PR 6048
[binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "cref.h"
37 #include "reloc.h"
38 #include "object.h"
39 #include "dynobj.h"
40
41 namespace gold
42 {
43
44 // Class Xindex.
45
46 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
47 // section and read it in. SYMTAB_SHNDX is the index of the symbol
48 // table we care about.
49
50 template<int size, bool big_endian>
51 void
52 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
53 {
54 if (!this->symtab_xindex_.empty())
55 return;
56
57 gold_assert(symtab_shndx != 0);
58
59 // Look through the sections in reverse order, on the theory that it
60 // is more likely to be near the end than the beginning.
61 unsigned int i = object->shnum();
62 while (i > 0)
63 {
64 --i;
65 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
66 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
67 {
68 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
69 return;
70 }
71 }
72
73 object->error(_("missing SHT_SYMTAB_SHNDX section"));
74 }
75
76 // Read in the symtab_xindex_ array, given the section index of the
77 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
78 // section headers.
79
80 template<int size, bool big_endian>
81 void
82 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
83 const unsigned char* pshdrs)
84 {
85 section_size_type bytecount;
86 const unsigned char* contents;
87 if (pshdrs == NULL)
88 contents = object->section_contents(xindex_shndx, &bytecount, false);
89 else
90 {
91 const unsigned char* p = (pshdrs
92 + (xindex_shndx
93 * elfcpp::Elf_sizes<size>::shdr_size));
94 typename elfcpp::Shdr<size, big_endian> shdr(p);
95 bytecount = convert_to_section_size_type(shdr.get_sh_size());
96 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
97 }
98
99 gold_assert(this->symtab_xindex_.empty());
100 this->symtab_xindex_.reserve(bytecount / 4);
101 for (section_size_type i = 0; i < bytecount; i += 4)
102 {
103 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
104 // We preadjust the section indexes we save.
105 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
106 }
107 }
108
109 // Symbol symndx has a section of SHN_XINDEX; return the real section
110 // index.
111
112 unsigned int
113 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
114 {
115 if (symndx >= this->symtab_xindex_.size())
116 {
117 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
118 symndx);
119 return elfcpp::SHN_UNDEF;
120 }
121 unsigned int shndx = this->symtab_xindex_[symndx];
122 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
123 {
124 object->error(_("extended index for symbol %u out of range: %u"),
125 symndx, shndx);
126 return elfcpp::SHN_UNDEF;
127 }
128 return shndx;
129 }
130
131 // Class Object.
132
133 // Set the target based on fields in the ELF file header.
134
135 void
136 Object::set_target(int machine, int size, bool big_endian, int osabi,
137 int abiversion)
138 {
139 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
140 if (target == NULL)
141 gold_fatal(_("%s: unsupported ELF machine number %d"),
142 this->name().c_str(), machine);
143 this->target_ = target;
144 }
145
146 // Report an error for this object file. This is used by the
147 // elfcpp::Elf_file interface, and also called by the Object code
148 // itself.
149
150 void
151 Object::error(const char* format, ...) const
152 {
153 va_list args;
154 va_start(args, format);
155 char* buf = NULL;
156 if (vasprintf(&buf, format, args) < 0)
157 gold_nomem();
158 va_end(args);
159 gold_error(_("%s: %s"), this->name().c_str(), buf);
160 free(buf);
161 }
162
163 // Return a view of the contents of a section.
164
165 const unsigned char*
166 Object::section_contents(unsigned int shndx, section_size_type* plen,
167 bool cache)
168 {
169 Location loc(this->do_section_contents(shndx));
170 *plen = convert_to_section_size_type(loc.data_size);
171 return this->get_view(loc.file_offset, *plen, true, cache);
172 }
173
174 // Read the section data into SD. This is code common to Sized_relobj
175 // and Sized_dynobj, so we put it into Object.
176
177 template<int size, bool big_endian>
178 void
179 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
180 Read_symbols_data* sd)
181 {
182 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
183
184 // Read the section headers.
185 const off_t shoff = elf_file->shoff();
186 const unsigned int shnum = this->shnum();
187 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
188 true, true);
189
190 // Read the section names.
191 const unsigned char* pshdrs = sd->section_headers->data();
192 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
193 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
194
195 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
196 this->error(_("section name section has wrong type: %u"),
197 static_cast<unsigned int>(shdrnames.get_sh_type()));
198
199 sd->section_names_size =
200 convert_to_section_size_type(shdrnames.get_sh_size());
201 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
202 sd->section_names_size, false,
203 false);
204 }
205
206 // If NAME is the name of a special .gnu.warning section, arrange for
207 // the warning to be issued. SHNDX is the section index. Return
208 // whether it is a warning section.
209
210 bool
211 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
212 Symbol_table* symtab)
213 {
214 const char warn_prefix[] = ".gnu.warning.";
215 const int warn_prefix_len = sizeof warn_prefix - 1;
216 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
217 {
218 // Read the section contents to get the warning text. It would
219 // be nicer if we only did this if we have to actually issue a
220 // warning. Unfortunately, warnings are issued as we relocate
221 // sections. That means that we can not lock the object then,
222 // as we might try to issue the same warning multiple times
223 // simultaneously.
224 section_size_type len;
225 const unsigned char* contents = this->section_contents(shndx, &len,
226 false);
227 std::string warning(reinterpret_cast<const char*>(contents), len);
228 symtab->add_warning(name + warn_prefix_len, this, warning);
229 return true;
230 }
231 return false;
232 }
233
234 // Class Sized_relobj.
235
236 template<int size, bool big_endian>
237 Sized_relobj<size, big_endian>::Sized_relobj(
238 const std::string& name,
239 Input_file* input_file,
240 off_t offset,
241 const elfcpp::Ehdr<size, big_endian>& ehdr)
242 : Relobj(name, input_file, offset),
243 elf_file_(this, ehdr),
244 symtab_shndx_(-1U),
245 local_symbol_count_(0),
246 output_local_symbol_count_(0),
247 output_local_dynsym_count_(0),
248 symbols_(),
249 defined_count_(0),
250 local_symbol_offset_(0),
251 local_dynsym_offset_(0),
252 local_values_(),
253 local_got_offsets_(),
254 kept_comdat_sections_(),
255 comdat_groups_(),
256 has_eh_frame_(false)
257 {
258 }
259
260 template<int size, bool big_endian>
261 Sized_relobj<size, big_endian>::~Sized_relobj()
262 {
263 }
264
265 // Set up an object file based on the file header. This sets up the
266 // target and reads the section information.
267
268 template<int size, bool big_endian>
269 void
270 Sized_relobj<size, big_endian>::setup(
271 const elfcpp::Ehdr<size, big_endian>& ehdr)
272 {
273 this->set_target(ehdr.get_e_machine(), size, big_endian,
274 ehdr.get_e_ident()[elfcpp::EI_OSABI],
275 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
276
277 const unsigned int shnum = this->elf_file_.shnum();
278 this->set_shnum(shnum);
279 }
280
281 // Find the SHT_SYMTAB section, given the section headers. The ELF
282 // standard says that maybe in the future there can be more than one
283 // SHT_SYMTAB section. Until somebody figures out how that could
284 // work, we assume there is only one.
285
286 template<int size, bool big_endian>
287 void
288 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
289 {
290 const unsigned int shnum = this->shnum();
291 this->symtab_shndx_ = 0;
292 if (shnum > 0)
293 {
294 // Look through the sections in reverse order, since gas tends
295 // to put the symbol table at the end.
296 const unsigned char* p = pshdrs + shnum * This::shdr_size;
297 unsigned int i = shnum;
298 unsigned int xindex_shndx = 0;
299 unsigned int xindex_link = 0;
300 while (i > 0)
301 {
302 --i;
303 p -= This::shdr_size;
304 typename This::Shdr shdr(p);
305 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
306 {
307 this->symtab_shndx_ = i;
308 if (xindex_shndx > 0 && xindex_link == i)
309 {
310 Xindex* xindex =
311 new Xindex(this->elf_file_.large_shndx_offset());
312 xindex->read_symtab_xindex<size, big_endian>(this,
313 xindex_shndx,
314 pshdrs);
315 this->set_xindex(xindex);
316 }
317 break;
318 }
319
320 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
321 // one. This will work if it follows the SHT_SYMTAB
322 // section.
323 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
324 {
325 xindex_shndx = i;
326 xindex_link = this->adjust_shndx(shdr.get_sh_link());
327 }
328 }
329 }
330 }
331
332 // Return the Xindex structure to use for object with lots of
333 // sections.
334
335 template<int size, bool big_endian>
336 Xindex*
337 Sized_relobj<size, big_endian>::do_initialize_xindex()
338 {
339 gold_assert(this->symtab_shndx_ != -1U);
340 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
341 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
342 return xindex;
343 }
344
345 // Return whether SHDR has the right type and flags to be a GNU
346 // .eh_frame section.
347
348 template<int size, bool big_endian>
349 bool
350 Sized_relobj<size, big_endian>::check_eh_frame_flags(
351 const elfcpp::Shdr<size, big_endian>* shdr) const
352 {
353 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
354 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
355 }
356
357 // Return whether there is a GNU .eh_frame section, given the section
358 // headers and the section names.
359
360 template<int size, bool big_endian>
361 bool
362 Sized_relobj<size, big_endian>::find_eh_frame(
363 const unsigned char* pshdrs,
364 const char* names,
365 section_size_type names_size) const
366 {
367 const unsigned int shnum = this->shnum();
368 const unsigned char* p = pshdrs + This::shdr_size;
369 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
370 {
371 typename This::Shdr shdr(p);
372 if (this->check_eh_frame_flags(&shdr))
373 {
374 if (shdr.get_sh_name() >= names_size)
375 {
376 this->error(_("bad section name offset for section %u: %lu"),
377 i, static_cast<unsigned long>(shdr.get_sh_name()));
378 continue;
379 }
380
381 const char* name = names + shdr.get_sh_name();
382 if (strcmp(name, ".eh_frame") == 0)
383 return true;
384 }
385 }
386 return false;
387 }
388
389 // Read the sections and symbols from an object file.
390
391 template<int size, bool big_endian>
392 void
393 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
394 {
395 this->read_section_data(&this->elf_file_, sd);
396
397 const unsigned char* const pshdrs = sd->section_headers->data();
398
399 this->find_symtab(pshdrs);
400
401 const unsigned char* namesu = sd->section_names->data();
402 const char* names = reinterpret_cast<const char*>(namesu);
403 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
404 {
405 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
406 this->has_eh_frame_ = true;
407 }
408
409 sd->symbols = NULL;
410 sd->symbols_size = 0;
411 sd->external_symbols_offset = 0;
412 sd->symbol_names = NULL;
413 sd->symbol_names_size = 0;
414
415 if (this->symtab_shndx_ == 0)
416 {
417 // No symbol table. Weird but legal.
418 return;
419 }
420
421 // Get the symbol table section header.
422 typename This::Shdr symtabshdr(pshdrs
423 + this->symtab_shndx_ * This::shdr_size);
424 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
425
426 // If this object has a .eh_frame section, we need all the symbols.
427 // Otherwise we only need the external symbols. While it would be
428 // simpler to just always read all the symbols, I've seen object
429 // files with well over 2000 local symbols, which for a 64-bit
430 // object file format is over 5 pages that we don't need to read
431 // now.
432
433 const int sym_size = This::sym_size;
434 const unsigned int loccount = symtabshdr.get_sh_info();
435 this->local_symbol_count_ = loccount;
436 this->local_values_.resize(loccount);
437 section_offset_type locsize = loccount * sym_size;
438 off_t dataoff = symtabshdr.get_sh_offset();
439 section_size_type datasize =
440 convert_to_section_size_type(symtabshdr.get_sh_size());
441 off_t extoff = dataoff + locsize;
442 section_size_type extsize = datasize - locsize;
443
444 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
445 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
446
447 if (readsize == 0)
448 {
449 // No external symbols. Also weird but also legal.
450 return;
451 }
452
453 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
454
455 // Read the section header for the symbol names.
456 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
457 if (strtab_shndx >= this->shnum())
458 {
459 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
460 return;
461 }
462 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
463 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
464 {
465 this->error(_("symbol table name section has wrong type: %u"),
466 static_cast<unsigned int>(strtabshdr.get_sh_type()));
467 return;
468 }
469
470 // Read the symbol names.
471 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
472 strtabshdr.get_sh_size(),
473 false, true);
474
475 sd->symbols = fvsymtab;
476 sd->symbols_size = readsize;
477 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
478 sd->symbol_names = fvstrtab;
479 sd->symbol_names_size =
480 convert_to_section_size_type(strtabshdr.get_sh_size());
481 }
482
483 // Return the section index of symbol SYM. Set *VALUE to its value in
484 // the object file. Set *IS_ORDINARY if this is an ordinary section
485 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
486 // Note that for a symbol which is not defined in this object file,
487 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
488 // the final value of the symbol in the link.
489
490 template<int size, bool big_endian>
491 unsigned int
492 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
493 Address* value,
494 bool* is_ordinary)
495 {
496 section_size_type symbols_size;
497 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
498 &symbols_size,
499 false);
500
501 const size_t count = symbols_size / This::sym_size;
502 gold_assert(sym < count);
503
504 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
505 *value = elfsym.get_st_value();
506
507 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
508 }
509
510 // Return whether to include a section group in the link. LAYOUT is
511 // used to keep track of which section groups we have already seen.
512 // INDEX is the index of the section group and SHDR is the section
513 // header. If we do not want to include this group, we set bits in
514 // OMIT for each section which should be discarded.
515
516 template<int size, bool big_endian>
517 bool
518 Sized_relobj<size, big_endian>::include_section_group(
519 Symbol_table* symtab,
520 Layout* layout,
521 unsigned int index,
522 const char* name,
523 const unsigned char* shdrs,
524 const char* section_names,
525 section_size_type section_names_size,
526 std::vector<bool>* omit)
527 {
528 // Read the section contents.
529 typename This::Shdr shdr(shdrs + index * This::shdr_size);
530 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
531 shdr.get_sh_size(), true, false);
532 const elfcpp::Elf_Word* pword =
533 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
534
535 // The first word contains flags. We only care about COMDAT section
536 // groups. Other section groups are always included in the link
537 // just like ordinary sections.
538 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
539
540 // Look up the group signature, which is the name of a symbol. This
541 // is a lot of effort to go to to read a string. Why didn't they
542 // just have the group signature point into the string table, rather
543 // than indirect through a symbol?
544
545 // Get the appropriate symbol table header (this will normally be
546 // the single SHT_SYMTAB section, but in principle it need not be).
547 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
548 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
549
550 // Read the symbol table entry.
551 unsigned int symndx = shdr.get_sh_info();
552 if (symndx >= symshdr.get_sh_size() / This::sym_size)
553 {
554 this->error(_("section group %u info %u out of range"),
555 index, symndx);
556 return false;
557 }
558 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
559 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
560 false);
561 elfcpp::Sym<size, big_endian> sym(psym);
562
563 // Read the symbol table names.
564 section_size_type symnamelen;
565 const unsigned char* psymnamesu;
566 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
567 &symnamelen, true);
568 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
569
570 // Get the section group signature.
571 if (sym.get_st_name() >= symnamelen)
572 {
573 this->error(_("symbol %u name offset %u out of range"),
574 symndx, sym.get_st_name());
575 return false;
576 }
577
578 std::string signature(psymnames + sym.get_st_name());
579
580 // It seems that some versions of gas will create a section group
581 // associated with a section symbol, and then fail to give a name to
582 // the section symbol. In such a case, use the name of the section.
583 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
584 {
585 bool is_ordinary;
586 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
587 sym.get_st_shndx(),
588 &is_ordinary);
589 if (!is_ordinary || sym_shndx >= this->shnum())
590 {
591 this->error(_("symbol %u invalid section index %u"),
592 symndx, sym_shndx);
593 return false;
594 }
595 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
596 if (member_shdr.get_sh_name() < section_names_size)
597 signature = section_names + member_shdr.get_sh_name();
598 }
599
600 // Record this section group in the layout, and see whether we've already
601 // seen one with the same signature.
602 bool include_group = ((flags & elfcpp::GRP_COMDAT) == 0
603 || layout->add_comdat(this, index, signature, true));
604
605 Sized_relobj<size, big_endian>* kept_object = NULL;
606 Comdat_group* kept_group = NULL;
607
608 if (!include_group)
609 {
610 // This group is being discarded. Find the object and group
611 // that was kept in its place.
612 unsigned int kept_group_index = 0;
613 Relobj* kept_relobj = layout->find_kept_object(signature,
614 &kept_group_index);
615 kept_object = static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
616 if (kept_object != NULL)
617 kept_group = kept_object->find_comdat_group(kept_group_index);
618 }
619 else if (flags & elfcpp::GRP_COMDAT)
620 {
621 // This group is being kept. Create the table to map section names
622 // to section indexes and add it to the table of groups.
623 kept_group = new Comdat_group();
624 this->add_comdat_group(index, kept_group);
625 }
626
627 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
628
629 std::vector<unsigned int> shndxes;
630 bool relocate_group = include_group && parameters->options().relocatable();
631 if (relocate_group)
632 shndxes.reserve(count - 1);
633
634 for (size_t i = 1; i < count; ++i)
635 {
636 elfcpp::Elf_Word secnum =
637 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
638
639 if (relocate_group)
640 shndxes.push_back(secnum);
641
642 if (secnum >= this->shnum())
643 {
644 this->error(_("section %u in section group %u out of range"),
645 secnum, index);
646 continue;
647 }
648
649 // Check for an earlier section number, since we're going to get
650 // it wrong--we may have already decided to include the section.
651 if (secnum < index)
652 this->error(_("invalid section group %u refers to earlier section %u"),
653 index, secnum);
654
655 // Get the name of the member section.
656 typename This::Shdr member_shdr(shdrs + secnum * This::shdr_size);
657 if (member_shdr.get_sh_name() >= section_names_size)
658 {
659 // This is an error, but it will be diagnosed eventually
660 // in do_layout, so we don't need to do anything here but
661 // ignore it.
662 continue;
663 }
664 std::string mname(section_names + member_shdr.get_sh_name());
665
666 if (!include_group)
667 {
668 (*omit)[secnum] = true;
669 if (kept_group != NULL)
670 {
671 // Find the corresponding kept section, and store that info
672 // in the discarded section table.
673 Comdat_group::const_iterator p = kept_group->find(mname);
674 if (p != kept_group->end())
675 {
676 Kept_comdat_section* kept =
677 new Kept_comdat_section(kept_object, p->second);
678 this->set_kept_comdat_section(secnum, kept);
679 }
680 }
681 }
682 else if (flags & elfcpp::GRP_COMDAT)
683 {
684 // Add the section to the kept group table.
685 gold_assert(kept_group != NULL);
686 kept_group->insert(std::make_pair(mname, secnum));
687 }
688 }
689
690 if (relocate_group)
691 layout->layout_group(symtab, this, index, name, signature.c_str(),
692 shdr, flags, &shndxes);
693
694 return include_group;
695 }
696
697 // Whether to include a linkonce section in the link. NAME is the
698 // name of the section and SHDR is the section header.
699
700 // Linkonce sections are a GNU extension implemented in the original
701 // GNU linker before section groups were defined. The semantics are
702 // that we only include one linkonce section with a given name. The
703 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
704 // where T is the type of section and SYMNAME is the name of a symbol.
705 // In an attempt to make linkonce sections interact well with section
706 // groups, we try to identify SYMNAME and use it like a section group
707 // signature. We want to block section groups with that signature,
708 // but not other linkonce sections with that signature. We also use
709 // the full name of the linkonce section as a normal section group
710 // signature.
711
712 template<int size, bool big_endian>
713 bool
714 Sized_relobj<size, big_endian>::include_linkonce_section(
715 Layout* layout,
716 unsigned int index,
717 const char* name,
718 const elfcpp::Shdr<size, big_endian>&)
719 {
720 // In general the symbol name we want will be the string following
721 // the last '.'. However, we have to handle the case of
722 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
723 // some versions of gcc. So we use a heuristic: if the name starts
724 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
725 // we look for the last '.'. We can't always simply skip
726 // ".gnu.linkonce.X", because we have to deal with cases like
727 // ".gnu.linkonce.d.rel.ro.local".
728 const char* const linkonce_t = ".gnu.linkonce.t.";
729 const char* symname;
730 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
731 symname = name + strlen(linkonce_t);
732 else
733 symname = strrchr(name, '.') + 1;
734 std::string sig1(symname);
735 std::string sig2(name);
736 bool include1 = layout->add_comdat(this, index, sig1, false);
737 bool include2 = layout->add_comdat(this, index, sig2, true);
738
739 if (!include2)
740 {
741 // The section is being discarded on the basis of its section
742 // name (i.e., the kept section was also a linkonce section).
743 // In this case, the section index stored with the layout object
744 // is the linkonce section that was kept.
745 unsigned int kept_group_index = 0;
746 Relobj* kept_relobj = layout->find_kept_object(sig2, &kept_group_index);
747 if (kept_relobj != NULL)
748 {
749 Sized_relobj<size, big_endian>* kept_object
750 = static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
751 Kept_comdat_section* kept =
752 new Kept_comdat_section(kept_object, kept_group_index);
753 this->set_kept_comdat_section(index, kept);
754 }
755 }
756 else if (!include1)
757 {
758 // The section is being discarded on the basis of its symbol
759 // name. This means that the corresponding kept section was
760 // part of a comdat group, and it will be difficult to identify
761 // the specific section within that group that corresponds to
762 // this linkonce section. We'll handle the simple case where
763 // the group has only one member section. Otherwise, it's not
764 // worth the effort.
765 unsigned int kept_group_index = 0;
766 Relobj* kept_relobj = layout->find_kept_object(sig1, &kept_group_index);
767 if (kept_relobj != NULL)
768 {
769 Sized_relobj<size, big_endian>* kept_object =
770 static_cast<Sized_relobj<size, big_endian>*>(kept_relobj);
771 Comdat_group* kept_group =
772 kept_object->find_comdat_group(kept_group_index);
773 if (kept_group != NULL && kept_group->size() == 1)
774 {
775 Comdat_group::const_iterator p = kept_group->begin();
776 gold_assert(p != kept_group->end());
777 Kept_comdat_section* kept =
778 new Kept_comdat_section(kept_object, p->second);
779 this->set_kept_comdat_section(index, kept);
780 }
781 }
782 }
783
784 return include1 && include2;
785 }
786
787 // Lay out the input sections. We walk through the sections and check
788 // whether they should be included in the link. If they should, we
789 // pass them to the Layout object, which will return an output section
790 // and an offset.
791
792 template<int size, bool big_endian>
793 void
794 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
795 Layout* layout,
796 Read_symbols_data* sd)
797 {
798 const unsigned int shnum = this->shnum();
799 if (shnum == 0)
800 return;
801
802 // Get the section headers.
803 const unsigned char* shdrs = sd->section_headers->data();
804 const unsigned char* pshdrs;
805
806 // Get the section names.
807 const unsigned char* pnamesu = sd->section_names->data();
808 const char* pnames = reinterpret_cast<const char*>(pnamesu);
809
810 // For each section, record the index of the reloc section if any.
811 // Use 0 to mean that there is no reloc section, -1U to mean that
812 // there is more than one.
813 std::vector<unsigned int> reloc_shndx(shnum, 0);
814 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
815 // Skip the first, dummy, section.
816 pshdrs = shdrs + This::shdr_size;
817 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
818 {
819 typename This::Shdr shdr(pshdrs);
820
821 unsigned int sh_type = shdr.get_sh_type();
822 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
823 {
824 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
825 if (target_shndx == 0 || target_shndx >= shnum)
826 {
827 this->error(_("relocation section %u has bad info %u"),
828 i, target_shndx);
829 continue;
830 }
831
832 if (reloc_shndx[target_shndx] != 0)
833 reloc_shndx[target_shndx] = -1U;
834 else
835 {
836 reloc_shndx[target_shndx] = i;
837 reloc_type[target_shndx] = sh_type;
838 }
839 }
840 }
841
842 Output_sections& out_sections(this->output_sections());
843 std::vector<Address>& out_section_offsets(this->section_offsets_);
844
845 out_sections.resize(shnum);
846 out_section_offsets.resize(shnum);
847
848 // If we are only linking for symbols, then there is nothing else to
849 // do here.
850 if (this->input_file()->just_symbols())
851 {
852 delete sd->section_headers;
853 sd->section_headers = NULL;
854 delete sd->section_names;
855 sd->section_names = NULL;
856 return;
857 }
858
859 // Whether we've seen a .note.GNU-stack section.
860 bool seen_gnu_stack = false;
861 // The flags of a .note.GNU-stack section.
862 uint64_t gnu_stack_flags = 0;
863
864 // Keep track of which sections to omit.
865 std::vector<bool> omit(shnum, false);
866
867 // Keep track of reloc sections when emitting relocations.
868 const bool relocatable = parameters->options().relocatable();
869 const bool emit_relocs = (relocatable
870 || parameters->options().emit_relocs());
871 std::vector<unsigned int> reloc_sections;
872
873 // Keep track of .eh_frame sections.
874 std::vector<unsigned int> eh_frame_sections;
875
876 // Skip the first, dummy, section.
877 pshdrs = shdrs + This::shdr_size;
878 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
879 {
880 typename This::Shdr shdr(pshdrs);
881
882 if (shdr.get_sh_name() >= sd->section_names_size)
883 {
884 this->error(_("bad section name offset for section %u: %lu"),
885 i, static_cast<unsigned long>(shdr.get_sh_name()));
886 return;
887 }
888
889 const char* name = pnames + shdr.get_sh_name();
890
891 if (this->handle_gnu_warning_section(name, i, symtab))
892 {
893 if (!relocatable)
894 omit[i] = true;
895 }
896
897 // The .note.GNU-stack section is special. It gives the
898 // protection flags that this object file requires for the stack
899 // in memory.
900 if (strcmp(name, ".note.GNU-stack") == 0)
901 {
902 seen_gnu_stack = true;
903 gnu_stack_flags |= shdr.get_sh_flags();
904 omit[i] = true;
905 }
906
907 bool discard = omit[i];
908 if (!discard)
909 {
910 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
911 {
912 if (!this->include_section_group(symtab, layout, i, name, shdrs,
913 pnames, sd->section_names_size,
914 &omit))
915 discard = true;
916 }
917 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
918 && Layout::is_linkonce(name))
919 {
920 if (!this->include_linkonce_section(layout, i, name, shdr))
921 discard = true;
922 }
923 }
924
925 if (discard)
926 {
927 // Do not include this section in the link.
928 out_sections[i] = NULL;
929 out_section_offsets[i] = -1U;
930 continue;
931 }
932
933 // When doing a relocatable link we are going to copy input
934 // reloc sections into the output. We only want to copy the
935 // ones associated with sections which are not being discarded.
936 // However, we don't know that yet for all sections. So save
937 // reloc sections and process them later.
938 if (emit_relocs
939 && (shdr.get_sh_type() == elfcpp::SHT_REL
940 || shdr.get_sh_type() == elfcpp::SHT_RELA))
941 {
942 reloc_sections.push_back(i);
943 continue;
944 }
945
946 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
947 continue;
948
949 // The .eh_frame section is special. It holds exception frame
950 // information that we need to read in order to generate the
951 // exception frame header. We process these after all the other
952 // sections so that the exception frame reader can reliably
953 // determine which sections are being discarded, and discard the
954 // corresponding information.
955 if (!relocatable
956 && strcmp(name, ".eh_frame") == 0
957 && this->check_eh_frame_flags(&shdr))
958 {
959 eh_frame_sections.push_back(i);
960 continue;
961 }
962
963 off_t offset;
964 Output_section* os = layout->layout(this, i, name, shdr,
965 reloc_shndx[i], reloc_type[i],
966 &offset);
967
968 out_sections[i] = os;
969 if (offset == -1)
970 out_section_offsets[i] = -1U;
971 else
972 out_section_offsets[i] = convert_types<Address, off_t>(offset);
973
974 // If this section requires special handling, and if there are
975 // relocs that apply to it, then we must do the special handling
976 // before we apply the relocs.
977 if (offset == -1 && reloc_shndx[i] != 0)
978 this->set_relocs_must_follow_section_writes();
979 }
980
981 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
982
983 // When doing a relocatable link handle the reloc sections at the
984 // end.
985 if (emit_relocs)
986 this->size_relocatable_relocs();
987 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
988 p != reloc_sections.end();
989 ++p)
990 {
991 unsigned int i = *p;
992 const unsigned char* pshdr;
993 pshdr = sd->section_headers->data() + i * This::shdr_size;
994 typename This::Shdr shdr(pshdr);
995
996 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
997 if (data_shndx >= shnum)
998 {
999 // We already warned about this above.
1000 continue;
1001 }
1002
1003 Output_section* data_section = out_sections[data_shndx];
1004 if (data_section == NULL)
1005 {
1006 out_sections[i] = NULL;
1007 out_section_offsets[i] = -1U;
1008 continue;
1009 }
1010
1011 Relocatable_relocs* rr = new Relocatable_relocs();
1012 this->set_relocatable_relocs(i, rr);
1013
1014 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1015 rr);
1016 out_sections[i] = os;
1017 out_section_offsets[i] = -1U;
1018 }
1019
1020 // Handle the .eh_frame sections at the end.
1021 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1022 p != eh_frame_sections.end();
1023 ++p)
1024 {
1025 gold_assert(this->has_eh_frame_);
1026 gold_assert(sd->external_symbols_offset != 0);
1027
1028 unsigned int i = *p;
1029 const unsigned char *pshdr;
1030 pshdr = sd->section_headers->data() + i * This::shdr_size;
1031 typename This::Shdr shdr(pshdr);
1032
1033 off_t offset;
1034 Output_section* os = layout->layout_eh_frame(this,
1035 sd->symbols->data(),
1036 sd->symbols_size,
1037 sd->symbol_names->data(),
1038 sd->symbol_names_size,
1039 i, shdr,
1040 reloc_shndx[i],
1041 reloc_type[i],
1042 &offset);
1043 out_sections[i] = os;
1044 if (offset == -1)
1045 out_section_offsets[i] = -1U;
1046 else
1047 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1048
1049 // If this section requires special handling, and if there are
1050 // relocs that apply to it, then we must do the special handling
1051 // before we apply the relocs.
1052 if (offset == -1 && reloc_shndx[i] != 0)
1053 this->set_relocs_must_follow_section_writes();
1054 }
1055
1056 delete sd->section_headers;
1057 sd->section_headers = NULL;
1058 delete sd->section_names;
1059 sd->section_names = NULL;
1060 }
1061
1062 // Add the symbols to the symbol table.
1063
1064 template<int size, bool big_endian>
1065 void
1066 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1067 Read_symbols_data* sd)
1068 {
1069 if (sd->symbols == NULL)
1070 {
1071 gold_assert(sd->symbol_names == NULL);
1072 return;
1073 }
1074
1075 const int sym_size = This::sym_size;
1076 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1077 / sym_size);
1078 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1079 {
1080 this->error(_("size of symbols is not multiple of symbol size"));
1081 return;
1082 }
1083
1084 this->symbols_.resize(symcount);
1085
1086 const char* sym_names =
1087 reinterpret_cast<const char*>(sd->symbol_names->data());
1088 symtab->add_from_relobj(this,
1089 sd->symbols->data() + sd->external_symbols_offset,
1090 symcount, this->local_symbol_count_,
1091 sym_names, sd->symbol_names_size,
1092 &this->symbols_,
1093 &this->defined_count_);
1094
1095 delete sd->symbols;
1096 sd->symbols = NULL;
1097 delete sd->symbol_names;
1098 sd->symbol_names = NULL;
1099 }
1100
1101 // First pass over the local symbols. Here we add their names to
1102 // *POOL and *DYNPOOL, and we store the symbol value in
1103 // THIS->LOCAL_VALUES_. This function is always called from a
1104 // singleton thread. This is followed by a call to
1105 // finalize_local_symbols.
1106
1107 template<int size, bool big_endian>
1108 void
1109 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1110 Stringpool* dynpool)
1111 {
1112 gold_assert(this->symtab_shndx_ != -1U);
1113 if (this->symtab_shndx_ == 0)
1114 {
1115 // This object has no symbols. Weird but legal.
1116 return;
1117 }
1118
1119 // Read the symbol table section header.
1120 const unsigned int symtab_shndx = this->symtab_shndx_;
1121 typename This::Shdr symtabshdr(this,
1122 this->elf_file_.section_header(symtab_shndx));
1123 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1124
1125 // Read the local symbols.
1126 const int sym_size = This::sym_size;
1127 const unsigned int loccount = this->local_symbol_count_;
1128 gold_assert(loccount == symtabshdr.get_sh_info());
1129 off_t locsize = loccount * sym_size;
1130 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1131 locsize, true, true);
1132
1133 // Read the symbol names.
1134 const unsigned int strtab_shndx =
1135 this->adjust_shndx(symtabshdr.get_sh_link());
1136 section_size_type strtab_size;
1137 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1138 &strtab_size,
1139 true);
1140 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1141
1142 // Loop over the local symbols.
1143
1144 const Output_sections& out_sections(this->output_sections());
1145 unsigned int shnum = this->shnum();
1146 unsigned int count = 0;
1147 unsigned int dyncount = 0;
1148 // Skip the first, dummy, symbol.
1149 psyms += sym_size;
1150 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1151 {
1152 elfcpp::Sym<size, big_endian> sym(psyms);
1153
1154 Symbol_value<size>& lv(this->local_values_[i]);
1155
1156 bool is_ordinary;
1157 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1158 &is_ordinary);
1159 lv.set_input_shndx(shndx, is_ordinary);
1160
1161 if (sym.get_st_type() == elfcpp::STT_SECTION)
1162 lv.set_is_section_symbol();
1163 else if (sym.get_st_type() == elfcpp::STT_TLS)
1164 lv.set_is_tls_symbol();
1165
1166 // Save the input symbol value for use in do_finalize_local_symbols().
1167 lv.set_input_value(sym.get_st_value());
1168
1169 // Decide whether this symbol should go into the output file.
1170
1171 if (shndx < shnum && out_sections[shndx] == NULL)
1172 {
1173 lv.set_no_output_symtab_entry();
1174 gold_assert(!lv.needs_output_dynsym_entry());
1175 continue;
1176 }
1177
1178 if (sym.get_st_type() == elfcpp::STT_SECTION)
1179 {
1180 lv.set_no_output_symtab_entry();
1181 gold_assert(!lv.needs_output_dynsym_entry());
1182 continue;
1183 }
1184
1185 if (sym.get_st_name() >= strtab_size)
1186 {
1187 this->error(_("local symbol %u section name out of range: %u >= %u"),
1188 i, sym.get_st_name(),
1189 static_cast<unsigned int>(strtab_size));
1190 lv.set_no_output_symtab_entry();
1191 continue;
1192 }
1193
1194 // Add the symbol to the symbol table string pool.
1195 const char* name = pnames + sym.get_st_name();
1196 pool->add(name, true, NULL);
1197 ++count;
1198
1199 // If needed, add the symbol to the dynamic symbol table string pool.
1200 if (lv.needs_output_dynsym_entry())
1201 {
1202 dynpool->add(name, true, NULL);
1203 ++dyncount;
1204 }
1205 }
1206
1207 this->output_local_symbol_count_ = count;
1208 this->output_local_dynsym_count_ = dyncount;
1209 }
1210
1211 // Finalize the local symbols. Here we set the final value in
1212 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1213 // This function is always called from a singleton thread. The actual
1214 // output of the local symbols will occur in a separate task.
1215
1216 template<int size, bool big_endian>
1217 unsigned int
1218 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1219 off_t off)
1220 {
1221 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1222
1223 const unsigned int loccount = this->local_symbol_count_;
1224 this->local_symbol_offset_ = off;
1225
1226 const Output_sections& out_sections(this->output_sections());
1227 const std::vector<Address>& out_offsets(this->section_offsets_);
1228 unsigned int shnum = this->shnum();
1229
1230 for (unsigned int i = 1; i < loccount; ++i)
1231 {
1232 Symbol_value<size>& lv(this->local_values_[i]);
1233
1234 bool is_ordinary;
1235 unsigned int shndx = lv.input_shndx(&is_ordinary);
1236
1237 // Set the output symbol value.
1238
1239 if (!is_ordinary)
1240 {
1241 if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1242 lv.set_output_value(lv.input_value());
1243 else
1244 {
1245 this->error(_("unknown section index %u for local symbol %u"),
1246 shndx, i);
1247 lv.set_output_value(0);
1248 }
1249 }
1250 else
1251 {
1252 if (shndx >= shnum)
1253 {
1254 this->error(_("local symbol %u section index %u out of range"),
1255 i, shndx);
1256 shndx = 0;
1257 }
1258
1259 Output_section* os = out_sections[shndx];
1260
1261 if (os == NULL)
1262 {
1263 // This local symbol belongs to a section we are discarding.
1264 // In some cases when applying relocations later, we will
1265 // attempt to match it to the corresponding kept section,
1266 // so we leave the input value unchanged here.
1267 continue;
1268 }
1269 else if (out_offsets[shndx] == -1U)
1270 {
1271 // This is a SHF_MERGE section or one which otherwise
1272 // requires special handling. We get the output address
1273 // of the start of the merged section. If this is not a
1274 // section symbol, we can then determine the final
1275 // value. If it is a section symbol, we can not, as in
1276 // that case we have to consider the addend to determine
1277 // the value to use in a relocation.
1278 if (!lv.is_section_symbol())
1279 lv.set_output_value(os->output_address(this, shndx,
1280 lv.input_value()));
1281 else
1282 {
1283 section_offset_type start =
1284 os->starting_output_address(this, shndx);
1285 Merged_symbol_value<size>* msv =
1286 new Merged_symbol_value<size>(lv.input_value(), start);
1287 lv.set_merged_symbol_value(msv);
1288 }
1289 }
1290 else if (lv.is_tls_symbol())
1291 lv.set_output_value(os->tls_offset()
1292 + out_offsets[shndx]
1293 + lv.input_value());
1294 else
1295 lv.set_output_value(os->address()
1296 + out_offsets[shndx]
1297 + lv.input_value());
1298 }
1299
1300 if (lv.needs_output_symtab_entry())
1301 {
1302 lv.set_output_symtab_index(index);
1303 ++index;
1304 }
1305 }
1306 return index;
1307 }
1308
1309 // Set the output dynamic symbol table indexes for the local variables.
1310
1311 template<int size, bool big_endian>
1312 unsigned int
1313 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1314 {
1315 const unsigned int loccount = this->local_symbol_count_;
1316 for (unsigned int i = 1; i < loccount; ++i)
1317 {
1318 Symbol_value<size>& lv(this->local_values_[i]);
1319 if (lv.needs_output_dynsym_entry())
1320 {
1321 lv.set_output_dynsym_index(index);
1322 ++index;
1323 }
1324 }
1325 return index;
1326 }
1327
1328 // Set the offset where local dynamic symbol information will be stored.
1329 // Returns the count of local symbols contributed to the symbol table by
1330 // this object.
1331
1332 template<int size, bool big_endian>
1333 unsigned int
1334 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1335 {
1336 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1337 this->local_dynsym_offset_ = off;
1338 return this->output_local_dynsym_count_;
1339 }
1340
1341 // Write out the local symbols.
1342
1343 template<int size, bool big_endian>
1344 void
1345 Sized_relobj<size, big_endian>::write_local_symbols(
1346 Output_file* of,
1347 const Stringpool* sympool,
1348 const Stringpool* dynpool,
1349 Output_symtab_xindex* symtab_xindex,
1350 Output_symtab_xindex* dynsym_xindex)
1351 {
1352 if (parameters->options().strip_all()
1353 && this->output_local_dynsym_count_ == 0)
1354 return;
1355
1356 gold_assert(this->symtab_shndx_ != -1U);
1357 if (this->symtab_shndx_ == 0)
1358 {
1359 // This object has no symbols. Weird but legal.
1360 return;
1361 }
1362
1363 // Read the symbol table section header.
1364 const unsigned int symtab_shndx = this->symtab_shndx_;
1365 typename This::Shdr symtabshdr(this,
1366 this->elf_file_.section_header(symtab_shndx));
1367 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1368 const unsigned int loccount = this->local_symbol_count_;
1369 gold_assert(loccount == symtabshdr.get_sh_info());
1370
1371 // Read the local symbols.
1372 const int sym_size = This::sym_size;
1373 off_t locsize = loccount * sym_size;
1374 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1375 locsize, true, false);
1376
1377 // Read the symbol names.
1378 const unsigned int strtab_shndx =
1379 this->adjust_shndx(symtabshdr.get_sh_link());
1380 section_size_type strtab_size;
1381 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1382 &strtab_size,
1383 false);
1384 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1385
1386 // Get views into the output file for the portions of the symbol table
1387 // and the dynamic symbol table that we will be writing.
1388 off_t output_size = this->output_local_symbol_count_ * sym_size;
1389 unsigned char* oview = NULL;
1390 if (output_size > 0)
1391 oview = of->get_output_view(this->local_symbol_offset_, output_size);
1392
1393 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1394 unsigned char* dyn_oview = NULL;
1395 if (dyn_output_size > 0)
1396 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1397 dyn_output_size);
1398
1399 const Output_sections out_sections(this->output_sections());
1400
1401 gold_assert(this->local_values_.size() == loccount);
1402
1403 unsigned char* ov = oview;
1404 unsigned char* dyn_ov = dyn_oview;
1405 psyms += sym_size;
1406 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1407 {
1408 elfcpp::Sym<size, big_endian> isym(psyms);
1409
1410 Symbol_value<size>& lv(this->local_values_[i]);
1411
1412 bool is_ordinary;
1413 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1414 &is_ordinary);
1415 if (is_ordinary)
1416 {
1417 gold_assert(st_shndx < out_sections.size());
1418 if (out_sections[st_shndx] == NULL)
1419 continue;
1420 st_shndx = out_sections[st_shndx]->out_shndx();
1421 if (st_shndx >= elfcpp::SHN_LORESERVE)
1422 {
1423 if (lv.needs_output_symtab_entry())
1424 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1425 if (lv.needs_output_dynsym_entry())
1426 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1427 st_shndx = elfcpp::SHN_XINDEX;
1428 }
1429 }
1430
1431 // Write the symbol to the output symbol table.
1432 if (!parameters->options().strip_all()
1433 && lv.needs_output_symtab_entry())
1434 {
1435 elfcpp::Sym_write<size, big_endian> osym(ov);
1436
1437 gold_assert(isym.get_st_name() < strtab_size);
1438 const char* name = pnames + isym.get_st_name();
1439 osym.put_st_name(sympool->get_offset(name));
1440 osym.put_st_value(this->local_values_[i].value(this, 0));
1441 osym.put_st_size(isym.get_st_size());
1442 osym.put_st_info(isym.get_st_info());
1443 osym.put_st_other(isym.get_st_other());
1444 osym.put_st_shndx(st_shndx);
1445
1446 ov += sym_size;
1447 }
1448
1449 // Write the symbol to the output dynamic symbol table.
1450 if (lv.needs_output_dynsym_entry())
1451 {
1452 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1453 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1454
1455 gold_assert(isym.get_st_name() < strtab_size);
1456 const char* name = pnames + isym.get_st_name();
1457 osym.put_st_name(dynpool->get_offset(name));
1458 osym.put_st_value(this->local_values_[i].value(this, 0));
1459 osym.put_st_size(isym.get_st_size());
1460 osym.put_st_info(isym.get_st_info());
1461 osym.put_st_other(isym.get_st_other());
1462 osym.put_st_shndx(st_shndx);
1463
1464 dyn_ov += sym_size;
1465 }
1466 }
1467
1468
1469 if (output_size > 0)
1470 {
1471 gold_assert(ov - oview == output_size);
1472 of->write_output_view(this->local_symbol_offset_, output_size, oview);
1473 }
1474
1475 if (dyn_output_size > 0)
1476 {
1477 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1478 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1479 dyn_oview);
1480 }
1481 }
1482
1483 // Set *INFO to symbolic information about the offset OFFSET in the
1484 // section SHNDX. Return true if we found something, false if we
1485 // found nothing.
1486
1487 template<int size, bool big_endian>
1488 bool
1489 Sized_relobj<size, big_endian>::get_symbol_location_info(
1490 unsigned int shndx,
1491 off_t offset,
1492 Symbol_location_info* info)
1493 {
1494 if (this->symtab_shndx_ == 0)
1495 return false;
1496
1497 section_size_type symbols_size;
1498 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1499 &symbols_size,
1500 false);
1501
1502 unsigned int symbol_names_shndx =
1503 this->adjust_shndx(this->section_link(this->symtab_shndx_));
1504 section_size_type names_size;
1505 const unsigned char* symbol_names_u =
1506 this->section_contents(symbol_names_shndx, &names_size, false);
1507 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1508
1509 const int sym_size = This::sym_size;
1510 const size_t count = symbols_size / sym_size;
1511
1512 const unsigned char* p = symbols;
1513 for (size_t i = 0; i < count; ++i, p += sym_size)
1514 {
1515 elfcpp::Sym<size, big_endian> sym(p);
1516
1517 if (sym.get_st_type() == elfcpp::STT_FILE)
1518 {
1519 if (sym.get_st_name() >= names_size)
1520 info->source_file = "(invalid)";
1521 else
1522 info->source_file = symbol_names + sym.get_st_name();
1523 continue;
1524 }
1525
1526 bool is_ordinary;
1527 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1528 &is_ordinary);
1529 if (is_ordinary
1530 && st_shndx == shndx
1531 && static_cast<off_t>(sym.get_st_value()) <= offset
1532 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1533 > offset))
1534 {
1535 if (sym.get_st_name() > names_size)
1536 info->enclosing_symbol_name = "(invalid)";
1537 else
1538 {
1539 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1540 if (parameters->options().do_demangle())
1541 {
1542 char* demangled_name = cplus_demangle(
1543 info->enclosing_symbol_name.c_str(),
1544 DMGL_ANSI | DMGL_PARAMS);
1545 if (demangled_name != NULL)
1546 {
1547 info->enclosing_symbol_name.assign(demangled_name);
1548 free(demangled_name);
1549 }
1550 }
1551 }
1552 return true;
1553 }
1554 }
1555
1556 return false;
1557 }
1558
1559 // Look for a kept section corresponding to the given discarded section,
1560 // and return its output address. This is used only for relocations in
1561 // debugging sections. If we can't find the kept section, return 0.
1562
1563 template<int size, bool big_endian>
1564 typename Sized_relobj<size, big_endian>::Address
1565 Sized_relobj<size, big_endian>::map_to_kept_section(
1566 unsigned int shndx,
1567 bool* found) const
1568 {
1569 Kept_comdat_section *kept = this->get_kept_comdat_section(shndx);
1570 if (kept != NULL)
1571 {
1572 gold_assert(kept->object_ != NULL);
1573 *found = true;
1574 Output_section* os = kept->object_->output_section(kept->shndx_);
1575 Address offset = kept->object_->get_output_section_offset(kept->shndx_);
1576 gold_assert(os != NULL && offset != -1U);
1577 return os->address() + offset;
1578 }
1579 *found = false;
1580 return 0;
1581 }
1582
1583 // Get symbol counts.
1584
1585 template<int size, bool big_endian>
1586 void
1587 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
1588 const Symbol_table*,
1589 size_t* defined,
1590 size_t* used) const
1591 {
1592 *defined = this->defined_count_;
1593 size_t count = 0;
1594 for (Symbols::const_iterator p = this->symbols_.begin();
1595 p != this->symbols_.end();
1596 ++p)
1597 if (*p != NULL
1598 && (*p)->source() == Symbol::FROM_OBJECT
1599 && (*p)->object() == this
1600 && (*p)->is_defined())
1601 ++count;
1602 *used = count;
1603 }
1604
1605 // Input_objects methods.
1606
1607 // Add a regular relocatable object to the list. Return false if this
1608 // object should be ignored.
1609
1610 bool
1611 Input_objects::add_object(Object* obj)
1612 {
1613 // Set the global target from the first object file we recognize.
1614 Target* target = obj->target();
1615 if (!parameters->target_valid())
1616 set_parameters_target(target);
1617 else if (target != &parameters->target())
1618 {
1619 obj->error(_("incompatible target"));
1620 return false;
1621 }
1622
1623 // Print the filename if the -t/--trace option is selected.
1624 if (parameters->options().trace())
1625 gold_info("%s", obj->name().c_str());
1626
1627 if (!obj->is_dynamic())
1628 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1629 else
1630 {
1631 // See if this is a duplicate SONAME.
1632 Dynobj* dynobj = static_cast<Dynobj*>(obj);
1633 const char* soname = dynobj->soname();
1634
1635 std::pair<Unordered_set<std::string>::iterator, bool> ins =
1636 this->sonames_.insert(soname);
1637 if (!ins.second)
1638 {
1639 // We have already seen a dynamic object with this soname.
1640 return false;
1641 }
1642
1643 this->dynobj_list_.push_back(dynobj);
1644
1645 // If this is -lc, remember the directory in which we found it.
1646 // We use this when issuing warnings about undefined symbols: as
1647 // a heuristic, we don't warn about system libraries found in
1648 // the same directory as -lc.
1649 if (strncmp(soname, "libc.so", 7) == 0)
1650 {
1651 const char* object_name = dynobj->name().c_str();
1652 const char* base = lbasename(object_name);
1653 if (base != object_name)
1654 this->system_library_directory_.assign(object_name,
1655 base - 1 - object_name);
1656 }
1657 }
1658
1659 // Add this object to the cross-referencer if requested.
1660 if (parameters->options().user_set_print_symbol_counts())
1661 {
1662 if (this->cref_ == NULL)
1663 this->cref_ = new Cref();
1664 this->cref_->add_object(obj);
1665 }
1666
1667 return true;
1668 }
1669
1670 // Return whether an object was found in the system library directory.
1671
1672 bool
1673 Input_objects::found_in_system_library_directory(const Object* object) const
1674 {
1675 return (!this->system_library_directory_.empty()
1676 && object->name().compare(0,
1677 this->system_library_directory_.size(),
1678 this->system_library_directory_) == 0);
1679 }
1680
1681 // For each dynamic object, record whether we've seen all of its
1682 // explicit dependencies.
1683
1684 void
1685 Input_objects::check_dynamic_dependencies() const
1686 {
1687 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1688 p != this->dynobj_list_.end();
1689 ++p)
1690 {
1691 const Dynobj::Needed& needed((*p)->needed());
1692 bool found_all = true;
1693 for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1694 pneeded != needed.end();
1695 ++pneeded)
1696 {
1697 if (this->sonames_.find(*pneeded) == this->sonames_.end())
1698 {
1699 found_all = false;
1700 break;
1701 }
1702 }
1703 (*p)->set_has_unknown_needed_entries(!found_all);
1704 }
1705 }
1706
1707 // Start processing an archive.
1708
1709 void
1710 Input_objects::archive_start(Archive* archive)
1711 {
1712 if (parameters->options().user_set_print_symbol_counts())
1713 {
1714 if (this->cref_ == NULL)
1715 this->cref_ = new Cref();
1716 this->cref_->add_archive_start(archive);
1717 }
1718 }
1719
1720 // Stop processing an archive.
1721
1722 void
1723 Input_objects::archive_stop(Archive* archive)
1724 {
1725 if (parameters->options().user_set_print_symbol_counts())
1726 this->cref_->add_archive_stop(archive);
1727 }
1728
1729 // Print symbol counts
1730
1731 void
1732 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
1733 {
1734 if (parameters->options().user_set_print_symbol_counts()
1735 && this->cref_ != NULL)
1736 this->cref_->print_symbol_counts(symtab);
1737 }
1738
1739 // Relocate_info methods.
1740
1741 // Return a string describing the location of a relocation. This is
1742 // only used in error messages.
1743
1744 template<int size, bool big_endian>
1745 std::string
1746 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1747 {
1748 // See if we can get line-number information from debugging sections.
1749 std::string filename;
1750 std::string file_and_lineno; // Better than filename-only, if available.
1751
1752 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1753 // This will be "" if we failed to parse the debug info for any reason.
1754 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1755
1756 std::string ret(this->object->name());
1757 ret += ':';
1758 Symbol_location_info info;
1759 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1760 {
1761 ret += " in function ";
1762 ret += info.enclosing_symbol_name;
1763 ret += ":";
1764 filename = info.source_file;
1765 }
1766
1767 if (!file_and_lineno.empty())
1768 ret += file_and_lineno;
1769 else
1770 {
1771 if (!filename.empty())
1772 ret += filename;
1773 ret += "(";
1774 ret += this->object->section_name(this->data_shndx);
1775 char buf[100];
1776 // Offsets into sections have to be positive.
1777 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1778 ret += buf;
1779 ret += ")";
1780 }
1781 return ret;
1782 }
1783
1784 } // End namespace gold.
1785
1786 namespace
1787 {
1788
1789 using namespace gold;
1790
1791 // Read an ELF file with the header and return the appropriate
1792 // instance of Object.
1793
1794 template<int size, bool big_endian>
1795 Object*
1796 make_elf_sized_object(const std::string& name, Input_file* input_file,
1797 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1798 {
1799 int et = ehdr.get_e_type();
1800 if (et == elfcpp::ET_REL)
1801 {
1802 Sized_relobj<size, big_endian>* obj =
1803 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1804 obj->setup(ehdr);
1805 return obj;
1806 }
1807 else if (et == elfcpp::ET_DYN)
1808 {
1809 Sized_dynobj<size, big_endian>* obj =
1810 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1811 obj->setup(ehdr);
1812 return obj;
1813 }
1814 else
1815 {
1816 gold_error(_("%s: unsupported ELF file type %d"),
1817 name.c_str(), et);
1818 return NULL;
1819 }
1820 }
1821
1822 } // End anonymous namespace.
1823
1824 namespace gold
1825 {
1826
1827 // Read an ELF file and return the appropriate instance of Object.
1828
1829 Object*
1830 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1831 const unsigned char* p, section_offset_type bytes)
1832 {
1833 if (bytes < elfcpp::EI_NIDENT)
1834 {
1835 gold_error(_("%s: ELF file too short"), name.c_str());
1836 return NULL;
1837 }
1838
1839 int v = p[elfcpp::EI_VERSION];
1840 if (v != elfcpp::EV_CURRENT)
1841 {
1842 if (v == elfcpp::EV_NONE)
1843 gold_error(_("%s: invalid ELF version 0"), name.c_str());
1844 else
1845 gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1846 return NULL;
1847 }
1848
1849 int c = p[elfcpp::EI_CLASS];
1850 if (c == elfcpp::ELFCLASSNONE)
1851 {
1852 gold_error(_("%s: invalid ELF class 0"), name.c_str());
1853 return NULL;
1854 }
1855 else if (c != elfcpp::ELFCLASS32
1856 && c != elfcpp::ELFCLASS64)
1857 {
1858 gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1859 return NULL;
1860 }
1861
1862 int d = p[elfcpp::EI_DATA];
1863 if (d == elfcpp::ELFDATANONE)
1864 {
1865 gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1866 return NULL;
1867 }
1868 else if (d != elfcpp::ELFDATA2LSB
1869 && d != elfcpp::ELFDATA2MSB)
1870 {
1871 gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1872 return NULL;
1873 }
1874
1875 bool big_endian = d == elfcpp::ELFDATA2MSB;
1876
1877 if (c == elfcpp::ELFCLASS32)
1878 {
1879 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1880 {
1881 gold_error(_("%s: ELF file too short"), name.c_str());
1882 return NULL;
1883 }
1884 if (big_endian)
1885 {
1886 #ifdef HAVE_TARGET_32_BIG
1887 elfcpp::Ehdr<32, true> ehdr(p);
1888 return make_elf_sized_object<32, true>(name, input_file,
1889 offset, ehdr);
1890 #else
1891 gold_error(_("%s: not configured to support "
1892 "32-bit big-endian object"),
1893 name.c_str());
1894 return NULL;
1895 #endif
1896 }
1897 else
1898 {
1899 #ifdef HAVE_TARGET_32_LITTLE
1900 elfcpp::Ehdr<32, false> ehdr(p);
1901 return make_elf_sized_object<32, false>(name, input_file,
1902 offset, ehdr);
1903 #else
1904 gold_error(_("%s: not configured to support "
1905 "32-bit little-endian object"),
1906 name.c_str());
1907 return NULL;
1908 #endif
1909 }
1910 }
1911 else
1912 {
1913 if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
1914 {
1915 gold_error(_("%s: ELF file too short"), name.c_str());
1916 return NULL;
1917 }
1918 if (big_endian)
1919 {
1920 #ifdef HAVE_TARGET_64_BIG
1921 elfcpp::Ehdr<64, true> ehdr(p);
1922 return make_elf_sized_object<64, true>(name, input_file,
1923 offset, ehdr);
1924 #else
1925 gold_error(_("%s: not configured to support "
1926 "64-bit big-endian object"),
1927 name.c_str());
1928 return NULL;
1929 #endif
1930 }
1931 else
1932 {
1933 #ifdef HAVE_TARGET_64_LITTLE
1934 elfcpp::Ehdr<64, false> ehdr(p);
1935 return make_elf_sized_object<64, false>(name, input_file,
1936 offset, ehdr);
1937 #else
1938 gold_error(_("%s: not configured to support "
1939 "64-bit little-endian object"),
1940 name.c_str());
1941 return NULL;
1942 #endif
1943 }
1944 }
1945 }
1946
1947 // Instantiate the templates we need.
1948
1949 #ifdef HAVE_TARGET_32_LITTLE
1950 template
1951 void
1952 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
1953 Read_symbols_data*);
1954 #endif
1955
1956 #ifdef HAVE_TARGET_32_BIG
1957 template
1958 void
1959 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
1960 Read_symbols_data*);
1961 #endif
1962
1963 #ifdef HAVE_TARGET_64_LITTLE
1964 template
1965 void
1966 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
1967 Read_symbols_data*);
1968 #endif
1969
1970 #ifdef HAVE_TARGET_64_BIG
1971 template
1972 void
1973 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
1974 Read_symbols_data*);
1975 #endif
1976
1977 #ifdef HAVE_TARGET_32_LITTLE
1978 template
1979 class Sized_relobj<32, false>;
1980 #endif
1981
1982 #ifdef HAVE_TARGET_32_BIG
1983 template
1984 class Sized_relobj<32, true>;
1985 #endif
1986
1987 #ifdef HAVE_TARGET_64_LITTLE
1988 template
1989 class Sized_relobj<64, false>;
1990 #endif
1991
1992 #ifdef HAVE_TARGET_64_BIG
1993 template
1994 class Sized_relobj<64, true>;
1995 #endif
1996
1997 #ifdef HAVE_TARGET_32_LITTLE
1998 template
1999 struct Relocate_info<32, false>;
2000 #endif
2001
2002 #ifdef HAVE_TARGET_32_BIG
2003 template
2004 struct Relocate_info<32, true>;
2005 #endif
2006
2007 #ifdef HAVE_TARGET_64_LITTLE
2008 template
2009 struct Relocate_info<64, false>;
2010 #endif
2011
2012 #ifdef HAVE_TARGET_64_BIG
2013 template
2014 struct Relocate_info<64, true>;
2015 #endif
2016
2017 } // End namespace gold.