,
2364 increase_relro,
2365 &off, pshndx);
2366 }
2367 }
2368
2369 addr = new_addr;
2370
2371 if (((*p)->flags() & elfcpp::PF_W) == 0)
2372 was_readonly = true;
2373
2374 // Implement --check-sections. We know that the segments
2375 // are sorted by LMA.
2376 if (check_sections && last_load_segment != NULL)
2377 {
2378 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2379 if (last_load_segment->paddr() + last_load_segment->memsz()
2380 > (*p)->paddr())
2381 {
2382 unsigned long long lb1 = last_load_segment->paddr();
2383 unsigned long long le1 = lb1 + last_load_segment->memsz();
2384 unsigned long long lb2 = (*p)->paddr();
2385 unsigned long long le2 = lb2 + (*p)->memsz();
2386 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2387 "[0x%llx -> 0x%llx]"),
2388 lb1, le1, lb2, le2);
2389 }
2390 }
2391 last_load_segment = *p;
2392 }
2393 }
2394
2395 // Handle the non-PT_LOAD segments, setting their offsets from their
2396 // section's offsets.
2397 for (Segment_list::iterator p = this->segment_list_.begin();
2398 p != this->segment_list_.end();
2399 ++p)
2400 {
2401 if ((*p)->type() != elfcpp::PT_LOAD)
2402 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2403 ? increase_relro
2404 : 0);
2405 }
2406
2407 // Set the TLS offsets for each section in the PT_TLS segment.
2408 if (this->tls_segment_ != NULL)
2409 this->tls_segment_->set_tls_offsets();
2410
2411 return off;
2412 }
2413
2414 // Set the offsets of all the allocated sections when doing a
2415 // relocatable link. This does the same jobs as set_segment_offsets,
2416 // only for a relocatable link.
2417
2418 off_t
2419 Layout::set_relocatable_section_offsets(Output_data* file_header,
2420 unsigned int *pshndx)
2421 {
2422 off_t off = 0;
2423
2424 file_header->set_address_and_file_offset(0, 0);
2425 off += file_header->data_size();
2426
2427 for (Section_list::iterator p = this->section_list_.begin();
2428 p != this->section_list_.end();
2429 ++p)
2430 {
2431 // We skip unallocated sections here, except that group sections
2432 // have to come first.
2433 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2434 && (*p)->type() != elfcpp::SHT_GROUP)
2435 continue;
2436
2437 off = align_address(off, (*p)->addralign());
2438
2439 // The linker script might have set the address.
2440 if (!(*p)->is_address_valid())
2441 (*p)->set_address(0);
2442 (*p)->set_file_offset(off);
2443 (*p)->finalize_data_size();
2444 off += (*p)->data_size();
2445
2446 (*p)->set_out_shndx(*pshndx);
2447 ++*pshndx;
2448 }
2449
2450 return off;
2451 }
2452
2453 // Set the file offset of all the sections not associated with a
2454 // segment.
2455
2456 off_t
2457 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2458 {
2459 for (Section_list::iterator p = this->unattached_section_list_.begin();
2460 p != this->unattached_section_list_.end();
2461 ++p)
2462 {
2463 // The symtab section is handled in create_symtab_sections.
2464 if (*p == this->symtab_section_)
2465 continue;
2466
2467 // If we've already set the data size, don't set it again.
2468 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2469 continue;
2470
2471 if (pass == BEFORE_INPUT_SECTIONS_PASS
2472 && (*p)->requires_postprocessing())
2473 {
2474 (*p)->create_postprocessing_buffer();
2475 this->any_postprocessing_sections_ = true;
2476 }
2477
2478 if (pass == BEFORE_INPUT_SECTIONS_PASS
2479 && (*p)->after_input_sections())
2480 continue;
2481 else if (pass == POSTPROCESSING_SECTIONS_PASS
2482 && (!(*p)->after_input_sections()
2483 || (*p)->type() == elfcpp::SHT_STRTAB))
2484 continue;
2485 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2486 && (!(*p)->after_input_sections()
2487 || (*p)->type() != elfcpp::SHT_STRTAB))
2488 continue;
2489
2490 off = align_address(off, (*p)->addralign());
2491 (*p)->set_file_offset(off);
2492 (*p)->finalize_data_size();
2493 off += (*p)->data_size();
2494
2495 // At this point the name must be set.
2496 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2497 this->namepool_.add((*p)->name(), false, NULL);
2498 }
2499 return off;
2500 }
2501
2502 // Set the section indexes of all the sections not associated with a
2503 // segment.
2504
2505 unsigned int
2506 Layout::set_section_indexes(unsigned int shndx)
2507 {
2508 for (Section_list::iterator p = this->unattached_section_list_.begin();
2509 p != this->unattached_section_list_.end();
2510 ++p)
2511 {
2512 if (!(*p)->has_out_shndx())
2513 {
2514 (*p)->set_out_shndx(shndx);
2515 ++shndx;
2516 }
2517 }
2518 return shndx;
2519 }
2520
2521 // Set the section addresses according to the linker script. This is
2522 // only called when we see a SECTIONS clause. This returns the
2523 // program segment which should hold the file header and segment
2524 // headers, if any. It will return NULL if they should not be in a
2525 // segment.
2526
2527 Output_segment*
2528 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2529 {
2530 Script_sections* ss = this->script_options_->script_sections();
2531 gold_assert(ss->saw_sections_clause());
2532 return this->script_options_->set_section_addresses(symtab, this);
2533 }
2534
2535 // Place the orphan sections in the linker script.
2536
2537 void
2538 Layout::place_orphan_sections_in_script()
2539 {
2540 Script_sections* ss = this->script_options_->script_sections();
2541 gold_assert(ss->saw_sections_clause());
2542
2543 // Place each orphaned output section in the script.
2544 for (Section_list::iterator p = this->section_list_.begin();
2545 p != this->section_list_.end();
2546 ++p)
2547 {
2548 if (!(*p)->found_in_sections_clause())
2549 ss->place_orphan(*p);
2550 }
2551 }
2552
2553 // Count the local symbols in the regular symbol table and the dynamic
2554 // symbol table, and build the respective string pools.
2555
2556 void
2557 Layout::count_local_symbols(const Task* task,
2558 const Input_objects* input_objects)
2559 {
2560 // First, figure out an upper bound on the number of symbols we'll
2561 // be inserting into each pool. This helps us create the pools with
2562 // the right size, to avoid unnecessary hashtable resizing.
2563 unsigned int symbol_count = 0;
2564 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2565 p != input_objects->relobj_end();
2566 ++p)
2567 symbol_count += (*p)->local_symbol_count();
2568
2569 // Go from "upper bound" to "estimate." We overcount for two
2570 // reasons: we double-count symbols that occur in more than one
2571 // object file, and we count symbols that are dropped from the
2572 // output. Add it all together and assume we overcount by 100%.
2573 symbol_count /= 2;
2574
2575 // We assume all symbols will go into both the sympool and dynpool.
2576 this->sympool_.reserve(symbol_count);
2577 this->dynpool_.reserve(symbol_count);
2578
2579 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2580 p != input_objects->relobj_end();
2581 ++p)
2582 {
2583 Task_lock_obj<Object> tlo(task, *p);
2584 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2585 }
2586 }
2587
2588 // Create the symbol table sections. Here we also set the final
2589 // values of the symbols. At this point all the loadable sections are
2590 // fully laid out. SHNUM is the number of sections so far.
2591
2592 void
2593 Layout::create_symtab_sections(const Input_objects* input_objects,
2594 Symbol_table* symtab,
2595 unsigned int shnum,
2596 off_t* poff)
2597 {
2598 int symsize;
2599 unsigned int align;
2600 if (parameters->target().get_size() == 32)
2601 {
2602 symsize = elfcpp::Elf_sizes<32>::sym_size;
2603 align = 4;
2604 }
2605 else if (parameters->target().get_size() == 64)
2606 {
2607 symsize = elfcpp::Elf_sizes<64>::sym_size;
2608 align = 8;
2609 }
2610 else
2611 gold_unreachable();
2612
2613 off_t off = *poff;
2614 off = align_address(off, align);
2615 off_t startoff = off;
2616
2617 // Save space for the dummy symbol at the start of the section. We
2618 // never bother to write this out--it will just be left as zero.
2619 off += symsize;
2620 unsigned int local_symbol_index = 1;
2621
2622 // Add STT_SECTION symbols for each Output section which needs one.
2623 for (Section_list::iterator p = this->section_list_.begin();
2624 p != this->section_list_.end();
2625 ++p)
2626 {
2627 if (!(*p)->needs_symtab_index())
2628 (*p)->set_symtab_index(-1U);
2629 else
2630 {
2631 (*p)->set_symtab_index(local_symbol_index);
2632 ++local_symbol_index;
2633 off += symsize;
2634 }
2635 }
2636
2637 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2638 p != input_objects->relobj_end();
2639 ++p)
2640 {
2641 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2642 off, symtab);
2643 off += (index - local_symbol_index) * symsize;
2644 local_symbol_index = index;
2645 }
2646
2647 unsigned int local_symcount = local_symbol_index;
2648 gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2649
2650 off_t dynoff;
2651 size_t dyn_global_index;
2652 size_t dyncount;
2653 if (this->dynsym_section_ == NULL)
2654 {
2655 dynoff = 0;
2656 dyn_global_index = 0;
2657 dyncount = 0;
2658 }
2659 else
2660 {
2661 dyn_global_index = this->dynsym_section_->info();
2662 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2663 dynoff = this->dynsym_section_->offset() + locsize;
2664 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2665 gold_assert(static_cast<off_t>(dyncount * symsize)
2666 == this->dynsym_section_->data_size() - locsize);
2667 }
2668
2669 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2670 &this->sympool_, &local_symcount);
2671
2672 if (!parameters->options().strip_all())
2673 {
2674 this->sympool_.set_string_offsets();
2675
2676 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2677 Output_section* osymtab = this->make_output_section(symtab_name,
2678 elfcpp::SHT_SYMTAB,
2679 0, false, false,
2680 false, false, false);
2681 this->symtab_section_ = osymtab;
2682
2683 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2684 align,
2685 "** symtab");
2686 osymtab->add_output_section_data(pos);
2687
2688 // We generate a .symtab_shndx section if we have more than
2689 // SHN_LORESERVE sections. Technically it is possible that we
2690 // don't need one, because it is possible that there are no
2691 // symbols in any of sections with indexes larger than
2692 // SHN_LORESERVE. That is probably unusual, though, and it is
2693 // easier to always create one than to compute section indexes
2694 // twice (once here, once when writing out the symbols).
2695 if (shnum >= elfcpp::SHN_LORESERVE)
2696 {
2697 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2698 false, NULL);
2699 Output_section* osymtab_xindex =
2700 this->make_output_section(symtab_xindex_name,
2701 elfcpp::SHT_SYMTAB_SHNDX, 0, false,
2702 false, false, false, false);
2703
2704 size_t symcount = (off - startoff) / symsize;
2705 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2706
2707 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2708
2709 osymtab_xindex->set_link_section(osymtab);
2710 osymtab_xindex->set_addralign(4);
2711 osymtab_xindex->set_entsize(4);
2712
2713 osymtab_xindex->set_after_input_sections();
2714
2715 // This tells the driver code to wait until the symbol table
2716 // has written out before writing out the postprocessing
2717 // sections, including the .symtab_shndx section.
2718 this->any_postprocessing_sections_ = true;
2719 }
2720
2721 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2722 Output_section* ostrtab = this->make_output_section(strtab_name,
2723 elfcpp::SHT_STRTAB,
2724 0, false, false,
2725 false, false, false);
2726
2727 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2728 ostrtab->add_output_section_data(pstr);
2729
2730 osymtab->set_file_offset(startoff);
2731 osymtab->finalize_data_size();
2732 osymtab->set_link_section(ostrtab);
2733 osymtab->set_info(local_symcount);
2734 osymtab->set_entsize(symsize);
2735
2736 *poff = off;
2737 }
2738 }
2739
2740 // Create the .shstrtab section, which holds the names of the
2741 // sections. At the time this is called, we have created all the
2742 // output sections except .shstrtab itself.
2743
2744 Output_section*
2745 Layout::create_shstrtab()
2746 {
2747 // FIXME: We don't need to create a .shstrtab section if we are
2748 // stripping everything.
2749
2750 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2751
2752 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2753 false, false, false, false,
2754 false);
2755
2756 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
2757 {
2758 // We can't write out this section until we've set all the
2759 // section names, and we don't set the names of compressed
2760 // output sections until relocations are complete. FIXME: With
2761 // the current names we use, this is unnecessary.
2762 os->set_after_input_sections();
2763 }
2764
2765 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2766 os->add_output_section_data(posd);
2767
2768 return os;
2769 }
2770
2771 // Create the section headers. SIZE is 32 or 64. OFF is the file
2772 // offset.
2773
2774 void
2775 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2776 {
2777 Output_section_headers* oshdrs;
2778 oshdrs = new Output_section_headers(this,
2779 &this->segment_list_,
2780 &this->section_list_,
2781 &this->unattached_section_list_,
2782 &this->namepool_,
2783 shstrtab_section);
2784 off_t off = align_address(*poff, oshdrs->addralign());
2785 oshdrs->set_address_and_file_offset(0, off);
2786 off += oshdrs->data_size();
2787 *poff = off;
2788 this->section_headers_ = oshdrs;
2789 }
2790
2791 // Count the allocated sections.
2792
2793 size_t
2794 Layout::allocated_output_section_count() const
2795 {
2796 size_t section_count = 0;
2797 for (Segment_list::const_iterator p = this->segment_list_.begin();
2798 p != this->segment_list_.end();
2799 ++p)
2800 section_count += (*p)->output_section_count();
2801 return section_count;
2802 }
2803
2804 // Create the dynamic symbol table.
2805
2806 void
2807 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2808 Symbol_table* symtab,
2809 Output_section **pdynstr,
2810 unsigned int* plocal_dynamic_count,
2811 std::vector<Symbol*>* pdynamic_symbols,
2812 Versions* pversions)
2813 {
2814 // Count all the symbols in the dynamic symbol table, and set the
2815 // dynamic symbol indexes.
2816
2817 // Skip symbol 0, which is always all zeroes.
2818 unsigned int index = 1;
2819
2820 // Add STT_SECTION symbols for each Output section which needs one.
2821 for (Section_list::iterator p = this->section_list_.begin();
2822 p != this->section_list_.end();
2823 ++p)
2824 {
2825 if (!(*p)->needs_dynsym_index())
2826 (*p)->set_dynsym_index(-1U);
2827 else
2828 {
2829 (*p)->set_dynsym_index(index);
2830 ++index;
2831 }
2832 }
2833
2834 // Count the local symbols that need to go in the dynamic symbol table,
2835 // and set the dynamic symbol indexes.
2836 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2837 p != input_objects->relobj_end();
2838 ++p)
2839 {
2840 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2841 index = new_index;
2842 }
2843
2844 unsigned int local_symcount = index;
2845 *plocal_dynamic_count = local_symcount;
2846
2847 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2848 &this->dynpool_, pversions);
2849
2850 int symsize;
2851 unsigned int align;
2852 const int size = parameters->target().get_size();
2853 if (size == 32)
2854 {
2855 symsize = elfcpp::Elf_sizes<32>::sym_size;
2856 align = 4;
2857 }
2858 else if (size == 64)
2859 {
2860 symsize = elfcpp::Elf_sizes<64>::sym_size;
2861 align = 8;
2862 }
2863 else
2864 gold_unreachable();
2865
2866 // Create the dynamic symbol table section.
2867
2868 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2869 elfcpp::SHT_DYNSYM,
2870 elfcpp::SHF_ALLOC,
2871 false, false, true,
2872 false, false, false);
2873
2874 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2875 align,
2876 "** dynsym");
2877 dynsym->add_output_section_data(odata);
2878
2879 dynsym->set_info(local_symcount);
2880 dynsym->set_entsize(symsize);
2881 dynsym->set_addralign(align);
2882
2883 this->dynsym_section_ = dynsym;
2884
2885 Output_data_dynamic* const odyn = this->dynamic_data_;
2886 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2887 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2888
2889 // If there are more than SHN_LORESERVE allocated sections, we
2890 // create a .dynsym_shndx section. It is possible that we don't
2891 // need one, because it is possible that there are no dynamic
2892 // symbols in any of the sections with indexes larger than
2893 // SHN_LORESERVE. This is probably unusual, though, and at this
2894 // time we don't know the actual section indexes so it is
2895 // inconvenient to check.
2896 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2897 {
2898 Output_section* dynsym_xindex =
2899 this->choose_output_section(NULL, ".dynsym_shndx",
2900 elfcpp::SHT_SYMTAB_SHNDX,
2901 elfcpp::SHF_ALLOC,
2902 false, false, true, false, false, false);
2903
2904 this->dynsym_xindex_ = new Output_symtab_xindex(index);
2905
2906 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2907
2908 dynsym_xindex->set_link_section(dynsym);
2909 dynsym_xindex->set_addralign(4);
2910 dynsym_xindex->set_entsize(4);
2911
2912 dynsym_xindex->set_after_input_sections();
2913
2914 // This tells the driver code to wait until the symbol table has
2915 // written out before writing out the postprocessing sections,
2916 // including the .dynsym_shndx section.
2917 this->any_postprocessing_sections_ = true;
2918 }
2919
2920 // Create the dynamic string table section.
2921
2922 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2923 elfcpp::SHT_STRTAB,
2924 elfcpp::SHF_ALLOC,
2925 false, false, true,
2926 false, false, false);
2927
2928 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2929 dynstr->add_output_section_data(strdata);
2930
2931 dynsym->set_link_section(dynstr);
2932 this->dynamic_section_->set_link_section(dynstr);
2933
2934 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2935 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2936
2937 *pdynstr = dynstr;
2938
2939 // Create the hash tables.
2940
2941 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2942 || strcmp(parameters->options().hash_style(), "both") == 0)
2943 {
2944 unsigned char* phash;
2945 unsigned int hashlen;
2946 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2947 &phash, &hashlen);
2948
2949 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2950 elfcpp::SHT_HASH,
2951 elfcpp::SHF_ALLOC,
2952 false, false, true,
2953 false, false,
2954 false);
2955
2956 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2957 hashlen,
2958 align,
2959 "** hash");
2960 hashsec->add_output_section_data(hashdata);
2961
2962 hashsec->set_link_section(dynsym);
2963 hashsec->set_entsize(4);
2964
2965 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2966 }
2967
2968 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2969 || strcmp(parameters->options().hash_style(), "both") == 0)
2970 {
2971 unsigned char* phash;
2972 unsigned int hashlen;
2973 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2974 &phash, &hashlen);
2975
2976 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2977 elfcpp::SHT_GNU_HASH,
2978 elfcpp::SHF_ALLOC,
2979 false, false, true,
2980 false, false,
2981 false);
2982
2983 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2984 hashlen,
2985 align,
2986 "** hash");
2987 hashsec->add_output_section_data(hashdata);
2988
2989 hashsec->set_link_section(dynsym);
2990
2991 // For a 64-bit target, the entries in .gnu.hash do not have a
2992 // uniform size, so we only set the entry size for a 32-bit
2993 // target.
2994 if (parameters->target().get_size() == 32)
2995 hashsec->set_entsize(4);
2996
2997 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2998 }
2999 }
3000
3001 // Assign offsets to each local portion of the dynamic symbol table.
3002
3003 void
3004 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3005 {
3006 Output_section* dynsym = this->dynsym_section_;
3007 gold_assert(dynsym != NULL);
3008
3009 off_t off = dynsym->offset();
3010
3011 // Skip the dummy symbol at the start of the section.
3012 off += dynsym->entsize();
3013
3014 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3015 p != input_objects->relobj_end();
3016 ++p)
3017 {
3018 unsigned int count = (*p)->set_local_dynsym_offset(off);
3019 off += count * dynsym->entsize();
3020 }
3021 }
3022
3023 // Create the version sections.
3024
3025 void
3026 Layout::create_version_sections(const Versions* versions,
3027 const Symbol_table* symtab,
3028 unsigned int local_symcount,
3029 const std::vector<Symbol*>& dynamic_symbols,
3030 const Output_section* dynstr)
3031 {
3032 if (!versions->any_defs() && !versions->any_needs())
3033 return;
3034
3035 switch (parameters->size_and_endianness())
3036 {
3037 #ifdef HAVE_TARGET_32_LITTLE
3038 case Parameters::TARGET_32_LITTLE:
3039 this->sized_create_version_sections<32, false>(versions, symtab,
3040 local_symcount,
3041 dynamic_symbols, dynstr);
3042 break;
3043 #endif
3044 #ifdef HAVE_TARGET_32_BIG
3045 case Parameters::TARGET_32_BIG:
3046 this->sized_create_version_sections<32, true>(versions, symtab,
3047 local_symcount,
3048 dynamic_symbols, dynstr);
3049 break;
3050 #endif
3051 #ifdef HAVE_TARGET_64_LITTLE
3052 case Parameters::TARGET_64_LITTLE:
3053 this->sized_create_version_sections<64, false>(versions, symtab,
3054 local_symcount,
3055 dynamic_symbols, dynstr);
3056 break;
3057 #endif
3058 #ifdef HAVE_TARGET_64_BIG
3059 case Parameters::TARGET_64_BIG:
3060 this->sized_create_version_sections<64, true>(versions, symtab,
3061 local_symcount,
3062 dynamic_symbols, dynstr);
3063 break;
3064 #endif
3065 default:
3066 gold_unreachable();
3067 }
3068 }
3069
3070 // Create the version sections, sized version.
3071
3072 template<int size, bool big_endian>
3073 void
3074 Layout::sized_create_version_sections(
3075 const Versions* versions,
3076 const Symbol_table* symtab,
3077 unsigned int local_symcount,
3078 const std::vector<Symbol*>& dynamic_symbols,
3079 const Output_section* dynstr)
3080 {
3081 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3082 elfcpp::SHT_GNU_versym,
3083 elfcpp::SHF_ALLOC,
3084 false, false, true,
3085 false, false, false);
3086
3087 unsigned char* vbuf;
3088 unsigned int vsize;
3089 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3090 local_symcount,
3091 dynamic_symbols,
3092 &vbuf, &vsize);
3093
3094 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3095 "** versions");
3096
3097 vsec->add_output_section_data(vdata);
3098 vsec->set_entsize(2);
3099 vsec->set_link_section(this->dynsym_section_);
3100
3101 Output_data_dynamic* const odyn = this->dynamic_data_;
3102 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3103
3104 if (versions->any_defs())
3105 {
3106 Output_section* vdsec;
3107 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3108 elfcpp::SHT_GNU_verdef,
3109 elfcpp::SHF_ALLOC,
3110 false, false, true, false, false,
3111 false);
3112
3113 unsigned char* vdbuf;
3114 unsigned int vdsize;
3115 unsigned int vdentries;
3116 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3117 &vdsize, &vdentries);
3118
3119 Output_section_data* vddata =
3120 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3121
3122 vdsec->add_output_section_data(vddata);
3123 vdsec->set_link_section(dynstr);
3124 vdsec->set_info(vdentries);
3125
3126 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3127 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3128 }
3129
3130 if (versions->any_needs())
3131 {
3132 Output_section* vnsec;
3133 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3134 elfcpp::SHT_GNU_verneed,
3135 elfcpp::SHF_ALLOC,
3136 false, false, true, false, false,
3137 false);
3138
3139 unsigned char* vnbuf;
3140 unsigned int vnsize;
3141 unsigned int vnentries;
3142 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3143 &vnbuf, &vnsize,
3144 &vnentries);
3145
3146 Output_section_data* vndata =
3147 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3148
3149 vnsec->add_output_section_data(vndata);
3150 vnsec->set_link_section(dynstr);
3151 vnsec->set_info(vnentries);
3152
3153 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3154 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3155 }
3156 }
3157
3158 // Create the .interp section and PT_INTERP segment.
3159
3160 void
3161 Layout::create_interp(const Target* target)
3162 {
3163 const char* interp = parameters->options().dynamic_linker();
3164 if (interp == NULL)
3165 {
3166 interp = target->dynamic_linker();
3167 gold_assert(interp != NULL);
3168 }
3169
3170 size_t len = strlen(interp) + 1;
3171
3172 Output_section_data* odata = new Output_data_const(interp, len, 1);
3173
3174 Output_section* osec = this->choose_output_section(NULL, ".interp",
3175 elfcpp::SHT_PROGBITS,
3176 elfcpp::SHF_ALLOC,
3177 false, true, true,
3178 false, false, false);
3179 osec->add_output_section_data(odata);
3180
3181 if (!this->script_options_->saw_phdrs_clause())
3182 {
3183 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3184 elfcpp::PF_R);
3185 oseg->add_output_section(osec, elfcpp::PF_R, false);
3186 }
3187 }
3188
3189 // Finish the .dynamic section and PT_DYNAMIC segment.
3190
3191 void
3192 Layout::finish_dynamic_section(const Input_objects* input_objects,
3193 const Symbol_table* symtab)
3194 {
3195 if (!this->script_options_->saw_phdrs_clause())
3196 {
3197 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3198 (elfcpp::PF_R
3199 | elfcpp::PF_W));
3200 oseg->add_output_section(this->dynamic_section_,
3201 elfcpp::PF_R | elfcpp::PF_W,
3202 false);
3203 }
3204
3205 Output_data_dynamic* const odyn = this->dynamic_data_;
3206
3207 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3208 p != input_objects->dynobj_end();
3209 ++p)
3210 {
3211 if (!(*p)->is_needed()
3212 && (*p)->input_file()->options().as_needed())
3213 {
3214 // This dynamic object was linked with --as-needed, but it
3215 // is not needed.
3216 continue;
3217 }
3218
3219 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3220 }
3221
3222 if (parameters->options().shared())
3223 {
3224 const char* soname = parameters->options().soname();
3225 if (soname != NULL)
3226 odyn->add_string(elfcpp::DT_SONAME, soname);
3227 }
3228
3229 Symbol* sym = symtab->lookup(parameters->options().init());
3230 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3231 odyn->add_symbol(elfcpp::DT_INIT, sym);
3232
3233 sym = symtab->lookup(parameters->options().fini());
3234 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3235 odyn->add_symbol(elfcpp::DT_FINI, sym);
3236
3237 // Look for .init_array, .preinit_array and .fini_array by checking
3238 // section types.
3239 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3240 p != this->section_list_.end();
3241 ++p)
3242 switch((*p)->type())
3243 {
3244 case elfcpp::SHT_FINI_ARRAY:
3245 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3246 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
3247 break;
3248 case elfcpp::SHT_INIT_ARRAY:
3249 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3250 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
3251 break;
3252 case elfcpp::SHT_PREINIT_ARRAY:
3253 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3254 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
3255 break;
3256 default:
3257 break;
3258 }
3259
3260 // Add a DT_RPATH entry if needed.
3261 const General_options::Dir_list& rpath(parameters->options().rpath());
3262 if (!rpath.empty())
3263 {
3264 std::string rpath_val;
3265 for (General_options::Dir_list::const_iterator p = rpath.begin();
3266 p != rpath.end();
3267 ++p)
3268 {
3269 if (rpath_val.empty())
3270 rpath_val = p->name();
3271 else
3272 {
3273 // Eliminate duplicates.
3274 General_options::Dir_list::const_iterator q;
3275 for (q = rpath.begin(); q != p; ++q)
3276 if (q->name() == p->name())
3277 break;
3278 if (q == p)
3279 {
3280 rpath_val += ':';
3281 rpath_val += p->name();
3282 }
3283 }
3284 }
3285
3286 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3287 if (parameters->options().enable_new_dtags())
3288 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3289 }
3290
3291 // Look for text segments that have dynamic relocations.
3292 bool have_textrel = false;
3293 if (!this->script_options_->saw_sections_clause())
3294 {
3295 for (Segment_list::const_iterator p = this->segment_list_.begin();
3296 p != this->segment_list_.end();
3297 ++p)
3298 {
3299 if (((*p)->flags() & elfcpp::PF_W) == 0
3300 && (*p)->dynamic_reloc_count() > 0)
3301 {
3302 have_textrel = true;
3303 break;
3304 }
3305 }
3306 }
3307 else
3308 {
3309 // We don't know the section -> segment mapping, so we are
3310 // conservative and just look for readonly sections with
3311 // relocations. If those sections wind up in writable segments,
3312 // then we have created an unnecessary DT_TEXTREL entry.
3313 for (Section_list::const_iterator p = this->section_list_.begin();
3314 p != this->section_list_.end();
3315 ++p)
3316 {
3317 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3318 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3319 && ((*p)->dynamic_reloc_count() > 0))
3320 {
3321 have_textrel = true;
3322 break;
3323 }
3324 }
3325 }
3326
3327 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3328 // post-link tools can easily modify these flags if desired.
3329 unsigned int flags = 0;
3330 if (have_textrel)
3331 {
3332 // Add a DT_TEXTREL for compatibility with older loaders.
3333 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3334 flags |= elfcpp::DF_TEXTREL;
3335 }
3336 if (parameters->options().shared() && this->has_static_tls())
3337 flags |= elfcpp::DF_STATIC_TLS;
3338 if (parameters->options().origin())
3339 flags |= elfcpp::DF_ORIGIN;
3340 if (parameters->options().Bsymbolic())
3341 {
3342 flags |= elfcpp::DF_SYMBOLIC;
3343 // Add DT_SYMBOLIC for compatibility with older loaders.
3344 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3345 }
3346 if (parameters->options().now())
3347 flags |= elfcpp::DF_BIND_NOW;
3348 odyn->add_constant(elfcpp::DT_FLAGS, flags);
3349
3350 flags = 0;
3351 if (parameters->options().initfirst())
3352 flags |= elfcpp::DF_1_INITFIRST;
3353 if (parameters->options().interpose())
3354 flags |= elfcpp::DF_1_INTERPOSE;
3355 if (parameters->options().loadfltr())
3356 flags |= elfcpp::DF_1_LOADFLTR;
3357 if (parameters->options().nodefaultlib())
3358 flags |= elfcpp::DF_1_NODEFLIB;
3359 if (parameters->options().nodelete())
3360 flags |= elfcpp::DF_1_NODELETE;
3361 if (parameters->options().nodlopen())
3362 flags |= elfcpp::DF_1_NOOPEN;
3363 if (parameters->options().nodump())
3364 flags |= elfcpp::DF_1_NODUMP;
3365 if (!parameters->options().shared())
3366 flags &= ~(elfcpp::DF_1_INITFIRST
3367 | elfcpp::DF_1_NODELETE
3368 | elfcpp::DF_1_NOOPEN);
3369 if (parameters->options().origin())
3370 flags |= elfcpp::DF_1_ORIGIN;
3371 if (parameters->options().now())
3372 flags |= elfcpp::DF_1_NOW;
3373 if (flags)
3374 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3375 }
3376
3377 // Set the size of the _DYNAMIC symbol table to be the size of the
3378 // dynamic data.
3379
3380 void
3381 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3382 {
3383 Output_data_dynamic* const odyn = this->dynamic_data_;
3384 odyn->finalize_data_size();
3385 off_t data_size = odyn->data_size();
3386 const int size = parameters->target().get_size();
3387 if (size == 32)
3388 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3389 else if (size == 64)
3390 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3391 else
3392 gold_unreachable();
3393 }
3394
3395 // The mapping of input section name prefixes to output section names.
3396 // In some cases one prefix is itself a prefix of another prefix; in
3397 // such a case the longer prefix must come first. These prefixes are
3398 // based on the GNU linker default ELF linker script.
3399
3400 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3401 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3402 {
3403 MAPPING_INIT(".text.", ".text"),
3404 MAPPING_INIT(".ctors.", ".ctors"),
3405 MAPPING_INIT(".dtors.", ".dtors"),
3406 MAPPING_INIT(".rodata.", ".rodata"),
3407 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3408 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3409 MAPPING_INIT(".data.", ".data"),
3410 MAPPING_INIT(".bss.", ".bss"),
3411 MAPPING_INIT(".tdata.", ".tdata"),
3412 MAPPING_INIT(".tbss.", ".tbss"),
3413 MAPPING_INIT(".init_array.", ".init_array"),
3414 MAPPING_INIT(".fini_array.", ".fini_array"),
3415 MAPPING_INIT(".sdata.", ".sdata"),
3416 MAPPING_INIT(".sbss.", ".sbss"),
3417 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3418 // differently depending on whether it is creating a shared library.
3419 MAPPING_INIT(".sdata2.", ".sdata"),
3420 MAPPING_INIT(".sbss2.", ".sbss"),
3421 MAPPING_INIT(".lrodata.", ".lrodata"),
3422 MAPPING_INIT(".ldata.", ".ldata"),
3423 MAPPING_INIT(".lbss.", ".lbss"),
3424 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3425 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3426 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3427 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3428 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3429 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3430 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3431 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3432 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3433 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3434 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3435 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3436 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3437 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3438 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3439 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3440 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3441 MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3442 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3443 MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3444 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3445 };
3446 #undef MAPPING_INIT
3447
3448 const int Layout::section_name_mapping_count =
3449 (sizeof(Layout::section_name_mapping)
3450 / sizeof(Layout::section_name_mapping[0]));
3451
3452 // Choose the output section name to use given an input section name.
3453 // Set *PLEN to the length of the name. *PLEN is initialized to the
3454 // length of NAME.
3455
3456 const char*
3457 Layout::output_section_name(const char* name, size_t* plen)
3458 {
3459 // gcc 4.3 generates the following sorts of section names when it
3460 // needs a section name specific to a function:
3461 // .text.FN
3462 // .rodata.FN
3463 // .sdata2.FN
3464 // .data.FN
3465 // .data.rel.FN
3466 // .data.rel.local.FN
3467 // .data.rel.ro.FN
3468 // .data.rel.ro.local.FN
3469 // .sdata.FN
3470 // .bss.FN
3471 // .sbss.FN
3472 // .tdata.FN
3473 // .tbss.FN
3474
3475 // The GNU linker maps all of those to the part before the .FN,
3476 // except that .data.rel.local.FN is mapped to .data, and
3477 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3478 // beginning with .data.rel.ro.local are grouped together.
3479
3480 // For an anonymous namespace, the string FN can contain a '.'.
3481
3482 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3483 // GNU linker maps to .rodata.
3484
3485 // The .data.rel.ro sections are used with -z relro. The sections
3486 // are recognized by name. We use the same names that the GNU
3487 // linker does for these sections.
3488
3489 // It is hard to handle this in a principled way, so we don't even
3490 // try. We use a table of mappings. If the input section name is
3491 // not found in the table, we simply use it as the output section
3492 // name.
3493
3494 const Section_name_mapping* psnm = section_name_mapping;
3495 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3496 {
3497 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3498 {
3499 *plen = psnm->tolen;
3500 return psnm->to;
3501 }
3502 }
3503
3504 return name;
3505 }
3506
3507 // Check if a comdat group or .gnu.linkonce section with the given
3508 // NAME is selected for the link. If there is already a section,
3509 // *KEPT_SECTION is set to point to the existing section and the
3510 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3511 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3512 // *KEPT_SECTION is set to the internal copy and the function returns
3513 // true.
3514
3515 bool
3516 Layout::find_or_add_kept_section(const std::string& name,
3517 Relobj* object,
3518 unsigned int shndx,
3519 bool is_comdat,
3520 bool is_group_name,
3521 Kept_section** kept_section)
3522 {
3523 // It's normal to see a couple of entries here, for the x86 thunk
3524 // sections. If we see more than a few, we're linking a C++
3525 // program, and we resize to get more space to minimize rehashing.
3526 if (this->signatures_.size() > 4
3527 && !this->resized_signatures_)
3528 {
3529 reserve_unordered_map(&this->signatures_,
3530 this->number_of_input_files_ * 64);
3531 this->resized_signatures_ = true;
3532 }
3533
3534 Kept_section candidate;
3535 std::pair<Signatures::iterator, bool> ins =
3536 this->signatures_.insert(std::make_pair(name, candidate));
3537
3538 if (kept_section != NULL)
3539 *kept_section = &ins.first->second;
3540 if (ins.second)
3541 {
3542 // This is the first time we've seen this signature.
3543 ins.first->second.set_object(object);
3544 ins.first->second.set_shndx(shndx);
3545 if (is_comdat)
3546 ins.first->second.set_is_comdat();
3547 if (is_group_name)
3548 ins.first->second.set_is_group_name();
3549 return true;
3550 }
3551
3552 // We have already seen this signature.
3553
3554 if (ins.first->second.is_group_name())
3555 {
3556 // We've already seen a real section group with this signature.
3557 // If the kept group is from a plugin object, and we're in the
3558 // replacement phase, accept the new one as a replacement.
3559 if (ins.first->second.object() == NULL
3560 && parameters->options().plugins()->in_replacement_phase())
3561 {
3562 ins.first->second.set_object(object);
3563 ins.first->second.set_shndx(shndx);
3564 return true;
3565 }
3566 return false;
3567 }
3568 else if (is_group_name)
3569 {
3570 // This is a real section group, and we've already seen a
3571 // linkonce section with this signature. Record that we've seen
3572 // a section group, and don't include this section group.
3573 ins.first->second.set_is_group_name();
3574 return false;
3575 }
3576 else
3577 {
3578 // We've already seen a linkonce section and this is a linkonce
3579 // section. These don't block each other--this may be the same
3580 // symbol name with different section types.
3581 return true;
3582 }
3583 }
3584
3585 // Store the allocated sections into the section list.
3586
3587 void
3588 Layout::get_allocated_sections(Section_list* section_list) const
3589 {
3590 for (Section_list::const_iterator p = this->section_list_.begin();
3591 p != this->section_list_.end();
3592 ++p)
3593 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3594 section_list->push_back(*p);
3595 }
3596
3597 // Create an output segment.
3598
3599 Output_segment*
3600 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3601 {
3602 gold_assert(!parameters->options().relocatable());
3603 Output_segment* oseg = new Output_segment(type, flags);
3604 this->segment_list_.push_back(oseg);
3605
3606 if (type == elfcpp::PT_TLS)
3607 this->tls_segment_ = oseg;
3608 else if (type == elfcpp::PT_GNU_RELRO)
3609 this->relro_segment_ = oseg;
3610
3611 return oseg;
3612 }
3613
3614 // Write out the Output_sections. Most won't have anything to write,
3615 // since most of the data will come from input sections which are
3616 // handled elsewhere. But some Output_sections do have Output_data.
3617
3618 void
3619 Layout::write_output_sections(Output_file* of) const
3620 {
3621 for (Section_list::const_iterator p = this->section_list_.begin();
3622 p != this->section_list_.end();
3623 ++p)
3624 {
3625 if (!(*p)->after_input_sections())
3626 (*p)->write(of);
3627 }
3628 }
3629
3630 // Write out data not associated with a section or the symbol table.
3631
3632 void
3633 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3634 {
3635 if (!parameters->options().strip_all())
3636 {
3637 const Output_section* symtab_section = this->symtab_section_;
3638 for (Section_list::const_iterator p = this->section_list_.begin();
3639 p != this->section_list_.end();
3640 ++p)
3641 {
3642 if ((*p)->needs_symtab_index())
3643 {
3644 gold_assert(symtab_section != NULL);
3645 unsigned int index = (*p)->symtab_index();
3646 gold_assert(index > 0 && index != -1U);
3647 off_t off = (symtab_section->offset()
3648 + index * symtab_section->entsize());
3649 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3650 }
3651 }
3652 }
3653
3654 const Output_section* dynsym_section = this->dynsym_section_;
3655 for (Section_list::const_iterator p = this->section_list_.begin();
3656 p != this->section_list_.end();
3657 ++p)
3658 {
3659 if ((*p)->needs_dynsym_index())
3660 {
3661 gold_assert(dynsym_section != NULL);
3662 unsigned int index = (*p)->dynsym_index();
3663 gold_assert(index > 0 && index != -1U);
3664 off_t off = (dynsym_section->offset()
3665 + index * dynsym_section->entsize());
3666 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3667 }
3668 }
3669
3670 // Write out the Output_data which are not in an Output_section.
3671 for (Data_list::const_iterator p = this->special_output_list_.begin();
3672 p != this->special_output_list_.end();
3673 ++p)
3674 (*p)->write(of);
3675 }
3676
3677 // Write out the Output_sections which can only be written after the
3678 // input sections are complete.
3679
3680 void
3681 Layout::write_sections_after_input_sections(Output_file* of)
3682 {
3683 // Determine the final section offsets, and thus the final output
3684 // file size. Note we finalize the .shstrab last, to allow the
3685 // after_input_section sections to modify their section-names before
3686 // writing.
3687 if (this->any_postprocessing_sections_)
3688 {
3689 off_t off = this->output_file_size_;
3690 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3691
3692 // Now that we've finalized the names, we can finalize the shstrab.
3693 off =
3694 this->set_section_offsets(off,
3695 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3696
3697 if (off > this->output_file_size_)
3698 {
3699 of->resize(off);
3700 this->output_file_size_ = off;
3701 }
3702 }
3703
3704 for (Section_list::const_iterator p = this->section_list_.begin();
3705 p != this->section_list_.end();
3706 ++p)
3707 {
3708 if ((*p)->after_input_sections())
3709 (*p)->write(of);
3710 }
3711
3712 this->section_headers_->write(of);
3713 }
3714
3715 // If the build ID requires computing a checksum, do so here, and
3716 // write it out. We compute a checksum over the entire file because
3717 // that is simplest.
3718
3719 void
3720 Layout::write_build_id(Output_file* of) const
3721 {
3722 if (this->build_id_note_ == NULL)
3723 return;
3724
3725 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3726
3727 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3728 this->build_id_note_->data_size());
3729
3730 const char* style = parameters->options().build_id();
3731 if (strcmp(style, "sha1") == 0)
3732 {
3733 sha1_ctx ctx;
3734 sha1_init_ctx(&ctx);
3735 sha1_process_bytes(iv, this->output_file_size_, &ctx);
3736 sha1_finish_ctx(&ctx, ov);
3737 }
3738 else if (strcmp(style, "md5") == 0)
3739 {
3740 md5_ctx ctx;
3741 md5_init_ctx(&ctx);
3742 md5_process_bytes(iv, this->output_file_size_, &ctx);
3743 md5_finish_ctx(&ctx, ov);
3744 }
3745 else
3746 gold_unreachable();
3747
3748 of->write_output_view(this->build_id_note_->offset(),
3749 this->build_id_note_->data_size(),
3750 ov);
3751
3752 of->free_input_view(0, this->output_file_size_, iv);
3753 }
3754
3755 // Write out a binary file. This is called after the link is
3756 // complete. IN is the temporary output file we used to generate the
3757 // ELF code. We simply walk through the segments, read them from
3758 // their file offset in IN, and write them to their load address in
3759 // the output file. FIXME: with a bit more work, we could support
3760 // S-records and/or Intel hex format here.
3761
3762 void
3763 Layout::write_binary(Output_file* in) const
3764 {
3765 gold_assert(parameters->options().oformat_enum()
3766 == General_options::OBJECT_FORMAT_BINARY);
3767
3768 // Get the size of the binary file.
3769 uint64_t max_load_address = 0;
3770 for (Segment_list::const_iterator p = this->segment_list_.begin();
3771 p != this->segment_list_.end();
3772 ++p)
3773 {
3774 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3775 {
3776 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3777 if (max_paddr > max_load_address)
3778 max_load_address = max_paddr;
3779 }
3780 }
3781
3782 Output_file out(parameters->options().output_file_name());
3783 out.open(max_load_address);
3784
3785 for (Segment_list::const_iterator p = this->segment_list_.begin();
3786 p != this->segment_list_.end();
3787 ++p)
3788 {
3789 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3790 {
3791 const unsigned char* vin = in->get_input_view((*p)->offset(),
3792 (*p)->filesz());
3793 unsigned char* vout = out.get_output_view((*p)->paddr(),
3794 (*p)->filesz());
3795 memcpy(vout, vin, (*p)->filesz());
3796 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3797 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3798 }
3799 }
3800
3801 out.close();
3802 }
3803
3804 // Print the output sections to the map file.
3805
3806 void
3807 Layout::print_to_mapfile(Mapfile* mapfile) const
3808 {
3809 for (Segment_list::const_iterator p = this->segment_list_.begin();
3810 p != this->segment_list_.end();
3811 ++p)
3812 (*p)->print_sections_to_mapfile(mapfile);
3813 }
3814
3815 // Print statistical information to stderr. This is used for --stats.
3816
3817 void
3818 Layout::print_stats() const
3819 {
3820 this->namepool_.print_stats("section name pool");
3821 this->sympool_.print_stats("output symbol name pool");
3822 this->dynpool_.print_stats("dynamic name pool");
3823
3824 for (Section_list::const_iterator p = this->section_list_.begin();
3825 p != this->section_list_.end();
3826 ++p)
3827 (*p)->print_merge_stats();
3828 }
3829
3830 // Write_sections_task methods.
3831
3832 // We can always run this task.
3833
3834 Task_token*
3835 Write_sections_task::is_runnable()
3836 {
3837 return NULL;
3838 }
3839
3840 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3841 // when finished.
3842
3843 void
3844 Write_sections_task::locks(Task_locker* tl)
3845 {
3846 tl->add(this, this->output_sections_blocker_);
3847 tl->add(this, this->final_blocker_);
3848 }
3849
3850 // Run the task--write out the data.
3851
3852 void
3853 Write_sections_task::run(Workqueue*)
3854 {
3855 this->layout_->write_output_sections(this->of_);
3856 }
3857
3858 // Write_data_task methods.
3859
3860 // We can always run this task.
3861
3862 Task_token*
3863 Write_data_task::is_runnable()
3864 {
3865 return NULL;
3866 }
3867
3868 // We need to unlock FINAL_BLOCKER when finished.
3869
3870 void
3871 Write_data_task::locks(Task_locker* tl)
3872 {
3873 tl->add(this, this->final_blocker_);
3874 }
3875
3876 // Run the task--write out the data.
3877
3878 void
3879 Write_data_task::run(Workqueue*)
3880 {
3881 this->layout_->write_data(this->symtab_, this->of_);
3882 }
3883
3884 // Write_symbols_task methods.
3885
3886 // We can always run this task.
3887
3888 Task_token*
3889 Write_symbols_task::is_runnable()
3890 {
3891 return NULL;
3892 }
3893
3894 // We need to unlock FINAL_BLOCKER when finished.
3895
3896 void
3897 Write_symbols_task::locks(Task_locker* tl)
3898 {
3899 tl->add(this, this->final_blocker_);
3900 }
3901
3902 // Run the task--write out the symbols.
3903
3904 void
3905 Write_symbols_task::run(Workqueue*)
3906 {
3907 this->symtab_->write_globals(this->sympool_, this->dynpool_,
3908 this->layout_->symtab_xindex(),
3909 this->layout_->dynsym_xindex(), this->of_);
3910 }
3911
3912 // Write_after_input_sections_task methods.
3913
3914 // We can only run this task after the input sections have completed.
3915
3916 Task_token*
3917 Write_after_input_sections_task::is_runnable()
3918 {
3919 if (this->input_sections_blocker_->is_blocked())
3920 return this->input_sections_blocker_;
3921 return NULL;
3922 }
3923
3924 // We need to unlock FINAL_BLOCKER when finished.
3925
3926 void
3927 Write_after_input_sections_task::locks(Task_locker* tl)
3928 {
3929 tl->add(this, this->final_blocker_);
3930 }
3931
3932 // Run the task.
3933
3934 void
3935 Write_after_input_sections_task::run(Workqueue*)
3936 {
3937 this->layout_->write_sections_after_input_sections(this->of_);
3938 }
3939
3940 // Close_task_runner methods.
3941
3942 // Run the task--close the file.
3943
3944 void
3945 Close_task_runner::run(Workqueue*, const Task*)
3946 {
3947 // If we need to compute a checksum for the BUILD if, we do so here.
3948 this->layout_->write_build_id(this->of_);
3949
3950 // If we've been asked to create a binary file, we do so here.
3951 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3952 this->layout_->write_binary(this->of_);
3953
3954 this->of_->close();
3955 }
3956
3957 // Instantiate the templates we need. We could use the configure
3958 // script to restrict this to only the ones for implemented targets.
3959
3960 #ifdef HAVE_TARGET_32_LITTLE
3961 template
3962 Output_section*
3963 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3964 const char* name,
3965 const elfcpp::Shdr<32, false>& shdr,
3966 unsigned int, unsigned int, off_t*);
3967 #endif
3968
3969 #ifdef HAVE_TARGET_32_BIG
3970 template
3971 Output_section*
3972 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3973 const char* name,
3974 const elfcpp::Shdr<32, true>& shdr,
3975 unsigned int, unsigned int, off_t*);
3976 #endif
3977
3978 #ifdef HAVE_TARGET_64_LITTLE
3979 template
3980 Output_section*
3981 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3982 const char* name,
3983 const elfcpp::Shdr<64, false>& shdr,
3984 unsigned int, unsigned int, off_t*);
3985 #endif
3986
3987 #ifdef HAVE_TARGET_64_BIG
3988 template
3989 Output_section*
3990 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3991 const char* name,
3992 const elfcpp::Shdr<64, true>& shdr,
3993 unsigned int, unsigned int, off_t*);
3994 #endif
3995
3996 #ifdef HAVE_TARGET_32_LITTLE
3997 template
3998 Output_section*
3999 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4000 unsigned int reloc_shndx,
4001 const elfcpp::Shdr<32, false>& shdr,
4002 Output_section* data_section,
4003 Relocatable_relocs* rr);
4004 #endif
4005
4006 #ifdef HAVE_TARGET_32_BIG
4007 template
4008 Output_section*
4009 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4010 unsigned int reloc_shndx,
4011 const elfcpp::Shdr<32, true>& shdr,
4012 Output_section* data_section,
4013 Relocatable_relocs* rr);
4014 #endif
4015
4016 #ifdef HAVE_TARGET_64_LITTLE
4017 template
4018 Output_section*
4019 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4020 unsigned int reloc_shndx,
4021 const elfcpp::Shdr<64, false>& shdr,
4022 Output_section* data_section,
4023 Relocatable_relocs* rr);
4024 #endif
4025
4026 #ifdef HAVE_TARGET_64_BIG
4027 template
4028 Output_section*
4029 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4030 unsigned int reloc_shndx,
4031 const elfcpp::Shdr<64, true>& shdr,
4032 Output_section* data_section,
4033 Relocatable_relocs* rr);
4034 #endif
4035
4036 #ifdef HAVE_TARGET_32_LITTLE
4037 template
4038 void
4039 Layout::layout_group<32, false>(Symbol_table* symtab,
4040 Sized_relobj<32, false>* object,
4041 unsigned int,
4042 const char* group_section_name,
4043 const char* signature,
4044 const elfcpp::Shdr<32, false>& shdr,
4045 elfcpp::Elf_Word flags,
4046 std::vector<unsigned int>* shndxes);
4047 #endif
4048
4049 #ifdef HAVE_TARGET_32_BIG
4050 template
4051 void
4052 Layout::layout_group<32, true>(Symbol_table* symtab,
4053 Sized_relobj<32, true>* object,
4054 unsigned int,
4055 const char* group_section_name,
4056 const char* signature,
4057 const elfcpp::Shdr<32, true>& shdr,
4058 elfcpp::Elf_Word flags,
4059 std::vector<unsigned int>* shndxes);
4060 #endif
4061
4062 #ifdef HAVE_TARGET_64_LITTLE
4063 template
4064 void
4065 Layout::layout_group<64, false>(Symbol_table* symtab,
4066 Sized_relobj<64, false>* object,
4067 unsigned int,
4068 const char* group_section_name,
4069 const char* signature,
4070 const elfcpp::Shdr<64, false>& shdr,
4071 elfcpp::Elf_Word flags,
4072 std::vector<unsigned int>* shndxes);
4073 #endif
4074
4075 #ifdef HAVE_TARGET_64_BIG
4076 template
4077 void
4078 Layout::layout_group<64, true>(Symbol_table* symtab,
4079 Sized_relobj<64, true>* object,
4080 unsigned int,
4081 const char* group_section_name,
4082 const char* signature,
4083 const elfcpp::Shdr<64, true>& shdr,
4084 elfcpp::Elf_Word flags,
4085 std::vector<unsigned int>* shndxes);
4086 #endif
4087
4088 #ifdef HAVE_TARGET_32_LITTLE
4089 template
4090 Output_section*
4091 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4092 const unsigned char* symbols,
4093 off_t symbols_size,
4094 const unsigned char* symbol_names,
4095 off_t symbol_names_size,
4096 unsigned int shndx,
4097 const elfcpp::Shdr<32, false>& shdr,
4098 unsigned int reloc_shndx,
4099 unsigned int reloc_type,
4100 off_t* off);
4101 #endif
4102
4103 #ifdef HAVE_TARGET_32_BIG
4104 template
4105 Output_section*
4106 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4107 const unsigned char* symbols,
4108 off_t symbols_size,
4109 const unsigned char* symbol_names,
4110 off_t symbol_names_size,
4111 unsigned int shndx,
4112 const elfcpp::Shdr<32, true>& shdr,
4113 unsigned int reloc_shndx,
4114 unsigned int reloc_type,
4115 off_t* off);
4116 #endif
4117
4118 #ifdef HAVE_TARGET_64_LITTLE
4119 template
4120 Output_section*
4121 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4122 const unsigned char* symbols,
4123 off_t symbols_size,
4124 const unsigned char* symbol_names,
4125 off_t symbol_names_size,
4126 unsigned int shndx,
4127 const elfcpp::Shdr<64, false>& shdr,
4128 unsigned int reloc_shndx,
4129 unsigned int reloc_type,
4130 off_t* off);
4131 #endif
4132
4133 #ifdef HAVE_TARGET_64_BIG
4134 template
4135 Output_section*
4136 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4137 const unsigned char* symbols,
4138 off_t symbols_size,
4139 const unsigned char* symbol_names,
4140 off_t symbol_names_size,
4141 unsigned int shndx,
4142 const elfcpp::Shdr<64, true>& shdr,
4143 unsigned int reloc_shndx,
4144 unsigned int reloc_type,
4145 off_t* off);
4146 #endif
4147
4148 } // End namespace gold.