Update list of debug sections for --strip-debug-xxx options.
[binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list. Creates a single free list node that
76 // describes the entire region of length LEN. If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83 this->list_.push_front(Free_list_node(0, len));
84 this->last_remove_ = this->list_.begin();
85 this->extend_ = extend;
86 this->length_ = len;
87 ++Free_list::num_lists;
88 ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list. Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node. We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103 if (start == end)
104 return;
105 gold_assert(start < end);
106
107 ++Free_list::num_removes;
108
109 Iterator p = this->last_remove_;
110 if (p->start_ > start)
111 p = this->list_.begin();
112
113 for (; p != this->list_.end(); ++p)
114 {
115 ++Free_list::num_remove_visits;
116 // Find a node that wholly contains the indicated region.
117 if (p->start_ <= start && p->end_ >= end)
118 {
119 // Case 1: the indicated region spans the whole node.
120 // Add some fuzz to avoid creating tiny free chunks.
121 if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 p = this->list_.erase(p);
123 // Case 2: remove a chunk from the start of the node.
124 else if (p->start_ + 3 >= start)
125 p->start_ = end;
126 // Case 3: remove a chunk from the end of the node.
127 else if (p->end_ <= end + 3)
128 p->end_ = start;
129 // Case 4: remove a chunk from the middle, and split
130 // the node into two.
131 else
132 {
133 Free_list_node newnode(p->start_, start);
134 p->start_ = end;
135 this->list_.insert(p, newnode);
136 ++Free_list::num_nodes;
137 }
138 this->last_remove_ = p;
139 return;
140 }
141 }
142
143 // Did not find a node containing the given chunk. This could happen
144 // because a small chunk was already removed due to the fuzz.
145 gold_debug(DEBUG_INCREMENTAL,
146 "Free_list::remove(%d,%d) not found",
147 static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list. Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157 gold_debug(DEBUG_INCREMENTAL,
158 "Free_list::allocate(%08lx, %d, %08lx)",
159 static_cast<long>(len), static_cast<int>(align),
160 static_cast<long>(minoff));
161 if (len == 0)
162 return align_address(minoff, align);
163
164 ++Free_list::num_allocates;
165
166 // We usually want to drop free chunks smaller than 4 bytes.
167 // If we need to guarantee a minimum hole size, though, we need
168 // to keep track of all free chunks.
169 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172 {
173 ++Free_list::num_allocate_visits;
174 off_t start = p->start_ > minoff ? p->start_ : minoff;
175 start = align_address(start, align);
176 off_t end = start + len;
177 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178 {
179 this->length_ = end;
180 p->end_ = end;
181 }
182 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183 {
184 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 this->list_.erase(p);
186 else if (p->start_ + fuzz >= start)
187 p->start_ = end;
188 else if (p->end_ <= end + fuzz)
189 p->end_ = start;
190 else
191 {
192 Free_list_node newnode(p->start_, start);
193 p->start_ = end;
194 this->list_.insert(p, newnode);
195 ++Free_list::num_nodes;
196 }
197 return start;
198 }
199 }
200 if (this->extend_)
201 {
202 off_t start = align_address(this->length_, align);
203 this->length_ = start + len;
204 return start;
205 }
206 return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213 gold_info("Free list:\n start end length\n");
214 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
216 static_cast<long>(p->end_),
217 static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224 fprintf(stderr, _("%s: total free lists: %u\n"),
225 program_name, Free_list::num_lists);
226 fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 program_name, Free_list::num_nodes);
228 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 program_name, Free_list::num_removes);
230 fprintf(stderr, _("%s: nodes visited: %u\n"),
231 program_name, Free_list::num_remove_visits);
232 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 program_name, Free_list::num_allocates);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244 public:
245 Hash_task(const unsigned char* src,
246 size_t size,
247 unsigned char* dst,
248 Task_token* build_id_blocker,
249 Task_token* final_blocker)
250 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251 final_blocker_(final_blocker)
252 { }
253
254 void
255 run(Workqueue*)
256 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258 Task_token*
259 is_runnable();
260
261 // Unblock FINAL_BLOCKER_ when done.
262 void
263 locks(Task_locker* tl)
264 { tl->add(this, this->final_blocker_); }
265
266 std::string
267 get_name() const
268 { return "Hash_task"; }
269
270 private:
271 const unsigned char* const src_;
272 const size_t size_;
273 unsigned char* const dst_;
274 Task_token* const build_id_blocker_;
275 Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281 if (this->build_id_blocker_->is_blocked())
282 return this->build_id_blocker_;
283 return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 array_of_hashes_(NULL),
453 size_of_array_of_hashes_(0),
454 input_view_(NULL),
455 debug_abbrev_(NULL),
456 debug_info_(NULL),
457 group_signatures_(),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL),
471 record_output_section_data_from_script_(false),
472 script_output_section_data_list_(),
473 segment_states_(NULL),
474 relaxation_debug_check_(NULL),
475 section_order_map_(),
476 section_segment_map_(),
477 input_section_position_(),
478 input_section_glob_(),
479 incremental_base_(NULL),
480 free_list_()
481 {
482 // Make space for more than enough segments for a typical file.
483 // This is just for efficiency--it's OK if we wind up needing more.
484 this->segment_list_.reserve(12);
485
486 // We expect two unattached Output_data objects: the file header and
487 // the segment headers.
488 this->special_output_list_.reserve(2);
489
490 // Initialize structure needed for an incremental build.
491 if (parameters->incremental())
492 this->incremental_inputs_ = new Incremental_inputs;
493
494 // The section name pool is worth optimizing in all cases, because
495 // it is small, but there are often overlaps due to .rel sections.
496 this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504 this->incremental_base_ = base;
505 this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513 return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523 "abbrev",
524 "addr", // Fission extension
525 // "aranges", // not used by gdb as of 7.4
526 "frame",
527 "gdb_scripts",
528 "info",
529 "types",
530 "line",
531 "loc",
532 "macinfo",
533 "macro",
534 // "pubnames", // not used by gdb as of 7.4
535 // "pubtypes", // not used by gdb as of 7.4
536 // "gnu_pubnames", // Fission extension
537 // "gnu_pubtypes", // Fission extension
538 "ranges",
539 "str",
540 "str_offsets",
541 };
542
543 // This is the minimum set of sections needed for line numbers.
544
545 static const char* lines_only_debug_sections[] =
546 {
547 "abbrev",
548 // "addr", // Fission extension
549 // "aranges", // not used by gdb as of 7.4
550 // "frame",
551 // "gdb_scripts",
552 "info",
553 // "types",
554 "line",
555 // "loc",
556 // "macinfo",
557 // "macro",
558 // "pubnames", // not used by gdb as of 7.4
559 // "pubtypes", // not used by gdb as of 7.4
560 // "gnu_pubnames", // Fission extension
561 // "gnu_pubtypes", // Fission extension
562 // "ranges",
563 "str",
564 "str_offsets", // Fission extension
565 };
566
567 // These sections are the DWARF fast-lookup tables, and are not needed
568 // when building a .gdb_index section.
569
570 static const char* gdb_fast_lookup_sections[] =
571 {
572 "aranges",
573 "pubnames",
574 "gnu_pubnames",
575 "pubtypes",
576 "gnu_pubtypes",
577 };
578
579 // Returns whether the given debug section is in the list of
580 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
581 // portion of the name following ".debug_" or ".zdebug_".
582
583 static inline bool
584 is_gdb_debug_section(const char* suffix)
585 {
586 // We can do this faster: binary search or a hashtable. But why bother?
587 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
588 if (strcmp(suffix, gdb_sections[i]) == 0)
589 return true;
590 return false;
591 }
592
593 // Returns whether the given section is needed for lines-only debugging.
594
595 static inline bool
596 is_lines_only_debug_section(const char* suffix)
597 {
598 // We can do this faster: binary search or a hashtable. But why bother?
599 for (size_t i = 0;
600 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
601 ++i)
602 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
603 return true;
604 return false;
605 }
606
607 // Returns whether the given section is a fast-lookup section that
608 // will not be needed when building a .gdb_index section.
609
610 static inline bool
611 is_gdb_fast_lookup_section(const char* suffix)
612 {
613 // We can do this faster: binary search or a hashtable. But why bother?
614 for (size_t i = 0;
615 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
616 ++i)
617 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
618 return true;
619 return false;
620 }
621
622 // Sometimes we compress sections. This is typically done for
623 // sections that are not part of normal program execution (such as
624 // .debug_* sections), and where the readers of these sections know
625 // how to deal with compressed sections. This routine doesn't say for
626 // certain whether we'll compress -- it depends on commandline options
627 // as well -- just whether this section is a candidate for compression.
628 // (The Output_compressed_section class decides whether to compress
629 // a given section, and picks the name of the compressed section.)
630
631 static bool
632 is_compressible_debug_section(const char* secname)
633 {
634 return (is_prefix_of(".debug", secname));
635 }
636
637 // We may see compressed debug sections in input files. Return TRUE
638 // if this is the name of a compressed debug section.
639
640 bool
641 is_compressed_debug_section(const char* secname)
642 {
643 return (is_prefix_of(".zdebug", secname));
644 }
645
646 // Whether to include this section in the link.
647
648 template<int size, bool big_endian>
649 bool
650 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
651 const elfcpp::Shdr<size, big_endian>& shdr)
652 {
653 if (!parameters->options().relocatable()
654 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
655 return false;
656
657 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
658
659 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
660 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
661 return parameters->target().should_include_section(sh_type);
662
663 switch (sh_type)
664 {
665 case elfcpp::SHT_NULL:
666 case elfcpp::SHT_SYMTAB:
667 case elfcpp::SHT_DYNSYM:
668 case elfcpp::SHT_HASH:
669 case elfcpp::SHT_DYNAMIC:
670 case elfcpp::SHT_SYMTAB_SHNDX:
671 return false;
672
673 case elfcpp::SHT_STRTAB:
674 // Discard the sections which have special meanings in the ELF
675 // ABI. Keep others (e.g., .stabstr). We could also do this by
676 // checking the sh_link fields of the appropriate sections.
677 return (strcmp(name, ".dynstr") != 0
678 && strcmp(name, ".strtab") != 0
679 && strcmp(name, ".shstrtab") != 0);
680
681 case elfcpp::SHT_RELA:
682 case elfcpp::SHT_REL:
683 case elfcpp::SHT_GROUP:
684 // If we are emitting relocations these should be handled
685 // elsewhere.
686 gold_assert(!parameters->options().relocatable());
687 return false;
688
689 case elfcpp::SHT_PROGBITS:
690 if (parameters->options().strip_debug()
691 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
692 {
693 if (is_debug_info_section(name))
694 return false;
695 }
696 if (parameters->options().strip_debug_non_line()
697 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698 {
699 // Debugging sections can only be recognized by name.
700 if (is_prefix_of(".debug_", name)
701 && !is_lines_only_debug_section(name + 7))
702 return false;
703 if (is_prefix_of(".zdebug_", name)
704 && !is_lines_only_debug_section(name + 8))
705 return false;
706 }
707 if (parameters->options().strip_debug_gdb()
708 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
709 {
710 // Debugging sections can only be recognized by name.
711 if (is_prefix_of(".debug_", name)
712 && !is_gdb_debug_section(name + 7))
713 return false;
714 if (is_prefix_of(".zdebug_", name)
715 && !is_gdb_debug_section(name + 8))
716 return false;
717 }
718 if (parameters->options().gdb_index()
719 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
720 {
721 // When building .gdb_index, we can strip .debug_pubnames,
722 // .debug_pubtypes, and .debug_aranges sections.
723 if (is_prefix_of(".debug_", name)
724 && is_gdb_fast_lookup_section(name + 7))
725 return false;
726 if (is_prefix_of(".zdebug_", name)
727 && is_gdb_fast_lookup_section(name + 8))
728 return false;
729 }
730 if (parameters->options().strip_lto_sections()
731 && !parameters->options().relocatable()
732 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
733 {
734 // Ignore LTO sections containing intermediate code.
735 if (is_prefix_of(".gnu.lto_", name))
736 return false;
737 }
738 // The GNU linker strips .gnu_debuglink sections, so we do too.
739 // This is a feature used to keep debugging information in
740 // separate files.
741 if (strcmp(name, ".gnu_debuglink") == 0)
742 return false;
743 return true;
744
745 default:
746 return true;
747 }
748 }
749
750 // Return an output section named NAME, or NULL if there is none.
751
752 Output_section*
753 Layout::find_output_section(const char* name) const
754 {
755 for (Section_list::const_iterator p = this->section_list_.begin();
756 p != this->section_list_.end();
757 ++p)
758 if (strcmp((*p)->name(), name) == 0)
759 return *p;
760 return NULL;
761 }
762
763 // Return an output segment of type TYPE, with segment flags SET set
764 // and segment flags CLEAR clear. Return NULL if there is none.
765
766 Output_segment*
767 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
768 elfcpp::Elf_Word clear) const
769 {
770 for (Segment_list::const_iterator p = this->segment_list_.begin();
771 p != this->segment_list_.end();
772 ++p)
773 if (static_cast<elfcpp::PT>((*p)->type()) == type
774 && ((*p)->flags() & set) == set
775 && ((*p)->flags() & clear) == 0)
776 return *p;
777 return NULL;
778 }
779
780 // When we put a .ctors or .dtors section with more than one word into
781 // a .init_array or .fini_array section, we need to reverse the words
782 // in the .ctors/.dtors section. This is because .init_array executes
783 // constructors front to back, where .ctors executes them back to
784 // front, and vice-versa for .fini_array/.dtors. Although we do want
785 // to remap .ctors/.dtors into .init_array/.fini_array because it can
786 // be more efficient, we don't want to change the order in which
787 // constructors/destructors are run. This set just keeps track of
788 // these sections which need to be reversed. It is only changed by
789 // Layout::layout. It should be a private member of Layout, but that
790 // would require layout.h to #include object.h to get the definition
791 // of Section_id.
792 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
793
794 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
795 // .init_array/.fini_array section.
796
797 bool
798 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
799 {
800 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
801 != ctors_sections_in_init_array.end());
802 }
803
804 // Return the output section to use for section NAME with type TYPE
805 // and section flags FLAGS. NAME must be canonicalized in the string
806 // pool, and NAME_KEY is the key. ORDER is where this should appear
807 // in the output sections. IS_RELRO is true for a relro section.
808
809 Output_section*
810 Layout::get_output_section(const char* name, Stringpool::Key name_key,
811 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
812 Output_section_order order, bool is_relro)
813 {
814 elfcpp::Elf_Word lookup_type = type;
815
816 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
817 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
818 // .init_array, .fini_array, and .preinit_array sections by name
819 // whatever their type in the input file. We do this because the
820 // types are not always right in the input files.
821 if (lookup_type == elfcpp::SHT_INIT_ARRAY
822 || lookup_type == elfcpp::SHT_FINI_ARRAY
823 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
824 lookup_type = elfcpp::SHT_PROGBITS;
825
826 elfcpp::Elf_Xword lookup_flags = flags;
827
828 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
829 // read-write with read-only sections. Some other ELF linkers do
830 // not do this. FIXME: Perhaps there should be an option
831 // controlling this.
832 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
833
834 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
835 const std::pair<Key, Output_section*> v(key, NULL);
836 std::pair<Section_name_map::iterator, bool> ins(
837 this->section_name_map_.insert(v));
838
839 if (!ins.second)
840 return ins.first->second;
841 else
842 {
843 // This is the first time we've seen this name/type/flags
844 // combination. For compatibility with the GNU linker, we
845 // combine sections with contents and zero flags with sections
846 // with non-zero flags. This is a workaround for cases where
847 // assembler code forgets to set section flags. FIXME: Perhaps
848 // there should be an option to control this.
849 Output_section* os = NULL;
850
851 if (lookup_type == elfcpp::SHT_PROGBITS)
852 {
853 if (flags == 0)
854 {
855 Output_section* same_name = this->find_output_section(name);
856 if (same_name != NULL
857 && (same_name->type() == elfcpp::SHT_PROGBITS
858 || same_name->type() == elfcpp::SHT_INIT_ARRAY
859 || same_name->type() == elfcpp::SHT_FINI_ARRAY
860 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
861 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
862 os = same_name;
863 }
864 else if ((flags & elfcpp::SHF_TLS) == 0)
865 {
866 elfcpp::Elf_Xword zero_flags = 0;
867 const Key zero_key(name_key, std::make_pair(lookup_type,
868 zero_flags));
869 Section_name_map::iterator p =
870 this->section_name_map_.find(zero_key);
871 if (p != this->section_name_map_.end())
872 os = p->second;
873 }
874 }
875
876 if (os == NULL)
877 os = this->make_output_section(name, type, flags, order, is_relro);
878
879 ins.first->second = os;
880 return os;
881 }
882 }
883
884 // Returns TRUE iff NAME (an input section from RELOBJ) will
885 // be mapped to an output section that should be KEPT.
886
887 bool
888 Layout::keep_input_section(const Relobj* relobj, const char* name)
889 {
890 if (! this->script_options_->saw_sections_clause())
891 return false;
892
893 Script_sections* ss = this->script_options_->script_sections();
894 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
895 Output_section** output_section_slot;
896 Script_sections::Section_type script_section_type;
897 bool keep;
898
899 name = ss->output_section_name(file_name, name, &output_section_slot,
900 &script_section_type, &keep);
901 return name != NULL && keep;
902 }
903
904 // Clear the input section flags that should not be copied to the
905 // output section.
906
907 elfcpp::Elf_Xword
908 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
909 {
910 // Some flags in the input section should not be automatically
911 // copied to the output section.
912 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
913 | elfcpp::SHF_GROUP
914 | elfcpp::SHF_MERGE
915 | elfcpp::SHF_STRINGS);
916
917 // We only clear the SHF_LINK_ORDER flag in for
918 // a non-relocatable link.
919 if (!parameters->options().relocatable())
920 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
921
922 return input_section_flags;
923 }
924
925 // Pick the output section to use for section NAME, in input file
926 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
927 // linker created section. IS_INPUT_SECTION is true if we are
928 // choosing an output section for an input section found in a input
929 // file. ORDER is where this section should appear in the output
930 // sections. IS_RELRO is true for a relro section. This will return
931 // NULL if the input section should be discarded.
932
933 Output_section*
934 Layout::choose_output_section(const Relobj* relobj, const char* name,
935 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
936 bool is_input_section, Output_section_order order,
937 bool is_relro)
938 {
939 // We should not see any input sections after we have attached
940 // sections to segments.
941 gold_assert(!is_input_section || !this->sections_are_attached_);
942
943 flags = this->get_output_section_flags(flags);
944
945 if (this->script_options_->saw_sections_clause())
946 {
947 // We are using a SECTIONS clause, so the output section is
948 // chosen based only on the name.
949
950 Script_sections* ss = this->script_options_->script_sections();
951 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
952 Output_section** output_section_slot;
953 Script_sections::Section_type script_section_type;
954 const char* orig_name = name;
955 bool keep;
956 name = ss->output_section_name(file_name, name, &output_section_slot,
957 &script_section_type, &keep);
958
959 if (name == NULL)
960 {
961 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
962 "because it is not allowed by the "
963 "SECTIONS clause of the linker script"),
964 orig_name);
965 // The SECTIONS clause says to discard this input section.
966 return NULL;
967 }
968
969 // We can only handle script section types ST_NONE and ST_NOLOAD.
970 switch (script_section_type)
971 {
972 case Script_sections::ST_NONE:
973 break;
974 case Script_sections::ST_NOLOAD:
975 flags &= elfcpp::SHF_ALLOC;
976 break;
977 default:
978 gold_unreachable();
979 }
980
981 // If this is an orphan section--one not mentioned in the linker
982 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
983 // default processing below.
984
985 if (output_section_slot != NULL)
986 {
987 if (*output_section_slot != NULL)
988 {
989 (*output_section_slot)->update_flags_for_input_section(flags);
990 return *output_section_slot;
991 }
992
993 // We don't put sections found in the linker script into
994 // SECTION_NAME_MAP_. That keeps us from getting confused
995 // if an orphan section is mapped to a section with the same
996 // name as one in the linker script.
997
998 name = this->namepool_.add(name, false, NULL);
999
1000 Output_section* os = this->make_output_section(name, type, flags,
1001 order, is_relro);
1002
1003 os->set_found_in_sections_clause();
1004
1005 // Special handling for NOLOAD sections.
1006 if (script_section_type == Script_sections::ST_NOLOAD)
1007 {
1008 os->set_is_noload();
1009
1010 // The constructor of Output_section sets addresses of non-ALLOC
1011 // sections to 0 by default. We don't want that for NOLOAD
1012 // sections even if they have no SHF_ALLOC flag.
1013 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1014 && os->is_address_valid())
1015 {
1016 gold_assert(os->address() == 0
1017 && !os->is_offset_valid()
1018 && !os->is_data_size_valid());
1019 os->reset_address_and_file_offset();
1020 }
1021 }
1022
1023 *output_section_slot = os;
1024 return os;
1025 }
1026 }
1027
1028 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1029
1030 size_t len = strlen(name);
1031 char* uncompressed_name = NULL;
1032
1033 // Compressed debug sections should be mapped to the corresponding
1034 // uncompressed section.
1035 if (is_compressed_debug_section(name))
1036 {
1037 uncompressed_name = new char[len];
1038 uncompressed_name[0] = '.';
1039 gold_assert(name[0] == '.' && name[1] == 'z');
1040 strncpy(&uncompressed_name[1], &name[2], len - 2);
1041 uncompressed_name[len - 1] = '\0';
1042 len -= 1;
1043 name = uncompressed_name;
1044 }
1045
1046 // Turn NAME from the name of the input section into the name of the
1047 // output section.
1048 if (is_input_section
1049 && !this->script_options_->saw_sections_clause()
1050 && !parameters->options().relocatable())
1051 {
1052 const char *orig_name = name;
1053 name = parameters->target().output_section_name(relobj, name, &len);
1054 if (name == NULL)
1055 name = Layout::output_section_name(relobj, orig_name, &len);
1056 }
1057
1058 Stringpool::Key name_key;
1059 name = this->namepool_.add_with_length(name, len, true, &name_key);
1060
1061 if (uncompressed_name != NULL)
1062 delete[] uncompressed_name;
1063
1064 // Find or make the output section. The output section is selected
1065 // based on the section name, type, and flags.
1066 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1067 }
1068
1069 // For incremental links, record the initial fixed layout of a section
1070 // from the base file, and return a pointer to the Output_section.
1071
1072 template<int size, bool big_endian>
1073 Output_section*
1074 Layout::init_fixed_output_section(const char* name,
1075 elfcpp::Shdr<size, big_endian>& shdr)
1076 {
1077 unsigned int sh_type = shdr.get_sh_type();
1078
1079 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1080 // PRE_INIT_ARRAY, and NOTE sections.
1081 // All others will be created from scratch and reallocated.
1082 if (!can_incremental_update(sh_type))
1083 return NULL;
1084
1085 // If we're generating a .gdb_index section, we need to regenerate
1086 // it from scratch.
1087 if (parameters->options().gdb_index()
1088 && sh_type == elfcpp::SHT_PROGBITS
1089 && strcmp(name, ".gdb_index") == 0)
1090 return NULL;
1091
1092 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1093 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1094 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1095 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1096 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1097 shdr.get_sh_addralign();
1098
1099 // Make the output section.
1100 Stringpool::Key name_key;
1101 name = this->namepool_.add(name, true, &name_key);
1102 Output_section* os = this->get_output_section(name, name_key, sh_type,
1103 sh_flags, ORDER_INVALID, false);
1104 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1105 if (sh_type != elfcpp::SHT_NOBITS)
1106 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1107 return os;
1108 }
1109
1110 // Return the index by which an input section should be ordered. This
1111 // is used to sort some .text sections, for compatibility with GNU ld.
1112
1113 int
1114 Layout::special_ordering_of_input_section(const char* name)
1115 {
1116 // The GNU linker has some special handling for some sections that
1117 // wind up in the .text section. Sections that start with these
1118 // prefixes must appear first, and must appear in the order listed
1119 // here.
1120 static const char* const text_section_sort[] =
1121 {
1122 ".text.unlikely",
1123 ".text.exit",
1124 ".text.startup",
1125 ".text.hot"
1126 };
1127
1128 for (size_t i = 0;
1129 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1130 i++)
1131 if (is_prefix_of(text_section_sort[i], name))
1132 return i;
1133
1134 return -1;
1135 }
1136
1137 // Return the output section to use for input section SHNDX, with name
1138 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1139 // index of a relocation section which applies to this section, or 0
1140 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1141 // relocation section if there is one. Set *OFF to the offset of this
1142 // input section without the output section. Return NULL if the
1143 // section should be discarded. Set *OFF to -1 if the section
1144 // contents should not be written directly to the output file, but
1145 // will instead receive special handling.
1146
1147 template<int size, bool big_endian>
1148 Output_section*
1149 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1150 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1151 unsigned int reloc_shndx, unsigned int, off_t* off)
1152 {
1153 *off = 0;
1154
1155 if (!this->include_section(object, name, shdr))
1156 return NULL;
1157
1158 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1159
1160 // In a relocatable link a grouped section must not be combined with
1161 // any other sections.
1162 Output_section* os;
1163 if (parameters->options().relocatable()
1164 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1165 {
1166 name = this->namepool_.add(name, true, NULL);
1167 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1168 ORDER_INVALID, false);
1169 }
1170 else
1171 {
1172 // Plugins can choose to place one or more subsets of sections in
1173 // unique segments and this is done by mapping these section subsets
1174 // to unique output sections. Check if this section needs to be
1175 // remapped to a unique output section.
1176 Section_segment_map::iterator it
1177 = this->section_segment_map_.find(Const_section_id(object, shndx));
1178 if (it == this->section_segment_map_.end())
1179 {
1180 os = this->choose_output_section(object, name, sh_type,
1181 shdr.get_sh_flags(), true,
1182 ORDER_INVALID, false);
1183 }
1184 else
1185 {
1186 // We know the name of the output section, directly call
1187 // get_output_section here by-passing choose_output_section.
1188 elfcpp::Elf_Xword flags
1189 = this->get_output_section_flags(shdr.get_sh_flags());
1190
1191 const char* os_name = it->second->name;
1192 Stringpool::Key name_key;
1193 os_name = this->namepool_.add(os_name, true, &name_key);
1194 os = this->get_output_section(os_name, name_key, sh_type, flags,
1195 ORDER_INVALID, false);
1196 if (!os->is_unique_segment())
1197 {
1198 os->set_is_unique_segment();
1199 os->set_extra_segment_flags(it->second->flags);
1200 os->set_segment_alignment(it->second->align);
1201 }
1202 }
1203 if (os == NULL)
1204 return NULL;
1205 }
1206
1207 // By default the GNU linker sorts input sections whose names match
1208 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1209 // sections are sorted by name. This is used to implement
1210 // constructor priority ordering. We are compatible. When we put
1211 // .ctor sections in .init_array and .dtor sections in .fini_array,
1212 // we must also sort plain .ctor and .dtor sections.
1213 if (!this->script_options_->saw_sections_clause()
1214 && !parameters->options().relocatable()
1215 && (is_prefix_of(".ctors.", name)
1216 || is_prefix_of(".dtors.", name)
1217 || is_prefix_of(".init_array.", name)
1218 || is_prefix_of(".fini_array.", name)
1219 || (parameters->options().ctors_in_init_array()
1220 && (strcmp(name, ".ctors") == 0
1221 || strcmp(name, ".dtors") == 0))))
1222 os->set_must_sort_attached_input_sections();
1223
1224 // By default the GNU linker sorts some special text sections ahead
1225 // of others. We are compatible.
1226 if (parameters->options().text_reorder()
1227 && !this->script_options_->saw_sections_clause()
1228 && !this->is_section_ordering_specified()
1229 && !parameters->options().relocatable()
1230 && Layout::special_ordering_of_input_section(name) >= 0)
1231 os->set_must_sort_attached_input_sections();
1232
1233 // If this is a .ctors or .ctors.* section being mapped to a
1234 // .init_array section, or a .dtors or .dtors.* section being mapped
1235 // to a .fini_array section, we will need to reverse the words if
1236 // there is more than one. Record this section for later. See
1237 // ctors_sections_in_init_array above.
1238 if (!this->script_options_->saw_sections_clause()
1239 && !parameters->options().relocatable()
1240 && shdr.get_sh_size() > size / 8
1241 && (((strcmp(name, ".ctors") == 0
1242 || is_prefix_of(".ctors.", name))
1243 && strcmp(os->name(), ".init_array") == 0)
1244 || ((strcmp(name, ".dtors") == 0
1245 || is_prefix_of(".dtors.", name))
1246 && strcmp(os->name(), ".fini_array") == 0)))
1247 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1248
1249 // FIXME: Handle SHF_LINK_ORDER somewhere.
1250
1251 elfcpp::Elf_Xword orig_flags = os->flags();
1252
1253 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1254 this->script_options_->saw_sections_clause());
1255
1256 // If the flags changed, we may have to change the order.
1257 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1258 {
1259 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1260 elfcpp::Elf_Xword new_flags =
1261 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1262 if (orig_flags != new_flags)
1263 os->set_order(this->default_section_order(os, false));
1264 }
1265
1266 this->have_added_input_section_ = true;
1267
1268 return os;
1269 }
1270
1271 // Maps section SECN to SEGMENT s.
1272 void
1273 Layout::insert_section_segment_map(Const_section_id secn,
1274 Unique_segment_info *s)
1275 {
1276 gold_assert(this->unique_segment_for_sections_specified_);
1277 this->section_segment_map_[secn] = s;
1278 }
1279
1280 // Handle a relocation section when doing a relocatable link.
1281
1282 template<int size, bool big_endian>
1283 Output_section*
1284 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1285 unsigned int,
1286 const elfcpp::Shdr<size, big_endian>& shdr,
1287 Output_section* data_section,
1288 Relocatable_relocs* rr)
1289 {
1290 gold_assert(parameters->options().relocatable()
1291 || parameters->options().emit_relocs());
1292
1293 int sh_type = shdr.get_sh_type();
1294
1295 std::string name;
1296 if (sh_type == elfcpp::SHT_REL)
1297 name = ".rel";
1298 else if (sh_type == elfcpp::SHT_RELA)
1299 name = ".rela";
1300 else
1301 gold_unreachable();
1302 name += data_section->name();
1303
1304 // In a relocatable link relocs for a grouped section must not be
1305 // combined with other reloc sections.
1306 Output_section* os;
1307 if (!parameters->options().relocatable()
1308 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1309 os = this->choose_output_section(object, name.c_str(), sh_type,
1310 shdr.get_sh_flags(), false,
1311 ORDER_INVALID, false);
1312 else
1313 {
1314 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1315 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1316 ORDER_INVALID, false);
1317 }
1318
1319 os->set_should_link_to_symtab();
1320 os->set_info_section(data_section);
1321
1322 Output_section_data* posd;
1323 if (sh_type == elfcpp::SHT_REL)
1324 {
1325 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1326 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1327 size,
1328 big_endian>(rr);
1329 }
1330 else if (sh_type == elfcpp::SHT_RELA)
1331 {
1332 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1333 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1334 size,
1335 big_endian>(rr);
1336 }
1337 else
1338 gold_unreachable();
1339
1340 os->add_output_section_data(posd);
1341 rr->set_output_data(posd);
1342
1343 return os;
1344 }
1345
1346 // Handle a group section when doing a relocatable link.
1347
1348 template<int size, bool big_endian>
1349 void
1350 Layout::layout_group(Symbol_table* symtab,
1351 Sized_relobj_file<size, big_endian>* object,
1352 unsigned int,
1353 const char* group_section_name,
1354 const char* signature,
1355 const elfcpp::Shdr<size, big_endian>& shdr,
1356 elfcpp::Elf_Word flags,
1357 std::vector<unsigned int>* shndxes)
1358 {
1359 gold_assert(parameters->options().relocatable());
1360 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1361 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1362 Output_section* os = this->make_output_section(group_section_name,
1363 elfcpp::SHT_GROUP,
1364 shdr.get_sh_flags(),
1365 ORDER_INVALID, false);
1366
1367 // We need to find a symbol with the signature in the symbol table.
1368 // If we don't find one now, we need to look again later.
1369 Symbol* sym = symtab->lookup(signature, NULL);
1370 if (sym != NULL)
1371 os->set_info_symndx(sym);
1372 else
1373 {
1374 // Reserve some space to minimize reallocations.
1375 if (this->group_signatures_.empty())
1376 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1377
1378 // We will wind up using a symbol whose name is the signature.
1379 // So just put the signature in the symbol name pool to save it.
1380 signature = symtab->canonicalize_name(signature);
1381 this->group_signatures_.push_back(Group_signature(os, signature));
1382 }
1383
1384 os->set_should_link_to_symtab();
1385 os->set_entsize(4);
1386
1387 section_size_type entry_count =
1388 convert_to_section_size_type(shdr.get_sh_size() / 4);
1389 Output_section_data* posd =
1390 new Output_data_group<size, big_endian>(object, entry_count, flags,
1391 shndxes);
1392 os->add_output_section_data(posd);
1393 }
1394
1395 // Special GNU handling of sections name .eh_frame. They will
1396 // normally hold exception frame data as defined by the C++ ABI
1397 // (http://codesourcery.com/cxx-abi/).
1398
1399 template<int size, bool big_endian>
1400 Output_section*
1401 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1402 const unsigned char* symbols,
1403 off_t symbols_size,
1404 const unsigned char* symbol_names,
1405 off_t symbol_names_size,
1406 unsigned int shndx,
1407 const elfcpp::Shdr<size, big_endian>& shdr,
1408 unsigned int reloc_shndx, unsigned int reloc_type,
1409 off_t* off)
1410 {
1411 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1412 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1413 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1414
1415 Output_section* os = this->make_eh_frame_section(object);
1416 if (os == NULL)
1417 return NULL;
1418
1419 gold_assert(this->eh_frame_section_ == os);
1420
1421 elfcpp::Elf_Xword orig_flags = os->flags();
1422
1423 if (!parameters->incremental()
1424 && this->eh_frame_data_->add_ehframe_input_section(object,
1425 symbols,
1426 symbols_size,
1427 symbol_names,
1428 symbol_names_size,
1429 shndx,
1430 reloc_shndx,
1431 reloc_type))
1432 {
1433 os->update_flags_for_input_section(shdr.get_sh_flags());
1434
1435 // A writable .eh_frame section is a RELRO section.
1436 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1437 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1438 {
1439 os->set_is_relro();
1440 os->set_order(ORDER_RELRO);
1441 }
1442
1443 // We found a .eh_frame section we are going to optimize, so now
1444 // we can add the set of optimized sections to the output
1445 // section. We need to postpone adding this until we've found a
1446 // section we can optimize so that the .eh_frame section in
1447 // crtbegin.o winds up at the start of the output section.
1448 if (!this->added_eh_frame_data_)
1449 {
1450 os->add_output_section_data(this->eh_frame_data_);
1451 this->added_eh_frame_data_ = true;
1452 }
1453 *off = -1;
1454 }
1455 else
1456 {
1457 // We couldn't handle this .eh_frame section for some reason.
1458 // Add it as a normal section.
1459 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1460 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1461 reloc_shndx, saw_sections_clause);
1462 this->have_added_input_section_ = true;
1463
1464 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1465 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1466 os->set_order(this->default_section_order(os, false));
1467 }
1468
1469 return os;
1470 }
1471
1472 // Create and return the magic .eh_frame section. Create
1473 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1474 // input .eh_frame section; it may be NULL.
1475
1476 Output_section*
1477 Layout::make_eh_frame_section(const Relobj* object)
1478 {
1479 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1480 // SHT_PROGBITS.
1481 Output_section* os = this->choose_output_section(object, ".eh_frame",
1482 elfcpp::SHT_PROGBITS,
1483 elfcpp::SHF_ALLOC, false,
1484 ORDER_EHFRAME, false);
1485 if (os == NULL)
1486 return NULL;
1487
1488 if (this->eh_frame_section_ == NULL)
1489 {
1490 this->eh_frame_section_ = os;
1491 this->eh_frame_data_ = new Eh_frame();
1492
1493 // For incremental linking, we do not optimize .eh_frame sections
1494 // or create a .eh_frame_hdr section.
1495 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1496 {
1497 Output_section* hdr_os =
1498 this->choose_output_section(NULL, ".eh_frame_hdr",
1499 elfcpp::SHT_PROGBITS,
1500 elfcpp::SHF_ALLOC, false,
1501 ORDER_EHFRAME, false);
1502
1503 if (hdr_os != NULL)
1504 {
1505 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1506 this->eh_frame_data_);
1507 hdr_os->add_output_section_data(hdr_posd);
1508
1509 hdr_os->set_after_input_sections();
1510
1511 if (!this->script_options_->saw_phdrs_clause())
1512 {
1513 Output_segment* hdr_oseg;
1514 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1515 elfcpp::PF_R);
1516 hdr_oseg->add_output_section_to_nonload(hdr_os,
1517 elfcpp::PF_R);
1518 }
1519
1520 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1521 }
1522 }
1523 }
1524
1525 return os;
1526 }
1527
1528 // Add an exception frame for a PLT. This is called from target code.
1529
1530 void
1531 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1532 size_t cie_length, const unsigned char* fde_data,
1533 size_t fde_length)
1534 {
1535 if (parameters->incremental())
1536 {
1537 // FIXME: Maybe this could work some day....
1538 return;
1539 }
1540 Output_section* os = this->make_eh_frame_section(NULL);
1541 if (os == NULL)
1542 return;
1543 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1544 fde_data, fde_length);
1545 if (!this->added_eh_frame_data_)
1546 {
1547 os->add_output_section_data(this->eh_frame_data_);
1548 this->added_eh_frame_data_ = true;
1549 }
1550 }
1551
1552 // Scan a .debug_info or .debug_types section, and add summary
1553 // information to the .gdb_index section.
1554
1555 template<int size, bool big_endian>
1556 void
1557 Layout::add_to_gdb_index(bool is_type_unit,
1558 Sized_relobj<size, big_endian>* object,
1559 const unsigned char* symbols,
1560 off_t symbols_size,
1561 unsigned int shndx,
1562 unsigned int reloc_shndx,
1563 unsigned int reloc_type)
1564 {
1565 if (this->gdb_index_data_ == NULL)
1566 {
1567 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1568 elfcpp::SHT_PROGBITS, 0,
1569 false, ORDER_INVALID,
1570 false);
1571 if (os == NULL)
1572 return;
1573
1574 this->gdb_index_data_ = new Gdb_index(os);
1575 os->add_output_section_data(this->gdb_index_data_);
1576 os->set_after_input_sections();
1577 }
1578
1579 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1580 symbols_size, shndx, reloc_shndx,
1581 reloc_type);
1582 }
1583
1584 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1585 // the output section.
1586
1587 Output_section*
1588 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1589 elfcpp::Elf_Xword flags,
1590 Output_section_data* posd,
1591 Output_section_order order, bool is_relro)
1592 {
1593 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1594 false, order, is_relro);
1595 if (os != NULL)
1596 os->add_output_section_data(posd);
1597 return os;
1598 }
1599
1600 // Map section flags to segment flags.
1601
1602 elfcpp::Elf_Word
1603 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1604 {
1605 elfcpp::Elf_Word ret = elfcpp::PF_R;
1606 if ((flags & elfcpp::SHF_WRITE) != 0)
1607 ret |= elfcpp::PF_W;
1608 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1609 ret |= elfcpp::PF_X;
1610 return ret;
1611 }
1612
1613 // Make a new Output_section, and attach it to segments as
1614 // appropriate. ORDER is the order in which this section should
1615 // appear in the output segment. IS_RELRO is true if this is a relro
1616 // (read-only after relocations) section.
1617
1618 Output_section*
1619 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1620 elfcpp::Elf_Xword flags,
1621 Output_section_order order, bool is_relro)
1622 {
1623 Output_section* os;
1624 if ((flags & elfcpp::SHF_ALLOC) == 0
1625 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1626 && is_compressible_debug_section(name))
1627 os = new Output_compressed_section(&parameters->options(), name, type,
1628 flags);
1629 else if ((flags & elfcpp::SHF_ALLOC) == 0
1630 && parameters->options().strip_debug_non_line()
1631 && strcmp(".debug_abbrev", name) == 0)
1632 {
1633 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1634 name, type, flags);
1635 if (this->debug_info_)
1636 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1637 }
1638 else if ((flags & elfcpp::SHF_ALLOC) == 0
1639 && parameters->options().strip_debug_non_line()
1640 && strcmp(".debug_info", name) == 0)
1641 {
1642 os = this->debug_info_ = new Output_reduced_debug_info_section(
1643 name, type, flags);
1644 if (this->debug_abbrev_)
1645 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1646 }
1647 else
1648 {
1649 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1650 // not have correct section types. Force them here.
1651 if (type == elfcpp::SHT_PROGBITS)
1652 {
1653 if (is_prefix_of(".init_array", name))
1654 type = elfcpp::SHT_INIT_ARRAY;
1655 else if (is_prefix_of(".preinit_array", name))
1656 type = elfcpp::SHT_PREINIT_ARRAY;
1657 else if (is_prefix_of(".fini_array", name))
1658 type = elfcpp::SHT_FINI_ARRAY;
1659 }
1660
1661 // FIXME: const_cast is ugly.
1662 Target* target = const_cast<Target*>(&parameters->target());
1663 os = target->make_output_section(name, type, flags);
1664 }
1665
1666 // With -z relro, we have to recognize the special sections by name.
1667 // There is no other way.
1668 bool is_relro_local = false;
1669 if (!this->script_options_->saw_sections_clause()
1670 && parameters->options().relro()
1671 && (flags & elfcpp::SHF_ALLOC) != 0
1672 && (flags & elfcpp::SHF_WRITE) != 0)
1673 {
1674 if (type == elfcpp::SHT_PROGBITS)
1675 {
1676 if ((flags & elfcpp::SHF_TLS) != 0)
1677 is_relro = true;
1678 else if (strcmp(name, ".data.rel.ro") == 0)
1679 is_relro = true;
1680 else if (strcmp(name, ".data.rel.ro.local") == 0)
1681 {
1682 is_relro = true;
1683 is_relro_local = true;
1684 }
1685 else if (strcmp(name, ".ctors") == 0
1686 || strcmp(name, ".dtors") == 0
1687 || strcmp(name, ".jcr") == 0)
1688 is_relro = true;
1689 }
1690 else if (type == elfcpp::SHT_INIT_ARRAY
1691 || type == elfcpp::SHT_FINI_ARRAY
1692 || type == elfcpp::SHT_PREINIT_ARRAY)
1693 is_relro = true;
1694 }
1695
1696 if (is_relro)
1697 os->set_is_relro();
1698
1699 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1700 order = this->default_section_order(os, is_relro_local);
1701
1702 os->set_order(order);
1703
1704 parameters->target().new_output_section(os);
1705
1706 this->section_list_.push_back(os);
1707
1708 // The GNU linker by default sorts some sections by priority, so we
1709 // do the same. We need to know that this might happen before we
1710 // attach any input sections.
1711 if (!this->script_options_->saw_sections_clause()
1712 && !parameters->options().relocatable()
1713 && (strcmp(name, ".init_array") == 0
1714 || strcmp(name, ".fini_array") == 0
1715 || (!parameters->options().ctors_in_init_array()
1716 && (strcmp(name, ".ctors") == 0
1717 || strcmp(name, ".dtors") == 0))))
1718 os->set_may_sort_attached_input_sections();
1719
1720 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1721 // sections before other .text sections. We are compatible. We
1722 // need to know that this might happen before we attach any input
1723 // sections.
1724 if (parameters->options().text_reorder()
1725 && !this->script_options_->saw_sections_clause()
1726 && !this->is_section_ordering_specified()
1727 && !parameters->options().relocatable()
1728 && strcmp(name, ".text") == 0)
1729 os->set_may_sort_attached_input_sections();
1730
1731 // GNU linker sorts section by name with --sort-section=name.
1732 if (strcmp(parameters->options().sort_section(), "name") == 0)
1733 os->set_must_sort_attached_input_sections();
1734
1735 // Check for .stab*str sections, as .stab* sections need to link to
1736 // them.
1737 if (type == elfcpp::SHT_STRTAB
1738 && !this->have_stabstr_section_
1739 && strncmp(name, ".stab", 5) == 0
1740 && strcmp(name + strlen(name) - 3, "str") == 0)
1741 this->have_stabstr_section_ = true;
1742
1743 // During a full incremental link, we add patch space to most
1744 // PROGBITS and NOBITS sections. Flag those that may be
1745 // arbitrarily padded.
1746 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1747 && order != ORDER_INTERP
1748 && order != ORDER_INIT
1749 && order != ORDER_PLT
1750 && order != ORDER_FINI
1751 && order != ORDER_RELRO_LAST
1752 && order != ORDER_NON_RELRO_FIRST
1753 && strcmp(name, ".eh_frame") != 0
1754 && strcmp(name, ".ctors") != 0
1755 && strcmp(name, ".dtors") != 0
1756 && strcmp(name, ".jcr") != 0)
1757 {
1758 os->set_is_patch_space_allowed();
1759
1760 // Certain sections require "holes" to be filled with
1761 // specific fill patterns. These fill patterns may have
1762 // a minimum size, so we must prevent allocations from the
1763 // free list that leave a hole smaller than the minimum.
1764 if (strcmp(name, ".debug_info") == 0)
1765 os->set_free_space_fill(new Output_fill_debug_info(false));
1766 else if (strcmp(name, ".debug_types") == 0)
1767 os->set_free_space_fill(new Output_fill_debug_info(true));
1768 else if (strcmp(name, ".debug_line") == 0)
1769 os->set_free_space_fill(new Output_fill_debug_line());
1770 }
1771
1772 // If we have already attached the sections to segments, then we
1773 // need to attach this one now. This happens for sections created
1774 // directly by the linker.
1775 if (this->sections_are_attached_)
1776 this->attach_section_to_segment(&parameters->target(), os);
1777
1778 return os;
1779 }
1780
1781 // Return the default order in which a section should be placed in an
1782 // output segment. This function captures a lot of the ideas in
1783 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1784 // linker created section is normally set when the section is created;
1785 // this function is used for input sections.
1786
1787 Output_section_order
1788 Layout::default_section_order(Output_section* os, bool is_relro_local)
1789 {
1790 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1791 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1792 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1793 bool is_bss = false;
1794
1795 switch (os->type())
1796 {
1797 default:
1798 case elfcpp::SHT_PROGBITS:
1799 break;
1800 case elfcpp::SHT_NOBITS:
1801 is_bss = true;
1802 break;
1803 case elfcpp::SHT_RELA:
1804 case elfcpp::SHT_REL:
1805 if (!is_write)
1806 return ORDER_DYNAMIC_RELOCS;
1807 break;
1808 case elfcpp::SHT_HASH:
1809 case elfcpp::SHT_DYNAMIC:
1810 case elfcpp::SHT_SHLIB:
1811 case elfcpp::SHT_DYNSYM:
1812 case elfcpp::SHT_GNU_HASH:
1813 case elfcpp::SHT_GNU_verdef:
1814 case elfcpp::SHT_GNU_verneed:
1815 case elfcpp::SHT_GNU_versym:
1816 if (!is_write)
1817 return ORDER_DYNAMIC_LINKER;
1818 break;
1819 case elfcpp::SHT_NOTE:
1820 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1821 }
1822
1823 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1824 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1825
1826 if (!is_bss && !is_write)
1827 {
1828 if (is_execinstr)
1829 {
1830 if (strcmp(os->name(), ".init") == 0)
1831 return ORDER_INIT;
1832 else if (strcmp(os->name(), ".fini") == 0)
1833 return ORDER_FINI;
1834 }
1835 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1836 }
1837
1838 if (os->is_relro())
1839 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1840
1841 if (os->is_small_section())
1842 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1843 if (os->is_large_section())
1844 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1845
1846 return is_bss ? ORDER_BSS : ORDER_DATA;
1847 }
1848
1849 // Attach output sections to segments. This is called after we have
1850 // seen all the input sections.
1851
1852 void
1853 Layout::attach_sections_to_segments(const Target* target)
1854 {
1855 for (Section_list::iterator p = this->section_list_.begin();
1856 p != this->section_list_.end();
1857 ++p)
1858 this->attach_section_to_segment(target, *p);
1859
1860 this->sections_are_attached_ = true;
1861 }
1862
1863 // Attach an output section to a segment.
1864
1865 void
1866 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1867 {
1868 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1869 this->unattached_section_list_.push_back(os);
1870 else
1871 this->attach_allocated_section_to_segment(target, os);
1872 }
1873
1874 // Attach an allocated output section to a segment.
1875
1876 void
1877 Layout::attach_allocated_section_to_segment(const Target* target,
1878 Output_section* os)
1879 {
1880 elfcpp::Elf_Xword flags = os->flags();
1881 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1882
1883 if (parameters->options().relocatable())
1884 return;
1885
1886 // If we have a SECTIONS clause, we can't handle the attachment to
1887 // segments until after we've seen all the sections.
1888 if (this->script_options_->saw_sections_clause())
1889 return;
1890
1891 gold_assert(!this->script_options_->saw_phdrs_clause());
1892
1893 // This output section goes into a PT_LOAD segment.
1894
1895 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1896
1897 // If this output section's segment has extra flags that need to be set,
1898 // coming from a linker plugin, do that.
1899 seg_flags |= os->extra_segment_flags();
1900
1901 // Check for --section-start.
1902 uint64_t addr;
1903 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1904
1905 // In general the only thing we really care about for PT_LOAD
1906 // segments is whether or not they are writable or executable,
1907 // so that is how we search for them.
1908 // Large data sections also go into their own PT_LOAD segment.
1909 // People who need segments sorted on some other basis will
1910 // have to use a linker script.
1911
1912 Segment_list::const_iterator p;
1913 if (!os->is_unique_segment())
1914 {
1915 for (p = this->segment_list_.begin();
1916 p != this->segment_list_.end();
1917 ++p)
1918 {
1919 if ((*p)->type() != elfcpp::PT_LOAD)
1920 continue;
1921 if ((*p)->is_unique_segment())
1922 continue;
1923 if (!parameters->options().omagic()
1924 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1925 continue;
1926 if ((target->isolate_execinstr() || parameters->options().rosegment())
1927 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1928 continue;
1929 // If -Tbss was specified, we need to separate the data and BSS
1930 // segments.
1931 if (parameters->options().user_set_Tbss())
1932 {
1933 if ((os->type() == elfcpp::SHT_NOBITS)
1934 == (*p)->has_any_data_sections())
1935 continue;
1936 }
1937 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1938 continue;
1939
1940 if (is_address_set)
1941 {
1942 if ((*p)->are_addresses_set())
1943 continue;
1944
1945 (*p)->add_initial_output_data(os);
1946 (*p)->update_flags_for_output_section(seg_flags);
1947 (*p)->set_addresses(addr, addr);
1948 break;
1949 }
1950
1951 (*p)->add_output_section_to_load(this, os, seg_flags);
1952 break;
1953 }
1954 }
1955
1956 if (p == this->segment_list_.end()
1957 || os->is_unique_segment())
1958 {
1959 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1960 seg_flags);
1961 if (os->is_large_data_section())
1962 oseg->set_is_large_data_segment();
1963 oseg->add_output_section_to_load(this, os, seg_flags);
1964 if (is_address_set)
1965 oseg->set_addresses(addr, addr);
1966 // Check if segment should be marked unique. For segments marked
1967 // unique by linker plugins, set the new alignment if specified.
1968 if (os->is_unique_segment())
1969 {
1970 oseg->set_is_unique_segment();
1971 if (os->segment_alignment() != 0)
1972 oseg->set_minimum_p_align(os->segment_alignment());
1973 }
1974 }
1975
1976 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1977 // segment.
1978 if (os->type() == elfcpp::SHT_NOTE)
1979 {
1980 // See if we already have an equivalent PT_NOTE segment.
1981 for (p = this->segment_list_.begin();
1982 p != segment_list_.end();
1983 ++p)
1984 {
1985 if ((*p)->type() == elfcpp::PT_NOTE
1986 && (((*p)->flags() & elfcpp::PF_W)
1987 == (seg_flags & elfcpp::PF_W)))
1988 {
1989 (*p)->add_output_section_to_nonload(os, seg_flags);
1990 break;
1991 }
1992 }
1993
1994 if (p == this->segment_list_.end())
1995 {
1996 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1997 seg_flags);
1998 oseg->add_output_section_to_nonload(os, seg_flags);
1999 }
2000 }
2001
2002 // If we see a loadable SHF_TLS section, we create a PT_TLS
2003 // segment. There can only be one such segment.
2004 if ((flags & elfcpp::SHF_TLS) != 0)
2005 {
2006 if (this->tls_segment_ == NULL)
2007 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2008 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2009 }
2010
2011 // If -z relro is in effect, and we see a relro section, we create a
2012 // PT_GNU_RELRO segment. There can only be one such segment.
2013 if (os->is_relro() && parameters->options().relro())
2014 {
2015 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2016 if (this->relro_segment_ == NULL)
2017 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2018 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2019 }
2020
2021 // If we see a section named .interp, put it into a PT_INTERP
2022 // segment. This seems broken to me, but this is what GNU ld does,
2023 // and glibc expects it.
2024 if (strcmp(os->name(), ".interp") == 0
2025 && !this->script_options_->saw_phdrs_clause())
2026 {
2027 if (this->interp_segment_ == NULL)
2028 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2029 else
2030 gold_warning(_("multiple '.interp' sections in input files "
2031 "may cause confusing PT_INTERP segment"));
2032 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2033 }
2034 }
2035
2036 // Make an output section for a script.
2037
2038 Output_section*
2039 Layout::make_output_section_for_script(
2040 const char* name,
2041 Script_sections::Section_type section_type)
2042 {
2043 name = this->namepool_.add(name, false, NULL);
2044 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2045 if (section_type == Script_sections::ST_NOLOAD)
2046 sh_flags = 0;
2047 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2048 sh_flags, ORDER_INVALID,
2049 false);
2050 os->set_found_in_sections_clause();
2051 if (section_type == Script_sections::ST_NOLOAD)
2052 os->set_is_noload();
2053 return os;
2054 }
2055
2056 // Return the number of segments we expect to see.
2057
2058 size_t
2059 Layout::expected_segment_count() const
2060 {
2061 size_t ret = this->segment_list_.size();
2062
2063 // If we didn't see a SECTIONS clause in a linker script, we should
2064 // already have the complete list of segments. Otherwise we ask the
2065 // SECTIONS clause how many segments it expects, and add in the ones
2066 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2067
2068 if (!this->script_options_->saw_sections_clause())
2069 return ret;
2070 else
2071 {
2072 const Script_sections* ss = this->script_options_->script_sections();
2073 return ret + ss->expected_segment_count(this);
2074 }
2075 }
2076
2077 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2078 // is whether we saw a .note.GNU-stack section in the object file.
2079 // GNU_STACK_FLAGS is the section flags. The flags give the
2080 // protection required for stack memory. We record this in an
2081 // executable as a PT_GNU_STACK segment. If an object file does not
2082 // have a .note.GNU-stack segment, we must assume that it is an old
2083 // object. On some targets that will force an executable stack.
2084
2085 void
2086 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2087 const Object* obj)
2088 {
2089 if (!seen_gnu_stack)
2090 {
2091 this->input_without_gnu_stack_note_ = true;
2092 if (parameters->options().warn_execstack()
2093 && parameters->target().is_default_stack_executable())
2094 gold_warning(_("%s: missing .note.GNU-stack section"
2095 " implies executable stack"),
2096 obj->name().c_str());
2097 }
2098 else
2099 {
2100 this->input_with_gnu_stack_note_ = true;
2101 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2102 {
2103 this->input_requires_executable_stack_ = true;
2104 if (parameters->options().warn_execstack()
2105 || parameters->options().is_stack_executable())
2106 gold_warning(_("%s: requires executable stack"),
2107 obj->name().c_str());
2108 }
2109 }
2110 }
2111
2112 // Create automatic note sections.
2113
2114 void
2115 Layout::create_notes()
2116 {
2117 this->create_gold_note();
2118 this->create_executable_stack_info();
2119 this->create_build_id();
2120 }
2121
2122 // Create the dynamic sections which are needed before we read the
2123 // relocs.
2124
2125 void
2126 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2127 {
2128 if (parameters->doing_static_link())
2129 return;
2130
2131 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2132 elfcpp::SHT_DYNAMIC,
2133 (elfcpp::SHF_ALLOC
2134 | elfcpp::SHF_WRITE),
2135 false, ORDER_RELRO,
2136 true);
2137
2138 // A linker script may discard .dynamic, so check for NULL.
2139 if (this->dynamic_section_ != NULL)
2140 {
2141 this->dynamic_symbol_ =
2142 symtab->define_in_output_data("_DYNAMIC", NULL,
2143 Symbol_table::PREDEFINED,
2144 this->dynamic_section_, 0, 0,
2145 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2146 elfcpp::STV_HIDDEN, 0, false, false);
2147
2148 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2149
2150 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2151 }
2152 }
2153
2154 // For each output section whose name can be represented as C symbol,
2155 // define __start and __stop symbols for the section. This is a GNU
2156 // extension.
2157
2158 void
2159 Layout::define_section_symbols(Symbol_table* symtab)
2160 {
2161 for (Section_list::const_iterator p = this->section_list_.begin();
2162 p != this->section_list_.end();
2163 ++p)
2164 {
2165 const char* const name = (*p)->name();
2166 if (is_cident(name))
2167 {
2168 const std::string name_string(name);
2169 const std::string start_name(cident_section_start_prefix
2170 + name_string);
2171 const std::string stop_name(cident_section_stop_prefix
2172 + name_string);
2173
2174 symtab->define_in_output_data(start_name.c_str(),
2175 NULL, // version
2176 Symbol_table::PREDEFINED,
2177 *p,
2178 0, // value
2179 0, // symsize
2180 elfcpp::STT_NOTYPE,
2181 elfcpp::STB_GLOBAL,
2182 elfcpp::STV_DEFAULT,
2183 0, // nonvis
2184 false, // offset_is_from_end
2185 true); // only_if_ref
2186
2187 symtab->define_in_output_data(stop_name.c_str(),
2188 NULL, // version
2189 Symbol_table::PREDEFINED,
2190 *p,
2191 0, // value
2192 0, // symsize
2193 elfcpp::STT_NOTYPE,
2194 elfcpp::STB_GLOBAL,
2195 elfcpp::STV_DEFAULT,
2196 0, // nonvis
2197 true, // offset_is_from_end
2198 true); // only_if_ref
2199 }
2200 }
2201 }
2202
2203 // Define symbols for group signatures.
2204
2205 void
2206 Layout::define_group_signatures(Symbol_table* symtab)
2207 {
2208 for (Group_signatures::iterator p = this->group_signatures_.begin();
2209 p != this->group_signatures_.end();
2210 ++p)
2211 {
2212 Symbol* sym = symtab->lookup(p->signature, NULL);
2213 if (sym != NULL)
2214 p->section->set_info_symndx(sym);
2215 else
2216 {
2217 // Force the name of the group section to the group
2218 // signature, and use the group's section symbol as the
2219 // signature symbol.
2220 if (strcmp(p->section->name(), p->signature) != 0)
2221 {
2222 const char* name = this->namepool_.add(p->signature,
2223 true, NULL);
2224 p->section->set_name(name);
2225 }
2226 p->section->set_needs_symtab_index();
2227 p->section->set_info_section_symndx(p->section);
2228 }
2229 }
2230
2231 this->group_signatures_.clear();
2232 }
2233
2234 // Find the first read-only PT_LOAD segment, creating one if
2235 // necessary.
2236
2237 Output_segment*
2238 Layout::find_first_load_seg(const Target* target)
2239 {
2240 Output_segment* best = NULL;
2241 for (Segment_list::const_iterator p = this->segment_list_.begin();
2242 p != this->segment_list_.end();
2243 ++p)
2244 {
2245 if ((*p)->type() == elfcpp::PT_LOAD
2246 && ((*p)->flags() & elfcpp::PF_R) != 0
2247 && (parameters->options().omagic()
2248 || ((*p)->flags() & elfcpp::PF_W) == 0)
2249 && (!target->isolate_execinstr()
2250 || ((*p)->flags() & elfcpp::PF_X) == 0))
2251 {
2252 if (best == NULL || this->segment_precedes(*p, best))
2253 best = *p;
2254 }
2255 }
2256 if (best != NULL)
2257 return best;
2258
2259 gold_assert(!this->script_options_->saw_phdrs_clause());
2260
2261 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2262 elfcpp::PF_R);
2263 return load_seg;
2264 }
2265
2266 // Save states of all current output segments. Store saved states
2267 // in SEGMENT_STATES.
2268
2269 void
2270 Layout::save_segments(Segment_states* segment_states)
2271 {
2272 for (Segment_list::const_iterator p = this->segment_list_.begin();
2273 p != this->segment_list_.end();
2274 ++p)
2275 {
2276 Output_segment* segment = *p;
2277 // Shallow copy.
2278 Output_segment* copy = new Output_segment(*segment);
2279 (*segment_states)[segment] = copy;
2280 }
2281 }
2282
2283 // Restore states of output segments and delete any segment not found in
2284 // SEGMENT_STATES.
2285
2286 void
2287 Layout::restore_segments(const Segment_states* segment_states)
2288 {
2289 // Go through the segment list and remove any segment added in the
2290 // relaxation loop.
2291 this->tls_segment_ = NULL;
2292 this->relro_segment_ = NULL;
2293 Segment_list::iterator list_iter = this->segment_list_.begin();
2294 while (list_iter != this->segment_list_.end())
2295 {
2296 Output_segment* segment = *list_iter;
2297 Segment_states::const_iterator states_iter =
2298 segment_states->find(segment);
2299 if (states_iter != segment_states->end())
2300 {
2301 const Output_segment* copy = states_iter->second;
2302 // Shallow copy to restore states.
2303 *segment = *copy;
2304
2305 // Also fix up TLS and RELRO segment pointers as appropriate.
2306 if (segment->type() == elfcpp::PT_TLS)
2307 this->tls_segment_ = segment;
2308 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2309 this->relro_segment_ = segment;
2310
2311 ++list_iter;
2312 }
2313 else
2314 {
2315 list_iter = this->segment_list_.erase(list_iter);
2316 // This is a segment created during section layout. It should be
2317 // safe to remove it since we should have removed all pointers to it.
2318 delete segment;
2319 }
2320 }
2321 }
2322
2323 // Clean up after relaxation so that sections can be laid out again.
2324
2325 void
2326 Layout::clean_up_after_relaxation()
2327 {
2328 // Restore the segments to point state just prior to the relaxation loop.
2329 Script_sections* script_section = this->script_options_->script_sections();
2330 script_section->release_segments();
2331 this->restore_segments(this->segment_states_);
2332
2333 // Reset section addresses and file offsets
2334 for (Section_list::iterator p = this->section_list_.begin();
2335 p != this->section_list_.end();
2336 ++p)
2337 {
2338 (*p)->restore_states();
2339
2340 // If an input section changes size because of relaxation,
2341 // we need to adjust the section offsets of all input sections.
2342 // after such a section.
2343 if ((*p)->section_offsets_need_adjustment())
2344 (*p)->adjust_section_offsets();
2345
2346 (*p)->reset_address_and_file_offset();
2347 }
2348
2349 // Reset special output object address and file offsets.
2350 for (Data_list::iterator p = this->special_output_list_.begin();
2351 p != this->special_output_list_.end();
2352 ++p)
2353 (*p)->reset_address_and_file_offset();
2354
2355 // A linker script may have created some output section data objects.
2356 // They are useless now.
2357 for (Output_section_data_list::const_iterator p =
2358 this->script_output_section_data_list_.begin();
2359 p != this->script_output_section_data_list_.end();
2360 ++p)
2361 delete *p;
2362 this->script_output_section_data_list_.clear();
2363
2364 // Special-case fill output objects are recreated each time through
2365 // the relaxation loop.
2366 this->reset_relax_output();
2367 }
2368
2369 void
2370 Layout::reset_relax_output()
2371 {
2372 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2373 p != this->relax_output_list_.end();
2374 ++p)
2375 delete *p;
2376 this->relax_output_list_.clear();
2377 }
2378
2379 // Prepare for relaxation.
2380
2381 void
2382 Layout::prepare_for_relaxation()
2383 {
2384 // Create an relaxation debug check if in debugging mode.
2385 if (is_debugging_enabled(DEBUG_RELAXATION))
2386 this->relaxation_debug_check_ = new Relaxation_debug_check();
2387
2388 // Save segment states.
2389 this->segment_states_ = new Segment_states();
2390 this->save_segments(this->segment_states_);
2391
2392 for(Section_list::const_iterator p = this->section_list_.begin();
2393 p != this->section_list_.end();
2394 ++p)
2395 (*p)->save_states();
2396
2397 if (is_debugging_enabled(DEBUG_RELAXATION))
2398 this->relaxation_debug_check_->check_output_data_for_reset_values(
2399 this->section_list_, this->special_output_list_,
2400 this->relax_output_list_);
2401
2402 // Also enable recording of output section data from scripts.
2403 this->record_output_section_data_from_script_ = true;
2404 }
2405
2406 // If the user set the address of the text segment, that may not be
2407 // compatible with putting the segment headers and file headers into
2408 // that segment. For isolate_execinstr() targets, it's the rodata
2409 // segment rather than text where we might put the headers.
2410 static inline bool
2411 load_seg_unusable_for_headers(const Target* target)
2412 {
2413 const General_options& options = parameters->options();
2414 if (target->isolate_execinstr())
2415 return (options.user_set_Trodata_segment()
2416 && options.Trodata_segment() % target->abi_pagesize() != 0);
2417 else
2418 return (options.user_set_Ttext()
2419 && options.Ttext() % target->abi_pagesize() != 0);
2420 }
2421
2422 // Relaxation loop body: If target has no relaxation, this runs only once
2423 // Otherwise, the target relaxation hook is called at the end of
2424 // each iteration. If the hook returns true, it means re-layout of
2425 // section is required.
2426 //
2427 // The number of segments created by a linking script without a PHDRS
2428 // clause may be affected by section sizes and alignments. There is
2429 // a remote chance that relaxation causes different number of PT_LOAD
2430 // segments are created and sections are attached to different segments.
2431 // Therefore, we always throw away all segments created during section
2432 // layout. In order to be able to restart the section layout, we keep
2433 // a copy of the segment list right before the relaxation loop and use
2434 // that to restore the segments.
2435 //
2436 // PASS is the current relaxation pass number.
2437 // SYMTAB is a symbol table.
2438 // PLOAD_SEG is the address of a pointer for the load segment.
2439 // PHDR_SEG is a pointer to the PHDR segment.
2440 // SEGMENT_HEADERS points to the output segment header.
2441 // FILE_HEADER points to the output file header.
2442 // PSHNDX is the address to store the output section index.
2443
2444 off_t inline
2445 Layout::relaxation_loop_body(
2446 int pass,
2447 Target* target,
2448 Symbol_table* symtab,
2449 Output_segment** pload_seg,
2450 Output_segment* phdr_seg,
2451 Output_segment_headers* segment_headers,
2452 Output_file_header* file_header,
2453 unsigned int* pshndx)
2454 {
2455 // If this is not the first iteration, we need to clean up after
2456 // relaxation so that we can lay out the sections again.
2457 if (pass != 0)
2458 this->clean_up_after_relaxation();
2459
2460 // If there is a SECTIONS clause, put all the input sections into
2461 // the required order.
2462 Output_segment* load_seg;
2463 if (this->script_options_->saw_sections_clause())
2464 load_seg = this->set_section_addresses_from_script(symtab);
2465 else if (parameters->options().relocatable())
2466 load_seg = NULL;
2467 else
2468 load_seg = this->find_first_load_seg(target);
2469
2470 if (parameters->options().oformat_enum()
2471 != General_options::OBJECT_FORMAT_ELF)
2472 load_seg = NULL;
2473
2474 if (load_seg_unusable_for_headers(target))
2475 {
2476 load_seg = NULL;
2477 phdr_seg = NULL;
2478 }
2479
2480 gold_assert(phdr_seg == NULL
2481 || load_seg != NULL
2482 || this->script_options_->saw_sections_clause());
2483
2484 // If the address of the load segment we found has been set by
2485 // --section-start rather than by a script, then adjust the VMA and
2486 // LMA downward if possible to include the file and section headers.
2487 uint64_t header_gap = 0;
2488 if (load_seg != NULL
2489 && load_seg->are_addresses_set()
2490 && !this->script_options_->saw_sections_clause()
2491 && !parameters->options().relocatable())
2492 {
2493 file_header->finalize_data_size();
2494 segment_headers->finalize_data_size();
2495 size_t sizeof_headers = (file_header->data_size()
2496 + segment_headers->data_size());
2497 const uint64_t abi_pagesize = target->abi_pagesize();
2498 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2499 hdr_paddr &= ~(abi_pagesize - 1);
2500 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2501 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2502 load_seg = NULL;
2503 else
2504 {
2505 load_seg->set_addresses(load_seg->vaddr() - subtract,
2506 load_seg->paddr() - subtract);
2507 header_gap = subtract - sizeof_headers;
2508 }
2509 }
2510
2511 // Lay out the segment headers.
2512 if (!parameters->options().relocatable())
2513 {
2514 gold_assert(segment_headers != NULL);
2515 if (header_gap != 0 && load_seg != NULL)
2516 {
2517 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2518 load_seg->add_initial_output_data(z);
2519 }
2520 if (load_seg != NULL)
2521 load_seg->add_initial_output_data(segment_headers);
2522 if (phdr_seg != NULL)
2523 phdr_seg->add_initial_output_data(segment_headers);
2524 }
2525
2526 // Lay out the file header.
2527 if (load_seg != NULL)
2528 load_seg->add_initial_output_data(file_header);
2529
2530 if (this->script_options_->saw_phdrs_clause()
2531 && !parameters->options().relocatable())
2532 {
2533 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2534 // clause in a linker script.
2535 Script_sections* ss = this->script_options_->script_sections();
2536 ss->put_headers_in_phdrs(file_header, segment_headers);
2537 }
2538
2539 // We set the output section indexes in set_segment_offsets and
2540 // set_section_indexes.
2541 *pshndx = 1;
2542
2543 // Set the file offsets of all the segments, and all the sections
2544 // they contain.
2545 off_t off;
2546 if (!parameters->options().relocatable())
2547 off = this->set_segment_offsets(target, load_seg, pshndx);
2548 else
2549 off = this->set_relocatable_section_offsets(file_header, pshndx);
2550
2551 // Verify that the dummy relaxation does not change anything.
2552 if (is_debugging_enabled(DEBUG_RELAXATION))
2553 {
2554 if (pass == 0)
2555 this->relaxation_debug_check_->read_sections(this->section_list_);
2556 else
2557 this->relaxation_debug_check_->verify_sections(this->section_list_);
2558 }
2559
2560 *pload_seg = load_seg;
2561 return off;
2562 }
2563
2564 // Search the list of patterns and find the postion of the given section
2565 // name in the output section. If the section name matches a glob
2566 // pattern and a non-glob name, then the non-glob position takes
2567 // precedence. Return 0 if no match is found.
2568
2569 unsigned int
2570 Layout::find_section_order_index(const std::string& section_name)
2571 {
2572 Unordered_map<std::string, unsigned int>::iterator map_it;
2573 map_it = this->input_section_position_.find(section_name);
2574 if (map_it != this->input_section_position_.end())
2575 return map_it->second;
2576
2577 // Absolute match failed. Linear search the glob patterns.
2578 std::vector<std::string>::iterator it;
2579 for (it = this->input_section_glob_.begin();
2580 it != this->input_section_glob_.end();
2581 ++it)
2582 {
2583 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2584 {
2585 map_it = this->input_section_position_.find(*it);
2586 gold_assert(map_it != this->input_section_position_.end());
2587 return map_it->second;
2588 }
2589 }
2590 return 0;
2591 }
2592
2593 // Read the sequence of input sections from the file specified with
2594 // option --section-ordering-file.
2595
2596 void
2597 Layout::read_layout_from_file()
2598 {
2599 const char* filename = parameters->options().section_ordering_file();
2600 std::ifstream in;
2601 std::string line;
2602
2603 in.open(filename);
2604 if (!in)
2605 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2606 filename, strerror(errno));
2607
2608 std::getline(in, line); // this chops off the trailing \n, if any
2609 unsigned int position = 1;
2610 this->set_section_ordering_specified();
2611
2612 while (in)
2613 {
2614 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2615 line.resize(line.length() - 1);
2616 // Ignore comments, beginning with '#'
2617 if (line[0] == '#')
2618 {
2619 std::getline(in, line);
2620 continue;
2621 }
2622 this->input_section_position_[line] = position;
2623 // Store all glob patterns in a vector.
2624 if (is_wildcard_string(line.c_str()))
2625 this->input_section_glob_.push_back(line);
2626 position++;
2627 std::getline(in, line);
2628 }
2629 }
2630
2631 // Finalize the layout. When this is called, we have created all the
2632 // output sections and all the output segments which are based on
2633 // input sections. We have several things to do, and we have to do
2634 // them in the right order, so that we get the right results correctly
2635 // and efficiently.
2636
2637 // 1) Finalize the list of output segments and create the segment
2638 // table header.
2639
2640 // 2) Finalize the dynamic symbol table and associated sections.
2641
2642 // 3) Determine the final file offset of all the output segments.
2643
2644 // 4) Determine the final file offset of all the SHF_ALLOC output
2645 // sections.
2646
2647 // 5) Create the symbol table sections and the section name table
2648 // section.
2649
2650 // 6) Finalize the symbol table: set symbol values to their final
2651 // value and make a final determination of which symbols are going
2652 // into the output symbol table.
2653
2654 // 7) Create the section table header.
2655
2656 // 8) Determine the final file offset of all the output sections which
2657 // are not SHF_ALLOC, including the section table header.
2658
2659 // 9) Finalize the ELF file header.
2660
2661 // This function returns the size of the output file.
2662
2663 off_t
2664 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2665 Target* target, const Task* task)
2666 {
2667 target->finalize_sections(this, input_objects, symtab);
2668
2669 this->count_local_symbols(task, input_objects);
2670
2671 this->link_stabs_sections();
2672
2673 Output_segment* phdr_seg = NULL;
2674 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2675 {
2676 // There was a dynamic object in the link. We need to create
2677 // some information for the dynamic linker.
2678
2679 // Create the PT_PHDR segment which will hold the program
2680 // headers.
2681 if (!this->script_options_->saw_phdrs_clause())
2682 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2683
2684 // Create the dynamic symbol table, including the hash table.
2685 Output_section* dynstr;
2686 std::vector<Symbol*> dynamic_symbols;
2687 unsigned int local_dynamic_count;
2688 Versions versions(*this->script_options()->version_script_info(),
2689 &this->dynpool_);
2690 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2691 &local_dynamic_count, &dynamic_symbols,
2692 &versions);
2693
2694 // Create the .interp section to hold the name of the
2695 // interpreter, and put it in a PT_INTERP segment. Don't do it
2696 // if we saw a .interp section in an input file.
2697 if ((!parameters->options().shared()
2698 || parameters->options().dynamic_linker() != NULL)
2699 && this->interp_segment_ == NULL)
2700 this->create_interp(target);
2701
2702 // Finish the .dynamic section to hold the dynamic data, and put
2703 // it in a PT_DYNAMIC segment.
2704 this->finish_dynamic_section(input_objects, symtab);
2705
2706 // We should have added everything we need to the dynamic string
2707 // table.
2708 this->dynpool_.set_string_offsets();
2709
2710 // Create the version sections. We can't do this until the
2711 // dynamic string table is complete.
2712 this->create_version_sections(&versions, symtab, local_dynamic_count,
2713 dynamic_symbols, dynstr);
2714
2715 // Set the size of the _DYNAMIC symbol. We can't do this until
2716 // after we call create_version_sections.
2717 this->set_dynamic_symbol_size(symtab);
2718 }
2719
2720 // Create segment headers.
2721 Output_segment_headers* segment_headers =
2722 (parameters->options().relocatable()
2723 ? NULL
2724 : new Output_segment_headers(this->segment_list_));
2725
2726 // Lay out the file header.
2727 Output_file_header* file_header = new Output_file_header(target, symtab,
2728 segment_headers);
2729
2730 this->special_output_list_.push_back(file_header);
2731 if (segment_headers != NULL)
2732 this->special_output_list_.push_back(segment_headers);
2733
2734 // Find approriate places for orphan output sections if we are using
2735 // a linker script.
2736 if (this->script_options_->saw_sections_clause())
2737 this->place_orphan_sections_in_script();
2738
2739 Output_segment* load_seg;
2740 off_t off;
2741 unsigned int shndx;
2742 int pass = 0;
2743
2744 // Take a snapshot of the section layout as needed.
2745 if (target->may_relax())
2746 this->prepare_for_relaxation();
2747
2748 // Run the relaxation loop to lay out sections.
2749 do
2750 {
2751 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2752 phdr_seg, segment_headers, file_header,
2753 &shndx);
2754 pass++;
2755 }
2756 while (target->may_relax()
2757 && target->relax(pass, input_objects, symtab, this, task));
2758
2759 // If there is a load segment that contains the file and program headers,
2760 // provide a symbol __ehdr_start pointing there.
2761 // A program can use this to examine itself robustly.
2762 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2763 if (ehdr_start != NULL && ehdr_start->is_predefined())
2764 {
2765 if (load_seg != NULL)
2766 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2767 else
2768 ehdr_start->set_undefined();
2769 }
2770
2771 // Set the file offsets of all the non-data sections we've seen so
2772 // far which don't have to wait for the input sections. We need
2773 // this in order to finalize local symbols in non-allocated
2774 // sections.
2775 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2776
2777 // Set the section indexes of all unallocated sections seen so far,
2778 // in case any of them are somehow referenced by a symbol.
2779 shndx = this->set_section_indexes(shndx);
2780
2781 // Create the symbol table sections.
2782 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2783 if (!parameters->doing_static_link())
2784 this->assign_local_dynsym_offsets(input_objects);
2785
2786 // Process any symbol assignments from a linker script. This must
2787 // be called after the symbol table has been finalized.
2788 this->script_options_->finalize_symbols(symtab, this);
2789
2790 // Create the incremental inputs sections.
2791 if (this->incremental_inputs_)
2792 {
2793 this->incremental_inputs_->finalize();
2794 this->create_incremental_info_sections(symtab);
2795 }
2796
2797 // Create the .shstrtab section.
2798 Output_section* shstrtab_section = this->create_shstrtab();
2799
2800 // Set the file offsets of the rest of the non-data sections which
2801 // don't have to wait for the input sections.
2802 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2803
2804 // Now that all sections have been created, set the section indexes
2805 // for any sections which haven't been done yet.
2806 shndx = this->set_section_indexes(shndx);
2807
2808 // Create the section table header.
2809 this->create_shdrs(shstrtab_section, &off);
2810
2811 // If there are no sections which require postprocessing, we can
2812 // handle the section names now, and avoid a resize later.
2813 if (!this->any_postprocessing_sections_)
2814 {
2815 off = this->set_section_offsets(off,
2816 POSTPROCESSING_SECTIONS_PASS);
2817 off =
2818 this->set_section_offsets(off,
2819 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2820 }
2821
2822 file_header->set_section_info(this->section_headers_, shstrtab_section);
2823
2824 // Now we know exactly where everything goes in the output file
2825 // (except for non-allocated sections which require postprocessing).
2826 Output_data::layout_complete();
2827
2828 this->output_file_size_ = off;
2829
2830 return off;
2831 }
2832
2833 // Create a note header following the format defined in the ELF ABI.
2834 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2835 // of the section to create, DESCSZ is the size of the descriptor.
2836 // ALLOCATE is true if the section should be allocated in memory.
2837 // This returns the new note section. It sets *TRAILING_PADDING to
2838 // the number of trailing zero bytes required.
2839
2840 Output_section*
2841 Layout::create_note(const char* name, int note_type,
2842 const char* section_name, size_t descsz,
2843 bool allocate, size_t* trailing_padding)
2844 {
2845 // Authorities all agree that the values in a .note field should
2846 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2847 // they differ on what the alignment is for 64-bit binaries.
2848 // The GABI says unambiguously they take 8-byte alignment:
2849 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2850 // Other documentation says alignment should always be 4 bytes:
2851 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2852 // GNU ld and GNU readelf both support the latter (at least as of
2853 // version 2.16.91), and glibc always generates the latter for
2854 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2855 // here.
2856 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2857 const int size = parameters->target().get_size();
2858 #else
2859 const int size = 32;
2860 #endif
2861
2862 // The contents of the .note section.
2863 size_t namesz = strlen(name) + 1;
2864 size_t aligned_namesz = align_address(namesz, size / 8);
2865 size_t aligned_descsz = align_address(descsz, size / 8);
2866
2867 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2868
2869 unsigned char* buffer = new unsigned char[notehdrsz];
2870 memset(buffer, 0, notehdrsz);
2871
2872 bool is_big_endian = parameters->target().is_big_endian();
2873
2874 if (size == 32)
2875 {
2876 if (!is_big_endian)
2877 {
2878 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2879 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2880 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2881 }
2882 else
2883 {
2884 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2885 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2886 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2887 }
2888 }
2889 else if (size == 64)
2890 {
2891 if (!is_big_endian)
2892 {
2893 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2894 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2895 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2896 }
2897 else
2898 {
2899 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2900 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2901 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2902 }
2903 }
2904 else
2905 gold_unreachable();
2906
2907 memcpy(buffer + 3 * (size / 8), name, namesz);
2908
2909 elfcpp::Elf_Xword flags = 0;
2910 Output_section_order order = ORDER_INVALID;
2911 if (allocate)
2912 {
2913 flags = elfcpp::SHF_ALLOC;
2914 order = ORDER_RO_NOTE;
2915 }
2916 Output_section* os = this->choose_output_section(NULL, section_name,
2917 elfcpp::SHT_NOTE,
2918 flags, false, order, false);
2919 if (os == NULL)
2920 return NULL;
2921
2922 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2923 size / 8,
2924 "** note header");
2925 os->add_output_section_data(posd);
2926
2927 *trailing_padding = aligned_descsz - descsz;
2928
2929 return os;
2930 }
2931
2932 // For an executable or shared library, create a note to record the
2933 // version of gold used to create the binary.
2934
2935 void
2936 Layout::create_gold_note()
2937 {
2938 if (parameters->options().relocatable()
2939 || parameters->incremental_update())
2940 return;
2941
2942 std::string desc = std::string("gold ") + gold::get_version_string();
2943
2944 size_t trailing_padding;
2945 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2946 ".note.gnu.gold-version", desc.size(),
2947 false, &trailing_padding);
2948 if (os == NULL)
2949 return;
2950
2951 Output_section_data* posd = new Output_data_const(desc, 4);
2952 os->add_output_section_data(posd);
2953
2954 if (trailing_padding > 0)
2955 {
2956 posd = new Output_data_zero_fill(trailing_padding, 0);
2957 os->add_output_section_data(posd);
2958 }
2959 }
2960
2961 // Record whether the stack should be executable. This can be set
2962 // from the command line using the -z execstack or -z noexecstack
2963 // options. Otherwise, if any input file has a .note.GNU-stack
2964 // section with the SHF_EXECINSTR flag set, the stack should be
2965 // executable. Otherwise, if at least one input file a
2966 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2967 // section, we use the target default for whether the stack should be
2968 // executable. Otherwise, we don't generate a stack note. When
2969 // generating a object file, we create a .note.GNU-stack section with
2970 // the appropriate marking. When generating an executable or shared
2971 // library, we create a PT_GNU_STACK segment.
2972
2973 void
2974 Layout::create_executable_stack_info()
2975 {
2976 bool is_stack_executable;
2977 if (parameters->options().is_execstack_set())
2978 is_stack_executable = parameters->options().is_stack_executable();
2979 else if (!this->input_with_gnu_stack_note_)
2980 return;
2981 else
2982 {
2983 if (this->input_requires_executable_stack_)
2984 is_stack_executable = true;
2985 else if (this->input_without_gnu_stack_note_)
2986 is_stack_executable =
2987 parameters->target().is_default_stack_executable();
2988 else
2989 is_stack_executable = false;
2990 }
2991
2992 if (parameters->options().relocatable())
2993 {
2994 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2995 elfcpp::Elf_Xword flags = 0;
2996 if (is_stack_executable)
2997 flags |= elfcpp::SHF_EXECINSTR;
2998 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2999 ORDER_INVALID, false);
3000 }
3001 else
3002 {
3003 if (this->script_options_->saw_phdrs_clause())
3004 return;
3005 int flags = elfcpp::PF_R | elfcpp::PF_W;
3006 if (is_stack_executable)
3007 flags |= elfcpp::PF_X;
3008 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3009 }
3010 }
3011
3012 // If --build-id was used, set up the build ID note.
3013
3014 void
3015 Layout::create_build_id()
3016 {
3017 if (!parameters->options().user_set_build_id())
3018 return;
3019
3020 const char* style = parameters->options().build_id();
3021 if (strcmp(style, "none") == 0)
3022 return;
3023
3024 // Set DESCSZ to the size of the note descriptor. When possible,
3025 // set DESC to the note descriptor contents.
3026 size_t descsz;
3027 std::string desc;
3028 if (strcmp(style, "md5") == 0)
3029 descsz = 128 / 8;
3030 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3031 descsz = 160 / 8;
3032 else if (strcmp(style, "uuid") == 0)
3033 {
3034 const size_t uuidsz = 128 / 8;
3035
3036 char buffer[uuidsz];
3037 memset(buffer, 0, uuidsz);
3038
3039 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3040 if (descriptor < 0)
3041 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3042 strerror(errno));
3043 else
3044 {
3045 ssize_t got = ::read(descriptor, buffer, uuidsz);
3046 release_descriptor(descriptor, true);
3047 if (got < 0)
3048 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3049 else if (static_cast<size_t>(got) != uuidsz)
3050 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3051 uuidsz, got);
3052 }
3053
3054 desc.assign(buffer, uuidsz);
3055 descsz = uuidsz;
3056 }
3057 else if (strncmp(style, "0x", 2) == 0)
3058 {
3059 hex_init();
3060 const char* p = style + 2;
3061 while (*p != '\0')
3062 {
3063 if (hex_p(p[0]) && hex_p(p[1]))
3064 {
3065 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3066 desc += c;
3067 p += 2;
3068 }
3069 else if (*p == '-' || *p == ':')
3070 ++p;
3071 else
3072 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3073 style);
3074 }
3075 descsz = desc.size();
3076 }
3077 else
3078 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3079
3080 // Create the note.
3081 size_t trailing_padding;
3082 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3083 ".note.gnu.build-id", descsz, true,
3084 &trailing_padding);
3085 if (os == NULL)
3086 return;
3087
3088 if (!desc.empty())
3089 {
3090 // We know the value already, so we fill it in now.
3091 gold_assert(desc.size() == descsz);
3092
3093 Output_section_data* posd = new Output_data_const(desc, 4);
3094 os->add_output_section_data(posd);
3095
3096 if (trailing_padding != 0)
3097 {
3098 posd = new Output_data_zero_fill(trailing_padding, 0);
3099 os->add_output_section_data(posd);
3100 }
3101 }
3102 else
3103 {
3104 // We need to compute a checksum after we have completed the
3105 // link.
3106 gold_assert(trailing_padding == 0);
3107 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3108 os->add_output_section_data(this->build_id_note_);
3109 }
3110 }
3111
3112 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3113 // field of the former should point to the latter. I'm not sure who
3114 // started this, but the GNU linker does it, and some tools depend
3115 // upon it.
3116
3117 void
3118 Layout::link_stabs_sections()
3119 {
3120 if (!this->have_stabstr_section_)
3121 return;
3122
3123 for (Section_list::iterator p = this->section_list_.begin();
3124 p != this->section_list_.end();
3125 ++p)
3126 {
3127 if ((*p)->type() != elfcpp::SHT_STRTAB)
3128 continue;
3129
3130 const char* name = (*p)->name();
3131 if (strncmp(name, ".stab", 5) != 0)
3132 continue;
3133
3134 size_t len = strlen(name);
3135 if (strcmp(name + len - 3, "str") != 0)
3136 continue;
3137
3138 std::string stab_name(name, len - 3);
3139 Output_section* stab_sec;
3140 stab_sec = this->find_output_section(stab_name.c_str());
3141 if (stab_sec != NULL)
3142 stab_sec->set_link_section(*p);
3143 }
3144 }
3145
3146 // Create .gnu_incremental_inputs and related sections needed
3147 // for the next run of incremental linking to check what has changed.
3148
3149 void
3150 Layout::create_incremental_info_sections(Symbol_table* symtab)
3151 {
3152 Incremental_inputs* incr = this->incremental_inputs_;
3153
3154 gold_assert(incr != NULL);
3155
3156 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3157 incr->create_data_sections(symtab);
3158
3159 // Add the .gnu_incremental_inputs section.
3160 const char* incremental_inputs_name =
3161 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3162 Output_section* incremental_inputs_os =
3163 this->make_output_section(incremental_inputs_name,
3164 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3165 ORDER_INVALID, false);
3166 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3167
3168 // Add the .gnu_incremental_symtab section.
3169 const char* incremental_symtab_name =
3170 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3171 Output_section* incremental_symtab_os =
3172 this->make_output_section(incremental_symtab_name,
3173 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3174 ORDER_INVALID, false);
3175 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3176 incremental_symtab_os->set_entsize(4);
3177
3178 // Add the .gnu_incremental_relocs section.
3179 const char* incremental_relocs_name =
3180 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3181 Output_section* incremental_relocs_os =
3182 this->make_output_section(incremental_relocs_name,
3183 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3184 ORDER_INVALID, false);
3185 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3186 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3187
3188 // Add the .gnu_incremental_got_plt section.
3189 const char* incremental_got_plt_name =
3190 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3191 Output_section* incremental_got_plt_os =
3192 this->make_output_section(incremental_got_plt_name,
3193 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3194 ORDER_INVALID, false);
3195 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3196
3197 // Add the .gnu_incremental_strtab section.
3198 const char* incremental_strtab_name =
3199 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3200 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3201 elfcpp::SHT_STRTAB, 0,
3202 ORDER_INVALID, false);
3203 Output_data_strtab* strtab_data =
3204 new Output_data_strtab(incr->get_stringpool());
3205 incremental_strtab_os->add_output_section_data(strtab_data);
3206
3207 incremental_inputs_os->set_after_input_sections();
3208 incremental_symtab_os->set_after_input_sections();
3209 incremental_relocs_os->set_after_input_sections();
3210 incremental_got_plt_os->set_after_input_sections();
3211
3212 incremental_inputs_os->set_link_section(incremental_strtab_os);
3213 incremental_symtab_os->set_link_section(incremental_inputs_os);
3214 incremental_relocs_os->set_link_section(incremental_inputs_os);
3215 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3216 }
3217
3218 // Return whether SEG1 should be before SEG2 in the output file. This
3219 // is based entirely on the segment type and flags. When this is
3220 // called the segment addresses have normally not yet been set.
3221
3222 bool
3223 Layout::segment_precedes(const Output_segment* seg1,
3224 const Output_segment* seg2)
3225 {
3226 elfcpp::Elf_Word type1 = seg1->type();
3227 elfcpp::Elf_Word type2 = seg2->type();
3228
3229 // The single PT_PHDR segment is required to precede any loadable
3230 // segment. We simply make it always first.
3231 if (type1 == elfcpp::PT_PHDR)
3232 {
3233 gold_assert(type2 != elfcpp::PT_PHDR);
3234 return true;
3235 }
3236 if (type2 == elfcpp::PT_PHDR)
3237 return false;
3238
3239 // The single PT_INTERP segment is required to precede any loadable
3240 // segment. We simply make it always second.
3241 if (type1 == elfcpp::PT_INTERP)
3242 {
3243 gold_assert(type2 != elfcpp::PT_INTERP);
3244 return true;
3245 }
3246 if (type2 == elfcpp::PT_INTERP)
3247 return false;
3248
3249 // We then put PT_LOAD segments before any other segments.
3250 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3251 return true;
3252 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3253 return false;
3254
3255 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3256 // segment, because that is where the dynamic linker expects to find
3257 // it (this is just for efficiency; other positions would also work
3258 // correctly).
3259 if (type1 == elfcpp::PT_TLS
3260 && type2 != elfcpp::PT_TLS
3261 && type2 != elfcpp::PT_GNU_RELRO)
3262 return false;
3263 if (type2 == elfcpp::PT_TLS
3264 && type1 != elfcpp::PT_TLS
3265 && type1 != elfcpp::PT_GNU_RELRO)
3266 return true;
3267
3268 // We put the PT_GNU_RELRO segment last, because that is where the
3269 // dynamic linker expects to find it (as with PT_TLS, this is just
3270 // for efficiency).
3271 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3272 return false;
3273 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3274 return true;
3275
3276 const elfcpp::Elf_Word flags1 = seg1->flags();
3277 const elfcpp::Elf_Word flags2 = seg2->flags();
3278
3279 // The order of non-PT_LOAD segments is unimportant. We simply sort
3280 // by the numeric segment type and flags values. There should not
3281 // be more than one segment with the same type and flags, except
3282 // when a linker script specifies such.
3283 if (type1 != elfcpp::PT_LOAD)
3284 {
3285 if (type1 != type2)
3286 return type1 < type2;
3287 gold_assert(flags1 != flags2
3288 || this->script_options_->saw_phdrs_clause());
3289 return flags1 < flags2;
3290 }
3291
3292 // If the addresses are set already, sort by load address.
3293 if (seg1->are_addresses_set())
3294 {
3295 if (!seg2->are_addresses_set())
3296 return true;
3297
3298 unsigned int section_count1 = seg1->output_section_count();
3299 unsigned int section_count2 = seg2->output_section_count();
3300 if (section_count1 == 0 && section_count2 > 0)
3301 return true;
3302 if (section_count1 > 0 && section_count2 == 0)
3303 return false;
3304
3305 uint64_t paddr1 = (seg1->are_addresses_set()
3306 ? seg1->paddr()
3307 : seg1->first_section_load_address());
3308 uint64_t paddr2 = (seg2->are_addresses_set()
3309 ? seg2->paddr()
3310 : seg2->first_section_load_address());
3311
3312 if (paddr1 != paddr2)
3313 return paddr1 < paddr2;
3314 }
3315 else if (seg2->are_addresses_set())
3316 return false;
3317
3318 // A segment which holds large data comes after a segment which does
3319 // not hold large data.
3320 if (seg1->is_large_data_segment())
3321 {
3322 if (!seg2->is_large_data_segment())
3323 return false;
3324 }
3325 else if (seg2->is_large_data_segment())
3326 return true;
3327
3328 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3329 // segments come before writable segments. Then writable segments
3330 // with data come before writable segments without data. Then
3331 // executable segments come before non-executable segments. Then
3332 // the unlikely case of a non-readable segment comes before the
3333 // normal case of a readable segment. If there are multiple
3334 // segments with the same type and flags, we require that the
3335 // address be set, and we sort by virtual address and then physical
3336 // address.
3337 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3338 return (flags1 & elfcpp::PF_W) == 0;
3339 if ((flags1 & elfcpp::PF_W) != 0
3340 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3341 return seg1->has_any_data_sections();
3342 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3343 return (flags1 & elfcpp::PF_X) != 0;
3344 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3345 return (flags1 & elfcpp::PF_R) == 0;
3346
3347 // We shouldn't get here--we shouldn't create segments which we
3348 // can't distinguish. Unless of course we are using a weird linker
3349 // script or overlapping --section-start options. We could also get
3350 // here if plugins want unique segments for subsets of sections.
3351 gold_assert(this->script_options_->saw_phdrs_clause()
3352 || parameters->options().any_section_start()
3353 || this->is_unique_segment_for_sections_specified());
3354 return false;
3355 }
3356
3357 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3358
3359 static off_t
3360 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3361 {
3362 uint64_t unsigned_off = off;
3363 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3364 | (addr & (abi_pagesize - 1)));
3365 if (aligned_off < unsigned_off)
3366 aligned_off += abi_pagesize;
3367 return aligned_off;
3368 }
3369
3370 // On targets where the text segment contains only executable code,
3371 // a non-executable segment is never the text segment.
3372
3373 static inline bool
3374 is_text_segment(const Target* target, const Output_segment* seg)
3375 {
3376 elfcpp::Elf_Xword flags = seg->flags();
3377 if ((flags & elfcpp::PF_W) != 0)
3378 return false;
3379 if ((flags & elfcpp::PF_X) == 0)
3380 return !target->isolate_execinstr();
3381 return true;
3382 }
3383
3384 // Set the file offsets of all the segments, and all the sections they
3385 // contain. They have all been created. LOAD_SEG must be be laid out
3386 // first. Return the offset of the data to follow.
3387
3388 off_t
3389 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3390 unsigned int* pshndx)
3391 {
3392 // Sort them into the final order. We use a stable sort so that we
3393 // don't randomize the order of indistinguishable segments created
3394 // by linker scripts.
3395 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3396 Layout::Compare_segments(this));
3397
3398 // Find the PT_LOAD segments, and set their addresses and offsets
3399 // and their section's addresses and offsets.
3400 uint64_t start_addr;
3401 if (parameters->options().user_set_Ttext())
3402 start_addr = parameters->options().Ttext();
3403 else if (parameters->options().output_is_position_independent())
3404 start_addr = 0;
3405 else
3406 start_addr = target->default_text_segment_address();
3407
3408 uint64_t addr = start_addr;
3409 off_t off = 0;
3410
3411 // If LOAD_SEG is NULL, then the file header and segment headers
3412 // will not be loadable. But they still need to be at offset 0 in
3413 // the file. Set their offsets now.
3414 if (load_seg == NULL)
3415 {
3416 for (Data_list::iterator p = this->special_output_list_.begin();
3417 p != this->special_output_list_.end();
3418 ++p)
3419 {
3420 off = align_address(off, (*p)->addralign());
3421 (*p)->set_address_and_file_offset(0, off);
3422 off += (*p)->data_size();
3423 }
3424 }
3425
3426 unsigned int increase_relro = this->increase_relro_;
3427 if (this->script_options_->saw_sections_clause())
3428 increase_relro = 0;
3429
3430 const bool check_sections = parameters->options().check_sections();
3431 Output_segment* last_load_segment = NULL;
3432
3433 unsigned int shndx_begin = *pshndx;
3434 unsigned int shndx_load_seg = *pshndx;
3435
3436 for (Segment_list::iterator p = this->segment_list_.begin();
3437 p != this->segment_list_.end();
3438 ++p)
3439 {
3440 if ((*p)->type() == elfcpp::PT_LOAD)
3441 {
3442 if (target->isolate_execinstr())
3443 {
3444 // When we hit the segment that should contain the
3445 // file headers, reset the file offset so we place
3446 // it and subsequent segments appropriately.
3447 // We'll fix up the preceding segments below.
3448 if (load_seg == *p)
3449 {
3450 if (off == 0)
3451 load_seg = NULL;
3452 else
3453 {
3454 off = 0;
3455 shndx_load_seg = *pshndx;
3456 }
3457 }
3458 }
3459 else
3460 {
3461 // Verify that the file headers fall into the first segment.
3462 if (load_seg != NULL && load_seg != *p)
3463 gold_unreachable();
3464 load_seg = NULL;
3465 }
3466
3467 bool are_addresses_set = (*p)->are_addresses_set();
3468 if (are_addresses_set)
3469 {
3470 // When it comes to setting file offsets, we care about
3471 // the physical address.
3472 addr = (*p)->paddr();
3473 }
3474 else if (parameters->options().user_set_Ttext()
3475 && (parameters->options().omagic()
3476 || is_text_segment(target, *p)))
3477 {
3478 are_addresses_set = true;
3479 }
3480 else if (parameters->options().user_set_Trodata_segment()
3481 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3482 {
3483 addr = parameters->options().Trodata_segment();
3484 are_addresses_set = true;
3485 }
3486 else if (parameters->options().user_set_Tdata()
3487 && ((*p)->flags() & elfcpp::PF_W) != 0
3488 && (!parameters->options().user_set_Tbss()
3489 || (*p)->has_any_data_sections()))
3490 {
3491 addr = parameters->options().Tdata();
3492 are_addresses_set = true;
3493 }
3494 else if (parameters->options().user_set_Tbss()
3495 && ((*p)->flags() & elfcpp::PF_W) != 0
3496 && !(*p)->has_any_data_sections())
3497 {
3498 addr = parameters->options().Tbss();
3499 are_addresses_set = true;
3500 }
3501
3502 uint64_t orig_addr = addr;
3503 uint64_t orig_off = off;
3504
3505 uint64_t aligned_addr = 0;
3506 uint64_t abi_pagesize = target->abi_pagesize();
3507 uint64_t common_pagesize = target->common_pagesize();
3508
3509 if (!parameters->options().nmagic()
3510 && !parameters->options().omagic())
3511 (*p)->set_minimum_p_align(abi_pagesize);
3512
3513 if (!are_addresses_set)
3514 {
3515 // Skip the address forward one page, maintaining the same
3516 // position within the page. This lets us store both segments
3517 // overlapping on a single page in the file, but the loader will
3518 // put them on different pages in memory. We will revisit this
3519 // decision once we know the size of the segment.
3520
3521 addr = align_address(addr, (*p)->maximum_alignment());
3522 aligned_addr = addr;
3523
3524 if (load_seg == *p)
3525 {
3526 // This is the segment that will contain the file
3527 // headers, so its offset will have to be exactly zero.
3528 gold_assert(orig_off == 0);
3529
3530 // If the target wants a fixed minimum distance from the
3531 // text segment to the read-only segment, move up now.
3532 uint64_t min_addr =
3533 start_addr + (parameters->options().user_set_rosegment_gap()
3534 ? parameters->options().rosegment_gap()
3535 : target->rosegment_gap());
3536 if (addr < min_addr)
3537 addr = min_addr;
3538
3539 // But this is not the first segment! To make its
3540 // address congruent with its offset, that address better
3541 // be aligned to the ABI-mandated page size.
3542 addr = align_address(addr, abi_pagesize);
3543 aligned_addr = addr;
3544 }
3545 else
3546 {
3547 if ((addr & (abi_pagesize - 1)) != 0)
3548 addr = addr + abi_pagesize;
3549
3550 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3551 }
3552 }
3553
3554 if (!parameters->options().nmagic()
3555 && !parameters->options().omagic())
3556 {
3557 // Here we are also taking care of the case when
3558 // the maximum segment alignment is larger than the page size.
3559 off = align_file_offset(off, addr,
3560 std::max(abi_pagesize,
3561 (*p)->maximum_alignment()));
3562 }
3563 else
3564 {
3565 // This is -N or -n with a section script which prevents
3566 // us from using a load segment. We need to ensure that
3567 // the file offset is aligned to the alignment of the
3568 // segment. This is because the linker script
3569 // implicitly assumed a zero offset. If we don't align
3570 // here, then the alignment of the sections in the
3571 // linker script may not match the alignment of the
3572 // sections in the set_section_addresses call below,
3573 // causing an error about dot moving backward.
3574 off = align_address(off, (*p)->maximum_alignment());
3575 }
3576
3577 unsigned int shndx_hold = *pshndx;
3578 bool has_relro = false;
3579 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3580 false, addr,
3581 &increase_relro,
3582 &has_relro,
3583 &off, pshndx);
3584
3585 // Now that we know the size of this segment, we may be able
3586 // to save a page in memory, at the cost of wasting some
3587 // file space, by instead aligning to the start of a new
3588 // page. Here we use the real machine page size rather than
3589 // the ABI mandated page size. If the segment has been
3590 // aligned so that the relro data ends at a page boundary,
3591 // we do not try to realign it.
3592
3593 if (!are_addresses_set
3594 && !has_relro
3595 && aligned_addr != addr
3596 && !parameters->incremental())
3597 {
3598 uint64_t first_off = (common_pagesize
3599 - (aligned_addr
3600 & (common_pagesize - 1)));
3601 uint64_t last_off = new_addr & (common_pagesize - 1);
3602 if (first_off > 0
3603 && last_off > 0
3604 && ((aligned_addr & ~ (common_pagesize - 1))
3605 != (new_addr & ~ (common_pagesize - 1)))
3606 && first_off + last_off <= common_pagesize)
3607 {
3608 *pshndx = shndx_hold;
3609 addr = align_address(aligned_addr, common_pagesize);
3610 addr = align_address(addr, (*p)->maximum_alignment());
3611 if ((addr & (abi_pagesize - 1)) != 0)
3612 addr = addr + abi_pagesize;
3613 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3614 off = align_file_offset(off, addr, abi_pagesize);
3615
3616 increase_relro = this->increase_relro_;
3617 if (this->script_options_->saw_sections_clause())
3618 increase_relro = 0;
3619 has_relro = false;
3620
3621 new_addr = (*p)->set_section_addresses(target, this,
3622 true, addr,
3623 &increase_relro,
3624 &has_relro,
3625 &off, pshndx);
3626 }
3627 }
3628
3629 addr = new_addr;
3630
3631 // Implement --check-sections. We know that the segments
3632 // are sorted by LMA.
3633 if (check_sections && last_load_segment != NULL)
3634 {
3635 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3636 if (last_load_segment->paddr() + last_load_segment->memsz()
3637 > (*p)->paddr())
3638 {
3639 unsigned long long lb1 = last_load_segment->paddr();
3640 unsigned long long le1 = lb1 + last_load_segment->memsz();
3641 unsigned long long lb2 = (*p)->paddr();
3642 unsigned long long le2 = lb2 + (*p)->memsz();
3643 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3644 "[0x%llx -> 0x%llx]"),
3645 lb1, le1, lb2, le2);
3646 }
3647 }
3648 last_load_segment = *p;
3649 }
3650 }
3651
3652 if (load_seg != NULL && target->isolate_execinstr())
3653 {
3654 // Process the early segments again, setting their file offsets
3655 // so they land after the segments starting at LOAD_SEG.
3656 off = align_file_offset(off, 0, target->abi_pagesize());
3657
3658 this->reset_relax_output();
3659
3660 for (Segment_list::iterator p = this->segment_list_.begin();
3661 *p != load_seg;
3662 ++p)
3663 {
3664 if ((*p)->type() == elfcpp::PT_LOAD)
3665 {
3666 // We repeat the whole job of assigning addresses and
3667 // offsets, but we really only want to change the offsets and
3668 // must ensure that the addresses all come out the same as
3669 // they did the first time through.
3670 bool has_relro = false;
3671 const uint64_t old_addr = (*p)->vaddr();
3672 const uint64_t old_end = old_addr + (*p)->memsz();
3673 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3674 true, old_addr,
3675 &increase_relro,
3676 &has_relro,
3677 &off,
3678 &shndx_begin);
3679 gold_assert(new_addr == old_end);
3680 }
3681 }
3682
3683 gold_assert(shndx_begin == shndx_load_seg);
3684 }
3685
3686 // Handle the non-PT_LOAD segments, setting their offsets from their
3687 // section's offsets.
3688 for (Segment_list::iterator p = this->segment_list_.begin();
3689 p != this->segment_list_.end();
3690 ++p)
3691 {
3692 if ((*p)->type() != elfcpp::PT_LOAD)
3693 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3694 ? increase_relro
3695 : 0);
3696 }
3697
3698 // Set the TLS offsets for each section in the PT_TLS segment.
3699 if (this->tls_segment_ != NULL)
3700 this->tls_segment_->set_tls_offsets();
3701
3702 return off;
3703 }
3704
3705 // Set the offsets of all the allocated sections when doing a
3706 // relocatable link. This does the same jobs as set_segment_offsets,
3707 // only for a relocatable link.
3708
3709 off_t
3710 Layout::set_relocatable_section_offsets(Output_data* file_header,
3711 unsigned int* pshndx)
3712 {
3713 off_t off = 0;
3714
3715 file_header->set_address_and_file_offset(0, 0);
3716 off += file_header->data_size();
3717
3718 for (Section_list::iterator p = this->section_list_.begin();
3719 p != this->section_list_.end();
3720 ++p)
3721 {
3722 // We skip unallocated sections here, except that group sections
3723 // have to come first.
3724 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3725 && (*p)->type() != elfcpp::SHT_GROUP)
3726 continue;
3727
3728 off = align_address(off, (*p)->addralign());
3729
3730 // The linker script might have set the address.
3731 if (!(*p)->is_address_valid())
3732 (*p)->set_address(0);
3733 (*p)->set_file_offset(off);
3734 (*p)->finalize_data_size();
3735 if ((*p)->type() != elfcpp::SHT_NOBITS)
3736 off += (*p)->data_size();
3737
3738 (*p)->set_out_shndx(*pshndx);
3739 ++*pshndx;
3740 }
3741
3742 return off;
3743 }
3744
3745 // Set the file offset of all the sections not associated with a
3746 // segment.
3747
3748 off_t
3749 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3750 {
3751 off_t startoff = off;
3752 off_t maxoff = off;
3753
3754 for (Section_list::iterator p = this->unattached_section_list_.begin();
3755 p != this->unattached_section_list_.end();
3756 ++p)
3757 {
3758 // The symtab section is handled in create_symtab_sections.
3759 if (*p == this->symtab_section_)
3760 continue;
3761
3762 // If we've already set the data size, don't set it again.
3763 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3764 continue;
3765
3766 if (pass == BEFORE_INPUT_SECTIONS_PASS
3767 && (*p)->requires_postprocessing())
3768 {
3769 (*p)->create_postprocessing_buffer();
3770 this->any_postprocessing_sections_ = true;
3771 }
3772
3773 if (pass == BEFORE_INPUT_SECTIONS_PASS
3774 && (*p)->after_input_sections())
3775 continue;
3776 else if (pass == POSTPROCESSING_SECTIONS_PASS
3777 && (!(*p)->after_input_sections()
3778 || (*p)->type() == elfcpp::SHT_STRTAB))
3779 continue;
3780 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3781 && (!(*p)->after_input_sections()
3782 || (*p)->type() != elfcpp::SHT_STRTAB))
3783 continue;
3784
3785 if (!parameters->incremental_update())
3786 {
3787 off = align_address(off, (*p)->addralign());
3788 (*p)->set_file_offset(off);
3789 (*p)->finalize_data_size();
3790 }
3791 else
3792 {
3793 // Incremental update: allocate file space from free list.
3794 (*p)->pre_finalize_data_size();
3795 off_t current_size = (*p)->current_data_size();
3796 off = this->allocate(current_size, (*p)->addralign(), startoff);
3797 if (off == -1)
3798 {
3799 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3800 this->free_list_.dump();
3801 gold_assert((*p)->output_section() != NULL);
3802 gold_fallback(_("out of patch space for section %s; "
3803 "relink with --incremental-full"),
3804 (*p)->output_section()->name());
3805 }
3806 (*p)->set_file_offset(off);
3807 (*p)->finalize_data_size();
3808 if ((*p)->data_size() > current_size)
3809 {
3810 gold_assert((*p)->output_section() != NULL);
3811 gold_fallback(_("%s: section changed size; "
3812 "relink with --incremental-full"),
3813 (*p)->output_section()->name());
3814 }
3815 gold_debug(DEBUG_INCREMENTAL,
3816 "set_section_offsets: %08lx %08lx %s",
3817 static_cast<long>(off),
3818 static_cast<long>((*p)->data_size()),
3819 ((*p)->output_section() != NULL
3820 ? (*p)->output_section()->name() : "(special)"));
3821 }
3822
3823 off += (*p)->data_size();
3824 if (off > maxoff)
3825 maxoff = off;
3826
3827 // At this point the name must be set.
3828 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3829 this->namepool_.add((*p)->name(), false, NULL);
3830 }
3831 return maxoff;
3832 }
3833
3834 // Set the section indexes of all the sections not associated with a
3835 // segment.
3836
3837 unsigned int
3838 Layout::set_section_indexes(unsigned int shndx)
3839 {
3840 for (Section_list::iterator p = this->unattached_section_list_.begin();
3841 p != this->unattached_section_list_.end();
3842 ++p)
3843 {
3844 if (!(*p)->has_out_shndx())
3845 {
3846 (*p)->set_out_shndx(shndx);
3847 ++shndx;
3848 }
3849 }
3850 return shndx;
3851 }
3852
3853 // Set the section addresses according to the linker script. This is
3854 // only called when we see a SECTIONS clause. This returns the
3855 // program segment which should hold the file header and segment
3856 // headers, if any. It will return NULL if they should not be in a
3857 // segment.
3858
3859 Output_segment*
3860 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3861 {
3862 Script_sections* ss = this->script_options_->script_sections();
3863 gold_assert(ss->saw_sections_clause());
3864 return this->script_options_->set_section_addresses(symtab, this);
3865 }
3866
3867 // Place the orphan sections in the linker script.
3868
3869 void
3870 Layout::place_orphan_sections_in_script()
3871 {
3872 Script_sections* ss = this->script_options_->script_sections();
3873 gold_assert(ss->saw_sections_clause());
3874
3875 // Place each orphaned output section in the script.
3876 for (Section_list::iterator p = this->section_list_.begin();
3877 p != this->section_list_.end();
3878 ++p)
3879 {
3880 if (!(*p)->found_in_sections_clause())
3881 ss->place_orphan(*p);
3882 }
3883 }
3884
3885 // Count the local symbols in the regular symbol table and the dynamic
3886 // symbol table, and build the respective string pools.
3887
3888 void
3889 Layout::count_local_symbols(const Task* task,
3890 const Input_objects* input_objects)
3891 {
3892 // First, figure out an upper bound on the number of symbols we'll
3893 // be inserting into each pool. This helps us create the pools with
3894 // the right size, to avoid unnecessary hashtable resizing.
3895 unsigned int symbol_count = 0;
3896 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3897 p != input_objects->relobj_end();
3898 ++p)
3899 symbol_count += (*p)->local_symbol_count();
3900
3901 // Go from "upper bound" to "estimate." We overcount for two
3902 // reasons: we double-count symbols that occur in more than one
3903 // object file, and we count symbols that are dropped from the
3904 // output. Add it all together and assume we overcount by 100%.
3905 symbol_count /= 2;
3906
3907 // We assume all symbols will go into both the sympool and dynpool.
3908 this->sympool_.reserve(symbol_count);
3909 this->dynpool_.reserve(symbol_count);
3910
3911 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3912 p != input_objects->relobj_end();
3913 ++p)
3914 {
3915 Task_lock_obj<Object> tlo(task, *p);
3916 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3917 }
3918 }
3919
3920 // Create the symbol table sections. Here we also set the final
3921 // values of the symbols. At this point all the loadable sections are
3922 // fully laid out. SHNUM is the number of sections so far.
3923
3924 void
3925 Layout::create_symtab_sections(const Input_objects* input_objects,
3926 Symbol_table* symtab,
3927 unsigned int shnum,
3928 off_t* poff)
3929 {
3930 int symsize;
3931 unsigned int align;
3932 if (parameters->target().get_size() == 32)
3933 {
3934 symsize = elfcpp::Elf_sizes<32>::sym_size;
3935 align = 4;
3936 }
3937 else if (parameters->target().get_size() == 64)
3938 {
3939 symsize = elfcpp::Elf_sizes<64>::sym_size;
3940 align = 8;
3941 }
3942 else
3943 gold_unreachable();
3944
3945 // Compute file offsets relative to the start of the symtab section.
3946 off_t off = 0;
3947
3948 // Save space for the dummy symbol at the start of the section. We
3949 // never bother to write this out--it will just be left as zero.
3950 off += symsize;
3951 unsigned int local_symbol_index = 1;
3952
3953 // Add STT_SECTION symbols for each Output section which needs one.
3954 for (Section_list::iterator p = this->section_list_.begin();
3955 p != this->section_list_.end();
3956 ++p)
3957 {
3958 if (!(*p)->needs_symtab_index())
3959 (*p)->set_symtab_index(-1U);
3960 else
3961 {
3962 (*p)->set_symtab_index(local_symbol_index);
3963 ++local_symbol_index;
3964 off += symsize;
3965 }
3966 }
3967
3968 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3969 p != input_objects->relobj_end();
3970 ++p)
3971 {
3972 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3973 off, symtab);
3974 off += (index - local_symbol_index) * symsize;
3975 local_symbol_index = index;
3976 }
3977
3978 unsigned int local_symcount = local_symbol_index;
3979 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3980
3981 off_t dynoff;
3982 size_t dyn_global_index;
3983 size_t dyncount;
3984 if (this->dynsym_section_ == NULL)
3985 {
3986 dynoff = 0;
3987 dyn_global_index = 0;
3988 dyncount = 0;
3989 }
3990 else
3991 {
3992 dyn_global_index = this->dynsym_section_->info();
3993 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3994 dynoff = this->dynsym_section_->offset() + locsize;
3995 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3996 gold_assert(static_cast<off_t>(dyncount * symsize)
3997 == this->dynsym_section_->data_size() - locsize);
3998 }
3999
4000 off_t global_off = off;
4001 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4002 &this->sympool_, &local_symcount);
4003
4004 if (!parameters->options().strip_all())
4005 {
4006 this->sympool_.set_string_offsets();
4007
4008 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4009 Output_section* osymtab = this->make_output_section(symtab_name,
4010 elfcpp::SHT_SYMTAB,
4011 0, ORDER_INVALID,
4012 false);
4013 this->symtab_section_ = osymtab;
4014
4015 Output_section_data* pos = new Output_data_fixed_space(off, align,
4016 "** symtab");
4017 osymtab->add_output_section_data(pos);
4018
4019 // We generate a .symtab_shndx section if we have more than
4020 // SHN_LORESERVE sections. Technically it is possible that we
4021 // don't need one, because it is possible that there are no
4022 // symbols in any of sections with indexes larger than
4023 // SHN_LORESERVE. That is probably unusual, though, and it is
4024 // easier to always create one than to compute section indexes
4025 // twice (once here, once when writing out the symbols).
4026 if (shnum >= elfcpp::SHN_LORESERVE)
4027 {
4028 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4029 false, NULL);
4030 Output_section* osymtab_xindex =
4031 this->make_output_section(symtab_xindex_name,
4032 elfcpp::SHT_SYMTAB_SHNDX, 0,
4033 ORDER_INVALID, false);
4034
4035 size_t symcount = off / symsize;
4036 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4037
4038 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4039
4040 osymtab_xindex->set_link_section(osymtab);
4041 osymtab_xindex->set_addralign(4);
4042 osymtab_xindex->set_entsize(4);
4043
4044 osymtab_xindex->set_after_input_sections();
4045
4046 // This tells the driver code to wait until the symbol table
4047 // has written out before writing out the postprocessing
4048 // sections, including the .symtab_shndx section.
4049 this->any_postprocessing_sections_ = true;
4050 }
4051
4052 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4053 Output_section* ostrtab = this->make_output_section(strtab_name,
4054 elfcpp::SHT_STRTAB,
4055 0, ORDER_INVALID,
4056 false);
4057
4058 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4059 ostrtab->add_output_section_data(pstr);
4060
4061 off_t symtab_off;
4062 if (!parameters->incremental_update())
4063 symtab_off = align_address(*poff, align);
4064 else
4065 {
4066 symtab_off = this->allocate(off, align, *poff);
4067 if (off == -1)
4068 gold_fallback(_("out of patch space for symbol table; "
4069 "relink with --incremental-full"));
4070 gold_debug(DEBUG_INCREMENTAL,
4071 "create_symtab_sections: %08lx %08lx .symtab",
4072 static_cast<long>(symtab_off),
4073 static_cast<long>(off));
4074 }
4075
4076 symtab->set_file_offset(symtab_off + global_off);
4077 osymtab->set_file_offset(symtab_off);
4078 osymtab->finalize_data_size();
4079 osymtab->set_link_section(ostrtab);
4080 osymtab->set_info(local_symcount);
4081 osymtab->set_entsize(symsize);
4082
4083 if (symtab_off + off > *poff)
4084 *poff = symtab_off + off;
4085 }
4086 }
4087
4088 // Create the .shstrtab section, which holds the names of the
4089 // sections. At the time this is called, we have created all the
4090 // output sections except .shstrtab itself.
4091
4092 Output_section*
4093 Layout::create_shstrtab()
4094 {
4095 // FIXME: We don't need to create a .shstrtab section if we are
4096 // stripping everything.
4097
4098 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4099
4100 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4101 ORDER_INVALID, false);
4102
4103 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4104 {
4105 // We can't write out this section until we've set all the
4106 // section names, and we don't set the names of compressed
4107 // output sections until relocations are complete. FIXME: With
4108 // the current names we use, this is unnecessary.
4109 os->set_after_input_sections();
4110 }
4111
4112 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4113 os->add_output_section_data(posd);
4114
4115 return os;
4116 }
4117
4118 // Create the section headers. SIZE is 32 or 64. OFF is the file
4119 // offset.
4120
4121 void
4122 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4123 {
4124 Output_section_headers* oshdrs;
4125 oshdrs = new Output_section_headers(this,
4126 &this->segment_list_,
4127 &this->section_list_,
4128 &this->unattached_section_list_,
4129 &this->namepool_,
4130 shstrtab_section);
4131 off_t off;
4132 if (!parameters->incremental_update())
4133 off = align_address(*poff, oshdrs->addralign());
4134 else
4135 {
4136 oshdrs->pre_finalize_data_size();
4137 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4138 if (off == -1)
4139 gold_fallback(_("out of patch space for section header table; "
4140 "relink with --incremental-full"));
4141 gold_debug(DEBUG_INCREMENTAL,
4142 "create_shdrs: %08lx %08lx (section header table)",
4143 static_cast<long>(off),
4144 static_cast<long>(off + oshdrs->data_size()));
4145 }
4146 oshdrs->set_address_and_file_offset(0, off);
4147 off += oshdrs->data_size();
4148 if (off > *poff)
4149 *poff = off;
4150 this->section_headers_ = oshdrs;
4151 }
4152
4153 // Count the allocated sections.
4154
4155 size_t
4156 Layout::allocated_output_section_count() const
4157 {
4158 size_t section_count = 0;
4159 for (Segment_list::const_iterator p = this->segment_list_.begin();
4160 p != this->segment_list_.end();
4161 ++p)
4162 section_count += (*p)->output_section_count();
4163 return section_count;
4164 }
4165
4166 // Create the dynamic symbol table.
4167
4168 void
4169 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4170 Symbol_table* symtab,
4171 Output_section** pdynstr,
4172 unsigned int* plocal_dynamic_count,
4173 std::vector<Symbol*>* pdynamic_symbols,
4174 Versions* pversions)
4175 {
4176 // Count all the symbols in the dynamic symbol table, and set the
4177 // dynamic symbol indexes.
4178
4179 // Skip symbol 0, which is always all zeroes.
4180 unsigned int index = 1;
4181
4182 // Add STT_SECTION symbols for each Output section which needs one.
4183 for (Section_list::iterator p = this->section_list_.begin();
4184 p != this->section_list_.end();
4185 ++p)
4186 {
4187 if (!(*p)->needs_dynsym_index())
4188 (*p)->set_dynsym_index(-1U);
4189 else
4190 {
4191 (*p)->set_dynsym_index(index);
4192 ++index;
4193 }
4194 }
4195
4196 // Count the local symbols that need to go in the dynamic symbol table,
4197 // and set the dynamic symbol indexes.
4198 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4199 p != input_objects->relobj_end();
4200 ++p)
4201 {
4202 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4203 index = new_index;
4204 }
4205
4206 unsigned int local_symcount = index;
4207 *plocal_dynamic_count = local_symcount;
4208
4209 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4210 &this->dynpool_, pversions);
4211
4212 int symsize;
4213 unsigned int align;
4214 const int size = parameters->target().get_size();
4215 if (size == 32)
4216 {
4217 symsize = elfcpp::Elf_sizes<32>::sym_size;
4218 align = 4;
4219 }
4220 else if (size == 64)
4221 {
4222 symsize = elfcpp::Elf_sizes<64>::sym_size;
4223 align = 8;
4224 }
4225 else
4226 gold_unreachable();
4227
4228 // Create the dynamic symbol table section.
4229
4230 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4231 elfcpp::SHT_DYNSYM,
4232 elfcpp::SHF_ALLOC,
4233 false,
4234 ORDER_DYNAMIC_LINKER,
4235 false);
4236
4237 // Check for NULL as a linker script may discard .dynsym.
4238 if (dynsym != NULL)
4239 {
4240 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4241 align,
4242 "** dynsym");
4243 dynsym->add_output_section_data(odata);
4244
4245 dynsym->set_info(local_symcount);
4246 dynsym->set_entsize(symsize);
4247 dynsym->set_addralign(align);
4248
4249 this->dynsym_section_ = dynsym;
4250 }
4251
4252 Output_data_dynamic* const odyn = this->dynamic_data_;
4253 if (odyn != NULL)
4254 {
4255 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4256 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4257 }
4258
4259 // If there are more than SHN_LORESERVE allocated sections, we
4260 // create a .dynsym_shndx section. It is possible that we don't
4261 // need one, because it is possible that there are no dynamic
4262 // symbols in any of the sections with indexes larger than
4263 // SHN_LORESERVE. This is probably unusual, though, and at this
4264 // time we don't know the actual section indexes so it is
4265 // inconvenient to check.
4266 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4267 {
4268 Output_section* dynsym_xindex =
4269 this->choose_output_section(NULL, ".dynsym_shndx",
4270 elfcpp::SHT_SYMTAB_SHNDX,
4271 elfcpp::SHF_ALLOC,
4272 false, ORDER_DYNAMIC_LINKER, false);
4273
4274 if (dynsym_xindex != NULL)
4275 {
4276 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4277
4278 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4279
4280 dynsym_xindex->set_link_section(dynsym);
4281 dynsym_xindex->set_addralign(4);
4282 dynsym_xindex->set_entsize(4);
4283
4284 dynsym_xindex->set_after_input_sections();
4285
4286 // This tells the driver code to wait until the symbol table
4287 // has written out before writing out the postprocessing
4288 // sections, including the .dynsym_shndx section.
4289 this->any_postprocessing_sections_ = true;
4290 }
4291 }
4292
4293 // Create the dynamic string table section.
4294
4295 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4296 elfcpp::SHT_STRTAB,
4297 elfcpp::SHF_ALLOC,
4298 false,
4299 ORDER_DYNAMIC_LINKER,
4300 false);
4301 *pdynstr = dynstr;
4302 if (dynstr != NULL)
4303 {
4304 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4305 dynstr->add_output_section_data(strdata);
4306
4307 if (dynsym != NULL)
4308 dynsym->set_link_section(dynstr);
4309 if (this->dynamic_section_ != NULL)
4310 this->dynamic_section_->set_link_section(dynstr);
4311
4312 if (odyn != NULL)
4313 {
4314 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4315 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4316 }
4317 }
4318
4319 // Create the hash tables. The Gnu-style hash table must be
4320 // built first, because it changes the order of the symbols
4321 // in the dynamic symbol table.
4322
4323 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4324 || strcmp(parameters->options().hash_style(), "both") == 0)
4325 {
4326 unsigned char* phash;
4327 unsigned int hashlen;
4328 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4329 &phash, &hashlen);
4330
4331 Output_section* hashsec =
4332 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4333 elfcpp::SHF_ALLOC, false,
4334 ORDER_DYNAMIC_LINKER, false);
4335
4336 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4337 hashlen,
4338 align,
4339 "** hash");
4340 if (hashsec != NULL && hashdata != NULL)
4341 hashsec->add_output_section_data(hashdata);
4342
4343 if (hashsec != NULL)
4344 {
4345 if (dynsym != NULL)
4346 hashsec->set_link_section(dynsym);
4347
4348 // For a 64-bit target, the entries in .gnu.hash do not have
4349 // a uniform size, so we only set the entry size for a
4350 // 32-bit target.
4351 if (parameters->target().get_size() == 32)
4352 hashsec->set_entsize(4);
4353
4354 if (odyn != NULL)
4355 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4356 }
4357 }
4358
4359 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4360 || strcmp(parameters->options().hash_style(), "both") == 0)
4361 {
4362 unsigned char* phash;
4363 unsigned int hashlen;
4364 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4365 &phash, &hashlen);
4366
4367 Output_section* hashsec =
4368 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4369 elfcpp::SHF_ALLOC, false,
4370 ORDER_DYNAMIC_LINKER, false);
4371
4372 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4373 hashlen,
4374 align,
4375 "** hash");
4376 if (hashsec != NULL && hashdata != NULL)
4377 hashsec->add_output_section_data(hashdata);
4378
4379 if (hashsec != NULL)
4380 {
4381 if (dynsym != NULL)
4382 hashsec->set_link_section(dynsym);
4383 hashsec->set_entsize(4);
4384 }
4385
4386 if (odyn != NULL)
4387 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4388 }
4389 }
4390
4391 // Assign offsets to each local portion of the dynamic symbol table.
4392
4393 void
4394 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4395 {
4396 Output_section* dynsym = this->dynsym_section_;
4397 if (dynsym == NULL)
4398 return;
4399
4400 off_t off = dynsym->offset();
4401
4402 // Skip the dummy symbol at the start of the section.
4403 off += dynsym->entsize();
4404
4405 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4406 p != input_objects->relobj_end();
4407 ++p)
4408 {
4409 unsigned int count = (*p)->set_local_dynsym_offset(off);
4410 off += count * dynsym->entsize();
4411 }
4412 }
4413
4414 // Create the version sections.
4415
4416 void
4417 Layout::create_version_sections(const Versions* versions,
4418 const Symbol_table* symtab,
4419 unsigned int local_symcount,
4420 const std::vector<Symbol*>& dynamic_symbols,
4421 const Output_section* dynstr)
4422 {
4423 if (!versions->any_defs() && !versions->any_needs())
4424 return;
4425
4426 switch (parameters->size_and_endianness())
4427 {
4428 #ifdef HAVE_TARGET_32_LITTLE
4429 case Parameters::TARGET_32_LITTLE:
4430 this->sized_create_version_sections<32, false>(versions, symtab,
4431 local_symcount,
4432 dynamic_symbols, dynstr);
4433 break;
4434 #endif
4435 #ifdef HAVE_TARGET_32_BIG
4436 case Parameters::TARGET_32_BIG:
4437 this->sized_create_version_sections<32, true>(versions, symtab,
4438 local_symcount,
4439 dynamic_symbols, dynstr);
4440 break;
4441 #endif
4442 #ifdef HAVE_TARGET_64_LITTLE
4443 case Parameters::TARGET_64_LITTLE:
4444 this->sized_create_version_sections<64, false>(versions, symtab,
4445 local_symcount,
4446 dynamic_symbols, dynstr);
4447 break;
4448 #endif
4449 #ifdef HAVE_TARGET_64_BIG
4450 case Parameters::TARGET_64_BIG:
4451 this->sized_create_version_sections<64, true>(versions, symtab,
4452 local_symcount,
4453 dynamic_symbols, dynstr);
4454 break;
4455 #endif
4456 default:
4457 gold_unreachable();
4458 }
4459 }
4460
4461 // Create the version sections, sized version.
4462
4463 template<int size, bool big_endian>
4464 void
4465 Layout::sized_create_version_sections(
4466 const Versions* versions,
4467 const Symbol_table* symtab,
4468 unsigned int local_symcount,
4469 const std::vector<Symbol*>& dynamic_symbols,
4470 const Output_section* dynstr)
4471 {
4472 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4473 elfcpp::SHT_GNU_versym,
4474 elfcpp::SHF_ALLOC,
4475 false,
4476 ORDER_DYNAMIC_LINKER,
4477 false);
4478
4479 // Check for NULL since a linker script may discard this section.
4480 if (vsec != NULL)
4481 {
4482 unsigned char* vbuf;
4483 unsigned int vsize;
4484 versions->symbol_section_contents<size, big_endian>(symtab,
4485 &this->dynpool_,
4486 local_symcount,
4487 dynamic_symbols,
4488 &vbuf, &vsize);
4489
4490 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4491 "** versions");
4492
4493 vsec->add_output_section_data(vdata);
4494 vsec->set_entsize(2);
4495 vsec->set_link_section(this->dynsym_section_);
4496 }
4497
4498 Output_data_dynamic* const odyn = this->dynamic_data_;
4499 if (odyn != NULL && vsec != NULL)
4500 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4501
4502 if (versions->any_defs())
4503 {
4504 Output_section* vdsec;
4505 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4506 elfcpp::SHT_GNU_verdef,
4507 elfcpp::SHF_ALLOC,
4508 false, ORDER_DYNAMIC_LINKER, false);
4509
4510 if (vdsec != NULL)
4511 {
4512 unsigned char* vdbuf;
4513 unsigned int vdsize;
4514 unsigned int vdentries;
4515 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4516 &vdbuf, &vdsize,
4517 &vdentries);
4518
4519 Output_section_data* vddata =
4520 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4521
4522 vdsec->add_output_section_data(vddata);
4523 vdsec->set_link_section(dynstr);
4524 vdsec->set_info(vdentries);
4525
4526 if (odyn != NULL)
4527 {
4528 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4529 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4530 }
4531 }
4532 }
4533
4534 if (versions->any_needs())
4535 {
4536 Output_section* vnsec;
4537 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4538 elfcpp::SHT_GNU_verneed,
4539 elfcpp::SHF_ALLOC,
4540 false, ORDER_DYNAMIC_LINKER, false);
4541
4542 if (vnsec != NULL)
4543 {
4544 unsigned char* vnbuf;
4545 unsigned int vnsize;
4546 unsigned int vnentries;
4547 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4548 &vnbuf, &vnsize,
4549 &vnentries);
4550
4551 Output_section_data* vndata =
4552 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4553
4554 vnsec->add_output_section_data(vndata);
4555 vnsec->set_link_section(dynstr);
4556 vnsec->set_info(vnentries);
4557
4558 if (odyn != NULL)
4559 {
4560 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4561 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4562 }
4563 }
4564 }
4565 }
4566
4567 // Create the .interp section and PT_INTERP segment.
4568
4569 void
4570 Layout::create_interp(const Target* target)
4571 {
4572 gold_assert(this->interp_segment_ == NULL);
4573
4574 const char* interp = parameters->options().dynamic_linker();
4575 if (interp == NULL)
4576 {
4577 interp = target->dynamic_linker();
4578 gold_assert(interp != NULL);
4579 }
4580
4581 size_t len = strlen(interp) + 1;
4582
4583 Output_section_data* odata = new Output_data_const(interp, len, 1);
4584
4585 Output_section* osec = this->choose_output_section(NULL, ".interp",
4586 elfcpp::SHT_PROGBITS,
4587 elfcpp::SHF_ALLOC,
4588 false, ORDER_INTERP,
4589 false);
4590 if (osec != NULL)
4591 osec->add_output_section_data(odata);
4592 }
4593
4594 // Add dynamic tags for the PLT and the dynamic relocs. This is
4595 // called by the target-specific code. This does nothing if not doing
4596 // a dynamic link.
4597
4598 // USE_REL is true for REL relocs rather than RELA relocs.
4599
4600 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4601
4602 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4603 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4604 // some targets have multiple reloc sections in PLT_REL.
4605
4606 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4607 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4608 // section.
4609
4610 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4611 // executable.
4612
4613 void
4614 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4615 const Output_data* plt_rel,
4616 const Output_data_reloc_generic* dyn_rel,
4617 bool add_debug, bool dynrel_includes_plt)
4618 {
4619 Output_data_dynamic* odyn = this->dynamic_data_;
4620 if (odyn == NULL)
4621 return;
4622
4623 if (plt_got != NULL && plt_got->output_section() != NULL)
4624 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4625
4626 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4627 {
4628 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4629 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4630 odyn->add_constant(elfcpp::DT_PLTREL,
4631 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4632 }
4633
4634 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4635 || (dynrel_includes_plt
4636 && plt_rel != NULL
4637 && plt_rel->output_section() != NULL))
4638 {
4639 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4640 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4641 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4642 (have_dyn_rel
4643 ? dyn_rel->output_section()
4644 : plt_rel->output_section()));
4645 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4646 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4647 odyn->add_section_size(size_tag,
4648 dyn_rel->output_section(),
4649 plt_rel->output_section());
4650 else if (have_dyn_rel)
4651 odyn->add_section_size(size_tag, dyn_rel->output_section());
4652 else
4653 odyn->add_section_size(size_tag, plt_rel->output_section());
4654 const int size = parameters->target().get_size();
4655 elfcpp::DT rel_tag;
4656 int rel_size;
4657 if (use_rel)
4658 {
4659 rel_tag = elfcpp::DT_RELENT;
4660 if (size == 32)
4661 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4662 else if (size == 64)
4663 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4664 else
4665 gold_unreachable();
4666 }
4667 else
4668 {
4669 rel_tag = elfcpp::DT_RELAENT;
4670 if (size == 32)
4671 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4672 else if (size == 64)
4673 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4674 else
4675 gold_unreachable();
4676 }
4677 odyn->add_constant(rel_tag, rel_size);
4678
4679 if (parameters->options().combreloc() && have_dyn_rel)
4680 {
4681 size_t c = dyn_rel->relative_reloc_count();
4682 if (c > 0)
4683 odyn->add_constant((use_rel
4684 ? elfcpp::DT_RELCOUNT
4685 : elfcpp::DT_RELACOUNT),
4686 c);
4687 }
4688 }
4689
4690 if (add_debug && !parameters->options().shared())
4691 {
4692 // The value of the DT_DEBUG tag is filled in by the dynamic
4693 // linker at run time, and used by the debugger.
4694 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4695 }
4696 }
4697
4698 // Finish the .dynamic section and PT_DYNAMIC segment.
4699
4700 void
4701 Layout::finish_dynamic_section(const Input_objects* input_objects,
4702 const Symbol_table* symtab)
4703 {
4704 if (!this->script_options_->saw_phdrs_clause()
4705 && this->dynamic_section_ != NULL)
4706 {
4707 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4708 (elfcpp::PF_R
4709 | elfcpp::PF_W));
4710 oseg->add_output_section_to_nonload(this->dynamic_section_,
4711 elfcpp::PF_R | elfcpp::PF_W);
4712 }
4713
4714 Output_data_dynamic* const odyn = this->dynamic_data_;
4715 if (odyn == NULL)
4716 return;
4717
4718 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4719 p != input_objects->dynobj_end();
4720 ++p)
4721 {
4722 if (!(*p)->is_needed() && (*p)->as_needed())
4723 {
4724 // This dynamic object was linked with --as-needed, but it
4725 // is not needed.
4726 continue;
4727 }
4728
4729 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4730 }
4731
4732 if (parameters->options().shared())
4733 {
4734 const char* soname = parameters->options().soname();
4735 if (soname != NULL)
4736 odyn->add_string(elfcpp::DT_SONAME, soname);
4737 }
4738
4739 Symbol* sym = symtab->lookup(parameters->options().init());
4740 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4741 odyn->add_symbol(elfcpp::DT_INIT, sym);
4742
4743 sym = symtab->lookup(parameters->options().fini());
4744 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4745 odyn->add_symbol(elfcpp::DT_FINI, sym);
4746
4747 // Look for .init_array, .preinit_array and .fini_array by checking
4748 // section types.
4749 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4750 p != this->section_list_.end();
4751 ++p)
4752 switch((*p)->type())
4753 {
4754 case elfcpp::SHT_FINI_ARRAY:
4755 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4756 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4757 break;
4758 case elfcpp::SHT_INIT_ARRAY:
4759 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4760 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4761 break;
4762 case elfcpp::SHT_PREINIT_ARRAY:
4763 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4764 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4765 break;
4766 default:
4767 break;
4768 }
4769
4770 // Add a DT_RPATH entry if needed.
4771 const General_options::Dir_list& rpath(parameters->options().rpath());
4772 if (!rpath.empty())
4773 {
4774 std::string rpath_val;
4775 for (General_options::Dir_list::const_iterator p = rpath.begin();
4776 p != rpath.end();
4777 ++p)
4778 {
4779 if (rpath_val.empty())
4780 rpath_val = p->name();
4781 else
4782 {
4783 // Eliminate duplicates.
4784 General_options::Dir_list::const_iterator q;
4785 for (q = rpath.begin(); q != p; ++q)
4786 if (q->name() == p->name())
4787 break;
4788 if (q == p)
4789 {
4790 rpath_val += ':';
4791 rpath_val += p->name();
4792 }
4793 }
4794 }
4795
4796 if (!parameters->options().enable_new_dtags())
4797 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4798 else
4799 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4800 }
4801
4802 // Look for text segments that have dynamic relocations.
4803 bool have_textrel = false;
4804 if (!this->script_options_->saw_sections_clause())
4805 {
4806 for (Segment_list::const_iterator p = this->segment_list_.begin();
4807 p != this->segment_list_.end();
4808 ++p)
4809 {
4810 if ((*p)->type() == elfcpp::PT_LOAD
4811 && ((*p)->flags() & elfcpp::PF_W) == 0
4812 && (*p)->has_dynamic_reloc())
4813 {
4814 have_textrel = true;
4815 break;
4816 }
4817 }
4818 }
4819 else
4820 {
4821 // We don't know the section -> segment mapping, so we are
4822 // conservative and just look for readonly sections with
4823 // relocations. If those sections wind up in writable segments,
4824 // then we have created an unnecessary DT_TEXTREL entry.
4825 for (Section_list::const_iterator p = this->section_list_.begin();
4826 p != this->section_list_.end();
4827 ++p)
4828 {
4829 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4830 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4831 && (*p)->has_dynamic_reloc())
4832 {
4833 have_textrel = true;
4834 break;
4835 }
4836 }
4837 }
4838
4839 if (parameters->options().filter() != NULL)
4840 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4841 if (parameters->options().any_auxiliary())
4842 {
4843 for (options::String_set::const_iterator p =
4844 parameters->options().auxiliary_begin();
4845 p != parameters->options().auxiliary_end();
4846 ++p)
4847 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4848 }
4849
4850 // Add a DT_FLAGS entry if necessary.
4851 unsigned int flags = 0;
4852 if (have_textrel)
4853 {
4854 // Add a DT_TEXTREL for compatibility with older loaders.
4855 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4856 flags |= elfcpp::DF_TEXTREL;
4857
4858 if (parameters->options().text())
4859 gold_error(_("read-only segment has dynamic relocations"));
4860 else if (parameters->options().warn_shared_textrel()
4861 && parameters->options().shared())
4862 gold_warning(_("shared library text segment is not shareable"));
4863 }
4864 if (parameters->options().shared() && this->has_static_tls())
4865 flags |= elfcpp::DF_STATIC_TLS;
4866 if (parameters->options().origin())
4867 flags |= elfcpp::DF_ORIGIN;
4868 if (parameters->options().Bsymbolic())
4869 {
4870 flags |= elfcpp::DF_SYMBOLIC;
4871 // Add DT_SYMBOLIC for compatibility with older loaders.
4872 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4873 }
4874 if (parameters->options().now())
4875 flags |= elfcpp::DF_BIND_NOW;
4876 if (flags != 0)
4877 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4878
4879 flags = 0;
4880 if (parameters->options().initfirst())
4881 flags |= elfcpp::DF_1_INITFIRST;
4882 if (parameters->options().interpose())
4883 flags |= elfcpp::DF_1_INTERPOSE;
4884 if (parameters->options().loadfltr())
4885 flags |= elfcpp::DF_1_LOADFLTR;
4886 if (parameters->options().nodefaultlib())
4887 flags |= elfcpp::DF_1_NODEFLIB;
4888 if (parameters->options().nodelete())
4889 flags |= elfcpp::DF_1_NODELETE;
4890 if (parameters->options().nodlopen())
4891 flags |= elfcpp::DF_1_NOOPEN;
4892 if (parameters->options().nodump())
4893 flags |= elfcpp::DF_1_NODUMP;
4894 if (!parameters->options().shared())
4895 flags &= ~(elfcpp::DF_1_INITFIRST
4896 | elfcpp::DF_1_NODELETE
4897 | elfcpp::DF_1_NOOPEN);
4898 if (parameters->options().origin())
4899 flags |= elfcpp::DF_1_ORIGIN;
4900 if (parameters->options().now())
4901 flags |= elfcpp::DF_1_NOW;
4902 if (parameters->options().Bgroup())
4903 flags |= elfcpp::DF_1_GROUP;
4904 if (flags != 0)
4905 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4906 }
4907
4908 // Set the size of the _DYNAMIC symbol table to be the size of the
4909 // dynamic data.
4910
4911 void
4912 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4913 {
4914 Output_data_dynamic* const odyn = this->dynamic_data_;
4915 if (odyn == NULL)
4916 return;
4917 odyn->finalize_data_size();
4918 if (this->dynamic_symbol_ == NULL)
4919 return;
4920 off_t data_size = odyn->data_size();
4921 const int size = parameters->target().get_size();
4922 if (size == 32)
4923 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4924 else if (size == 64)
4925 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4926 else
4927 gold_unreachable();
4928 }
4929
4930 // The mapping of input section name prefixes to output section names.
4931 // In some cases one prefix is itself a prefix of another prefix; in
4932 // such a case the longer prefix must come first. These prefixes are
4933 // based on the GNU linker default ELF linker script.
4934
4935 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4936 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4937 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4938 {
4939 MAPPING_INIT(".text.", ".text"),
4940 MAPPING_INIT(".rodata.", ".rodata"),
4941 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4942 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4943 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4944 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4945 MAPPING_INIT(".data.", ".data"),
4946 MAPPING_INIT(".bss.", ".bss"),
4947 MAPPING_INIT(".tdata.", ".tdata"),
4948 MAPPING_INIT(".tbss.", ".tbss"),
4949 MAPPING_INIT(".init_array.", ".init_array"),
4950 MAPPING_INIT(".fini_array.", ".fini_array"),
4951 MAPPING_INIT(".sdata.", ".sdata"),
4952 MAPPING_INIT(".sbss.", ".sbss"),
4953 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4954 // differently depending on whether it is creating a shared library.
4955 MAPPING_INIT(".sdata2.", ".sdata"),
4956 MAPPING_INIT(".sbss2.", ".sbss"),
4957 MAPPING_INIT(".lrodata.", ".lrodata"),
4958 MAPPING_INIT(".ldata.", ".ldata"),
4959 MAPPING_INIT(".lbss.", ".lbss"),
4960 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4961 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4962 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4963 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4964 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4965 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4966 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4967 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4968 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4969 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4970 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4971 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4972 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4973 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4974 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4975 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4976 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4977 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4978 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4979 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4980 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4981 };
4982 #undef MAPPING_INIT
4983 #undef MAPPING_INIT_EXACT
4984
4985 const int Layout::section_name_mapping_count =
4986 (sizeof(Layout::section_name_mapping)
4987 / sizeof(Layout::section_name_mapping[0]));
4988
4989 // Choose the output section name to use given an input section name.
4990 // Set *PLEN to the length of the name. *PLEN is initialized to the
4991 // length of NAME.
4992
4993 const char*
4994 Layout::output_section_name(const Relobj* relobj, const char* name,
4995 size_t* plen)
4996 {
4997 // gcc 4.3 generates the following sorts of section names when it
4998 // needs a section name specific to a function:
4999 // .text.FN
5000 // .rodata.FN
5001 // .sdata2.FN
5002 // .data.FN
5003 // .data.rel.FN
5004 // .data.rel.local.FN
5005 // .data.rel.ro.FN
5006 // .data.rel.ro.local.FN
5007 // .sdata.FN
5008 // .bss.FN
5009 // .sbss.FN
5010 // .tdata.FN
5011 // .tbss.FN
5012
5013 // The GNU linker maps all of those to the part before the .FN,
5014 // except that .data.rel.local.FN is mapped to .data, and
5015 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5016 // beginning with .data.rel.ro.local are grouped together.
5017
5018 // For an anonymous namespace, the string FN can contain a '.'.
5019
5020 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5021 // GNU linker maps to .rodata.
5022
5023 // The .data.rel.ro sections are used with -z relro. The sections
5024 // are recognized by name. We use the same names that the GNU
5025 // linker does for these sections.
5026
5027 // It is hard to handle this in a principled way, so we don't even
5028 // try. We use a table of mappings. If the input section name is
5029 // not found in the table, we simply use it as the output section
5030 // name.
5031
5032 const Section_name_mapping* psnm = section_name_mapping;
5033 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5034 {
5035 if (psnm->fromlen > 0)
5036 {
5037 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5038 {
5039 *plen = psnm->tolen;
5040 return psnm->to;
5041 }
5042 }
5043 else
5044 {
5045 if (strcmp(name, psnm->from) == 0)
5046 {
5047 *plen = psnm->tolen;
5048 return psnm->to;
5049 }
5050 }
5051 }
5052
5053 // As an additional complication, .ctors sections are output in
5054 // either .ctors or .init_array sections, and .dtors sections are
5055 // output in either .dtors or .fini_array sections.
5056 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5057 {
5058 if (parameters->options().ctors_in_init_array())
5059 {
5060 *plen = 11;
5061 return name[1] == 'c' ? ".init_array" : ".fini_array";
5062 }
5063 else
5064 {
5065 *plen = 6;
5066 return name[1] == 'c' ? ".ctors" : ".dtors";
5067 }
5068 }
5069 if (parameters->options().ctors_in_init_array()
5070 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5071 {
5072 // To make .init_array/.fini_array work with gcc we must exclude
5073 // .ctors and .dtors sections from the crtbegin and crtend
5074 // files.
5075 if (relobj == NULL
5076 || (!Layout::match_file_name(relobj, "crtbegin")
5077 && !Layout::match_file_name(relobj, "crtend")))
5078 {
5079 *plen = 11;
5080 return name[1] == 'c' ? ".init_array" : ".fini_array";
5081 }
5082 }
5083
5084 return name;
5085 }
5086
5087 // Return true if RELOBJ is an input file whose base name matches
5088 // FILE_NAME. The base name must have an extension of ".o", and must
5089 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5090 // to match crtbegin.o as well as crtbeginS.o without getting confused
5091 // by other possibilities. Overall matching the file name this way is
5092 // a dreadful hack, but the GNU linker does it in order to better
5093 // support gcc, and we need to be compatible.
5094
5095 bool
5096 Layout::match_file_name(const Relobj* relobj, const char* match)
5097 {
5098 const std::string& file_name(relobj->name());
5099 const char* base_name = lbasename(file_name.c_str());
5100 size_t match_len = strlen(match);
5101 if (strncmp(base_name, match, match_len) != 0)
5102 return false;
5103 size_t base_len = strlen(base_name);
5104 if (base_len != match_len + 2 && base_len != match_len + 3)
5105 return false;
5106 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5107 }
5108
5109 // Check if a comdat group or .gnu.linkonce section with the given
5110 // NAME is selected for the link. If there is already a section,
5111 // *KEPT_SECTION is set to point to the existing section and the
5112 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5113 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5114 // *KEPT_SECTION is set to the internal copy and the function returns
5115 // true.
5116
5117 bool
5118 Layout::find_or_add_kept_section(const std::string& name,
5119 Relobj* object,
5120 unsigned int shndx,
5121 bool is_comdat,
5122 bool is_group_name,
5123 Kept_section** kept_section)
5124 {
5125 // It's normal to see a couple of entries here, for the x86 thunk
5126 // sections. If we see more than a few, we're linking a C++
5127 // program, and we resize to get more space to minimize rehashing.
5128 if (this->signatures_.size() > 4
5129 && !this->resized_signatures_)
5130 {
5131 reserve_unordered_map(&this->signatures_,
5132 this->number_of_input_files_ * 64);
5133 this->resized_signatures_ = true;
5134 }
5135
5136 Kept_section candidate;
5137 std::pair<Signatures::iterator, bool> ins =
5138 this->signatures_.insert(std::make_pair(name, candidate));
5139
5140 if (kept_section != NULL)
5141 *kept_section = &ins.first->second;
5142 if (ins.second)
5143 {
5144 // This is the first time we've seen this signature.
5145 ins.first->second.set_object(object);
5146 ins.first->second.set_shndx(shndx);
5147 if (is_comdat)
5148 ins.first->second.set_is_comdat();
5149 if (is_group_name)
5150 ins.first->second.set_is_group_name();
5151 return true;
5152 }
5153
5154 // We have already seen this signature.
5155
5156 if (ins.first->second.is_group_name())
5157 {
5158 // We've already seen a real section group with this signature.
5159 // If the kept group is from a plugin object, and we're in the
5160 // replacement phase, accept the new one as a replacement.
5161 if (ins.first->second.object() == NULL
5162 && parameters->options().plugins()->in_replacement_phase())
5163 {
5164 ins.first->second.set_object(object);
5165 ins.first->second.set_shndx(shndx);
5166 return true;
5167 }
5168 return false;
5169 }
5170 else if (is_group_name)
5171 {
5172 // This is a real section group, and we've already seen a
5173 // linkonce section with this signature. Record that we've seen
5174 // a section group, and don't include this section group.
5175 ins.first->second.set_is_group_name();
5176 return false;
5177 }
5178 else
5179 {
5180 // We've already seen a linkonce section and this is a linkonce
5181 // section. These don't block each other--this may be the same
5182 // symbol name with different section types.
5183 return true;
5184 }
5185 }
5186
5187 // Store the allocated sections into the section list.
5188
5189 void
5190 Layout::get_allocated_sections(Section_list* section_list) const
5191 {
5192 for (Section_list::const_iterator p = this->section_list_.begin();
5193 p != this->section_list_.end();
5194 ++p)
5195 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5196 section_list->push_back(*p);
5197 }
5198
5199 // Store the executable sections into the section list.
5200
5201 void
5202 Layout::get_executable_sections(Section_list* section_list) const
5203 {
5204 for (Section_list::const_iterator p = this->section_list_.begin();
5205 p != this->section_list_.end();
5206 ++p)
5207 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5208 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5209 section_list->push_back(*p);
5210 }
5211
5212 // Create an output segment.
5213
5214 Output_segment*
5215 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5216 {
5217 gold_assert(!parameters->options().relocatable());
5218 Output_segment* oseg = new Output_segment(type, flags);
5219 this->segment_list_.push_back(oseg);
5220
5221 if (type == elfcpp::PT_TLS)
5222 this->tls_segment_ = oseg;
5223 else if (type == elfcpp::PT_GNU_RELRO)
5224 this->relro_segment_ = oseg;
5225 else if (type == elfcpp::PT_INTERP)
5226 this->interp_segment_ = oseg;
5227
5228 return oseg;
5229 }
5230
5231 // Return the file offset of the normal symbol table.
5232
5233 off_t
5234 Layout::symtab_section_offset() const
5235 {
5236 if (this->symtab_section_ != NULL)
5237 return this->symtab_section_->offset();
5238 return 0;
5239 }
5240
5241 // Return the section index of the normal symbol table. It may have
5242 // been stripped by the -s/--strip-all option.
5243
5244 unsigned int
5245 Layout::symtab_section_shndx() const
5246 {
5247 if (this->symtab_section_ != NULL)
5248 return this->symtab_section_->out_shndx();
5249 return 0;
5250 }
5251
5252 // Write out the Output_sections. Most won't have anything to write,
5253 // since most of the data will come from input sections which are
5254 // handled elsewhere. But some Output_sections do have Output_data.
5255
5256 void
5257 Layout::write_output_sections(Output_file* of) const
5258 {
5259 for (Section_list::const_iterator p = this->section_list_.begin();
5260 p != this->section_list_.end();
5261 ++p)
5262 {
5263 if (!(*p)->after_input_sections())
5264 (*p)->write(of);
5265 }
5266 }
5267
5268 // Write out data not associated with a section or the symbol table.
5269
5270 void
5271 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5272 {
5273 if (!parameters->options().strip_all())
5274 {
5275 const Output_section* symtab_section = this->symtab_section_;
5276 for (Section_list::const_iterator p = this->section_list_.begin();
5277 p != this->section_list_.end();
5278 ++p)
5279 {
5280 if ((*p)->needs_symtab_index())
5281 {
5282 gold_assert(symtab_section != NULL);
5283 unsigned int index = (*p)->symtab_index();
5284 gold_assert(index > 0 && index != -1U);
5285 off_t off = (symtab_section->offset()
5286 + index * symtab_section->entsize());
5287 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5288 }
5289 }
5290 }
5291
5292 const Output_section* dynsym_section = this->dynsym_section_;
5293 for (Section_list::const_iterator p = this->section_list_.begin();
5294 p != this->section_list_.end();
5295 ++p)
5296 {
5297 if ((*p)->needs_dynsym_index())
5298 {
5299 gold_assert(dynsym_section != NULL);
5300 unsigned int index = (*p)->dynsym_index();
5301 gold_assert(index > 0 && index != -1U);
5302 off_t off = (dynsym_section->offset()
5303 + index * dynsym_section->entsize());
5304 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5305 }
5306 }
5307
5308 // Write out the Output_data which are not in an Output_section.
5309 for (Data_list::const_iterator p = this->special_output_list_.begin();
5310 p != this->special_output_list_.end();
5311 ++p)
5312 (*p)->write(of);
5313
5314 // Write out the Output_data which are not in an Output_section
5315 // and are regenerated in each iteration of relaxation.
5316 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5317 p != this->relax_output_list_.end();
5318 ++p)
5319 (*p)->write(of);
5320 }
5321
5322 // Write out the Output_sections which can only be written after the
5323 // input sections are complete.
5324
5325 void
5326 Layout::write_sections_after_input_sections(Output_file* of)
5327 {
5328 // Determine the final section offsets, and thus the final output
5329 // file size. Note we finalize the .shstrab last, to allow the
5330 // after_input_section sections to modify their section-names before
5331 // writing.
5332 if (this->any_postprocessing_sections_)
5333 {
5334 off_t off = this->output_file_size_;
5335 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5336
5337 // Now that we've finalized the names, we can finalize the shstrab.
5338 off =
5339 this->set_section_offsets(off,
5340 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5341
5342 if (off > this->output_file_size_)
5343 {
5344 of->resize(off);
5345 this->output_file_size_ = off;
5346 }
5347 }
5348
5349 for (Section_list::const_iterator p = this->section_list_.begin();
5350 p != this->section_list_.end();
5351 ++p)
5352 {
5353 if ((*p)->after_input_sections())
5354 (*p)->write(of);
5355 }
5356
5357 this->section_headers_->write(of);
5358 }
5359
5360 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5361 // or as a "tree" where each chunk of the string is hashed and then those
5362 // hashes are put into a (much smaller) string which is hashed with sha1.
5363 // We compute a checksum over the entire file because that is simplest.
5364
5365 Task_token*
5366 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5367 Output_file* of)
5368 {
5369 const size_t filesize = (this->output_file_size() <= 0 ? 0
5370 : static_cast<size_t>(this->output_file_size()));
5371 if (this->build_id_note_ != NULL
5372 && strcmp(parameters->options().build_id(), "tree") == 0
5373 && parameters->options().build_id_chunk_size_for_treehash() > 0
5374 && filesize > 0
5375 && (filesize >=
5376 parameters->options().build_id_min_file_size_for_treehash()))
5377 {
5378 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5379 const size_t chunk_size =
5380 parameters->options().build_id_chunk_size_for_treehash();
5381 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5382 Task_token* post_hash_tasks_blocker = new Task_token(true);
5383 post_hash_tasks_blocker->add_blockers(num_hashes);
5384 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5385 const unsigned char* src = of->get_input_view(0, filesize);
5386 this->input_view_ = src;
5387 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5388 this->array_of_hashes_ = dst;
5389 for (size_t i = 0, src_offset = 0; i < num_hashes;
5390 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5391 {
5392 size_t size = std::min(chunk_size, filesize - src_offset);
5393 workqueue->queue(new Hash_task(src + src_offset,
5394 size,
5395 dst,
5396 build_id_blocker,
5397 post_hash_tasks_blocker));
5398 }
5399 return post_hash_tasks_blocker;
5400 }
5401 return build_id_blocker;
5402 }
5403
5404 // If a tree-style build ID was requested, the parallel part of that computation
5405 // is already done, and the final hash-of-hashes is computed here. For other
5406 // types of build IDs, all the work is done here.
5407
5408 void
5409 Layout::write_build_id(Output_file* of) const
5410 {
5411 if (this->build_id_note_ == NULL)
5412 return;
5413
5414 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5415 this->build_id_note_->data_size());
5416
5417 if (this->array_of_hashes_ == NULL)
5418 {
5419 const size_t output_file_size = this->output_file_size();
5420 const unsigned char* iv = of->get_input_view(0, output_file_size);
5421 const char* style = parameters->options().build_id();
5422
5423 // If we get here with style == "tree" then the output must be
5424 // too small for chunking, and we use SHA-1 in that case.
5425 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5426 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5427 else if (strcmp(style, "md5") == 0)
5428 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5429 else
5430 gold_unreachable();
5431
5432 of->free_input_view(0, output_file_size, iv);
5433 }
5434 else
5435 {
5436 // Non-overlapping substrings of the output file have been hashed.
5437 // Compute SHA-1 hash of the hashes.
5438 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5439 this->size_of_array_of_hashes_, ov);
5440 delete[] this->array_of_hashes_;
5441 of->free_input_view(0, this->output_file_size(), this->input_view_);
5442 }
5443
5444 of->write_output_view(this->build_id_note_->offset(),
5445 this->build_id_note_->data_size(),
5446 ov);
5447 }
5448
5449 // Write out a binary file. This is called after the link is
5450 // complete. IN is the temporary output file we used to generate the
5451 // ELF code. We simply walk through the segments, read them from
5452 // their file offset in IN, and write them to their load address in
5453 // the output file. FIXME: with a bit more work, we could support
5454 // S-records and/or Intel hex format here.
5455
5456 void
5457 Layout::write_binary(Output_file* in) const
5458 {
5459 gold_assert(parameters->options().oformat_enum()
5460 == General_options::OBJECT_FORMAT_BINARY);
5461
5462 // Get the size of the binary file.
5463 uint64_t max_load_address = 0;
5464 for (Segment_list::const_iterator p = this->segment_list_.begin();
5465 p != this->segment_list_.end();
5466 ++p)
5467 {
5468 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5469 {
5470 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5471 if (max_paddr > max_load_address)
5472 max_load_address = max_paddr;
5473 }
5474 }
5475
5476 Output_file out(parameters->options().output_file_name());
5477 out.open(max_load_address);
5478
5479 for (Segment_list::const_iterator p = this->segment_list_.begin();
5480 p != this->segment_list_.end();
5481 ++p)
5482 {
5483 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5484 {
5485 const unsigned char* vin = in->get_input_view((*p)->offset(),
5486 (*p)->filesz());
5487 unsigned char* vout = out.get_output_view((*p)->paddr(),
5488 (*p)->filesz());
5489 memcpy(vout, vin, (*p)->filesz());
5490 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5491 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5492 }
5493 }
5494
5495 out.close();
5496 }
5497
5498 // Print the output sections to the map file.
5499
5500 void
5501 Layout::print_to_mapfile(Mapfile* mapfile) const
5502 {
5503 for (Segment_list::const_iterator p = this->segment_list_.begin();
5504 p != this->segment_list_.end();
5505 ++p)
5506 (*p)->print_sections_to_mapfile(mapfile);
5507 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5508 p != this->unattached_section_list_.end();
5509 ++p)
5510 (*p)->print_to_mapfile(mapfile);
5511 }
5512
5513 // Print statistical information to stderr. This is used for --stats.
5514
5515 void
5516 Layout::print_stats() const
5517 {
5518 this->namepool_.print_stats("section name pool");
5519 this->sympool_.print_stats("output symbol name pool");
5520 this->dynpool_.print_stats("dynamic name pool");
5521
5522 for (Section_list::const_iterator p = this->section_list_.begin();
5523 p != this->section_list_.end();
5524 ++p)
5525 (*p)->print_merge_stats();
5526 }
5527
5528 // Write_sections_task methods.
5529
5530 // We can always run this task.
5531
5532 Task_token*
5533 Write_sections_task::is_runnable()
5534 {
5535 return NULL;
5536 }
5537
5538 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5539 // when finished.
5540
5541 void
5542 Write_sections_task::locks(Task_locker* tl)
5543 {
5544 tl->add(this, this->output_sections_blocker_);
5545 if (this->input_sections_blocker_ != NULL)
5546 tl->add(this, this->input_sections_blocker_);
5547 tl->add(this, this->final_blocker_);
5548 }
5549
5550 // Run the task--write out the data.
5551
5552 void
5553 Write_sections_task::run(Workqueue*)
5554 {
5555 this->layout_->write_output_sections(this->of_);
5556 }
5557
5558 // Write_data_task methods.
5559
5560 // We can always run this task.
5561
5562 Task_token*
5563 Write_data_task::is_runnable()
5564 {
5565 return NULL;
5566 }
5567
5568 // We need to unlock FINAL_BLOCKER when finished.
5569
5570 void
5571 Write_data_task::locks(Task_locker* tl)
5572 {
5573 tl->add(this, this->final_blocker_);
5574 }
5575
5576 // Run the task--write out the data.
5577
5578 void
5579 Write_data_task::run(Workqueue*)
5580 {
5581 this->layout_->write_data(this->symtab_, this->of_);
5582 }
5583
5584 // Write_symbols_task methods.
5585
5586 // We can always run this task.
5587
5588 Task_token*
5589 Write_symbols_task::is_runnable()
5590 {
5591 return NULL;
5592 }
5593
5594 // We need to unlock FINAL_BLOCKER when finished.
5595
5596 void
5597 Write_symbols_task::locks(Task_locker* tl)
5598 {
5599 tl->add(this, this->final_blocker_);
5600 }
5601
5602 // Run the task--write out the symbols.
5603
5604 void
5605 Write_symbols_task::run(Workqueue*)
5606 {
5607 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5608 this->layout_->symtab_xindex(),
5609 this->layout_->dynsym_xindex(), this->of_);
5610 }
5611
5612 // Write_after_input_sections_task methods.
5613
5614 // We can only run this task after the input sections have completed.
5615
5616 Task_token*
5617 Write_after_input_sections_task::is_runnable()
5618 {
5619 if (this->input_sections_blocker_->is_blocked())
5620 return this->input_sections_blocker_;
5621 return NULL;
5622 }
5623
5624 // We need to unlock FINAL_BLOCKER when finished.
5625
5626 void
5627 Write_after_input_sections_task::locks(Task_locker* tl)
5628 {
5629 tl->add(this, this->final_blocker_);
5630 }
5631
5632 // Run the task.
5633
5634 void
5635 Write_after_input_sections_task::run(Workqueue*)
5636 {
5637 this->layout_->write_sections_after_input_sections(this->of_);
5638 }
5639
5640 // Close_task_runner methods.
5641
5642 // Finish up the build ID computation, if necessary, and write a binary file,
5643 // if necessary. Then close the output file.
5644
5645 void
5646 Close_task_runner::run(Workqueue*, const Task*)
5647 {
5648 // At this point the multi-threaded part of the build ID computation,
5649 // if any, is done. See queue_build_id_tasks().
5650 this->layout_->write_build_id(this->of_);
5651
5652 // If we've been asked to create a binary file, we do so here.
5653 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5654 this->layout_->write_binary(this->of_);
5655
5656 this->of_->close();
5657 }
5658
5659 // Instantiate the templates we need. We could use the configure
5660 // script to restrict this to only the ones for implemented targets.
5661
5662 #ifdef HAVE_TARGET_32_LITTLE
5663 template
5664 Output_section*
5665 Layout::init_fixed_output_section<32, false>(
5666 const char* name,
5667 elfcpp::Shdr<32, false>& shdr);
5668 #endif
5669
5670 #ifdef HAVE_TARGET_32_BIG
5671 template
5672 Output_section*
5673 Layout::init_fixed_output_section<32, true>(
5674 const char* name,
5675 elfcpp::Shdr<32, true>& shdr);
5676 #endif
5677
5678 #ifdef HAVE_TARGET_64_LITTLE
5679 template
5680 Output_section*
5681 Layout::init_fixed_output_section<64, false>(
5682 const char* name,
5683 elfcpp::Shdr<64, false>& shdr);
5684 #endif
5685
5686 #ifdef HAVE_TARGET_64_BIG
5687 template
5688 Output_section*
5689 Layout::init_fixed_output_section<64, true>(
5690 const char* name,
5691 elfcpp::Shdr<64, true>& shdr);
5692 #endif
5693
5694 #ifdef HAVE_TARGET_32_LITTLE
5695 template
5696 Output_section*
5697 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5698 unsigned int shndx,
5699 const char* name,
5700 const elfcpp::Shdr<32, false>& shdr,
5701 unsigned int, unsigned int, off_t*);
5702 #endif
5703
5704 #ifdef HAVE_TARGET_32_BIG
5705 template
5706 Output_section*
5707 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5708 unsigned int shndx,
5709 const char* name,
5710 const elfcpp::Shdr<32, true>& shdr,
5711 unsigned int, unsigned int, off_t*);
5712 #endif
5713
5714 #ifdef HAVE_TARGET_64_LITTLE
5715 template
5716 Output_section*
5717 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5718 unsigned int shndx,
5719 const char* name,
5720 const elfcpp::Shdr<64, false>& shdr,
5721 unsigned int, unsigned int, off_t*);
5722 #endif
5723
5724 #ifdef HAVE_TARGET_64_BIG
5725 template
5726 Output_section*
5727 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5728 unsigned int shndx,
5729 const char* name,
5730 const elfcpp::Shdr<64, true>& shdr,
5731 unsigned int, unsigned int, off_t*);
5732 #endif
5733
5734 #ifdef HAVE_TARGET_32_LITTLE
5735 template
5736 Output_section*
5737 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5738 unsigned int reloc_shndx,
5739 const elfcpp::Shdr<32, false>& shdr,
5740 Output_section* data_section,
5741 Relocatable_relocs* rr);
5742 #endif
5743
5744 #ifdef HAVE_TARGET_32_BIG
5745 template
5746 Output_section*
5747 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5748 unsigned int reloc_shndx,
5749 const elfcpp::Shdr<32, true>& shdr,
5750 Output_section* data_section,
5751 Relocatable_relocs* rr);
5752 #endif
5753
5754 #ifdef HAVE_TARGET_64_LITTLE
5755 template
5756 Output_section*
5757 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5758 unsigned int reloc_shndx,
5759 const elfcpp::Shdr<64, false>& shdr,
5760 Output_section* data_section,
5761 Relocatable_relocs* rr);
5762 #endif
5763
5764 #ifdef HAVE_TARGET_64_BIG
5765 template
5766 Output_section*
5767 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5768 unsigned int reloc_shndx,
5769 const elfcpp::Shdr<64, true>& shdr,
5770 Output_section* data_section,
5771 Relocatable_relocs* rr);
5772 #endif
5773
5774 #ifdef HAVE_TARGET_32_LITTLE
5775 template
5776 void
5777 Layout::layout_group<32, false>(Symbol_table* symtab,
5778 Sized_relobj_file<32, false>* object,
5779 unsigned int,
5780 const char* group_section_name,
5781 const char* signature,
5782 const elfcpp::Shdr<32, false>& shdr,
5783 elfcpp::Elf_Word flags,
5784 std::vector<unsigned int>* shndxes);
5785 #endif
5786
5787 #ifdef HAVE_TARGET_32_BIG
5788 template
5789 void
5790 Layout::layout_group<32, true>(Symbol_table* symtab,
5791 Sized_relobj_file<32, true>* object,
5792 unsigned int,
5793 const char* group_section_name,
5794 const char* signature,
5795 const elfcpp::Shdr<32, true>& shdr,
5796 elfcpp::Elf_Word flags,
5797 std::vector<unsigned int>* shndxes);
5798 #endif
5799
5800 #ifdef HAVE_TARGET_64_LITTLE
5801 template
5802 void
5803 Layout::layout_group<64, false>(Symbol_table* symtab,
5804 Sized_relobj_file<64, false>* object,
5805 unsigned int,
5806 const char* group_section_name,
5807 const char* signature,
5808 const elfcpp::Shdr<64, false>& shdr,
5809 elfcpp::Elf_Word flags,
5810 std::vector<unsigned int>* shndxes);
5811 #endif
5812
5813 #ifdef HAVE_TARGET_64_BIG
5814 template
5815 void
5816 Layout::layout_group<64, true>(Symbol_table* symtab,
5817 Sized_relobj_file<64, true>* object,
5818 unsigned int,
5819 const char* group_section_name,
5820 const char* signature,
5821 const elfcpp::Shdr<64, true>& shdr,
5822 elfcpp::Elf_Word flags,
5823 std::vector<unsigned int>* shndxes);
5824 #endif
5825
5826 #ifdef HAVE_TARGET_32_LITTLE
5827 template
5828 Output_section*
5829 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5830 const unsigned char* symbols,
5831 off_t symbols_size,
5832 const unsigned char* symbol_names,
5833 off_t symbol_names_size,
5834 unsigned int shndx,
5835 const elfcpp::Shdr<32, false>& shdr,
5836 unsigned int reloc_shndx,
5837 unsigned int reloc_type,
5838 off_t* off);
5839 #endif
5840
5841 #ifdef HAVE_TARGET_32_BIG
5842 template
5843 Output_section*
5844 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5845 const unsigned char* symbols,
5846 off_t symbols_size,
5847 const unsigned char* symbol_names,
5848 off_t symbol_names_size,
5849 unsigned int shndx,
5850 const elfcpp::Shdr<32, true>& shdr,
5851 unsigned int reloc_shndx,
5852 unsigned int reloc_type,
5853 off_t* off);
5854 #endif
5855
5856 #ifdef HAVE_TARGET_64_LITTLE
5857 template
5858 Output_section*
5859 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5860 const unsigned char* symbols,
5861 off_t symbols_size,
5862 const unsigned char* symbol_names,
5863 off_t symbol_names_size,
5864 unsigned int shndx,
5865 const elfcpp::Shdr<64, false>& shdr,
5866 unsigned int reloc_shndx,
5867 unsigned int reloc_type,
5868 off_t* off);
5869 #endif
5870
5871 #ifdef HAVE_TARGET_64_BIG
5872 template
5873 Output_section*
5874 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5875 const unsigned char* symbols,
5876 off_t symbols_size,
5877 const unsigned char* symbol_names,
5878 off_t symbol_names_size,
5879 unsigned int shndx,
5880 const elfcpp::Shdr<64, true>& shdr,
5881 unsigned int reloc_shndx,
5882 unsigned int reloc_type,
5883 off_t* off);
5884 #endif
5885
5886 #ifdef HAVE_TARGET_32_LITTLE
5887 template
5888 void
5889 Layout::add_to_gdb_index(bool is_type_unit,
5890 Sized_relobj<32, false>* object,
5891 const unsigned char* symbols,
5892 off_t symbols_size,
5893 unsigned int shndx,
5894 unsigned int reloc_shndx,
5895 unsigned int reloc_type);
5896 #endif
5897
5898 #ifdef HAVE_TARGET_32_BIG
5899 template
5900 void
5901 Layout::add_to_gdb_index(bool is_type_unit,
5902 Sized_relobj<32, true>* object,
5903 const unsigned char* symbols,
5904 off_t symbols_size,
5905 unsigned int shndx,
5906 unsigned int reloc_shndx,
5907 unsigned int reloc_type);
5908 #endif
5909
5910 #ifdef HAVE_TARGET_64_LITTLE
5911 template
5912 void
5913 Layout::add_to_gdb_index(bool is_type_unit,
5914 Sized_relobj<64, false>* object,
5915 const unsigned char* symbols,
5916 off_t symbols_size,
5917 unsigned int shndx,
5918 unsigned int reloc_shndx,
5919 unsigned int reloc_type);
5920 #endif
5921
5922 #ifdef HAVE_TARGET_64_BIG
5923 template
5924 void
5925 Layout::add_to_gdb_index(bool is_type_unit,
5926 Sized_relobj<64, true>* object,
5927 const unsigned char* symbols,
5928 off_t symbols_size,
5929 unsigned int shndx,
5930 unsigned int reloc_shndx,
5931 unsigned int reloc_type);
5932 #endif
5933
5934 } // End namespace gold.