Fix arithmetic overflows running srconv on fuzzed binaries.
[binutils-gdb.git] / gold / merge.cc
1 // merge.cc -- handle section merging for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <algorithm>
27
28 #include "merge.h"
29 #include "compressed_output.h"
30
31 namespace gold
32 {
33
34 // Class Object_merge_map.
35
36 // Destructor.
37
38 Object_merge_map::~Object_merge_map()
39 {
40 for (Section_merge_maps::iterator p = this->section_merge_maps_.begin();
41 p != this->section_merge_maps_.end();
42 ++p)
43 delete p->second;
44 }
45
46 // Get the Input_merge_map to use for an input section, or NULL.
47
48 Object_merge_map::Input_merge_map*
49 Object_merge_map::get_input_merge_map(unsigned int shndx)
50 {
51 gold_assert(shndx != -1U);
52 if (shndx == this->first_shnum_)
53 return &this->first_map_;
54 if (shndx == this->second_shnum_)
55 return &this->second_map_;
56 Section_merge_maps::const_iterator p = this->section_merge_maps_.find(shndx);
57 if (p != this->section_merge_maps_.end())
58 return p->second;
59 return NULL;
60 }
61
62 // Get or create the Input_merge_map to use for an input section.
63
64 Object_merge_map::Input_merge_map*
65 Object_merge_map::get_or_make_input_merge_map(const Merge_map* merge_map,
66 unsigned int shndx)
67 {
68 Input_merge_map* map = this->get_input_merge_map(shndx);
69 if (map != NULL)
70 {
71 // For a given input section in a given object, every mapping
72 // must be done with the same Merge_map.
73 gold_assert(map->merge_map == merge_map);
74 return map;
75 }
76
77 // We need to create a new entry.
78 if (this->first_shnum_ == -1U)
79 {
80 this->first_shnum_ = shndx;
81 this->first_map_.merge_map = merge_map;
82 return &this->first_map_;
83 }
84 if (this->second_shnum_ == -1U)
85 {
86 this->second_shnum_ = shndx;
87 this->second_map_.merge_map = merge_map;
88 return &this->second_map_;
89 }
90
91 Input_merge_map* new_map = new Input_merge_map;
92 new_map->merge_map = merge_map;
93 this->section_merge_maps_[shndx] = new_map;
94 return new_map;
95 }
96
97 // Add a mapping.
98
99 void
100 Object_merge_map::add_mapping(const Merge_map* merge_map, unsigned int shndx,
101 section_offset_type input_offset,
102 section_size_type length,
103 section_offset_type output_offset)
104 {
105 Input_merge_map* map = this->get_or_make_input_merge_map(merge_map, shndx);
106
107 // Try to merge the new entry in the last one we saw.
108 if (!map->entries.empty())
109 {
110 Input_merge_entry& entry(map->entries.back());
111
112 // Use section_size_type to avoid signed/unsigned warnings.
113 section_size_type input_offset_u = input_offset;
114 section_size_type output_offset_u = output_offset;
115
116 // If this entry is not in order, we need to sort the vector
117 // before looking anything up.
118 if (input_offset_u < entry.input_offset + entry.length)
119 {
120 gold_assert(input_offset < entry.input_offset);
121 gold_assert(input_offset_u + length
122 <= static_cast<section_size_type>(entry.input_offset));
123 map->sorted = false;
124 }
125 else if (entry.input_offset + entry.length == input_offset_u
126 && (output_offset == -1
127 ? entry.output_offset == -1
128 : entry.output_offset + entry.length == output_offset_u))
129 {
130 entry.length += length;
131 return;
132 }
133 }
134
135 Input_merge_entry entry;
136 entry.input_offset = input_offset;
137 entry.length = length;
138 entry.output_offset = output_offset;
139 map->entries.push_back(entry);
140 }
141
142 // Get the output offset for an input address.
143
144 bool
145 Object_merge_map::get_output_offset(const Merge_map* merge_map,
146 unsigned int shndx,
147 section_offset_type input_offset,
148 section_offset_type* output_offset)
149 {
150 Input_merge_map* map = this->get_input_merge_map(shndx);
151 if (map == NULL
152 || (merge_map != NULL && map->merge_map != merge_map))
153 return false;
154
155 if (!map->sorted)
156 {
157 std::sort(map->entries.begin(), map->entries.end(),
158 Input_merge_compare());
159 map->sorted = true;
160 }
161
162 Input_merge_entry entry;
163 entry.input_offset = input_offset;
164 std::vector<Input_merge_entry>::const_iterator p =
165 std::upper_bound(map->entries.begin(), map->entries.end(),
166 entry, Input_merge_compare());
167 if (p == map->entries.begin())
168 return false;
169 --p;
170 gold_assert(p->input_offset <= input_offset);
171
172 if (input_offset - p->input_offset
173 >= static_cast<section_offset_type>(p->length))
174 return false;
175
176 *output_offset = p->output_offset;
177 if (*output_offset != -1)
178 *output_offset += (input_offset - p->input_offset);
179 return true;
180 }
181
182 // Return whether this is the merge map for section SHNDX.
183
184 inline bool
185 Object_merge_map::is_merge_section_for(const Merge_map* merge_map,
186 unsigned int shndx)
187 {
188 Input_merge_map* map = this->get_input_merge_map(shndx);
189 return map != NULL && map->merge_map == merge_map;
190 }
191
192 // Initialize a mapping from input offsets to output addresses.
193
194 template<int size>
195 void
196 Object_merge_map::initialize_input_to_output_map(
197 unsigned int shndx,
198 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
199 Unordered_map<section_offset_type,
200 typename elfcpp::Elf_types<size>::Elf_Addr>* initialize_map)
201 {
202 Input_merge_map* map = this->get_input_merge_map(shndx);
203 gold_assert(map != NULL);
204
205 gold_assert(initialize_map->empty());
206 // We know how many entries we are going to add.
207 // reserve_unordered_map takes an expected count of buckets, not a
208 // count of elements, so double it to try to reduce collisions.
209 reserve_unordered_map(initialize_map, map->entries.size() * 2);
210
211 for (Input_merge_map::Entries::const_iterator p = map->entries.begin();
212 p != map->entries.end();
213 ++p)
214 {
215 section_offset_type output_offset = p->output_offset;
216 if (output_offset != -1)
217 output_offset += starting_address;
218 else
219 {
220 // If we see a relocation against an address we have chosen
221 // to discard, we relocate to zero. FIXME: We could also
222 // issue a warning in this case; that would require
223 // reporting this somehow and checking it in the routines in
224 // reloc.h.
225 output_offset = 0;
226 }
227 initialize_map->insert(std::make_pair(p->input_offset, output_offset));
228 }
229 }
230
231 // Class Merge_map.
232
233 // Add a mapping for the bytes from OFFSET to OFFSET + LENGTH in input
234 // section SHNDX in object OBJECT to an OUTPUT_OFFSET in merged data
235 // in an output section.
236
237 void
238 Merge_map::add_mapping(Relobj* object, unsigned int shndx,
239 section_offset_type offset, section_size_type length,
240 section_offset_type output_offset)
241 {
242 gold_assert(object != NULL);
243 Object_merge_map* object_merge_map = object->merge_map();
244 if (object_merge_map == NULL)
245 {
246 object_merge_map = new Object_merge_map();
247 object->set_merge_map(object_merge_map);
248 }
249
250 object_merge_map->add_mapping(this, shndx, offset, length, output_offset);
251 }
252
253 // Return the output offset for an input address. The input address
254 // is at offset OFFSET in section SHNDX in OBJECT. This sets
255 // *OUTPUT_OFFSET to the offset in the merged data in the output
256 // section. This returns true if the mapping is known, false
257 // otherwise.
258
259 bool
260 Merge_map::get_output_offset(const Relobj* object, unsigned int shndx,
261 section_offset_type offset,
262 section_offset_type* output_offset) const
263 {
264 Object_merge_map* object_merge_map = object->merge_map();
265 if (object_merge_map == NULL)
266 return false;
267 return object_merge_map->get_output_offset(this, shndx, offset,
268 output_offset);
269 }
270
271 // Return whether this is the merge section for SHNDX in OBJECT.
272
273 bool
274 Merge_map::is_merge_section_for(const Relobj* object, unsigned int shndx) const
275 {
276 Object_merge_map* object_merge_map = object->merge_map();
277 if (object_merge_map == NULL)
278 return false;
279 return object_merge_map->is_merge_section_for(this, shndx);
280 }
281
282 // Class Output_merge_base.
283
284 // Return the output offset for an input offset. The input address is
285 // at offset OFFSET in section SHNDX in OBJECT. If we know the
286 // offset, set *POUTPUT and return true. Otherwise return false.
287
288 bool
289 Output_merge_base::do_output_offset(const Relobj* object,
290 unsigned int shndx,
291 section_offset_type offset,
292 section_offset_type* poutput) const
293 {
294 return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
295 }
296
297 // Return whether this is the merge section for SHNDX in OBJECT.
298
299 bool
300 Output_merge_base::do_is_merge_section_for(const Relobj* object,
301 unsigned int shndx) const
302 {
303 return this->merge_map_.is_merge_section_for(object, shndx);
304 }
305
306 // Record a merged input section for script processing.
307
308 void
309 Output_merge_base::record_input_section(Relobj* relobj, unsigned int shndx)
310 {
311 gold_assert(this->keeps_input_sections_ && relobj != NULL);
312 // If this is the first input section, record it. We need do this because
313 // this->input_sections_ is unordered.
314 if (this->first_relobj_ == NULL)
315 {
316 this->first_relobj_ = relobj;
317 this->first_shndx_ = shndx;
318 }
319
320 std::pair<Input_sections::iterator, bool> result =
321 this->input_sections_.insert(Section_id(relobj, shndx));
322 // We should insert a merge section once only.
323 gold_assert(result.second);
324 }
325
326 // Class Output_merge_data.
327
328 // Compute the hash code for a fixed-size constant.
329
330 size_t
331 Output_merge_data::Merge_data_hash::operator()(Merge_data_key k) const
332 {
333 const unsigned char* p = this->pomd_->constant(k);
334 section_size_type entsize =
335 convert_to_section_size_type(this->pomd_->entsize());
336
337 // Fowler/Noll/Vo (FNV) hash (type FNV-1a).
338 if (sizeof(size_t) == 8)
339 {
340 size_t result = static_cast<size_t>(14695981039346656037ULL);
341 for (section_size_type i = 0; i < entsize; ++i)
342 {
343 result &= (size_t) *p++;
344 result *= 1099511628211ULL;
345 }
346 return result;
347 }
348 else
349 {
350 size_t result = 2166136261UL;
351 for (section_size_type i = 0; i < entsize; ++i)
352 {
353 result ^= (size_t) *p++;
354 result *= 16777619UL;
355 }
356 return result;
357 }
358 }
359
360 // Return whether one hash table key equals another.
361
362 bool
363 Output_merge_data::Merge_data_eq::operator()(Merge_data_key k1,
364 Merge_data_key k2) const
365 {
366 const unsigned char* p1 = this->pomd_->constant(k1);
367 const unsigned char* p2 = this->pomd_->constant(k2);
368 return memcmp(p1, p2, this->pomd_->entsize()) == 0;
369 }
370
371 // Add a constant to the end of the section contents.
372
373 void
374 Output_merge_data::add_constant(const unsigned char* p)
375 {
376 section_size_type entsize = convert_to_section_size_type(this->entsize());
377 section_size_type addralign =
378 convert_to_section_size_type(this->addralign());
379 section_size_type addsize = std::max(entsize, addralign);
380 if (this->len_ + addsize > this->alc_)
381 {
382 if (this->alc_ == 0)
383 this->alc_ = 128 * addsize;
384 else
385 this->alc_ *= 2;
386 this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->alc_));
387 if (this->p_ == NULL)
388 gold_nomem();
389 }
390
391 memcpy(this->p_ + this->len_, p, entsize);
392 if (addsize > entsize)
393 memset(this->p_ + this->len_ + entsize, 0, addsize - entsize);
394 this->len_ += addsize;
395 }
396
397 // Add the input section SHNDX in OBJECT to a merged output section
398 // which holds fixed length constants. Return whether we were able to
399 // handle the section; if not, it will be linked as usual without
400 // constant merging.
401
402 bool
403 Output_merge_data::do_add_input_section(Relobj* object, unsigned int shndx)
404 {
405 section_size_type len;
406 bool is_new;
407 const unsigned char* p = object->decompressed_section_contents(shndx, &len,
408 &is_new);
409
410 section_size_type entsize = convert_to_section_size_type(this->entsize());
411
412 if (len % entsize != 0)
413 {
414 if (is_new)
415 delete[] p;
416 return false;
417 }
418
419 this->input_count_ += len / entsize;
420
421 for (section_size_type i = 0; i < len; i += entsize, p += entsize)
422 {
423 // Add the constant to the section contents. If we find that it
424 // is already in the hash table, we will remove it again.
425 Merge_data_key k = this->len_;
426 this->add_constant(p);
427
428 std::pair<Merge_data_hashtable::iterator, bool> ins =
429 this->hashtable_.insert(k);
430
431 if (!ins.second)
432 {
433 // Key was already present. Remove the copy we just added.
434 this->len_ -= entsize;
435 k = *ins.first;
436 }
437
438 // Record the offset of this constant in the output section.
439 this->add_mapping(object, shndx, i, entsize, k);
440 }
441
442 // For script processing, we keep the input sections.
443 if (this->keeps_input_sections())
444 record_input_section(object, shndx);
445
446 if (is_new)
447 delete[] p;
448
449 return true;
450 }
451
452 // Set the final data size in a merged output section with fixed size
453 // constants.
454
455 void
456 Output_merge_data::set_final_data_size()
457 {
458 // Release the memory we don't need.
459 this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->len_));
460 // An Output_merge_data object may be empty and realloc is allowed
461 // to return a NULL pointer in this case. An Output_merge_data is empty
462 // if all its input sections have sizes that are not multiples of entsize.
463 gold_assert(this->p_ != NULL || this->len_ == 0);
464 this->set_data_size(this->len_);
465 }
466
467 // Write the data of a merged output section with fixed size constants
468 // to the file.
469
470 void
471 Output_merge_data::do_write(Output_file* of)
472 {
473 of->write(this->offset(), this->p_, this->len_);
474 }
475
476 // Write the data to a buffer.
477
478 void
479 Output_merge_data::do_write_to_buffer(unsigned char* buffer)
480 {
481 memcpy(buffer, this->p_, this->len_);
482 }
483
484 // Print merge stats to stderr.
485
486 void
487 Output_merge_data::do_print_merge_stats(const char* section_name)
488 {
489 fprintf(stderr,
490 _("%s: %s merged constants size: %lu; input: %zu; output: %zu\n"),
491 program_name, section_name,
492 static_cast<unsigned long>(this->entsize()),
493 this->input_count_, this->hashtable_.size());
494 }
495
496 // Class Output_merge_string.
497
498 // Add an input section to a merged string section.
499
500 template<typename Char_type>
501 bool
502 Output_merge_string<Char_type>::do_add_input_section(Relobj* object,
503 unsigned int shndx)
504 {
505 section_size_type sec_len;
506 bool is_new;
507 const unsigned char* pdata = object->decompressed_section_contents(shndx,
508 &sec_len,
509 &is_new);
510
511 const Char_type* p = reinterpret_cast<const Char_type*>(pdata);
512 const Char_type* pend = p + sec_len / sizeof(Char_type);
513 const Char_type* pend0 = pend;
514
515 if (sec_len % sizeof(Char_type) != 0)
516 {
517 object->error(_("mergeable string section length not multiple of "
518 "character size"));
519 if (is_new)
520 delete[] pdata;
521 return false;
522 }
523
524 if (pend[-1] != 0)
525 {
526 gold_warning(_("%s: last entry in mergeable string section '%s' "
527 "not null terminated"),
528 object->name().c_str(),
529 object->section_name(shndx).c_str());
530 // Find the end of the last NULL-terminated string in the buffer.
531 while (pend0 > p && pend0[-1] != 0)
532 --pend0;
533 }
534
535 Merged_strings_list* merged_strings_list =
536 new Merged_strings_list(object, shndx);
537 this->merged_strings_lists_.push_back(merged_strings_list);
538 Merged_strings& merged_strings = merged_strings_list->merged_strings;
539
540 // Count the number of non-null strings in the section and size the list.
541 size_t count = 0;
542 const Char_type* pt = p;
543 while (pt < pend0)
544 {
545 size_t len = string_length(pt);
546 if (len != 0)
547 ++count;
548 pt += len + 1;
549 }
550 if (pend0 < pend)
551 ++count;
552 merged_strings.reserve(count + 1);
553
554 // The index I is in bytes, not characters.
555 section_size_type i = 0;
556
557 // We assume here that the beginning of the section is correctly
558 // aligned, so each string within the section must retain the same
559 // modulo.
560 uintptr_t init_align_modulo = (reinterpret_cast<uintptr_t>(pdata)
561 & (this->addralign() - 1));
562 bool has_misaligned_strings = false;
563
564 while (p < pend)
565 {
566 size_t len = p < pend0 ? string_length(p) : pend - p;
567
568 // Within merge input section each string must be aligned.
569 if (len != 0
570 && ((reinterpret_cast<uintptr_t>(p) & (this->addralign() - 1))
571 != init_align_modulo))
572 has_misaligned_strings = true;
573
574 Stringpool::Key key;
575 this->stringpool_.add_with_length(p, len, true, &key);
576
577 merged_strings.push_back(Merged_string(i, key));
578 p += len + 1;
579 i += (len + 1) * sizeof(Char_type);
580 }
581
582 // Record the last offset in the input section so that we can
583 // compute the length of the last string.
584 merged_strings.push_back(Merged_string(i, 0));
585
586 this->input_count_ += count;
587 this->input_size_ += i;
588
589 if (has_misaligned_strings)
590 gold_warning(_("%s: section %s contains incorrectly aligned strings;"
591 " the alignment of those strings won't be preserved"),
592 object->name().c_str(),
593 object->section_name(shndx).c_str());
594
595 // For script processing, we keep the input sections.
596 if (this->keeps_input_sections())
597 record_input_section(object, shndx);
598
599 if (is_new)
600 delete[] pdata;
601
602 return true;
603 }
604
605 // Finalize the mappings from the input sections to the output
606 // section, and return the final data size.
607
608 template<typename Char_type>
609 section_size_type
610 Output_merge_string<Char_type>::finalize_merged_data()
611 {
612 this->stringpool_.set_string_offsets();
613
614 for (typename Merged_strings_lists::const_iterator l =
615 this->merged_strings_lists_.begin();
616 l != this->merged_strings_lists_.end();
617 ++l)
618 {
619 section_offset_type last_input_offset = 0;
620 section_offset_type last_output_offset = 0;
621 for (typename Merged_strings::const_iterator p =
622 (*l)->merged_strings.begin();
623 p != (*l)->merged_strings.end();
624 ++p)
625 {
626 section_size_type length = p->offset - last_input_offset;
627 if (length > 0)
628 this->add_mapping((*l)->object, (*l)->shndx, last_input_offset,
629 length, last_output_offset);
630 last_input_offset = p->offset;
631 if (p->stringpool_key != 0)
632 last_output_offset =
633 this->stringpool_.get_offset_from_key(p->stringpool_key);
634 }
635 delete *l;
636 }
637
638 // Save some memory. This also ensures that this function will work
639 // if called twice, as may happen if Layout::set_segment_offsets
640 // finds a better alignment.
641 this->merged_strings_lists_.clear();
642
643 return this->stringpool_.get_strtab_size();
644 }
645
646 template<typename Char_type>
647 void
648 Output_merge_string<Char_type>::set_final_data_size()
649 {
650 const off_t final_data_size = this->finalize_merged_data();
651 this->set_data_size(final_data_size);
652 }
653
654 // Write out a merged string section.
655
656 template<typename Char_type>
657 void
658 Output_merge_string<Char_type>::do_write(Output_file* of)
659 {
660 this->stringpool_.write(of, this->offset());
661 }
662
663 // Write a merged string section to a buffer.
664
665 template<typename Char_type>
666 void
667 Output_merge_string<Char_type>::do_write_to_buffer(unsigned char* buffer)
668 {
669 this->stringpool_.write_to_buffer(buffer, this->data_size());
670 }
671
672 // Return the name of the types of string to use with
673 // do_print_merge_stats.
674
675 template<typename Char_type>
676 const char*
677 Output_merge_string<Char_type>::string_name()
678 {
679 gold_unreachable();
680 return NULL;
681 }
682
683 template<>
684 const char*
685 Output_merge_string<char>::string_name()
686 {
687 return "strings";
688 }
689
690 template<>
691 const char*
692 Output_merge_string<uint16_t>::string_name()
693 {
694 return "16-bit strings";
695 }
696
697 template<>
698 const char*
699 Output_merge_string<uint32_t>::string_name()
700 {
701 return "32-bit strings";
702 }
703
704 // Print merge stats to stderr.
705
706 template<typename Char_type>
707 void
708 Output_merge_string<Char_type>::do_print_merge_stats(const char* section_name)
709 {
710 char buf[200];
711 snprintf(buf, sizeof buf, "%s merged %s", section_name, this->string_name());
712 fprintf(stderr, _("%s: %s input bytes: %zu\n"),
713 program_name, buf, this->input_size_);
714 fprintf(stderr, _("%s: %s input strings: %zu\n"),
715 program_name, buf, this->input_count_);
716 this->stringpool_.print_stats(buf);
717 }
718
719 // Instantiate the templates we need.
720
721 template
722 class Output_merge_string<char>;
723
724 template
725 class Output_merge_string<uint16_t>;
726
727 template
728 class Output_merge_string<uint32_t>;
729
730 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
731 template
732 void
733 Object_merge_map::initialize_input_to_output_map<32>(
734 unsigned int shndx,
735 elfcpp::Elf_types<32>::Elf_Addr starting_address,
736 Unordered_map<section_offset_type, elfcpp::Elf_types<32>::Elf_Addr>*);
737 #endif
738
739 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
740 template
741 void
742 Object_merge_map::initialize_input_to_output_map<64>(
743 unsigned int shndx,
744 elfcpp::Elf_types<64>::Elf_Addr starting_address,
745 Unordered_map<section_offset_type, elfcpp::Elf_types<64>::Elf_Addr>*);
746 #endif
747
748 } // End namespace gold.