Add basic exception frame header, plus test.
[binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections. This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48 off_t file_size = this->layout_->finalize(this->input_objects_,
49 this->symtab_);
50
51 // Now we know the final size of the output file and we know where
52 // each piece of information goes.
53 Output_file* of = new Output_file(this->options_,
54 this->input_objects_->target());
55 of->open(file_size);
56
57 // Queue up the final set of tasks.
58 gold::queue_final_tasks(this->options_, this->input_objects_,
59 this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66 section_name_map_(), segment_list_(), section_list_(),
67 unattached_section_list_(), special_output_list_(),
68 tls_segment_(NULL), symtab_section_(NULL),
69 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70 eh_frame_section_(NULL)
71 {
72 // Make space for more than enough segments for a typical file.
73 // This is just for efficiency--it's OK if we wind up needing more.
74 this->segment_list_.reserve(12);
75
76 // We expect three unattached Output_data objects: the file header,
77 // the segment headers, and the section headers.
78 this->special_output_list_.reserve(3);
79 }
80
81 // Hash a key we use to look up an output section mapping.
82
83 size_t
84 Layout::Hash_key::operator()(const Layout::Key& k) const
85 {
86 return k.first + k.second.first + k.second.second;
87 }
88
89 // Whether to include this section in the link.
90
91 template<int size, bool big_endian>
92 bool
93 Layout::include_section(Object*, const char*,
94 const elfcpp::Shdr<size, big_endian>& shdr)
95 {
96 // Some section types are never linked. Some are only linked when
97 // doing a relocateable link.
98 switch (shdr.get_sh_type())
99 {
100 case elfcpp::SHT_NULL:
101 case elfcpp::SHT_SYMTAB:
102 case elfcpp::SHT_DYNSYM:
103 case elfcpp::SHT_STRTAB:
104 case elfcpp::SHT_HASH:
105 case elfcpp::SHT_DYNAMIC:
106 case elfcpp::SHT_SYMTAB_SHNDX:
107 return false;
108
109 case elfcpp::SHT_RELA:
110 case elfcpp::SHT_REL:
111 case elfcpp::SHT_GROUP:
112 return parameters->output_is_object();
113
114 default:
115 // FIXME: Handle stripping debug sections here.
116 return true;
117 }
118 }
119
120 // Return an output section named NAME, or NULL if there is none.
121
122 Output_section*
123 Layout::find_output_section(const char* name) const
124 {
125 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
126 p != this->section_name_map_.end();
127 ++p)
128 if (strcmp(p->second->name(), name) == 0)
129 return p->second;
130 return NULL;
131 }
132
133 // Return an output segment of type TYPE, with segment flags SET set
134 // and segment flags CLEAR clear. Return NULL if there is none.
135
136 Output_segment*
137 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
138 elfcpp::Elf_Word clear) const
139 {
140 for (Segment_list::const_iterator p = this->segment_list_.begin();
141 p != this->segment_list_.end();
142 ++p)
143 if (static_cast<elfcpp::PT>((*p)->type()) == type
144 && ((*p)->flags() & set) == set
145 && ((*p)->flags() & clear) == 0)
146 return *p;
147 return NULL;
148 }
149
150 // Return the output section to use for section NAME with type TYPE
151 // and section flags FLAGS.
152
153 Output_section*
154 Layout::get_output_section(const char* name, Stringpool::Key name_key,
155 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
156 {
157 // We should ignore some flags.
158 flags &= ~ (elfcpp::SHF_INFO_LINK
159 | elfcpp::SHF_LINK_ORDER
160 | elfcpp::SHF_GROUP
161 | elfcpp::SHF_MERGE
162 | elfcpp::SHF_STRINGS);
163
164 const Key key(name_key, std::make_pair(type, flags));
165 const std::pair<Key, Output_section*> v(key, NULL);
166 std::pair<Section_name_map::iterator, bool> ins(
167 this->section_name_map_.insert(v));
168
169 if (!ins.second)
170 return ins.first->second;
171 else
172 {
173 // This is the first time we've seen this name/type/flags
174 // combination.
175 Output_section* os = this->make_output_section(name, type, flags);
176 ins.first->second = os;
177 return os;
178 }
179 }
180
181 // Return the output section to use for input section SHNDX, with name
182 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
183 // offset of this input section without the output section.
184
185 template<int size, bool big_endian>
186 Output_section*
187 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
188 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
189 {
190 if (!this->include_section(object, name, shdr))
191 return NULL;
192
193 // If we are not doing a relocateable link, choose the name to use
194 // for the output section.
195 size_t len = strlen(name);
196 if (!parameters->output_is_object())
197 name = Layout::output_section_name(name, &len);
198
199 // FIXME: Handle SHF_OS_NONCONFORMING here.
200
201 // Canonicalize the section name.
202 Stringpool::Key name_key;
203 name = this->namepool_.add(name, len, &name_key);
204
205 // Find the output section. The output section is selected based on
206 // the section name, type, and flags.
207 Output_section* os = this->get_output_section(name, name_key,
208 shdr.get_sh_type(),
209 shdr.get_sh_flags());
210
211 // Special GNU handling of sections named .eh_frame.
212 if (!parameters->output_is_object()
213 && strcmp(name, ".eh_frame") == 0
214 && shdr.get_sh_size() > 0
215 && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
216 && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
217 {
218 this->layout_eh_frame(object, shndx, name, shdr, os, off);
219 return os;
220 }
221
222 // FIXME: Handle SHF_LINK_ORDER somewhere.
223
224 *off = os->add_input_section(object, shndx, name, shdr);
225
226 return os;
227 }
228
229 // Special GNU handling of sections named .eh_frame. They will
230 // normally hold exception frame data.
231
232 template<int size, bool big_endian>
233 void
234 Layout::layout_eh_frame(Relobj* object,
235 unsigned int shndx,
236 const char* name,
237 const elfcpp::Shdr<size, big_endian>& shdr,
238 Output_section* os, off_t* off)
239 {
240 if (this->eh_frame_section_ == NULL)
241 {
242 this->eh_frame_section_ = os;
243
244 if (this->options_.create_eh_frame_hdr())
245 {
246 Stringpool::Key hdr_name_key;
247 const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
248 &hdr_name_key);
249 Output_section* hdr_os =
250 this->get_output_section(hdr_name, hdr_name_key,
251 elfcpp::SHT_PROGBITS,
252 elfcpp::SHF_ALLOC);
253
254 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(object->target(), os);
255 hdr_os->add_output_section_data(hdr_posd);
256
257 Output_segment* hdr_oseg =
258 new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
259 this->segment_list_.push_back(hdr_oseg);
260 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
261 }
262 }
263
264 gold_assert(this->eh_frame_section_ == os);
265
266 *off = os->add_input_section(object, shndx, name, shdr);
267 }
268
269 // Add POSD to an output section using NAME, TYPE, and FLAGS.
270
271 void
272 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
273 elfcpp::Elf_Xword flags,
274 Output_section_data* posd)
275 {
276 // Canonicalize the name.
277 Stringpool::Key name_key;
278 name = this->namepool_.add(name, &name_key);
279
280 Output_section* os = this->get_output_section(name, name_key, type, flags);
281 os->add_output_section_data(posd);
282 }
283
284 // Map section flags to segment flags.
285
286 elfcpp::Elf_Word
287 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
288 {
289 elfcpp::Elf_Word ret = elfcpp::PF_R;
290 if ((flags & elfcpp::SHF_WRITE) != 0)
291 ret |= elfcpp::PF_W;
292 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
293 ret |= elfcpp::PF_X;
294 return ret;
295 }
296
297 // Make a new Output_section, and attach it to segments as
298 // appropriate.
299
300 Output_section*
301 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
302 elfcpp::Elf_Xword flags)
303 {
304 Output_section* os = new Output_section(name, type, flags);
305 this->section_list_.push_back(os);
306
307 if ((flags & elfcpp::SHF_ALLOC) == 0)
308 this->unattached_section_list_.push_back(os);
309 else
310 {
311 // This output section goes into a PT_LOAD segment.
312
313 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
314
315 // The only thing we really care about for PT_LOAD segments is
316 // whether or not they are writable, so that is how we search
317 // for them. People who need segments sorted on some other
318 // basis will have to wait until we implement a mechanism for
319 // them to describe the segments they want.
320
321 Segment_list::const_iterator p;
322 for (p = this->segment_list_.begin();
323 p != this->segment_list_.end();
324 ++p)
325 {
326 if ((*p)->type() == elfcpp::PT_LOAD
327 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
328 {
329 (*p)->add_output_section(os, seg_flags);
330 break;
331 }
332 }
333
334 if (p == this->segment_list_.end())
335 {
336 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
337 seg_flags);
338 this->segment_list_.push_back(oseg);
339 oseg->add_output_section(os, seg_flags);
340 }
341
342 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
343 // segment.
344 if (type == elfcpp::SHT_NOTE)
345 {
346 // See if we already have an equivalent PT_NOTE segment.
347 for (p = this->segment_list_.begin();
348 p != segment_list_.end();
349 ++p)
350 {
351 if ((*p)->type() == elfcpp::PT_NOTE
352 && (((*p)->flags() & elfcpp::PF_W)
353 == (seg_flags & elfcpp::PF_W)))
354 {
355 (*p)->add_output_section(os, seg_flags);
356 break;
357 }
358 }
359
360 if (p == this->segment_list_.end())
361 {
362 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
363 seg_flags);
364 this->segment_list_.push_back(oseg);
365 oseg->add_output_section(os, seg_flags);
366 }
367 }
368
369 // If we see a loadable SHF_TLS section, we create a PT_TLS
370 // segment. There can only be one such segment.
371 if ((flags & elfcpp::SHF_TLS) != 0)
372 {
373 if (this->tls_segment_ == NULL)
374 {
375 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
376 seg_flags);
377 this->segment_list_.push_back(this->tls_segment_);
378 }
379 this->tls_segment_->add_output_section(os, seg_flags);
380 }
381 }
382
383 return os;
384 }
385
386 // Create the dynamic sections which are needed before we read the
387 // relocs.
388
389 void
390 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
391 Symbol_table* symtab)
392 {
393 if (!input_objects->any_dynamic())
394 return;
395
396 const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
397 this->dynamic_section_ = this->make_output_section(dynamic_name,
398 elfcpp::SHT_DYNAMIC,
399 (elfcpp::SHF_ALLOC
400 | elfcpp::SHF_WRITE));
401
402 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
403 this->dynamic_section_, 0, 0,
404 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
405 elfcpp::STV_HIDDEN, 0, false, false);
406
407 this->dynamic_data_ = new Output_data_dynamic(input_objects->target(),
408 &this->dynpool_);
409
410 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
411 }
412
413 // For each output section whose name can be represented as C symbol,
414 // define __start and __stop symbols for the section. This is a GNU
415 // extension.
416
417 void
418 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
419 {
420 for (Section_list::const_iterator p = this->section_list_.begin();
421 p != this->section_list_.end();
422 ++p)
423 {
424 const char* const name = (*p)->name();
425 if (name[strspn(name,
426 ("0123456789"
427 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
428 "abcdefghijklmnopqrstuvwxyz"
429 "_"))]
430 == '\0')
431 {
432 const std::string name_string(name);
433 const std::string start_name("__start_" + name_string);
434 const std::string stop_name("__stop_" + name_string);
435
436 symtab->define_in_output_data(target,
437 start_name.c_str(),
438 NULL, // version
439 *p,
440 0, // value
441 0, // symsize
442 elfcpp::STT_NOTYPE,
443 elfcpp::STB_GLOBAL,
444 elfcpp::STV_DEFAULT,
445 0, // nonvis
446 false, // offset_is_from_end
447 false); // only_if_ref
448
449 symtab->define_in_output_data(target,
450 stop_name.c_str(),
451 NULL, // version
452 *p,
453 0, // value
454 0, // symsize
455 elfcpp::STT_NOTYPE,
456 elfcpp::STB_GLOBAL,
457 elfcpp::STV_DEFAULT,
458 0, // nonvis
459 true, // offset_is_from_end
460 false); // only_if_ref
461 }
462 }
463 }
464
465 // Find the first read-only PT_LOAD segment, creating one if
466 // necessary.
467
468 Output_segment*
469 Layout::find_first_load_seg()
470 {
471 for (Segment_list::const_iterator p = this->segment_list_.begin();
472 p != this->segment_list_.end();
473 ++p)
474 {
475 if ((*p)->type() == elfcpp::PT_LOAD
476 && ((*p)->flags() & elfcpp::PF_R) != 0
477 && ((*p)->flags() & elfcpp::PF_W) == 0)
478 return *p;
479 }
480
481 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
482 this->segment_list_.push_back(load_seg);
483 return load_seg;
484 }
485
486 // Finalize the layout. When this is called, we have created all the
487 // output sections and all the output segments which are based on
488 // input sections. We have several things to do, and we have to do
489 // them in the right order, so that we get the right results correctly
490 // and efficiently.
491
492 // 1) Finalize the list of output segments and create the segment
493 // table header.
494
495 // 2) Finalize the dynamic symbol table and associated sections.
496
497 // 3) Determine the final file offset of all the output segments.
498
499 // 4) Determine the final file offset of all the SHF_ALLOC output
500 // sections.
501
502 // 5) Create the symbol table sections and the section name table
503 // section.
504
505 // 6) Finalize the symbol table: set symbol values to their final
506 // value and make a final determination of which symbols are going
507 // into the output symbol table.
508
509 // 7) Create the section table header.
510
511 // 8) Determine the final file offset of all the output sections which
512 // are not SHF_ALLOC, including the section table header.
513
514 // 9) Finalize the ELF file header.
515
516 // This function returns the size of the output file.
517
518 off_t
519 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
520 {
521 Target* const target = input_objects->target();
522 const int size = target->get_size();
523
524 target->finalize_sections(this);
525
526 Output_segment* phdr_seg = NULL;
527 if (input_objects->any_dynamic())
528 {
529 // There was a dynamic object in the link. We need to create
530 // some information for the dynamic linker.
531
532 // Create the PT_PHDR segment which will hold the program
533 // headers.
534 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
535 this->segment_list_.push_back(phdr_seg);
536
537 // Create the dynamic symbol table, including the hash table.
538 Output_section* dynstr;
539 std::vector<Symbol*> dynamic_symbols;
540 unsigned int local_dynamic_count;
541 Versions versions;
542 this->create_dynamic_symtab(target, symtab, &dynstr,
543 &local_dynamic_count, &dynamic_symbols,
544 &versions);
545
546 // Create the .interp section to hold the name of the
547 // interpreter, and put it in a PT_INTERP segment.
548 this->create_interp(target);
549
550 // Finish the .dynamic section to hold the dynamic data, and put
551 // it in a PT_DYNAMIC segment.
552 this->finish_dynamic_section(input_objects, symtab);
553
554 // We should have added everything we need to the dynamic string
555 // table.
556 this->dynpool_.set_string_offsets();
557
558 // Create the version sections. We can't do this until the
559 // dynamic string table is complete.
560 this->create_version_sections(target, &versions, local_dynamic_count,
561 dynamic_symbols, dynstr);
562 }
563
564 // FIXME: Handle PT_GNU_STACK.
565
566 Output_segment* load_seg = this->find_first_load_seg();
567
568 // Lay out the segment headers.
569 bool big_endian = target->is_big_endian();
570 Output_segment_headers* segment_headers;
571 segment_headers = new Output_segment_headers(size, big_endian,
572 this->segment_list_);
573 load_seg->add_initial_output_data(segment_headers);
574 this->special_output_list_.push_back(segment_headers);
575 if (phdr_seg != NULL)
576 phdr_seg->add_initial_output_data(segment_headers);
577
578 // Lay out the file header.
579 Output_file_header* file_header;
580 file_header = new Output_file_header(size,
581 big_endian,
582 target,
583 symtab,
584 segment_headers);
585 load_seg->add_initial_output_data(file_header);
586 this->special_output_list_.push_back(file_header);
587
588 // We set the output section indexes in set_segment_offsets and
589 // set_section_offsets.
590 unsigned int shndx = 1;
591
592 // Set the file offsets of all the segments, and all the sections
593 // they contain.
594 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
595
596 // Create the symbol table sections.
597 this->create_symtab_sections(size, input_objects, symtab, &off);
598
599 // Create the .shstrtab section.
600 Output_section* shstrtab_section = this->create_shstrtab();
601
602 // Set the file offsets of all the sections not associated with
603 // segments.
604 off = this->set_section_offsets(off, &shndx);
605
606 // Create the section table header.
607 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
608
609 file_header->set_section_info(oshdrs, shstrtab_section);
610
611 // Now we know exactly where everything goes in the output file.
612 Output_data::layout_complete();
613
614 return off;
615 }
616
617 // Return whether SEG1 should be before SEG2 in the output file. This
618 // is based entirely on the segment type and flags. When this is
619 // called the segment addresses has normally not yet been set.
620
621 bool
622 Layout::segment_precedes(const Output_segment* seg1,
623 const Output_segment* seg2)
624 {
625 elfcpp::Elf_Word type1 = seg1->type();
626 elfcpp::Elf_Word type2 = seg2->type();
627
628 // The single PT_PHDR segment is required to precede any loadable
629 // segment. We simply make it always first.
630 if (type1 == elfcpp::PT_PHDR)
631 {
632 gold_assert(type2 != elfcpp::PT_PHDR);
633 return true;
634 }
635 if (type2 == elfcpp::PT_PHDR)
636 return false;
637
638 // The single PT_INTERP segment is required to precede any loadable
639 // segment. We simply make it always second.
640 if (type1 == elfcpp::PT_INTERP)
641 {
642 gold_assert(type2 != elfcpp::PT_INTERP);
643 return true;
644 }
645 if (type2 == elfcpp::PT_INTERP)
646 return false;
647
648 // We then put PT_LOAD segments before any other segments.
649 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
650 return true;
651 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
652 return false;
653
654 // We put the PT_TLS segment last, because that is where the dynamic
655 // linker expects to find it (this is just for efficiency; other
656 // positions would also work correctly).
657 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
658 return false;
659 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
660 return true;
661
662 const elfcpp::Elf_Word flags1 = seg1->flags();
663 const elfcpp::Elf_Word flags2 = seg2->flags();
664
665 // The order of non-PT_LOAD segments is unimportant. We simply sort
666 // by the numeric segment type and flags values. There should not
667 // be more than one segment with the same type and flags.
668 if (type1 != elfcpp::PT_LOAD)
669 {
670 if (type1 != type2)
671 return type1 < type2;
672 gold_assert(flags1 != flags2);
673 return flags1 < flags2;
674 }
675
676 // We sort PT_LOAD segments based on the flags. Readonly segments
677 // come before writable segments. Then executable segments come
678 // before non-executable segments. Then the unlikely case of a
679 // non-readable segment comes before the normal case of a readable
680 // segment. If there are multiple segments with the same type and
681 // flags, we require that the address be set, and we sort by
682 // virtual address and then physical address.
683 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
684 return (flags1 & elfcpp::PF_W) == 0;
685 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
686 return (flags1 & elfcpp::PF_X) != 0;
687 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
688 return (flags1 & elfcpp::PF_R) == 0;
689
690 uint64_t vaddr1 = seg1->vaddr();
691 uint64_t vaddr2 = seg2->vaddr();
692 if (vaddr1 != vaddr2)
693 return vaddr1 < vaddr2;
694
695 uint64_t paddr1 = seg1->paddr();
696 uint64_t paddr2 = seg2->paddr();
697 gold_assert(paddr1 != paddr2);
698 return paddr1 < paddr2;
699 }
700
701 // Set the file offsets of all the segments, and all the sections they
702 // contain. They have all been created. LOAD_SEG must be be laid out
703 // first. Return the offset of the data to follow.
704
705 off_t
706 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
707 unsigned int *pshndx)
708 {
709 // Sort them into the final order.
710 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
711 Layout::Compare_segments());
712
713 // Find the PT_LOAD segments, and set their addresses and offsets
714 // and their section's addresses and offsets.
715 uint64_t addr = target->text_segment_address();
716 off_t off = 0;
717 bool was_readonly = false;
718 for (Segment_list::iterator p = this->segment_list_.begin();
719 p != this->segment_list_.end();
720 ++p)
721 {
722 if ((*p)->type() == elfcpp::PT_LOAD)
723 {
724 if (load_seg != NULL && load_seg != *p)
725 gold_unreachable();
726 load_seg = NULL;
727
728 // If the last segment was readonly, and this one is not,
729 // then skip the address forward one page, maintaining the
730 // same position within the page. This lets us store both
731 // segments overlapping on a single page in the file, but
732 // the loader will put them on different pages in memory.
733
734 uint64_t orig_addr = addr;
735 uint64_t orig_off = off;
736
737 uint64_t aligned_addr = addr;
738 uint64_t abi_pagesize = target->abi_pagesize();
739
740 // FIXME: This should depend on the -n and -N options.
741 (*p)->set_minimum_addralign(target->common_pagesize());
742
743 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
744 {
745 uint64_t align = (*p)->addralign();
746
747 addr = align_address(addr, align);
748 aligned_addr = addr;
749 if ((addr & (abi_pagesize - 1)) != 0)
750 addr = addr + abi_pagesize;
751 }
752
753 unsigned int shndx_hold = *pshndx;
754 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
755 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
756
757 // Now that we know the size of this segment, we may be able
758 // to save a page in memory, at the cost of wasting some
759 // file space, by instead aligning to the start of a new
760 // page. Here we use the real machine page size rather than
761 // the ABI mandated page size.
762
763 if (aligned_addr != addr)
764 {
765 uint64_t common_pagesize = target->common_pagesize();
766 uint64_t first_off = (common_pagesize
767 - (aligned_addr
768 & (common_pagesize - 1)));
769 uint64_t last_off = new_addr & (common_pagesize - 1);
770 if (first_off > 0
771 && last_off > 0
772 && ((aligned_addr & ~ (common_pagesize - 1))
773 != (new_addr & ~ (common_pagesize - 1)))
774 && first_off + last_off <= common_pagesize)
775 {
776 *pshndx = shndx_hold;
777 addr = align_address(aligned_addr, common_pagesize);
778 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
779 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
780 }
781 }
782
783 addr = new_addr;
784
785 if (((*p)->flags() & elfcpp::PF_W) == 0)
786 was_readonly = true;
787 }
788 }
789
790 // Handle the non-PT_LOAD segments, setting their offsets from their
791 // section's offsets.
792 for (Segment_list::iterator p = this->segment_list_.begin();
793 p != this->segment_list_.end();
794 ++p)
795 {
796 if ((*p)->type() != elfcpp::PT_LOAD)
797 (*p)->set_offset();
798 }
799
800 return off;
801 }
802
803 // Set the file offset of all the sections not associated with a
804 // segment.
805
806 off_t
807 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
808 {
809 for (Section_list::iterator p = this->unattached_section_list_.begin();
810 p != this->unattached_section_list_.end();
811 ++p)
812 {
813 (*p)->set_out_shndx(*pshndx);
814 ++*pshndx;
815 if ((*p)->offset() != -1)
816 continue;
817 off = align_address(off, (*p)->addralign());
818 (*p)->set_address(0, off);
819 off += (*p)->data_size();
820 }
821 return off;
822 }
823
824 // Create the symbol table sections. Here we also set the final
825 // values of the symbols. At this point all the loadable sections are
826 // fully laid out.
827
828 void
829 Layout::create_symtab_sections(int size, const Input_objects* input_objects,
830 Symbol_table* symtab,
831 off_t* poff)
832 {
833 int symsize;
834 unsigned int align;
835 if (size == 32)
836 {
837 symsize = elfcpp::Elf_sizes<32>::sym_size;
838 align = 4;
839 }
840 else if (size == 64)
841 {
842 symsize = elfcpp::Elf_sizes<64>::sym_size;
843 align = 8;
844 }
845 else
846 gold_unreachable();
847
848 off_t off = *poff;
849 off = align_address(off, align);
850 off_t startoff = off;
851
852 // Save space for the dummy symbol at the start of the section. We
853 // never bother to write this out--it will just be left as zero.
854 off += symsize;
855 unsigned int local_symbol_index = 1;
856
857 // Add STT_SECTION symbols for each Output section which needs one.
858 for (Section_list::iterator p = this->section_list_.begin();
859 p != this->section_list_.end();
860 ++p)
861 {
862 if (!(*p)->needs_symtab_index())
863 (*p)->set_symtab_index(-1U);
864 else
865 {
866 (*p)->set_symtab_index(local_symbol_index);
867 ++local_symbol_index;
868 off += symsize;
869 }
870 }
871
872 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
873 p != input_objects->relobj_end();
874 ++p)
875 {
876 Task_lock_obj<Object> tlo(**p);
877 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
878 off,
879 &this->sympool_);
880 off += (index - local_symbol_index) * symsize;
881 local_symbol_index = index;
882 }
883
884 unsigned int local_symcount = local_symbol_index;
885 gold_assert(local_symcount * symsize == off - startoff);
886
887 off_t dynoff;
888 size_t dyn_global_index;
889 size_t dyncount;
890 if (this->dynsym_section_ == NULL)
891 {
892 dynoff = 0;
893 dyn_global_index = 0;
894 dyncount = 0;
895 }
896 else
897 {
898 dyn_global_index = this->dynsym_section_->info();
899 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
900 dynoff = this->dynsym_section_->offset() + locsize;
901 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
902 gold_assert(dyncount * symsize
903 == this->dynsym_section_->data_size() - locsize);
904 }
905
906 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
907 dyncount, &this->sympool_);
908
909 this->sympool_.set_string_offsets();
910
911 const char* symtab_name = this->namepool_.add(".symtab", NULL);
912 Output_section* osymtab = this->make_output_section(symtab_name,
913 elfcpp::SHT_SYMTAB,
914 0);
915 this->symtab_section_ = osymtab;
916
917 Output_section_data* pos = new Output_data_space(off - startoff,
918 align);
919 osymtab->add_output_section_data(pos);
920
921 const char* strtab_name = this->namepool_.add(".strtab", NULL);
922 Output_section* ostrtab = this->make_output_section(strtab_name,
923 elfcpp::SHT_STRTAB,
924 0);
925
926 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
927 ostrtab->add_output_section_data(pstr);
928
929 osymtab->set_address(0, startoff);
930 osymtab->set_link_section(ostrtab);
931 osymtab->set_info(local_symcount);
932 osymtab->set_entsize(symsize);
933
934 *poff = off;
935 }
936
937 // Create the .shstrtab section, which holds the names of the
938 // sections. At the time this is called, we have created all the
939 // output sections except .shstrtab itself.
940
941 Output_section*
942 Layout::create_shstrtab()
943 {
944 // FIXME: We don't need to create a .shstrtab section if we are
945 // stripping everything.
946
947 const char* name = this->namepool_.add(".shstrtab", NULL);
948
949 this->namepool_.set_string_offsets();
950
951 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
952
953 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
954 os->add_output_section_data(posd);
955
956 return os;
957 }
958
959 // Create the section headers. SIZE is 32 or 64. OFF is the file
960 // offset.
961
962 Output_section_headers*
963 Layout::create_shdrs(int size, bool big_endian, off_t* poff)
964 {
965 Output_section_headers* oshdrs;
966 oshdrs = new Output_section_headers(size, big_endian, this,
967 &this->segment_list_,
968 &this->unattached_section_list_,
969 &this->namepool_);
970 off_t off = align_address(*poff, oshdrs->addralign());
971 oshdrs->set_address(0, off);
972 off += oshdrs->data_size();
973 *poff = off;
974 this->special_output_list_.push_back(oshdrs);
975 return oshdrs;
976 }
977
978 // Create the dynamic symbol table.
979
980 void
981 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
982 Output_section **pdynstr,
983 unsigned int* plocal_dynamic_count,
984 std::vector<Symbol*>* pdynamic_symbols,
985 Versions* pversions)
986 {
987 // Count all the symbols in the dynamic symbol table, and set the
988 // dynamic symbol indexes.
989
990 // Skip symbol 0, which is always all zeroes.
991 unsigned int index = 1;
992
993 // Add STT_SECTION symbols for each Output section which needs one.
994 for (Section_list::iterator p = this->section_list_.begin();
995 p != this->section_list_.end();
996 ++p)
997 {
998 if (!(*p)->needs_dynsym_index())
999 (*p)->set_dynsym_index(-1U);
1000 else
1001 {
1002 (*p)->set_dynsym_index(index);
1003 ++index;
1004 }
1005 }
1006
1007 // FIXME: Some targets apparently require local symbols in the
1008 // dynamic symbol table. Here is where we will have to count them,
1009 // and set the dynamic symbol indexes, and add the names to
1010 // this->dynpool_.
1011
1012 unsigned int local_symcount = index;
1013 *plocal_dynamic_count = local_symcount;
1014
1015 // FIXME: We have to tell set_dynsym_indexes whether the
1016 // -E/--export-dynamic option was used.
1017 index = symtab->set_dynsym_indexes(&this->options_, target, index,
1018 pdynamic_symbols, &this->dynpool_,
1019 pversions);
1020
1021 int symsize;
1022 unsigned int align;
1023 const int size = target->get_size();
1024 if (size == 32)
1025 {
1026 symsize = elfcpp::Elf_sizes<32>::sym_size;
1027 align = 4;
1028 }
1029 else if (size == 64)
1030 {
1031 symsize = elfcpp::Elf_sizes<64>::sym_size;
1032 align = 8;
1033 }
1034 else
1035 gold_unreachable();
1036
1037 // Create the dynamic symbol table section.
1038
1039 const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
1040 Output_section* dynsym = this->make_output_section(dynsym_name,
1041 elfcpp::SHT_DYNSYM,
1042 elfcpp::SHF_ALLOC);
1043
1044 Output_section_data* odata = new Output_data_space(index * symsize,
1045 align);
1046 dynsym->add_output_section_data(odata);
1047
1048 dynsym->set_info(local_symcount);
1049 dynsym->set_entsize(symsize);
1050 dynsym->set_addralign(align);
1051
1052 this->dynsym_section_ = dynsym;
1053
1054 Output_data_dynamic* const odyn = this->dynamic_data_;
1055 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1056 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1057
1058 // Create the dynamic string table section.
1059
1060 const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
1061 Output_section* dynstr = this->make_output_section(dynstr_name,
1062 elfcpp::SHT_STRTAB,
1063 elfcpp::SHF_ALLOC);
1064
1065 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1066 dynstr->add_output_section_data(strdata);
1067
1068 dynsym->set_link_section(dynstr);
1069 this->dynamic_section_->set_link_section(dynstr);
1070
1071 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1072 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1073
1074 *pdynstr = dynstr;
1075
1076 // Create the hash tables.
1077
1078 // FIXME: We need an option to create a GNU hash table.
1079
1080 unsigned char* phash;
1081 unsigned int hashlen;
1082 Dynobj::create_elf_hash_table(target, *pdynamic_symbols, local_symcount,
1083 &phash, &hashlen);
1084
1085 const char* hash_name = this->namepool_.add(".hash", NULL);
1086 Output_section* hashsec = this->make_output_section(hash_name,
1087 elfcpp::SHT_HASH,
1088 elfcpp::SHF_ALLOC);
1089
1090 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1091 hashlen,
1092 align);
1093 hashsec->add_output_section_data(hashdata);
1094
1095 hashsec->set_link_section(dynsym);
1096 hashsec->set_entsize(4);
1097
1098 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1099 }
1100
1101 // Create the version sections.
1102
1103 void
1104 Layout::create_version_sections(const Target* target, const Versions* versions,
1105 unsigned int local_symcount,
1106 const std::vector<Symbol*>& dynamic_symbols,
1107 const Output_section* dynstr)
1108 {
1109 if (!versions->any_defs() && !versions->any_needs())
1110 return;
1111
1112 if (target->get_size() == 32)
1113 {
1114 if (target->is_big_endian())
1115 {
1116 #ifdef HAVE_TARGET_32_BIG
1117 this->sized_create_version_sections
1118 SELECT_SIZE_ENDIAN_NAME(32, true)(
1119 versions, local_symcount, dynamic_symbols, dynstr
1120 SELECT_SIZE_ENDIAN(32, true));
1121 #else
1122 gold_unreachable();
1123 #endif
1124 }
1125 else
1126 {
1127 #ifdef HAVE_TARGET_32_LITTLE
1128 this->sized_create_version_sections
1129 SELECT_SIZE_ENDIAN_NAME(32, false)(
1130 versions, local_symcount, dynamic_symbols, dynstr
1131 SELECT_SIZE_ENDIAN(32, false));
1132 #else
1133 gold_unreachable();
1134 #endif
1135 }
1136 }
1137 else if (target->get_size() == 64)
1138 {
1139 if (target->is_big_endian())
1140 {
1141 #ifdef HAVE_TARGET_64_BIG
1142 this->sized_create_version_sections
1143 SELECT_SIZE_ENDIAN_NAME(64, true)(
1144 versions, local_symcount, dynamic_symbols, dynstr
1145 SELECT_SIZE_ENDIAN(64, true));
1146 #else
1147 gold_unreachable();
1148 #endif
1149 }
1150 else
1151 {
1152 #ifdef HAVE_TARGET_64_LITTLE
1153 this->sized_create_version_sections
1154 SELECT_SIZE_ENDIAN_NAME(64, false)(
1155 versions, local_symcount, dynamic_symbols, dynstr
1156 SELECT_SIZE_ENDIAN(64, false));
1157 #else
1158 gold_unreachable();
1159 #endif
1160 }
1161 }
1162 else
1163 gold_unreachable();
1164 }
1165
1166 // Create the version sections, sized version.
1167
1168 template<int size, bool big_endian>
1169 void
1170 Layout::sized_create_version_sections(
1171 const Versions* versions,
1172 unsigned int local_symcount,
1173 const std::vector<Symbol*>& dynamic_symbols,
1174 const Output_section* dynstr
1175 ACCEPT_SIZE_ENDIAN)
1176 {
1177 const char* vname = this->namepool_.add(".gnu.version", NULL);
1178 Output_section* vsec = this->make_output_section(vname,
1179 elfcpp::SHT_GNU_versym,
1180 elfcpp::SHF_ALLOC);
1181
1182 unsigned char* vbuf;
1183 unsigned int vsize;
1184 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1185 &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1186 SELECT_SIZE_ENDIAN(size, big_endian));
1187
1188 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1189
1190 vsec->add_output_section_data(vdata);
1191 vsec->set_entsize(2);
1192 vsec->set_link_section(this->dynsym_section_);
1193
1194 Output_data_dynamic* const odyn = this->dynamic_data_;
1195 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1196
1197 if (versions->any_defs())
1198 {
1199 const char* vdname = this->namepool_.add(".gnu.version_d", NULL);
1200 Output_section *vdsec;
1201 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1202 elfcpp::SHF_ALLOC);
1203
1204 unsigned char* vdbuf;
1205 unsigned int vdsize;
1206 unsigned int vdentries;
1207 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1208 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1209 SELECT_SIZE_ENDIAN(size, big_endian));
1210
1211 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1212 vdsize,
1213 4);
1214
1215 vdsec->add_output_section_data(vddata);
1216 vdsec->set_link_section(dynstr);
1217 vdsec->set_info(vdentries);
1218
1219 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1220 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1221 }
1222
1223 if (versions->any_needs())
1224 {
1225 const char* vnname = this->namepool_.add(".gnu.version_r", NULL);
1226 Output_section* vnsec;
1227 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1228 elfcpp::SHF_ALLOC);
1229
1230 unsigned char* vnbuf;
1231 unsigned int vnsize;
1232 unsigned int vnentries;
1233 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1234 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1235 SELECT_SIZE_ENDIAN(size, big_endian));
1236
1237 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1238 vnsize,
1239 4);
1240
1241 vnsec->add_output_section_data(vndata);
1242 vnsec->set_link_section(dynstr);
1243 vnsec->set_info(vnentries);
1244
1245 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1246 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1247 }
1248 }
1249
1250 // Create the .interp section and PT_INTERP segment.
1251
1252 void
1253 Layout::create_interp(const Target* target)
1254 {
1255 const char* interp = this->options_.dynamic_linker();
1256 if (interp == NULL)
1257 {
1258 interp = target->dynamic_linker();
1259 gold_assert(interp != NULL);
1260 }
1261
1262 size_t len = strlen(interp) + 1;
1263
1264 Output_section_data* odata = new Output_data_const(interp, len, 1);
1265
1266 const char* interp_name = this->namepool_.add(".interp", NULL);
1267 Output_section* osec = this->make_output_section(interp_name,
1268 elfcpp::SHT_PROGBITS,
1269 elfcpp::SHF_ALLOC);
1270 osec->add_output_section_data(odata);
1271
1272 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1273 this->segment_list_.push_back(oseg);
1274 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1275 }
1276
1277 // Finish the .dynamic section and PT_DYNAMIC segment.
1278
1279 void
1280 Layout::finish_dynamic_section(const Input_objects* input_objects,
1281 const Symbol_table* symtab)
1282 {
1283 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1284 elfcpp::PF_R | elfcpp::PF_W);
1285 this->segment_list_.push_back(oseg);
1286 oseg->add_initial_output_section(this->dynamic_section_,
1287 elfcpp::PF_R | elfcpp::PF_W);
1288
1289 Output_data_dynamic* const odyn = this->dynamic_data_;
1290
1291 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1292 p != input_objects->dynobj_end();
1293 ++p)
1294 {
1295 // FIXME: Handle --as-needed.
1296 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1297 }
1298
1299 // FIXME: Support --init and --fini.
1300 Symbol* sym = symtab->lookup("_init");
1301 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1302 odyn->add_symbol(elfcpp::DT_INIT, sym);
1303
1304 sym = symtab->lookup("_fini");
1305 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1306 odyn->add_symbol(elfcpp::DT_FINI, sym);
1307
1308 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1309
1310 // Add a DT_RPATH entry if needed.
1311 const General_options::Dir_list& rpath(this->options_.rpath());
1312 if (!rpath.empty())
1313 {
1314 std::string rpath_val;
1315 for (General_options::Dir_list::const_iterator p = rpath.begin();
1316 p != rpath.end();
1317 ++p)
1318 {
1319 if (rpath_val.empty())
1320 rpath_val = *p;
1321 else
1322 {
1323 // Eliminate duplicates.
1324 General_options::Dir_list::const_iterator q;
1325 for (q = rpath.begin(); q != p; ++q)
1326 if (strcmp(*q, *p) == 0)
1327 break;
1328 if (q == p)
1329 {
1330 rpath_val += ':';
1331 rpath_val += *p;
1332 }
1333 }
1334 }
1335
1336 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1337 }
1338 }
1339
1340 // The mapping of .gnu.linkonce section names to real section names.
1341
1342 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1343 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1344 {
1345 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1346 MAPPING_INIT("t", ".text"),
1347 MAPPING_INIT("r", ".rodata"),
1348 MAPPING_INIT("d", ".data"),
1349 MAPPING_INIT("b", ".bss"),
1350 MAPPING_INIT("s", ".sdata"),
1351 MAPPING_INIT("sb", ".sbss"),
1352 MAPPING_INIT("s2", ".sdata2"),
1353 MAPPING_INIT("sb2", ".sbss2"),
1354 MAPPING_INIT("wi", ".debug_info"),
1355 MAPPING_INIT("td", ".tdata"),
1356 MAPPING_INIT("tb", ".tbss"),
1357 MAPPING_INIT("lr", ".lrodata"),
1358 MAPPING_INIT("l", ".ldata"),
1359 MAPPING_INIT("lb", ".lbss"),
1360 };
1361 #undef MAPPING_INIT
1362
1363 const int Layout::linkonce_mapping_count =
1364 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1365
1366 // Return the name of the output section to use for a .gnu.linkonce
1367 // section. This is based on the default ELF linker script of the old
1368 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1369 // to ".text". Set *PLEN to the length of the name. *PLEN is
1370 // initialized to the length of NAME.
1371
1372 const char*
1373 Layout::linkonce_output_name(const char* name, size_t *plen)
1374 {
1375 const char* s = name + sizeof(".gnu.linkonce") - 1;
1376 if (*s != '.')
1377 return name;
1378 ++s;
1379 const Linkonce_mapping* plm = linkonce_mapping;
1380 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1381 {
1382 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1383 {
1384 *plen = plm->tolen;
1385 return plm->to;
1386 }
1387 }
1388 return name;
1389 }
1390
1391 // Choose the output section name to use given an input section name.
1392 // Set *PLEN to the length of the name. *PLEN is initialized to the
1393 // length of NAME.
1394
1395 const char*
1396 Layout::output_section_name(const char* name, size_t* plen)
1397 {
1398 if (Layout::is_linkonce(name))
1399 {
1400 // .gnu.linkonce sections are laid out as though they were named
1401 // for the sections are placed into.
1402 return Layout::linkonce_output_name(name, plen);
1403 }
1404
1405 // If the section name has no '.', or only an initial '.', we use
1406 // the name unchanged (i.e., ".text" is unchanged).
1407
1408 // Otherwise, if the section name does not include ".rel", we drop
1409 // the last '.' and everything that follows (i.e., ".text.XXX"
1410 // becomes ".text").
1411
1412 // Otherwise, if the section name has zero or one '.' after the
1413 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1414 // unchanged).
1415
1416 // Otherwise, we drop the last '.' and everything that follows
1417 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1418
1419 const char* s = name;
1420 if (*s == '.')
1421 ++s;
1422 const char* sdot = strchr(s, '.');
1423 if (sdot == NULL)
1424 return name;
1425
1426 const char* srel = strstr(s, ".rel");
1427 if (srel == NULL)
1428 {
1429 *plen = sdot - name;
1430 return name;
1431 }
1432
1433 sdot = strchr(srel + 1, '.');
1434 if (sdot == NULL)
1435 return name;
1436 sdot = strchr(sdot + 1, '.');
1437 if (sdot == NULL)
1438 return name;
1439
1440 *plen = sdot - name;
1441 return name;
1442 }
1443
1444 // Record the signature of a comdat section, and return whether to
1445 // include it in the link. If GROUP is true, this is a regular
1446 // section group. If GROUP is false, this is a group signature
1447 // derived from the name of a linkonce section. We want linkonce
1448 // signatures and group signatures to block each other, but we don't
1449 // want a linkonce signature to block another linkonce signature.
1450
1451 bool
1452 Layout::add_comdat(const char* signature, bool group)
1453 {
1454 std::string sig(signature);
1455 std::pair<Signatures::iterator, bool> ins(
1456 this->signatures_.insert(std::make_pair(sig, group)));
1457
1458 if (ins.second)
1459 {
1460 // This is the first time we've seen this signature.
1461 return true;
1462 }
1463
1464 if (ins.first->second)
1465 {
1466 // We've already seen a real section group with this signature.
1467 return false;
1468 }
1469 else if (group)
1470 {
1471 // This is a real section group, and we've already seen a
1472 // linkonce section with this signature. Record that we've seen
1473 // a section group, and don't include this section group.
1474 ins.first->second = true;
1475 return false;
1476 }
1477 else
1478 {
1479 // We've already seen a linkonce section and this is a linkonce
1480 // section. These don't block each other--this may be the same
1481 // symbol name with different section types.
1482 return true;
1483 }
1484 }
1485
1486 // Write out data not associated with a section or the symbol table.
1487
1488 void
1489 Layout::write_data(const Symbol_table* symtab, const Target* target,
1490 Output_file* of) const
1491 {
1492 const Output_section* symtab_section = this->symtab_section_;
1493 for (Section_list::const_iterator p = this->section_list_.begin();
1494 p != this->section_list_.end();
1495 ++p)
1496 {
1497 if ((*p)->needs_symtab_index())
1498 {
1499 gold_assert(symtab_section != NULL);
1500 unsigned int index = (*p)->symtab_index();
1501 gold_assert(index > 0 && index != -1U);
1502 off_t off = (symtab_section->offset()
1503 + index * symtab_section->entsize());
1504 symtab->write_section_symbol(target, *p, of, off);
1505 }
1506 }
1507
1508 const Output_section* dynsym_section = this->dynsym_section_;
1509 for (Section_list::const_iterator p = this->section_list_.begin();
1510 p != this->section_list_.end();
1511 ++p)
1512 {
1513 if ((*p)->needs_dynsym_index())
1514 {
1515 gold_assert(dynsym_section != NULL);
1516 unsigned int index = (*p)->dynsym_index();
1517 gold_assert(index > 0 && index != -1U);
1518 off_t off = (dynsym_section->offset()
1519 + index * dynsym_section->entsize());
1520 symtab->write_section_symbol(target, *p, of, off);
1521 }
1522 }
1523
1524 // Write out the Output_sections. Most won't have anything to
1525 // write, since most of the data will come from input sections which
1526 // are handled elsewhere. But some Output_sections do have
1527 // Output_data.
1528 for (Section_list::const_iterator p = this->section_list_.begin();
1529 p != this->section_list_.end();
1530 ++p)
1531 (*p)->write(of);
1532
1533 // Write out the Output_data which are not in an Output_section.
1534 for (Data_list::const_iterator p = this->special_output_list_.begin();
1535 p != this->special_output_list_.end();
1536 ++p)
1537 (*p)->write(of);
1538 }
1539
1540 // Write_data_task methods.
1541
1542 // We can always run this task.
1543
1544 Task::Is_runnable_type
1545 Write_data_task::is_runnable(Workqueue*)
1546 {
1547 return IS_RUNNABLE;
1548 }
1549
1550 // We need to unlock FINAL_BLOCKER when finished.
1551
1552 Task_locker*
1553 Write_data_task::locks(Workqueue* workqueue)
1554 {
1555 return new Task_locker_block(*this->final_blocker_, workqueue);
1556 }
1557
1558 // Run the task--write out the data.
1559
1560 void
1561 Write_data_task::run(Workqueue*)
1562 {
1563 this->layout_->write_data(this->symtab_, this->target_, this->of_);
1564 }
1565
1566 // Write_symbols_task methods.
1567
1568 // We can always run this task.
1569
1570 Task::Is_runnable_type
1571 Write_symbols_task::is_runnable(Workqueue*)
1572 {
1573 return IS_RUNNABLE;
1574 }
1575
1576 // We need to unlock FINAL_BLOCKER when finished.
1577
1578 Task_locker*
1579 Write_symbols_task::locks(Workqueue* workqueue)
1580 {
1581 return new Task_locker_block(*this->final_blocker_, workqueue);
1582 }
1583
1584 // Run the task--write out the symbols.
1585
1586 void
1587 Write_symbols_task::run(Workqueue*)
1588 {
1589 this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1590 this->of_);
1591 }
1592
1593 // Close_task_runner methods.
1594
1595 // Run the task--close the file.
1596
1597 void
1598 Close_task_runner::run(Workqueue*)
1599 {
1600 this->of_->close();
1601 }
1602
1603 // Instantiate the templates we need. We could use the configure
1604 // script to restrict this to only the ones for implemented targets.
1605
1606 #ifdef HAVE_TARGET_32_LITTLE
1607 template
1608 Output_section*
1609 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1610 const elfcpp::Shdr<32, false>& shdr, off_t*);
1611 #endif
1612
1613 #ifdef HAVE_TARGET_32_BIG
1614 template
1615 Output_section*
1616 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1617 const elfcpp::Shdr<32, true>& shdr, off_t*);
1618 #endif
1619
1620 #ifdef HAVE_TARGET_64_LITTLE
1621 template
1622 Output_section*
1623 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1624 const elfcpp::Shdr<64, false>& shdr, off_t*);
1625 #endif
1626
1627 #ifdef HAVE_TARGET_64_BIG
1628 template
1629 Output_section*
1630 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1631 const elfcpp::Shdr<64, true>& shdr, off_t*);
1632 #endif
1633
1634
1635 } // End namespace gold.