Add licensing text to every source file.
[binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28
29 #include "target-select.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "object.h"
34 #include "dynobj.h"
35
36 namespace gold
37 {
38
39 // Class Object.
40
41 // Set the target based on fields in the ELF file header.
42
43 void
44 Object::set_target(int machine, int size, bool big_endian, int osabi,
45 int abiversion)
46 {
47 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
48 if (target == NULL)
49 {
50 fprintf(stderr, _("%s: %s: unsupported ELF machine number %d\n"),
51 program_name, this->name().c_str(), machine);
52 gold_exit(false);
53 }
54 this->target_ = target;
55 }
56
57 // Report an error for the elfcpp::Elf_file interface.
58
59 void
60 Object::error(const char* format, ...)
61 {
62 va_list args;
63
64 fprintf(stderr, "%s: %s: ", program_name, this->name().c_str());
65 va_start(args, format);
66 vfprintf(stderr, format, args);
67 va_end(args);
68 putc('\n', stderr);
69
70 gold_exit(false);
71 }
72
73 // Return a view of the contents of a section.
74
75 const unsigned char*
76 Object::section_contents(unsigned int shndx, off_t* plen)
77 {
78 Location loc(this->do_section_contents(shndx));
79 *plen = loc.data_size;
80 return this->get_view(loc.file_offset, loc.data_size);
81 }
82
83 // Read the section data into SD. This is code common to Sized_relobj
84 // and Sized_dynobj, so we put it into Object.
85
86 template<int size, bool big_endian>
87 void
88 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
89 Read_symbols_data* sd)
90 {
91 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
92
93 // Read the section headers.
94 const off_t shoff = elf_file->shoff();
95 const unsigned int shnum = this->shnum();
96 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size);
97
98 // Read the section names.
99 const unsigned char* pshdrs = sd->section_headers->data();
100 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
101 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
102
103 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
104 {
105 fprintf(stderr,
106 _("%s: %s: section name section has wrong type: %u\n"),
107 program_name, this->name().c_str(),
108 static_cast<unsigned int>(shdrnames.get_sh_type()));
109 gold_exit(false);
110 }
111
112 sd->section_names_size = shdrnames.get_sh_size();
113 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
114 sd->section_names_size);
115 }
116
117 // If NAME is the name of a special .gnu.warning section, arrange for
118 // the warning to be issued. SHNDX is the section index. Return
119 // whether it is a warning section.
120
121 bool
122 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
123 Symbol_table* symtab)
124 {
125 const char warn_prefix[] = ".gnu.warning.";
126 const int warn_prefix_len = sizeof warn_prefix - 1;
127 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
128 {
129 symtab->add_warning(name + warn_prefix_len, this, shndx);
130 return true;
131 }
132 return false;
133 }
134
135 // Class Sized_relobj.
136
137 template<int size, bool big_endian>
138 Sized_relobj<size, big_endian>::Sized_relobj(
139 const std::string& name,
140 Input_file* input_file,
141 off_t offset,
142 const elfcpp::Ehdr<size, big_endian>& ehdr)
143 : Relobj(name, input_file, offset),
144 elf_file_(this, ehdr),
145 symtab_shndx_(-1U),
146 local_symbol_count_(0),
147 output_local_symbol_count_(0),
148 symbols_(NULL),
149 local_symbol_offset_(0),
150 local_values_()
151 {
152 }
153
154 template<int size, bool big_endian>
155 Sized_relobj<size, big_endian>::~Sized_relobj()
156 {
157 }
158
159 // Set up an object file based on the file header. This sets up the
160 // target and reads the section information.
161
162 template<int size, bool big_endian>
163 void
164 Sized_relobj<size, big_endian>::setup(
165 const elfcpp::Ehdr<size, big_endian>& ehdr)
166 {
167 this->set_target(ehdr.get_e_machine(), size, big_endian,
168 ehdr.get_e_ident()[elfcpp::EI_OSABI],
169 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
170
171 const unsigned int shnum = this->elf_file_.shnum();
172 this->set_shnum(shnum);
173 }
174
175 // Find the SHT_SYMTAB section, given the section headers. The ELF
176 // standard says that maybe in the future there can be more than one
177 // SHT_SYMTAB section. Until somebody figures out how that could
178 // work, we assume there is only one.
179
180 template<int size, bool big_endian>
181 void
182 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
183 {
184 const unsigned int shnum = this->shnum();
185 this->symtab_shndx_ = 0;
186 if (shnum > 0)
187 {
188 // Look through the sections in reverse order, since gas tends
189 // to put the symbol table at the end.
190 const unsigned char* p = pshdrs + shnum * This::shdr_size;
191 unsigned int i = shnum;
192 while (i > 0)
193 {
194 --i;
195 p -= This::shdr_size;
196 typename This::Shdr shdr(p);
197 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
198 {
199 this->symtab_shndx_ = i;
200 break;
201 }
202 }
203 }
204 }
205
206 // Read the sections and symbols from an object file.
207
208 template<int size, bool big_endian>
209 void
210 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
211 {
212 this->read_section_data(&this->elf_file_, sd);
213
214 const unsigned char* const pshdrs = sd->section_headers->data();
215
216 this->find_symtab(pshdrs);
217
218 if (this->symtab_shndx_ == 0)
219 {
220 // No symbol table. Weird but legal.
221 sd->symbols = NULL;
222 sd->symbols_size = 0;
223 sd->symbol_names = NULL;
224 sd->symbol_names_size = 0;
225 return;
226 }
227
228 // Get the symbol table section header.
229 typename This::Shdr symtabshdr(pshdrs
230 + this->symtab_shndx_ * This::shdr_size);
231 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
232
233 // We only need the external symbols.
234 const int sym_size = This::sym_size;
235 const unsigned int loccount = symtabshdr.get_sh_info();
236 this->local_symbol_count_ = loccount;
237 off_t locsize = loccount * sym_size;
238 off_t extoff = symtabshdr.get_sh_offset() + locsize;
239 off_t extsize = symtabshdr.get_sh_size() - locsize;
240
241 // Read the symbol table.
242 File_view* fvsymtab = this->get_lasting_view(extoff, extsize);
243
244 // Read the section header for the symbol names.
245 unsigned int strtab_shndx = symtabshdr.get_sh_link();
246 if (strtab_shndx >= this->shnum())
247 {
248 fprintf(stderr, _("%s: %s: invalid symbol table name index: %u\n"),
249 program_name, this->name().c_str(), strtab_shndx);
250 gold_exit(false);
251 }
252 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
253 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
254 {
255 fprintf(stderr,
256 _("%s: %s: symbol table name section has wrong type: %u\n"),
257 program_name, this->name().c_str(),
258 static_cast<unsigned int>(strtabshdr.get_sh_type()));
259 gold_exit(false);
260 }
261
262 // Read the symbol names.
263 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
264 strtabshdr.get_sh_size());
265
266 sd->symbols = fvsymtab;
267 sd->symbols_size = extsize;
268 sd->symbol_names = fvstrtab;
269 sd->symbol_names_size = strtabshdr.get_sh_size();
270 }
271
272 // Return whether to include a section group in the link. LAYOUT is
273 // used to keep track of which section groups we have already seen.
274 // INDEX is the index of the section group and SHDR is the section
275 // header. If we do not want to include this group, we set bits in
276 // OMIT for each section which should be discarded.
277
278 template<int size, bool big_endian>
279 bool
280 Sized_relobj<size, big_endian>::include_section_group(
281 Layout* layout,
282 unsigned int index,
283 const elfcpp::Shdr<size, big_endian>& shdr,
284 std::vector<bool>* omit)
285 {
286 // Read the section contents.
287 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
288 shdr.get_sh_size());
289 const elfcpp::Elf_Word* pword =
290 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
291
292 // The first word contains flags. We only care about COMDAT section
293 // groups. Other section groups are always included in the link
294 // just like ordinary sections.
295 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
296 if ((flags & elfcpp::GRP_COMDAT) == 0)
297 return true;
298
299 // Look up the group signature, which is the name of a symbol. This
300 // is a lot of effort to go to to read a string. Why didn't they
301 // just use the name of the SHT_GROUP section as the group
302 // signature?
303
304 // Get the appropriate symbol table header (this will normally be
305 // the single SHT_SYMTAB section, but in principle it need not be).
306 const unsigned int link = shdr.get_sh_link();
307 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
308
309 // Read the symbol table entry.
310 if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size)
311 {
312 fprintf(stderr, _("%s: %s: section group %u info %u out of range\n"),
313 program_name, this->name().c_str(), index, shdr.get_sh_info());
314 gold_exit(false);
315 }
316 off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size;
317 const unsigned char* psym = this->get_view(symoff, This::sym_size);
318 elfcpp::Sym<size, big_endian> sym(psym);
319
320 // Read the symbol table names.
321 off_t symnamelen;
322 const unsigned char* psymnamesu;
323 psymnamesu = this->section_contents(symshdr.get_sh_link(), &symnamelen);
324 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
325
326 // Get the section group signature.
327 if (sym.get_st_name() >= symnamelen)
328 {
329 fprintf(stderr, _("%s: %s: symbol %u name offset %u out of range\n"),
330 program_name, this->name().c_str(), shdr.get_sh_info(),
331 sym.get_st_name());
332 gold_exit(false);
333 }
334
335 const char* signature = psymnames + sym.get_st_name();
336
337 // It seems that some versions of gas will create a section group
338 // associated with a section symbol, and then fail to give a name to
339 // the section symbol. In such a case, use the name of the section.
340 // FIXME.
341 std::string secname;
342 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
343 {
344 secname = this->section_name(sym.get_st_shndx());
345 signature = secname.c_str();
346 }
347
348 // Record this section group, and see whether we've already seen one
349 // with the same signature.
350 if (layout->add_comdat(signature, true))
351 return true;
352
353 // This is a duplicate. We want to discard the sections in this
354 // group.
355 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
356 for (size_t i = 1; i < count; ++i)
357 {
358 elfcpp::Elf_Word secnum =
359 elfcpp::Swap<32, big_endian>::readval(pword + i);
360 if (secnum >= this->shnum())
361 {
362 fprintf(stderr,
363 _("%s: %s: section %u in section group %u out of range"),
364 program_name, this->name().c_str(), secnum,
365 index);
366 gold_exit(false);
367 }
368 (*omit)[secnum] = true;
369 }
370
371 return false;
372 }
373
374 // Whether to include a linkonce section in the link. NAME is the
375 // name of the section and SHDR is the section header.
376
377 // Linkonce sections are a GNU extension implemented in the original
378 // GNU linker before section groups were defined. The semantics are
379 // that we only include one linkonce section with a given name. The
380 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
381 // where T is the type of section and SYMNAME is the name of a symbol.
382 // In an attempt to make linkonce sections interact well with section
383 // groups, we try to identify SYMNAME and use it like a section group
384 // signature. We want to block section groups with that signature,
385 // but not other linkonce sections with that signature. We also use
386 // the full name of the linkonce section as a normal section group
387 // signature.
388
389 template<int size, bool big_endian>
390 bool
391 Sized_relobj<size, big_endian>::include_linkonce_section(
392 Layout* layout,
393 const char* name,
394 const elfcpp::Shdr<size, big_endian>&)
395 {
396 const char* symname = strrchr(name, '.') + 1;
397 bool include1 = layout->add_comdat(symname, false);
398 bool include2 = layout->add_comdat(name, true);
399 return include1 && include2;
400 }
401
402 // Lay out the input sections. We walk through the sections and check
403 // whether they should be included in the link. If they should, we
404 // pass them to the Layout object, which will return an output section
405 // and an offset.
406
407 template<int size, bool big_endian>
408 void
409 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
410 Layout* layout,
411 Read_symbols_data* sd)
412 {
413 const unsigned int shnum = this->shnum();
414 if (shnum == 0)
415 return;
416
417 // Get the section headers.
418 const unsigned char* pshdrs = sd->section_headers->data();
419
420 // Get the section names.
421 const unsigned char* pnamesu = sd->section_names->data();
422 const char* pnames = reinterpret_cast<const char*>(pnamesu);
423
424 std::vector<Map_to_output>& map_sections(this->map_to_output());
425 map_sections.resize(shnum);
426
427 // Keep track of which sections to omit.
428 std::vector<bool> omit(shnum, false);
429
430 // Skip the first, dummy, section.
431 pshdrs += This::shdr_size;
432 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
433 {
434 typename This::Shdr shdr(pshdrs);
435
436 if (shdr.get_sh_name() >= sd->section_names_size)
437 {
438 fprintf(stderr,
439 _("%s: %s: bad section name offset for section %u: %lu\n"),
440 program_name, this->name().c_str(), i,
441 static_cast<unsigned long>(shdr.get_sh_name()));
442 gold_exit(false);
443 }
444
445 const char* name = pnames + shdr.get_sh_name();
446
447 if (this->handle_gnu_warning_section(name, i, symtab))
448 {
449 if (!parameters->output_is_object())
450 omit[i] = true;
451 }
452
453 bool discard = omit[i];
454 if (!discard)
455 {
456 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
457 {
458 if (!this->include_section_group(layout, i, shdr, &omit))
459 discard = true;
460 }
461 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
462 && Layout::is_linkonce(name))
463 {
464 if (!this->include_linkonce_section(layout, name, shdr))
465 discard = true;
466 }
467 }
468
469 if (discard)
470 {
471 // Do not include this section in the link.
472 map_sections[i].output_section = NULL;
473 continue;
474 }
475
476 off_t offset;
477 Output_section* os = layout->layout(this, i, name, shdr, &offset);
478
479 map_sections[i].output_section = os;
480 map_sections[i].offset = offset;
481 }
482
483 delete sd->section_headers;
484 sd->section_headers = NULL;
485 delete sd->section_names;
486 sd->section_names = NULL;
487 }
488
489 // Add the symbols to the symbol table.
490
491 template<int size, bool big_endian>
492 void
493 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
494 Read_symbols_data* sd)
495 {
496 if (sd->symbols == NULL)
497 {
498 gold_assert(sd->symbol_names == NULL);
499 return;
500 }
501
502 const int sym_size = This::sym_size;
503 size_t symcount = sd->symbols_size / sym_size;
504 if (symcount * sym_size != sd->symbols_size)
505 {
506 fprintf(stderr,
507 _("%s: %s: size of symbols is not multiple of symbol size\n"),
508 program_name, this->name().c_str());
509 gold_exit(false);
510 }
511
512 this->symbols_ = new Symbol*[symcount];
513
514 const char* sym_names =
515 reinterpret_cast<const char*>(sd->symbol_names->data());
516 symtab->add_from_relobj(this, sd->symbols->data(), symcount, sym_names,
517 sd->symbol_names_size, this->symbols_);
518
519 delete sd->symbols;
520 sd->symbols = NULL;
521 delete sd->symbol_names;
522 sd->symbol_names = NULL;
523 }
524
525 // Finalize the local symbols. Here we record the file offset at
526 // which they should be output, we add their names to *POOL, and we
527 // add their values to THIS->LOCAL_VALUES_. Return the symbol index.
528 // This function is always called from the main thread. The actual
529 // output of the local symbols will occur in a separate task.
530
531 template<int size, bool big_endian>
532 unsigned int
533 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
534 off_t off,
535 Stringpool* pool)
536 {
537 gold_assert(this->symtab_shndx_ != -1U);
538 if (this->symtab_shndx_ == 0)
539 {
540 // This object has no symbols. Weird but legal.
541 return index;
542 }
543
544 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
545
546 this->local_symbol_offset_ = off;
547
548 // Read the symbol table section header.
549 const unsigned int symtab_shndx = this->symtab_shndx_;
550 typename This::Shdr symtabshdr(this,
551 this->elf_file_.section_header(symtab_shndx));
552 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
553
554 // Read the local symbols.
555 const int sym_size = This::sym_size;
556 const unsigned int loccount = this->local_symbol_count_;
557 gold_assert(loccount == symtabshdr.get_sh_info());
558 off_t locsize = loccount * sym_size;
559 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
560 locsize);
561
562 this->local_values_.resize(loccount);
563
564 // Read the symbol names.
565 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
566 off_t strtab_size;
567 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
568 &strtab_size);
569 const char* pnames = reinterpret_cast<const char*>(pnamesu);
570
571 // Loop over the local symbols.
572
573 const std::vector<Map_to_output>& mo(this->map_to_output());
574 unsigned int shnum = this->shnum();
575 unsigned int count = 0;
576 // Skip the first, dummy, symbol.
577 psyms += sym_size;
578 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
579 {
580 elfcpp::Sym<size, big_endian> sym(psyms);
581
582 Symbol_value<size>& lv(this->local_values_[i]);
583
584 unsigned int shndx = sym.get_st_shndx();
585 lv.set_input_shndx(shndx);
586
587 if (shndx >= elfcpp::SHN_LORESERVE)
588 {
589 if (shndx == elfcpp::SHN_ABS)
590 lv.set_output_value(sym.get_st_value());
591 else
592 {
593 // FIXME: Handle SHN_XINDEX.
594 fprintf(stderr,
595 _("%s: %s: unknown section index %u "
596 "for local symbol %u\n"),
597 program_name, this->name().c_str(), shndx, i);
598 gold_exit(false);
599 }
600 }
601 else
602 {
603 if (shndx >= shnum)
604 {
605 fprintf(stderr,
606 _("%s: %s: local symbol %u section index %u "
607 "out of range\n"),
608 program_name, this->name().c_str(), i, shndx);
609 gold_exit(false);
610 }
611
612 Output_section* os = mo[shndx].output_section;
613
614 if (os == NULL)
615 {
616 lv.set_output_value(0);
617 lv.set_no_output_symtab_entry();
618 continue;
619 }
620
621 if (mo[shndx].offset == -1)
622 lv.set_input_value(sym.get_st_value());
623 else
624 lv.set_output_value(mo[shndx].output_section->address()
625 + mo[shndx].offset
626 + sym.get_st_value());
627 }
628
629 // Decide whether this symbol should go into the output file.
630
631 if (sym.get_st_type() == elfcpp::STT_SECTION)
632 {
633 lv.set_no_output_symtab_entry();
634 continue;
635 }
636
637 if (sym.get_st_name() >= strtab_size)
638 {
639 fprintf(stderr,
640 _("%s: %s: local symbol %u section name "
641 "out of range: %u >= %u\n"),
642 program_name, this->name().c_str(),
643 i, sym.get_st_name(),
644 static_cast<unsigned int>(strtab_size));
645 gold_exit(false);
646 }
647
648 const char* name = pnames + sym.get_st_name();
649 pool->add(name, NULL);
650 lv.set_output_symtab_index(index);
651 ++index;
652 ++count;
653 }
654
655 this->output_local_symbol_count_ = count;
656
657 return index;
658 }
659
660 // Return the value of a local symbol defined in input section SHNDX,
661 // with value VALUE, adding addend ADDEND. This handles SHF_MERGE
662 // sections.
663 template<int size, bool big_endian>
664 typename elfcpp::Elf_types<size>::Elf_Addr
665 Sized_relobj<size, big_endian>::local_value(unsigned int shndx,
666 Address value,
667 Address addend) const
668 {
669 const std::vector<Map_to_output>& mo(this->map_to_output());
670 Output_section* os = mo[shndx].output_section;
671 if (os == NULL)
672 return addend;
673 gold_assert(mo[shndx].offset == -1);
674 return os->output_address(this, shndx, value + addend);
675 }
676
677 // Write out the local symbols.
678
679 template<int size, bool big_endian>
680 void
681 Sized_relobj<size, big_endian>::write_local_symbols(Output_file* of,
682 const Stringpool* sympool)
683 {
684 gold_assert(this->symtab_shndx_ != -1U);
685 if (this->symtab_shndx_ == 0)
686 {
687 // This object has no symbols. Weird but legal.
688 return;
689 }
690
691 // Read the symbol table section header.
692 const unsigned int symtab_shndx = this->symtab_shndx_;
693 typename This::Shdr symtabshdr(this,
694 this->elf_file_.section_header(symtab_shndx));
695 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
696 const unsigned int loccount = this->local_symbol_count_;
697 gold_assert(loccount == symtabshdr.get_sh_info());
698
699 // Read the local symbols.
700 const int sym_size = This::sym_size;
701 off_t locsize = loccount * sym_size;
702 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
703 locsize);
704
705 // Read the symbol names.
706 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
707 off_t strtab_size;
708 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
709 &strtab_size);
710 const char* pnames = reinterpret_cast<const char*>(pnamesu);
711
712 // Get a view into the output file.
713 off_t output_size = this->output_local_symbol_count_ * sym_size;
714 unsigned char* oview = of->get_output_view(this->local_symbol_offset_,
715 output_size);
716
717 const std::vector<Map_to_output>& mo(this->map_to_output());
718
719 gold_assert(this->local_values_.size() == loccount);
720
721 unsigned char* ov = oview;
722 psyms += sym_size;
723 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
724 {
725 elfcpp::Sym<size, big_endian> isym(psyms);
726
727 if (!this->local_values_[i].needs_output_symtab_entry())
728 continue;
729
730 unsigned int st_shndx = isym.get_st_shndx();
731 if (st_shndx < elfcpp::SHN_LORESERVE)
732 {
733 gold_assert(st_shndx < mo.size());
734 if (mo[st_shndx].output_section == NULL)
735 continue;
736 st_shndx = mo[st_shndx].output_section->out_shndx();
737 }
738
739 elfcpp::Sym_write<size, big_endian> osym(ov);
740
741 gold_assert(isym.get_st_name() < strtab_size);
742 const char* name = pnames + isym.get_st_name();
743 osym.put_st_name(sympool->get_offset(name));
744 osym.put_st_value(this->local_values_[i].value(this, 0));
745 osym.put_st_size(isym.get_st_size());
746 osym.put_st_info(isym.get_st_info());
747 osym.put_st_other(isym.get_st_other());
748 osym.put_st_shndx(st_shndx);
749
750 ov += sym_size;
751 }
752
753 gold_assert(ov - oview == output_size);
754
755 of->write_output_view(this->local_symbol_offset_, output_size, oview);
756 }
757
758 // Input_objects methods.
759
760 // Add a regular relocatable object to the list. Return false if this
761 // object should be ignored.
762
763 bool
764 Input_objects::add_object(Object* obj)
765 {
766 if (!obj->is_dynamic())
767 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
768 else
769 {
770 // See if this is a duplicate SONAME.
771 Dynobj* dynobj = static_cast<Dynobj*>(obj);
772
773 std::pair<Unordered_set<std::string>::iterator, bool> ins =
774 this->sonames_.insert(dynobj->soname());
775 if (!ins.second)
776 {
777 // We have already seen a dynamic object with this soname.
778 return false;
779 }
780
781 this->dynobj_list_.push_back(dynobj);
782 }
783
784 Target* target = obj->target();
785 if (this->target_ == NULL)
786 this->target_ = target;
787 else if (this->target_ != target)
788 {
789 fprintf(stderr, "%s: %s: incompatible target\n",
790 program_name, obj->name().c_str());
791 gold_exit(false);
792 }
793
794 return true;
795 }
796
797 // Relocate_info methods.
798
799 // Return a string describing the location of a relocation. This is
800 // only used in error messages.
801
802 template<int size, bool big_endian>
803 std::string
804 Relocate_info<size, big_endian>::location(size_t relnum, off_t) const
805 {
806 std::string ret(this->object->name());
807 ret += ": reloc ";
808 char buf[100];
809 snprintf(buf, sizeof buf, "%zu", relnum);
810 ret += buf;
811 ret += " in reloc section ";
812 snprintf(buf, sizeof buf, "%u", this->reloc_shndx);
813 ret += buf;
814 ret += " (" + this->object->section_name(this->reloc_shndx);
815 ret += ") for section ";
816 snprintf(buf, sizeof buf, "%u", this->data_shndx);
817 ret += buf;
818 ret += " (" + this->object->section_name(this->data_shndx) + ")";
819 return ret;
820 }
821
822 } // End namespace gold.
823
824 namespace
825 {
826
827 using namespace gold;
828
829 // Read an ELF file with the header and return the appropriate
830 // instance of Object.
831
832 template<int size, bool big_endian>
833 Object*
834 make_elf_sized_object(const std::string& name, Input_file* input_file,
835 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
836 {
837 int et = ehdr.get_e_type();
838 if (et == elfcpp::ET_REL)
839 {
840 Sized_relobj<size, big_endian>* obj =
841 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
842 obj->setup(ehdr);
843 return obj;
844 }
845 else if (et == elfcpp::ET_DYN)
846 {
847 Sized_dynobj<size, big_endian>* obj =
848 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
849 obj->setup(ehdr);
850 return obj;
851 }
852 else
853 {
854 fprintf(stderr, _("%s: %s: unsupported ELF file type %d\n"),
855 program_name, name.c_str(), et);
856 gold_exit(false);
857 }
858 }
859
860 } // End anonymous namespace.
861
862 namespace gold
863 {
864
865 // Read an ELF file and return the appropriate instance of Object.
866
867 Object*
868 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
869 const unsigned char* p, off_t bytes)
870 {
871 if (bytes < elfcpp::EI_NIDENT)
872 {
873 fprintf(stderr, _("%s: %s: ELF file too short\n"),
874 program_name, name.c_str());
875 gold_exit(false);
876 }
877
878 int v = p[elfcpp::EI_VERSION];
879 if (v != elfcpp::EV_CURRENT)
880 {
881 if (v == elfcpp::EV_NONE)
882 fprintf(stderr, _("%s: %s: invalid ELF version 0\n"),
883 program_name, name.c_str());
884 else
885 fprintf(stderr, _("%s: %s: unsupported ELF version %d\n"),
886 program_name, name.c_str(), v);
887 gold_exit(false);
888 }
889
890 int c = p[elfcpp::EI_CLASS];
891 if (c == elfcpp::ELFCLASSNONE)
892 {
893 fprintf(stderr, _("%s: %s: invalid ELF class 0\n"),
894 program_name, name.c_str());
895 gold_exit(false);
896 }
897 else if (c != elfcpp::ELFCLASS32
898 && c != elfcpp::ELFCLASS64)
899 {
900 fprintf(stderr, _("%s: %s: unsupported ELF class %d\n"),
901 program_name, name.c_str(), c);
902 gold_exit(false);
903 }
904
905 int d = p[elfcpp::EI_DATA];
906 if (d == elfcpp::ELFDATANONE)
907 {
908 fprintf(stderr, _("%s: %s: invalid ELF data encoding\n"),
909 program_name, name.c_str());
910 gold_exit(false);
911 }
912 else if (d != elfcpp::ELFDATA2LSB
913 && d != elfcpp::ELFDATA2MSB)
914 {
915 fprintf(stderr, _("%s: %s: unsupported ELF data encoding %d\n"),
916 program_name, name.c_str(), d);
917 gold_exit(false);
918 }
919
920 bool big_endian = d == elfcpp::ELFDATA2MSB;
921
922 if (c == elfcpp::ELFCLASS32)
923 {
924 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
925 {
926 fprintf(stderr, _("%s: %s: ELF file too short\n"),
927 program_name, name.c_str());
928 gold_exit(false);
929 }
930 if (big_endian)
931 {
932 #ifdef HAVE_TARGET_32_BIG
933 elfcpp::Ehdr<32, true> ehdr(p);
934 return make_elf_sized_object<32, true>(name, input_file,
935 offset, ehdr);
936 #else
937 fprintf(stderr,
938 _("%s: %s: not configured to support 32-bit big-endian object\n"),
939 program_name, name.c_str());
940 gold_exit(false);
941 #endif
942 }
943 else
944 {
945 #ifdef HAVE_TARGET_32_LITTLE
946 elfcpp::Ehdr<32, false> ehdr(p);
947 return make_elf_sized_object<32, false>(name, input_file,
948 offset, ehdr);
949 #else
950 fprintf(stderr,
951 _("%s: %s: not configured to support 32-bit little-endian object\n"),
952 program_name, name.c_str());
953 gold_exit(false);
954 #endif
955 }
956 }
957 else
958 {
959 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
960 {
961 fprintf(stderr, _("%s: %s: ELF file too short\n"),
962 program_name, name.c_str());
963 gold_exit(false);
964 }
965 if (big_endian)
966 {
967 #ifdef HAVE_TARGET_64_BIG
968 elfcpp::Ehdr<64, true> ehdr(p);
969 return make_elf_sized_object<64, true>(name, input_file,
970 offset, ehdr);
971 #else
972 fprintf(stderr,
973 _("%s: %s: not configured to support 64-bit big-endian object\n"),
974 program_name, name.c_str());
975 gold_exit(false);
976 #endif
977 }
978 else
979 {
980 #ifdef HAVE_TARGET_64_LITTLE
981 elfcpp::Ehdr<64, false> ehdr(p);
982 return make_elf_sized_object<64, false>(name, input_file,
983 offset, ehdr);
984 #else
985 fprintf(stderr,
986 _("%s: %s: not configured to support 64-bit little-endian object\n"),
987 program_name, name.c_str());
988 gold_exit(false);
989 #endif
990 }
991 }
992 }
993
994 // Instantiate the templates we need. We could use the configure
995 // script to restrict this to only the ones for implemented targets.
996
997 #ifdef HAVE_TARGET_32_LITTLE
998 template
999 class Sized_relobj<32, false>;
1000 #endif
1001
1002 #ifdef HAVE_TARGET_32_BIG
1003 template
1004 class Sized_relobj<32, true>;
1005 #endif
1006
1007 #ifdef HAVE_TARGET_64_LITTLE
1008 template
1009 class Sized_relobj<64, false>;
1010 #endif
1011
1012 #ifdef HAVE_TARGET_64_BIG
1013 template
1014 class Sized_relobj<64, true>;
1015 #endif
1016
1017 #ifdef HAVE_TARGET_32_LITTLE
1018 template
1019 struct Relocate_info<32, false>;
1020 #endif
1021
1022 #ifdef HAVE_TARGET_32_BIG
1023 template
1024 struct Relocate_info<32, true>;
1025 #endif
1026
1027 #ifdef HAVE_TARGET_64_LITTLE
1028 template
1029 struct Relocate_info<64, false>;
1030 #endif
1031
1032 #ifdef HAVE_TARGET_64_BIG
1033 template
1034 struct Relocate_info<64, true>;
1035 #endif
1036
1037 } // End namespace gold.