Add support for --enable-target to control which template
[binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 #include "gold.h"
4
5 #include <cstring>
6 #include <algorithm>
7 #include <iostream>
8 #include <utility>
9
10 #include "output.h"
11 #include "symtab.h"
12 #include "dynobj.h"
13 #include "layout.h"
14
15 namespace gold
16 {
17
18 // Layout_task_runner methods.
19
20 // Lay out the sections. This is called after all the input objects
21 // have been read.
22
23 void
24 Layout_task_runner::run(Workqueue* workqueue)
25 {
26 off_t file_size = this->layout_->finalize(this->input_objects_,
27 this->symtab_);
28
29 // Now we know the final size of the output file and we know where
30 // each piece of information goes.
31 Output_file* of = new Output_file(this->options_);
32 of->open(file_size);
33
34 // Queue up the final set of tasks.
35 gold::queue_final_tasks(this->options_, this->input_objects_,
36 this->symtab_, this->layout_, workqueue, of);
37 }
38
39 // Layout methods.
40
41 Layout::Layout(const General_options& options)
42 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
43 section_name_map_(), segment_list_(), section_list_(),
44 unattached_section_list_(), special_output_list_(),
45 tls_segment_(NULL), symtab_section_(NULL),
46 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL)
47 {
48 // Make space for more than enough segments for a typical file.
49 // This is just for efficiency--it's OK if we wind up needing more.
50 this->segment_list_.reserve(12);
51
52 // We expect three unattached Output_data objects: the file header,
53 // the segment headers, and the section headers.
54 this->special_output_list_.reserve(3);
55 }
56
57 // Hash a key we use to look up an output section mapping.
58
59 size_t
60 Layout::Hash_key::operator()(const Layout::Key& k) const
61 {
62 return k.first + k.second.first + k.second.second;
63 }
64
65 // Whether to include this section in the link.
66
67 template<int size, bool big_endian>
68 bool
69 Layout::include_section(Object*, const char*,
70 const elfcpp::Shdr<size, big_endian>& shdr)
71 {
72 // Some section types are never linked. Some are only linked when
73 // doing a relocateable link.
74 switch (shdr.get_sh_type())
75 {
76 case elfcpp::SHT_NULL:
77 case elfcpp::SHT_SYMTAB:
78 case elfcpp::SHT_DYNSYM:
79 case elfcpp::SHT_STRTAB:
80 case elfcpp::SHT_HASH:
81 case elfcpp::SHT_DYNAMIC:
82 case elfcpp::SHT_SYMTAB_SHNDX:
83 return false;
84
85 case elfcpp::SHT_RELA:
86 case elfcpp::SHT_REL:
87 case elfcpp::SHT_GROUP:
88 return this->options_.is_relocatable();
89
90 default:
91 // FIXME: Handle stripping debug sections here.
92 return true;
93 }
94 }
95
96 // Return an output section named NAME, or NULL if there is none.
97
98 Output_section*
99 Layout::find_output_section(const char* name) const
100 {
101 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
102 p != this->section_name_map_.end();
103 ++p)
104 if (strcmp(p->second->name(), name) == 0)
105 return p->second;
106 return NULL;
107 }
108
109 // Return an output segment of type TYPE, with segment flags SET set
110 // and segment flags CLEAR clear. Return NULL if there is none.
111
112 Output_segment*
113 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
114 elfcpp::Elf_Word clear) const
115 {
116 for (Segment_list::const_iterator p = this->segment_list_.begin();
117 p != this->segment_list_.end();
118 ++p)
119 if (static_cast<elfcpp::PT>((*p)->type()) == type
120 && ((*p)->flags() & set) == set
121 && ((*p)->flags() & clear) == 0)
122 return *p;
123 return NULL;
124 }
125
126 // Return the output section to use for section NAME with type TYPE
127 // and section flags FLAGS.
128
129 Output_section*
130 Layout::get_output_section(const char* name, Stringpool::Key name_key,
131 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
132 {
133 // We should ignore some flags.
134 flags &= ~ (elfcpp::SHF_INFO_LINK
135 | elfcpp::SHF_LINK_ORDER
136 | elfcpp::SHF_GROUP
137 | elfcpp::SHF_MERGE
138 | elfcpp::SHF_STRINGS);
139
140 const Key key(name_key, std::make_pair(type, flags));
141 const std::pair<Key, Output_section*> v(key, NULL);
142 std::pair<Section_name_map::iterator, bool> ins(
143 this->section_name_map_.insert(v));
144
145 if (!ins.second)
146 return ins.first->second;
147 else
148 {
149 // This is the first time we've seen this name/type/flags
150 // combination.
151 Output_section* os = this->make_output_section(name, type, flags);
152 ins.first->second = os;
153 return os;
154 }
155 }
156
157 // Return the output section to use for input section SHNDX, with name
158 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
159 // offset of this input section without the output section.
160
161 template<int size, bool big_endian>
162 Output_section*
163 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
164 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
165 {
166 if (!this->include_section(object, name, shdr))
167 return NULL;
168
169 // If we are not doing a relocateable link, choose the name to use
170 // for the output section.
171 size_t len = strlen(name);
172 if (!this->options_.is_relocatable())
173 name = Layout::output_section_name(name, &len);
174
175 // FIXME: Handle SHF_OS_NONCONFORMING here.
176
177 // Canonicalize the section name.
178 Stringpool::Key name_key;
179 name = this->namepool_.add(name, len, &name_key);
180
181 // Find the output section. The output section is selected based on
182 // the section name, type, and flags.
183 Output_section* os = this->get_output_section(name, name_key,
184 shdr.get_sh_type(),
185 shdr.get_sh_flags());
186
187 // FIXME: Handle SHF_LINK_ORDER somewhere.
188
189 *off = os->add_input_section(object, shndx, name, shdr);
190
191 return os;
192 }
193
194 // Add POSD to an output section using NAME, TYPE, and FLAGS.
195
196 void
197 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
198 elfcpp::Elf_Xword flags,
199 Output_section_data* posd)
200 {
201 // Canonicalize the name.
202 Stringpool::Key name_key;
203 name = this->namepool_.add(name, &name_key);
204
205 Output_section* os = this->get_output_section(name, name_key, type, flags);
206 os->add_output_section_data(posd);
207 }
208
209 // Map section flags to segment flags.
210
211 elfcpp::Elf_Word
212 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
213 {
214 elfcpp::Elf_Word ret = elfcpp::PF_R;
215 if ((flags & elfcpp::SHF_WRITE) != 0)
216 ret |= elfcpp::PF_W;
217 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
218 ret |= elfcpp::PF_X;
219 return ret;
220 }
221
222 // Make a new Output_section, and attach it to segments as
223 // appropriate.
224
225 Output_section*
226 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
227 elfcpp::Elf_Xword flags)
228 {
229 Output_section* os = new Output_section(name, type, flags);
230 this->section_list_.push_back(os);
231
232 if ((flags & elfcpp::SHF_ALLOC) == 0)
233 this->unattached_section_list_.push_back(os);
234 else
235 {
236 // This output section goes into a PT_LOAD segment.
237
238 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
239
240 // The only thing we really care about for PT_LOAD segments is
241 // whether or not they are writable, so that is how we search
242 // for them. People who need segments sorted on some other
243 // basis will have to wait until we implement a mechanism for
244 // them to describe the segments they want.
245
246 Segment_list::const_iterator p;
247 for (p = this->segment_list_.begin();
248 p != this->segment_list_.end();
249 ++p)
250 {
251 if ((*p)->type() == elfcpp::PT_LOAD
252 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
253 {
254 (*p)->add_output_section(os, seg_flags);
255 break;
256 }
257 }
258
259 if (p == this->segment_list_.end())
260 {
261 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
262 seg_flags);
263 this->segment_list_.push_back(oseg);
264 oseg->add_output_section(os, seg_flags);
265 }
266
267 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
268 // segment.
269 if (type == elfcpp::SHT_NOTE)
270 {
271 // See if we already have an equivalent PT_NOTE segment.
272 for (p = this->segment_list_.begin();
273 p != segment_list_.end();
274 ++p)
275 {
276 if ((*p)->type() == elfcpp::PT_NOTE
277 && (((*p)->flags() & elfcpp::PF_W)
278 == (seg_flags & elfcpp::PF_W)))
279 {
280 (*p)->add_output_section(os, seg_flags);
281 break;
282 }
283 }
284
285 if (p == this->segment_list_.end())
286 {
287 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
288 seg_flags);
289 this->segment_list_.push_back(oseg);
290 oseg->add_output_section(os, seg_flags);
291 }
292 }
293
294 // If we see a loadable SHF_TLS section, we create a PT_TLS
295 // segment. There can only be one such segment.
296 if ((flags & elfcpp::SHF_TLS) != 0)
297 {
298 if (this->tls_segment_ == NULL)
299 {
300 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
301 seg_flags);
302 this->segment_list_.push_back(this->tls_segment_);
303 }
304 this->tls_segment_->add_output_section(os, seg_flags);
305 }
306 }
307
308 return os;
309 }
310
311 // Create the dynamic sections which are needed before we read the
312 // relocs.
313
314 void
315 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
316 Symbol_table* symtab)
317 {
318 if (!input_objects->any_dynamic())
319 return;
320
321 const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
322 this->dynamic_section_ = this->make_output_section(dynamic_name,
323 elfcpp::SHT_DYNAMIC,
324 (elfcpp::SHF_ALLOC
325 | elfcpp::SHF_WRITE));
326
327 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
328 this->dynamic_section_, 0, 0,
329 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
330 elfcpp::STV_HIDDEN, 0, false, false);
331
332 this->dynamic_data_ = new Output_data_dynamic(input_objects->target(),
333 &this->dynpool_);
334
335 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
336 }
337
338 // Find the first read-only PT_LOAD segment, creating one if
339 // necessary.
340
341 Output_segment*
342 Layout::find_first_load_seg()
343 {
344 for (Segment_list::const_iterator p = this->segment_list_.begin();
345 p != this->segment_list_.end();
346 ++p)
347 {
348 if ((*p)->type() == elfcpp::PT_LOAD
349 && ((*p)->flags() & elfcpp::PF_R) != 0
350 && ((*p)->flags() & elfcpp::PF_W) == 0)
351 return *p;
352 }
353
354 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
355 this->segment_list_.push_back(load_seg);
356 return load_seg;
357 }
358
359 // Finalize the layout. When this is called, we have created all the
360 // output sections and all the output segments which are based on
361 // input sections. We have several things to do, and we have to do
362 // them in the right order, so that we get the right results correctly
363 // and efficiently.
364
365 // 1) Finalize the list of output segments and create the segment
366 // table header.
367
368 // 2) Finalize the dynamic symbol table and associated sections.
369
370 // 3) Determine the final file offset of all the output segments.
371
372 // 4) Determine the final file offset of all the SHF_ALLOC output
373 // sections.
374
375 // 5) Create the symbol table sections and the section name table
376 // section.
377
378 // 6) Finalize the symbol table: set symbol values to their final
379 // value and make a final determination of which symbols are going
380 // into the output symbol table.
381
382 // 7) Create the section table header.
383
384 // 8) Determine the final file offset of all the output sections which
385 // are not SHF_ALLOC, including the section table header.
386
387 // 9) Finalize the ELF file header.
388
389 // This function returns the size of the output file.
390
391 off_t
392 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
393 {
394 Target* const target = input_objects->target();
395 const int size = target->get_size();
396
397 target->finalize_sections(&this->options_, this);
398
399 Output_segment* phdr_seg = NULL;
400 if (input_objects->any_dynamic())
401 {
402 // There was a dynamic object in the link. We need to create
403 // some information for the dynamic linker.
404
405 // Create the PT_PHDR segment which will hold the program
406 // headers.
407 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
408 this->segment_list_.push_back(phdr_seg);
409
410 // Create the dynamic symbol table, including the hash table.
411 Output_section* dynstr;
412 std::vector<Symbol*> dynamic_symbols;
413 unsigned int local_dynamic_count;
414 Versions versions;
415 this->create_dynamic_symtab(target, symtab, &dynstr,
416 &local_dynamic_count, &dynamic_symbols,
417 &versions);
418
419 // Create the .interp section to hold the name of the
420 // interpreter, and put it in a PT_INTERP segment.
421 this->create_interp(target);
422
423 // Finish the .dynamic section to hold the dynamic data, and put
424 // it in a PT_DYNAMIC segment.
425 this->finish_dynamic_section(input_objects, symtab);
426
427 // We should have added everything we need to the dynamic string
428 // table.
429 this->dynpool_.set_string_offsets();
430
431 // Create the version sections. We can't do this until the
432 // dynamic string table is complete.
433 this->create_version_sections(target, &versions, local_dynamic_count,
434 dynamic_symbols, dynstr);
435 }
436
437 // FIXME: Handle PT_GNU_STACK.
438
439 Output_segment* load_seg = this->find_first_load_seg();
440
441 // Lay out the segment headers.
442 bool big_endian = target->is_big_endian();
443 Output_segment_headers* segment_headers;
444 segment_headers = new Output_segment_headers(size, big_endian,
445 this->segment_list_);
446 load_seg->add_initial_output_data(segment_headers);
447 this->special_output_list_.push_back(segment_headers);
448 if (phdr_seg != NULL)
449 phdr_seg->add_initial_output_data(segment_headers);
450
451 // Lay out the file header.
452 Output_file_header* file_header;
453 file_header = new Output_file_header(size,
454 big_endian,
455 this->options_,
456 target,
457 symtab,
458 segment_headers);
459 load_seg->add_initial_output_data(file_header);
460 this->special_output_list_.push_back(file_header);
461
462 // We set the output section indexes in set_segment_offsets and
463 // set_section_offsets.
464 unsigned int shndx = 1;
465
466 // Set the file offsets of all the segments, and all the sections
467 // they contain.
468 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
469
470 // Create the symbol table sections.
471 this->create_symtab_sections(size, input_objects, symtab, &off);
472
473 // Create the .shstrtab section.
474 Output_section* shstrtab_section = this->create_shstrtab();
475
476 // Set the file offsets of all the sections not associated with
477 // segments.
478 off = this->set_section_offsets(off, &shndx);
479
480 // Create the section table header.
481 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
482
483 file_header->set_section_info(oshdrs, shstrtab_section);
484
485 // Now we know exactly where everything goes in the output file.
486 Output_data::layout_complete();
487
488 return off;
489 }
490
491 // Return whether SEG1 should be before SEG2 in the output file. This
492 // is based entirely on the segment type and flags. When this is
493 // called the segment addresses has normally not yet been set.
494
495 bool
496 Layout::segment_precedes(const Output_segment* seg1,
497 const Output_segment* seg2)
498 {
499 elfcpp::Elf_Word type1 = seg1->type();
500 elfcpp::Elf_Word type2 = seg2->type();
501
502 // The single PT_PHDR segment is required to precede any loadable
503 // segment. We simply make it always first.
504 if (type1 == elfcpp::PT_PHDR)
505 {
506 gold_assert(type2 != elfcpp::PT_PHDR);
507 return true;
508 }
509 if (type2 == elfcpp::PT_PHDR)
510 return false;
511
512 // The single PT_INTERP segment is required to precede any loadable
513 // segment. We simply make it always second.
514 if (type1 == elfcpp::PT_INTERP)
515 {
516 gold_assert(type2 != elfcpp::PT_INTERP);
517 return true;
518 }
519 if (type2 == elfcpp::PT_INTERP)
520 return false;
521
522 // We then put PT_LOAD segments before any other segments.
523 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
524 return true;
525 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
526 return false;
527
528 // We put the PT_TLS segment last, because that is where the dynamic
529 // linker expects to find it (this is just for efficiency; other
530 // positions would also work correctly).
531 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
532 return false;
533 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
534 return true;
535
536 const elfcpp::Elf_Word flags1 = seg1->flags();
537 const elfcpp::Elf_Word flags2 = seg2->flags();
538
539 // The order of non-PT_LOAD segments is unimportant. We simply sort
540 // by the numeric segment type and flags values. There should not
541 // be more than one segment with the same type and flags.
542 if (type1 != elfcpp::PT_LOAD)
543 {
544 if (type1 != type2)
545 return type1 < type2;
546 gold_assert(flags1 != flags2);
547 return flags1 < flags2;
548 }
549
550 // We sort PT_LOAD segments based on the flags. Readonly segments
551 // come before writable segments. Then executable segments come
552 // before non-executable segments. Then the unlikely case of a
553 // non-readable segment comes before the normal case of a readable
554 // segment. If there are multiple segments with the same type and
555 // flags, we require that the address be set, and we sort by
556 // virtual address and then physical address.
557 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
558 return (flags1 & elfcpp::PF_W) == 0;
559 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
560 return (flags1 & elfcpp::PF_X) != 0;
561 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
562 return (flags1 & elfcpp::PF_R) == 0;
563
564 uint64_t vaddr1 = seg1->vaddr();
565 uint64_t vaddr2 = seg2->vaddr();
566 if (vaddr1 != vaddr2)
567 return vaddr1 < vaddr2;
568
569 uint64_t paddr1 = seg1->paddr();
570 uint64_t paddr2 = seg2->paddr();
571 gold_assert(paddr1 != paddr2);
572 return paddr1 < paddr2;
573 }
574
575 // Set the file offsets of all the segments, and all the sections they
576 // contain. They have all been created. LOAD_SEG must be be laid out
577 // first. Return the offset of the data to follow.
578
579 off_t
580 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
581 unsigned int *pshndx)
582 {
583 // Sort them into the final order.
584 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
585 Layout::Compare_segments());
586
587 // Find the PT_LOAD segments, and set their addresses and offsets
588 // and their section's addresses and offsets.
589 uint64_t addr = target->text_segment_address();
590 off_t off = 0;
591 bool was_readonly = false;
592 for (Segment_list::iterator p = this->segment_list_.begin();
593 p != this->segment_list_.end();
594 ++p)
595 {
596 if ((*p)->type() == elfcpp::PT_LOAD)
597 {
598 if (load_seg != NULL && load_seg != *p)
599 gold_unreachable();
600 load_seg = NULL;
601
602 // If the last segment was readonly, and this one is not,
603 // then skip the address forward one page, maintaining the
604 // same position within the page. This lets us store both
605 // segments overlapping on a single page in the file, but
606 // the loader will put them on different pages in memory.
607
608 uint64_t orig_addr = addr;
609 uint64_t orig_off = off;
610
611 uint64_t aligned_addr = addr;
612 uint64_t abi_pagesize = target->abi_pagesize();
613
614 // FIXME: This should depend on the -n and -N options.
615 (*p)->set_minimum_addralign(target->common_pagesize());
616
617 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
618 {
619 uint64_t align = (*p)->addralign();
620
621 addr = align_address(addr, align);
622 aligned_addr = addr;
623 if ((addr & (abi_pagesize - 1)) != 0)
624 addr = addr + abi_pagesize;
625 }
626
627 unsigned int shndx_hold = *pshndx;
628 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
629 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
630
631 // Now that we know the size of this segment, we may be able
632 // to save a page in memory, at the cost of wasting some
633 // file space, by instead aligning to the start of a new
634 // page. Here we use the real machine page size rather than
635 // the ABI mandated page size.
636
637 if (aligned_addr != addr)
638 {
639 uint64_t common_pagesize = target->common_pagesize();
640 uint64_t first_off = (common_pagesize
641 - (aligned_addr
642 & (common_pagesize - 1)));
643 uint64_t last_off = new_addr & (common_pagesize - 1);
644 if (first_off > 0
645 && last_off > 0
646 && ((aligned_addr & ~ (common_pagesize - 1))
647 != (new_addr & ~ (common_pagesize - 1)))
648 && first_off + last_off <= common_pagesize)
649 {
650 *pshndx = shndx_hold;
651 addr = align_address(aligned_addr, common_pagesize);
652 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
653 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
654 }
655 }
656
657 addr = new_addr;
658
659 if (((*p)->flags() & elfcpp::PF_W) == 0)
660 was_readonly = true;
661 }
662 }
663
664 // Handle the non-PT_LOAD segments, setting their offsets from their
665 // section's offsets.
666 for (Segment_list::iterator p = this->segment_list_.begin();
667 p != this->segment_list_.end();
668 ++p)
669 {
670 if ((*p)->type() != elfcpp::PT_LOAD)
671 (*p)->set_offset();
672 }
673
674 return off;
675 }
676
677 // Set the file offset of all the sections not associated with a
678 // segment.
679
680 off_t
681 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
682 {
683 for (Section_list::iterator p = this->unattached_section_list_.begin();
684 p != this->unattached_section_list_.end();
685 ++p)
686 {
687 (*p)->set_out_shndx(*pshndx);
688 ++*pshndx;
689 if ((*p)->offset() != -1)
690 continue;
691 off = align_address(off, (*p)->addralign());
692 (*p)->set_address(0, off);
693 off += (*p)->data_size();
694 }
695 return off;
696 }
697
698 // Create the symbol table sections. Here we also set the final
699 // values of the symbols. At this point all the loadable sections are
700 // fully laid out.
701
702 void
703 Layout::create_symtab_sections(int size, const Input_objects* input_objects,
704 Symbol_table* symtab,
705 off_t* poff)
706 {
707 int symsize;
708 unsigned int align;
709 if (size == 32)
710 {
711 symsize = elfcpp::Elf_sizes<32>::sym_size;
712 align = 4;
713 }
714 else if (size == 64)
715 {
716 symsize = elfcpp::Elf_sizes<64>::sym_size;
717 align = 8;
718 }
719 else
720 gold_unreachable();
721
722 off_t off = *poff;
723 off = align_address(off, align);
724 off_t startoff = off;
725
726 // Save space for the dummy symbol at the start of the section. We
727 // never bother to write this out--it will just be left as zero.
728 off += symsize;
729 unsigned int local_symbol_index = 1;
730
731 // Add STT_SECTION symbols for each Output section which needs one.
732 for (Section_list::iterator p = this->section_list_.begin();
733 p != this->section_list_.end();
734 ++p)
735 {
736 if (!(*p)->needs_symtab_index())
737 (*p)->set_symtab_index(-1U);
738 else
739 {
740 (*p)->set_symtab_index(local_symbol_index);
741 ++local_symbol_index;
742 off += symsize;
743 }
744 }
745
746 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
747 p != input_objects->relobj_end();
748 ++p)
749 {
750 Task_lock_obj<Object> tlo(**p);
751 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
752 off,
753 &this->sympool_);
754 off += (index - local_symbol_index) * symsize;
755 local_symbol_index = index;
756 }
757
758 unsigned int local_symcount = local_symbol_index;
759 gold_assert(local_symcount * symsize == off - startoff);
760
761 off_t dynoff;
762 size_t dyn_global_index;
763 size_t dyncount;
764 if (this->dynsym_section_ == NULL)
765 {
766 dynoff = 0;
767 dyn_global_index = 0;
768 dyncount = 0;
769 }
770 else
771 {
772 dyn_global_index = this->dynsym_section_->info();
773 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
774 dynoff = this->dynsym_section_->offset() + locsize;
775 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
776 gold_assert(dyncount * symsize
777 == this->dynsym_section_->data_size() - locsize);
778 }
779
780 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
781 dyncount, &this->sympool_);
782
783 this->sympool_.set_string_offsets();
784
785 const char* symtab_name = this->namepool_.add(".symtab", NULL);
786 Output_section* osymtab = this->make_output_section(symtab_name,
787 elfcpp::SHT_SYMTAB,
788 0);
789 this->symtab_section_ = osymtab;
790
791 Output_section_data* pos = new Output_data_space(off - startoff,
792 align);
793 osymtab->add_output_section_data(pos);
794
795 const char* strtab_name = this->namepool_.add(".strtab", NULL);
796 Output_section* ostrtab = this->make_output_section(strtab_name,
797 elfcpp::SHT_STRTAB,
798 0);
799
800 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
801 ostrtab->add_output_section_data(pstr);
802
803 osymtab->set_address(0, startoff);
804 osymtab->set_link_section(ostrtab);
805 osymtab->set_info(local_symcount);
806 osymtab->set_entsize(symsize);
807
808 *poff = off;
809 }
810
811 // Create the .shstrtab section, which holds the names of the
812 // sections. At the time this is called, we have created all the
813 // output sections except .shstrtab itself.
814
815 Output_section*
816 Layout::create_shstrtab()
817 {
818 // FIXME: We don't need to create a .shstrtab section if we are
819 // stripping everything.
820
821 const char* name = this->namepool_.add(".shstrtab", NULL);
822
823 this->namepool_.set_string_offsets();
824
825 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
826
827 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
828 os->add_output_section_data(posd);
829
830 return os;
831 }
832
833 // Create the section headers. SIZE is 32 or 64. OFF is the file
834 // offset.
835
836 Output_section_headers*
837 Layout::create_shdrs(int size, bool big_endian, off_t* poff)
838 {
839 Output_section_headers* oshdrs;
840 oshdrs = new Output_section_headers(size, big_endian, this,
841 &this->segment_list_,
842 &this->unattached_section_list_,
843 &this->namepool_);
844 off_t off = align_address(*poff, oshdrs->addralign());
845 oshdrs->set_address(0, off);
846 off += oshdrs->data_size();
847 *poff = off;
848 this->special_output_list_.push_back(oshdrs);
849 return oshdrs;
850 }
851
852 // Create the dynamic symbol table.
853
854 void
855 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
856 Output_section **pdynstr,
857 unsigned int* plocal_dynamic_count,
858 std::vector<Symbol*>* pdynamic_symbols,
859 Versions* pversions)
860 {
861 // Count all the symbols in the dynamic symbol table, and set the
862 // dynamic symbol indexes.
863
864 // Skip symbol 0, which is always all zeroes.
865 unsigned int index = 1;
866
867 // Add STT_SECTION symbols for each Output section which needs one.
868 for (Section_list::iterator p = this->section_list_.begin();
869 p != this->section_list_.end();
870 ++p)
871 {
872 if (!(*p)->needs_dynsym_index())
873 (*p)->set_dynsym_index(-1U);
874 else
875 {
876 (*p)->set_dynsym_index(index);
877 ++index;
878 }
879 }
880
881 // FIXME: Some targets apparently require local symbols in the
882 // dynamic symbol table. Here is where we will have to count them,
883 // and set the dynamic symbol indexes, and add the names to
884 // this->dynpool_.
885
886 unsigned int local_symcount = index;
887 *plocal_dynamic_count = local_symcount;
888
889 // FIXME: We have to tell set_dynsym_indexes whether the
890 // -E/--export-dynamic option was used.
891 index = symtab->set_dynsym_indexes(&this->options_, target, index,
892 pdynamic_symbols, &this->dynpool_,
893 pversions);
894
895 int symsize;
896 unsigned int align;
897 const int size = target->get_size();
898 if (size == 32)
899 {
900 symsize = elfcpp::Elf_sizes<32>::sym_size;
901 align = 4;
902 }
903 else if (size == 64)
904 {
905 symsize = elfcpp::Elf_sizes<64>::sym_size;
906 align = 8;
907 }
908 else
909 gold_unreachable();
910
911 // Create the dynamic symbol table section.
912
913 const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
914 Output_section* dynsym = this->make_output_section(dynsym_name,
915 elfcpp::SHT_DYNSYM,
916 elfcpp::SHF_ALLOC);
917
918 Output_section_data* odata = new Output_data_space(index * symsize,
919 align);
920 dynsym->add_output_section_data(odata);
921
922 dynsym->set_info(local_symcount);
923 dynsym->set_entsize(symsize);
924 dynsym->set_addralign(align);
925
926 this->dynsym_section_ = dynsym;
927
928 Output_data_dynamic* const odyn = this->dynamic_data_;
929 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
930 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
931
932 // Create the dynamic string table section.
933
934 const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
935 Output_section* dynstr = this->make_output_section(dynstr_name,
936 elfcpp::SHT_STRTAB,
937 elfcpp::SHF_ALLOC);
938
939 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
940 dynstr->add_output_section_data(strdata);
941
942 dynsym->set_link_section(dynstr);
943 this->dynamic_section_->set_link_section(dynstr);
944
945 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
946 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
947
948 *pdynstr = dynstr;
949
950 // Create the hash tables.
951
952 // FIXME: We need an option to create a GNU hash table.
953
954 unsigned char* phash;
955 unsigned int hashlen;
956 Dynobj::create_elf_hash_table(target, *pdynamic_symbols, local_symcount,
957 &phash, &hashlen);
958
959 const char* hash_name = this->namepool_.add(".hash", NULL);
960 Output_section* hashsec = this->make_output_section(hash_name,
961 elfcpp::SHT_HASH,
962 elfcpp::SHF_ALLOC);
963
964 Output_section_data* hashdata = new Output_data_const_buffer(phash,
965 hashlen,
966 align);
967 hashsec->add_output_section_data(hashdata);
968
969 hashsec->set_link_section(dynsym);
970 hashsec->set_entsize(4);
971
972 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
973 }
974
975 // Create the version sections.
976
977 void
978 Layout::create_version_sections(const Target* target, const Versions* versions,
979 unsigned int local_symcount,
980 const std::vector<Symbol*>& dynamic_symbols,
981 const Output_section* dynstr)
982 {
983 if (!versions->any_defs() && !versions->any_needs())
984 return;
985
986 if (target->get_size() == 32)
987 {
988 if (target->is_big_endian())
989 {
990 #ifdef HAVE_TARGET_32_BIG
991 this->sized_create_version_sections
992 SELECT_SIZE_ENDIAN_NAME(32, true)(
993 versions, local_symcount, dynamic_symbols, dynstr
994 SELECT_SIZE_ENDIAN(32, true));
995 #else
996 gold_unreachable();
997 #endif
998 }
999 else
1000 {
1001 #ifdef HAVE_TARGET_32_LITTLE
1002 this->sized_create_version_sections
1003 SELECT_SIZE_ENDIAN_NAME(32, false)(
1004 versions, local_symcount, dynamic_symbols, dynstr
1005 SELECT_SIZE_ENDIAN(32, false));
1006 #else
1007 gold_unreachable();
1008 #endif
1009 }
1010 }
1011 else if (target->get_size() == 64)
1012 {
1013 if (target->is_big_endian())
1014 {
1015 #ifdef HAVE_TARGET_64_BIG
1016 this->sized_create_version_sections
1017 SELECT_SIZE_ENDIAN_NAME(64, true)(
1018 versions, local_symcount, dynamic_symbols, dynstr
1019 SELECT_SIZE_ENDIAN(64, true));
1020 #else
1021 gold_unreachable();
1022 #endif
1023 }
1024 else
1025 {
1026 #ifdef HAVE_TARGET_64_LITTLE
1027 this->sized_create_version_sections
1028 SELECT_SIZE_ENDIAN_NAME(64, false)(
1029 versions, local_symcount, dynamic_symbols, dynstr
1030 SELECT_SIZE_ENDIAN(64, false));
1031 #else
1032 gold_unreachable();
1033 #endif
1034 }
1035 }
1036 else
1037 gold_unreachable();
1038 }
1039
1040 // Create the version sections, sized version.
1041
1042 template<int size, bool big_endian>
1043 void
1044 Layout::sized_create_version_sections(
1045 const Versions* versions,
1046 unsigned int local_symcount,
1047 const std::vector<Symbol*>& dynamic_symbols,
1048 const Output_section* dynstr
1049 ACCEPT_SIZE_ENDIAN)
1050 {
1051 const char* vname = this->namepool_.add(".gnu.version", NULL);
1052 Output_section* vsec = this->make_output_section(vname,
1053 elfcpp::SHT_GNU_versym,
1054 elfcpp::SHF_ALLOC);
1055
1056 unsigned char* vbuf;
1057 unsigned int vsize;
1058 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1059 &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1060 SELECT_SIZE_ENDIAN(size, big_endian));
1061
1062 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1063
1064 vsec->add_output_section_data(vdata);
1065 vsec->set_entsize(2);
1066 vsec->set_link_section(this->dynsym_section_);
1067
1068 Output_data_dynamic* const odyn = this->dynamic_data_;
1069 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1070
1071 if (versions->any_defs())
1072 {
1073 const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1074 Output_section *vdsec;
1075 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1076 elfcpp::SHF_ALLOC);
1077
1078 unsigned char* vdbuf;
1079 unsigned int vdsize;
1080 unsigned int vdentries;
1081 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1082 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1083 SELECT_SIZE_ENDIAN(size, big_endian));
1084
1085 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1086 vdsize,
1087 4);
1088
1089 vdsec->add_output_section_data(vddata);
1090 vdsec->set_link_section(dynstr);
1091 vdsec->set_info(vdentries);
1092
1093 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1094 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1095 }
1096
1097 if (versions->any_needs())
1098 {
1099 const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1100 Output_section* vnsec;
1101 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1102 elfcpp::SHF_ALLOC);
1103
1104 unsigned char* vnbuf;
1105 unsigned int vnsize;
1106 unsigned int vnentries;
1107 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1108 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1109 SELECT_SIZE_ENDIAN(size, big_endian));
1110
1111 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1112 vnsize,
1113 4);
1114
1115 vnsec->add_output_section_data(vndata);
1116 vnsec->set_link_section(dynstr);
1117 vnsec->set_info(vnentries);
1118
1119 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1120 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1121 }
1122 }
1123
1124 // Create the .interp section and PT_INTERP segment.
1125
1126 void
1127 Layout::create_interp(const Target* target)
1128 {
1129 const char* interp = this->options_.dynamic_linker();
1130 if (interp == NULL)
1131 {
1132 interp = target->dynamic_linker();
1133 gold_assert(interp != NULL);
1134 }
1135
1136 size_t len = strlen(interp) + 1;
1137
1138 Output_section_data* odata = new Output_data_const(interp, len, 1);
1139
1140 const char* interp_name = this->namepool_.add(".interp", NULL);
1141 Output_section* osec = this->make_output_section(interp_name,
1142 elfcpp::SHT_PROGBITS,
1143 elfcpp::SHF_ALLOC);
1144 osec->add_output_section_data(odata);
1145
1146 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1147 this->segment_list_.push_back(oseg);
1148 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1149 }
1150
1151 // Finish the .dynamic section and PT_DYNAMIC segment.
1152
1153 void
1154 Layout::finish_dynamic_section(const Input_objects* input_objects,
1155 const Symbol_table* symtab)
1156 {
1157 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1158 elfcpp::PF_R | elfcpp::PF_W);
1159 this->segment_list_.push_back(oseg);
1160 oseg->add_initial_output_section(this->dynamic_section_,
1161 elfcpp::PF_R | elfcpp::PF_W);
1162
1163 Output_data_dynamic* const odyn = this->dynamic_data_;
1164
1165 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1166 p != input_objects->dynobj_end();
1167 ++p)
1168 {
1169 // FIXME: Handle --as-needed.
1170 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1171 }
1172
1173 // FIXME: Support --init and --fini.
1174 Symbol* sym = symtab->lookup("_init");
1175 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1176 odyn->add_symbol(elfcpp::DT_INIT, sym);
1177
1178 sym = symtab->lookup("_fini");
1179 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1180 odyn->add_symbol(elfcpp::DT_FINI, sym);
1181
1182 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1183
1184 // Add a DT_RPATH entry if needed.
1185 const General_options::Dir_list& rpath(this->options_.rpath());
1186 if (!rpath.empty())
1187 {
1188 std::string rpath_val;
1189 for (General_options::Dir_list::const_iterator p = rpath.begin();
1190 p != rpath.end();
1191 ++p)
1192 {
1193 if (rpath_val.empty())
1194 rpath_val = *p;
1195 else
1196 {
1197 // Eliminate duplicates.
1198 General_options::Dir_list::const_iterator q;
1199 for (q = rpath.begin(); q != p; ++q)
1200 if (strcmp(*q, *p) == 0)
1201 break;
1202 if (q == p)
1203 {
1204 rpath_val += ':';
1205 rpath_val += *p;
1206 }
1207 }
1208 }
1209
1210 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1211 }
1212 }
1213
1214 // The mapping of .gnu.linkonce section names to real section names.
1215
1216 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1217 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1218 {
1219 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1220 MAPPING_INIT("t", ".text"),
1221 MAPPING_INIT("r", ".rodata"),
1222 MAPPING_INIT("d", ".data"),
1223 MAPPING_INIT("b", ".bss"),
1224 MAPPING_INIT("s", ".sdata"),
1225 MAPPING_INIT("sb", ".sbss"),
1226 MAPPING_INIT("s2", ".sdata2"),
1227 MAPPING_INIT("sb2", ".sbss2"),
1228 MAPPING_INIT("wi", ".debug_info"),
1229 MAPPING_INIT("td", ".tdata"),
1230 MAPPING_INIT("tb", ".tbss"),
1231 MAPPING_INIT("lr", ".lrodata"),
1232 MAPPING_INIT("l", ".ldata"),
1233 MAPPING_INIT("lb", ".lbss"),
1234 };
1235 #undef MAPPING_INIT
1236
1237 const int Layout::linkonce_mapping_count =
1238 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1239
1240 // Return the name of the output section to use for a .gnu.linkonce
1241 // section. This is based on the default ELF linker script of the old
1242 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1243 // to ".text". Set *PLEN to the length of the name. *PLEN is
1244 // initialized to the length of NAME.
1245
1246 const char*
1247 Layout::linkonce_output_name(const char* name, size_t *plen)
1248 {
1249 const char* s = name + sizeof(".gnu.linkonce") - 1;
1250 if (*s != '.')
1251 return name;
1252 ++s;
1253 const Linkonce_mapping* plm = linkonce_mapping;
1254 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1255 {
1256 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1257 {
1258 *plen = plm->tolen;
1259 return plm->to;
1260 }
1261 }
1262 return name;
1263 }
1264
1265 // Choose the output section name to use given an input section name.
1266 // Set *PLEN to the length of the name. *PLEN is initialized to the
1267 // length of NAME.
1268
1269 const char*
1270 Layout::output_section_name(const char* name, size_t* plen)
1271 {
1272 if (Layout::is_linkonce(name))
1273 {
1274 // .gnu.linkonce sections are laid out as though they were named
1275 // for the sections are placed into.
1276 return Layout::linkonce_output_name(name, plen);
1277 }
1278
1279 // If the section name has no '.', or only an initial '.', we use
1280 // the name unchanged (i.e., ".text" is unchanged).
1281
1282 // Otherwise, if the section name does not include ".rel", we drop
1283 // the last '.' and everything that follows (i.e., ".text.XXX"
1284 // becomes ".text").
1285
1286 // Otherwise, if the section name has zero or one '.' after the
1287 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1288 // unchanged).
1289
1290 // Otherwise, we drop the last '.' and everything that follows
1291 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1292
1293 const char* s = name;
1294 if (*s == '.')
1295 ++s;
1296 const char* sdot = strchr(s, '.');
1297 if (sdot == NULL)
1298 return name;
1299
1300 const char* srel = strstr(s, ".rel");
1301 if (srel == NULL)
1302 {
1303 *plen = sdot - name;
1304 return name;
1305 }
1306
1307 sdot = strchr(srel + 1, '.');
1308 if (sdot == NULL)
1309 return name;
1310 sdot = strchr(sdot + 1, '.');
1311 if (sdot == NULL)
1312 return name;
1313
1314 *plen = sdot - name;
1315 return name;
1316 }
1317
1318 // Record the signature of a comdat section, and return whether to
1319 // include it in the link. If GROUP is true, this is a regular
1320 // section group. If GROUP is false, this is a group signature
1321 // derived from the name of a linkonce section. We want linkonce
1322 // signatures and group signatures to block each other, but we don't
1323 // want a linkonce signature to block another linkonce signature.
1324
1325 bool
1326 Layout::add_comdat(const char* signature, bool group)
1327 {
1328 std::string sig(signature);
1329 std::pair<Signatures::iterator, bool> ins(
1330 this->signatures_.insert(std::make_pair(sig, group)));
1331
1332 if (ins.second)
1333 {
1334 // This is the first time we've seen this signature.
1335 return true;
1336 }
1337
1338 if (ins.first->second)
1339 {
1340 // We've already seen a real section group with this signature.
1341 return false;
1342 }
1343 else if (group)
1344 {
1345 // This is a real section group, and we've already seen a
1346 // linkonce section with tihs signature. Record that we've seen
1347 // a section group, and don't include this section group.
1348 ins.first->second = true;
1349 return false;
1350 }
1351 else
1352 {
1353 // We've already seen a linkonce section and this is a linkonce
1354 // section. These don't block each other--this may be the same
1355 // symbol name with different section types.
1356 return true;
1357 }
1358 }
1359
1360 // Write out data not associated with a section or the symbol table.
1361
1362 void
1363 Layout::write_data(const Symbol_table* symtab, const Target* target,
1364 Output_file* of) const
1365 {
1366 const Output_section* symtab_section = this->symtab_section_;
1367 for (Section_list::const_iterator p = this->section_list_.begin();
1368 p != this->section_list_.end();
1369 ++p)
1370 {
1371 if ((*p)->needs_symtab_index())
1372 {
1373 gold_assert(symtab_section != NULL);
1374 unsigned int index = (*p)->symtab_index();
1375 gold_assert(index > 0 && index != -1U);
1376 off_t off = (symtab_section->offset()
1377 + index * symtab_section->entsize());
1378 symtab->write_section_symbol(target, *p, of, off);
1379 }
1380 }
1381
1382 const Output_section* dynsym_section = this->dynsym_section_;
1383 for (Section_list::const_iterator p = this->section_list_.begin();
1384 p != this->section_list_.end();
1385 ++p)
1386 {
1387 if ((*p)->needs_dynsym_index())
1388 {
1389 gold_assert(dynsym_section != NULL);
1390 unsigned int index = (*p)->dynsym_index();
1391 gold_assert(index > 0 && index != -1U);
1392 off_t off = (dynsym_section->offset()
1393 + index * dynsym_section->entsize());
1394 symtab->write_section_symbol(target, *p, of, off);
1395 }
1396 }
1397
1398 // Write out the Output_sections. Most won't have anything to
1399 // write, since most of the data will come from input sections which
1400 // are handled elsewhere. But some Output_sections do have
1401 // Output_data.
1402 for (Section_list::const_iterator p = this->section_list_.begin();
1403 p != this->section_list_.end();
1404 ++p)
1405 (*p)->write(of);
1406
1407 // Write out the Output_data which are not in an Output_section.
1408 for (Data_list::const_iterator p = this->special_output_list_.begin();
1409 p != this->special_output_list_.end();
1410 ++p)
1411 (*p)->write(of);
1412 }
1413
1414 // Write_data_task methods.
1415
1416 // We can always run this task.
1417
1418 Task::Is_runnable_type
1419 Write_data_task::is_runnable(Workqueue*)
1420 {
1421 return IS_RUNNABLE;
1422 }
1423
1424 // We need to unlock FINAL_BLOCKER when finished.
1425
1426 Task_locker*
1427 Write_data_task::locks(Workqueue* workqueue)
1428 {
1429 return new Task_locker_block(*this->final_blocker_, workqueue);
1430 }
1431
1432 // Run the task--write out the data.
1433
1434 void
1435 Write_data_task::run(Workqueue*)
1436 {
1437 this->layout_->write_data(this->symtab_, this->target_, this->of_);
1438 }
1439
1440 // Write_symbols_task methods.
1441
1442 // We can always run this task.
1443
1444 Task::Is_runnable_type
1445 Write_symbols_task::is_runnable(Workqueue*)
1446 {
1447 return IS_RUNNABLE;
1448 }
1449
1450 // We need to unlock FINAL_BLOCKER when finished.
1451
1452 Task_locker*
1453 Write_symbols_task::locks(Workqueue* workqueue)
1454 {
1455 return new Task_locker_block(*this->final_blocker_, workqueue);
1456 }
1457
1458 // Run the task--write out the symbols.
1459
1460 void
1461 Write_symbols_task::run(Workqueue*)
1462 {
1463 this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1464 this->of_);
1465 }
1466
1467 // Close_task_runner methods.
1468
1469 // Run the task--close the file.
1470
1471 void
1472 Close_task_runner::run(Workqueue*)
1473 {
1474 this->of_->close();
1475 }
1476
1477 // Instantiate the templates we need. We could use the configure
1478 // script to restrict this to only the ones for implemented targets.
1479
1480 #ifdef HAVE_TARGET_32_LITTLE
1481 template
1482 Output_section*
1483 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1484 const elfcpp::Shdr<32, false>& shdr, off_t*);
1485 #endif
1486
1487 #ifdef HAVE_TARGET_32_BIG
1488 template
1489 Output_section*
1490 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1491 const elfcpp::Shdr<32, true>& shdr, off_t*);
1492 #endif
1493
1494 #ifdef HAVE_TARGET_64_LITTLE
1495 template
1496 Output_section*
1497 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1498 const elfcpp::Shdr<64, false>& shdr, off_t*);
1499 #endif
1500
1501 #ifdef HAVE_TARGET_64_BIG
1502 template
1503 Output_section*
1504 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1505 const elfcpp::Shdr<64, true>& shdr, off_t*);
1506 #endif
1507
1508
1509 } // End namespace gold.